

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT 322 LANDFILL TECUMSEH ENERGY CENTER TECUMSEH, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-041 January 2024

Table of Contents

			Page
1.	Intro	oduction	1
	1.1	40 CFR § 257.90(e)(6) SUMMARY	1
		1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1
		1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1
		1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	1
		1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2
		1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy	3
		1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3
2.	40 C	FR § 257.90 Applicability	4
	2.1	40 CFR § 257.90(a)	4
	2.2	40 CFR § 257.90(e) – SUMMARY	4
		2.2.1 Status of the Groundwater Monitoring Program	4
		2.2.2 Key Actions Completed	4
		2.2.3 Problems Encountered	5
		2.2.4 Actions to Resolve Problems	5
		2.2.5 Project Key Activities for Upcoming Year	5
	2.3	40 CFR § 257.90(e) – INFORMATION	5
		2.3.1 40 CFR § 257.90(e)(1)	5
		2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes	6
		2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events	6
		2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	6
		2.3.5 40 CFR § 257.90(e)(5) – Other Requirements	6

Revision No.	Date	Notes

i

List of Tables

Table No.	Title
1	Summary of Analytical Results – 2023 Assessment Monitoring
II	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – September 2022 Sampling Events
III	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – March 2023 Sampling Events

List of Figures

Figure No.	Title
1	322 Landfill Monitoring Well Location Map
2	322 Landfill Groundwater Potentiometric Elevation Contour Map – March 6, 2023
3	322 Landfill Groundwater Potentiometric Elevation Contour Map – June 5, 2023
4	322 Landfill Groundwater Potentiometric Elevation Contour Map – September 5, 2023

List of Attachments

Attachment 1 – Statistical Analyses

1-1	September 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation
1-2	March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

2-1	March 2023 Semi-Annual Sampling Event Laboratory Analytical Report
2-2	June 2023 Annual Assessment Sampling Event Laboratory Analytical Report
2-3	September 2023 Semi-Annual Sampling Event Laboratory Analytical Report

2023 Annual Groundwater Monitoring and Corrective Action Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Tecumseh Energy Center (TEC) 322 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2023) and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2023 Annual Groundwater Monitoring and Corrective Action Report for the TEC 322 Landfill is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. 881

Title: Principal Consultant

Company: Haley & Aldrich, Inc.

1. Introduction

This 2023 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the 322 Landfill at the Tecumseh Energy Center (TEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Title 40 Code of Federal Regulations (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the TEC 322 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2023) and documents compliance with the Rule. The specific requirements for the annual report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2023), the 322 Landfill was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2023), the 322 Landfill was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a) – Statistically Significant Increase Constituents

Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

2023 Annual Groundwater Monitoring and Corrective Action Report

The 322 Landfill is operating under an assessment monitoring program; therefore, no statistical evaluations were completed on Appendix III constituents in 2023.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b) – Initiation of Assessment Monitoring

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on July 17, 2018 for the 322 Landfill with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The 322 Landfill remained in assessment monitoring in 2023.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

No statistically significant levels were identified above the groundwater protection standard for those constituents listed in Appendix IV to this part in 2023 for the 322 Landfill. The statistical evaluation reports for semi-annual assessment monitoring sampling events from September 2022 and March 2023 were completed in February 2023 and July 2023, respectively, and are included in Attachment 1.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated in 2023 for this unit. The 322 Landfill remained in assessment monitoring during 2023.

1.1.4.3 40 CFR § 257.90(e)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the 322 Landfill in 2023; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

2023 Annual Groundwater Monitoring and Corrective Action Report

No assessment of corrective measures was required to be initiated in 2023 for this unit. The 322 Landfill remained in assessment monitoring during 2023.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The 322 Landfill remains in assessment monitoring, and no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required in 2023.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the TEC 322 Landfill. The 322 Landfill is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report in accordance with § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the 322 Landfill as required by the Rule. Groundwater sampling and analysis was conducted in accordance with requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2023.

2.2.1 Status of the Groundwater Monitoring Program

The 322 Landfill remained in the assessment monitoring program during 2023.

2.2.2 Key Actions Completed

The 2022 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2023. Statistical evaluation was completed in February 2023 on analytical data from the September 2022 semi-annual assessment monitoring sampling event.

2023 Annual Groundwater Monitoring and Corrective Action Report

A semi-annual assessment monitoring sampling event was completed in March 2023 for detected Appendix IV constituents identified from the June 2022 annual assessment monitoring sampling event. Statistical evaluation was completed in July 2023 on analytical data from the March 2023 semi-annual assessment monitoring sampling event.

An annual assessment monitoring sampling event was completed in June 2023 to identify detected Appendix IV constituents for subsequent semi-annual sampling events in September 2023 and planned for March 2024. Semi-annual assessment monitoring sampling was completed in September 2023 for detected Appendix IV constituents identified during the June 2023 annual monitoring event. Statistical evaluation of the results from the September 2023 semi-annual assessment monitoring sampling event are due to be completed in January 2024 and will be reported in the next annual report.

2.2.3 Problems Encountered

Problems encountered during groundwater monitoring activities in 2023 consisted of:

- A sampling error during the March 2023 semi-annual detection monitoring sampling event required a verification sample to be collected from monitoring well MW-6 in April 2023.
- Laboratory analytical errors required the laboratory to reanalyze the total dissolved solids for MW-4 for the September 2023 semi-annual detection monitoring sampling event.

2.2.4 Actions to Resolve Problems

The resolution to problems encountered in 2023 included collecting a verification groundwater sample from MW-6 and additional laboratory analyses, as described above. The analytical results were revised accordingly. No other problems were encountered at the 322 Landfill in 2023; therefore, no additional actions to resolve problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2024 include the completion of the 2023 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual assessment monitoring analytical data collected in September 2023, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

2023 Annual Groundwater Monitoring and Corrective Action Report

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the 322 Landfill is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned during 2023.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), three independent assessment monitoring samples from each background and downgradient monitoring well were collected in 2023. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the 322 Landfill is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in 2023 are provided in Figures 2 through 4.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on July 17, 2018 with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The 322 Landfill remained in assessment monitoring during 2023.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed in calendar year 2023.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternate source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since July 17, 2018. Three rounds of assessment monitoring sampling were completed in 2023. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the 322 Landfill are included in Table II. The background concentrations and groundwater protection standards provided in Table II were utilized for both statistical evaluations completed in 2023 for September 2022 and March 2023 semi-annual assessment monitoring sampling events.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

2023 Annual Groundwater Monitoring and Corrective Action Report

No assessment monitoring alternate source demonstration or certification was required in 2023. The 322 Landfill remained in assessment monitoring during 2023.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in Appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring of corrective measures was required to be initiated in 2023; therefore, no demonstration or certification is applicable for this unit.

TABLES

TABLE I
SUMMARY OF ANALYTICAL RESULTS - 2023 ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC.

TECUMSEH ENERGY CENTER, 322 LANDFILL

TECUMSEH, KANSAS

1		Upgradient		Downgradient MW-1										
Location		MW-4												
Measure Point (TOC)		936.48				904.6	5							
Sample Name	MW-4-030623	MW-4-060523	MW-4-090523	MW-1-030623	DUP-322F-030623	MW-1-060523	DUP-322LF-060523	MW-1-090523	TEC322LF-DUP-090523					
Sample Date	03/06/2023	06/05/2023	09/05/2023	03/06/2023	03/06/2023	06/05/2023	06/05/2023	09/05/2023	09/05/2023					
Final Lab Report Date	3/17/2023	07/11/2023	9/18/2023	3/17/2023	3/17/2023	07/11/2023	07/11/2023	9/18/2023	9/18/2023					
Final Lab Report Revision Date	4/11/2023	N/A	11/8/2023	4/11/2023	4/11/2023	N/A	N/A	11/8/2023	11/8/2023					
Final Radiation Lab Report Date	N/A	07/03/2023	N/A	N/A	N/A	07/03/2023	07/03/2023	N/A	N/A					
Lab Data Reviewed and Accepted	5/30/2023	08/02/2023	12/18/2023	5/30/2023	5/30/2023	08/02/2023	08/02/2023	12/18/2023	12/18/2023					
Depth to Water (ft btoc)	4.27	5.10	7.93	4.42	-	4.84	-	7.18	7.18					
Temperature (Deg C)	10.00	16.74	23	11.19	-	18.45	-	16.74	-					
Conductivity (μS/cm)	1,720	1,670	743	1,300	-	1,280	-	1,220	-					
Turbidity (NTU)	4.9	0.0	40.5	0.0	-	0.0	-	0.0	-					
Dissolved Oxygen (mg/L)	1.56	1.28	1.70	0.84	-	0.00	-	0.15	-					
ORP (mV)	193	150	165	97	-	128	-	24	-					
pH, Field (su)	6.84	6.90	7.22	6.78	-	6.73	-	7.13	-					
Boron, Total (mg/L)	< 0.10	-	< 0.10	< 0.10	< 0.10	-	-	< 0.10	< 0.10					
Calcium, Total (mg/L)	193	-	169	168	163	-	-	159	159					
Chloride (mg/L)	272	-	228	58.0	47.3	-	-	48.3	48.4					
Fluoride (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
Sulfate (mg/L)	190	-	164	346	355	-	-	372	350					
pH (su)	7.5	-	6.9	7.2	7.2	-	-	6.9	6.9					
TDS (mg/L)	1,000	-	1,210	896	948	-	-	950	921					
Antimony, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Arsenic (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Barium, Total (mg/L)	0.087	0.099	0.11	0.053	0.050	0.050	0.050	0.051	0.051					
Beryllium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Cadmium, Total (mg/L)	-	< 0.00050	-	-	-	< 0.00050	< 0.00050	-	-					
Chromium, Total (mg/L)	-	< 0.0050	-	-	-	< 0.0050	< 0.0050	-	-					
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010					
Lead, Total (mg/L)	-	< 0.010	-	-	-	< 0.010	< 0.010	-	-					
Lithium, Total (mg/L)	< 0.010	< 0.010	< 0.010	0.011	0.011	< 0.010	< 0.010	0.011	0.011					
Molybdenum, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Selenium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Thallium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	< 0.0010	-	-					
Mercury, Total (mg/L)	-	< 0.00020	-	-	-	< 0.00020	< 0.00020	-	-					
Fluoride (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
Radium-226 & 228 Combined (pCi/L)	-	0.846 ± 0.834 (1.56)	-	-	-	1.04 ± 0.809 (1.40)	0.242 ± 0.763 (1.59)	-	-					

SUMMARY OF ANALYTICAL RESULTS - 2023 ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC.

TECUMSEH ENERGY CENTER, 322 LANDFILL

TECUMSEH, KANSAS

				Downgradient									
Location		MW-5			MW-6								
Measure Point (TOC)		916.18											
Sample Name	MW-5-030623	MW-5-060523	MW-5-090523	MW-6-030623	MW-6-042723	MW-6-060523	MW-6-090523						
Sample Date	03/06/2023	06/05/2023	09/05/2023	03/06/2023	04/27/2023	06/05/2023	09/05/2023						
Final Lab Report Date	3/17/2023	07/11/2023	9/18/2023	3/17/2023	5/3/2023	07/11/2023	9/18/2023						
Final Lab Report Revision Date	4/11/2023	N/A	11/8/2023	4/11/2023	N/A	N/A	11/8/2023						
Final Radiation Lab Report Date	N/A	07/03/2023	N/A	N/A	N/A	07/03/2023	N/A						
Lab Data Reviewed and Accepted	5/30/2023	08/02/2023	12/18/2023	5/30/2023	5/30/2023	08/02/2023	12/18/2023						
Depth to Water (ft btoc)	6.55	6.84	8.60	9.00	7.15	9.75	10.97						
Temperature (Deg C)	10.67	15.70	20.19	10.79	12.33	17.06	19.12						
Conductivity (μS/cm)	2,130	1,930	1,010	2,410	2,380	2,330	2,190						
Turbidity (NTU)	0.0	0.0	1.5	15.1	18.7	0.0	0.0						
Dissolved Oxygen (mg/L)	1.65	0.00	0.10	1.56	1.15	0.00	0.67						
ORP (mV)	186	144	147	171	126	143	130						
pH, Field (su)	6.67	6.75	7.09	6.70	6.65	6.85	6.97						
Boron, Total (mg/L)	0.64	-	0.31	0.61	0.47	-	0.49						
Calcium, Total (mg/L)	330	-	209	485	377	-	355						
Chloride (mg/L)	31.3	-	46.0	62.7	68.7	-	50.8						
Fluoride (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.32	0.40						
Sulfate (mg/L)	1,060	-	536	1,120	1,030	-	987						
pH (su)	8.0	-	6.9	7.3	6.9	-	7.0						
TDS (mg/L)	1,730	-	1,300	1,990	2,040	-	2,090						
Antimony, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Arsenic (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Barium, Total (mg/L)	0.023	0.024	0.027	0.089	0.019	0.016	0.016						
Beryllium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Cadmium, Total (mg/L)	-	< 0.00050	-	-	-	< 0.00050	-						
Chromium, Total (mg/L)	-	< 0.0050	-	-	-	< 0.0050	•						
Cobalt, Total (mg/L)	< 0.0010	< 0.0010	< 0.0010	0.011	0.0024	0.0020	0.0022						
Lead, Total (mg/L)	-	< 0.010	-	-	-	< 0.010	-						
Lithium, Total (mg/L)	0.018	0.017	0.024	0.032	0.020	0.014	0.020						
Molybdenum, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Selenium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Thallium, Total (mg/L)	-	< 0.0010	-	-	-	< 0.0010	-						
Mercury, Total (mg/L)	-	< 0.00020	-	-	-	< 0.00020	-						
Fluoride (mg/L)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.32	0.40						
Radium-226 & 228 Combined (pCi/L)	-	0.508 ± 0.705 (1.41)	-	-	-	0.534 ± 0.635 (1.22)	-						

Notes:

Bold value: Detection above laboratory reporting limit or minimum detectable concentration (MDC).

Radiological results are presented as activity plus or minus uncertainty with MDC.

Data presented in this table were verified against the laboratory and validation reports.

 μ S/cm = micro Siemens per centimeter NTU = Nephelometric Turbidity Unit

Deg C = degrees Celsius

ORP = oxidation reduction potential

ft btoc = feet below top of casing

pCi/L = picoCuries per liter

mg/L = milligrams per liter

su = standard unit

mV = millivolt NA = Not Applicable TDS = total dissolved solids TOC = top of casing

TABLE II

ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS

SEPTEMBER 2022 AND MARCH 2023 SAMPLING EVENTS TECUMSEH ENERGY CENTER 322 LANDFILL TECUMSEH, KANSAS

Well #	Background Value ^{1,2}	GWPS
C	CCR Appendix-IV Barium, Total (mg/l	L)
MW-4 (upgradient)	0.132	NA
MW-1		2
MW-5		2
MW-6		2
	CCR Appendix-IV Cobalt, Total (mg/L	.)
MW-4 (upgradient)	0.001	NA
MW-1		0.006
MW-5		0.006
MW-6		0.006
С	CR Appendix-IV Fluoride, Total (mg/	L)
MW-4 (upgradient)	0.35	NA
MW-1		4.0
MW-5		4.0
MW-6		4.0
C	CCR Appendix-IV Lithium, Total (mg/	L)
MW-4 (upgradient)	0.010 ²	NA
MW-1		5
MW-5		5
MW-6		5

Notes:

 $CCR = coal\ combustion\ residuals$

GWPS = groundwater protection standard

mg/L = milligrams per Liter

NA = not applicable

pCi/L = picoCuries per Liter

 $^{^{\}rm 1}$ Based on background data collected from 08/17/2016 through 09/09/2022, unless otherwise noted.

 $^{^{2}}$ Based on background data collected from 08/17/2016 through 06/07/2021.

FIGURES

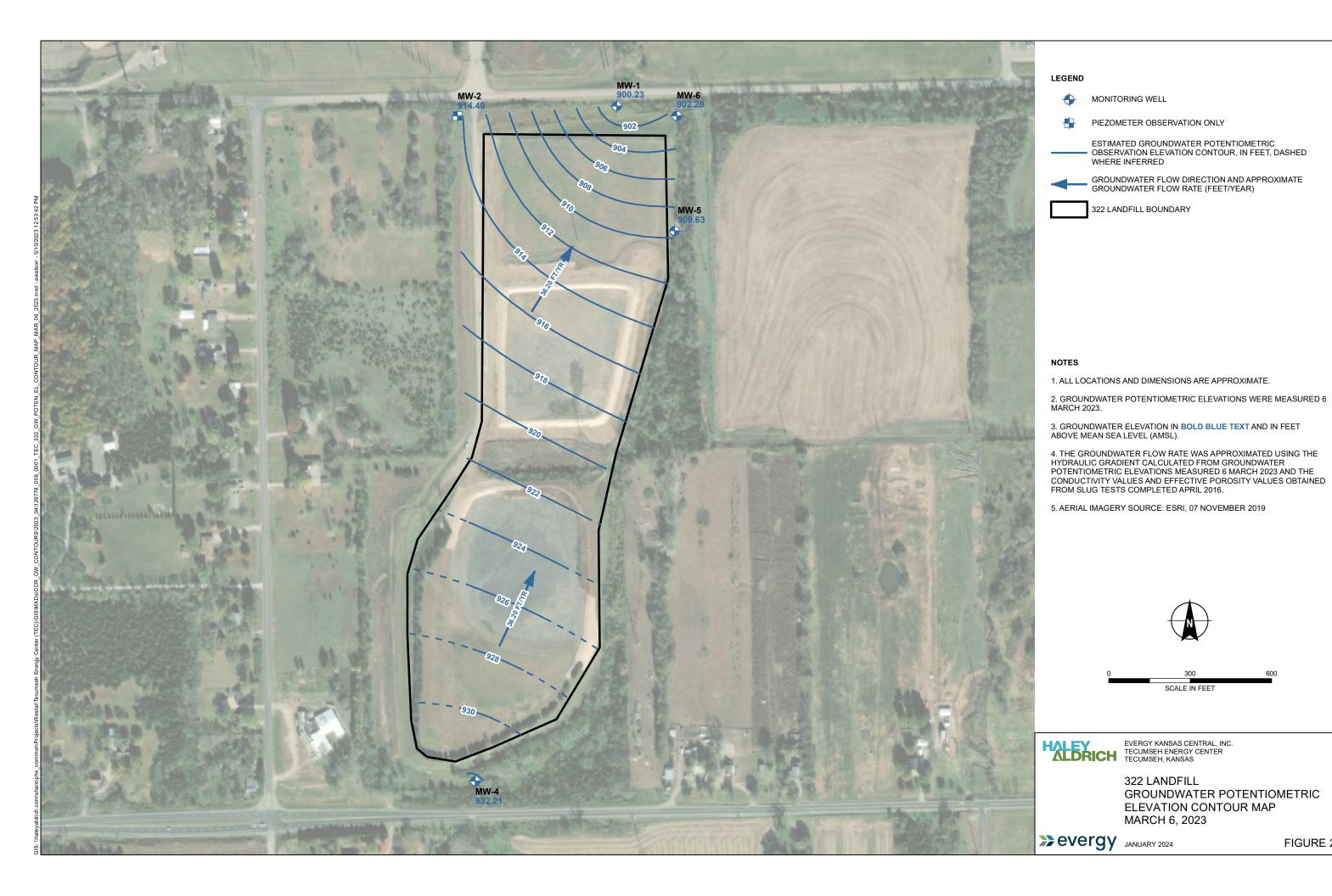
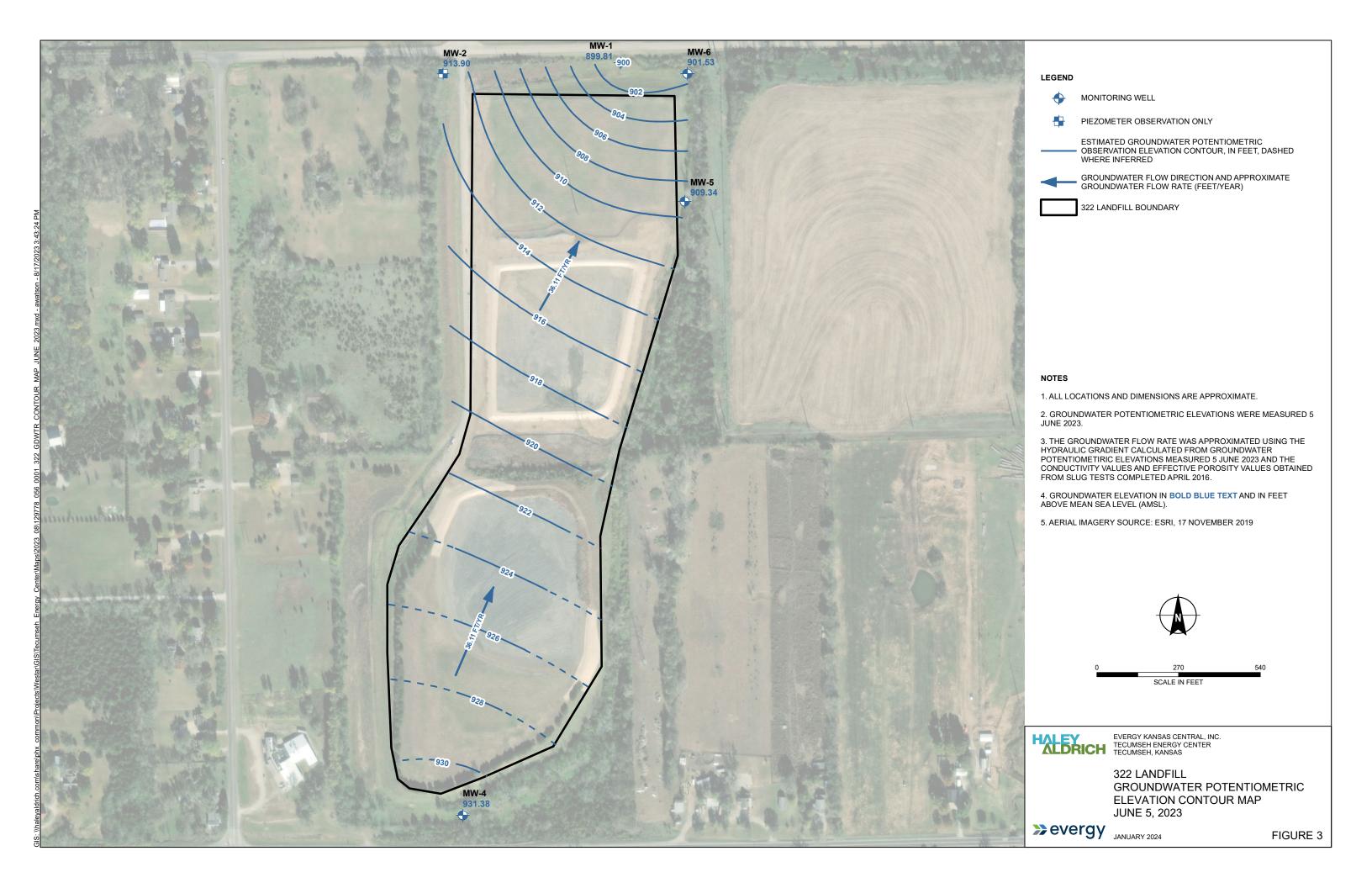
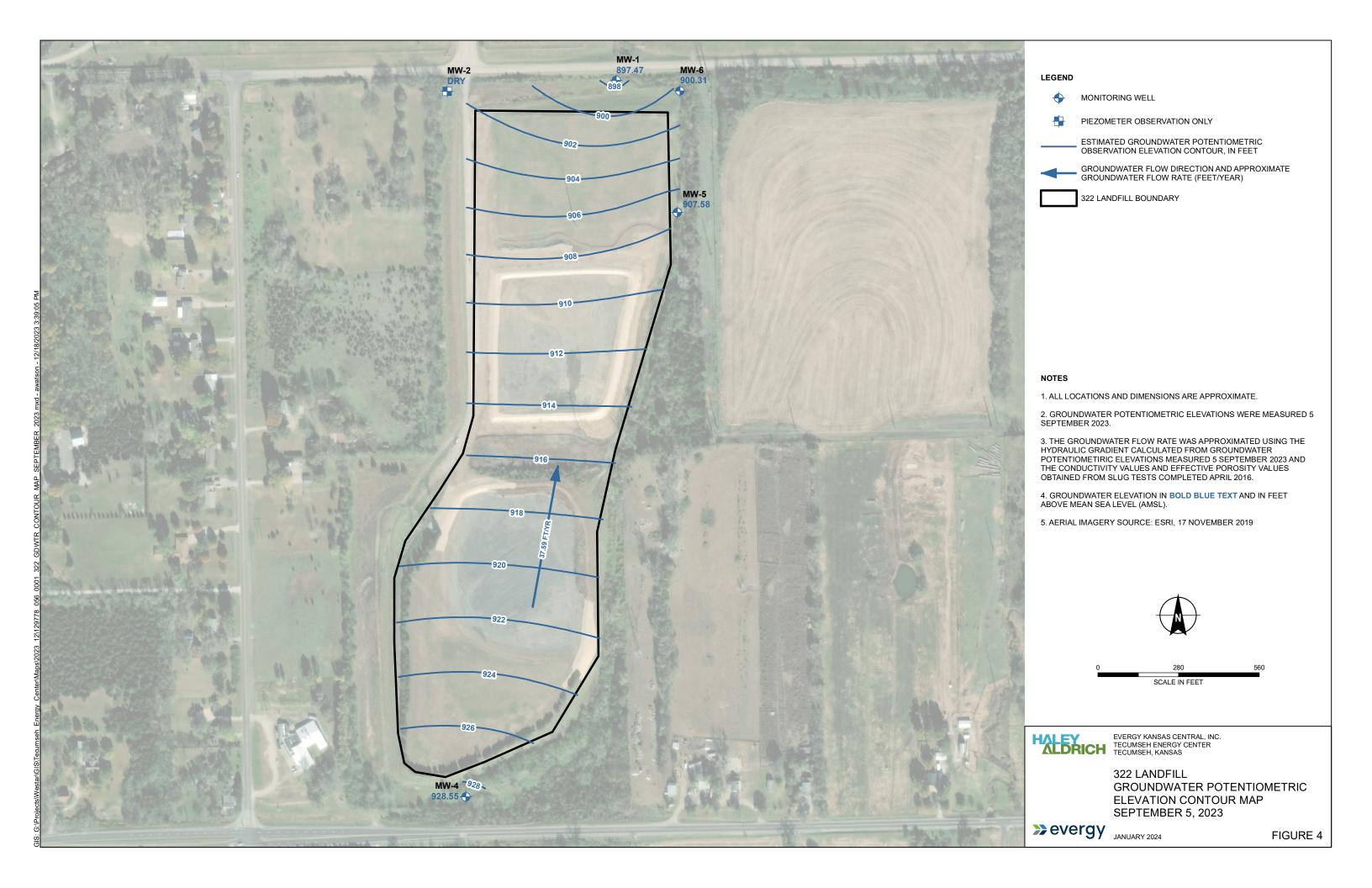




FIGURE 2

ATTACHMENT 1 Statistical Analyses

ATTACHMENT 1-1 September 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2024 File No. 129778-048

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2022 Semi-Annual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed February 1, 2023
Tecumseh Energy Center

322 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2022** semi-annual assessment monitoring groundwater sampling event for the Tecumseh Energy Center (TEC) 322 Landfill. This semi-annual assessment monitoring groundwater sampling event was completed on **September 9, 2022**, with laboratory results received and validated on **November 4, 2022**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2024 Page 2

STATISTICAL EVALUATION

An interwell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2022** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through September 2022 for all constituents except lithium, which was updated through June 2021.

Evergy Kansas Central, Inc. January 31, 2024 Page 3

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2022** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation of groundwater sampling data collected in September 2022, no SSLs above GWPS occurred at the TEC 322 Landfill.**

Attachments:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER SAMPLING EVENT TECUMSEH ENERGY CENTER 322 LANDFILL

	MCL *						MCL Coi	mparison					Inter-well	Analysis	Groundwater Protection Standard			
Location Id	Frequency of Detection	Percent Non-Detects	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	September 2022 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL)	SSL
								CCR	Appendix-IV: Ba	rium, Total (mg/	L)							
MW-4 (upgradient)	22/22	0%	0.14	0.0001788	0.01337	0.1234	2	mg/L	0	0	Yes	No	Decreasing		0.132		2	
MW-1	22/22	0%	0.2	0.00284	0.05329	0.4732	2	mg/L	0	0	No	No	Decreasing	0.062		No		No
MW-5	22/22	0%	0.04	0.00003825	0.006185	0.2597	2	mg/L	0	0	No	No	Decreasing	0.027		No		No
MW-6	22/22	0%	0.041	0.00004472	0.006687	0.313	2	mg/L	0	0	Yes	No	Decreasing	0.019		No		No
	CCR Appendix-IV: Cobalt, Total (mg/L)																	
MW-4 (upgradient)	0/22	100%		0	0	0	0.006	mg/L	0	0	NA	NA	NA		0.001		0.006	
MW-1	14/22	36%	0.0086	0.000003296	0.001815	0.9056	0.006	mg/L	1	0	Yes	No	Stable	<0.0010		No		No
MW-5	21/22	5%	0.0021	1.352E-07	0.0003677	0.2192	0.006	mg/L	0	0	No	No	Decreasing	<0.0010		No		No
MW-6	22/22	0%	0.0033	2.511E-07	0.0005011	0.2124	0.006	mg/L	0	0	No	No	Stable	0.0022		Yes		No
								C	CR Appendix-IV:	Fluoride (mg/L)								
MW-4 (upgradient)	14/23	39%	0.35	0.001332	0.03649	0.1584	4.0000	mg/L	0	0	Yes	No	Stable		0.350		4.0	
MW-1	17/23	26%	0.46	0.007117	0.08436	0.2594	4.0000	mg/L	0	0	No	No	Decreasing	<0.20		No		No
MW-5	16/23	30%	0.46	0.005898	0.0768	0.2705	4.0000	mg/L	0	0	No	No	Stable	<0.20		No		No
MW-6	19/23	17%	0.56	0.00947	0.09732	0.2914	4.0000	mg/L	0	0	No	No	Stable	<0.20		No		No
								CCR	Appendix-IV: Lit	hium, Total (mg/	L)							
MW-4 (upgradient)	0/20	100%		0	0	0	0.040	mg/L	0	0	NA	NA	NA		0.010 ²		0.040	
MW-1	2/20	90%	0.011	0.00000005	0.0002236	0.02225	0.040	mg/L	0	0	No	No	NA	0.011		Yes		No
MW-5	15/20	25%	0.024	0.00002289	0.004785	0.32	0.040	mg/L	0	0	No	No	Stable	0.021		Yes		No
MW-6	14/20	30%	0.022	0.00001651	0.004064	0.2955	0.040	mg/L	0	0	No	No	Stable	0.017		Yes		No

Notes:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed

pCi/L = picoCuries per Liter

SSI = statistically significant increase

SSL = statistically significant level

UTL = upper tolerance limits

¹ Based on background data collected from 08/17/2016 through 09/09/2022, unless otherwise noted.

² Based on background data collected from 08/17/2016 through 06/07/2021.

^{*} Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

ATTACHMENT 1-2 March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2024 File No. 129778-048

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2023 Semi-Annual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed July 21, 2023

Tecumseh Energy Center

322 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2023** semi-annual assessment monitoring groundwater sampling event for the Tecumseh Energy Center (TEC) 322 Landfill. This semi-annual assessment monitoring groundwater sampling event was completed on **March 6, 2023.** Well MW-6 was resampled on April 27, 2023, to confirm the analytical concentration collected on March 6, 2023; the results were revised. All laboratory results were received and validated on **May 30, 2023**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values, and if one or more of the constituents have been detected at statistically significant levels (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above

Evergy Kansas Central, Inc. January 31, 2024 Page 2

background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSI existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2023** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

Evergy Kansas Central, Inc. January 31, 2024 Page 3

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through September 2022 for all constituents except lithium, which was updated through June 2021.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the March 2023 semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation of groundwater sampling data collected in March 2023, no SSLs above GWPS occurred at the TEC 322 Landfill.

Attachments:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I

SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2023 SAMPLING EVENT TECUMSEH ENERGY CENTER 322 LANDFILL TECUMSEH, KANSAS

										MCL Co	mparison						Interwell A	nalysis	Groundwater Protect	ion Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL §257.95(h)(2)*	Report Result Unit	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2023 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	GWPS (Higher of MCL/RSL or UTL) mg/L	SSL
					CCR Appendix	-IV: Barium, To	al (mg/L)			•										
MW-4 (upgradient)	23/23	0%	i	0.14	0.0001906	0.01381	0.1285	2	mg/L	0	0	Yes	No	Decreasing	Normal	0.087	0.132		2	
MW-1	23/23	0%	i	0.2	0.002866	0.05353	0.4865	2	mg/L	0	0	No	No	Decreasing		0.053		No		No
MW-5	23/23	0%	i	0.04	0.00003654	0.006045	0.2542	2	mg/L	0	0	No	No	Decreasing		0.023		No		No
MW-6	23/23	0%	i	0.041	0.00004293	0.006552	0.3082	2	mg/L	0	0	Yes	No	Decreasing		0.019		No		No
					CCR Appendix	k-IV: Cobalt, Tot	al (mg/L)													
MW-4 (upgradient)	0/23	100%	0.001-0.001		0	0	0	0.006	mg/L	0	0	NA	NA	NA	NA	< 0.0010	0.001		0.006	
MW-1	14/23	39%	0.001-0.001	0.0086	0.00000319	0.001786	0.9108	0.006	mg/L	1	0	Yes	No	Stable		< 0.0010		No		No
MW-5	21/23	9%	0.001-0.001	0.0021	0.00000149	0.000386	0.2342	0.006	mg/L	0	0	No	No	Decreasing		< 0.0010		No		No
MW-6	23/23	0%	-	0.0033	2.398E-07	0.0004897	0.2074	0.006	mg/L	0	0	No	No	Stable		0.0024		Yes		No
					CCR Appen	dix-IV: Fluoride	(mg/L)													
MW-4 (upgradient)	14/24	42%	0.2-0.2	0.35	0.001312	0.03623	0.1581	4.0	mg/L	0	0	Yes	No	Stable	Non-parametric	< 0.20	0.350		4.0	
MW-1	17/24	29%	0.2-0.2	0.46	0.007461	0.08638	0.2699	4.0	mg/L	0	0	No	No	Decreasing		< 0.20		No		No
MW-5	16/24	33%	0.2-0.2	0.46	0.005935	0.07704	0.2747	4.0	mg/L	0	0	No	No	Stable		< 0.20		No		No
MW-6	19/24	21%	0.2-0.2	0.56	0.009806	0.09902	0.3016	4.0	mg/L	0	0	No	No	Stable		< 0.20		No		No
CCR Appendix-IV: Lithium, Total (mg/L)																				
MW-4 (upgradient)	0/21	100%	0.01-0.01		0	0	0	0.040	mg/L	0	0	NA	NA	NA	NA	< 0.010	0.010 ²		0.040	
MW-1	3/21	86%	0.01-0.01	0.011	9.048E-08	0.0003008	0.0298	0.040	mg/L	0	0	No	No	NA		0.011		Yes		No
MW-5	16/21	24%	0.01-0.01	0.024	0.00002219	0.004711	0.3121	0.040	mg/L	0	0	No	No	Stable		0.018		Yes		No
MW-6	15/21	29%	0.01-0.01	0.022	0.00001755	0.004189	0.2982	0.040	mg/L	0	0	No	No	Stable		0.020		Yes		No

Notes:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter NA = not analyzed

RSL = Regional Screening Level

SSI = statistically significant increase

SSL = statistically significant level

UTL = upper tolerance limits

¹ Based on background data collected from 08/17/2016 through 09/09/2022, unless otherwise noted.

² Based on background data collected from 08/17/2016 through 06/07/2021.

^{*} Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2)

ATTACHMENT 2 Laboratory Analytical Reports

ATTACHMENT 2-1
March 2023 Semi-Annual Sampling Event
Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

April 11, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 06, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

REVISION_1 3/21/23

REVISION_2 4/11/23

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60423225001	MW-1-030623	Water	03/06/23 10:25	03/06/23 16:50
60423225002	MW-4-030623	Water	03/06/23 12:45	03/06/23 16:50
60423225003	MW-5-030623	Water	03/06/23 11:30	03/06/23 16:50
60423225004	MW-6-030623	Water	03/06/23 10:50	03/06/23 16:50
60423225005	DUP-322F-030623	Water	03/06/23 10:25	03/06/23 16:50

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60423225001	MW-1-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
0423225002	MW-4-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
0423225003	MW-5-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
0423225004	MW-6-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP, MA1	1	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
0423225005	DUP-322F-030623	EPA 200.7	ALH	3	PASI-K
		EPA 6010	ALH	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: April 11, 2023

Amended to report uniform reporting units per client request. 4/11/23 Amended to report data from reanalysis of MW-6 per client request.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 835263

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60423225001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MSD (Lab ID: 3313434)
 - Calcium

QC Batch: 837840

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60423225004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3322092)
 - Calcium
- MSD (Lab ID: 3322093)
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

• MW-6-030623 (Lab ID: 60423225004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 837626

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 3321473)
 Total Dissolved Solids
- **Additional Comments:**

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-322F-030623 (Lab ID: 60423225005)
- MW-1-030623 (Lab ID: 60423225001)
- MW-4-030623 (Lab ID: 60423225002)
- MW-5-030623 (Lab ID: 60423225003)
- MW-6-030623 (Lab ID: 60423225004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: April 11, 2023

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 836219

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60423115001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3317049)
 - ChlorideSulfate
- MSD (Lab ID: 3317050)
 - Sulfate

QC Batch: 837826

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60423225004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3322027)
 - Chloride
- MSD (Lab ID: 3322028)
 - Chloride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Sample: MW-1-030623	Lab ID: 604	Lab ID: 60423225001 Collected: 03/06/23 10:25 Received: 03/06/23 16:50 Matrix: Water							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7				
	Pace Analytica	al Services -	Kansas City						
Barium, Total Recoverable	0.053	mg/L	0.0050	1	03/07/23 14:38	03/13/23 17:17	7440-39-3		
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/07/23 14:38	03/13/23 17:17	7440-42-8		
Calcium, Total Recoverable	168	mg/L	0.20	1	03/07/23 14:38	03/13/23 17:17	7440-70-2	M1	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010				
	Pace Analytica	l Services -	Kansas City						
Lithium, Total Recoverable	0.011	mg/L	0.010	1	03/07/23 14:38	03/13/23 16:51	7439-93-2		
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8				
	Pace Analytica	al Services -	Kansas City						
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/07/23 14:38	03/16/23 17:21	7440-48-4		
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C						
	Pace Analytica	al Services -	Kansas City						
Total Dissolved Solids	896	mg/L	13.3	1		03/08/23 09:01			
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B						
•	Pace Analytica	l Services -	Kansas City						
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/07/23 12:19		H6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
•	Pace Analytica	al Services -	Kansas City						
Chloride	58.0	mg/L	10.0	10		03/15/23 19:01	16887-00-6		
Fluoride	<0.20	mg/L	0.20	1		03/14/23 18:58			
Sulfate	346	mg/L	100	100		03/15/23 19:14	14808-79-8		

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Sample: MW-4-030623	Lab ID: 604	23225002	Collected: 03/06/2	3 12:45	Received: 03	3/06/23 16:50 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.087	mg/L	0.0050	1	03/07/23 14:38	03/13/23 17:23	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/07/23 14:38	03/13/23 17:23	7440-42-8	
Calcium, Total Recoverable	193	mg/L	0.20	1	03/07/23 14:38	03/13/23 17:23	7440-70-2	
6010 MET ICP	Analytical Met	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	I Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	03/07/23 14:38	03/13/23 16:57	7439-93-2	
200.8 MET ICPMS	Analytical Metl	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/07/23 14:38	03/16/23 17:08	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	nod: SM 254	OC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1000	mg/L	13.3	1		03/08/23 09:01		
4500H+ pH, Electrometric	Analytical Metl	nod: SM 450	0-H+B					
• •	Pace Analytica	I Services -	Kansas City					
oH at 25 Degrees C	7.5	Std. Units	0.10	1		03/09/23 11:25		H6
300.0 IC Anions 28 Days	Analytical Metl	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	272	mg/L	50.0	50		03/15/23 19:54	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/14/23 19:11	16984-48-8	
Sulfate	190	mg/L	50.0	50		03/15/23 19:54	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Sample: MW-5-030623	Lab ID: 604	23225003	Collected: 03/06/2	3 11:30	Received: 03	3/06/23 16:50 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.023	mg/L	0.0050	1	03/07/23 14:38	03/13/23 17:26	7440-39-3	
Boron, Total Recoverable	0.64	mg/L	0.10	1	03/07/23 14:38	03/13/23 17:26	7440-42-8	
Calcium, Total Recoverable	330	mg/L	0.20	1	03/07/23 14:38	03/13/23 17:26	7440-70-2	
6010 MET ICP	Analytical Met	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.018	mg/L	0.010	1	03/07/23 14:38	03/13/23 16:59	7439-93-2	
200.8 MET ICPMS	Analytical Metl	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/07/23 14:38	03/16/23 17:24	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	nod: SM 254	OC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	1730	mg/L	13.3	1		03/08/23 09:01		
4500H+ pH, Electrometric	Analytical Metl	nod: SM 450	0-H+B					
• '	Pace Analytica	I Services -	Kansas City					
oH at 25 Degrees C	8.0	Std. Units	0.10	1		03/09/23 11:20		H6
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	31.3	mg/L	5.0	5		03/15/23 20:07	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/14/23 19:25		
Sulfate	1060	mg/L	500	500		03/15/23 20:21	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Sample: MW-6-030623	Lab ID: 60	423225004	Collected: 03/06/2	23 10:50	Received: 03	3/06/23 16:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Me	thod: EPA 20	00.7 Preparation Met	hod: EP	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.053	mg/L	0.0050	1	03/07/23 14:38	03/13/23 17:28	7440-39-3	
Barium, Total Recoverable	0.089	mg/L	0.025	5	03/22/23 11:30	03/24/23 12:31	7440-39-3	
Boron, Total Recoverable	0.49	mg/L	0.10	1	03/07/23 14:38	03/13/23 17:28	7440-42-8	
Boron, Total Recoverable	0.61	mg/L	0.50	5	03/22/23 11:30	03/24/23 12:31	7440-42-8	
Calcium, Total Recoverable	380	mg/L	0.20	1	03/07/23 14:38	03/13/23 17:28	7440-70-2	
Calcium, Total Recoverable	485	mg/L	1.0	5	03/22/23 11:30	03/24/23 12:31	7440-70-2	M1
6010 MET ICP	Analytical Me	thod: EPA 60	010 Preparation Metl	nod: EP/	A 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.026	mg/L	0.010	1	03/07/23 14:38	03/13/23 17:01	7439-93-2	
_ithium, Total Recoverable	0.032	mg/L	0.010	1		03/23/23 13:42		
200.8 MET ICPMS	Analytical Me	thod: EPA 20	00.8 Preparation Met	hod: EP	PA 200.8			
	Pace Analytic							
Cobalt, Total Recoverable	0.012	mg/L	0.0010	1	03/07/23 14:38	03/16/23 17:27	7440-48-4	
Cobalt, Total Recoverable	0.011	mg/L	0.0010	1	03/22/23 11:30	03/23/23 10:05	7440-48-4	
2540C Total Dissolved Solids	Analytical Me	thod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1990	mg/L	20.0	1		03/08/23 09:01		
Total Dissolved Solids	1990	mg/L	13.3	1		03/21/23 16:42		H1
4500H+ pH, Electrometric	Analytical Me	thod: SM 45	00-H+B					
• '	Pace Analytic	al Services -	Kansas City					
oH at 25 Degrees C	7.9	Std. Units	0.10	1		03/09/23 11:15		H6
oH at 25 Degrees C	7.3	Std. Units	0.10	1		03/23/23 13:12		H6
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.00					
	Pace Analytic	al Services -	Kansas City					
Chloride	50.0	mg/L	10.0	10		03/15/23 20:34	16887-00-6	
Chloride	62.7	mg/L	10.0	10		03/22/23 16:38	16887-00-6	M1
Fluoride	<0.20	mg/L	0.20	1		03/14/23 19:38	16984-48-8	
Fluoride	<0.20	mg/L	0.20	1		03/22/23 17:44	16984-48-8	
Sulfate	1360	mg/L	500	500		03/15/23 20:48	14808-79-8	
Sulfate	1120	mg/L	200	200		03/22/23 18:24		

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Sample: DUP-322F-030623	Lab ID: 604	23225005	Collected: 03/06/2	23 10:25	Received: 03	3/06/23 16:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.050	mg/L	0.0050	1	03/07/23 14:38	03/13/23 17:30	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/07/23 14:38	03/13/23 17:30	7440-42-8	
Calcium, Total Recoverable	163	mg/L	0.20	1	03/07/23 14:38	03/13/23 17:30	7440-70-2	
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.011	mg/L	0.010	1	03/07/23 14:38	03/13/23 17:04	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/07/23 14:38	03/16/23 17:31	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	IOC					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	948	mg/L	13.3	1		03/08/23 09:01		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
oH at 25 Degrees C	7.2	Std. Units	0.10	1		03/07/23 12:23		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	47.3	mg/L	10.0	10		03/15/23 21:01	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/14/23 19:51	16984-48-8	
Sulfate	355	mg/L	100	100		03/15/23 21:14	14808-79-8	

QUALITY CONTROL DATA

Analysis Method:

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 835263

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

EPA 200.7

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

METHOD BLANK: 3313431 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	03/13/23 17:12	
Boron	mg/L	<0.10	0.10	03/13/23 17:12	
Calcium	mg/L	< 0.20	0.20	03/13/23 17:12	

LABORATORY CONTROL SAMPLE: 3313432

Date: 04/11/2023 11:10 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.95	95	85-115	
Boron	mg/L	1	0.93	93	85-115	
Calcium	mg/L	10	10.2	102	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	JCATE: 3313		3313434								
			MS	MSD								
		60423225001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.053	1	1	1.0	0.99	95	93	70-130	2	20	
Boron	mg/L	<0.10	1	1	1.0	0.99	95	94	70-130	1	20	
Calcium	mg/L	168	10	10	180	169	119	14	70-130	6	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 837840

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

METHOD BLANK: 3322090 Matrix: Water

Associated Lab Samples: 60423225004

Blank Reporting Units Result Limit Qualifiers Parameter Analyzed Barium mg/L <0.0050 0.0050 03/24/23 11:54 Boron mg/L <0.10 0.10 03/24/23 11:54 Calcium mg/L 03/24/23 11:54 < 0.20 0.20

LABORATORY CONTROL SAMPLE: 3322091

Date: 04/11/2023 11:10 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.96	96	85-115	
Boron	mg/L	1	0.94	94	85-115	
Calcium	mg/L	10	10	100	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3322092 3322093												
			MS	MSD								
		60423225004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.089	2	2	2.3	2.3	111	110	70-130	1	20	
Boron	mg/L	0.61	2	2	2.7	2.7	106	105	70-130	1	20	
Calcium	mg/L	485	20	20	470	456	-77	-144	70-130	3	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

QC Batch: 835265 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

METHOD BLANK: 3313441 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Cobalt mg/L <0.0010 0.0010 03/16/23 17:03

LABORATORY CONTROL SAMPLE: 3313442

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Cobalt 0.04 0.039 98 85-115 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3313443 3313444

MS MSD

60423225002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits <0.0010 0.041 20 Cobalt mg/L 0.04 0.04 0.040 102 99 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

QC Batch: 837842
QC Batch Method: EPA 200.8

Analysis Method: EPA 200.8
Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

METHOD BLANK: 3322098 Matrix: Water

Associated Lab Samples: 60423225004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Cobalt mg/L <0.0010 0.0010 03/23/23 10:01

LABORATORY CONTROL SAMPLE: 3322099

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Cobalt mg/L 0.04 0.035 88 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3322100 3322101

MS MSD

60423225004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 0.011 0.081 0.080 20 Cobalt mg/L 0.08 0.08 87 85 70-130 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

QC Batch: 835264 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

METHOD BLANK: 3313437 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 03/13/23 16:46

LABORATORY CONTROL SAMPLE: 3313438

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Lithium 0.92 92 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3313439 3313440

MS MSD

60423225001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.011 0.97 Lithium mg/L 0.98 96 96 75-125 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 837841

QC Batch Method: EPA 3010

Analysis Method: EPA 6010
Analysis Description: 6010 MET

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

METHOD BLANK: 3322094

Date: 04/11/2023 11:10 AM

Matrix: Water

Associated Lab Samples: 60423225004

322000⁻

Blank Reporting

Parameter Units Result

Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 03/23/23 13:38

LABORATORY CONTROL SAMPLE: 3322095

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Lithium mg/L 1 1.0 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3322096 3322097

MS MSD

60423225004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result 0.032 2 103 20 Lithium mg/L 2 2.1 2.0 99 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 835379 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

METHOD BLANK: 3313761 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/08/23 09:00

LABORATORY CONTROL SAMPLE: 3313762

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result mg/L **Total Dissolved Solids** 1000 994 99 80-120

SAMPLE DUPLICATE: 3313763

60422746002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 458 **Total Dissolved Solids** mg/L 480 5 10

SAMPLE DUPLICATE: 3313764

Date: 04/11/2023 11:10 AM

60423245001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 7450 7520 mg/L 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 837626 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

METHOD BLANK: 3321471 Matrix: Water

Associated Lab Samples: 60423225004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 03/21/23 10:47

LABORATORY CONTROL SAMPLE: 3321472

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1030 103 80-120

SAMPLE DUPLICATE: 3321473

Date: 04/11/2023 11:10 AM

60424198005 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 10400 **Total Dissolved Solids** mg/L 5700 58 10 D6

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 835122 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225001, 60423225005

SAMPLE DUPLICATE: 3312967

Date: 04/11/2023 11:10 AM

60423115001 Dup Max Parameter Units Result RPD RPD Qualifiers Result pH at 25 Degrees C 6.6 6.5 5 H6 Std. Units 0

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 835568 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225002, 60423225003, 60423225004

SAMPLE DUPLICATE: 3314408

Date: 04/11/2023 11:10 AM

 Parameter
 Units
 60423240001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 8.5
 8.6
 1
 5
 H6

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 838096 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

SAMPLE DUPLICATE: 3322982

Date: 04/11/2023 11:10 AM

60423225004 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.3 pH at 25 Degrees C 7.5 2 5 H6 Std. Units

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 836219 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

METHOD BLANK: 3317047 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/14/23 10:02	
Fluoride	mg/L	< 0.20	0.20	03/14/23 10:02	
Sulfate	mg/L	<1.0	1.0	03/14/23 10:02	

METHOD BLANK: 3319714 Matrix: Water

Associated Lab Samples: 60423225001, 60423225002, 60423225003, 60423225004, 60423225005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/15/23 10:59	
Fluoride	mg/L	<0.20	0.20	03/15/23 10:59	
Sulfate	mg/L	<1.0	1.0	03/15/23 10:59	

LABORATORY CONTROL SAMPLE: 3317048

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	5	4.6	92	90-110	

LABORATORY CONTROL SAMPLE: 3319715

Date: 04/11/2023 11:10 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.9	98	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3317049 3317050

Parameter	Units	60423115001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	190	100	100	264	276	74	86	80-120	4	15	M1
Fluoride	mg/L	ND	50	50	45.2	47.7	90	95	80-120	5	15	
Sulfate	mg/L	2560	2000	2000	5060	5030	125	123	80-120	1	15	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

QC Batch: 837826 QC Batch Method: EPA 300.0 Analysis Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

1.0 03/22/23 13:36

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60423225004

METHOD BLANK: 3322025

Matrix: Water

Associated Lab Samples:

Parameter

60423225004

Units

mg/L

mg/L

mg/L

Blank Result	Reporting Limit	Analyzed	Qualifiers
<1.0	1.0	03/22/23 13:36	
< 0.20	0.20	03/22/23 13:36	

METHOD BLANK: 3324423

Chloride

Fluoride

Sulfate

Matrix: Water

<1.0

Associated Lab Samples: 60423225004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/23/23 17:24	
Fluoride	mg/L	<0.20	0.20	03/23/23 17:24	
Sulfate	mg/L	<1.0	1.0	03/23/23 17:24	

LABORATORY	CONTROL	SAMPLE:	3322026

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.6	102	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

LABORATORY CONTROL SAMPLE:

Date: 04/11/2023 11:10 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	5.2	103	90-110	
Fluoride	mg/L	2.5	2.7	107	90-110	
Sulfate	mg/L	5	5.3	106	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3322028

Parameter	Units	60423225004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	62.7	50	50	101	98.5	77	72	80-120	3	15	M1
Fluoride	mg/L	< 0.20	2.5	2.5	2.6	2.5	103	100	80-120	3	15	
Sulfate	mg/L	1120	1000	1000	2100	2140	97	102	80-120	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/11/2023 11:10 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H1 Analysis conducted outside the EPA method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60423225

Date: 04/11/2023 11:10 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60423225001	MW-1-030623	EPA 200.7	835263	EPA 200.7	835327
0423225002	MW-4-030623	EPA 200.7	835263	EPA 200.7	835327
0423225003	MW-5-030623	EPA 200.7	835263	EPA 200.7	835327
0423225004	MW-6-030623	EPA 200.7	835263	EPA 200.7	835327
60423225004	MW-6-030623	EPA 200.7	837840	EPA 200.7	837979
0423225005	DUP-322F-030623	EPA 200.7	835263	EPA 200.7	835327
0423225001	MW-1-030623	EPA 3010	835264	EPA 6010	835328
0423225002	MW-4-030623	EPA 3010	835264	EPA 6010	835328
0423225003	MW-5-030623	EPA 3010	835264	EPA 6010	835328
0423225004	MW-6-030623	EPA 3010	835264	EPA 6010	835328
60423225004	MW-6-030623	EPA 3010	837841	EPA 6010	837980
60423225005	DUP-322F-030623	EPA 3010	835264	EPA 6010	835328
0423225001	MW-1-030623	EPA 200.8	835265	EPA 200.8	835329
0423225002	MW-4-030623	EPA 200.8	835265	EPA 200.8	835329
0423225003	MW-5-030623	EPA 200.8	835265	EPA 200.8	835329
0423225004	MW-6-030623	EPA 200.8	835265	EPA 200.8	835329
0423225004	MW-6-030623	EPA 200.8	837842	EPA 200.8	837981
0423225005	DUP-322F-030623	EPA 200.8	835265	EPA 200.8	835329
0423225001	MW-1-030623	SM 2540C	835379		
0423225002	MW-4-030623	SM 2540C	835379		
0423225003	MW-5-030623	SM 2540C	835379		
0423225004	MW-6-030623	SM 2540C	835379		
0423225004	MW-6-030623	SM 2540C	837626		
0423225005	DUP-322F-030623	SM 2540C	835379		
0423225001	MW-1-030623	SM 4500-H+B	835122		
0423225002	MW-4-030623	SM 4500-H+B	835568		
0423225003	MW-5-030623	SM 4500-H+B	835568		
0423225004	MW-6-030623	SM 4500-H+B	835568		
0423225004	MW-6-030623	SM 4500-H+B	838096		
0423225005	DUP-322F-030623	SM 4500-H+B	835122		
0423225001	MW-1-030623	EPA 300.0	836219		
0423225002	MW-4-030623	EPA 300.0	836219		
0423225003	MW-5-030623	EPA 300.0	836219		
0423225004	MW-6-030623	EPA 300.0	836219		
60423225004	MW-6-030623	EPA 300.0	837826		

WO#:60423225

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample Cc 60423225

Revision: 2 Effe	ctive Date: 01/12/20	22 Issued By: Lenexa
Client Name: Everav Kungas Ce	ntral	
	PEX 🗆 ECI 🗆	Pace □ Xroads □ Client D Other □
Tracking #: Pac	e Shipping Label Used	
Custody Seal on Cooler/Box Present: Yes ▶ No □	Seals intact: Yes	
Packing Material: Bubble Wrap □ Bubble Bags □	☐ Foam ☐	None d Other □
Thermometer Used: 7216 Type of	Ice: Wet Blue Non	^ /
Cooler Temperature (°C): As-read 5.6 Corr. Factor	or <u></u>	Date and initials of person examining contents:
Temperature should be above freezing to 6°C		AF 3/6
Chain of Custody present:	tves □No □N/A	-/-
Chain of Custody relinquished:	r Ses □No □N/A	
Samples arrived within holding time:	ØYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes 12No □N/A	
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	ØYes □No □N/A	
Correct containers used:	Yes ONO ON/A	
Pace containers used:	Yes ONO ON/A	
Containers intact:	Des □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No th/A	
Filtered volume received for dissolved tests?	□Yes □No ŮN/A	
Sample labels match COC: Date / time / ID / analyses	tres ONO ON/A	
Samples contain multiple phases? Matrix: WI	□Yes UNo □N/A	
Containers requiring pH preservation in compliance?	MYes □No □N/A L	ist sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	d	late/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks:	6007001	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □MA	
Headspace in VOA vials (>6mm):	□Yes □No LN/A	
Samples from USDA Regulated Area: State:	□Yes □No M2N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No 12N/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Tii	me:	
Comments/ Resolution:		
Project Manager Review:	Date:	***************************************

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	ı A	Section B																									1					
	d Client Information:	Required P	roject	Inform	ation:						ition ice Inf		ation:														. [Pag	e: 1	of	1	
Compan	TITLE TO THE TO GENT TOAL, INC.	Report To:			_					Atte	ntion.		Acc			yabl				_		ĺ					L	-	-		_	
Address:	Too TT Tall Baleil Of	Сору То:	Laura	Hine	es, Sam	antha K	aney,Meli	ssa Mich	els	Corr	pany	Nam	ie:	EVE	RGY	KAI	NSA.	sc	ENT	RAL	, INC	RE	GULA	TOF	QY A	GEN	CY					
	Suite 545 Phoenix, AZ 85004										ress:				tion							F	NPE					D 14/	ATER [DDUNG		
Email To	skaney@haleyaldrich.com	Purchase Or	rder N	0.:							Quote	e				_		_	_	_		_	UST					U VVA	AIER !	DRINK		TER
Phone:	507-251-2232 Fax:	Project Nam	e: -	TEC:	322 Lan	dfill CCF	₹			Pace	rence: Projec	ct	Alic	e Sp	iller	913-	563-	140	3			_	e Loc	_		RCF	₹A		2/////////	OTHER		
Request	ed Due Date/TAT:	Project Num	ber:							Mana Pace	eger: Profile							0,10	_		-	311			1		KS					
										_	_	_		1 (%)			_	_	D-		41	_		ATE	_			-				
	Section D Valid Matrix C	odes	e l	٦					Т		Т		_				+	÷Τ		lues	tea	Ana	ysis	Filte	red	Y/N)		-0				
	Required Client Information MATRIX	CODE	to e	C=COMP)		COLL	ECTED			1			Pres	erva	tives		[]	Z X	NN	ı N	N	N	N									
	DRINKING WATER WATER WASTE WATER	DW WT WW	codes	9	COMPO	OSITE			No No No	l		П	П	Т	П	П	Т	Т	T	1	Γ	П				П		1				
	PRODUCT SOIL/SOLID	P SL	(see valid codes to left)	RAB	STAF		COMPC END/G	RAB	COLLECT	ı		Н					-		g	H						Ы		Įį	60 Pac			
	SAMPLE ID OIL WIPE		ees)	(G=GRAB					S	SS.			П				-	زاچ	g _		١.		-						1/0	477	322	25
	(A-Z, 0-9 / ,-) AIR OTHER	AR OT TS	ш	- 1					P AT	# OF CONTAINERS	٦	Н					- [3	ם פ	ع ام	티포	804		اء					1 5	100	10,	1010	()
_	Sample IDs MUST BE UNIQUE TISSUE	18	8	TYPE					TEMP	ĮŽ	SZ	Ш	П		_	_	6		Total	B	L.	ည္ကို	∄					[5	5			
ITEM #			MATRIX	SAMPLE					SAMPLE	۱ñ	res	Ι₫	ပြ	ᅵᇎ	S ₂ O	han	Other	֓֡֡֞֜֞֜֞֜֞֜֓֓֓֓֓֓֓֟֜֟֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	- -	ΙĖ	ਹਿੰ	ပ္ပ						1 =				
트			≨	SA	DATE	TIME	DATE	TIME	SAN	0 #	틸	H₂SO₄	Ĭ		Na ₂ S ₂ O ₃	Methanol	5 	\$ 8	200.7 Total: B,	4500 H+B pH	300:	2540C TDS	6010 Lithium					P P	Pac	e Project	No./I	ahID
1	MW-1-030623		WT	G	278	*/	03/06/23	10:25		3	2		1				1	\neg	x x	$\overline{}$	X	X	x	1	\vdash			\top	1	o i iojeoi	140.7 E	ab 1.D.
2	MW-4-030623.	Į,	wT	G	49	9	03/06/23	12:45		3	2	П	1				1		× ×	X	×		X	1	T		_	$^{+}$	1			
3	MW-5-030623	,	WT	G	5-1	_ ;	03/06/23	11:30		3	2	П	1	T	П				x x	×	x		x		П	\exists	┪	\top				
4	MW-6-030623	,	WT	G	æ?	*	03/06/23	10:50		3	2		1		П				x x	×	x		x				\top	\top				
5	DUP-322LF-030623		WT	G	41		03/06/23	10:25		3	2		1						x x	x	x	x	x	T	П	7	\top	T				
6																												T				
7			_	\perp																												
8			1	_																												
9			_	4							Ш	Ш																				
10			4	_							\square			\perp																		
11			+	_					L		Ш	_	_	_	Ш	4	4	L	\perp	\perp	Ш	_	_	\perp	Ш			\perp				
12			ᆚ	_					L	_	Ш	Ц			Ш		L								Ш							
	ADDITIONAL COMMENTS	R	RELIN	QUISH	IED BY /	AFFILIATI	ON	DATE	_	_	TIME	4			ACC	EPI	SD-B		PERLI	ATIO	N	>	DA	TE	-	IME			SAM	PLE COND	TIONS	
			Ma	tt Var	nderPutte	en / SCS		3/10/2	ን	11	200			1		\leq		3	=	\leq	5		3/	6	16	20	19	5	14	K		
										-													1									
												\neg										1					1					
												\forall										1					+				1	
Ţ,						SAMPLE	R NAME A	ND SIGNA	TUR	E				-								_1	-		L		-	_	-	<u></u>	-	ti
Page 33 of 34					t		RINT Name				Van	der	Putte	en			7				_	-		-	-		-	Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
33					Ì		SIGNATURE	of SAMP	LER:	ALL	12	4	2	-	1	1		I	DATE	Sign	ed	_	_				-	Temp	Receir Ice (Cus ealed (?)		ample (3)
у 32					L				-1110000			- ,	10%		4				(MM/E	DD/Y	r):	_						_	1 "	Ű		ικ

Revision: 3 | Effective Date: | Issued by: Lenexa

client: Evergy Kunsas Central
Site: TEC 322 Land Fill (CR

Profile #

9657-11

Notes

COC Line Item		VG9H	реэн	DG9O	VG9U	Desn	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	врзг	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	WT																		1		1		T								
2	1																		1				(
3																			1		-1		1								
4																			l.		1		ı								
5																			1		1										
6																												l			
7	Ľ.																														
8																															
9																												Ì			
10																															
11																															
12																															

Container Codes

odes						_			
		Glass			Plastic		Misc.		
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab		
DG9H	40mL HCI amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate		
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag		
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter		
OG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	C	Air Cassettes		
OG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit		
OG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can		
/G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic				
VG9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic				
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix		
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		WIALTIX		
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water		
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid		
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid		
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL		
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe		
				BP4U	125mL unpreserved plastic	DW	Drinking Water		
				BP4N	125mL HNO3 plastic		1100		
				BP4S	125mL H2SO4 plastic				
						_			

WPDU

16oz unpresserved plstic

Work Order Number:

May 03, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on April 27, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665 PM Lab Management

alice Spiller

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60427375001	MW-6-042723	Water	04/27/23 10:00	04/27/23 17:15

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Lab ID	Sample ID 01 MW-6-042723	Method	Analysts	Analytes Reported	Laboratory
60427375001	MW-6-042723	EPA 200.7	MA1	3	PASI-K
		EPA 6010	MA1	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	CRN2	1	PASI-K
		SM 4500-H+B	MLD	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 844414

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60427373001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3346727)
 - Calcium
- MSD (Lab ID: 3346728)
 - Calcium

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 844415

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60427375001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3346731)
 - Lithium
- MSD (Lab ID: 3346732)
 - Lithium

Additional Comments:

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

• MW-6-042723 (Lab ID: 60427375001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2023

General Information:

1 sample was analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 844319

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60426605003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3346276)
 - Sulfate
- MSD (Lab ID: 3346277)
 - Chloride

R1: RPD value was outside control limits.

- MSD (Lab ID: 3346277)
 - Chloride
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Date: 05/03/2023 03:46 PM

Sample: MW-6-042723	Lab ID: 604	27375001	Collected: 04/27/2	23 10:00	Received: 04	1/27/23 17:15 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.019	mg/L	0.0050	1	05/01/23 08:41	05/02/23 07:56	7440-39-3	
Boron, Total Recoverable	0.47	mg/L	0.10	1	05/01/23 08:41	05/02/23 07:56	7440-42-8	
Calcium, Total Recoverable	377	mg/L	0.20	1	05/01/23 08:41	05/02/23 07:56	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.020	mg/L	0.010	1	05/01/23 08:41	05/02/23 08:10	7439-93-2	M1
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	0.0024	mg/L	0.0010	1	05/01/23 08:41	05/02/23 11:00	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	2040	mg/L	20.0	1		05/02/23 11:12		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	6.9	Std. Units	0.10	1		05/02/23 10:39		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	68.7	mg/L	10.0	10		05/01/23 21:06	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		05/01/23 20:54	16984-48-8	
Sulfate	1030	mg/L	200	200		05/02/23 14:43	14808-79-8	

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

QC Batch: 844414

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60427375001

METHOD BLANK: 3346725

Date: 05/03/2023 03:46 PM

Matrix: Water

Associated Lab Samples: 60427375001

Blank Reporting Limit Units Result Qualifiers Parameter Analyzed Barium mg/L <0.0050 0.0050 05/02/23 07:44 Boron mg/L <0.10 0.10 05/02/23 07:44 Calcium mg/L 05/02/23 07:44 < 0.20 0.20

LABORATORY CONTROL SAMPLE: 3346726

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.97	97	85-115	
Boron	mg/L	1	0.97	97	85-115	
Calcium	mg/L	10	10.0	100	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3346	727		3346728							
			MS	MSD								
		60427373001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	5.8 ug/L	1	1	0.99	0.98	98	98	70-130	1	20	
Boron	mg/L	2.3	1	1	3.3	3.3	93	94	70-130	0	20	
Calcium	mg/L	523	10	10	515	520	-80	-24	70-130	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Date: 05/03/2023 03:46 PM

QC Batch: 844416 Analysis Method: QC Batch Method: EPA 200.8 Analysis Description:

Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

EPA 200.8

Associated Lab Samples: 60427375001

METHOD BLANK: 3346733 Matrix: Water

Associated Lab Samples: 60427375001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Cobalt mg/L <0.0010 0.0010 05/02/23 10:56

LABORATORY CONTROL SAMPLE: 3346734

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Cobalt mg/L 0.08 0.080 100 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3346735 3346736

MS MSD

60427375001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 0.0024 0.041 0.041 20 Cobalt mg/L 0.04 0.04 97 97 70-130 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Date: 05/03/2023 03:46 PM

QC Batch: 844415
QC Batch Method: EPA 3010

Analysis Method: EPA 6010
Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60427375001

METHOD BLANK: 3346729 Matrix: Water

Associated Lab Samples: 60427375001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 05/02/23 08:05

LABORATORY CONTROL SAMPLE: 3346730

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium mg/L 0.96 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3346731 3346732

MS MSD

60427375001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 0.020 2 0.99 20 M1 Lithium mg/L 2 0.98 49 48 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

QC Batch: 844779 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60427375001

METHOD BLANK: 3347747 Matrix: Water

Associated Lab Samples: 60427375001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 05/02/23 11:11

LABORATORY CONTROL SAMPLE: 3347748

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 3347749

Date: 05/03/2023 03:46 PM

60427521001 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 328 **Total Dissolved Solids** mg/L 0 327 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

QC Batch: 844726 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60427375001

SAMPLE DUPLICATE: 3347575

Date: 05/03/2023 03:46 PM

 Parameter
 Units
 60427375001 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.9
 7.1
 4
 5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

QC Batch: 844319 QC Batch Method: EPA 300.0 Analysis Method: Analysis Description:

EPA 300.0

300.0 IC Anions

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60427375001

METHOD BLANK: 3346274

Chloride

Fluoride

Chloride

Fluoride

Sulfate

Matrix: Water

Associated Lab Samples: 60427375001

> Blank Reporting Limit Result

> > <1.0

< 0.20

Qualifiers Analyzed 1.0 05/01/23 18:48 0.20 05/01/23 18:48

05/01/23 18:48

Sulfate

Parameter

Parameter

mg/L <1.0

LABORATORY CONTROL SAMPLE: 3346275

Units

mg/L

mg/L

Units

mg/L

mg/L

mg/L

Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
5	4.6	93	90-110	
2.5	2.7	107	90-110	
5	5.2	104	00 110	

1.0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3346277

Parameter	Units	60426605003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	26.7	25	25	52.3	61.2	102	138	80-120	16	15	M1,R1
Fluoride	mg/L	<0.12	2.5	2.5	2.2	2.2	89	88	80-120	2	15	
Sulfate	mg/L	155	100	100	329	256	175	101	80-120	25	15	M1,R1

SAMPLE DUPLICATE: 3346278

Date: 05/03/2023 03:46 PM

		60426605003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	26.7	26.3	1	15	
Fluoride	mg/L	<0.12	< 0.20		15	
Sulfate	mg/L	155	168	8	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/03/2023 03:46 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR

Pace Project No.: 60427375

Date: 05/03/2023 03:46 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60427375001	MW-6-042723	EPA 200.7	844414	EPA 200.7	844552
60427375001	MW-6-042723	EPA 3010	844415	EPA 6010	844556
60427375001	MW-6-042723	EPA 200.8	844416	EPA 200.8	844557
60427375001	MW-6-042723	SM 2540C	844779		
60427375001	MW-6-042723	SM 4500-H+B	844726		
60427375001	MW-6-042723	EPA 300.0	844319		

DC#_Title: ENV-FRM-LENE-0009_Sample

Revision: 2 Effect	ctive Date: 01/12	2/2022	Issued By: Lenexa
Client Name: Evergy Kansas Central	inc.		
Courier: FedEx □ UPS □ VIA □ Clay □ F	PEX 🗆 ECI 🗆	Pace	☐ Xroads ☐ Client ☑ Other ☐
Fracking #: Pace	e Shipping Label l	Used? Ye	es ☑ No □
Custody Seal on Cooler/Box Present: Yes ╚╯ No □	Seals intact: Ye	es 🗹 No	o 🗆
Packing Material: Bubble Wrap □ Bubble Bags □ Thermometer Used: Type of			None Other Other
	Ice: Wet Blue		Date and initials of person 4
Cooler Temperature (°C): As-read 0-0 Corr. Factor	or TO-2 Cor	rected	examining contents: TA
Chain of Custody present:	√Yes □No □I	N/A	
***	Obves □No □I		
Chain of Custody relinquished:	Ø ves □No □I		
Samples arrived within holding time:			
Short Hold Time analyses (<72hr):	□Yes ŪMo □I		
Rush Turn Around Time requested:	□Yes ╚╉o □≀	N/A	
ufficient volume:	₩es □No □	N/A	
orrect containers used:	⊡ Yes □No □	N/A	
ace containers used:	⊒res □No □I	N/A	
ontainers intact:	⊒∕∕es □No □l	N/A	
npreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 🗓	K I/A	
iltered volume received for dissolved tests?	□Yes □No 🖽	N/A	
ample labels match COC: Date / time / ID / analyses	∰res □No □n	N/A	
amples contain multiple phases? Matrix:	□Yes ᡚMo □1	N/A	
ontainers requiring pH preservation in compliance?	⊉ Yes □No □1		ample IDs, volumes, lot #'s of preservative and the
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# :	1810	date/t	ime added.
yanide water sample checks:	W1101		
ead acetate strip turns dark? (Record only)	□Yes □No		
otassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
ip Blank present:	□Yes □No ☑	N/A	
eadspace in VOA vials (>6mm):	□Yes □No ᡚ	N/A	
amples from USDA Regulated Area: State:	□Yes □No \\	V/A	
dditional labels attached to 5035A / TX1005 vials in the field?	Yes 🗆 No 🖳	(I/A	
lient Notification/ Resolution: Copy COC to	Client? Y / N	l F	Field Data Required? Y / N
erson Contacted: Date/Ti	ime:		
omments/ Resolution:			
5.			
roject Manager Review:		Date:	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

()																																		
Section Require	n A ed Client Information:	Section B Required P		Infor	mation:						ction pice In	C nforma	ation:																Pag	ge:	1	of	1	
Compan	y: EVERGY KANSAS CENTRAL, INC.	Report To:	Jake	Hur	mphrey						ntion:				ts Pa	ayab	le					٦						-						
Address	400 W. Van Buren St	Сору То:	Laur	a Hii	nes, Sam	antha Ka	aney,Melis	sa Miche	els	Com	npany	y Nam	ne:	ÉVE	RG	/ KA	NS/	4S (CEN	TR/	AL, I	Nd	REG	ULA	TOF	RY A	GEN	ICY						
	Suite 545 Phoenix, AZ 85004									-	lress:				ction							┪	_	NPD		V			ID W	/ATE	R [DRINKIN	G WA	ER
Email To	skaney@haleyaldrich.com	Purchase O	Order N	No.I							e Quot											┪	Γ-	UST		Г	RC				Г	OTHER		
Phone:	507-251-2232 Fax:	Project Nam	ne:	TEC	322 Lan	dfill CCF	?			Pace	e Proje		Alic	e Sp	iller	913	-563	3-14	03			-	_	Loc		n			_					
Reques	ted Due Date/TAT:	Project Num	nber:							Mana		īle #:	965	7, 1	1							┪			ATE	1		KS						
													_	_			П		R	equ	este	d A	naly	/sis			(Y/N	1)						
	Section D Valid Matrix Required Client Information MATRIX	CODE	to left)	C=COMP)		COLL	ECTED.					8	Pres	serva	ative	s		N/A	N	N	N	N	N	N										
24	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL SAMPLE ID (A-Z, 0-9 / ,-) OTHER	WT WW P SL OL WP	MATRIX CODE (see valid codes to left)	(G=GRAB	COMPI STAI		COMPO END/GI	SITE RAB	AT COLLECTION	NERS								Fest	B,Ca,Ba	ဝိ	Hd	S04							1	orine (Y/N)	604	1273	75	
ITEM#	Sample IDs MUST BE UNIQUE TISSUE	OT TS	SAMPLE TYPE	DATE	TIME	DATÉ	TIME	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HNO3	IC I	Na ₂ S ₂ O ₃	Methanol	Other	Analysis Test	200.7 Total:	200.8 Total Co	μ٩	300 CI F S	2540C 1DS	6010 Lithium		*:			:	Residual Chlorine (Y/N)		Project I		ab I.D.	
1	MW-6-042723		WT	G	-		04/27/23	10:00	L	3 2 1			Ц		_X	х	Х	х	х	х	+	+	⊢	\sqcup	4	4								
2						_	-		┡	┡	+	₽	Н	+	+	+	Н		Н	-	4	+	+	+	+	+	\vdash		+	\dashv				
3			_				-		⊢	╀	+	+	Н	+	+	+	\dashv		Н	\dashv	\dashv	+	+	+	+	+	\vdash	\vdash	+	+				
4			\vdash	_			-		\vdash	╀	+	+	Н	+	+	+	Н		Н	\dashv	\dashv	+	+	+	+	╁	\vdash	H	+	+				
5			\vdash						+	┢	+	+	H	+	+	+	H		Н	\dashv	+	+	+	+	+	╁	\vdash	H	+	+				
7			\vdash					-	\vdash	1	+	+	H	+	+	+	H		Н	\dashv	\dashv	7	+	+	+	+	\vdash	H	+	+				
8										╁	+	+	Н	\top		+	H		Н	\exists	\exists	7	+		\top	†	\vdash	\vdash	\dashv	T				
9	†		Г						T	T	1	T	П	T	1	1	Ħ		П		7	1	7	T	T	T	T	П	T	T				
10										T			П										T		T	T			\top	\top	32			
11										T		Т	П	\neg															\Box	\neg				
12														I															\Box					
	ADDITIONAL COMMENTS		RELI	NQUI	ISHED BY	AFFILIAT	ION	DAT	E		TIME	E			A	CCEF	TED	BY	AF	ША	TION		,		TE		TIME	_			SAME	LE CONDI	IONS	
			1	√latt \	/anderPut	ten / SCS		4/27/	23		17:0	00		/	4	_	=		2	=	\leq			4/0	27	1/	715	5	0.	2	4	Y		Y
														0	-		70							/			0					(
										1													\dashv							\top				
		1																								1				\neg				
Page						SAMPL	ER NAME A	AND SIGN	ATUI	RE													_						ပ့	,	E 🕣	y		ntact
21							PRINT Nam			-	att Va	ande	erPu	tten	_	-	, K		DA	TE S	Signe	ed							Cemp in °C		Received or Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
of 22						L	SIGNATUR	E OT SAMI	LER	y	10	a	7'	1		4	F	_			D/YY										II.	ű	<u> </u>	ഗ്

client: Every kansas centra 1 Inc.

Site: TEC 322 Landfill CCR

Notes

COC Line Item	Matrix	VG9H	реэн	DG9Q	VG9U	nesa	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗГ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	WT																		1		1		1								
2																															
3																															
4																															
5																															
6																															
7																															
8																						~ (
9																															
10																															
11																															
12																															

Container Codes

		Glass			Plastic		Misc.
OG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab
OG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		100
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	7	
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		
				BP4S	125mL H2SO4 plastic	7	

WPDU

16oz unpresserved plstic

Work Order Number:

60427375

ATTACHMENT 2-2 June 2023 Annual Assessment Sampling Event Laboratory Analytical Report

July 03, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on June 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pa

alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622

New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60430215001	MW-1-060523	Water	06/05/23 10:20	06/05/23 16:00
60430215002	MW-4-060523	Water	06/05/23 12:45	06/05/23 16:00
60430215003	MW-5-060523	Water	06/05/23 11:55	06/05/23 16:00
60430215004	MW-6-060523	Water	06/05/23 11:00	06/05/23 16:00
60430215005	DUP-322LF-060523	Water	06/05/23 10:20	06/05/23 16:00

SAMPLE ANALYTE COUNT

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60430215001	MW-1-060523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
60430215002	MW-4-060523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
60430215003	MW-5-060523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
60430215004	MW-6-060523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
60430215005	DUP-322LF-060523	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: July 03, 2023

General Information:

5 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: July 03, 2023

General Information:

5 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Method: Total Radium Calculation
Description: Total Radium 228+226
Client: Evergy Kansas Central, Inc.

Date: July 03, 2023

General Information:

5 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Sample: MW-1-060523 PWS:	Lab ID: 60430215 Site ID:	Collected: 06/05/23 10:20 Sample Type:	Received:	06/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.319 ± 0.333 (0.469) C:NA T:98%	pCi/L	06/26/23 16:41	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		0.725 ± 0.476 (0.926) C:86% T:83%	pCi/L	06/19/23 17:15	5 15262-20-1	
	Pace Analytical Serv	ices - Greensburg				
Total Radium	Total Radium Calculation	1.04 ± 0.809 (1.40)	pCi/L	06/27/23 16:48	3 7440-14-4	

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Sample: MW-4-060523 PWS:	Lab ID: 6043 Site ID:	0215002 Collected: 06/05/23 12:45 Sample Type:	Received:	06/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.0589 ± 0.447 (0.884) C:NA T:95%	pCi/L	06/26/23 16:4	1 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.787 ± 0.387 (0.674) C:90% T:86%	pCi/L	06/19/23 17:1	5 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.846 ± 0.834 (1.56)	pCi/L	06/27/23 16:48	8 7440-14-4	

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Sample: MW-5-060523 PWS:	Lab ID: 6043021 Site ID:	5003 Collected: 06/05/23 11:55 Sample Type:	Received:	06/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg			_	
Radium-226	EPA 903.1	0.0628 ± 0.369 (0.754) C:NA T:94%	pCi/L	06/26/23 16:57	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 904.0	0.445 ± 0.336 (0.653) C:90% T:78%	pCi/L	06/19/23 17:16	5 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.508 ± 0.705 (1.41)	pCi/L	06/27/23 16:48	7440-14-4	

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Sample: MW-6-060523 Lab ID: 60430215004 Collected: 06/05/23 11:00 Received: 06/05/23 16:00 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Upon receipt at the laboratory, 2.5 mls of nitric acid were added to one bottle of the sample to meet the sample preservation

requirement of pH <2 for radiochemistry analysis. The samples were preserved <2 within the required 5 days of collection.

requirement of pr	11 <2 101 Tadiochemistry an	ialysis. The samples were preserved <2	within the rec	difed 5 days of con-	ection.	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.121 ± 0.336 (0.652) C:NA T:92%	pCi/L	06/26/23 16:57	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.413 ± 0.299 (0.570) C:86% T:87%	pCi/L	06/19/23 17:16	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.534 ± 0.635 (1.22)	pCi/L	06/27/23 16:48	7440-14-4	

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Sample: DUP-322LF-060523 PWS:	Lab ID: 6043021 5 Site ID:	Collected: 06/05/23 10:20 Sample Type:	Received:	06/05/23 16:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	vices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.443 (0.906) C:NA T:96%	pCi/L	06/26/23 16:57	13982-63-3	
	Pace Analytical Serv	vices - Greensburg				
Radium-228	EPA 904.0	0.242 ± 0.320 (0.682) C:88% T:86%	pCi/L	06/19/23 17:16	5 15262-20-1	
	Pace Analytical Serv	vices - Greensburg				
Total Radium	Total Radium Calculation	0.242 ± 0.763 (1.59)	pCi/L	06/27/23 16:48	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

QC Batch: 594346 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60430215001, 60430215002, 60430215003, 60430215004, 60430215005

METHOD BLANK: 2888857 Matrix: Water

Associated Lab Samples: 60430215001, 60430215002, 60430215003, 60430215004, 60430215005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.390 ± 0.298 (0.580) C:90% T:87%
 pCi/L
 06/19/23 17:15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

QC Batch: 594344 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 60430215001, 60430215002, 60430215003, 60430215004, 60430215005

METHOD BLANK: 2888852 Matrix: Water

Associated Lab Samples: 60430215001, 60430215002, 60430215003, 60430215004, 60430215005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.251 ± 0.262 (0.369) C:NA T:89%
 pCi/L
 06/26/23 16:41

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/03/2023 09:08 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LF CCR RADCHEM

Pace Project No.: 60430215

Date: 07/03/2023 09:08 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60430215001	MW-1-060523	EPA 903.1	594344		
60430215002	MW-4-060523	EPA 903.1	594344		
60430215003	MW-5-060523	EPA 903.1	594344		
60430215004	MW-6-060523	EPA 903.1	594344		
60430215005	DUP-322LF-060523	EPA 903.1	594344		
60430215001	MW-1-060523	EPA 904.0	594346		
60430215002	MW-4-060523	EPA 904.0	594346		
60430215003	MW-5-060523	EPA 904.0	594346		
60430215004	MW-6-060523	EPA 904.0	594346		
60430215005	DUP-322LF-060523	EPA 904.0	594346		
60430215001	MW-1-060523	Total Radium Calculation	597944		
60430215002	MW-4-060523	Total Radium Calculation	597944		
60430215003	MW-5-060523	Total Radium Calculation	597944		
60430215004	MW-6-060523	Total Radium Calculation	597944		
60430215005	DUP-322LF-060523	Total Radium Calculation	597944		

WO#:60430215

DC#_Title: ENV-FRM-LENE-0009_Sar

Revision: 2	Effective Date: 01/12/2022	Issued By: Lenexa

Client Name: Evergy kansa (fntra)	, In C.			
	PEX D ECI D	Pace □ Xroads □	Client ✓ Other ☐	
Tracking #: Pac	e Shipping Label Used	ł? Yes 🗹 No 🗆		
Custody Seal on Cooler/Box Present: Yes □ No □	Seals intact: Yes 🖺	r No □	01.0	
Packing Material: Bubble Wrap □ Bubble Bags □	□ Foam □	None □ Oth	ner FZPLC	3
\ 	lce: Wet Blue		Date and initials of person	6/6/22
Cooler Temperature (°C): As-read 2(-O Corr. Fact	or <u>+0-2</u> Correct	ed 21-2	examining contents:	0/0/23
Temperature should be above freezing to 6°C				
Chain of Custody present:	ODYes □No □N/A			
Chain of Custody relinquished:	©Yes □No □N/A			
Samples arrived within holding time:	res □No □N/A			
Short Hold Time analyses (<72hr):	□Yes ⊠No □N/A		18	
Rush Turn Around Time requested:	□Yes □N/A	1		
Sufficient volume:	☑Yes □No □N/A			
Correct containers used:	⊠Yes □No □N/A			
Pace containers used:	☑Yes □No □N/A			
Containers intact:	r o o o o o o o o o o o o o o o o o o o			
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □/ N/A			
Filtered volume received for dissolved tests?	□Yes □No ☑N/A			
Sample labels match COC: Date / time / ID / analyses	☑Yes □No □N/A			
Samples contain multiple phases? Matrix: 📉	□Yes 교No □N/A			
Containers requiring pH preservation in compliance?	□Yes □No ☑N/A	,	es, lot #'s of preservative ar	nd the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		date/time added.		
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#: Cyanide water sample checks:				
Lead acetate strip turns dark? (Record only)	□Yes □No			
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No			
Trip Blank present:	□Yes □No ↓ N/A			
Headspace in VOA vials (>6mm):	□Yes □No ▼ N/A			
Samples from USDA Regulated Area: State:	□Yes □No □N/A			
Additional labels attached to 5035A / TX1005 vials in the field?	? □Yes □No ☑N/A			
	Client? Y / N	Field Data Required	? Y / N	
Person Contacted: Date/T	ime:			
Comments/ Resolution:				
	_			-
Project Manager Review:	Date): 		
,	-			

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf. Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Of Page: Evergy Kansas Central, Inc. Report To: Jake Humphrey Attention: Address: 400 E Van Buren St Copy To: Laura Hines, Samantha Kaney, Melissa Michels Company Name: Suite 545, Phoenix, AZ 85004 Address: Regulatory Agency skaney@haleyaldrich.com Purchase Order #: Pace Quote: hone: Project Name: 507-251-2232 TEC 322 LF CCR RADCHEM Pace Project Manager: State / Location Requested Due Date: Project #: Pace Profile #: 9657, line 7 KS Requested Analysis Filtered (Y/N) C=COMP) COLLECTED Preservatives MATRIX SAMPLE TEMP AT COLLECTION Drinking Water Water (G=GRAB Waste Water ww Product **Analyses Test** SAMPLE ID Soil/Solid ees) START END Oil OL WP One Character per box. Wine MATRIX CODE SAMPLE TYPE AR OT (A-Z, 0-9 / , -) Sheets Other Sample ids must be unique Methanol Ξ Tissue H2S04 NaOH 豆 드 TIME DATE TIME DATE 1020 1 MW-1-060523 WT G 6/5/23 2 1245 MW-4-060523 WT 6/5/23 1155 3 MW-5-060523 WT G 6/5/23 1100 MW-6-060523 WT G 6/5/23 5 1020 DUP-322LF-060523 WT G 6/5/23 6 7 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION **ACCEPTED BY / AFFILIATION** SAMPLE CONDITIONS DATE TIME 1600/21.2 65-27 MM Matt VanderPutten / SCS SAMPLER NAME AND SIGNATURE 18 PRINT Name of SAMPLER: Matt VanderPutten 으 SIGNATURE of SAMPLER:// 22

	tern	al Transfe	er Chain	of C	ustoc	ly —						or	·						
						s Pre-Logged	into eC0	OC.		te Of Ori t. Neede	_	$\overline{}$	Yes		lo		4		Analytical S
	rkorde ort To	er: 60430215	Workorder			22 LF CCR RA	ADCHEN	Λ		ner Rece				6/5/202		sults	Reques	sted By:	7/5/2023
	e Spille	-			Subcontra _	<u> </u>							1444	Reque	sted Ana				
Pac 960 Len	e Analy 8 Loiret exa, KS	tical Kansas			1638 Suites Greer	Analytical Pittst Roseytown Roa 3 2,3, & 4 Isburg, PA 156 9 (724)850-560	ad 0 01				Combined + QC Sheets	Radium 226	Radium 228					TO THE REAL PROPERTY OF THE PR	
	18/18/7/2			in Section		1 30000 Viluony (50000)	i sieneess	P	reserved Co	ntainers	quo	P-		ALL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY A		TE-2000	ade on the second		
Item	Samp	le ID	Samp Type	e Collec		Lab ID	Matrix	HN03	HERNOTHER MEDICAL STATES	Towns of the second beautiful and the)	A PART OF THE PART	ACTIVITY OF THE PROPERTY OF TH		chemical contract con	ZIAKICZZIAŁA boma na opopyczna	MATERIAL DESCRIPTION OF THE PROPERTY OF THE PR	L.	AB USE ONLY
1	MW-1-0		PS	6/5/20	23 10:20	60430215001	Water	2		100	X	X	Х						100
2	MW-4-0		PS	6/5/20	23 12:45	60430215002	Water	2			Х	Х	Х						MZ.
3	MW-5-0		PS		23 11:55	60430215003	Water	2			Х	Х	Х						\$03
5	MW-6-0		PS		23 11:00	60430215004	Water	2			X	X	Х						907
0	DUP-32	2LF-060523	PS	6/5/20	23 10:20	60430215005	Water	2		***************************************	X	<u> X</u>	X						D02
Trar	sfers	Released By	i kang atang pagawang 1999 di kang	r	Date/Time	Received E	andersteen een een een een een een een een een			Date/Tir			(Second			Com	ments		iii aanii aa a
1		18	Rue		16 170			0000	where	6-7-22		d							ŀ
2					<i>710</i> · [O	O (NOTE	2). 00	ريست			2 (0	7							f
3												-							
Cod	oler Te	mperature on F	Receipt	°C	Cus	tody Seal 🎢	or N	V	Re	ceived o	n Ice	Y	or	(N)		Sam	ples In	tact (Y)	or N
***/n	order This cha	to maintain clier ain of custody is	nt confidential considered c	ity, locat omplete	ion/name as is sind	of the sampli ce this informa	ation is a	k : ;	er's name	and sign owner lab	ature orato	e ma ory.			ded on				

Pittsburgh					
Pace Effective Date: 02/03/2023	3				
Client Name: Pale LANSAS				Project #:	
Courier: Fed Ex UPS USPS Client] Comr	nercia	l 🗌 Pa	ace 🗌 Other	
Tracking Number: <u>6342</u> /38	7	7/7	7		Examined By
Custody Seal on Cooler/Box Present:	s 🗆 No) :	Seals I	ntact: 🖳 Yes 🖸 No	Labeled By
Thermometer Used: Typ			et Bl	ue Mone	Temped By JUL (4)
Cooler Temperature: Observed Temp		·C	Corre	ction Factor:	°C Final Temp:°C
Temp should be above freezing to 6°C					
			1	pH paper Lot#	D.P.D. Residual Chlorine Lot #
Comments:	Yes	No	NA	1003121	·
Chain of Custody Present	/			1.	
Chain of Custody Filled Out:				2.	
-Were client corrections present on COC	4	√		RUL 6/7/23	
Chain of Custody Relinquished	1			3.	
Sampler Name & Signature on COC:	L			4.	
Sample Labels match COC:		<u> </u>		5.	
-Includes date/time/ID	*****				
Matrix: WT			·,···		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr				7. IJO# · 1	30593676
remaining):	*				30330010
Rush Turn Around Time Requested:				8. PM: MAR	Due Date: 06/28/23
Sufficient Volume:	/			9. CLIENT: PA	ICE_60_LEKS
Correct Containers Used:	-			10.	
-Pace Containers Used				11.	
Containers Intact:	 		—	12.	
Orthophosphate field filtered:	 		-	13.	
Hex Cr Aqueous samples field filtered:			-	14:	
Organic Samples checked for dechlorination Filtered volume received for dissolved tests:	 		-	15:	
	V			16.	
All containers checked for preservation:		<u> </u>	<u> </u>	All hottle's burt	phez except
exceptions: VOA, coliform, TOC, O&G,					bothe # 2.
Phenolics, Radon, non-aqueous matrix		T		-	Dato/Time of
All containers meet method preservation	~			Initial when completed TWL	Preservation 6 7 77 1400
requirements:	<u> </u>		-	Lot# of added	
	1	<u> </u>	1	Preservative OL 23	
8260C/D: Headspace in VOA Vials (> 6mm)	<u> </u>		/		
624.1: Headspace in VOA Vials (0mm)		·	/	18.	
Trip Blank Present:				· ·	/ seal present? YES or NO
Rad Samples Screened <0.5 mrem/hr.			<u> </u>	Initial when Da completed TWC	te: Survey Meter SN: /Sle 3
Comments:					William Control of the Control of th

DC#_Title: ENV-FRM-GBUR-0088 v04_Sample Condition Upon Receipt-

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

123

Pace Analytical www.pacelabs.com

Quality Control Sample Performance Assessment

Test: Ra-226
Analyst: CLM
Date: 6/13/2023
Batch ID: 73746
Matrix: DW

 Method Blank Assessment
 MB Sample ID
 2888852

 MB concentration:
 0.251

 MB Counting Uncertainty:
 0.260

 MB MDC:
 0.369

 MB Numerical Performance Indicator:
 1.89

 MB Status vs Numerical Indicator:
 N/A

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N N
	LCS73746	LCSD73746
Count Date:	6/26/2023	
Spike I.D.:	23-013	
Spike Concentration (pCi/mL):	32.285	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.651	
Target Conc. (pCi/L, g, F):	4.958	
Uncertainty (Calculated):	0.233	
Result (pCi/L, g, F):	5.048	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	0.959	
Numerical Performance Indicator:		
Percent Recovery:	E .	
Status vs Numerical Indicator:		
Status vs Recovery:		
Upper % Recovery Limits:		
Lower % Recovery Limits:	73%	

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result Counting Uncertainty (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Are sample and/or duplicate results below RL: Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: % RPD Limit	See Below ##	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Da	ite: 6/5/2023	1.000
Sample		
Sample MS	.D. 50346458002	
Sample MSD	.D. 50346458003	
Spike I	D.: 23-013	
MS/MSD Decay Corrected Spike Concentration (pCi/m	L): 32.286	
Spike Volume Used in MS (m	nL): 0.20	
Spike Volume Used in MSD (m		
MS Aliquot (L, g,	F): 0.654	
MS Target Conc.(pCi/L, g,	F): 9.873	
MSD Aliquot (L, g,	F): 0.656	
MSD Target Conc. (pCi/L, g,	F): 9.837	
MS Spike Uncertainty (calculate	ed): 0.464	
MSD Spike Uncertainty (calculate	ed): 0.462	
Sample Res		
Sample Result Counting Uncertainty (pCi/L, g,		
Sample Matrix Spike Res		
Matrix Spike Result Counting Uncertainty (pCi/L, g,	F): 1.389	l
Sample Matrix Spike Duplicate Res		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g,		
MS Numerical Performance Indica	i i	
MSD Numerical Performance Indica	**	
MS Percent Recove		
MSD Percent Recove		
MS Status vs Numerical Indica	1	
MSD Status vs Numerical Indica		
MS Status vs Recove	- 1	
MSD Status vs Recove		
MS/MSD Upper % Recovery Lin		
MS/MSD Lower % Recovery Lin	nits: 71%	1

latrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.	50346458001	
Sample MS I.D.	50346458002	
Sample MSD I.D.	50346458003	
Sample Matrix Spike Result:	10.965	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.389	
Sample Matrix Spike Duplicate Result:	9.860	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	1.404	
Duplicate Numerical Performance Indicator:	1.097	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	12.64%	
MS/ MSD Duplicate Status vs Numerical Indicator:	N/A	
MS/ MSD Duplicate Status vs RPD:	Pass	
% RPD Limit:	32%	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Test:	Ra-228
Analyst:	VAL
Date:	6/14/2023
Worklist:	73747
Matrix:	WΤ

Method Blank Assessn	nent	
	MB Sample ID	2888857
	MB concentration:	0.390
	M/B 2 Sigma CSU:	0,298
	MB MDC:	0.580
	MB Numerical Performance Indicator:	2.57
	MB Status vs Numerical Indicator:	Warning
	MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS73747	LCSD73747
Count Date:	6/19/2023	
Spike I.D.:	23-040	
Decay Corrected Spike Concentration (pCi/mL):	39,506	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	0.806	
Target Conc. (pCi/L, g, F):	4.904	
Uncertainty (Calculated):	0.240	
Result (pCi/L, g, F):	4.088	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.911	Ì
Numerical Performance Indicator:	-1.70	
Percent Recovery:	83.35%	
Status vs Numerical Indicator:	N/A	1
Status vs Recovery:		
Upper % Recovery Limits:		
Lower % Recovery Limits:	60%	

Duplicate Sample Assessment Sample I.D.: Duplicate Sample I.D.		Enter Duplicate sample IDs if
Sample Result (pCi/L, g, F): Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL?	See Below ##	other than LCS/LCSD in the space below.
Duplicate Numerical Performance Indicator: Duplicate RPD: Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD: 94. PDD L limit:		

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	6/5/2023	ļ
Sample I.D.	50346458001	1
Sample MS I.D.	50346458002	
Sample MSD I.D.	50346458003	1
Spike I.D.:	23-040	Į.
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	39.691	
Spike Volume Used in MS (mL):	0.20	
Spike Volume Used in MSD (mL):	0.20	
MS Aliquot (L, g, F):	0.804	
MS Target Conc.(pCi/L, g, F):	9.870	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):	9.897	
MS Spike Uncertainty (calculated):	0.484	
MSD Spike Uncertainty (calculated):		1
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):		
Sample Matrix Spike Result:	7.751	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.611	[
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:	-3.928	
MSD Numerical Performance Indicator:		
MS Percent Recovery:		
MSD Percent Recovery:	67.12% Fail****	
MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:		
MSD Status vs Numerical indicator. MS Status vs Recovery:		ľ
MSD Status vs Recovery:		
MS/MSD Upper % Recovery Limits:	1	1
MS/MSD Copper % Recovery Limits: MS/MSD Lower % Recovery Limits:		
MOMOD LOTO, 10 (COSTO) LIMO.		

Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.	50346458001	
Sample MS I.D.	50346458002	
Sample MSD I.D.	50346458003	
Sample Matrix Spike Result:	7.751	
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	1.611	
Sample Matrix Spike Duplicate Result:	8.055	
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1.648	
Duplicate Numerical Performance Indicator:	-0.259	
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	4.42%	
MS/ MSD Duplicate Status vs Numerical Indicator:	Pass	
MS/ MSD Duplicate Status vs RPD:	Pass	
% RPD Limit:	36%	

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

M6/20/23

MS/MSD Passes To recovery confering pass, this batch is acceptable. The matrix spike duplicate result indicates a possible bias for this sample only and may not be applicable to any other samples in this analytical batch.

6-20-23

June 16, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on June 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

(913)599-5665 PM Lab Management

alice Spiller

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60430235001	MW-1-060523	Water	06/05/23 10:20	06/05/23 16:00
60430235002	MW-4-060523	Water	06/05/23 12:45	06/05/23 16:00
60430235003	MW-5-060523	Water	06/05/23 11:55	06/05/23 16:00
60430235004	MW-6-060523	Water	06/05/23 11:00	06/05/23 16:00
60430235005	DUP-322LF-060523	Water	06/05/23 10:20	06/05/23 16:00

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60430235001	MW-1-060523	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	ALH	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60430235002	MW-4-060523	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	ALH	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60430235003	MW-5-060523	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	ALH	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60430235004	MW-6-060523	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	ALH	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K
60430235005	DUP-322LF-060523	EPA 200.7	JXD	4	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	ALH	1	PASI-K
		EPA 300.0	CRN2	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: June 16, 2023

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Method: EPA 6010

Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: June 16, 2023

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: June 16, 2023

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Method: EPA 245.1 Description: 245.1 Mercury

Client: Evergy Kansas Central, Inc.

Date: June 16, 2023

General Information:

5 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: June 16, 2023

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Sample: MW-1-060523	Lab ID: 6043	30235001	Collected: 06/05/2	3 10:20	Received: 06	/05/23 16:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:17	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/13/23 16:17	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:17	7440-47-3	
_ead, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:17	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:42	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/07/23 14:13	06/09/23 11:53	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:53	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
-	Pace Analytical	Services -	Kansas City					
Mercury	<0.20	ug/L	0.20	1	06/12/23 14:34	06/13/23 13:01	7439-97-6	
800.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		06/14/23 00:11	16984-48-8	

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Sample: MW-4-060523	Lab ID: 6043	30235002	Collected: 06/05/2	3 12:45	Received: 06	5/05/23 16:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.099	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:24	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/13/23 16:24	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:24	7440-47-3	
ead, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:24	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
ithium, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:48	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/07/23 14:13	06/09/23 11:56	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7440-48-4	
Nolybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:56	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
•	Pace Analytical							
Mercury	<0.20	ug/L	0.20	1	06/12/23 14:34	06/13/23 13:08	7439-97-6	
800.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20			06/14/23 00:24		

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Sample: MW-5-060523	Lab ID: 6043	30235003	Collected: 06/05/2	3 11:55	Received: 06	/05/23 16:00 IV	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.024	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:26	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/13/23 16:26	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:26	7440-47-3	
_ead, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:26	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	od: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
Lithium, Total Recoverable	0.017	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:50	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/07/23 14:13	06/09/23 11:58	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 11:58	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
-	Pace Analytical							
Mercury	<0.20	ug/L	0.20	1	06/12/23 14:34	06/13/23 13:10	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
	_							

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Sample: MW-6-060523	Lab ID: 6043	30235004	Collected: 06/05/2	3 11:00	Received: 06	5/05/23 16:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.016	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:28	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/13/23 16:28	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:28	7440-47-3	
ead, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:28	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
ithium, Total Recoverable	0.014	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:52	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/07/23 14:13	06/09/23 12:01	7440-43-9	
Cobalt, Total Recoverable	0.0020	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7440-48-4	
Molybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:01	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
•	Pace Analytical							
Mercury	<0.20	ug/L	0.20	1	06/12/23 14:34	06/13/23 13:12	7439-97-6	
800.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
Fluoride	0.32	mg/L	0.20	1		06/14/23 00:51		

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Sample: DUP-322LF-060523	Lab ID: 6043	30235005	Collected: 06/05/2	23 10:20	Received: 06	/05/23 16:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytical	Services -	Kansas City					
Barium, Total Recoverable	0.050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:30	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/13/23 16:30	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	06/07/23 14:13	06/13/23 16:30	7440-47-3	
ead, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:30	7439-92-1	
010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytical	Services -	Kansas City					
ithium, Total Recoverable	<0.010	mg/L	0.010	1	06/07/23 14:13	06/13/23 16:54	7439-93-2	
00.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytical	Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	06/07/23 14:13	06/09/23 12:07	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7440-48-4	
lolybdenum, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7782-49-2	
hallium, Total Recoverable	<0.0010	mg/L	0.0010	1	06/07/23 14:13	06/09/23 12:07	7440-28-0	
45.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
-	Pace Analytical							
Mercury	<0.20	ug/L	0.20	1	06/12/23 14:34	06/13/23 13:17	7439-97-6	
00.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
-	Pace Analytical	Services -	Kansas City					
luoride	<0.20	mg/L	0.20	1		06/14/23 01:05	16004 40 0	

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

QC Batch: 851869 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

METHOD BLANK: 3373974 Matrix: Water

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 06/13/23 12:40

LABORATORY CONTROL SAMPLE: 3373975

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 4.9 99 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3373976 3373977

MS MSD

60430287002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Result Conc. % Rec Limits Qual 5 4.2 20 Mercury ug/L 0.30 5 4.2 78 78 70-130

MATRIX SPIKE SAMPLE: 3373978

Date: 06/16/2023 09:29 AM

60430235004 MS MS % Rec Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits <0.20 5 4.3 85 70-130 Mercury ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

QC Batch: 851075 Analysis Method:

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

EPA 200.7

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

METHOD BLANK: 3370809 Matrix: Water

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	06/13/23 16:13	
Beryllium	mg/L	< 0.0010	0.0010	06/13/23 16:13	
Chromium	mg/L	< 0.0050	0.0050	06/13/23 16:13	
Lead	mg/L	< 0.010	0.010	06/13/23 16:13	

LABORATORY CONTROL SAMPLE:	3370810					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Barium	mg/L		0.99	99	85-115	
Beryllium	mg/L	1	1.0	102	85-115	
Chromium	mg/L	1	1.0	100	85-115	
Lead	mg/L	1	1.0	104	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3370	811		3370812							
			MS	MSD								
	6	0430235001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.050	1	1	1.0	1.1	97	101	70-130	3	20	
Beryllium	mg/L	< 0.0010	1	1	0.98	1.0	98	100	70-130	2	20	
Chromium	mg/L	< 0.0050	1	1	1.0	1.0	101	102	70-130	2	20	
Lead	mg/L	<0.010	1	1	0.98	1.0	98	101	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

QC Batch: 851079 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

METHOD BLANK: 3370820 Matrix: Water

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	06/09/23 11:47	
Arsenic	mg/L	< 0.0010	0.0010	06/09/23 11:47	
Cadmium	mg/L	< 0.00050	0.00050	06/09/23 11:47	
Cobalt	mg/L	< 0.0010	0.0010	06/09/23 11:47	
Molybdenum	mg/L	< 0.0010	0.0010	06/09/23 11:47	
Selenium	mg/L	< 0.0010	0.0010	06/09/23 11:47	
Thallium	mg/L	<0.0010	0.0010	06/09/23 11:47	

Date: 06/16/2023 09:29 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	mg/L	0.04	0.039	98	85-115	
Arsenic	mg/L	0.04	0.038	96	85-115	
Cadmium	mg/L	0.04	0.040	99	85-115	
Cobalt	mg/L	0.04	0.040	100	85-115	
Molybdenum	mg/L	0.04	0.040	99	85-115	
Selenium	mg/L	0.04	0.039	99	85-115	
Thallium	mg/L	0.04	0.039	98	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 3370		MCD	3370823							
Paga sa stan	11-2-	60430235005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec	555	Max	01
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	< 0.0010	0.04	0.04	0.040	0.039	99	97	70-130	3	20	
Arsenic	mg/L	< 0.0010	0.04	0.04	0.040	0.040	100	98	70-130	2	20	
Cadmium	mg/L	< 0.00050	0.04	0.04	0.039	0.038	97	95	70-130	2	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.040	0.039	99	97	70-130	2	20	
Molybdenum	mg/L	< 0.0010	0.04	0.04	0.043	0.042	107	104	70-130	2	20	
Selenium	mg/L	< 0.0010	0.04	0.04	0.039	0.038	97	94	70-130	3	20	
Thallium	mg/L	< 0.0010	0.04	0.04	0.043	0.042	106	104	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

QC Batch: 851077 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

METHOD BLANK: 3370815 Matrix: Water

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 06/13/23 16:38

LABORATORY CONTROL SAMPLE: 3370816

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Lithium 0.98 98 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3370817 3370818

MS MSD

60430235001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec **RPD** RPD Qual Result Conc. % Rec Limits < 0.010 0.99 20 Lithium mg/L 1.0 98 102 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Fluoride

Date: 06/16/2023 09:29 AM

QC Batch: 851545 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

METHOD BLANK: 3372733 Matrix: Water

Associated Lab Samples: 60430235001, 60430235002, 60430235003, 60430235004, 60430235005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Fluoride mg/L <0.20 0.20 06/13/23 18:23

LABORATORY CONTROL SAMPLE: 3372734

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units 2.5 2.4 95 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3372735 3372736

MS MSD

60430373004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Fluoride mg/L 1.1 2.5 2.5 3.8 3.9 107 111 80-120 3 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 06/16/2023 09:29 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR (APP IV)

Pace Project No.: 60430235

Date: 06/16/2023 09:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60430235001	MW-1-060523	EPA 200.7	851075	EPA 200.7	851202
60430235002	MW-4-060523	EPA 200.7	851075	EPA 200.7	851202
60430235003	MW-5-060523	EPA 200.7	851075	EPA 200.7	851202
60430235004	MW-6-060523	EPA 200.7	851075	EPA 200.7	851202
60430235005	DUP-322LF-060523	EPA 200.7	851075	EPA 200.7	851202
60430235001	MW-1-060523	EPA 3010	851077	EPA 6010	851203
60430235002	MW-4-060523	EPA 3010	851077	EPA 6010	851203
60430235003	MW-5-060523	EPA 3010	851077	EPA 6010	851203
60430235004	MW-6-060523	EPA 3010	851077	EPA 6010	851203
60430235005	DUP-322LF-060523	EPA 3010	851077	EPA 6010	851203
60430235001	MW-1-060523	EPA 200.8	851079	EPA 200.8	851204
60430235002	MW-4-060523	EPA 200.8	851079	EPA 200.8	851204
60430235003	MW-5-060523	EPA 200.8	851079	EPA 200.8	851204
60430235004	MW-6-060523	EPA 200.8	851079	EPA 200.8	851204
60430235005	DUP-322LF-060523	EPA 200.8	851079	EPA 200.8	851204
60430235001	MW-1-060523	EPA 245.1	851869	EPA 245.1	852023
60430235002	MW-4-060523	EPA 245.1	851869	EPA 245.1	852023
60430235003	MW-5-060523	EPA 245.1	851869	EPA 245.1	852023
60430235004	MW-6-060523	EPA 245.1	851869	EPA 245.1	852023
60430235005	DUP-322LF-060523	EPA 245.1	851869	EPA 245.1	852023
60430235001	MW-1-060523	EPA 300.0	851545		
60430235002	MW-4-060523	EPA 300.0	851545		
60430235003	MW-5-060523	EPA 300.0	851545		
60430235004	MW-6-060523	EPA 300.0	851545		
60430235005	DUP-322LF-060523	EPA 300.0	851545		

WO#:60430235

DC#_Title: ENV-FRM-LENE-0009_Sar

Revision: 2 Effective Date: 01/12/2022 Issued By: Lenexa

Client Name: Every Kansal Cent	tal, 1	nc	1	
Courier: FedEx □ UPS □ VIA □ Clay □ PI	EX 🗆	ECI	Ι□	Pace □ Xroads □ Client 🗹 Other □
Tracking #: Pace	Shippin	g Lab	el Use	d? Yes IV No □
Custody Seal on Cooler/Box Present: Yes Ѿ∕ No □	Seals in	ntact:	Yes 🖪	Y No □
Packing Material: Bubble Wrap □ Bubble Bags □		Fo	am 🗆	None □ Other ► ZPC
Thermometer Used: 🔼 🤼 Type of I	lce: 🕪	Bl	ue No	ne Danas distribution of Mahaa
Cooler Temperature (°C): As-read <u>3 · ¶</u> Corr. Facto	r +0-2	(Correct	Date and initials of person 6/6/23
Temperature should be above freezing to 6°C				
Chain of Custody present:	⊉ %es [□No	□N/A	
Chain of Custody relinquished:	⊉ Yes [□No	□n/a	
Samples arrived within holding time:	Yes [□No	□N/A	
Short Hold Time analyses (<72hr):	□Yes [No N	□n/a	
Rush Turn Around Time requested:	□Yes	ØNo	□N/A	
Sufficient volume:	© Yes [JNo	□n/a	
Correct containers used:	☑ Yes [□No	□n/a	
Pace containers used:	☑Yes [□No	□n/a	
Containers intact:	V Yes [□No	□n/a	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes [□No	☑ N/A	
Filtered volume received for dissolved tests?	□Yes [□No	Ū√N/A	
Sample labels match COC: Date / time / ID / analyses	Έ ν γes [□No	□n/a	
Samples contain multiple phases? Matrix: W	□Yes [₹No	□N/A	
Containers requiring pH preservation in compliance?	© ∦es [□No	□N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# :	1810			date/time added.
Cyanide water sample checks:	4.0			
Lead acetate strip turns dark? (Record only)	□Yes [□No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes [□No		
Trip Blank present:	□Yes [□No	□ V M/A	
Headspace in VOA vials (>6mm):	□Yes [□No	Ľ¶N/A	
Samples from USDA Regulated Area: State:	□Yes [□No	MN/A	
Additional labels attached to 5035A / TX1005 vials in the field?		□No	N/A	
Client Notification/ Resolution: Copy COC to	Client?	Υ /	N	Field Data Required? Y / N
Person Contacted: Date/Tii	me:			
Comments/ Resolution:				
Project Manager Review:			Date	3 ;

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section E								Sect	tion C																P ₂	age;	1	of	1
Company	Client Information: EVERGY KANSAS CENTRAL, INC.	Required Report To:							_	Atten		omatic		-4-	D	-61-					_							ige.			
Address:	400 W. Van Buren St	1						B.CL								able		2=11													
radicos.		Сору то.	Laui	а ни	nes, sam	iantha Ka	aney,Melis	ssa iviicne	eis ——	1		Vame:					AS (JEN	IRA	\L, Ir	19R	EGU	LAT	ORY	AGE	NCY					
	Suite 545 Phoenix, AZ 85004		_							Addre		S	ee S	ectio	on A	١					_] [N	PDE	S	₹ GI	ROU	ND W	VATE	R	DRINKIN	G WATER
Email To	5.10.10 (6.10.10 0.10.10 1.10.10 1.10.10 1.10.10 1.10.10 1.10.10 1.10.10 1.10.10 1.10.10	Purchase (Order I	Vo.:						Refere											ſ	U	ST	Γ	R	CRA			Γ	OTHER	
Phone:	507-251-2232 Fax:	Project Nar	me:	TEC	322 Lar	dfill CCF	R (App IV)			Pace Manag	Project ger:	t A	lice :	Spille	er 9	13-56	3-14	03			T	Site L	.ocat	ion		140					
Request	ed Due Date/TAT:	Project Nui	mber:							Pace	Profile	#: 90	657,	6							1		STA	TE:	_	KS		-			
																		R	equ	este	d Ar	alys	is Fi	ltere	d (Y/I	N)					
	Section D Valid Matrix C Required Client Information MATRIX DRINKING WATER	CODE	codes to teft)	C=COMP)		COLL	ECTED					Pr	eser	vativ	⁄es		N/A	N	N	N	N	1									
	SAMPLE ID (A-Z, 0-9 /, -)	DW WT WW P SL OL WP AR OT	(see valid	(G=GRAB	COMP STA		COMPO END/GI	SITE RAB	SAMPLE TEMP AT COLLECTION	INERS							Test	Metals*	Total Metals **		2 8	3						orine (Y/N)	604	v302	35
ITEM#	Sample IDs MUST BE UNIQUE TISSUE	TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMF	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	을 달	NaOH	Na ₂ S ₂ O ₃	Methanol	4 Analysis	200.7 Total Metals'		6010 Lithium	245.1 Mecury	000						Residual Chlorine (Y/N)	Pace	Project I	No./ Lab I.D.
1	MW-1-060523		WT	G	107	- 21	06/05/23	1020	-	2	1	1	1	Ш	4	_		х	х	X	x >	4	Ш	_	_		Н	4			
2	MW-4-060523		WT	G		- 27	06/05/23	1245		2	1	1		Ц	1	_		х	х	х	x >						Ц	\perp			
3	MW-5-060523		WT	G	-6	545	06/05/23	1155	-	2	1	1		Ц	4	_		Х	х	х	x >	4					Ш	\perp			
4	MW-6-060523		WT	G			06/05/23	1100	-	2	11	1	1	Ш	4	_		х	х	Х	x >	4				┕	Ц	4			
5	DUP-322LF-060523		WT	G	-0	(97)	06/05/23	1020	-	- 2	1	1	1	Ц	4	\perp		х	х	х	x >							\perp			
6			_						╙	_	Ш		1	Ш	4	_		Ш	_	_	_	\perp	Ш		4		Ц	_			
7			_				-		_	1_	Н			Ц	4	_		Ш	_	_	4	╄			_	\perp	Ш	4			
8			_						_	_	Ш	4		Ц	4				_	_	_	\perp		Щ			Ц	\dashv			
9			_							<u> </u>	Ш		1	Н	4	_	1	Щ	_	4	_	_		4		\perp	Ц	\dashv			
10			_						_	<u> </u>	Н			Н	4	_	1	Ш	_	4	4	\perp	Ш			\perp	Ш	_			
11			_				-		_	_	Н	4	_	Н	4	\perp	1	Ц	Ц		4	\perp	Ш	_	\perp	\perp	Н	\dashv			
12									_	 _	Ш	4		Ш							_	+		Ц.		_	Н	\perp			
000 7 0	ADDITIONAL COMMENTS		RELI	NQUI	SHED BY	AFFILIAT	TON	DAT	E	_	TIME	_	,	_		EPTE	D BY				_	4	DATE	-	TIM	IE	ᆫ		SAME	LE CONDIT	TONS
	,Be,Cr,Pb		N	∕latt ∨	/anderPut	ten / SCS							5	100	N)	~	_	W	m	nes	0	10	5/2	3	160	0	4	1	Y	IT	1
200 8 Sb	,As,Cd,Co,Mo,Se,Tl																														
												1										T		\neg				\dashv			
										1		_										+	_	+			1	\dashv			
Page							ER NAME A	_																			, o	,	uo p	dy cooler	Intact)
e 23 of 2							PRINT Nam	e of SAMF E of SAMF	LER	Mat	t Var	nderP	utte	200	L	Ase.	4	_DA	TE S	igner	1 0	36	10	5/	23	?	Temp In °C	1	Received or Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)

Client: [Vergy	Kansas	(entra)	Inc-

AG3S

AG2U

AG3U

AG4U

AG5U

250mL H2SO4 amber glass

500mL unpres amber glass

250mL unpres amber glass

125mL unpres amber glass

100mL unpres amber glass

Profile # 9657, 6

Site: TEL 322 Land fill (CR CAPPIN)

Notes

COC Line Item	Matrix	VG9H	DG9H	DG90	VG9U	DG3N	DG9M	DG9B	BG1U	AG1H	AG10	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	врзг	BP3S	врзс	BP3Z	WPDU	ZPLC	Other		
1	W																			_	1		1				ш		14			
2																					T		T									
3																					1		1									
4																					1											
5	V																				V		V								_	
6																																
7																																
8																																
9																																
10																																
11																																
12																																

Container Codes

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	11	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
OG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
OG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	c	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
/G9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
/G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
/G9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250ml NaOH plastic		Matrix

BP3F

WPDU

BP3N 250mL HNO3 plastic SL Solid BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid BP3S 250mL H2SO4 plastic OL OIL BP3Z WP 250mL NaOH, Zn Acetate Wipe BP4U 125mL unpreserved plastic DW Drinking Water BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic

250mL HNO3 plastic - field filtered

16oz unpresserved plstic

WT

Water

Work Order Number:

BG1U

BG3H

BG3U

WGDU

60430235

1liter unpres glass

16oz clear soil jar

250mL HCL Clear glass

250mL Unpres Clear glass

Page 24 of 24

ATTACHMENT 2-3 September 2023 Semi-Annual Sampling Event Laboratory Analytical Report

November 08, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 05, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

REVISED to include reanalysis of TDS on sample 60436735002 per client request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

Alice Spiller

PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy
Laura Hines, Evergy, Inc.
Shannon Hughes, Evergy
Adam Irvin, Evergy
Samantha Kaney, Haley & Aldrich
Melanie Satanek, Haley Aldrich
Adriana Sosa, Haley & Aldrich, Inc.
Andrew Watson, Haley & Aldrich

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60436735001	MW-1-090523	Water	09/05/23 11:10	09/05/23 16:00
60436735002	MW-4-090523	Water	09/05/23 12:10	09/05/23 16:00
60436735003	MW-5-090523	Water	09/05/23 11:20	09/05/23 16:00
60436735004	MW-6-090523	Water	09/05/23 11:45	09/05/23 16:00
60436735005	TEC322LF-DUP-090523	Water	09/05/23 11:10	09/05/23 16:00

SAMPLE ANALYTE COUNT

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60436735001	MW-1-090523	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0436735002	MW-4-090523	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	ZVF	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0436735003	MW-5-090523	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0436735004	MW-6-090523	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0436735005	TEC322LF-DUP-090523	EPA 200.7	JXD	3	PASI-K
		EPA 6010	JXD	1	PASI-K
		EPA 200.8	JGP	1	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: November 08, 2023

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 863434

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60436419001,60436735001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3418902)
 - Calcium

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: EPA 6010
Description: 6010 MET ICP

Client: Evergy Kansas Central, Inc.

Date: November 08, 2023

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: November 08, 2023

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: SM 2540C

Description: 2540C Total Dissolved Solids
Client: Evergy Kansas Central, Inc.
Date: November 08, 2023

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

• MW-4-090523 (Lab ID: 60436735002)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric
Client: Evergy Kansas Central, Inc.
Date: November 08, 2023

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- MW-1-090523 (Lab ID: 60436735001)
- MW-4-090523 (Lab ID: 60436735002)
- MW-5-090523 (Lab ID: 60436735003)
- MW-6-090523 (Lab ID: 60436735004)
- TEC322LF-DUP-090523 (Lab ID: 60436735005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Evergy Kansas Central, Inc.
Date: November 08, 2023

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 864098

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60436735004,60437171040

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3421571)
 - Chloride
 - Fluoride
- MS (Lab ID: 3421573)
 - Sulfate
- MSD (Lab ID: 3421572)
 - Chloride
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Sample: MW-1-090523	Lab ID: 604	36735001	Collected: 09/05/2	3 11:10	Received: 09	9/05/23 16:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.051	mg/L	0.0050	1	09/06/23 15:07	09/08/23 09:19	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/06/23 15:07	09/08/23 09:19	7440-42-8	
Calcium, Total Recoverable	159	mg/L	0.20	1	09/06/23 15:07	09/08/23 09:19	7440-70-2	M1
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.011	mg/L	0.010	1	09/12/23 09:40	09/13/23 09:28	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/13/23 13:50	09/14/23 12:11	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	IOC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	950	mg/L	10.0	1		09/08/23 08:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
oH at 25 Degrees C	6.9	Std. Units	0.10	1		09/07/23 10:34		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Chloride	48.3	mg/L	20.0	20		09/13/23 18:31	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/13/23 18:18	16984-48-8	
Sulfate	372	mg/L	20.0	20		09/13/23 18:31	14808-79-8	

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Sample: MW-4-090523	Lab ID: 604	36735002	Collected: 09/05/2	23 12:10	Received: 09	/05/23 16:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.11	mg/L	0.0050	1	09/06/23 15:07	09/08/23 09:23	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/06/23 15:07	09/08/23 09:23	7440-42-8	
Calcium, Total Recoverable	169	mg/L	0.20	1	09/06/23 15:07	09/08/23 09:23	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	<0.010	mg/L	0.010	1	09/12/23 09:40	09/13/23 09:30	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/13/23 13:50	09/14/23 12:13	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	IOC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1210	mg/L	13.3	1		10/02/23 11:14		H1
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
oH at 25 Degrees C	6.9	Std. Units	0.10	1		09/07/23 10:45		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Chloride	228	mg/L	20.0	20		09/13/23 18:58	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/13/23 18:45	16984-48-8	
Sulfate	164	mg/L	20.0	20		09/13/23 18:58	14808-79-8	

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Sample: MW-5-090523	Lab ID: 604	36735003	Collected: 09/05/2	23 11:20	Received: 09	9/05/23 16:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.027	mg/L	0.0050	1	09/06/23 15:07	09/08/23 09:26	7440-39-3	
Boron, Total Recoverable	0.31	mg/L	0.10	1	09/06/23 15:07	09/08/23 09:26	7440-42-8	
Calcium, Total Recoverable	209	mg/L	0.20	1	09/06/23 15:07	09/08/23 09:26	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.024	mg/L	0.010	1	09/12/23 09:40	09/13/23 09:32	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/13/23 13:50	09/14/23 12:04	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	IOC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1300	mg/L	13.3	1		09/08/23 08:52		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
oH at 25 Degrees C	6.9	Std. Units	0.10	1		09/07/23 10:37		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	46.0	mg/L	20.0	20		09/13/23 19:52	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/13/23 19:12	16984-48-8	
Sulfate	536	mg/L	50.0	50		09/18/23 13:31	14808-79-8	

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Sample: MW-6-090523	Lab ID: 604	36735004	Collected: 09/05/2	23 11:45	Received: 09	/05/23 16:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.016	mg/L	0.0050	1	09/06/23 15:07	09/08/23 09:28	7440-39-3	
Boron, Total Recoverable	0.49	mg/L	0.10	1	09/06/23 15:07	09/08/23 09:28	7440-42-8	
Calcium, Total Recoverable	355	mg/L	0.20	1	09/06/23 15:07	09/08/23 09:28	7440-70-2	
6010 MET ICP	Analytical Met	nod: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Pace Analytica	I Services -	Kansas City					
Lithium, Total Recoverable	0.020	mg/L	0.010	1	09/12/23 09:40	09/13/23 09:35	7439-93-2	
200.8 MET ICPMS	Analytical Metl	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	0.0022	mg/L	0.0010	1	09/13/23 13:50	09/14/23 12:15	7440-48-4	
2540C Total Dissolved Solids	Analytical Met	nod: SM 254	10C					
	Pace Analytica	l Services -	Kansas City					
Total Dissolved Solids	2090	mg/L	20.0	1		09/08/23 08:52		
4500H+ pH, Electrometric	Analytical Metl	nod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
oH at 25 Degrees C	7.0	Std. Units	0.10	1		09/07/23 10:40		H6
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	50.8	mg/L	20.0	20		09/13/23 20:32	16887-00-6	
Fluoride	0.40	mg/L	0.20	1		09/13/23 20:05	16984-48-8	
Sulfate	987	mg/L	200	200		09/18/23 13:44	14808-79-8	M1

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Sample: TEC322LF-DUP-090523	Lab ID: 604	36735005	Collected: 09/05/2	23 11:10	Received: 09	0/05/23 16:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Barium, Total Recoverable	0.051	mg/L	0.0050	1	09/06/23 15:07	09/08/23 09:43	7440-39-3	
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/06/23 15:07	09/08/23 09:43	7440-42-8	
Calcium, Total Recoverable	159	mg/L	0.20	1	09/06/23 15:07	09/08/23 09:43	7440-70-2	
010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	nod: EP	A 3010			
	Pace Analytica	l Services -	Kansas City					
Lithium, Total Recoverable	0.011	mg/L	0.010	1	09/12/23 09:40	09/13/23 09:37	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	PA 200.8			
	Pace Analytica	l Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/13/23 13:50	09/14/23 12:16	7440-48-4	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	IOC					
	Pace Analytica	I Services -	Kansas City					
Total Dissolved Solids	921	mg/L	13.3	1		09/08/23 08:52		
1500H+ pH, Electrometric	Analytical Meth	nod: SM 450	00-H+B					
•	Pace Analytica	I Services -	Kansas City					
oH at 25 Degrees C	6.9	Std. Units	0.10	1		09/07/23 10:36		H6
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
·	Pace Analytica	I Services -	Kansas City					
Chloride	48.4	mg/L	20.0	20		09/13/23 21:12	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/13/23 20:59	16984-48-8	
Sulfate	350	mg/L	20.0	20		09/13/23 21:12	14808-79-8	

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

QC Batch: 863434 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

> Laboratory: Pace Analytical Services - Kansas City

60436735001, 60436735002, 60436735003, 60436735004, 60436735005 Associated Lab Samples:

METHOD BLANK: 3418898 Matrix: Water

3418899

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	09/08/23 08:40	
Boron	mg/L	<0.10	0.10	09/08/23 08:40	
Calcium	mg/L	< 0.20	0.20	09/08/23 08:40	

LABORATORY CONTROL SAMPLE: Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Barium 1 0.97 97 85-115 mg/L

Boron mg/L 0.94 94 85-115 1 10 98 Calcium mg/L 9.8 85-115

MATRIX SPIKE & MATRIX SF	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3418900								3418901						
Parameter	6 Units	60436419001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual			
Barium	mg/L	0.041	1	1	0.99	0.99	95	95	70-130	0	20				
Boron	mg/L	ND	1	1	0.93	0.94	91	92	70-130	1	20				
Calcium	mg/L	24.3	10	10	33.7	34.4	93	101	70-130	2	20				

MATRIX SPIKE SAMPLE: 3418902 60436735001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Barium mg/L 0.051 1.1 101 70-130 Boron mg/L < 0.10 1 1.0 98 70-130 Calcium mg/L 159 10 173 138 70-130 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

QC Batch: 864333 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

METHOD BLANK: 3422443 Matrix: Water

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Cobalt mg/L <0.0010 0.0010 09/14/23 12:01

LABORATORY CONTROL SAMPLE: 3422444

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Cobalt 0.04 0.042 105 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3422445 3422446

MS MSD

60436735003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits <0.0010 Cobalt mg/L 0.04 0.04 0.040 0.040 98 99 70-130 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

QC Batch: 864083 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

METHOD BLANK: 3421504 Matrix: Water

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Lithium mg/L <0.010 0.010 09/13/23 08:55

LABORATORY CONTROL SAMPLE: 3421505

Parameter Units Conc. Result % Rec Limits Qualifiers

Lithium mg/L 1 1.0 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3421506 3421507

MS MSD

60436497001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 20 Lithium mg/L 29.3 ug/L 1.1 1.1 102 104 75-125 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

QC Batch: 863483 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735001, 60436735003, 60436735004, 60436735005

METHOD BLANK: 3419026 Matrix: Water

Associated Lab Samples: 60436735001, 60436735003, 60436735004, 60436735005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/08/23 08:50

LABORATORY CONTROL SAMPLE: 3419027

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 989 99 80-120

SAMPLE DUPLICATE: 3419028

60436642003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 240 **Total Dissolved Solids** mg/L 2 245 10

SAMPLE DUPLICATE: 3419029

Date: 11/08/2023 04:24 PM

60436735003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1300 2 mg/L 1330 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

QC Batch: 866941 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735002

METHOD BLANK: 3433157 Matrix: Water

Associated Lab Samples: 60436735002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 10/02/23 11:11

LABORATORY CONTROL SAMPLE: 3433158

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1070 107 80-120

SAMPLE DUPLICATE: 3433159

60436735002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1210 10 H1 **Total Dissolved Solids** mg/L 1180 3

SAMPLE DUPLICATE: 3433160

Date: 11/08/2023 04:24 PM

60438710001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 2640 0 10 mg/L 2650

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

QC Batch: 863493 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

SAMPLE DUPLICATE: 3419040

Date: 11/08/2023 04:24 PM

60436560003 Dup Max Result Parameter Units RPD RPD Qualifiers Result 7.2 pH at 25 Degrees C 7.3 5 H6 Std. Units 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

QC Batch: 864098 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

METHOD BLANK: 3421569 Matrix: Water

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/13/23 14:06	
Fluoride	mg/L	< 0.20	0.20	09/13/23 14:06	
Sulfate	mg/L	<1.0	1.0	09/13/23 14:06	

METHOD BLANK: 3425406 Matrix: Water

Associated Lab Samples: 60436735001, 60436735002, 60436735003, 60436735004, 60436735005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/18/23 09:31	
Fluoride	mg/L	< 0.20	0.20	09/18/23 09:31	
Sulfate	mg/L	<1.0	1.0	09/18/23 09:31	

LABORATORY CONTROL SAMPLE:	3421570					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.7	94	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

LABORATORY CONTROL SAMPLE:	3425407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.6	91	90-110	_
Fluoride	mg/L	2.5	2.7	107	90-110	
Sulfate	mg/L	5	4.9	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3421	571		3421572							
			MS	MSD								
		60437171040	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	134	100	100	214	202	79	67	80-120	6	15	M1
Fluoride	mg/L	ND	50	50	65.3	60.3	131	121	80-120	8	15	M1
Sulfate	mg/L	42.3	100	100	161	154	118	112	80-120	4	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

MATRIX SPIKE SAMPLE:	3421573						
		60436735004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	 mg/L	50.8	100	156	105	80-120	
Fluoride	mg/L	0.40	2.5	3.1	107	80-120	
Sulfate	mg/L	987	1000	2520	153	80-120 N	/ 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/08/2023 04:24 PM

H1 Analysis conducted outside the EPA method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: TEC 322 LANDFILL CCR-Revised Report

Pace Project No.: 60436735

Date: 11/08/2023 04:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60436735001	MW-1-090523	EPA 200.7	863434	EPA 200.7	863460
60436735002	MW-4-090523	EPA 200.7	863434	EPA 200.7	863460
60436735003	MW-5-090523	EPA 200.7	863434	EPA 200.7	863460
60436735004	MW-6-090523	EPA 200.7	863434	EPA 200.7	863460
0436735005	TEC322LF-DUP-090523	EPA 200.7	863434	EPA 200.7	863460
0436735001	MW-1-090523	EPA 3010	864083	EPA 6010	864104
0436735002	MW-4-090523	EPA 3010	864083	EPA 6010	864104
60436735003	MW-5-090523	EPA 3010	864083	EPA 6010	864104
60436735004	MW-6-090523	EPA 3010	864083	EPA 6010	864104
60436735005	TEC322LF-DUP-090523	EPA 3010	864083	EPA 6010	864104
0436735001	MW-1-090523	EPA 200.8	864333	EPA 200.8	864378
0436735002	MW-4-090523	EPA 200.8	864333	EPA 200.8	864378
0436735003	MW-5-090523	EPA 200.8	864333	EPA 200.8	864378
0436735004	MW-6-090523	EPA 200.8	864333	EPA 200.8	864378
0436735005	TEC322LF-DUP-090523	EPA 200.8	864333	EPA 200.8	864378
60436735001	MW-1-090523	SM 2540C	863483		
60436735002	MW-4-090523	SM 2540C	866941		
60436735003	MW-5-090523	SM 2540C	863483		
60436735004	MW-6-090523	SM 2540C	863483		
60436735005	TEC322LF-DUP-090523	SM 2540C	863483		
60436735001	MW-1-090523	SM 4500-H+B	863493		
0436735002	MW-4-090523	SM 4500-H+B	863493		
0436735003	MW-5-090523	SM 4500-H+B	863493		
0436735004	MW-6-090523	SM 4500-H+B	863493		
60436735005	TEC322LF-DUP-090523	SM 4500-H+B	863493		
60436735001	MW-1-090523	EPA 300.0	864098		
60436735002	MW-4-090523	EPA 300.0	864098		
60436735003	MW-5-090523	EPA 300.0	864098		
0436735004	MW-6-090523	EPA 300.0	864098		
60436735005	TEC322LF-DUP-090523	EPA 300.0	864098		

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample (

WO#: 60436735

	ANALYDICAL SERVICES	Revision: 2	Effective Date: 01/12/	2022 604	36735		
Client Nam	e: /	Evergy					
Courier: F	edEx 🗆 UPS		□ PEX □ ECI □	Pace □ X	⟨roads □ Client/	Other 🗆	
Tracking #:	-		Pace Shipping Label Us		No 🗹		
Custody Seal	on Cooler/Box F	Present: Yes 🖊 No			,		
Packing Mater		Wrap □ Bubble		•	Other 7	plC	
Thermometer	***************************************		ype of Ice: (Wet) Blue N				
Cooler Tempe Temperature sho	rature (°C): As uld be above freezi	s-read <u>/ 4, 9</u> Cori	r. Factor O.J Corre	cted 14.6 15.0	examin	nd initials of persions of contents: O	7-06-20
Chain of Custo			✓Yes □No □N/A				
Chain of Custon	dy relinquished:		ZYes □No □N/A				
Samples arrived	d within holding ti	ime:	ØYes □No □N/A				
	ne analyses (<72		□Yes \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	und Time reque		□Yes No □N/A				
Sufficient volum			Yes Ono On/A				
Correct contains			Yes ONO ON/A				
Pace containers			Ayes Ono On/A				
Containers intac			/				
			-				
Service S.		06 soils frozen in 48hrs	?				
	received for disso		□Yes □No ☑N/A				
Sample labels m	atch COC: Date	/ time / ID / analyses	Yes No N/A				
Samples contain	multiple phases	? Matrix: W	Yes ☐N/A				
		tion in compliance?	ØYes □No □N/A	List sample ID	s, volumes, lot #'s	of preservative a	and the
	i<2; NaOH>9 Sulfic , Micro, O&G, KS T	de, NaOH>10 Cyanide)	LOT#: 67187	date/time adde	ea.		
Cyanide water sa	ample checks:		201#. 6 7 10 1	1			
	p turns dark? (Re		□Yes □No				
Potassium iodide	test strip turns b	lue/purple? (Preserve)	□Yes □No				
Trip Blank preser	nt:		□Yes □No ☑N/A				
Headspace in VC	A vials (>6mm):		□Yes □No ĢN/A				
Samples from US	DA Regulated A	rea: State:	□Yes □No □YN/A				
Additional labels	attached to 5035	A / TX1005 vials in the	field? □Yes □No □N/A				
	n/ Resolution:		OC to Client? V / N	First Data 5	2 1 10 11 1		

Date/Time:

Date:

Person Contacted:

Comments/ Resolution:

Project Manager Review:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section		Section B								tion C																	Р	age:	1	of	1	
	Client Information:	Required Proje							Invoi	ce Info		_	unto [2011	blo	_				_												
Company		Report To: Ja							100				ints F	-		140	0=:	UT-	A I	IN C						_						
Address:	400 W. Van Buren St	Copy To: La	ura Hi	nes, Sam	antha Ka	iney				pany N					ANS	AS	CE	VIR.	AL,	INC	REC	3UL.	ATO			_	_					
	Suite 545 Phoenix, AZ 85004								Addr		S	ee S	ectio	n A							Γ	NPI	DES	V	G	ROU	'DNL	NATE	ER [DRINKIN	G WATER	
Email To:	skaney@haleyaldrich.com	Purchase Orde	r No.:							Quote rence:											Γ	US	Т	Г	R	CRA			Г	OTHER		
Phone:	507-251-2232 Fax:	Project Name:	TEC	322 Lan	dfill CCR	2			Pace Mana	Project	Α	lice	Spille	er 91	13-5€	33-1	403			\neg	Sit	e Lo	catio	on		KS						
Requeste	ed Due Date/TAT:	Project Numbe	-						Pace	Profile	#: 90	357,	11									S	TATE	E:	-	No.	_	_				
																	F	Requ	Jest	ted /	۱na	ysis	Filt	erec	(Y)	N)						
	Section D Valid Matrix C Required Client Information MATRIX	codes codes	C=COMP)		COLL	ECTED		_		L	Pi	esei	vativ	es		A/N	N	N	Ν	N	N	N										
	WATER WASTE WATER PRODUCT SOIL/SOLID OIL	CODE DW WT WW P SL OL WB	(G=GRAB C=C	COMP(STA)		COMPOS END/GR	SITE RAB	COLLECTION	ပ္ထ							שַּ	Ca,Ba											Chlorine (Y/N)	60(1367	25	
ITEM#	SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE WIPE AIR OTHER TISSUE	WP AR OT TS CO		DATE	TIME	DATE	TIME	SAMPLE TEMP AT (NTAINE	Unpreserved	H ₂ SO ₄	HCI	NaOH	Na ₂ S ₂ O ₃	Other	↓ Analysis Test	m	8 Total Co	4500 H+B pH	300: CI, F, SO4	2540C TDS	6010 Lithium						Residual Chlorin	Pac	Project	No./ Lab I.	.D.
1	MW-1-090523	w	T G		1963	09/05/23	11:10	П	4	3	T.					Г	×	x	х	x	Х	х			\perp			Ш				
2	MW-4-090523	w	T G	2	188	09/05/23	12:10		4	3	1						×	×	х	х	Х	х						Ш				
3	MW-5-090523	W	T G			09/05/23	11:20		4	3							×	x	х	х	х	x						Ш				
4	MW-6-090523	W	T G	*	16	09/05/23	11:45		4	3		4			\perp	1	X	х	X	x	Х	X		4	_	_	1	Ш				
5	TEC322LF-DUP-090523	\ w	т Б	•	167	09/05/23	11:10		4	3						1	X	Х	x	х	х	х			\perp		1	Ц				
6									_						_	1							\perp	_	\perp	1		Ш				
7										\perp			Ш	_	_	1	L	_					4	_	_	1	_	Н				
8																1										1	\perp	Ш				
9									_	\perp	_	_	Ш	_		4	L	_	_			\perp		4	_	+	1	Ш				
10												1	Ш	4		1	L	1	L	L			_	4	\perp	+	1	Ш				
11									_			_	Ш			4		-				Ц	\perp	_	+		+	Н				
12			_	1		ļ			_		4	_				\perp		_	_		L	Ш	_	+			+	Ш				
	ADDITIONAL COMMENTS	RI	LINQU	IISHED BY	/ AFFILIAT	TON	DAT	E		TIME			_		EPTE	-	_	_	ATIO	N		_	ATE	-	TII	ME	_	_	SAM	PLE CONDI	TIONS	
			Matt	VanderPut	tten / SCS		9/5/2	23		16:00	-	E	Bruc	سا	4	lf	a (ھ				als	-12	3	الهو	کر		ط.ا	Y	4	I,Y	
																											13	5.0	1		10	
									T																							
									\top		\top													T			T					
<u></u>		1			SAMPI	ER NAME A	ND SIGN	ATU	RE	M	Last					_	_	_	_			_	_		_		1	0	5	Jec	act	
ıge 2						PRINT Nam				-	and the same	_				.0											1	remp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact	(111)
Page 27 of 28						SIGNATUR							1	no	L	4		MM/I					9/	5/23	3			Ter	Rec	Seale	Samp	

Client:	FUELCI	Darfille 4
0.101111	00039	Profile #

Site: TEC322 Land Fill CCR Notes_____

COC Line Item	Matrix	VG9H	Н69О	DG90	VG9U	Deson	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗЕ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
11	TU																		1		9		1								
2																			l		2		1								
3																			1		2		i								
4																			Ī		2		ī								
5	J																		İ		2		1								
6																							-								
7																															
8																															
9																8															
10																															
11																															
12																															

Container Codes

		Glass			Plastic	Misc.					
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	11	Wipe/Swab				
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate				
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag				
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter				
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes				
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit				
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can				
√G9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic						
√G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	1					
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate						
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix				
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water				
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid				
3G3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid				
NGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL				
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe				
				BP4U	125mL unpreserved plastic	DW	Drinking Water				
				BP4N	125mL HNO3 plastic						
				BP4S	125mL H2SO4 plastic						

WPDU

16oz unpresserved plstic

Work Order Number:

6047672