

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

BOTTOM ASH SETTLING AREA TECUMSEH ENERGY CENTER TECUMSEH, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778 January 2024

2023 Annual Groundwater Monitoring and Corrective Action Report

Table of Contents

				Page
2.	Intro	oductio	n	1
	1.1	40 CFR	R § 257.90(e)(6) SUMMARY	1
		1.1.1	40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1
		1.1.2	40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1
		1.1.3	40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	2
		1.1.4	40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2
		1.1.5	40 CFR § 257.90(e)(6)(v) – Selection of Remedy	3
		1.1.6	40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3
2.	40 C	4		
	2.1	40 CFR	R § 257.90(a)	4
	2.2	40 CFR	R § 257.90(e) – SUMMARY	4
		2.2.1	Status of the Groundwater Monitoring Program	4
		2.2.2	Key Actions Completed	5
		2.2.3	Problems Encountered	6
		2.2.4	Actions to Resolve Problems	6
		2.2.5	Project Key Activities for Upcoming Year	6
	2.3	40 CFR	R § 257.90(e) – INFORMATION	7
		2.3.1	40 CFR § 257.90(e)(1)	7
		2.3.2	40 CFR § 257.90(e)(2) – Monitoring System Changes	7
		2.3.3	40 CFR § 257.90(e)(3) – Summary of Sampling Events	7
		2.3.4	40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	8
		2.3.5	40 CFR § 257.90(e)(5) – Other Requirements	8

Revision No.	Date	Notes

i

List of Tables

Table No.	Title
1	Summary of Analytical Results – Assessment Monitoring
II	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – March 2023 Sampling Event

List of Figures

Figure No. 1	Title Bottom Ash Settling Area CCR Compliance Monitoring Well Location Map
2	Bottom Ash Settling Area Nature and Extent Monitoring Well Location Map
3	Bottom Ash Settling Area Groundwater Potentiometric Elevation Contour Map – January 5, 2023
4	Bottom Ash Settling Area Groundwater Potentiometric Elevation Contour Map – March 6, 2022
5	Bottom Ash Settling Area Groundwater Potentiometric Elevation Contour Map – September 5, 2023
6	Bottom Ash Settling Area Groundwater Potentiometric Elevation Contour Map – December 13 – 14, 2023

List of Attachments

Attachment 1 – Statistical Analyses

1-1 March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

2-1	January 2023 Semi-Annual Sampling Event Laboratory Analytical Report
2-2	March 2023 Annual Assessment Sampling Event Laboratory Analytical Report
2-3	September 2023 Semi-Annual Sampling Event Laboratory Analytical Report

2023 Annual Groundwater Monitoring and Corrective Action Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Tecumseh Energy Center (TEC) Bottom Ash Settling Area (BASA) consistent with applicable sections of Code of Federal Regulations Title 40 §§ 257.90 through 257.98, describes activities conducted in the prior calendar year (2023), and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2023 Annual Groundwater Monitoring and Corrective Action Report for the TEC BASA is, to the best of my knowledge, accurate and complete.

Professional Geologist

Print Name: Mark Nicholls

Professional Geologist No. 881 Kansas License No.:

> Title: **Principal Consultant** Company:

Haley & Aldrich, Inc.

1. Introduction

This 2023 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Bottom Ash Settling Area (BASA; also known as the Bottom Ash Settling Pond) at the Tecumseh Energy Center (TEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Title 40 Code of Federal Regulations (40 CFR), § 257.90(e). The Annual Report documents the groundwater monitoring system for the BASA consistent with applicable sections of 40 CFR 257.90 through 257.98, describes activities conducted in the prior calendar year (2023), and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2023), the BASA was operating under an assessment monitoring program in compliance with 40 CFR § 257.95 for all constituents except arsenic and cobalt. An Corrective Measures Assessment (CMA) was initiated on March 13, 2023 in accordance with 40 CFR § 257.96 for arsenic and cobalt, which continue to be monitored under an assessment monitoring program in accordance with 40 CFR § 257.96(b). The CMA will be completed in accordance with the USEPA-approved compliance timeline included in the TEC BASA Nature and Extent Investigation Well Placement/Development Plan (N&E Development Plan).

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2023), the BASA was under an assessment monitoring program in compliance with 40 CFR § 257.95 for all constituents except arsenic and cobalt. A CMA has been initiated in accordance with 40 CFR § 257.96 for arsenic and cobalt, which continue to be monitored under an assessment monitoring program in accordance with 40 CFR § 257.96(b).

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a) – Statistically Significant Increase Constituents

Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

The BASA was operating under an assessment monitoring program; therefore, no statistical evaluations were completed on Appendix III constituents in 2023.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b) – Initiation of Assessment Monitoring

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on July 17, 2018 for the BASA with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The TEC BASA surface impoundment was closed on August 11, 2020 in accordance with the requirements of § 257.102(c).

Pursuant to the Consent Agreement and Final Order In the Matter of Evergy Kansas Central, Inc.: Docket No. RCRA-07-2023-0001 dated November 7, 2022 (CAFO), the TEC BASA surface impoundment was reopened for further assessment monitoring, and the assessment monitoring program was re-established to meet the requirements of 40 CFR § 257.95 on December 12, 2022.

The BASA remained in assessment monitoring in 2023, with a corrective measures program implemented for arsenic and cobalt in accordance with 40 CFR § 257.96.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

No statistically significant levels were identified above the groundwater protection standard for those constituents listed in Appendix IV to this part in 2023 for the BASA. The statistical evaluation report for the semi-annual assessment monitoring sampling event from March 2023 was completed in July 2023 and is included in Attachment 1.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

A CMA was initiated on March 13, 2023 for arsenic and cobalt at the BASA in accordance with 40 CFR § 257.96.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

A public meeting was not held in 2023. A public meeting to discuss the results of the CMA will be held at least 30 days prior to the selection of remedy in accordance with § 257.96(e).

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

A CMA was not completed in 2023 at the BASA. The CMA will be completed in accordance with the USEPA-approved compliance timeline included in the TEC BASA N&E Development Plan. This plan was approved as a component of the CAFO by the USEPA on July 21, 2023.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

A remedy was not selected in 2023 for arsenic and cobalt at the BASA.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were initiated in 2023; therefore, no demonstration or certification is applicable for this unit.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the TEC BASA. The BASA is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the TEC BASA as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in calendar year 2023.

2.2.1 Status of the Groundwater Monitoring Program

In accordance with paragraph 10.c of the CAFO, statistical evaluations were completed in 2022 for assessment monitoring groundwater data collected after January 1, 2018 at the BASA using interwell comparison methods to establish background levels and identify Appendix IV statistically significant levels (SSL) and to determine groundwater protection standard (GWPS) in accordance with 40 CFR § 257.95(h) and (i). The statistical evaluations indicated Appendix IV SSLs above the GWPS for arsenic and cobalt.

A CMA was initiated on March 13, 2023 for arsenic and cobalt in accordance with 40 CFR § 257.96. Evergy is currently conducting an assessment monitoring program that includes all other Appendix IV

2023 Annual Groundwater Monitoring and Corrective Action Report

constituents. The CMA will be completed in accordance with the USEPA-approved compliance timeline included in the TEC BASA N&E Development Plan.

2.2.2 Key Actions Completed

The 2022 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2023. An annual assessment monitoring sampling event was completed in January 2023 at the certified groundwater monitoring network to identify detected Appendix IV constituents for subsequent semi-annual sampling events in March and September 2023.

Semi-annual assessment monitoring sampling events were completed in March 2023 and September 2023 at the certified groundwater monitoring network for detected Appendix IV constituents identified from the January 2023 annual assessment monitoring sampling event. Statistical evaluation was completed in July 2023 on analytical data from the March 2023 semi-annual assessment monitoring sampling event. Statistical evaluation of the results from the September 2023 semi-annual assessment monitoring sampling event are due to be completed in January 2024 and will be reported in the next annual report.

In November 2023, Evergy completed the installation of four additional monitoring wells in accordance with the Well Placement/Development Plan for the Installation of Additional Monitoring Wells at the Bottom Ash Settling Area Surface Impoundment (Development Plan) approved by the USEPA on July 21, 2023. The monitoring wells supplement the existing certified groundwater monitoring network. The initial baseline groundwater monitoring samples were collected in December 2023 from the newly installed monitoring wells.

The determination of the nature and extent of Appendix IV SSLs has been initiated pursuant to § 257.95(g). Nine additional groundwater monitoring wells were installed in October and November 2023 to collect groundwater quality data that will define the nature and extent of constituent migration (if any) in accordance with the N&E Development Plan approved by the USEPA on July 21, 2023. The initial groundwater samples were collected in December 2023 from the newly installed monitoring wells, in support of the nature and extent investigation.

An annual assessment monitoring sampling event was completed in December 2023 to identify detectable Appendix IV constituents to be monitored in subsequent semi-annual sampling events planned for March 2024 and September 2024.

Analytical results from all groundwater samples collected in the December 2023, for the annual assessment monitoring sampling event, initial baseline sampling event at newly installed monitoring wells, and newly installed nature and extent monitoring wells are due to be received and validated in January 2024 and will be reported in the next annual report.

2023 Annual Groundwater Monitoring and Corrective Action Report

2.2.3 Problems Encountered

Noteworthy problems encountered during groundwater monitoring events at the BASA in 2023 included monitoring wells that did not contain sufficient water volume to successfully provide samples. These instances are summarized below.

January 2023:

- Downgradient monitoring wells MW-8 and MW-9 did not contain sufficient water volume to support successful sampling.
- Monitoring well MW-10 did not contain sufficient water volume to support successful sampling for fluoride and Radium 226 and 228 combined. However, all other Appendix IV constituents were analyzed from the limited sample volume obtained from monitoring well MW-10.

March 2023:

- Downgradient monitoring well MW-9 did not contain sufficient water volume to support successful sampling.
- Monitoring wells MW-8 and MW-10 did not contain sufficient water volume to support successful sampling for all requested analyses. However, select analyses were completed from the limited sample volume.

September 2023:

 Downgradient monitoring wells MW-8, MW-9, and MW-10 did not contain sufficient water volume to support successful sampling.

December 2023:

- Downgradient monitoring well MW-9 did not contain sufficient water volume to support successful sampling.
- Monitoring wells MW-8 and MW-10 did not contain sufficient water volume to support successful sampling for all requested analyses. However, select analyses were completed from the limited sample volume.

2.2.4 Actions to Resolve Problems

Actions taken to resolve the problems encountered at the BASA in 2023 included the installation of additional monitoring wells as described in Sections 2.2.2 and 2.3.2.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2024 include the 2023 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual assessment monitoring analytical data collected in September 2023, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring. Baseline sampling will continue at newly installed compliance wells.

The continuation of the nature and extent investigation will continue into the next calendar year (2024).

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the TEC BASA is included in this report as Figure 1. As described in Sections 2.2.2 and 2.3.2, monitoring wells were installed to supplement the certified groundwater monitoring network and additional monitoring wells were installed to assist with the nature and extent at the BASA. These new well locations are shown on Figure 2.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

Four monitoring wells were installed in October to November 2023 in accordance with the Development Plan approved by the USEPA on July 21, 2023. The new monitoring wells supplement the certified groundwater monitoring network and are shown on Figure 2.

Nine monitoring wells were installed in October to November 2023 to support evaluation of the nature and extent of migration (if any) of Appendix IV constituents from the BASA. The newly installed nature and extent monitoring well locations are shown on Figure 2.

No monitoring wells were decommissioned in 2023.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), four independent assessment monitoring samples were attempted from the background and downgradient monitoring wells in 2023. Many of the downgradient monitoring wells did not contain sufficient water volume to support successful sampling as detailed in Section 2.2.3, and groundwater samples were not collected. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the BASA is presented in Table I of this report. Groundwater potentiometric

2023 Annual Groundwater Monitoring and Corrective Action Report

elevation contour maps associated with each compliance groundwater monitoring sampling event in 2023 are provided in Figures 3 through 6.

The initial groundwater sampling event was completed in December 2023 for the baseline samples at the newly installed downgradient monitoring wells and the nature and extent monitoring program.

Analytical results from all groundwater sampling collected in the December 2023 for the annual assessment monitoring sampling event, initial baseline sampling event at newly installed monitoring wells, and newly installed nature and extent monitoring wells are due to be received and validated in January 2024 and will be reported in the next annual report.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on July 17, 2018 with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. Upon documentation of CCR waste material removal from the unit on September 5, 2019, two consecutive sampling events (October 2019 and December 2019) were used to document that detected Appendix IV constituents did not exceed the GWPS for the BASA pursuant to § 257.95(h). The TEC BASA surface impoundment was closed on August 11, 2020 in accordance with the requirements of § 257.102(c).

Pursuant to the CAFO, the TEC BASA surface impoundment was reopened for further assessment monitoring on December 12, 2022, and the assessment monitoring program has been re-established to meet the requirements of 40 CFR § 257.95. A CMA was initiated on March 13, 2023 in accordance with 40 CFR § 257.96. The TEC BASA remains in assessment monitoring for all other constituents. Arsenic and cobalt continue to be monitored under the assessment monitoring program in accordance with 40 CFR § 257.96(b).

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed in calendar year 2023.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternate source demonstration (ASD) or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

2023 Annual Groundwater Monitoring and Corrective Action Report

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since December 12, 2022. Four rounds of assessment monitoring sampling were completed in 2023. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and GWPSs established for detected Appendix IV constituents for the BASA are included in Table II. The background concentrations and GWPS values provided in Table II were utilized for the statistical evaluations completed for the March 2023 semi-annual assessment monitoring sampling event.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in Appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring ASD was prepared or certified in 2023.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to

2023 Annual Groundwater Monitoring and Corrective Action Report

complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Evergy initiated a CMA for the BASA on March 13, 2023 within 90 days of identification of SSLs listed in Table I in accordance with 40 CFR § 257.96. A demonstration of the need for additional time beyond the regulatory timeline was not required. The CMA will be completed in accordance with the USEPA-approved compliance timeline included in the TEC BASA N&E Development Plan.

TABLES

TABLE I

SUMMARY OF ANALYTICAL RESULTS - 2023 GROUNDWATER MONITORING

EVERGY KANSAS CENTRAL, INC.

TECUMSEH ENERGY CENTER, BOTTOM ASH SETTLING AREA

TECUMSEH, KANSAS

Location			Downgradient							
Location			MW-8	MV	MW-10					
Measure Point (TOC)			87	78.19			869.84	869	.11	
Sample Name	MW-7-010523	TEC-BASA-DUP-0105221	MW-7-030623	DUP-TECBASA-030623	MW-7-090523	TECBASA-DUP-090523	MW-8-030623 ¹	MW-10-010523 ¹	MW-10-030623 ¹	
Sample Date	01/05/2023	01/05/2023	3/6/2023	3/6/2023 3/16/2023	9/5/2023 9/15/2023	9/5/2023	3/6/2023	01/05/2023	3/6/2023	
Final Lab Report Date	1/13/2023	1/13/2023	3/16/2023			9/15/2023	3/16/2023	1/13/2023	3/16/2023	
Final Lab Report Revision Date	N/A	N/A	3/21/2023	3/21/2023	N/A	N/A	3/21/2023	N/A	3/21/2023	
Final Radiation Lab Report Date	1/26/2023	1/26/2023	3/29/2023	3/29/2023	9/25/2023	9/25/2023	N/A	1/26/2023	N/A	
Lab Data Reviewed and Accepted	2/8/2023	2/8/2023	6/12/2023	6/12/2023	12/18/2023	12/18/2023	6/12/2023	2/8/2023	6/12/2023	
Depth to Water (ft btoc)	26.90	-	26.3	-	28.06	28.06	22.25 ²	20.49	20.80 ²	
Temperature (Deg C)	9.21	-	15.09		19.38	-	16.28	7.55	14.61	
Conductivity (µS/cm)	1540	-	1,520	-	1,570	-	1,580	2060	1,950	
Turbidity (NTU)	5.9	-	0.0	-	21.4	-	99.1	21.4	42.6	
Dissolved Oxygen, Field (mg/L)	1.64	-	0.59	-	0.00	-	2.62	6.28	0.00	
ORP, Field (mV)	61	-	186	-	209	-	111	7	-26	
pH, Field (su)	6.31	-	6.82	-	6.67	6.67 -		6.04	7.82	
Boron, Total (mg/L)	-	-	0.58	0.59	0.59	0.55	-	-	0.28	
Calcium, Total (mg/L)	-	-	90.3	92.6	101	92.0	-	-	163	
Chloride (mg/L)	-	-	237	218	147	149	245	-	311	
Fluoride (mg/L)	-	-	< 0.20	< 0.20	0.32	0.25	< 0.20	-	0.26	
Sulfate (mg/L)	-	-	253	257	207	205	526	-	< 1.0	
pH (su)	-	-	7.2	7.2	7.2	7.2	6.8	-	8.1	
TDS (mg/L)	-	-	1,210	1,250	949	963	1,390	-	-	
Antimony, Total (mg/L)	< 0.0010	< 0.0010	-	-	-	-	-	< 0.0010	-	
Arsenic (mg/L)	0.0016	0.0013	0.0020	0.0020	0.0017	0.0017	0.0013	0.026	0.0065	
Barium, Total (mg/L)	0.067	0.059	0.061	0.063	0.053	0.051	-	0.21	0.19	
Beryllium, Total (mg/L)	< 0.0010	< 0.0010	-	-	=	-	=	< 0.0010	-	
Cadmium, Total (mg/L)	< 0.00050	< 0.00050	-	-	-	-	-	< 0.00050	-	
Chromium, Total (mg/L)	< 0.0050	< 0.0050	-	-	-	-	-	< 0.0050	-	
Cobalt, Total (mg/L)	0.0035	0.0017	0.0027	0.0027	0.0012	0.0012	< 0.0010	0.0018	0.0038	
Lead, Total (mg/L)	< 0.010	< 0.010	-	-	-	-	-	< 0.010	-	
Lithium, Total (mg/L)	0.033	0.034	0.028	0.027	0.031	0.030	0.019	0.014	< 0.010	
Molybdenum, Total (mg/L)	0.011	0.012	0.016	0.015	0.020	0.019	0.049	0.0044	0.0048	
Selenium, Total (mg/L)	< 0.0010	< 0.0010	-	-	-	-	-	< 0.0010	-	
Thallium, Total (mg/L)	< 0.0010	< 0.0010	-	-	-	-	-	< 0.0010	-	
Mercury, Total (mg/L)	< 0.00020	< 0.00020	-	-	-	-	-	< 0.00020	-	
Fluoride (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	0.32	0.25	< 0.20	-	- 0.26	
Radium-226 & 228 Combined (pCi/L)	1.47 ± 0.857 (1.16)	0.462 ± 0.760 (1.55)	0.427 ± 0.806 (1.57)	0.324 ± 0.709 (1.57)	0.288 ± 0.787 (1.59)	1.46 ± 1.11 (1.85)	-	-	-	

Notes:

Bold value: Detection above laboratory reporting limit.

Radiological results are presented as activity plus or minus uncertainty with MDC.

Data presented in this table were verified against the laboratory and validation reports.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

mV = millivolt

NA = Not Applicable

NTU = Nephelometric Turbidity Unit

ORP = oxidation reduction potential

pCi/L = picoCuries per liter

su = standard unit

TDS = total dissolved solids

TOC = top of casing

 $^{^{\,1}}$ Select constituents were not analyzed due to insufficient sample volume.

² Depth to water below top of pump. Recorded value reflects the depth to water with the pump removed.

TABLE II

ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS

MARCH 2023 SAMPLING EVENT TECUMSEH ENERGY CENTER BOTTOM ASH SETTLING AREA TECUMSEH, KANSAS

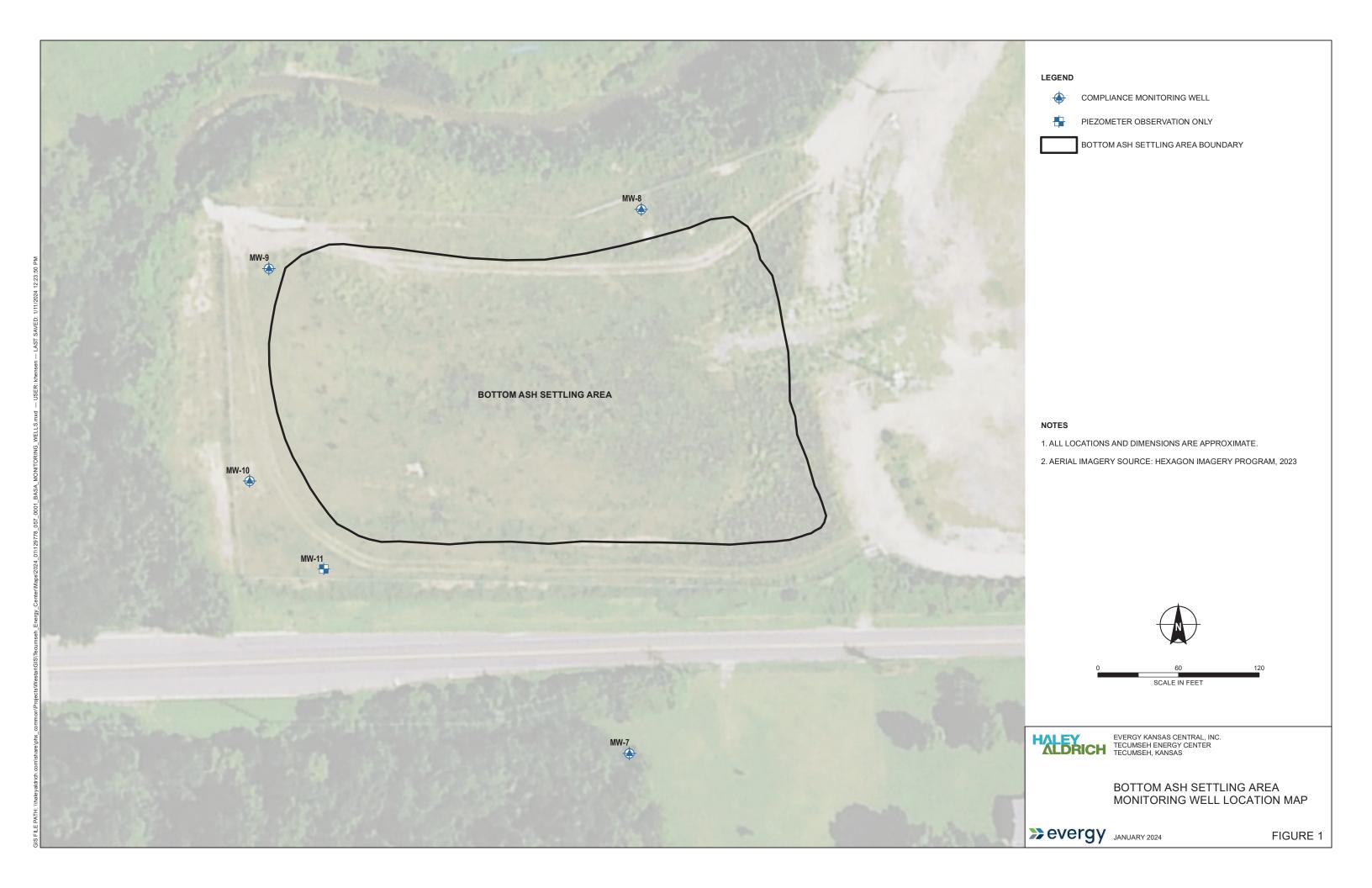
Well#	Background Value ¹	GWPS
CCR	Appendix-IV Arsenic, Total (mg/L)	
MW-4 (upgradient)	0.0021	NA
MW-1		0.010
MW-5		0.010
MW-6		0.010
CCR	Appendix-IV Barium, Total (mg/L)	
MW-4 (upgradient)	0.0937	NA
MW-1		2
MW-5		2
MW-6		2
CCF	R Appendix-IV Cobalt, Total (mg/L)	
MW-4 (upgradient)	0.0035	NA
MW-1		0.006
MW-5		0.006
MW-6		0.006
CCR	Appendix-IV Lithium, Total (mg/L)	
MW-4 (upgradient)	0.0319	NA
MW-1		0.040
MW-5		0.040
MW-6		0.040
CCR A _F	pendix-IV Molybdenum, Total (mg/	′L)
MW-4 (upgradient)	0.0139	NA
MW-1		0.100
MW-5		0.100
MW-6		0.100
CCR Appendix-IV	Radium-226 & 228 Combined (pCi/	(L)
MW-4 (upgradient)	5.88	NA
MW-1		5.88
MW-5		5.88
MW-6		5.88

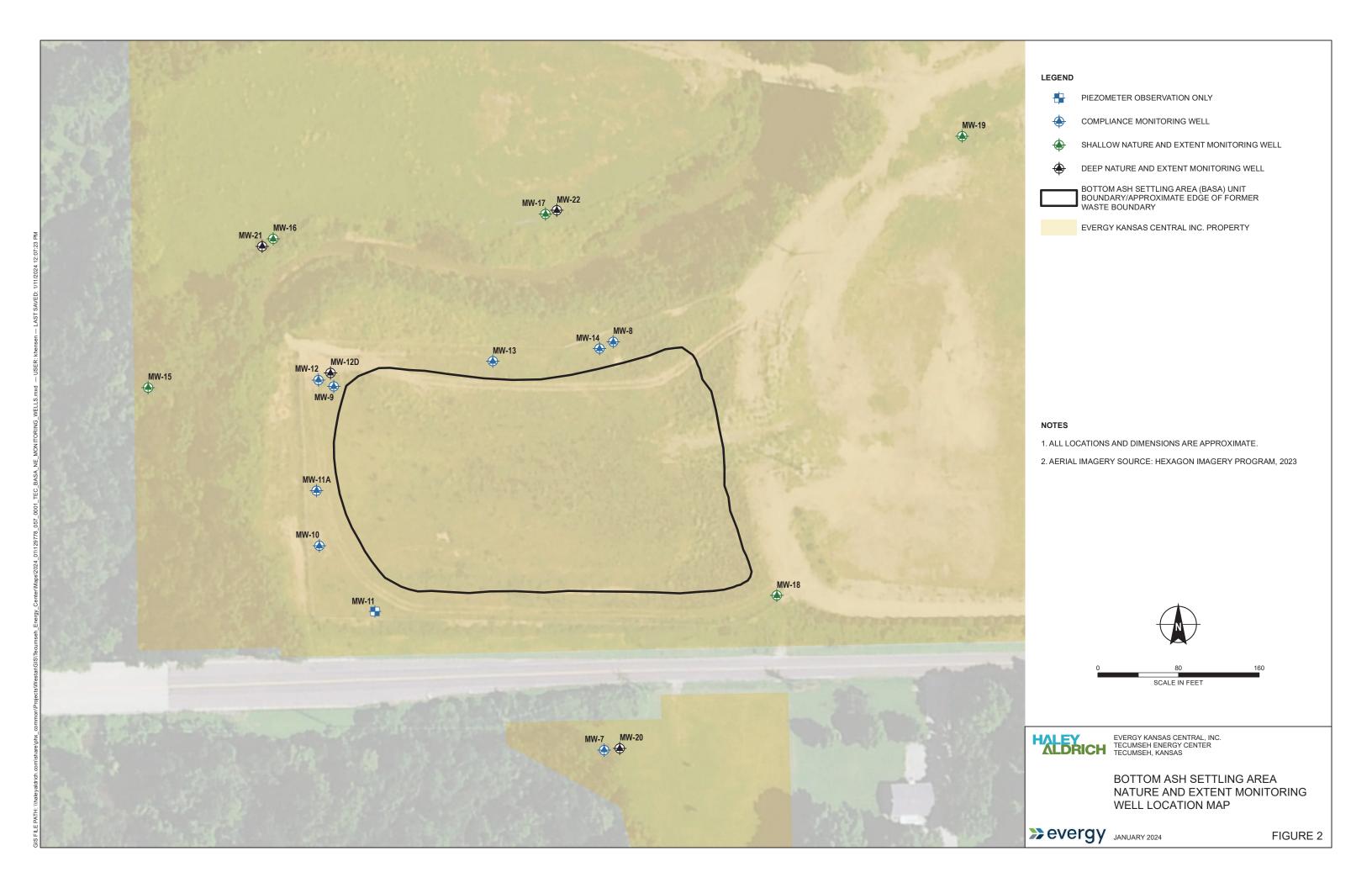
Notes:

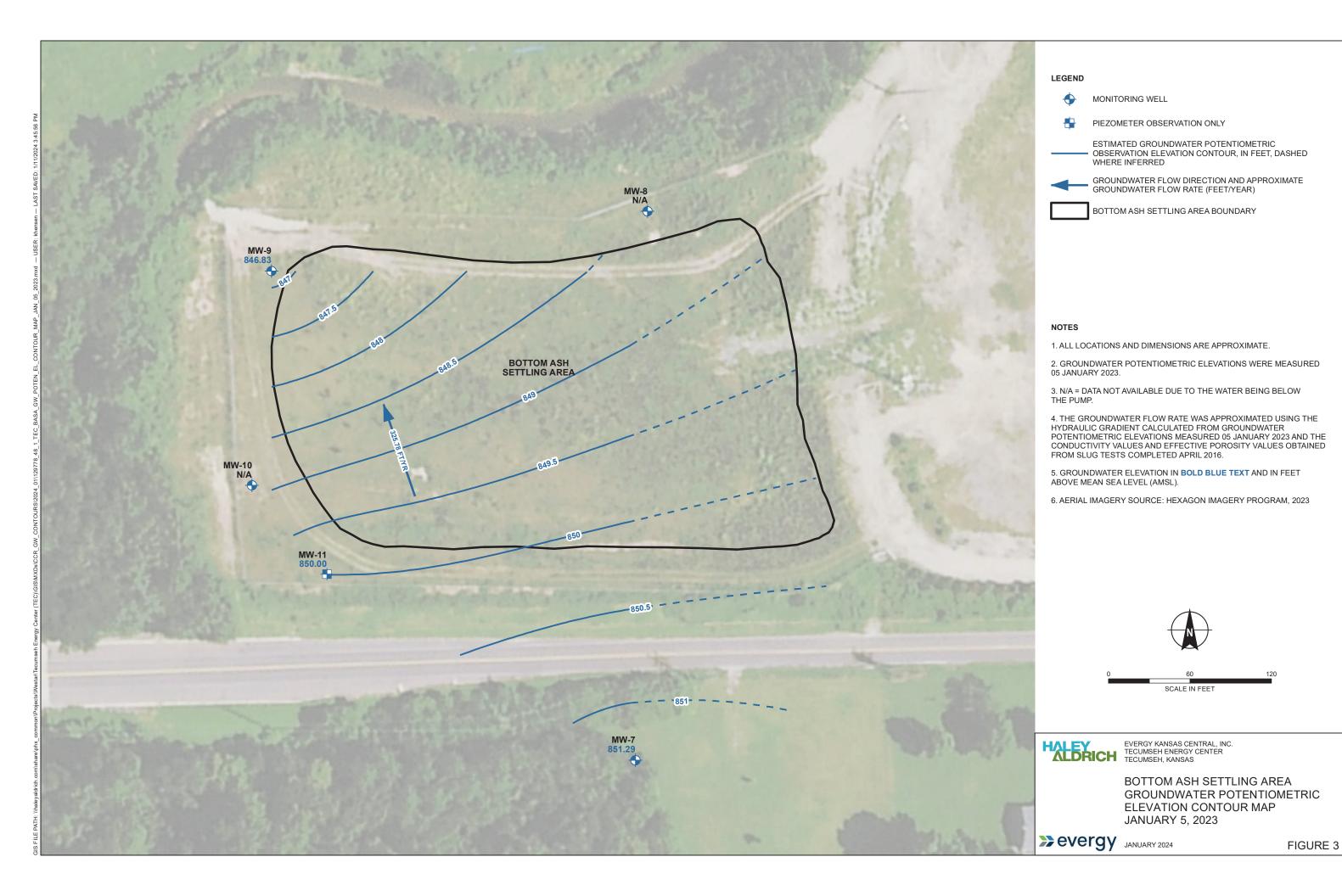
CCR = coal combustion residuals

GWPS = groundwater protection standard

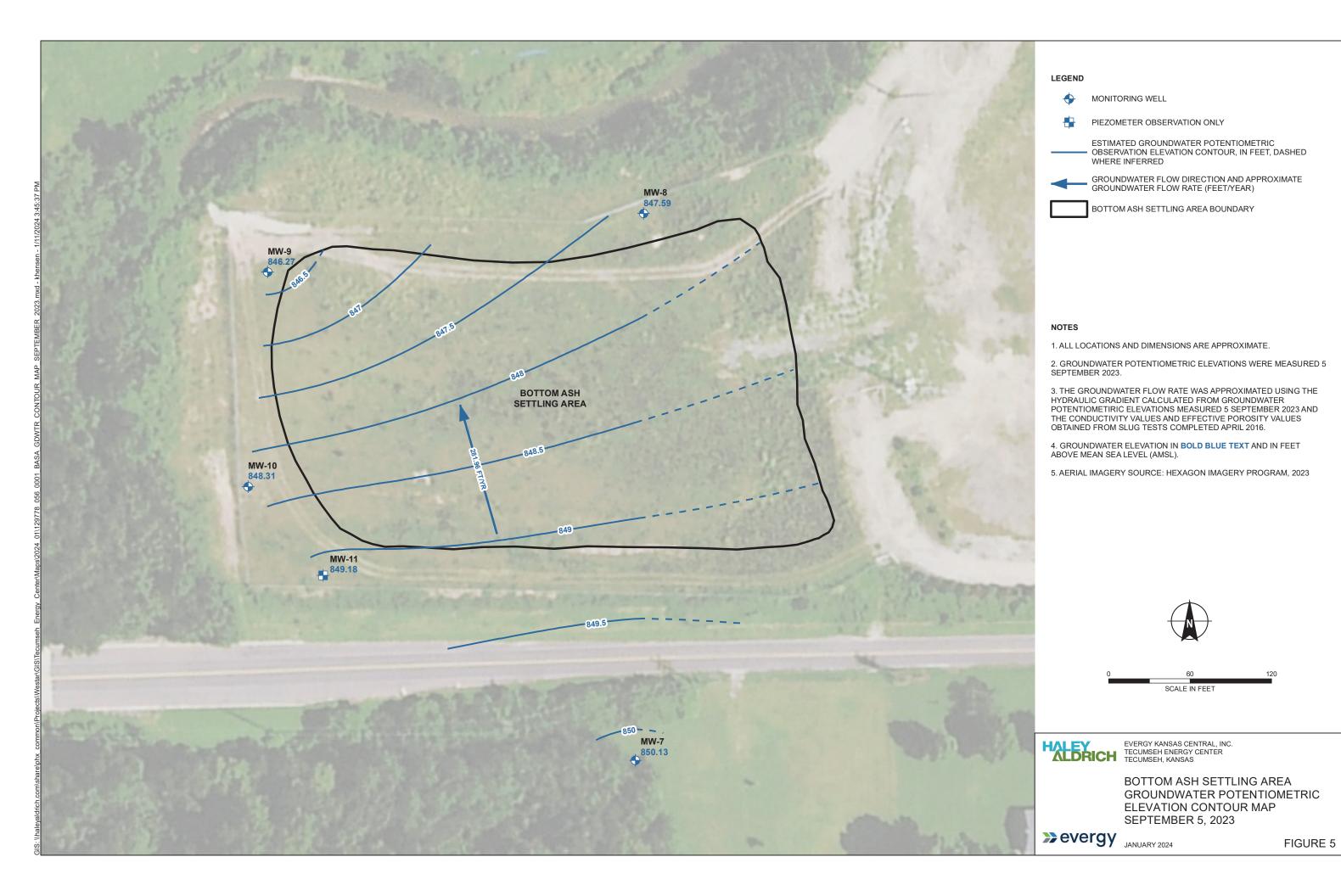
mg/L = milligrams per Liter

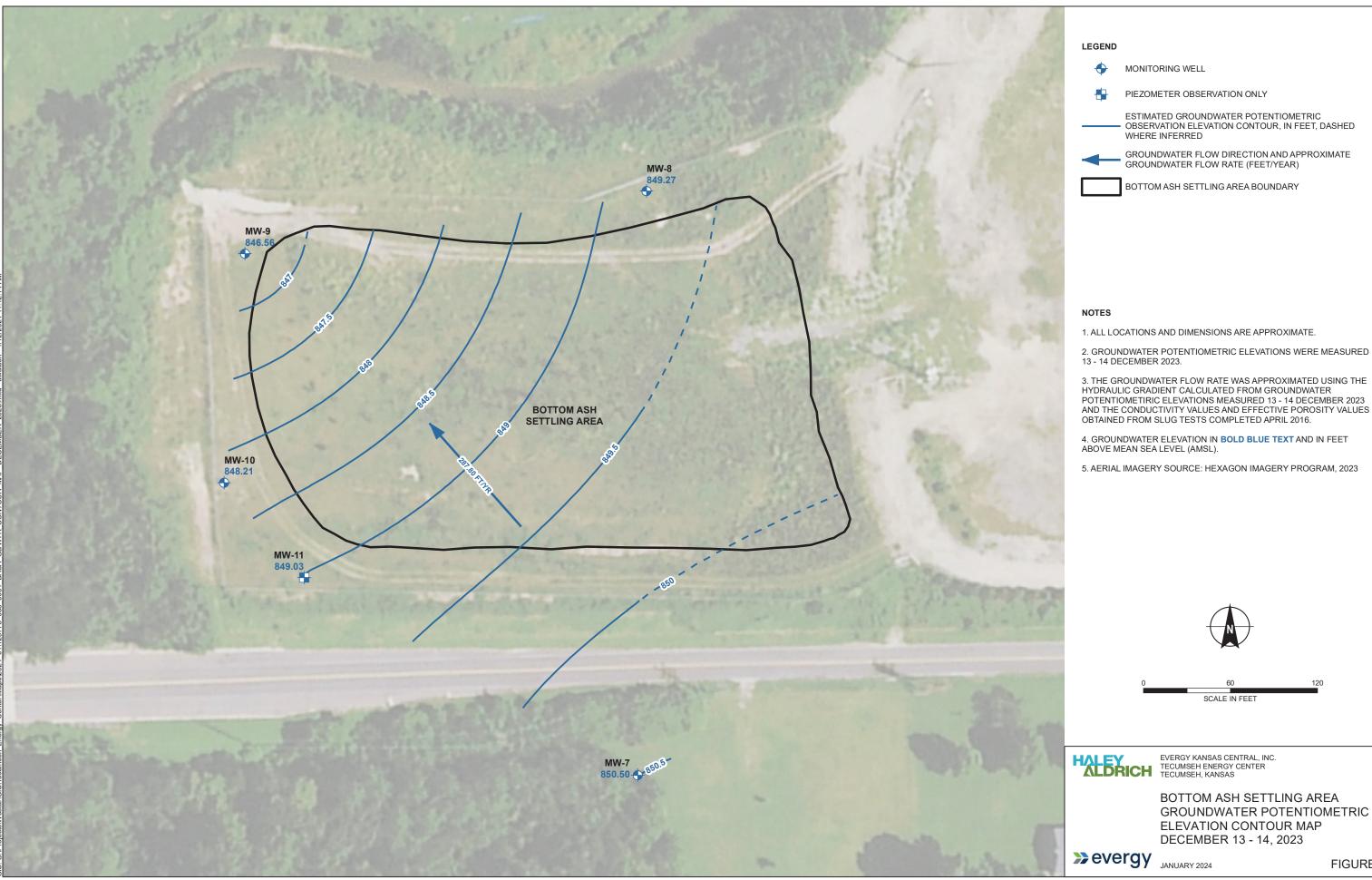

NA = not applicable


pCi/L = picoCuries per Liter



 $^{^{1}\,}$ Based on background data collected from 08/30/2016 through 01/05/2023, unless otherwise noted.


FIGURES



- POTENTIOMETIRIC ELEVATIONS MEASURED 13 14 DECEMBER 2023 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES

BOTTOM ASH SETTLING AREA GROUNDWATER POTENTIOMETRIC **ELEVATION CONTOUR MAP**

FIGURE 6

ATTACHMENT 1 Statistical Analyses

ATTACHMENT 1-1 March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2024 File No. 129778-048

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2023 Semi-Annual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed July 21, 2023

Tecumseh Energy Center

Bottom Ash Settling Area

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2023** semi-annual assessment monitoring groundwater sampling event for the Tecumseh Energy Center (TEC) Bottom Ash Settling Area (BASA). This semi-annual assessment monitoring groundwater sampling event was completed on **March 6, 2023**, with laboratory results received and validated on **June 12, 2023**. During the sampling event, downgradient monitoring well MW-9 did not contain sufficient water volume to successfully collect samples. Monitoring wells MW-8 and MW-10 did not contain sufficient water volume to collect samples for all requested analyses; however, select analyses were completed.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on January 14, 2019. The

Evergy Kansas Central, Inc. January 31, 2024 Page 2

TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSI existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

Evergy Kansas Central, Inc. January 31, 2024 Page 3

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-7 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009,* background concentrations were updated based on statistical evaluation of analytical results collected through **January 2023.**

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the March 2023 semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation of groundwater sampling data collected in March 2023, no SSLs above GWPS occurred at the TEC BASA.

Attachments:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I

SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2023 SAMPLING EVENT TECUMSEH ENERGY CENTER BOTTOM ASH SETTLING AREA TECUMSEH, KANSAS

										MCL Co	omparison					Interwell Analysis		Groundwater Protection Standard		
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL §257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2023 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	GWPS (Higher of MCL/RSL or UTL) mg/L	SSL
CCR Appendix-IV: Arsenic, Total (mg/L)																				
MW-7	19/19	0%	-	0.0021	4.135E-08	0.0002033	0.1301	0.01	mg/L	0	0	Yes	No	Stable	Non-parametric	0.0020	0.0021		0.010	
MW-10	20/20	0%	-	0.077	0.0004189	0.02047	0.4546	0.01	mg/L	19	0	No	No	Decreasing		0.0065		Yes		No
MW-8	18/18	0%	-	0.0041	7.474E-07	0.0008645	0.3732	0.01	mg/L	0	0	No	No	Stable		0.0013		No		No
MW-9	15/15	0%	-	0.25	0.003018	0.05494	0.4723	0.01	mg/L	15	0	No	No	Decreasing		NS		NA		NA
									CCR App	endix-IV: Bariur	n, Total (mg/L)									
MW-7	16/16	0%	-	0.1	0.0001368	0.0117	0.1633	2	mg/L	0	0	Yes	No	Decreasing	Normal	0.061	0.0937		2	
MW-10	16/16	0%	-	0.36	0.00223	0.04722	0.1618	2	mg/L	0	0	No	No	Stable		0.19		Yes		No
MW-8	14/14	0%	-	0.077	0.00003504	0.005919	0.09948	2	mg/L	0	0	Yes	No	Stable		NS		NA		NA
MW-9	13/13	0%	-	0.91	0.02334	0.1528	0.2052	2	mg/L	0	0	Yes	No	Stable		NS		NA		NA
									CCR App	pendix-IV: Cobal	t, Total (mg/L)									
MW-7	16/19	16%	0.001-0.001	0.0035	4.154E-07	0.0006445	0.3963	0.006	mg/L	0	0	Yes	No	Stable	Non-parametric	0.0027	0.0035		0.006	
MW-10	18/20	10%	0.001-0.001	0.0091	0.000004382	0.002093	0.5688	0.006	mg/L	3	0	No	No	Stable		0.0038		Yes		Yes
MW-8	13/18	28%	0.001-0.001	0.0025	2.158E-07	0.0004646	0.3332	0.006	mg/L	0	0	No	No	Stable		< 0.0010		No		No
MW-9	15/15	0%	-	0.048	0.0001173	0.01083	0.5546	0.006	mg/L	15	0	No	No	Stable		NS		NA		NA
									CCR App	endix-IV: Lithiur	n, Total (mg/L)									
MW-7	16/16	0%	-	0.033	0.00001593	0.003992	0.1613	0.04	mg/L	0	0	Yes	No	Stable	Normal	0.028	0.0319		0.040	
MW-10	4/16	75%	0.01-0.01	0.014	0.000001029	0.001014	0.09837	0.04	mg/L	0	0	No	No	Stable		< 0.010		No		No
MW-8	15/15	0%	-	0.024	0.0000117	0.00342	0.1787	0.04	mg/L	0	0	No	No	Stable		0.019		No		No
MW-9	10/13	23%	0.01-0.01	0.021	0.00001431	0.003783	0.2732	0.04	mg/L	0	0	No	No	Stable		NS		NA		NA
									CCR Appen	dix-IV: Molybde	num, Total (mg/L)									
MW-7	16/16	0%	-	0.016	0.000006581	0.002565	0.2482	0.1	mg/L	0	0	No	No	Stable	Normal	0.016	0.0139		0.100	
MW-10	16/16	0%	-	0.0053	8.353E-07	0.0009139	0.2409	0.1	mg/L	0	0	No	No	Stable		0.0048		No		No
MW-8	15/15	0%	-	0.049	0.00003703	0.006085	0.1568	0.1	mg/L	0	0	No	No	Stable		0.049		Yes		No
MW-9	12/13	8%	0.001-0.001	0.0085	0.000005898	0.002429	0.5719	0.1	mg/L	0	0	No	No	Stable		NS		NA		NA
									CCR Apper	dix-IV: Radium-	226 & 228 (pCi/L)									
MW-7	15/16	6%	0.403-0.403	5.88	1.808	1.345	1.249	5	pCi/L	1	0	Yes	No	Stable	Non-parametric	0.427	5.88		5.88	
MW-10	14/14	0%	-	3.58	0.3465	0.5887	0.2735	5	pCi/L	0	0	No	No	Stable		NS		NA		NA
MW-8	13/14	7%	0.721-0.721	1.59	0.1722	0.415	0.4585	5	pCi/L	0	0	No	No	Stable		NS		NA		NA
MW-9	13/13	0%	-	3.36	0.6575	0.8109	0.4392	5	pCi/L	0	0	No	No	Stable		NS		NA		NA
Notes:																				

Notes:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed

NS = not sampled pCi/L = picoCuries per Liter

RSL = Regional Screening Level

SSI = statistically significant increase

SSL = statistically significant level UTL = upper tolerance limits

 $^{^{1}\,}$ Based on background data collected from 08/30/2016 through 01/05/2023, unless otherwise noted.

^{*} Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2)

ATTACHMENT 2 Laboratory Analytical Reports

ATTACHMENT 2-1
January 2023 Semi-Annual Sampling
Event Laboratory Analytical Report

February 01, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR

Pace Project No.: 60419291

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on January 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

REVISED 2/1/23 repackaged with radchem QC sheets. No changes were made to data.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

Alice Spiller

(913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Samantha Kaney, Haley & Aldrich
Danielle Oberbroeckling, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC BASA CCR
Pace Project No.: 60419291

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60419291

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60419291001	MW-7-091321	Water	01/05/23 11:05	01/05/23 14:30
60419291002	TEC-BASA-DUP-0105221	Water	01/05/23 11:05	01/05/23 14:30

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60419291

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60419291001	MW-7-091321	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	GDH	1	PASI-PA
60419291002	TEC-BASA-DUP-0105221	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	GDH	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419291

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: February 01, 2023

General Information:

2 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419291

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: February 01, 2023

General Information:

2 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419291

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:February 01, 2023

General Information:

2 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60419291

Sample: MW-7-091321 PWS:	Lab ID: 60419 Site ID:	O291001 Collected: 01/05/23 11:05 Sample Type:	Received:	01/05/23 14:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.576 ± 0.488 (0.605) C:NA T:92%	pCi/L	01/17/23 15:3	6 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.891 ± 0.369 (0.557) C:81% T:93%	pCi/L	01/17/23 16:1	2 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.47 ± 0.857 (1.16)	pCi/L	01/19/23 16:2	0 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60419291

Sample: TEC-BASA-DUP-010522 PWS:	Lab ID: 60419 Site ID:	291002 Collected: 01/05/23 11:05 Sample Type:	Received:	01/05/23 14:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.0918 ± 0.419 (0.852) C:NA T:90%	pCi/L	01/17/23 15:36	3 13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.370 ± 0.341 (0.693) C:83% T:88%	pCi/L	01/17/23 16:13	3 15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	0.462 ± 0.760 (1.55)	pCi/L	01/19/23 16:20	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC E

TEC BASA CCR

Pace Project No.:

60419291

QC Batch:
QC Batch Method:

559398

EPA 903.1

Analysis Method:

EPA 903.1

Analysis Description:

Matrix: Water

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

60419291001, 60419291002

METHOD BLANK: 2717138

Associated Lab Samples:

60419291001, 60419291002

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Radium-226

-0.0542 ± 0.247 (0.583) C:NA T:102%

pCi/L

01/17/23 14:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC BASA CCR

Pace Project No.: 60419291

QC Batch: 559399 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60419291001, 60419291002

METHOD BLANK: 2717142 Matrix: Water

Associated Lab Samples: 60419291001, 60419291002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.443 ± 0.289 (0.535) C:80% T:96%
 pCi/L
 01/17/23 16:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR Pace Project No.: 60419291

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 02/01/2023 01:48 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 02/01/2023 01:48 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60419291

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60419291001	MW-7-091321	EPA 903.1	559398		
60419291002	TEC-BASA-DUP-0105221	EPA 903.1	559398		
60419291001	MW-7-091321	EPA 904.0	559399		
60419291002	TEC-BASA-DUP-0105221	EPA 904.0	559399		
60419291001	MW-7-091321	Total Radium Calculation	561268		
60419291002	TEC-BASA-DUP-0105221	Total Radium Calculation	561268		

DC#_Title: ENV-FRM-LENE-0009_Sa

WO#:60419291

Revision: 2 Effective Date: 01/12 Kansas

Client Name: Evergy Kansas centro	al Inc	-	504.52.5
Courier: FedEx □ UPS □ VIA □ Clay □ F	PEX 🗆 EC	:I 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pace	e Shipping Lal	bel Use	d? Yes □ No 🗹
Custody Seal on Cooler/Box Present: Yes □ No ☑	Seals intact	: Yes [
Packing Material: Bubble Wrap 🔯 Bubble Bags 🗆] Fo	am □	None □ Other © 7 CC
Thermometer Used: T296 Type of	lce: We B	lue No	ne Pote and initials of newson I (0 (0 3
Cooler Temperature (°C): As-read <u>\$-3</u> Corr. Factor	or To	Correc	ted 5.2 Date and initials of person /5/23 examining contents;
Temperature should be above freezing to 6°C			
Chain of Custody present:	☑Yes □No	□N/A	
Chain of Custody relinquished:	ØYes □No	□n/a	
Samples arrived within holding time:	☑Yes □No	□N/A	
Short Hold Time analyses (<72hr):	□Yes Ū n o	□n/a	
Rush Turn Around Time requested:	□Yes ���o	□n/a	
Sufficient volume:	Y es □No	□n/a	
Correct containers used:	ØYes □No	□N/A	
Pace containers used:	⊘ ∕Yes □No	□N/A	
Containers intact:	ØYes □No	□n/a	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No	Ū•N/A	14
	□Yes □No	☑N/A	
Sample labels match COC: Date / time / ID / analyses	ØYes □No	□n/a	
Samples contain multiple phases? Matrix: WT	□Yes ŪNo	□N/A	
Containers requiring pH preservation in compliance?	□Yes □No		List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)			date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks:			
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Frip Blank present:	□Yes □No	□ ∑ /Ñ/A	
Headspace in VOA vials (>6mm):	□Yes □No	□ V Ñ/A	
Samples from USDA Regulated Area: State:	□Yes □No	ĎÑ/A	
Additional labels attached to 5035A / TX1005 vials in the field?			
Client Notification/ Resolution: Copy COC to			Field Data Required? Y / N
Person Contacted: Date/Tin			
Comments/ Resolution:			
Project Manager Review:		Doto	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	A d Client Information:	Section B								tion (Г	Page:		of	
Company		Required Projet Report To: Jai						_		ice Inf			unts I	Pava	ble		_		_	-							-5			
Address:					antha Ka	aney, Meli	eea Mich	els	_					_		AC (⊃EN!	TDA	1 18	_	_		_							
	818 Kansas Ave, Topeka, KS 66612					ariey, ivieli	SSA IVIICII	615	_				_		ANS	A5 (ZEIN	IKA	L, Ir	Y R	EGL	JLATO	DRY	AGE	ENC,	Y				
F0.T-				Oberroed	Kiing					ress:		see s	Section	n A							_ \	IPDES	Г	- G	ROL	JND	WAT	ER [DRINKIN	G WATER
Email To		Purchase Orde							Refe	Quote rence:										ſ	_ (JST	Г	R	CRA			Г	OTHER	
	507-251-2232 Fax:	Project Name:	TEC	C BASA C	CR				Pace Mana	Projec ager:	et /	Alice	Spille	er 91	3-56	3-14	03			1	Site	_ocati	on		140	`				
Request	ed Due Date/TAT:	Project Number	-						Pace	Profile	#: (657	2							7		STAT	E:	_	KS	>	_			
		*															R	eque	este	d An	alys	is Fil	tere	(Y)	N)					
	Section D Valid Matrix C Required Client Information MATRIX	odes 🗒	(a)		0011	FOTED		Г	Г	Т						Y/ N	\prod	\Box				П				Т				
	DRINKING WATER	codes CODE ot sepon	C=COMP)		COLL	ECTED		₹	ı	Н		rese	rvativ T	es	т	۶	N	N	N	N N	I N	+	+	<u> </u>	1 N	+				
	WATER WASTE WATER PRODUCT	MA AM		COMP		COMPO END/GI	SITE	COLLECTION	l				Н			Ш			1											
	SOIL/SOLID OIL	SL OL See v ev	(G=GRAB		n i	ENDIG	IVAD	H	١,,				Н			 	윤	8								1	[원			1
	SAMPLE ID WIPE AIR	4.00				<u> </u>	_	ΑŢ	I H				Н		Ш	Test	ਠੱ	휈	=I.	۵	,		1			1	ie	604	1929)
	(A-Z, 0-9 / ,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	or TS	TYPE					TEMP,	₹	g			П			L	Be,	S)	က္က ရ		5		200	۶۱۶	일일		[욹]	0- 1	1	
#		° ×	l iii					H H H	ĕ	Sel			_	3 2		<u> </u>	Ba,	ଞ୍ଚା:	<u>ا</u> ا≧	Fluoride	₽	11	1	2 S	일		<u>¤</u>			
ITEM :		is of the second	SAMPLE.					SAMPLE	# OF CONTAINERS	Pe	H ₂ SO₄	킬모	NaOH	Na ₂ S ₂ O ₃	je.	#Analysis	200.7 Ba,Be, Cr, Pb	200.8 Sb,As,Cd,Co	200.8 Mo, Se, II	SOU.U Fluoria	245.1 Mercury	Н		Radium 228	Ra combined		sid		929 Project N	
-		Σ	တိ	DATE	TIME	DATE	TIME	တ်	1	2			ž :	žĮž	ō	\exists	8		2 2	3 6	3 2	Н	16	2 6	5 5	1	ᄩ	Pace	Project N	lo./ Lab I.D.
1	MW-7-091321		+-	_	_	01/05/23	1103	_	X	1	-	2	\vdash	+	+		\dashv	+	-	+	-	Н		X X	-	▙	Н			
2	MW-8-091321					01/05/23		Ħ	3	+	=	2	Ħ	Ŧ	\blacksquare		\exists	+	#	+	╪	H	÷	X X	\X	\vdash	+1			
3	MW10-091321	===	H			01/05/23	T	\vdash	13×	. =	Ħ	2	Ħ	+	=	Н	\vdash	+	+	+	╪	Ħ	Ŧ	* *	×	F	H			
4	TEC-BASA-DUP-0105221		+-		<u> </u>	01/05/23	1105	-	¬ <u>x</u>		-	2	+	+	+		\vdash	+	+	+	+	+		X X	(X	+	╢			
5		- 1	1					╁	⊢	+	+	+	H	+	+		Н	+	+	+	╁	\vdash	+	+	+	╁	Н			
6			+		-		-	\vdash	⊢	+	-	+	\forall	+	+		\vdash	+	+	+	╁	+	+	+	+	╁	Н			
7			+-					1	⊢	+	+	+	\vdash	┿	+		\vdash	+	+	+	╁	+	+	+	+	╁	H			
8								╁	⊢	+	+	+	H	+	+		\vdash	+	+	+	+	+	+	+	+	╁	H			
9			+					+	⊢	+	+	+	+	+	+		\vdash	+	+	+	+	+	+	+	+	+	Н			
10			+					+	╁	+	+	+	+	+	+		\vdash	+	+	+	-	1-1	+	+	+	+	H			
11								1	\vdash	+	+	+	\forall	-	+		\vdash	+	+	+	+	\forall	+	+	+	+	H			
	ADDITIONAL COMMENTS	RE	LINQUI	ISHED BY /	AFFILIAT	ION	DATE		\vdash	TIME	+	_	_	ACCE	PTEC	BY	AFF	ILIAT	ION	_	t	DATE	+	TIN	/E	т	ш	SAME	LE CONDIT	IONS
				ucher 0					_	138	_	7	٠ >		L	,	m			_	1.	5.5.	_	ru.	30	<	اد -	Y	11	V
		Math	VA	ucter ()	uttan	シレン	1/3/2	15	119	JC	\dashv	ν	2	7	. (97	0			4	<u>>.≺</u>		7.	U	9	• -		//	- j
									_		_			_							-		_			-	_			
																										_				
Pa					SAMPLE	ER NAME A	ND SIGN	ATUF	RE																		ပ	ь ₍	oler	Itact
ge .						PRINT Nam	e of SAMP	LER:	Mat	tt Var	nder	Putte	n														Temp in °C	(Y/N	stody d Cor	les In
Page 15 of 20						SIGNATUR					=	11	1	1	H		_DA	TE SI	igned	d		41	5/23				Tem	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
ıf 2()	1-10			/4		, ,		,	_ (M	M/DD	/YY):			1/	JIZ3			1	1		J 99	ω

Client:	Evergy	Kansas	central	Ir	10-
				7	+

Profile # 965) 2

Site:	LEC	BASA	CCR

Notes

		_	_	α .	_		_															7									
COC Line Item	Matrix	VG9H	ревн	DG9G	VG9U	DG9N	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	4G5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗЕ	BP3S	врзс	BP3Z	WPDU	ZPLC	her	
1	WT												- Q	- Q	Q.		>	5		- 60	- 80	7		<u>m</u>	<u> </u>	<u> </u>	<u>m</u>	3	Ż	ě.	
2				-																										-	
3																						TV.									
4	WT																					2					-				
5	F -																												_		
6																										_					
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	IBP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	- C	Air Cassettes
OG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
OG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	- lù	Summa Can
/G9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass		500mL H2SO4 plastic	۳	Journal Out
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	_	

VG9U 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate Matrix BG1S 1liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic BG1U 1liter unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT Water BG3H 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL Solid 250mL Unpres Clear glass BG3U AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid WGDU 16oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL OIL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP Wipe BP4U 125mL unpreserved plastic DW Drinking Water

BP4N 125mL HNO3 plastic
BP4S 125mL H2SO4 plastic
WPDU 16oz unpresserved platic

Work Order Number:

60419291

Internal Transfer Chair	of Custo	dy —									<u> </u>		 		S	7		
	Sample	es Pre-Logged	into eCO	C.		tate Of ert. Ne	_			'es	Γ	No				Pac		ytical selabs.com
Workorder: 60419291 Workorde	r Name: TEC B	ASA CCR				wner F					1/5/2	 -	esul	ts Re	quest	ed By	r: 1/25	5/2023
Report To	Subcontra	ect To			155 150 150			1000000			□ Re	queste				8010V277692		i i di samua mini mili
Alice Spiller Pace Analytical Kansas 9608 Loiret Blvd. Lenexa, KS 66219 Phone (913)599-5665	1638 Suite Gree	Analytical Pittst Roseytown Roa s 2,3, & 4 nsburg, PA 156 e (724)850-560	ad 01	West P.A.	eserved	Contain		m 226 + QC Sheets	m 228 + QC Sheets	otal Radium Calculation								
March 1987 (1981) 17 com a company of the company o			y		Cacived	Contain	919	Radium	Radium	tal								
Item Sample ID Sam		Lab ID	Matrix	HN03				R	R	ĭ							LAB US	E ONLY
1 MW-7-091321 PS	1/5/2023 11:05	60419291001	Water	2				Х	Х	Х						1 1	001	
2 TEC-BASA-DUP-0105221 PS	1/5/2023 11:05	60419291002	Water	2				Х	X	X						1 1	00/	2
3																		-
4																		
5																		
Transfers Released By	Date/Time	Received I	3v			Da	te/Tim	e					С	omme	nts			
1	01/141		-			- - 			-									
2									1									
3		pu	, אמר על	10		1)	1117	23	19	جي تـ	5							
Cooler Temperature on Receipt	— °C Cu	stody Seal (or N		R	eceive					Ŵ		s	ampl	es Int	act (or N	1

WO#:30553029

20

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

	DC#_Title: ENV-FRM-C	BUR	8-008	8 v02	_Sample Cond	dition Upon Rec	eipt-
	Pittsburgh					: 30553(•
Pace'	Effective Date: 10/03/2022	2			PM: MAR		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Page Fansas					PACE_60_LEKS	e: 02/01/23
Courier: Fed	Ex \square UPS \square USPS \square Client \square			I 🗌 Pa	ace 🗌 Other	Examine	d By
				Seals I	ntact: Yes	□No Labeled	ву ТИ
Thermometer U		e of Ic	e: W	et Bl	ue None	Tempeo	Ву
Cooler Tempera Temp should be abo	ature: Observed Temp ove freezing to 6°C		°C	Corre	ction Factor:		np:cC
Comments:	·	Yes	No	NA	pH paper Lot# (Oのアンソ	D.P.D. Residi	ial Chlorine Lot #
Chain of Custod	v Present	1			1.		
Chain of Custod					2.		
	t corrections present on COC			<u> </u>			
Chain of Custod		1.	1		3.		
	& Signature on COC:		T	<u> </u>	4.		
Sample Labels n		1	- inl		5.		
-Includes da		,,,,,		<u> </u>			
	ate/time/iD	W	T-		j		
Matrix:		- 	<u> </u>	· · ·			
	d within Hold Time:	17	<u></u>	<u> </u>	6.		
	e Analysis (<72hr				7.		***************************************
remaining):			 ~				
Rush Turn Arou	ind Time Requested:	<u> </u>	7		8.		
Sufficient Volun	ne:	1	ļ		9.		
Correct Contain		1			10.		
-Pace Conta	ainers Used	<u>)</u>					
Containers Inta	ct:	1			11.		
Orthophosphat	e field filtered:			<u>J</u>	12.		
	s samples field filtered:			<u> </u>	13.		
	s checked for dechlorination			j	14:		
	received for dissolved tests:			j	15:		
All containers o	hecked for preservation:	j			16.	0	-
exceptions	VOA, coliform, TOC, O&G, Radon, non-aqueous matrix				PHC	,	
All containers r requireme	neet method preservation nts:	J			Initial when completed Lot# of added Preservative	Date/Time of Preservation	
Headspace in V	OA Vials (>6mm):			TJ	17.		
Trip Blank Prese	ent:			ß	18.		
	ody Seals Present			Ť			
	creened <0.5 mrem/hr.	1		<u> </u>	Initial when TH	Date: \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/	Survey Meter SN: \\\(\)\(\)\(\)
Comments:				<u> </u>			
Community.							

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	CLM
Date:	1/12/2023
Batch ID:	70932
Matrix:	DW

Method Blank Assessment	
MB Sample ID	2717138
MB concentration:	-0.054
M/B Counting Uncertainty:	0.237
MB MDC:	0.583
MB Numerical Performance Indicator:	-0.45
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ
·	LCS70932	LCSD70932
Count Date:	1/17/2023	1/17/2023
Spike I.D.:	21-040	21-040
Spike Concentration (pCi/mL):	32.421	32.421
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.652	0.657
Target Conc. (pCi/L, g, F):	4.975	4.937
Uncertainty (Calculated):	0.234	0.232
Result (pCi/L, g, F):	5.478	4.335
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.207	1.042
Numerical Performance Indicator:	0.80	-1.11
Percent Recovery:	110.11%	87.80%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		133%
Lower % Recovery Limits:	73%	73%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): Are sample and/or duplicate results below RL?	4.335	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator:	1.405	100
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: Duplicate Status vs Numerical Indicator:	22.55% N/A	
Duplicate Status vs Nutrierica indicator. Duplicate Status vs RPD: % RPD Limit:		

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.	1.00	
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):	t e	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):	ŧ	
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1	
Sample Matrix Spike Result Counting Order anny (pc//z, g, r /:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:		1
MSD Numerical Performance Indicator:	l .	
MS Percent Recovery:		
MSD Percent Recovery:	1	
MS Status vs Numerical Indicator:	i	
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:	<u> </u>	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D. Sample MSD I.D.	
Sample Matrix Śpike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments

(GDH (MT)23

04/17/23

Quality Control Sample Performance Assessment

Ra-228 Test: Analyst: JJS1 1/13/2023 Date:

70933 Worklist: Matrix: WT

Method Blank Assessment

MB Sample ID 2717142 MB concentration: 0.443 0.289 M/B 2 Sigma CSU: MB MDC: 0.535

MB Numerical Performance Indicator: 3.00 MB Status vs Numerical Indicator: Waming Pass

MB Status vs. MDC:

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
	LCS70933	LCSD70933
Count Date:	1/17/2023	1/17/2023
Spike I.D.:	22-040	22-040
Decay Corrected Spike Concentration (pCi/mL):	33.865	33.865
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.805	0.802
Target Conc. (pCi/L, g, F):	4.206	4.223
Uncertainty (Calculated):	0.206	0.207
Result (pCi/L, g, F):	3.029	3.001
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.780	0.749
Numerical Performance Indicator:	-2.86	-3.08
Percent Recovery:	72.02%	71.07%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL?	3.029 0.780 3.001 0.749	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:		
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	Pass Pass	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		Ī
MS Percent Recovery:		
MSD Percent Recovery:		
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:		
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

January 13, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR

Pace Project No.: 60419294

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on January 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc.

Danielle Oberbroeckling, Haley & Aldrich

CERTIFICATIONS

Project: TEC BASA CCR
Pace Project No.: 60419294

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60419294

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60419294001	MW-7-091321	Water	01/05/23 11:05	01/05/23 14:30
60419294002	MW-10-091321	Water	01/05/23 10:00	01/05/23 14:30
60419294003	TEC-BASA-DUP-0105221	Water	01/05/23 11:05	01/05/23 14:30

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60419294

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60419294001	MW-7-091321	EPA 200.7	ALH	4	PASI-K
		EPA 6010	MA1	1	PASI-K
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	RKA	1	PASI-K
60419294002	MW-10-091321	EPA 200.7	ALH	4	PASI-K
		EPA 6010	MA1	1	PASI-K
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	JXD	1	PASI-K
60419294003	TEC-BASA-DUP-0105221	EPA 200.7	ALH	4	PASI-K
		EPA 6010	MA1	1	PASI-K
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	JXD	1	PASI-K
		EPA 300.0	RKA	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419294

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: January 13, 2023

General Information:

3 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419294

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: January 13, 2023

General Information:

3 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419294

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: January 13, 2023

General Information:

3 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419294

Method: EPA 245.1 Description: 245.1 Mercury

Client: Evergy Kansas Central, Inc.

Date: January 13, 2023

General Information:

3 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60419294

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: January 13, 2023

General Information:

2 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 826283

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60419181005,60419294001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3282386)
 - Fluoride
- MS (Lab ID: 3282388)
 - Fluoride
- MSD (Lab ID: 3282387)
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Date: 01/13/2023 12:45 PM

ANALYTICAL RESULTS

Project: TEC BASA CCR
Pace Project No.: 60419294

Sample: MW-7-091321	Lab ID: 60419294001 Collected: 01/05/23 11:05 Received: 01/05/23 14:30 Matrix: Water										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7										
	Pace Analytical	Services -	Kansas City								
Barium, Total Recoverable	0.067	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:34	7440-39-3				
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/12/23 09:34	7440-41-7				
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:34	7440-47-3				
_ead, Total Recoverable	<0.010	mg/L	0.010	1	01/06/23 07:40	01/12/23 09:34	7439-92-1				
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010						
	Pace Analytical	Services -	Kansas City								
Lithium, Total Recoverable	0.033	mg/L	0.010	1	01/06/23 06:59	01/11/23 10:34	7439-93-2				
200.8 MET ICPMS	Analytical Meth	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8									
	Pace Analytical	Services -	Kansas City								
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7440-36-0				
Arsenic, Total Recoverable	0.0016	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7440-38-2				
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	01/06/23 07:40	01/09/23 14:34	7440-43-9				
Cobalt, Total Recoverable	0.0035	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7440-48-4				
Molybdenum, Total Recoverable	0.011	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7439-98-7				
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7782-49-2				
Γhallium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:34	7440-28-0				
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	A 245.1						
-	Pace Analytical	Services -	Kansas City								
Mercury	<0.20	ug/L	0.20	1	01/06/23 07:01	01/06/23 11:56	7439-97-6				
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0								
	Pace Analytical										
	<0.20	mg/L	0.20			01/09/23 10:39		M1			

Date: 01/13/2023 12:45 PM

ANALYTICAL RESULTS

Project: TEC BASA CCR
Pace Project No.: 60419294

Sample: MW-10-091321	Lab ID: 604	19294002	Collected: 01/05/2	3 10:00	Received: 01	/05/23 14:30	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7						
	Pace Analytica	l Services -	Kansas City								
Barium, Total Recoverable	0.21	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:40	7440-39-3				
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/12/23 09:40	7440-41-7				
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:40	7440-47-3				
Lead, Total Recoverable	<0.010	mg/L	0.010	1	01/06/23 07:40	01/12/23 09:40	7439-92-1				
6010 MET ICP	Analytical Met	nod: EPA 60	10 Preparation Meth	od: EP	A 3010						
	Pace Analytical Services - Kansas City										
Lithium, Total Recoverable	0.014	mg/L	0.010	1	01/06/23 06:59	01/11/23 10:36	7439-93-2				
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8										
	Pace Analytica	l Services -	Kansas City								
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7440-36-0				
Arsenic, Total Recoverable	0.026	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7440-38-2				
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	01/06/23 07:40	01/09/23 14:37	7440-43-9				
Cobalt, Total Recoverable	0.0018	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7440-48-4				
Molybdenum, Total Recoverable	0.0044	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7439-98-7				
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7782-49-2				
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:37	7440-28-0				
245.1 Mercury	Analytical Met	nod: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1						
	Pace Analytica	l Services -	Kansas City								
Mercury	<0.20	ug/L	0.20	1	01/06/23 07:01	04/06/02 42:00	7420.07.6				

Date: 01/13/2023 12:45 PM

ANALYTICAL RESULTS

Project: TEC BASA CCR
Pace Project No.: 60419294

Sample: TEC-BASA-DUP-0105221	Lab ID: 60419294003		Collected: 01/05/2	3 11:05	Received: 01	/05/23 14:30 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
200.7 Metals, Total	Analytical Method: EPA 200.7 Preparation Method: EPA 200.7										
	Pace Analytica	l Services -	Kansas City								
Barium, Total Recoverable	0.059	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:42	7440-39-3				
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/12/23 09:42	7440-41-7				
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	01/06/23 07:40	01/12/23 09:42	7440-47-3				
ead, Total Recoverable	<0.010	mg/L	0.010	1	01/06/23 07:40	01/12/23 09:42	7439-92-1				
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Metl	nod: EP	A 3010						
	Pace Analytica	l Services -	Kansas City								
ithium, Total Recoverable	0.034	mg/L	0.010	1	01/06/23 06:59	01/11/23 10:38	7439-93-2				
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8										
	Pace Analytica	l Services -	Kansas City								
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7440-36-0				
Arsenic, Total Recoverable	0.0013	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7440-38-2				
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	01/06/23 07:40	01/09/23 14:40	7440-43-9				
Cobalt, Total Recoverable	0.0017	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7440-48-4				
Molybdenum, Total Recoverable	0.012	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7439-98-7				
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7782-49-2				
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	01/06/23 07:40	01/09/23 14:40	7440-28-0				
45.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	A 245.1						
•	Pace Analytica										
Mercury	<0.20	ug/L	0.20	1	01/06/23 07:01	01/06/23 12:03	7439-97-6				
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0										
•	Pace Analytica										
Fluoride	<0.20	mg/L	0.20	1		01/09/23 11:18	40004 40 0				

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60419294

Mercury

Date: 01/13/2023 12:45 PM

QC Batch: 826153 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60419294001, 60419294002, 60419294003

METHOD BLANK: 3282015 Matrix: Water

Associated Lab Samples: 60419294001, 60419294002, 60419294003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 01/06/23 11:21

LABORATORY CONTROL SAMPLE: 3282016

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 4.7 93 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3282017 3282018

ug/L

MSD MS 60419031001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 5 20 Mercury ug/L 5 4.7 4.7 93 70-130 0

 MATRIX SPIKE SAMPLE:
 3282019

 60419104001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

5

4.0

80

70-130

< 0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60419294

Date: 01/13/2023 12:45 PM

QC Batch: 826150 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60419294001, 60419294002, 60419294003

METHOD BLANK: 3282003 Matrix: Water

Associated Lab Samples: 60419294001, 60419294002, 60419294003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	01/12/23 09:29	
Beryllium	mg/L	< 0.0010	0.0010	01/12/23 09:29	
Chromium	mg/L	< 0.0050	0.0050	01/12/23 09:29	
Lead	mg/L	< 0.010	0.010	01/12/23 09:29	

LABORATORY CONTROL SAMPLE:	3282004					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	1	1.0	101	85-115	
Beryllium	mg/L	1	1.0	103	85-115	
Chromium	mg/L	1	1.0	101	85-115	
Lead	mg/L	1	1.0	104	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3282	005		3282006							
			MS	MSD								
	6	0419294001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.067	1	1	1.0	1.0	93	93	70-130	0	20	
Beryllium	mg/L	< 0.0010	1	1	0.99	0.98	99	98	70-130	1	20	
Chromium	mg/L	< 0.0050	1	1	0.93	0.93	93	93	70-130	1	20	
Lead	mg/L	< 0.010	1	1	0.94	0.94	94	94	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60419294

QC Batch: 826151 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60419294001, 60419294002, 60419294003

METHOD BLANK: 3282007 Matrix: Water

Associated Lab Samples: 60419294001, 60419294002, 60419294003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	01/09/23 14:18	
Arsenic	mg/L	< 0.0010	0.0010	01/09/23 14:18	
Cadmium	mg/L	< 0.00050	0.00050	01/09/23 14:18	
Cobalt	mg/L	< 0.0010	0.0010	01/09/23 14:18	
Molybdenum	mg/L	< 0.0010	0.0010	01/09/23 14:18	
Selenium	mg/L	< 0.0010	0.0010	01/09/23 14:18	
Thallium	mg/L	< 0.0010	0.0010	01/09/23 14:18	

LABORATORY CONTROL SAMPLE: 3282008

Date: 01/13/2023 12:45 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.039	98	85-115	
Arsenic	mg/L	0.04	0.039	98	85-115	
Cadmium	mg/L	0.04	0.039	99	85-115	
Cobalt	mg/L	0.04	0.040	101	85-115	
Molybdenum	mg/L	0.04	0.038	96	85-115	
Selenium	mg/L	0.04	0.039	98	85-115	
Thallium	mg/L	0.04	0.038	96	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 3282										
Parameter	Units	60419111001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	mg/L		0.04	0.04	0.040	0.039	98	98	70-130	1	20	
Arsenic	mg/L	<5.0 ug/L	0.04	0.04	0.038	0.039	91	93	70-130	2	20	
Cadmium	mg/L	<2.5 ug/L	0.04	0.04	0.036	0.036	90	89	70-130	1	20	
Cobalt	mg/L	9.0 ug/L	0.04	0.04	0.045	0.046	91	92	70-130	1	20	
Molybdenum	mg/L	12.1 ug/L	0.04	0.04	0.048	0.047	90	88	70-130	2	20	
Selenium	mg/L	53.2 ug/L	0.04	0.04	0.092	0.094	96	102	70-130	2	20	
Thallium	mg/L	<5.0 ug/L	0.04	0.04	0.042	0.042	103	104	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60419294

Date: 01/13/2023 12:45 PM

QC Batch: 826145 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Qualifiers

Associated Lab Samples: 60419294001, 60419294002, 60419294003

METHOD BLANK: 3281982 Matrix: Water

Associated Lab Samples: 60419294001, 60419294002, 60419294003

Blank Reporting
Parameter Units Result Limit Analyzed

Lithium mg/L <0.010 0.010 01/11/23 10:04

LABORATORY CONTROL SAMPLE: 3281983

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium mg/L 1.0 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3281984 3281985

MS MSD

60419073001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits ND 20 Lithium mg/L 1.0 1.0 102 103 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

TEC BASA CCR

60419294

LABORATORY CONTROL SAMPLE:

Date: 01/13/2023 12:45 PM

Project:

Pace Project No.:

QUALITY CONTROL DATA

QC Batch: 826283 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Kansas City 60419294001, 60419294003 Associated Lab Samples: METHOD BLANK: Matrix: Water Associated Lab Samples: 60419294001, 60419294003 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Fluoride < 0.20 0.20 01/09/23 09:29 mg/L METHOD BLANK: 3284286 Matrix: Water Associated Lab Samples: 60419294001, 60419294003 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Fluoride <0.20 0.20 01/10/23 08:51 mg/L

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Fluoride mg/L 2.5 2.4 96 90-110

3282385

LABORATORY CONTROL SAMPLE: 3284287 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 2.5 2.5 99 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3282386 3282387 MS MSD 60419294001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Fluoride 2.5 1.7 1.7 68 67 80-120 < 0.20 2.5 15 M1 mg/L

MATRIX SPIKE SAMPLE: 3282388 60419181005 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Fluoride mg/L 50 73.7 147 80-120 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR
Pace Project No.: 60419294

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 01/13/2023 12:45 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60419294

Date: 01/13/2023 12:45 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60419294001	MW-7-091321	EPA 200.7	826150	EPA 200.7	826171
60419294002	MW-10-091321	EPA 200.7	826150	EPA 200.7	826171
60419294003	TEC-BASA-DUP-0105221	EPA 200.7	826150	EPA 200.7	826171
60419294001	MW-7-091321	EPA 3010	826145	EPA 6010	826177
60419294002	MW-10-091321	EPA 3010	826145	EPA 6010	826177
60419294003	TEC-BASA-DUP-0105221	EPA 3010	826145	EPA 6010	826177
60419294001	MW-7-091321	EPA 200.8	826151	EPA 200.8	826172
60419294002	MW-10-091321	EPA 200.8	826151	EPA 200.8	826172
60419294003	TEC-BASA-DUP-0105221	EPA 200.8	826151	EPA 200.8	826172
60419294001	MW-7-091321	EPA 245.1	826153	EPA 245.1	826160
60419294002	MW-10-091321	EPA 245.1	826153	EPA 245.1	826160
60419294003	TEC-BASA-DUP-0105221	EPA 245.1	826153	EPA 245.1	826160
60419294001	MW-7-091321	EPA 300.0	826283		
60419294003	TEC-BASA-DUP-0105221	EPA 300.0	826283		

WO#:60419294

DC#_Title: ENV-F	RM-LENE-0009_Sam	604	19294	
Revision: 2	Effective Date: 01/12/20	22	Issued By: Lenexa	

Client Name: Evergy Kansas centr	abinc	
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Use	d? Yes □ No IŪ∕
Custody Seal on Cooler/Box Present: Yes □ No ☑	Seals intact: Yes D	
Packing Material: Bubble Wrap 🖫 Bubble Bags 🛭	□ Foam □	None □ Other 12 7 CC
Thermometer Used: 1296 Type of	fice: We Blue No	
Cooler Temperature (°C): As-read <u>\$-3</u> Corr. Fact	tor O Correc	ted 5.2 Date and initials of person 1/5/23 examining contents:
Temperature should be above freezing to 6°C		1
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	127Yes □No □N/A	
Samples arrived within holding time:	Wes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ŪANo □N/A	
Rush Turn Around Time requested:	□Yes 【OMO □N/A	
Sufficient volume:	Yes □No □N/A	
Correct containers used:	⊠Yes □No □N/A	Did Not Recieve Blavfor
Pace containers used:	₩es □No □N/A	Sample mult
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □ N/A	Ŷ
Filtered volume received for dissolved tests?	□Yes □No ☑ N/A	
Sample labels match COC: Date / time / ID / analyses	ØYes □No □N/A	
Samples contain multiple phases? Matrix: wT	□Yes WNo □N/A	
Containers requiring pH preservation in compliance?	Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	.67187	date/lime added.
Cyanide water sample checks:	. 07 (0 1	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No \\\\/\ N/A	
Headspace in VOA vials (>6mm):	□Yes □No □ WAN/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ☑N/A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	<u> </u>
Comments/ Resolution:		
Project Manager Review:	Date	e:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Section																															
	d Client Information:		Section B Required Pro	ect Info	rmation:						tion C ce Info	C formatio	on:														Pa	ige:		of	
Compan	EVERGY KA	NSAS CENTRAL, INC.	Report To: Ja	ke Hu	ımphrey					Atten			_	unts	Paya	able					7						_				
Address	Jeffrey Energ	y Center (JEC)	Copy To: La	aura H	ines, San	antha K	aney, Meli	ssa Mich	nels	Comp	pany N	Name:	E١	/ER	GY K	KANS	AS (CENT	ΓRΑΙ	L, IN	dRE	GUL	ATOF	RY A	GF	NCY	,				
	818 Kansas	Ave, Topeka, KS 66612	D	anielle	Oberroe	kling				Addre				Section			-				_	NP	_		_		ND V	VATE	R C	DRINKIN	IG WATER
Email To	doberbroeck	ing@haleyadrich.com	Purchase Ord	er No.:							Quote								_		┨┌	UST				CRA	110 1	•/ \ \ _		OTHER	OWATER
Phone:	507-251-2232	Fax:	Project Name	TE	C BASA C	CR					Project	t A	lice	Spill	er 91	13-56	3-14	03			-	te Lo	_	_		2101		1			
Request	ed Due Date/TAT:		Project Number	er:						Mana Pace	ger: Profile	#: 90	657,	2							┨~		ATE:	1		KS	i				
									_		_	_						Re	que	sted	Ana	lysis		_	(Y/N	J)	E				
	Section D Required Client Informat	Valid Matrix O MATRIX DRINKING WATER WATER WASTE WATER	CODE CODE DW WT WW	C=COMP)	COME		ECTED	SITE	NOIL		T	Pr	esei	rvativ	/es	1	Ťu/A			N N											
ITEM #	SAMPL (A-Z, 0-9 Sample IDs MUST	PRODUCT SOIL/SOLID OIL WIPE AIR OTHER	P SL OL WP AR OT TS	18	STA		END/G	RAB	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO₄ HNO₃	HCI	NaOH	Na ₂ S ₂ O ₃	Other	↓ Analysis Test	200.7 Ba,Be, Cr, Pb	200.8 Sb,AS,Cd,Co	300.0 Fluoride	6010 Lithium	245.1 Mercury		Radium 226	Radium 228	Ra combined		Residual Chlorine (Y/N)		4192 Project 1	9 <i>4</i> No./ Lab I.D.
1		MW-7-091321			_	_	01/05/23	1125	Ì	3	1	2	$\overline{}$	П			П		_	x x		х		1			П	\dashv			
2		MW-8 091321		-	_		01/05/23		1	,8	1	_ 2	4	\Box	4	+	Н	×	× -	× ×	_				Г		П	\top			
3		MW10-091321			_		01/05/23	1000		Ŕ	4	ر پز								хх		х					П	T			
4	TEC-	BASA-DUP-0105221			_		01/05/23	1105		3	1	2						х	x :	x x	X	х						\Box			
5														Ш																	
6				_									_	П														\perp			
7									_	_	Ш		\perp	Ш														\perp			
8					-		-		_	_	Ш		_	Ш	4				4	_	┺	Ш	4	╙			Ц	4			
9									1	<u> </u>	\sqcup		1	Ц				\perp	\perp	1							Ц	\perp			
10				4					1	<u> </u>	\sqcup		╄	Н	4	-		_	\perp	_	┡	1	_	╄		ш	Н	4			
11				+	-				+	_	H	_	+	Н	4	-		4	4	+	╆	\vdash	4	\vdash			Н	4			
12	L									-	Щ	4		Ш	Ш	Ш	Ш	Ц			Ц			+	L	Ц	Ш	Щ			
		L COMMENTS	R		ISHED BY			DAT		-	IIME	+	_	_		EPTE	_	_	LIATI	ON	_	_	TE	-	TIMI		_	51	SAME	LE CONDIT	IONS
nw-	O not fall !	(:+	Math	Va	adrev	Per the	4 5 65	1/5/	23	14	134	0	u	2	- 9	0		n				1.5.	<u> 22</u>	1/4	13	0	5.	4	<u>Y</u>	N	Ι Υ
																•															
	_																														
Pa						SAMPL	ER NAME A	ND SIGN	ATUF	RE					=			-			=	_					0	,	u -	<u>e</u>	tact
Page 21 of 22							PRINT Nam	e of SAMF	PLER	Matt	t Van	nderP	utte	n A	48	Per			E Sig	gned YY);			1/5/	23		-	Temp in °C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)

Site: TEC BASA CCR

Profile # 965) 2

Notes

COC Line Item	Matrix	VG9H	реэн	DG9G	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗГ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	M																				1		2								
2																															
3	W																						1								
4	WT																				1		2								
5																															
6																															
7																															
8																															
9																															
10																															
11								T																							
12																															

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		390
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1\$	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		MIGLIIX
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
	1907			BP4U	125mL unpreserved plastic	DW	Drinking Water

BP4N

BP4S

WPDU

125mL HNO3 plastic

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

60419294

ATTACHMENT 2-2 March 2023 Annual Assessment Sampling Event Laboratory Analytical Report

March 21, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR

Pace Project No.: 60423226

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

REVISED 3/21/23

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665

Alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: TEC BASA CCR
Pace Project No.: 60423226

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60423226

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60423226001	MW-7-030623	Water	03/06/23 01:55	03/06/23 16:50
60423226002	MW-8-030623	Water	03/06/23 01:00	03/06/23 16:50
60423226003	MW-10-030623	Water	03/06/23 11:25	03/06/23 16:50
60423226004	DUP-TECBASA-030623	Water	03/06/23 02:00	03/06/23 16:50

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60423226

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60423226001	MW-7-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423226002	MW-8-030623	EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423226003	MW-10-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423226004	DUP-TECBASA-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Date: March 21, 2023

Amended to report uniform reporting units per client request.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

3 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

4 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

4 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

3 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

4 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-TECBASA-030623 (Lab ID: 60423226004)
- MW-10-030623 (Lab ID: 60423226003)
- MW-7-030623 (Lab ID: 60423226001)
- MW-8-030623 (Lab ID: 60423226002)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423226

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: March 21, 2023

General Information:

4 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Date: 03/21/2023 11:15 AM

ANALYTICAL RESULTS

Project: TEC BASA CCR
Pace Project No.: 60423226

Sample: MW-7-030623	Lab ID: 604	23226001	Collected: 03/06/2	23 01:55	Received: 03	3/06/23 16:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.061	mg/L	0.0050	1	03/09/23 10:04	03/10/23 12:46	7440-39-3	
Boron, Total Recoverable	0.58	mg/L	0.10	1	03/09/23 10:04	03/10/23 12:46	7440-42-8	
Calcium, Total Recoverable	90.3	mg/L	0.20	1	03/09/23 10:04	03/10/23 12:46	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Metl	hod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.028	mg/L	0.010	1	03/09/23 10:04	03/10/23 13:06	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	thod: EF	PA 200.8			
	Pace Analytica							
Arsenic, Total Recoverable	0.0020	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:38	7440-38-2	
Cobalt, Total Recoverable	0.0027	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:38	7440-48-4	
Molybdenum, Total Recoverable	0.016	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:38	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1210	mg/L	13.3	1		03/08/23 09:01		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
• /	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/07/23 12:14	ı	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
	Pace Analytica							
Chloride	237	mg/L	200	200		03/13/23 17:27	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/13/23 16:48	3 16984-48-8	
Sulfate	253	mg/L	200	200		03/13/23 17:27	14808-79-8	

Date: 03/21/2023 11:15 AM

ANALYTICAL RESULTS

Project: TEC BASA CCR
Pace Project No.: 60423226

Sample: MW-8-030623	Lab ID: 604	23226002	Collected: 03/06/2	23 01:00	Received: 03	3/06/23 16:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytica	I Services -	Kansas City					
Lithium, Total Recoverable	0.019	mg/L	0.010	1	03/09/23 10:04	03/10/23 13:12	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	thod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Arsenic, Total Recoverable	0.0013	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:24	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:24	7440-48-4	
Molybdenum, Total Recoverable	0.049	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:24	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 25	40C					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1390	mg/L	13.3	1		03/08/23 09:01		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
• •	Pace Analytica	l Services -	Kansas City					
pH at 25 Degrees C	6.8	Std. Units	0.10	1		03/07/23 12:12	2	H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	245	mg/L	200	200		03/13/23 18:20	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/13/23 18:07	16984-48-8	
Sulfate	526	mg/L	200	200		03/13/23 18:20	14808-79-8	

ANALYTICAL RESULTS

Project: TEC BASA CCR

Pace Project No.: 60423226

Date: 03/21/2023 11:15 AM

Sample: MW-10-030623	Lab ID: 604	23226003	Collected: 03/06/2	23 11:25	Received: 03	3/06/23 16:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.19	mg/L	0.0050	1	03/09/23 10:04	03/10/23 12:52	7440-39-3	
Boron, Total Recoverable	0.28	mg/L	0.10	1	03/09/23 10:04	03/10/23 12:52	7440-42-8	
Calcium, Total Recoverable	163	mg/L	0.20	1	03/09/23 10:04	03/10/23 12:52	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	03/09/23 10:04	03/10/23 13:14	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.0065	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:41	7440-38-2	
Cobalt, Total Recoverable	0.0038	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:41	7440-48-4	
Molybdenum, Total Recoverable	0.0048	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:41	7439-98-7	
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	8.1	Std. Units	0.10	1		03/09/23 11:18		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Chloride	311	mg/L	200	200		03/13/23 19:14	16887-00-6	
Fluoride	0.26	mg/L	0.20	1		03/13/23 19:01	16984-48-8	
Sulfate	<1.0	mg/L	1.0	1		03/13/23 19:01	14808-79-8	

ANALYTICAL RESULTS

Project: TEC BASA CCR

Pace Project No.: 60423226

Date: 03/21/2023 11:15 AM

Sample: DUP-TECBASA-030623	Lab ID: 604	123226004	Collected: 03/06/2	23 02:00	Received: 03	/06/23 16:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.063	mg/L	0.0050	1	03/09/23 10:04	03/10/23 12:54	7440-39-3	
Boron, Total Recoverable	0.59	mg/L	0.10	1	03/09/23 10:04	03/10/23 12:54	7440-42-8	
Calcium, Total Recoverable	92.6	mg/L	0.20	1	03/09/23 10:04	03/10/23 12:54	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Metl	nod: EP	A 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.027	mg/L	0.010	1	03/09/23 10:04	03/10/23 13:16	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Arsenic, Total Recoverable	0.0020	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:45	7440-38-2	
Cobalt, Total Recoverable	0.0027	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:45	7440-48-4	
Molybdenum, Total Recoverable	0.015	mg/L	0.0010	1	03/09/23 10:04	03/14/23 11:45	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1250	mg/L	13.3	1		03/08/23 09:02		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/07/23 12:15		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytic	al Services -	Kansas City					
Chloride	218	mg/L	200	200		03/13/23 19:41	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/13/23 19:27	16984-48-8	
Sulfate	257	mg/L	200	200		03/13/23 19:41	14808-79-8	

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

QC Batch: 835505 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423226001, 60423226003, 60423226004

METHOD BLANK: 3314320 Matrix: Water

Associated Lab Samples: 60423226001, 60423226003, 60423226004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	03/10/23 12:42	
Boron	mg/L	<0.10	0.10	03/10/23 12:42	
Calcium	mg/L	< 0.20	0.20	03/10/23 12:42	

LABORATORY CONTROL SAMPLE: 3314321

Date: 03/21/2023 11:15 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.95	95	85-115	
Boron	mg/L	1	0.94	94	85-115	
Calcium	mg/L	10	10	100	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3314	322		3314323							
			MS	MSD								
		60423226001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.061	1	1	0.97	0.99	91	92	70-130	1	20	
Boron	mg/L	0.58	1	1	1.5	1.5	91	94	70-130	2	20	
Calcium	mg/L	90.3	10	10	99.4	102	91	113	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

Arsenic

Cobalt

Date: 03/21/2023 11:15 AM

QC Batch: 835507 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

> Laboratory: Pace Analytical Services - Kansas City

60423226001, 60423226002, 60423226003, 60423226004 Associated Lab Samples:

METHOD BLANK: 3314328 Matrix: Water

Associated Lab Samples: $60423226001,\,60423226002,\,60423226003,\,60423226004$

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed mg/L < 0.0010 0.0010 03/14/23 11:19 mg/L < 0.0010 0.0010 03/14/23 11:19 Molybdenum mg/L <0.0010 0.0010 03/14/23 11:19

LABORATORY CONTROL SAMPLE: 3314329

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.04	0.039	96	85-115	
Cobalt	mg/L	0.04	0.038	95	85-115	
Molybdenum	mg/L	0.04	0.040	99	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 3314	330		3314331							
			MS	MSD								
		60423226002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.0013	0.04	0.04	0.041	0.041	99	100	70-130	1	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.040	0.041	97	99	70-130	2	20	
Molybdenum	mg/L	0.049	0.04	0.04	0.088	0.088	99	98	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

Date: 03/21/2023 11:15 AM

QC Batch: 835506 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423226001, 60423226002, 60423226003, 60423226004

METHOD BLANK: 3314324 Matrix: Water

Associated Lab Samples: 60423236004 60423236002 60423236002

Associated Lab Samples: 60423226001, 60423226002, 60423226003, 60423226004

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 03/10/23 13:02

LABORATORY CONTROL SAMPLE: 3314325

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium mg/L 0.96 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3314326 3314327

MS MSD

60423226001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 0.028 Lithium mg/L 1.0 1.0 98 98 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

QC Batch: 835379

QC Batch Method: SM 2540C Analysis Method: SM 2540C

Analysis Description:

Laboratory:

2540C Total Dissolved Solids

Pace Analytical Services - Kansas City

60423226001, 60423226002, 60423226004 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60423226001, 60423226002, 60423226004

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Total Dissolved Solids <5.0 5.0 03/08/23 09:00 mg/L

LABORATORY CONTROL SAMPLE: 3313762

> Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units 1000 994 99 80-120

Total Dissolved Solids mg/L

SAMPLE DUPLICATE: 3313763

60422746002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 458 **Total Dissolved Solids** mg/L 480 5 10

SAMPLE DUPLICATE: 3313764

Date: 03/21/2023 11:15 AM

60423245001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 7450 7520 10 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:

TEC BASA CCR

Pace Project No.:

60423226

QC Batch:
QC Batch Method:

835122

SM 4500-H+B

Analysis Method:

SM 4500-H+B

Analysis Description:

4500H+B pH

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

60423226001, 60423226002, 60423226004

SAMPLE DUPLICATE: 3312967

Parameter Units

60423115001 Result Dup Result

6.5

RPD

Max RPD

Qualifiers

pH at 25 Degrees C

Date: 03/21/2023 11:15 AM

Std. Units

6.6

5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:

TEC BASA CCR

Pace Project No.:

60423226

QC Batch:

835568

QC Batch Method:

SM 4500-H+B

Analysis Method:

SM 4500-H+B

Analysis Description:

4500H+B pH

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

Parameter

60423226003

SAMPLE DUPLICATE: 3314408

60423240001 Result

Dup Result

Max RPD RPD

Qualifiers

pH at 25 Degrees C

Date: 03/21/2023 11:15 AM

Units Std. Units

8.5

8.6

5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

Chloride Fluoride Sulfate

QC Batch: 835314 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Kansas City

60423226001, 60423226002, 60423226003, 60423226004 Associated Lab Samples:

METHOD BLANK: 3313576 Matrix: Water

Associated Lab Samples: 60423226001, 60423226002, 60423226003, 60423226004

Parameter	Units	Result	Limit	Analyzed	Qualifiers
	mg/L	<1.0	1.0	03/13/23 10:27	
	mg/L	<0.20	0.20	03/13/23 10:27	
	mg/L	<1.0	1.0	03/13/23 10:27	

METHOD BLANK: 3319716 Matrix: Water

Associated Lab Samples: 60423226001, 60423226002, 60423226003, 60423226004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/16/23 10:29	
Fluoride	mg/L	<0.20	0.20	03/16/23 10:29	
Sulfate	mg/L	<1.0	1.0	03/16/23 10:29	

LABORATORY CONTROL SAMPLE: 3313577

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.7	95	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.1	101	90-110	

LABORATORY CONTROL SAMPLE: 3319717

Date: 03/21/2023 11:15 AM

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.7	94	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	4.7	94	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3313579

Parameter	Units	60423226001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	237	1000	1000	1120	1160	88	92	80-120	3	15	•
Fluoride	mg/L	<0.20	2.5	2.5	2.6	2.5	95	91	80-120	4	15	
Sulfate	mg/L	253	1000	1000	1240	1290	98	104	80-120	5	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60423226

Date: 03/21/2023 11:15 AM

MATRIX SPIKE SAMPLE:	3313580						
		60423069004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	2.5		7.4	99	80-120	
Fluoride	mg/L	0.30	2.5	2.6	94	80-120	
Sulfate	mg/L	5.5	5	11.1	111	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR
Pace Project No.: 60423226

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/21/2023 11:15 AM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

Date: 03/21/2023 11:15 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60423226

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60423226001	MW-7-030623	EPA 200.7	835505	EPA 200.7	835723
60423226003	MW-10-030623	EPA 200.7	835505	EPA 200.7	835723
60423226004	DUP-TECBASA-030623	EPA 200.7	835505	EPA 200.7	835723
60423226001	MW-7-030623	EPA 3010	835506	EPA 6010	835724
60423226002	MW-8-030623	EPA 3010	835506	EPA 6010	835724
60423226003	MW-10-030623	EPA 3010	835506	EPA 6010	835724
60423226004	DUP-TECBASA-030623	EPA 3010	835506	EPA 6010	835724
60423226001	MW-7-030623	EPA 200.8	835507	EPA 200.8	835725
60423226002	MW-8-030623	EPA 200.8	835507	EPA 200.8	835725
60423226003	MW-10-030623	EPA 200.8	835507	EPA 200.8	835725
60423226004	DUP-TECBASA-030623	EPA 200.8	835507	EPA 200.8	835725
60423226001	MW-7-030623	SM 2540C	835379		
60423226002	MW-8-030623	SM 2540C	835379		
60423226004	DUP-TECBASA-030623	SM 2540C	835379		
60423226001	MW-7-030623	SM 4500-H+B	835122		
60423226002	MW-8-030623	SM 4500-H+B	835122		
60423226003	MW-10-030623	SM 4500-H+B	835568		
60423226004	DUP-TECBASA-030623	SM 4500-H+B	835122		
60423226001	MW-7-030623	EPA 300.0	835314		
60423226002	MW-8-030623	EPA 300.0	835314		
60423226003	MW-10-030623	EPA 300.0	835314		
60423226004	DUP-TECBASA-030623	EPA 300.0	835314		

WO#:60423226 DC#_Title: ENV-FRM-LENE-0009_Sample C

		60423226
Revision: 2	Effective Date: 01/12/2022	a
	7' 1 1	

Client Name: <u>Evary Kunsus</u> entr	al	
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Used	d? Yes ☑ No □
Custody Seal on Cooler/Box Present: Yes ■ No □	Seals intact: Yes 🏻	No □
Packing Material: Bubble Wrap □ Bubble Bags 0	□ Foam □	None ☐ Other □
Thermometer Used: 12/16 Type o	f Ice: Vet Blue No	
Cooler Temperature (°C): As-read <u>5.</u> Corr. Fact	tor Oil Correct	ted 5. 6 Date and initials of person examining contents:
Temperature should be above freezing to 6°C		AF 3/6
Chain of Custody present:	Des □No □N/A	
Chain of Custody relinquished:	Dres □No □N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes LNo □N/A	
Rush Turn Around Time requested:	□Yes ┗No □N/A	
Sufficient volume:	Toves □No □N/A	
Correct containers used:	tres □No □N/A	
Pace containers used:	res □No □N/A	
Containers intact:	DYeS □NO □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	No □N/A	
Samples contain multiple phases? Matrix: WTT	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yos □No □N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	6204001	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# Cyanide water sample checks:	10000	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □M/A	
Headspace in VOA vials (>6mm):	□Yes □No 17 N/A	
Samples from USDA Regulated Area: State:	□Yes □No YN/A	ë
Additional labels attached to 5035A / TX1005 vials in the field'	? □Yes □No □N/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
Project Manager Review:	Date	£

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section Required	I A Client Information:		Section B Required Pro	oject Inf	ormation:						ion C ce Infor		n:														Page	: 1		of	1
Company	EVERGY KANSAS CEI	NTRAL, INC.	Report To: N	Vielissa	Michels,	Samanth	a Kaney,			Atten				nts P	-						7					-					
Address:	Jeffrey Energy Center (JEC)	Сору То: Ј	lared N	Norrison,	Jake Hum	phrey, La	ura Hines	3	Comp	any N	ame:	EV	ERG	Y KA	NS	AS C	EN	TRA	L, IN	RI	GUI	ATC	DRY A	AGEN	NCY					
	818 Kansas Ave, Topel	a, KS 66612								Addre	ess:	Se	ee Se	ectio	n A				□ NPDES ▼ GRO									JND WATER DRINKING WATER			
Email To	skaney@haleyaldrich.c	om F	Purchase Or	der No						Pace (Quote										1-	US	ST.		RC	RA		Γ		OTHER	
Phone:	785-575-8113 Fax:	-	Project Name	e: TE	C BASA	CCR					Project	Al	ice S	Spille	r 913	3-563	3-14	03			s	ite L	ocati	on							
Request	ed Due Date/TAT: 7 day		Project Numb	ber:							Profile #	#: 96	57,	12							1	5	STAT	E:	_	KS					
										_								Re	eque	este	d An	alysi	s Fil	tered	(Y/N	1)					
	Section D Required Client Information	Valid Matrix Co	des CODE	to left)		COLI	ECTED.					Pre	esen	vativ	es		N /A	N	N	N	N N	N									
	SAMPLE ID	WATER WASTE WASTE WASTE WASTE WATER PRODUCT SOIJ/SOLID OIL COULD WIPE AIR	SL OL WP	E (see valid codes to left) (G=GRAB C=COMP)	S	MPOSITE FART	COMPO END/GI	SITE RAB	TEMP AT COLLECTION	NERS							Test 🕽	B,Ba, Ca	, Mo	thium	ved Solids						Chlorine (Y/N)	60	94	436	126
ITEM#	(A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE		ot is	MATRIX CODE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved	H₂SO₄ HNO₃	HCI	NaOH	Methanol	Other	lysis	200.7 Total I	200.8 As,Co, Mo		Total Dissolved	Hd					Residual Chl	Pa	ace l	Project N	lo./ Lab I.D.
1	MW-7-03	0623		WT G		2:	03/06/23	1:55		5	3	2	Ш			Ш			x	x 3	x x	X		_							
2	MW-8-03	0623		WT C	<u> </u>	-	03/06/23	1:00	_	1/2	3	2	Н		+	Н		*	X	x ;	x x	+	_	_	┰	Н	\perp				
3	MW-10-0	30623		WT G		*:	03/06/23	11:25	1	V _s	3	2	Н		1	Н		\neg	\neg	_	× 🖠	1	\perp	+	\vdash	Н	+	₩			
4	DUP-TECBAS	SA-030623		WT C) <u>v</u>	- 2	03/06/23	2:00	\vdash	5	3	2	\vdash	Н	+	Н		×	X	X ;	x x	X	\perp	+	+	H	+	-			
5				-	-	-		-	-	-	H	+	\vdash	H	+	Н		\dashv	+	+	+	+-	+	+	+	H	+	-			
6				+	+	-		-	╀	\vdash	H	+	Н	Н	+	Н	H	\dashv	+	+	+	+	\dashv	+	+	H	+	\vdash			
7				+	+	+		-	╁	┢	+	+	+	+	+	H	H	\dashv	+	+	+	+	\forall	+	+	H	+	+			
8	7		-	+	+				+	\vdash	H	+	H	H	+	Н	H	\dashv	\dashv	+	+	+	\vdash	+	+	H	+				
9			-+	_	+	+	1		+		\forall	+	\vdash	\vdash	+	Н	l	\dashv	\dashv	+	+	T	П	$^{+}$		H	Ť				
10				-					t	\vdash	T		\top	\vdash	+	\vdash			\dashv	\top		1		T		П	\top				
12									1	T	T	T	Т	П	T	П		\Box	\neg	\top			П		Т						
	ADDITIONAL COMMEN	TS		RELING	UISHED B	/ / AFFILIA	TION	DAT	E	Ī	TIME			-	CCE	PTE	LBY.	AFP	ILIA	пом		T y	DATE		TIM	E		S	AMPL	E CONDITI	ions
				Mat	t VanderPi	utten / SCS							/	1	=			=	\leq	>	5	13	16	Ţ	69	0	5.6	IY		4	
				19101	· variation					\top		\top										1							T	•	
												\top												\top					7		
			+							\vdash		+												\top		+		1	7		
∟ Pa						SAMPL	ER NAME	AND SIGN	ATUI	RE																	ပ်	5 5	,	by coler	ntact
Page 27 of 28	PRINT Name of SAMPLER: Matt VanderPutten SIGNATURE of SAMPLER: A CONTROL OF SAMPLER: MATTER SIGNED CONTROL												Temp in	Received on	200	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)														
of 28							SIGNATUR	E of SAM	LER	UPE	to	=	10	16	14	E)/YY):								E	_1	ഗ്	Š

e Date:	Issued by: Lenexa		1	
Client:	Everal	Kansas	Centra	
Site:	TEC	Basa	CCR	

Profile # 9657-12

COC Line Item		NG9H	резн	Dead	VG9U	DG9N	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗЕ	BP3S	врзс	вР3Z	WPDU	ZPLC	Other	
1	wi																		1		2		3								
2	1																		1		a		٤								
3																			, t		2		2								
4																			1		2		3								
5																			•				/								
6																															
7																															
8																															
9																															
10																															
11																															
12																									5,-						

Container Codes

		Glass			Plastic	Misc.					
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab				
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate				
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag				
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter				
OG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes				
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit				
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can				
√G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		100				
√G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic						
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		BB - 1 - 1 - 1				
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix				
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water				
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid				
3G3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid				
VGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL				
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe				
				BP4U	125mL unpreserved plastic	DW	Drinking Water				

BP4N

BP4S WPDU 125mL HNO3 plastic 125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

60423226

March 29, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR

Pace Project No.: 60423227

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: TEC BASA CCR Pace Project No.: 60423227

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60423227

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60423227001	MW-7-030623	Water	03/06/23 01:55	03/06/23 16:50
60423227002	DUP-TECBASA-030623	Water	03/06/23 02:00	03/06/23 16:50

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60423227

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60423227001	MW-7-030623	EPA 903.1	GDH	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60423227002	DUP-TECBASA-030623	EPA 903.1	GDH	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423227

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: March 29, 2023

General Information:

2 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423227

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: March 29, 2023

General Information:

2 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60423227

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.

Date: March 29, 2023

General Information:

2 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60423227

Sample: MW-7-030623 PWS:	Lab ID: 6042322 Site ID:	7001 Collected: 03/06/23 01:55 Sample Type:	Received:	03/06/23 16:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg				
Radium-226	EPA 903.1	0.314 ± 0.437 (0.730) C:NA T:89%	pCi/L	03/19/23 16:54	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 904.0	0.113 ± 0.369 (0.836) C:63% T:88%	pCi/L	03/20/23 17:20	15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.427 ± 0.806 (1.57)	pCi/L	03/23/23 15:10	7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60423227

Sample: DUP-TECBASA-030623 PWS:	Lab ID: 6042 Site ID:	3227002 Collected: 03/06/23 02:00 Sample Type:	Received:	03/06/23 16:50	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	-0.0752 ± 0.343 (0.809) C:NA T:90%	pCi/L	03/19/23 16:54	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.324 ± 0.366 (0.763) C:71% T:83%	pCi/L	03/20/23 17:20	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.324 ± 0.709 (1.57)	pCi/L	03/23/23 15:10	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC BASA CCR

Pace Project No.: 60423227

QC Batch: 572944 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60423227001, 60423227002

METHOD BLANK: 2782795 Matrix: Water

Associated Lab Samples: 60423227001, 60423227002

 Parameter
 Act \pm Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 -0.639 \pm 0.418 (1.12) C:56% T:79%
 pCi/L
 03/20/23 17:17

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC BASA CCR

Pace Project No.: 60423227

QC Batch: 572943 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60423227001, 60423227002

METHOD BLANK: 2782787 Matrix: Water

Associated Lab Samples: 60423227001, 60423227002

ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-2260.0626 \pm 0.286 (0.461) C:NA T:95%pCi/L03/19/23 16:29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR
Pace Project No.: 60423227

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 03/29/2023 03:11 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 03/29/2023 03:11 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60423227

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60423227001	MW-7-030623	EPA 903.1	572943		
60423227002	DUP-TECBASA-030623	EPA 903.1	572943		
60423227001	MW-7-030623	EPA 904.0	572944		
60423227002	DUP-TECBASA-030623	EPA 904.0	572944		
60423227001	MW-7-030623	Total Radium Calculation	576042		
60423227002	DUP-TECBASA-030623	Total Radium Calculation	576042		

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample

WO#:60423227

Revision: 2 Effe	ctive Date: 01/12/20)/2_
Client Name: Every Fungus Cont	ral	
Courier: FedEx □ UPS □ VIA □ Clay □ F	PEX 🗆 ECI 🗆	Pace □ Xroads □ Client 🛣 Other □
Tracking #: Pac	e Shipping Label Used	d? Yes I No □
Custody Seal on Cooler/Box Present: Yes No □	Seals intact: Yes	No 🗆
Packing Material: Bubble Wrap □ Bubble Bags □	Foam □	None I Other □
Thermometer Used: <u>T2/16</u> Type of	Ice: Wet Blue No	
Cooler Temperature (°C): As-read	or-Dil Correct	Date and initials of person examining contents:
Temperature should be above freezing to 6°C		AF 3/6
Chain of Custody present:	□ es □ No □ N/A	7,1
Chain of Custody relinquished:	ÛVes □No □N/A	
Samples arrived within holding time:	Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes □No □N/A	
Rush Turn Around Time requested:	□Yes IIINo □N/A	
Sufficient volume:	Des □No □N/A	
Correct containers used:	☐ No □N/A	
Pace containers used:	Yes No NA	
Containers intact:	Yes ONO ON/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 10M/A	
Filtered volume received for dissolved tests?	□Yes □No thiA	
Sample labels match COC: Date / time / ID / analyses	res □No □N/A	
Samples contain multiple phases? Matrix: WT	□Yes □No □N/A	
Containers requiring pH preservation in compliance?	□Yes □No ÛN/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ♣N/A	
Headspace in VOA vials (>6mm):	□Yes □No ♣N/A	
Samples from USDA Regulated Area: State:	□Yes □No MIN/A	
Additional labels attached to 5035A / TX1005 vials in the field?	P □Yes □No □N/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:	**************************************	
Project Manager Review:	Date	e:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

1																																
Section Require	d Client Information:	Section B Required Pro	ect Info	rmation:						ction (pice Info		ion:														- 1	Pag	ge:	1	of	1	
Compan	EVERGY KANSAS CENTRAL, INC.	Report To: M	elissa	Michels,	Samanth	a Kaney,				ntion:			unts	Paya	able												_	_				
Address	Jeffrey Energy Center (JEC)	Copy To: Ja	red M	orrison, J	ake Hum	phrey, La	ura Hine	s	Com	npany N	Name	E	VER	GY K	CANS	SAS	CEN	TR/	AL, I	Nd,	REG	ULA	TOF	RY /	AGE	NCY						
	818 Kansas Ave, Topeka, KS 66612								_	ress:			Secti		_					十	_	NPD	_		_		ND W	/ATE	R [DRINKIN	NG WA	TER
Email To	skaney@haleyaldrich.com	Purchase Ord	er No.:							Quote										┨	Г	UST			RC				Г	OTHER	_	
Phone:	785-575-8113 Fax:	Project Name:	TE	C BASA C	CCR				Pace	Projec	at /	Alice	Spill	er 9	13-56	3-14	403			+	Site	Loc	atio	_				- 1				
Request	ted Due Date/TAT: 7 day	Project Number	er:						Mana	ager: Profile	#: <u>C</u>	9657	, 12							7			ATE	1		KS						
			_						1							Т	R	eau	este	ed A	nalv				(Y/N	4)	W					
	Section D Valid Matrix C Required Client Information MATRIX	CODE	C=COMP)		COLL	ECTED.		Γ			P	rese	ervati	ves		N/A	N		N			V										
	DRINKING WATER WASTE WAS	AD	(G=GRAB	COMF STA	POSITE	COMPO END/GR	SITE RAB	TEMP AT COLLECTION	# OF CONTAINERS	erved				13	ō	↓Analysis Test↓	otal B,Ba, Ca	200.8 As,Co, Mo		CI,F,S	l otal Dissolved Solids		226	228	pined		OF Contract of Con	Residual Chlorine (Y/N)	60	Y23	321	97
ITEM #		OT SECOND	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE.	# OF CC	Unpres	H ₂ SO₄		NaOH	Na ₂ S ₂ O ₃	Methanol	↓ Analy	200.7 Total	200.8 A	6010Total	300.00	otal D	5	Radium	Radium 228	Ra combined		1000	Residua	Pace	Project I	No./ L	ab I.D.
1	MW-7-030623	w	пG	- 5	(4)	03/06/23	1:55		2			x				П							X	1		П						
2																																
3					30																											
- 4	DUP-TECBASA-030623	v	п в		928	03/06/23	2:00		2			x											X	(x								
5																																
6										Ш						1																
7			1_							Ш			Ш	1	\perp	1				_	\perp			1	_	Ш		1				
8			_					┶	_	\perp	Ц	_	Ш	_		Į.	L			_	_			_	_	Ш	_	┵				
9								\perp	L	Ш	Ц								Ц		_		_	1	┸	Ш	_	\perp				
10										\perp	Ц				1								1	\perp			_	\perp				
11								┺	┖	\perp	Ц	1		_	_		L			4	_	4	1	_	\perp	Ш	4	1				
12			\perp					L	_		Ц				_	L			\Box		4		1	4		Ц		丄				
	ADDITIONAL COMMENTS	RI	LINQU	ISHED BY	/ AFFILIAT	ION	DAT	Έ		TIME				ACC	EPTE	DBY	/ AFI	ILIA	TION			DA	TE		TIM				SAMP	LE CONDI	TIONS	
			Matt	VanderPut	ten / SCS							2	4	5	=	\geq	\geq		\leq			3/1	6	1/	691	2	16.0	2				
																					T	1										
											\forall										T			†				\top				
									1		\dashv										+			+				+			+	
J Pa(ER NAME A																					ပ္	+	uo 🥱	ly ooler	+	ntact
Page 15 of						PRINT Nam SIGNATUR						Putte	en LA	ne .	_	_			Signe								Temp in °C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
of 18					L				0-70		1/1	100	N				(N	IM/DI	D/YY	<u>:</u>						1				37	1	U)

client: Everay Kansas lentral
site: TEC Basa (CR

1657-12

Notes

COC Line Item	Matrix	VG9H	реэн	DG9Q	VG9U	Desn	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗГ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	WI																					る									
2		-	\vdash		_								_																		
3		-	\vdash		_																				_						
4																						2									
5																															
6																															
7																															
8	1																														
9	2.1	2																													
10																															
11																															
12																															

Container Codes

		Glass			Plastic		Misc.
OG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	J.,	Wipe/Swab
OG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		HIGHIX
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		311
				BP4S	125mL H2SO4 plastic		
				-		_	

WPDU

16oz unpresserved plstic

Work Order Number:

60423227

nain o	of Cus	stod	y 			····								<u>ļ</u>				إ	25	7	
				into eCO	C.				_	-,		/es	Γ		Jo.		,	/_	Pé		Analytica www.pacelabs.com
order Na					_								3/6/2			Resi	ults l	Requ	ested	Ву:	3/16/2023
		**************	action may a demonstrate the second of the control										R	que	sted A	naly:	sis .	34.35.	eta eta K		
		1638 R Suites Greens	Roseytown Roa 2,3, & 4 sburg, PA 1560	d ~ 01		rosor	wad c	ontain		Radium 226	m 228 + combined	Sheets					30 	56 	89) 26	5
E. 化双环代表示的影響器		9	Lab ID	Matrix	HN03						Radiu	OC 8								L	AB USE ONLY
P\$	3/6/2023 0	01:55	60423227001	Water	2					Х	Х	Х									00 J
PS	3/6/2023 0	02:00	60423227002	Water	2		_	\perp	\perp	X	X	Х		$\perp \parallel$		\perp					00°V
									_	<u> </u>	<u> </u>		_	4		_					
							_	\perp	\bot	 	-						\perp	_	-		
New Strate		rasporta		78.735.6350	8640		<u> </u>	28 48 48	l .	l Mirit			Sec.	· 数数	in die		Com	ments		<u> </u>	
	Date	e/Time	Received E	Зу	69 5427 (O.S.)	272-121-124-12-1		Da	te/Tin	ne		" Annual Printers	*						<u></u>		
	3/4	180	0																		
	<u> </u>																				
				//																	
	· · · · · · · · · · · · · · · · · · ·													-							or N
			•	-					-			y no	t be p)rovi	ided (on th	is C	OC do	ocume	ent.	
	Sample Type PS PS	Sample Collect Type Date/Time PS 3/6/2023 0 Date t °C identiality, location	Samples Sorder Name: TEC BA Subcontrac Pace A 1638 F Suites Greens Phone Sample Collect Type Date/Time PS 3/6/2023 02:00 Date/Time Date/Time Date/Time C Cus Identiality, location/name	Sample Collect Type Date/Time Lab ID PS 3/6/2023 01:55 60423227001 PS 3/6/2023 02:00 60423227002 Date/Time Received E C Custody Seal	Samples Pre-Logged into eCO Storder Name: TEC BASA CCR Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water PS 3/6/2023 02:00 60423227002 Water Date/Time Received By Date/Time Received By C Custody Seal Y or N Identiality, location/name of the sampling site, s	Samples Pre-Logged into eCOC. Sorder Name: TEC BASA CCR Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water 2 PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time Received By If ISOC Identiality, location/name of the sampling site, samp	Samples Pre-Logged into eCOC. Sorder Name: TEC BASA CCR Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Preser Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water 2 PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time Received By Identiality, location/name of the sampling site, sampler's	Samples Pre-Logged into eCOC. Standard Name: TEC BASA CCR Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Preserved Collect Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water 2 PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time Received By Collect Type Date/Time Received By Collect Type Date/Time Received By Date/Time Received By Date/Time Received By Date/Time Received By Collect Type Date/Time Received By Date/Time Received By	Samples Pre-Logged into eCOC. State Of Cert. Ne Corder Name: TEC BASA CCR Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Preserved Contain PS 3/6/2023 01:55 60423227001 Water 2 PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time Received By	Samples Pre-Logged into eCOC. State Of Orig Cert. Needed Owner Rece Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Preserved Containers Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water 2 PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time Pace Custody Seal Y or N Received or identiality, location/name of the sampling site, sampler's name and sign	Samples Pre-Logged into eCOC. State Of Origin: Cert. Needed: Owner Received Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Preserved Containers Sample Type Date/Time Lab ID Matrix PS 3/6/2023 01:55 60423227001 Water 2 X PS 3/6/2023 02:00 60423227002 Water 2 X Date/Time Received By Date/Time Date/Time Received By Date/Time C Custody Seal Y or N Received on Ice identiality, location/name of the sampling site, sampler's name and signature	Samples Pre-Logged into eCOC. State Of Origin: KS Cert. Needed: Owner Received Date Subcontract To	Samples Pre-Logged into eCOC. State Of Origin: KS Cert. Needed: Yes Owner Received Date: Subcontract To	Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Date/Time Received By Date/Time Date/Time Received By Date/Time Date/Time Received By Date/Time Date/Time Received By Date/Time Collect Y or N Received on Ice Y or N Received Improvement of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampling site, sampler's name and signature may not be provided in the page of the sampler's name and signature may not be provided in the page of the sampler's name and signature may not be provided in the page of the sampler's name and signature may not be provided in the page of	Sample Collect Type Date/Time Received By Da	Samples Pre-Logged into eCOC. State Of Origin: KS Cert. Needed: Yes Owner Received Date: 3/6/2023 Subcontract To	Samples Pre-Logged into eCOC. State Of Origin: KS Cert. Needed:	Sample Collect Type Date/Time Lab ID Matrix Sample Collect Type Date/Time Received By Dat	Sample Collect Type Date/Time Lab ID Matrix Sample Collect Type Sign/2023 01:55 60423227002 Water 2 Sign/2023 02:00 60423227002 Water 2 S	Sample Sample Pre-Logged into eCOC. State Of Origin: KS Cert. Needed: Yes No Owner Received Date: 3/6/2023 Results Requested Subcontract To	Sample Collect Type Date/Time Lab ID Matrix PS 3/6/2023 02:00 60423227002 Water 2 Date/Time Received By Date/Time

	DC#_Title: ENV-FRM-G Pittsburgh	אטסנ	-0000	, vu4 _.	-"WO#:	305689	26
	, ittanuigii						
Pace ANALYTICAL SERVICES	Effective Date: 02/03/2023	3			PM: MAR CLIENT: P	Due Dat∈ ACE_60_LEKS	: 03/30/23
Client Name:	Pace. Kansas						
Courier: N.Fed	Ex □ UPS □ USPS □ Client □] Comr	nercia	1	ce 🗌 Other		
Tracking Numbe	er: 1,091 0797 24	06				Examined By	Ja
-	Cooler/Box Present:	s 🗆 No) :	Seals II	ntact: 🖸 Yes 🗆 1	No Labeled By	Da
Thermometer U	•				ie (None	Temped By	na
					tion Factor:	•C Final Tem	p: 🖵 。(
Cooler Tempera Temp should be abo	ture: Observed Temp		·C	CONTCC			
Temp should be abo	Me Heezing to o-c				pH paper Lot#	D.P.D. Residua	l Chlorine Lot
Comments:		Yes	No	NA	1002221		
	Decemb	1			1.		
Chain of Custod		1			2.		
Chain of Custod	y Filled Out: t corrections present on COC	V	. /		Z		
		1	~	-	3.	· · · · · · · · · · · · · · · · · · ·	
Chain of Custod		-	./		4.		
	& Signature on COC:	1	V		5.		Allows
Sample Labels n -Includes da				J			
-includes de Matrix:	ite/time/ib	A	TT	····			
	1 1 - 54	<u>v</u>	/ 	I	6,		
	within Hold Time:	\ <u>\</u>		-	7.		
	e Analysis (<72hr				, , ,	·	
remaining):		 	V		8,	<u> </u>	
	nd Time Requested:	 	\ <u>\\</u>		9.		
Sufficient Volun Correct Contain		 			10.		
-Pace Contain							
		1		 	11.		
Containers Inta		 		ļ . ,	12.		
Orthophosphat		 	-	IV,	13.		····
Hex Cr Aqueous	samples field filtered: s checked for dechlorination	-		 	14:		
	received for dissolved tests:			1	15:	2000	ANIIN .
		+ -		V	16.		
exceptions	hecked for preservation: VOA, coliform, TOC, O&G, Radon, non-aqueous matrix		1		pHZ2		
	neet method preservation		T	T	Initial when	Date/Time of	autor
requireme			<u> </u>		completed	Preservation	
requireme					Preservative		
8260C/D: Head	space in VOA Vials (> 6mm)			V	17.		
	ace in VOA Vials (0mm)			V	18.		
Trip Blank Prese	ent:	+		1/		tody seal present?	
	reened <0.5 mrem/hr.		1		Initial when completed	Date: 3-9-23	Survey Meter SN: 1503

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Pace Analytical www.pacelabs.com

Quality Control Sample Performance Assessment

Test:	Ra-228
Analyst:	JJS1
Date:	3/15/2023

Worklist: 71942 Matrix: WT

 Method Blank Assessment
 MB Sample ID
 2782795

 MB concentration:
 -0.639

 MB 2 Sigma CSU:
 0.418

 MB MDC:
 1.118

 MB Numerical Performance Indicator:
 -3.00

 MB Status vs Numerical Indicator:
 Waming

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	Y
Laboratory destruction of the state of the s	LCS71942	LCSD71942
Count Date:	3/20/2023	3/20/2023
Spike I.D.:	22-040	22-040
Decay Corrected Spike Concentration (pCi/mL):	33.178	33.178
Volume Used (mL):		0.10
Aliquot Volume (L, g, F):	0.804	0.801
Target Conc. (pCi/L, g, F):	4.126	4.144
Uncertainty (Calculated):	0.202	0.203
Result (pCi/L, g, F):	4.512	5.257
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.093	1.255
Numerical Performance Indicator:	0.68	1.72
Percent Recovery:	109.36%	126.86%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:		Pass
Upper % Recovery Limits:		135%
Lower % Recovery Limits:	60%	60%

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RI: Duplicate Numerical Performance Indicator (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD Duplicate Status vs Numerical Indicator Duplicate Status vs RPD	LCSD71942 4.512 1.093 5.257 1.255 NO -0.877 14.82% Pass Pass	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:		
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):		
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):	•	
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:		ĺ
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:		
MSD Numerical Performance Indicator:		
MS Percent Recovery:	i .	
MSD Percent Recovery:	i	
MS Status vs Numerical Indicator:		
MSD Status vs Numerical Indicator: MS Status vs Recovery:		
MS Status vs Recovery	l .	
MS/MSD Upper % Recovery Limits:		1
MS/MSD Lower % Recovery Limits		
MIG/MIGD LOWER 76 RECOVERY ENTINGS	· L	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D.	
Sample MS I.D.	
Sample MSD I.D.	
Sample Matrix Spike Result:	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
Sample Matrix Spike Duplicate Result:	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
MS/ MSD Duplicate Status vs Numerical Indicator:	
MS/ MSD Duplicate Status vs RPD:	
% RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

V

VAL 3/21/23 MC/MCD 2

Face Analytical www.pacalabs.com

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: GDH
Date: 3/14/2023
Batch ID: 71941
Matrix: DW

 Method Blank Assessment
 MB Sample ID
 2782787

 MB concentration:
 0.063

 M/B Counting Uncertainty:
 0.213

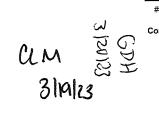
 MB MDC:
 0.461

 MB Numerical Performance Indicator:
 0.58

 MB Status vs Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	ΥΥ
	LCS71941	LCSD71941
Count Date:	3/19/2023	3/19/2023
Spike I.D.:	21-040	21-040
Spike Concentration (pCi/mL):	32.419	32.419
Volume Used (mL):	0.10	0.10
Aliquot Volume (L, g, F):	0.655	0.651
Target Conc. (pCi/L, g, F):	4.952	4.981
Uncertainty (Calculated):	0.233	0.234
Result (pCi/L, g, F):	4.179	5.706
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.972	1.225
Numerical Performance Indicator:	-1.52	1.14
Percent Recovery:	84.39%	114.54%
Status vs Numerical Indicator:	N/A	N/A
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	133%	133%
Lower % Recovery Limits:	73%	73%


Duplicate Sample Assessment	<u> </u>	
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL:	LCSD71941 4.179 0.972 5.706 1.225	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator:	1	4 .4
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	30.31%	
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD:		

Analyst Must Manually	y Enter All Fields Highlighted in \	Yellow.

İ	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
j	Sample Collection Date:	1	l
١	Sample I.D.	\	
١	Sample MS I.D.	,	1
١	Sample MSD I.D.	1	
١	Spike I.D.:	i i	•
١	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	' i	ţ i
١	Spike Volume Used in MS (mL):	Salar et al. 1	
١	Spike Volume Used in MSD (mL):		
١	MS Aliquot (L, g, F):	1	
١	MS Target Conc.(pCi/L, g, F):	1	
١	MSD Aliquot (L, g, F):		
1	MSD Target Conc. (pCi/L, g, F):		1
١	MS Spike Uncertainty (calculated):	1	
1	MSD Spike Uncertainty (calculated):	1	
١	Sample Result:		
١	Sample Result Counting Uncertainty (pCi/L, g, F):		
١	Sample Matrix Spike Result:	1 :	
١	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1	
ì	Sample Matrix Spike Duplicate Result:		
Ì	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
١	MS Numerical Performance Indicator:	1	
١	MSD Numerical Performance Indicator:	•	
}	MS Percent Recovery:	1	
	MSD Percent Recovery:		
1	MS Status vs Numerical Indicator:		
١	MSD Status vs Numerical Indicator:		
ļ	MS Status vs Recovery:	1	
١	MSD Status vs Recovery:		
	MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:		
1	ivio/iviou Lower 76 Recovery Limits:	t .	i .

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample MsD I.D. Sample Matrix Spike Result: Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

ATTACHMENT 2-3 September 2023 Semi-Annual Sampling Event Laboratory Analytical Report

September 15, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR
Pace Project No.: 60436731

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC BASA CCR
Pace Project No.: 60436731

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60436731

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60436731001	MW-7-090523	Water	09/05/23 11:55	09/05/23 16:00
60436731002	TECBASA-DUP-090523	Water	09/05/23 11:55	09/05/23 16:00

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60436731

Lab ID Sample ID		Method	Analysts	Analysts Reported		
60436731001	MW-7-090523	EPA 200.7	JXD	3	PASI-K	
		EPA 6010	JXD	1	PASI-K	
		EPA 200.8	JGP	3	PASI-K	
		SM 2540C	BDH1	1	PASI-K	
		SM 4500-H+B	RKA	1	PASI-K	
		EPA 300.0	CRN2	3	PASI-K	
60436731002	TECBASA-DUP-090523	EPA 200.7	JXD	3	PASI-K	
		EPA 6010	JXD	1	PASI-K	
		EPA 200.8	JGP	3	PASI-K	
		SM 2540C	BDH1	1	PASI-K	
		SM 4500-H+B	RKA	1	PASI-K	
		EPA 300.0	CRN2, MLD	3	PASI-K	

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: September 15, 2023

General Information:

2 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 863731

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60436560004,60436565001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3420036)
 - Calcium
- MS (Lab ID: 3420038)
 - Calcium
- MSD (Lab ID: 3420037)
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: September 15, 2023

General Information:

2 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: September 15, 2023

General Information:

2 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:September 15, 2023

General Information:

2 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:September 15, 2023

General Information:

2 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- MW-7-090523 (Lab ID: 60436731001)
- TECBASA-DUP-090523 (Lab ID: 60436731002)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436731

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: September 15, 2023

General Information:

2 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: TEC BASA CCR

Pace Project No.: 60436731

Date: 09/15/2023 04:30 PM

Sample: MW-7-090523	Lab ID: 604	36731001	Collected: 09/05/2	3 11:55	Received: 09	9/05/23 16:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•		00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical Services - Kansas City							
Barium, Total Recoverable	0.053	mg/L	0.0050	1	09/08/23 12:02	09/11/23 17:16	7440-39-3	
Boron, Total Recoverable	0.59	mg/L	0.10	1	09/08/23 12:02	09/11/23 17:16	7440-42-8	
Calcium, Total Recoverable	101	mg/L	0.20	1	09/08/23 12:02	09/11/23 17:16	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.031	mg/L	0.010	1	09/08/23 12:02	09/11/23 16:48	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Arsenic, Total Recoverable	0.0017	mg/L	0.0010	1	09/08/23 10:30	09/11/23 12:58	7440-38-2	
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	09/08/23 10:30	09/11/23 12:58	7440-48-4	
Molybdenum, Total Recoverable	0.020	mg/L	0.0010	1	09/08/23 10:30	09/11/23 12:58	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	949	mg/L	13.3	1		09/08/23 08:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
• ,	Pace Analytica							
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/07/23 10:42		H6
300.0 IC Anions 28 Days	Analytical Met							
Chloride	147	mg/L	20.0	20		09/08/23 15:06	16887-00-6	
Fluoride	0.32	mg/L	0.20	1		09/08/23 14:26	16984-48-8	
Sulfate	207	mg/L	20.0	20		09/08/23 15:06	14808-79-8	

ANALYTICAL RESULTS

Project: TEC BASA CCR

Pace Project No.: 60436731

Date: 09/15/2023 04:30 PM

Sample: TECBASA-DUP-090523	Lab ID: 604	36731002	Collected: 09/05/2	23 11:55	Received: 09	0/05/23 16:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical Services - Kansas City							
Barium, Total Recoverable	0.051	mg/L	0.0050	1	09/08/23 12:02	09/11/23 17:24	7440-39-3	
Boron, Total Recoverable	0.55	mg/L	0.10	1	09/08/23 12:02	09/11/23 17:24	7440-42-8	
Calcium, Total Recoverable	92.0	mg/L	0.20	1	09/08/23 12:02	09/11/23 17:24	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.030	mg/L	0.010	1	09/08/23 12:02	09/11/23 16:50	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	00.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica							
Arsenic, Total Recoverable	0.0017	mg/L	0.0010	1	09/08/23 10:30	09/11/23 13:01	7440-38-2	
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	09/08/23 10:30	09/11/23 13:01	7440-48-4	
Molybdenum, Total Recoverable	0.019	mg/L	0.0010	1	09/08/23 10:30	09/11/23 13:01	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	963	mg/L	13.3	1		09/08/23 08:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
• •	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/07/23 10:44	ļ	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
•	Pace Analytica							
Chloride	149	mg/L	20.0	20		09/13/23 16:15	16887-00-6	
Fluoride	0.25	mg/L	0.20	1		09/08/23 15:46	16984-48-8	
Sulfate	205	mg/L	20.0	20		09/13/23 16:15	14808-79-8	

Project: TEC BASA CCR

Pace Project No.: 60436731

QC Batch: 863731

QC Batch Method:

Barium

Boron

Calcium

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60436731001, 60436731002

EPA 200.7

METHOD BLANK: 3420034

Date: 09/15/2023 04:30 PM

Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed mg/L <0.0050 0.0050 09/11/23 16:59 mg/L < 0.10 0.10 09/11/23 16:59 mg/L 09/11/23 16:59 < 0.20 0.20

LABORATORY CONTROL SAMPLE: 3420035

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.99	99	85-115	
Boron	mg/L	1	0.97	97	85-115	
Calcium	mg/L	10	10.2	102	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 3420	036		3420037							
			MS	MSD								
		60436560004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	17.1 ug/L	1	1	0.99	1.0	97	101	70-130	4	20	
Boron	mg/L	353 ug/L	1	1	1.3	1.3	92	96	70-130	3	20	
Calcium	mg/L	770000 ug/L	10	10	715	747	-553	-238	70-130	4	20	M1

MATRIX SPIKE SAMPLE:	3420038						
Parameter	Units	60436565001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	mg/L	107 ug/L		1.1	100	70-130	
Boron	mg/L	175 ug/L	1	0.99	82	70-130	
Calcium	mg/L	53000 ug/L	10	68.9	159	70-130 N	И1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC BASA CCR

Pace Project No.: 60436731

QC Batch: 863705 QC Batch Method: EPA 200.8 Analysis Method: EPA 200.8 200.8 MET

Analysis Description: Laboratory:

Pace Analytical Services - Kansas City

60436731001, 60436731002 Associated Lab Samples:

METHOD BLANK: 3419915

Date: 09/15/2023 04:30 PM

Arsenic

Cobalt

Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed mg/L < 0.0010 0.0010 09/11/23 12:29 mg/L < 0.0010 0.0010 09/11/23 12:29 Molybdenum mg/L <0.0010 0.0010 09/11/23 12:29

LABORATORY CONTROL SAMPLE: 3419916

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	0.04	0.040	100	85-115	
Cobalt	mg/L	0.04	0.041	103	85-115	
Molybdenum	mg/L	0.04	0.041	104	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3419	917		3419918							
			MS	MSD								
		60436446007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	0.04	0.04	0.041	0.040	101	99	70-130	2	20	
Cobalt	mg/L	ND	0.04	0.04	0.039	0.038	97	94	70-130	3	20	
Molybdenum	mg/L	1.3 ug/L	0.04	0.04	0.044	0.043	107	105	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC BASA CCR

Pace Project No.: 60436731

Date: 09/15/2023 04:30 PM

QC Batch: 863730 Analysis Method: QC Batch Method: EPA 3010 Analysis Description:

Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

EPA 6010

Associated Lab Samples: 60436731001, 60436731002

METHOD BLANK: 3420030 Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 09/11/23 15:43

LABORATORY CONTROL SAMPLE: 3420031

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium mg/L 1.0 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3420032 3420033

MS MSD

60436407001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result ND 103 20 Lithium mg/L 1.0 1.0 103 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC BASA CCR

Pace Project No.: 60436731

QC Batch: 863483 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436731001, 60436731002

METHOD BLANK: 3419026 Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/08/23 08:50

LABORATORY CONTROL SAMPLE: 3419027

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 989 99 80-120

SAMPLE DUPLICATE: 3419028

60436642003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 240 **Total Dissolved Solids** mg/L 245 2 10

SAMPLE DUPLICATE: 3419029

Date: 09/15/2023 04:30 PM

60436735003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1300 1330 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC BASA CCR

Pace Project No.: 60436731

QC Batch: 863493 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436731001, 60436731002

SAMPLE DUPLICATE: 3419040

Date: 09/15/2023 04:30 PM

60436560003 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.2 pH at 25 Degrees C 7.3 5 H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC BASA CCR

Pace Project No.: 60436731

QC Batch: 863630 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436731001, 60436731002

METHOD BLANK: 3419590 Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/08/23 09:11	
Fluoride	mg/L	<0.20	0.20	09/08/23 09:11	
Sulfate	mg/L	<1.0	1.0	09/08/23 09:11	

METHOD BLANK: 3423290 Matrix: Water

Associated Lab Samples: 60436731001, 60436731002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/13/23 13:22	
Fluoride	mg/L	<0.20	0.20	09/13/23 13:22	
Sulfate	mg/L	<1.0	1.0	09/13/23 13:22	

LABORATORY CONTROL SAMPLE: 3419591

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	10	9.6	96	90-110	
Fluoride	mg/L	5	5.0	101	90-110	
Sulfate	mg/L	10	10	100	90-110	

LABORATORY CONTROL SAMPLE: 3423291

Date: 09/15/2023 04:30 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.6	92	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3419592 3419593

Parameter	Units	60436731001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	147	100	100	245	253	97	106	80-120	3	15	
Fluoride	mg/L	0.32	2.5	2.5	3.1	3.0	111	107	80-120	3	15	
Sulfate	mg/L	207	100	100	307	318	100	111	80-120	3	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR Pace Project No.: 60436731

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/15/2023 04:30 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60436731

Date: 09/15/2023 04:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60436731001	MW-7-090523	EPA 200.7	863731	EPA 200.7	863777
60436731002	TECBASA-DUP-090523	EPA 200.7	863731	EPA 200.7	863777
60436731001	MW-7-090523	EPA 3010	863730	EPA 6010	863779
60436731002	TECBASA-DUP-090523	EPA 3010	863730	EPA 6010	863779
60436731001	MW-7-090523	EPA 200.8	863705	EPA 200.8	863756
60436731002	TECBASA-DUP-090523	EPA 200.8	863705	EPA 200.8	863756
60436731001	MW-7-090523	SM 2540C	863483		
60436731002	TECBASA-DUP-090523	SM 2540C	863483		
60436731001	MW-7-090523	SM 4500-H+B	863493		
60436731002	TECBASA-DUP-090523	SM 4500-H+B	863493		
60436731001	MW-7-090523	EPA 300.0	863630		
60436731002	TECBASA-DUP-090523	EPA 300.0	863630		

Pace

DC#_Title: ENV-FRM-LENE-0009_Sampl

WO#:60436731

	Revision: 2	Effective Date: 01/12/2022	00430731
-	-		

Client Name: Luerqu		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pa	ace Shipping Label Use	d? Yes □ No Ø
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	∕ No □
Packing Material: Bubble Wrap □ Bubble Bags	□ Foam □	None ロ Other ロークレー
Thermometer Used: TJ95 Type	of Ice: (Wet) Blue No	ne
Cooler Temperature (°C): As-read 19,9 Corr. Fac	ctor O'J Correc	ted 14.6 Date and initials of person examining contents: 09-06-20
Temperature should be above freezing to 6°C 15.3		15.0
Chain of Custody present:	ZYes □No □N/A	
Chain of Custody relinquished:	✓Yes □No □N/A	
Samples arrived within holding time:	ZYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes □No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	GYes □No □N/A	
Correct containers used:	Yes Ono On/A	
Pace containers used:	Ayes Ono On/A	
Containers intact:	Áyes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ☑N/A	
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	Yes DNo DN/A	
Samples contain multiple phases? Matrix: WT	□Yes □No □N/A	
Containers requiring pH preservation in compliance?	ŽYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	(2107	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOTE Cyanide water sample checks:	#: 67107	
_ead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ☑N/A	
leadspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No 口/N/A	
Additional labels attached to 5035A / TX1005 vials in the field	j? □Yes □No □N/A	
Client Notification/ Resolution: Copy COC	to Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/	Time:	
Comments/ Resolution:		
Project Manager Review:	Date	Ø

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section A	Section B							6.	-+i																	_					
Required Client Information:	Required Proje								ction oice Ir		nation															P	age:	1	of	1	
Company: EVERGY KANSAS CENTRAL, INC.	Report To: Me	elissa	Michels,	Samanth	a Kaney,			109.0	ention				ts Pa							7											
Address: Jeffrey Energy Center (JEC)	Copy To: Jai	red M	orrison, J	ake Hum	phrey, La	ıra Hines	3	Cor	mpany	y Nan	ne:	EVE	RG	/ KA	NSA	\S C	ENT	RAL	, IN	RE	GUL	ATO	RY	AGE	NCY	,					
818 Kansas Ave, Topeka, KS 66612								-	dress:				ction							T		DES	_	G	_		VATI	ER 🗆	DRINK	NG WA	TER
Email To: <u>skaney@haleyaldrich.com</u>	Purchase Orde	r No.:							ce Quo											1	US	т		- R(-	OTHER		
Phone: 785-575-8113 Fax:	Project Name:	TE	C BASA C	CCR				Pac	erence ce Proje		Alic	e Sp	oiller	913	-563	3-140	03			Si		catio	-			_	-				
Requested Due Date/TAT: 7 day	Project Number	-							nager: ce Profi	ile #:	965	7. 1.	2		-	-	_			┨ ``		TATE	- 1		KS	3					
								_							_		Re	alle.	stad	Ana		s Filt		4 (٧/	NI)	_					
Section D Valid Matrix C	odes 🗦	<u></u>					Т	T	Т	-					┪.	₹T	T	T T	T	T	T T	T	.erec	1	Ť	т					
Required Client Information MATRIX	CODE 0	C=COMP)		COLL	ECTED		1_	1	L		Pres	erva	ative	s		N /A	ΝI	4 N	1 N	N	N					Ш					
WATER	CODE DW WT WW P P G	19	COMP	OSITE	COMPO	SITE	NOF	L																				60	26	73	1
PRODUCT SOIL/SOLID	b valid	(G=GRAB	STA	RT	END/GF	RAB	COLLECT	L			Ш			Н		- 1	ප	1		ĕ						Ш	χĺ		•		
SAMPLE ID OIL WIPE AIR	OL 998) WP AR	(6=0						I SE						Ш	 '	 	ğ ş	<u>}</u>	5	Q S						Ш	ne (
(A-Z, 0-9 / ,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	ot ts	TYPE					TEMP AT				Ш			Ш	П	إيّ		{ £	၂၀	S S						Н	hlori				
	ŏ×							ΙĘ			Н		ြြ	틸		Š				iss						П	ac				
# E E E E E E E E E	MATRIX	SAMPLE					SAMPLE	# OF CONTAINERS		SO	HNO ₃	_ 3	5 S	a	ğ		2	5010Total I ithium	300.0	Total Dissolved Solids						П	Residual Chlorine (Y/N)				
	ž	δ	DATE	TIME	DATE	TIME	δ	#	<u> </u>	F	토	되	Na ₂ S ₂ O ₃	Ĭ	ŏ.	긬	200.7 Total B,Ba,		3 8 8	P	핑	_	4			Ш	S.	Pace	Project	No./ L	ab I.D.
1 MW-7-090523	w	_			09/05/23	11:55		3	3 2		1	4	\perp	Ш	\Box	1	x :	x x	(x	Х	х					Ш					
2 TECBASA-DUP-090523	W	F G		- 00	09/05/23	11:55	-	3	3 2	+	1	+	+	Н	4	1	x :	K X	(x	X,	Х	4	4	_	_	Н	\sqcup				
3		+	-				╁	╀	+	+	Н	+	+	Н	\dashv	ŀ	+	+	+	\vdash	_	+	+	+	\vdash	Н	\dashv				
5		H		ļ			H	⊢	+	H	H	+	+	H	\dashv	ł	+	+	+	\vdash		+	+	+	\vdash	Н	\dashv				_
6		+		-			╁	╁╴	+	+	Н	+	+	H	\dashv	ŀ	+	+	╁	\vdash	\dashv	+	+	+	\vdash	Н	\dashv				
7		1	-				\vdash	╁	┿	╁	Н	+	+	Н	\dashv	ŀ	+	+	╁	\vdash	\dashv	+	+	+	\vdash	H	\dashv				
8		Ħ					\vdash	t	+	+	Н	+	+	Н	\exists	ŀ	+	#	+	\vdash	+	+	+	+	\vdash	Н	\dashv				
9							\vdash	t	_	+	\vdash	+	\top	H	\dashv	t	+	+	+	\vdash	\dashv	+	+	+	\vdash	Н	\dashv				
10								T	╅	\dagger	Н	\dagger	\top	H		ŀ	\top	+	\dagger	\vdash	\exists	Ť	+	1	\vdash	Н					
11	1							T	1		\Box	1		П		I	\top	1	T		Ħ		1		Т	П					
12												T		П		Ì							1	T	\Box						
ADDITIONAL COMMENTS	RE	LINQU	ISHED BY /	AFFILIAT	ION	DATI			TIME				AC	CEP	TED	BY /	AFFIL	.IATIO	NC		D	ATE	I	TIM	E	Г		SAM	LE COND	ITIONS	
		Matt \	/anderPut	ten / SCS		9/5/2	3		16:0	0	ᄩ	Br	صدا	re	4	4	000	۰			9/5	123		600	,	15		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N.	\top	ı
																										-	1.6	Ĭ,	1		1
											<u> </u>												+			-	- 4		-	100	
								F									_		_				+				+			+-	
Po				SAMPLE	R NAME A	ND SIGNA	ATUE	L_				_	_		_	_		_									_	_	Je	+	t
Page 22 of 23					PRINT Nam				411		-D. :				-							-				J. ul uma		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
22 c					SIGNATURI					ande	rrut	ien		12	2		DAT									Į du		Receiv Ice (Cus saled (Y)		ample (Y)
1 23					CICIATORI	L OI SPANIF	-LN	N	100		17	W	The second	W			MM	/DD/\	(Y):			9/5	/23					Œ.	ഗ്		Š

Client:	Everav	Profile #	

Site: TEC BASA CCR Notes_____

COC Line Item		VG9H	Н69О	DG9G	VG9U	UGBU	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	BP3F	BP3S	вРзс	BP3Z	WPDU	ZPLC	Other	
1	WT																		1				T								
2	WY	•																	ī												
3																															
4																															
5																															
6																															
7																															
8																															
9																															
10																															
11																															
12																							: ul								

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	11	Wipe/Swab
DG9H	40mL HCI amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		***
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		
				BP4S	125mL H2SO4 plastic	7	

WPDU

16oz unpresserved plstic

Work Order Number:

60436731

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

September 25, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC BASA CCR

Pace Project No.: 60436734

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665 PM Lab Management

alice Spiller

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC BASA CCR
Pace Project No.: 60436734

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: TEC BASA CCR
Pace Project No.: 60436734

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60436734001	MW-7-090523	Water	09/05/23 11:55	09/05/23 16:00
60436734002	DUP-TECBASA-090523	Water	09/05/23 11:55	09/05/23 16:00

SAMPLE ANALYTE COUNT

Project: TEC BASA CCR
Pace Project No.: 60436734

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60436734001	MW-7-090523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
60436734002	DUP-TECBASA-090523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

(913)599-5665

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436734

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: September 25, 2023

General Information:

2 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

(913)599-5665

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436734

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: September 25, 2023

General Information:

2 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: TEC BASA CCR
Pace Project No.: 60436734

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:September 25, 2023

General Information:

2 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60436734

Sample: MW-7-090523 PWS:	Lab ID: 6043 Site ID:	6734001 Collected: 09/05/23 11:55 Sample Type:	Received:	09/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0609 ± 0.493 (0.967) C:NA T:88%	pCi/L	09/20/23 13:57	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.227 ± 0.294 (0.625) C:82% T:84%	pCi/L	09/21/23 12:21	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.288 ± 0.787 (1.59)	pCi/L	09/22/23 12:38	3 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: TEC BASA CCR
Pace Project No.: 60436734

Sample: DUP-TECBASA-090523 PWS:	Lab ID: 6043 Site ID:	6734002 Collected: 09/05/23 11:55 Sample Type:	Received:	09/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.820 ± 0.695 (1.05) C:NA T:90%	pCi/L	09/20/23 13:57	7 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.642 ± 0.419 (0.801) C:78% T:81%	pCi/L	09/21/23 12:21	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.46 ± 1.11 (1.85)	pCi/L	09/22/23 12:38	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC BASA CCR

Pace Project No.: 60436734

QC Batch: 614478 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60436734001, 60436734002

METHOD BLANK: 2991786 Matrix: Water

Associated Lab Samples: 60436734001, 60436734002

ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-2260.0546 \pm 0.249 (0.148) C:NA T:87%pCi/L09/20/23 14:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC BASA CCR

Pace Project No.: 60436734

QC Batch: 614479 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60436734001, 60436734002

METHOD BLANK: 2991787 Matrix: Water

Associated Lab Samples: 60436734001, 60436734002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0871 ± 0.243 (0.548) C:82% T:89%
 pCi/L
 09/21/23 12:17

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC BASA CCR Pace Project No.: 60436734

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 09/25/2023 03:07 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC BASA CCR
Pace Project No.: 60436734

Date: 09/25/2023 03:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60436734001	MW-7-090523	EPA 903.1	614478		
60436734002	DUP-TECBASA-090523	EPA 903.1	614478		
60436734001	MW-7-090523	EPA 904.0	614479		
60436734002	DUP-TECBASA-090523	EPA 904.0	614479		
60436734001	MW-7-090523	Total Radium Calculation	617483		
60436734002	DUP-TECBASA-090523	Total Radium Calculation	617483		

DC#_Title: ENV-FRM-LENE-0009_Sample

W0#:60436734

Revision: 2 Effective Date: 01/12/202 Client Name: 1ergc FedEx □ UPS □ VIA 🗆 Clay □ PEX 🗆 ECI 🗆 Xroads □ Client □ Courier: Pace □ No 🗹 Tracking #: Pace Shipping Label Used? Yes □ Seals intact: Yes Custody Seal on Cooler/Box Present: Yes 🗹 No □ Other Dog C Packing Material: Bubble Wrap □ Bubble Bags □ Foam □ None □ T298 Thermometer Used: Type of Ice: Wet Blue None Date and initials of person examining contents: () 9-06-10 Cooler Temperature (°C): As-read 24.9 Corr. Factor - 6.3 Corrected 24.6 Temperature should be above freezing to 6°C ☑Yes ☐No Chain of Custody present: □N/A Chain of Custody relinquished: □No □N/A Samples arrived within holding time: **Z**Yes □No □N/A □N/A Short Hold Time analyses (<72hr): Rush Turn Around Time requested: □Yes **Z**No □N/A Yes No □N/A Sufficient volume: Correct containers used: ✓Yes □No □N/A Pace containers used: ✓Yes □No □N/A ŹYes □No Containers intact: □N/A Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? □Yes □No Filtered volume received for dissolved tests? □M/A ☐Yes ☐No Sample labels match COC: Date / time / ID / analyses ØYes □No □N/A Samples contain multiple phases? □Yes □No □n/a Matrix: Containers requiring pH preservation in compliance? List sample IDs, volumes, lot #'s of preservative and the □Yes □No ☑N/A date/time added. (HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks: Lead acetate strip turns dark? (Record only) □Yes □No Potassium iodide test strip turns blue/purple? (Preserve) □Yes □No □Yes □No Trip Blank present: Headspace in VOA vials (>6mm): ☐Yes ☐No Samples from USDA Regulated Area: State: ☐Yes ☐No Client Notification/ Resolution: Copy COC to Client? Field Data Required? Y / N Person Contacted: Date/Time: Comments/ Resolution:

Date:

Project Manager Review:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section	n A	Section B									_														_				
Require	d Client Information:	Required Pr	oject In	ormation:						tion		ition:														Page	: 1	of	1
Compan		Report To: N	Meliss	Michels,	Samanth	a Kaney,			Atter	ntion:		Acco	unts	Pay	able					\neg									
Address	Jeffrey Energy Center (JEC)	Copy To:	Jared I	/lorrison, .	Jake Hum	iphrey, La	uга Hine	3	Com	pany	Name	e: E/	/ER	GY I	KAN	SAS	CE	NTR	AL,	INCR	EGU	LATO	RY	AGEN	ICY				
	818 Kansas Ave, Topeka, KS 66612								Addr	ress:		See S								-	_	PDES				O WA	TER [DRINKII	NG WATER
Email To	skaney@haleyaldrich.com	Purchase Or	der No.							Quote	9									-		ST				J, .		OTHER	NO WATER
Phone:	785-575-8113 Fax	Project Name	e: TE	C BASA	CCR			_	Pace	rence: Projec	ct	Alice	Spill	er 9	13-5	63-1	403			-	_	ocatio		- 110	101	-	<i>''''</i>		
Request	ted Due Date/TAT: 7 day	Project Numb	ber:						Mana Pace			9657,		_	-	_				-1					KS				
								-	_	-	-	-				_	_	2000				STATE				9///			
	Section D Valid Matrix	Codes	2 5	1				Г		ा		-			-	╆				eu Ai	lalys	is Filt	erec	1 (1/1)	,	-///			
	Required Client Information MATRIX	CODE	codes to left)		COLL	ECTED			l	L	F	rese	vati	ves		Z >	N	N	N										
	DRINKING WATER WATER WASTE WATER	WT WW	(see valid codes to left)	COME	POSITE	001100	0.75	COLLECTION	ı							Г	Г	П	П		Т			П	П	Т			11-4
	PRODUCT SOIL/SOLID	P SL	valid	STA		COMPO END/GI	RAB	E	ı				Н			ı	ı									Ę	60	426	724
	SAMPLE ID OIL WIPE		(see valid		1			Į S	SS.				Н			#	1									Residual Chlorine (Y/N)			
	(A-Z, 0-9 / ,-) AIR OTHER	AR OT	шІ					P AT	# OF CONTAINERS	٦			Н			Test	١,,	_	ᄝ							įέ	1		
	Sample IDs MUST BE UNIQUE TISSUE	TS	8 불					EN	ΙĚ	SZ-			Н	_{го} .	_	Sis	8	22	[륜							ည်	1		
# ≥			MATRIX CODE					SAMPLE TEMP	l ñ	resi	اقِ	_انّ	밁	Na ₂ S ₂ O ₃	e la	[Ē	Radium 226	Radium 228	Ra combined							idua	1		
ITEM			NAS NAS	DATE	TIME	DATE	TIME	SAN	0	S	Y	HNO ₃	NaOH	ga :	Methanol	Analysis	Rad	Rad	lag Ba							Res	Pac	Project	No./ Lab I.D.
1	MW-7-090523		WT G			09/05/23	11:55		2			2				Т	х	×	×							Τ			
2	DUP-TECBASA-090523	\	WT G	æ		09/05/23	11:55		2			2					×	х	x										
3																													
4			_							Ш			Ш			1	L												
5									_	\perp			Ш			1	L												
6			_	-	-			<u> </u>	_	\perp	H	+	Н	4	4	1	L			4	_	\vdash	\perp	\perp		\perp			
7			-	-	-				_	\vdash	\vdash	+	Н	4		1	L			4		\perp	\perp		1	\perp			
8		-	+	+	-				H	+	H	+	Н	-	+	-	H	\vdash	Н	-	+-	\vdash	+	+	-	╀			
9			+	-				\vdash	⊢	+	\dashv	+	Н	-	+	1	H	H	H	-	+-	\vdash	+	+	+	+	-		
11		-	\dashv	1					-	+	H	+	Н	\dashv	+	1	H	\vdash		-	-	\vdash	+	+	+	╁	-		
12			=	1					H	+	\vdash	╁	Н	\dashv	+	1	H	\vdash	Н	+	+	\vdash	┿	+	+	╁	_		
	ADDITIONAL COMMENTS	F	RELINQ	JISHED BY	/ AFFILIAT	ION	DATE	_		TIME	+		ш	ACC	EPTE	D BY	/ AF	FILIA	TION		+-	DATE	╅	TIME		_	SAM	PLE CONDI	TIONS
			Mail	Vondo-Du	4 1000		0/5/0	_		10.00	┪	EP		. \	٠ . ل	1	10		_		al.	slaz	10	600		4.6	المعاولة		Ι.
			ividli	VanderPut	LEII / 303		9/5/2	J		16:00	+	C 1:	,, 0	· レ \	<u> </u>	7	110		-	_	10	3 10/	+	40-	100	1.0	7	4	1
									-		+			_							+-		+		+		7		
		-							_		+			_							-		+		-				
D.			_		SAMPLE	R NAME A	ND SIGN	TUP	_							_			_				_		-		- -		75
Page 15 of											-		_	-										-	-	Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
15 0						PRINT Nam				t Var	nder	Putter	,	-	0	0	D	ATE :	Signe	ed			_		-	emp	eceiv	Cust aled (Y/I	mple: (Y/!
of 20						SIGNATURI	_ OI SAWP	LEK:	1	100		78	1	P	4	Be			D/YY			9/5	/23				_ <u>~</u>	Š	Sa

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section	n A	Section B									_														_				
Require	d Client Information:	Required Pr	oject In	ormation:						tion		ition:														Page	: 1	of	1
Compan		Report To: N	Meliss	Michels,	Samanth	a Kaney,			Atter	ntion:		Acco	unts	Pay	able					\neg									
Address	Jeffrey Energy Center (JEC)	Copy To:	Jared I	/lorrison, .	Jake Hum	iphrey, La	uга Hine	3	Com	pany	Name	e: E/	/ER	GY I	KAN	SAS	CE	NTR	AL,	INGR	EGU	LATO	RY	AGEN	ICY				
	818 Kansas Ave, Topeka, KS 66612								Addr	ress:		See S								-	_	PDES				O WA	TER [DRINKII	NG WATER
Email To	skaney@haleyaldrich.com	Purchase Or	der No.							Quote	9									-		ST				J, .		OTHER	NO WATER
Phone:	785-575-8113 Fax	Project Name	e: TE	C BASA	CCR			_	Pace	rence: Projec	ct	Alice	Spill	er 9	13-5	63-1	403			-	_	ocatio		- 110	101	-	<i>''''</i>		
Request	ted Due Date/TAT: 7 day	Project Numb	ber:						Mana Pace			9657,		_	-	_				-1					KS				
								-	_	-	-	-				_	_	2000				STATE				9///			
	Section D Valid Matrix	Codes	2 5	1				Г		ा		-			-	╆				eu Ai	lalys	is Filt	erec	1 (1/1)	,	-///			
	Required Client Information MATRIX	CODE	codes to left)		COLL	ECTED			l	L	F	rese	vati	ves		Z >	N	N	N										
	DRINKING WATER WATER WASTE WATER	WT WW	(see valid codes to left)	COME	POSITE	001100	0.75	COLLECTION	ı							Г	Г	П	П		Т			П	П	Т			11-4
	PRODUCT SOIL/SOLID	P SL	valid	STA		COMPO END/GI	RAB	E	ı				Ш			ı	ı									Ę	60	426	724
	SAMPLE ID OIL WIPE		(see valid		1			Į S	SS.				Н			#	1									Residual Chlorine (Y/N)			
	(A-Z, 0-9 / ,-) AIR OTHER	AR OT	шІ					P AT	# OF CONTAINERS	٦			Н			Test	١,,	_	ᄝ							įέ	1		
	Sample IDs MUST BE UNIQUE TISSUE	TS	8 불					EN	ΙĚ	SZ-			Н	_{го} .	_	Sis	8	22	[륜							ည်	1		
# ≥			MATRIX CODE					SAMPLE TEMP	l ñ	resi	اقِ	_انّ	밁	Na ₂ S ₂ O ₃	e la	[Ē	Radium 226	Radium 228	Ra combined							idua	1		
ITEM			NAS NAS	DATE	TIME	DATE	TIME	SAN	0	5	Y	HNO ₃	NaOH	ga :	Methanol	Analysis	Rad	Rad	lag Ba							Res	Pac	Project	No./ Lab I.D.
1	MW-7-090523		WT G			09/05/23	11:55		2			2				Т	х	х	×							T			
2	DUP-TECBASA-090523	\	WT G		*	09/05/23	11:55		2			2					×	х	x										
3																													
4			_							Ш			Ш			1	L												
5			_						_	\perp			Ш			1	L												
6			_	-	-			<u> </u>	_	\perp	H	+	Н	4	4	1	L			4	_	\vdash	\perp	\perp		\perp			
7			-	-	-				_	\vdash	\vdash	+	Н	4		1	L			4		\perp	\perp		1	\perp			
8		-	+	+	-				H	+	H	+	Н	-	+	-	H	\vdash	Н	-	+-	\vdash	+	+	-	╀			
9			+	-				\vdash	⊢	+	\dashv	+	Н	-	+	1	H	H	H	-	+-	\vdash	+	+	+	+	-		
11		-	\dashv	1					-	+	H	+	Н	\dashv	+	1	H	\vdash		-	-	\vdash	+	+	+	╁	-		
12			=	1					H	+	\vdash	╁	Н	\dashv	+	1	H	\vdash	Н	+	+	\vdash	┿	+	+	╁	-		
	ADDITIONAL COMMENTS	F	RELINQ	JISHED BY	/ AFFILIAT	ION	DATE	_		TIME	+		ш	ACC	EPTE	D BY	/ AF	FILIA	TION		+-	DATE	╅	TIME		_	SAM	PLE CONDI	TIONS
			Mail	Vondo-Du	4 1000		0/5/0	_		10.00	┪	EP		. \	٠ . ل	1	10		_		al.	slaz	10	600		4.6	المعاولة		Ι.
			ividli	VanderPut	LEII / 303		9/5/2	J		16:00	+	C 1:	,, 0	· レ \	<u> </u>	7	110		-	_	10	3 10/	+	40-	100	1.0	7	4	1
									-		+			_							+-		+		+		7		
		-							_		+			_							-		+		-				
D.			_		SAMPLE	R NAME A	ND SIGN	TUP	_							_			_				_		-		- -		75
Page 15 of											-		_	-										-	-	Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
15 0						PRINT Nam				t Var	nder	Putter	,	-	0	0	D	ATE :	Signe	ed			_		-	emp	eceiv	Cust aled (Y/I	mple: (Y/!
of 20						SIGNATURI	_ OI SAWP	LEK:	1	100		78	1	P	4	Be			D/YY			9/5	/23				_ <u>~</u>	Š	Sa

Client:	<u></u>

Evergy Profile # Use Line 7

TEC BASA CCR Notes all codes in Line

AG3S

AG2U

AG3U

AG4U

AG5U

250mL H2SO4 amber glass

500mL unpres amber glass

250mL unpres amber glass

125mL unpres amber glass

100mL unpres amber glass

	/III																				F -										T
COC Line Item		VG9H	DG9H	DG90	VG9U	UGBU	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	Tu																					2							14		
2	が																					a									
3																															
4																															
5																															
6																															
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

		Glass	(41)		Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic		Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz ciear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	c	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
/G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
/G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		
G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix

BP3F 250mL HNO3 plastic - field filtered WT Water BP3N 250mL HNO3 plastic SL Solid BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid BP3S 250mL H2SO4 plastic OL OIL BP3Z WP 250mL NaOH, Zn Acetate Wipe BP4U 125mL unpreserved plastic DW Drinking Water BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

BG1U

BG3H

BG3U

WGDU

G0436734

1liter unpres glass

16oz clear soil jar

250mL HCL Clear glass

250mL Unpres Clear glass

WPDU

Internal Transfer C	hain (of Custoc	ly —												AND DESCRIPTION OF THE PERSON			
		Sample	s Pre-Logged	into eCC	OC.		State Cert.		_	n: K	S Yes		No.		1	_	P	ace
	korder N	lame: TEC B	ASA CCR				Owne	er Re	ceiv	ed D	ate:	9/5/202	3	Resu	lts Re	queste	d By	: 10/11/2023
Report To		Subcontra	ct To			yayan.		iniseres.	Dageth A	150050		Reque	sted	Analys	S	7.7.8.7.8.5.5.1.4.5.2.1 7.7.7.7.5.5.1.4.5.2.1	ing gardening:	
Alice Spiller Pace Analytical Kansas 9608 Loiret Blvd. Lenexa, KS 66219 Phone (913)599-5665		1638 Suites Greer	Analytical Pittst Roseytown Roa 3 2,3, & 4 asburg, PA 156 e (724)850-560	ad	P	reserve	ed Con	tainer		OC Sheets	Kadium 226 Im 228, plus combined							
Item Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03				Ocean Hander Con Valencia of Control		Radium			***************************************				LAB USE ONLY
1 MW-7-090523	PS	9/5/2023 11:55	60436734001	Water	2				adory.	X :	x x		1				1	90/
2 DUP-TECBASA-090523	PS	9/5/2023 11:55	60436734002	Water	2				Helindavasa	Χ .	x x							00V
3			·															
4																		
5	<u> </u>		<u> </u>															
Transfers Released By 1 2 3	2	Date/Time						4/7/		R)					Comme			
Cooler Temperature on Receip	t	°C Cus	stody Seal	Y or 🔇	<u> </u>		Rece	ived	on l	ce	Y or	• 67		5	}ampl	es Inta	ict 🕜	or N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	CLM
Date:	9/12/2023
Batch ID:	75252
Matrix:	DW

Method Blank Assessment	
MB Sample ID	2991786
MB concentration:	0.055
M/B Counting Uncertainty:	0.107
MB MDC:	0.148
MB Numerical Performance Indicator:	1.00
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
•	LCS75252	LCSD75252
Count Date:	9/20/2023	
Spike I.D.:	23-013	
Spike Concentration (pCi/mL):	32.282	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.652	
Target Conc. (pCi/L, g, F):	4.951	
Uncertainty (Calculated):	0.233	
Result (pCi/L, g, F):	5.503	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.112	
Numerical Performance Indicator:	0.95	
Percent Recovery:	111.14%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	133%	
Lower % Recovery Limits:	73%	1

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	8/30/2023	
Sample I.D.	30619845001	
Sample MS I.D.	30619845001MS	
Sample MSD I.D.		
Spike I.D.:	23-013	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):	i .	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):	i .	
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		i
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:	1	
MSD Numerical Performance Indicator:	1	
MS Percent Recovery:		
MSD Percent Recovery: MS Status vs Numerical Indicator:	1	
MSD Status vs Numerical Indicator:	1	
MS Status vs Recovery:		
MSD Status vs Recovery:	1	
MS/MSD Upper % Recovery Limits:		
MS/MSD Lower % Recovery Limits:		

Duplicate Sample Assessment		
Sample I.D.:		Enter Duplicate
Duplicate Sample I.D.	l .	
Sample Result (pCi/L, g, F):		other than LCS/LCSD in
Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):		the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):		the space below.
Are sample and/or duplicate results below RL?		
Duplicate Numerical Performance Indicator:	0.746	30619869001
Duplicate RPD:	200.00%	30619869001DUP
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:		ł
% RPD Limit:	32%	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Betch must be re-prepped due to unacceptable precision. NA results a mode of all alexanders.

Ou alazzas

Ra-226 NELAC QC Printed: 9/20/2023 15:27

Quality Control Sample Performance Assessment

Test: Ra-228

Analyst: VAL
Date: 9/14/2023
Worklist: 75253
Matrix: WT

Method Blank Assessment

 MB Sample ID
 2991787

 MB concentration:
 0.087

 M/B 2 Sigma CSU:
 0.243

 MB MDC:
 0.548

 MB Numerical Performance Indicator:
 0.70

 MB Status vs Numerical Indicator:
 Pass

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	l N
Laboratory Control Sample Assessment		L
	LCS75253	LCSD75253
Count Date:	9/21/2023	
Spike I.D.:	23-043	
Decay Corrected Spike Concentration (pCi/mL):	39.735	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.817	
Target Conc. (pCi/L, g, F):	4.866	
Uncertainty (Calculated):	0.238	
Result (pCi/L, g, F):	3.874	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.881	
Numerical Performance Indicator:	-2.13	
Percent Recovery:	79.61%	
Status vs Numerical Indicator:	N/A	l
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	60%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D. Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):	30619926001DUP 0.273 0.297 0.394	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?		
Duplicate Numerical Performance Indicator: Duplicate RPD:		30619926001 30619926001DUP
Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit:	Fail***	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	8/29/2023	
Sample I.D.	30619907001	
Sample MS I.D.	30619907001MS	
Sample MSD I.D.		
Spike I.D.:	23-043	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	40.037	
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):	0.808	
MS Target Conc.(pCi/L, g, F):	9.909	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):	0.486	
MSD Spike Uncertainty (calculated):		
Sample Result:	0.380	
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.304	
Sample Matrix Spike Result:	7.882	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.590	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:	-2.791	
MSD Numerical Performance Indicator:		
MS Percent Recovery:	75.71%	
MSD Percent Recovery:	,	
MS Status vs Numerical Indicator:	Waming	
MSD Status vs Numerical Indicator:	_	
MS Status vs Recovery:	Pass	
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:	135%	
MS/MSD Lower % Recovery Limits:	60%	

-	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D. Sample MS I.D. Sample MS I.D. Sample MSD I.D. Sample MSD I.D. Sample MSD I.D. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Moreover Result 2 Sigma CSU (pCi/L, g, F): Moreover Result 2 Sigma CSU (pCi/L, g, F): Moreover Result 2 Sigma CSU (pCi/L, g, F): MS/ MSD Duplicate Status vs RVImerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

VAL 9/22/23

Ra-228 NELAC DW2

Printed: 9/22/2023 8:50 AM

Client:	<u></u>

Evergy Profile # Use Line 7

TEC BASA CCR Notes all codes in Line

AG3S

AG2U

AG3U

AG4U

AG5U

250mL H2SO4 amber glass

500mL unpres amber glass

250mL unpres amber glass

125mL unpres amber glass

100mL unpres amber glass

	/III																				_										T
COC Line Item		VG9H	DG9H	DG90	VG9U	UGBU	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	Tu																					2							14		
2	が																					a									
3																															
4																															
5																															
6																															
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

		Glass	(41)		Plastic		Misc.	
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic		Wipe/Swab	
DG9H	40mL HCl amber voa vial	WGFU	4oz ciear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate	
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag	
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter	
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	c	Air Cassettes	
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit	
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can	
/G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic			
/G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic			
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate			
G1S 1liter H2SO4 clear glass AG		AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic	Matrix		

BP3F 250mL HNO3 plastic - field filtered WT Water BP3N 250mL HNO3 plastic SL Solid BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid BP3S 250mL H2SO4 plastic OL OIL BP3Z WP 250mL NaOH, Zn Acetate Wipe BP4U 125mL unpreserved plastic DW Drinking Water BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

BG1U

BG3H

BG3U

WGDU

G0436734

1liter unpres glass

16oz clear soil jar

250mL HCL Clear glass

250mL Unpres Clear glass

WPDU

Internal Transfer C	hain (of Custoc	ly —												AND DESCRIPTION OF THE PERSON			
		Sample	s Pre-Logged	into eCC	OC.		State Cert.		_	n: K	S Yes		No.		1	_	P	ace
	korder N	lame: TEC B	ASA CCR				Owne	er Re	ceiv	ed D	ate:	9/5/202	3	Resu	lts Re	queste	d By	: 10/11/2023
Report To		Subcontra	ct To			yayan.		iniseres.	Dageth A	150050		Reque	sted	Analys	S	7.7.8.7.8.5.5.1.4.5.2.1 7.7.7.7.5.5.1.4.5.2.1	ing gardening:	
Alice Spiller Pace Analytical Kansas 9608 Loiret Blvd. Lenexa, KS 66219 Phone (913)599-5665		1638 Suites Greer	Analytical Pittst Roseytown Roa 3 2,3, & 4 asburg, PA 156 e (724)850-560	ad	P	reserve	ed Con	tainer		OC Sheets	Kadium 226 Im 228, plus combined							
Item Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03				Ocean Hander Con Valencia of Control		Radium			***************************************				LAB USE ONLY
1 MW-7-090523	PS	9/5/2023 11:55	60436734001	Water	2				adory.	X :	x x		1				1	90/
2 DUP-TECBASA-090523	PS	9/5/2023 11:55	60436734002	Water	2				Helindavasa	Χ .	x x							00V
3			·															
4																		
5	<u> </u>		<u> </u>															
Transfers Released By 1 2 3	2	Date/Time						4/7/		R)					Comme			
Cooler Temperature on Receip	t	°C Cus	stody Seal	Y or 🔇	<u> </u>		Rece	ived	on l	ce	Y or	• 67		5	}ampl	es Inta	ict 🕜	or N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

DC#_Titl Pittsburg		GBUI	₹-008	38 v0			n Upon Receipt- 3061977	7
Pace Effective D	ate: 07/06/2023						Due Date:	09/28/23
HARYPICAL SARVICES;					PM: 1	IHK IF BI	ACE_60_LEKS	
Client Name: Page	Lenexo				CETE	u: r	102_07	
Courier: Defect Fed Ex UPS Tracking Number:	USPS Client	l Com	merci	al 🗆 F	ace 🗌 Otner _		Initial /	
Custody Seal on Cooler/Box Thermometer Used:	Present: 🗌 Ye				Intact: 🗌 Ye	s 🖢 No	Labeled By: Temped By:	17123
Cooler Temperature: Obse Temp should be above freezing to 6			۰C	Corre	ction Factor:		•C Final Temp:	°C
Comments:		Yes	No	NA	pH paper Lot#		D.P.D. Residual Chlor	ine Lot #
		J yes	INO	INA	10000831			_
Chain of Custody Present		7	-	-	1.			
Chain of Custody Filled Out:	present on COC		7	├	2.			
-Were client corrections	·		- 4	 		,	<u> </u>	
Chain of Custody Relinquishe Sampler Name & Signature o	· · · · · · · · · · · · · · · · · · ·		7		3. <u> </u>	:		
Sample Labels match COC:	ir coc.		-	ļ	5.			
-Includes date/time/ID			L	<u>.</u>	J.			·
Matrix:		V	1					
Samples Arrived within Hold	Timor	J	•		6.			
Short Hold Time Analysis (<7				-	7.		,	
remaining):	2111		7		/.			
Rush Turn Around Time Requ	iested:		J		8,			
Sufficient Volume:	acoteur.	J			9.			
Correct Containers Used:		$\overline{1}$			10.			
-Pace Containers Used	İ	Ţ						
Containers Intact:		<u> </u>			11.			
Orthophosphate field filtered	:			3	12.			
Hex Cr Aqueous samples field				7	13,			
Organic Samples checked for				7	14:			
Filtered valume received for a				7	15:			
All containers checked for pro	eservation:	J			16.	_		
exceptions: VOA, coliform Phenolics, Radon, non-aq					PHIL		***************************************	
All containers meet method p	oreservation	7			Initial when tompleted		Date/Time of Preservation	- 4
requirements:	L.	I	,,, <u>,,,,</u> ,_		Lot# of added		, , esor tupor	
8260C/D: Headspace in VOA \	/ials (> 6mm)			1	Preservative 17.			
624.1: Headspace in VOA Vial				١	18.			
Trip Blank Present:				3	*	ustody	seal present? YES or N	10
Rad Samples Screened <0.5 m	rem/hr.				Initial when	Date:	C/7/77 Survey Me	
Comments:					completed V		71 T 65 SN: 13	٥
					<u> </u>			

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-226
Analyst:	CLM
Date:	9/12/2023
Batch ID:	75252
Matrix:	DW

Method Blank Assessment	
MB Sample ID	2991786
MB concentration:	0.055
M/B Counting Uncertainty:	0.107
MB MDC:	0.148
MB Numerical Performance Indicator:	1.00
MB Status vs Numerical Indicator:	N/A
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
•	LCS75252	LCSD75252
Count Date:	9/20/2023	
Spike I.D.:	23-013	
Spike Concentration (pCi/mL):	32.282	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.652	
Target Conc. (pCi/L, g, F):	4.951	
Uncertainty (Calculated):	0.233	
Result (pCi/L, g, F):	5.503	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.112	
Numerical Performance Indicator:	0.95	
Percent Recovery:	111.14%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	133%	
Lower % Recovery Limits:	73%	1

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	8/30/2023	
Sample I.D.	30619845001	
Sample MS I.D.	30619845001MS	
Sample MSD I.D.		
Spike I.D.:	23-013	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):		
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):	li .	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):		
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:	1	
MSD Numerical Performance Indicator:	1	
MS Percent Recovery:		
MSD Percent Recovery: MS Status vs Numerical Indicator:	1	
MSD Status vs Numerical Indicator:	1	
MS Status vs Recovery:		
MSD Status vs Recovery:	1	
MS/MSD Upper % Recovery Limits:	l .	
MS/MSD Lower % Recovery Limits:	1	

Duplicate Sample Assessment		
Sample I.D.:		Enter Duplicate
Duplicate Sample I.D.	l .	
Sample Result (pCi/L, g, F):		other than LCS/LCSD in
Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F):		the space below.
Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):		the space below.
Are sample and/or duplicate results below RL?		
Duplicate Numerical Performance Indicator:	0.746	30619869001
Duplicate RPD:	200.00%	30619869001DUP
Duplicate Status vs Numerical Indicator:	N/A	
Duplicate Status vs RPD:		ł
% RPD Limit:	32%	1

Matrix Spike/Matrix Spike Duplicate Sample Assessment	
Sample I.D. Sample MS I.D. Sample MSD I.D. Sample Matrix Spike Result:	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F): Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): Duplicate Numerical Performance Indicator:	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: % RPD Limit:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Betch must be re-prepped due to unacceptable precision. NA results a mode of all alexanders.

Ou alazzas

Ra-226 NELAC QC Printed: 9/20/2023 15:27

Quality Control Sample Performance Assessment

Test: Ra-228

Analyst: VAL Date: 9/14/2023 Worklist: 75253

Worklist: 75253 Matrix: WT

Method Blank Assessment

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS75253	LCSD75253
Count Date:	9/21/2023	
Spike I.D.:	23-043	
Decay Corrected Spike Concentration (pCi/mL):	39.735	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.817	
Target Conc. (pCi/L, g, F):	4.866	
Uncertainty (Calculated):	0.238	
Result (pCi/L, g, F):	3.874	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.881	
Numerical Performance Indicator:	-2.13	
Percent Recovery:	79.61%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	30619926001DUP 0.273 0.297 0.394	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:		30619926001
Duplicate RPD:	36.14%	30619926001DUF
Duplicate Status vs Numerical Indicator:	Pass	
Duplicate Status vs RPD:	Fail***	
% RPD Limit:	36%	

Upper % Recovery Limits:

Lower % Recovery Limits:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	8/29/2023	
Sample I.D.	30619907001	
Sample MS I.D.	30619907001MS	
Sample MSD I.D.		
Spike I.D.:	23-043	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	40.037	
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):	0.808	
MS Target Conc.(pCi/L, g, F):	9.909	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		
MS Spike Uncertainty (calculated):	0.486	
MSD Spike Uncertainty (calculated):		
Sample Result;	0.380	
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.304	
Sample Matrix Spike Result:	7.882	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.590	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:	-2.791	
MSD Numerical Performance Indicator:		
MS Percent Recovery:	75.71%	
MSD Percent Recovery:		
MS Status vs Numerical Indicator:	Waming	
MSD Status vs Numerical Indicator:		
MS Status vs Recovery:	Pass	
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:	135%	İ
MS/MSD Lower % Recovery Limits:	60%	

	Matrix Spike/Matrix Spike Duplicate Sample Assessment	
	Sample I.D.	
	Sample MS I.D.	
ı	Sample MSD I.D.	
ı	Sample Matrix Spike Result:	
l	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	
ı	Sample Matrix Spike Duplicate Result:	
ı	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	
ı	Duplicate Numerical Performance Indicator:	
•	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	
	MS/ MSD Duplicate Status vs Numerical Indicator:	
	MS/ MSD Duplicate Status vs RPD:	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments

Ra-228 NELAC DW2 Printed: 9/22/2023 8:50 AM

135%

60%