2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

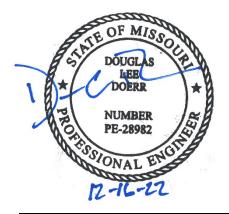
Presented To: Evergy Missouri West, Inc.

SCS ENGINEERS

27213169.21 | January 2022, Revised December 16, 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

2021 Groundwater Monitoring and Corrective Action Report

Revision Number	Revision Date	Revision Sections	Summary of Revisions
0	January 2022	NA	Original
1	December 16, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sec		TIONO	Pa	
_			NAI	
1			DN 90(e)(6) Summary	
	1.1	g 257.8 1.1.1		
		1.1.1	§ 257.90(e)(6)(i) Initial Monitoring Program	
		1.1.2		
		1.1.3	§ 257.90(e)(6)(iii) Statistically Significant Increases	
		1.1.4	§ 257.90(e)(6)(v) Statistically Significant Levels	
		1.1.5	§ 257.90(e)(6)(vi) Remedial Activities	
2	8.25		ANNUAL REPORT REQUIREMENTS	
2	2.1		90(e)(1) Site Map	
	2.1	-	90(e)(2) Monitoring System Changes	
	2.2	-	90(e)(3) Summary of Sampling Events	
	2.4	_	90(e)(4) Monitoring Transition Narrative	
	2.5	-	90(e)(5) Other Requirements	
	2.5	2.5.1	§ 257.90(e) Program Status	
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency.	
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequen	
		2.5.4	g 201.90(c)(0) Demonstration for Alternative Assessment Worldoning Frequent	
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater	
			Protection Standards	
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	6
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	6
	2.6	8 257.9	90(e)(6) Overview Summary	
3		•	MMENTS	
App	endic	ces		
Appe	ndix A Fig	ı Figu ure 1: S	ures ite Map	
	Fig	ure 2: P	otentiometric Surface Map (May 2021)	
	_		otentiometric Surface Map (November 2021)	
Appe	ndix E	B Tab	les	
		-	opendix III Detection Monitoring Result s etection Monitoring Field Measurements	
Appe	ndix C	Alte	ernative Source Demonstrations	
C			undwater Monitoring Alternative Source Demonstration Report November 2020 vater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2021).)
C			undwater Monitoring Alternative Source Demonstration Report May 2021 vater Monitoring Event, CCR Landfill, Sibley Generating Station (January 2022).	

Addendum 1 2021 Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2021 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Missouri West, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station.

1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2021), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2021), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

Monitoring Event	Monitoring Well	Constituent	ASD
Fall 2020	MW-506	Sulfate	Successful
Fall 2020	MW-512	Calcium	Successful
Fall 2020	MW-512	Chloride	Successful
Fall 2020	MW-512	Sulfate	Successful
Fall 2020	MW-512	Total Dissolved Solids	Successful

Monitoring Event	Monitoring Well	Constituent	ASD
Spring 2021	MW-505	Calcium	Successful
Spring 2021	MW-505	Total Dissolved Solids	Successful
Spring 2021	Spring 2021 MW-506		Successful
Spring 2021	Spring 2021 MW-506		Successful
Spring 2021	Spring 2021 MW-512		Successful
Spring 2021	MW-512	Chloride	Successful
Spring 2021	Spring 2021 MW-512		Successful
Spring 2021	Spring 2021 MW-512		Successful

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(e)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(e)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2021.

2.3 § 257.90(e)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2021). Samples collected in 2021 were collected and analyzed for Appendix III detection monitoring

constituents. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include Fall 2020 semiannual detection monitoring event verification sample data collected and analyzed in 2021; Spring 2021 semiannual detection monitoring data, and verification sample data; and, the initial Fall 2021 semiannual detection monitoring data. The dates of sample collection and the monitoring program requiring the sample are also provided in these tables.

2.4 § 257.90(e)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2021. Only detection monitoring was conducted in 2021.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2020 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2020 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2020 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2020 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2021 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2021 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2021 semiannual

2021 Groundwater Monitoring and Corrective Action Report

detection monitoring sampling and analysis event, and

h. initiation of the Fall 2021 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2022).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2021 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s). Semiannual Spring and Fall 2022 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2022 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included in **Appendix C**:

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2021).
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (January 2022).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that

2021 Groundwater Monitoring and Corrective Action Report

the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.6 § 257.90(e)(6) OVERVIEW SUMMARY

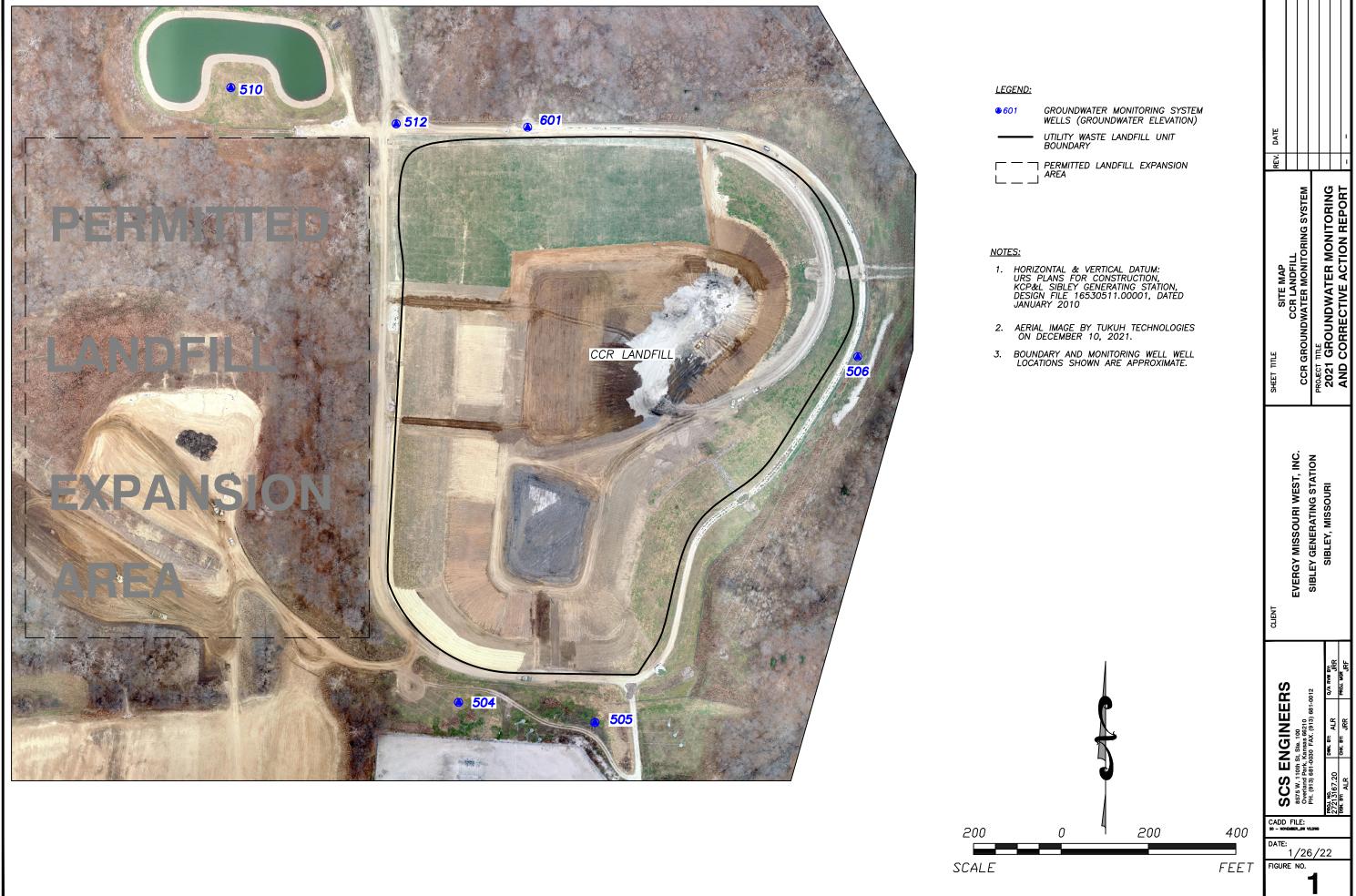
A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

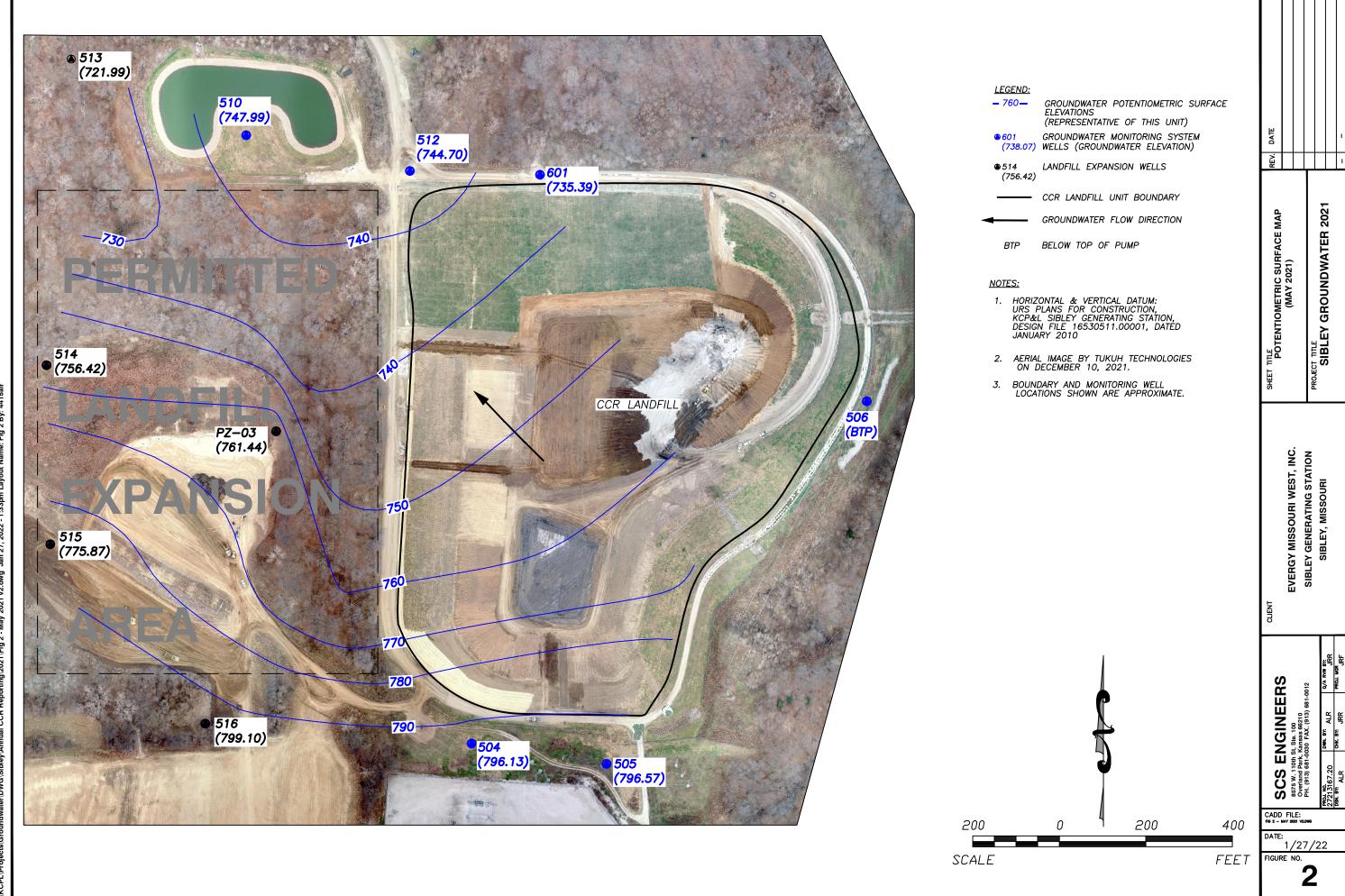
3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Sibley Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc., for specific application to the Sibley Generating Station CCR Landfill. No warranties, express or implied, are intended or made.


APPENDIX A

FIGURES


Figure 1: Site Map

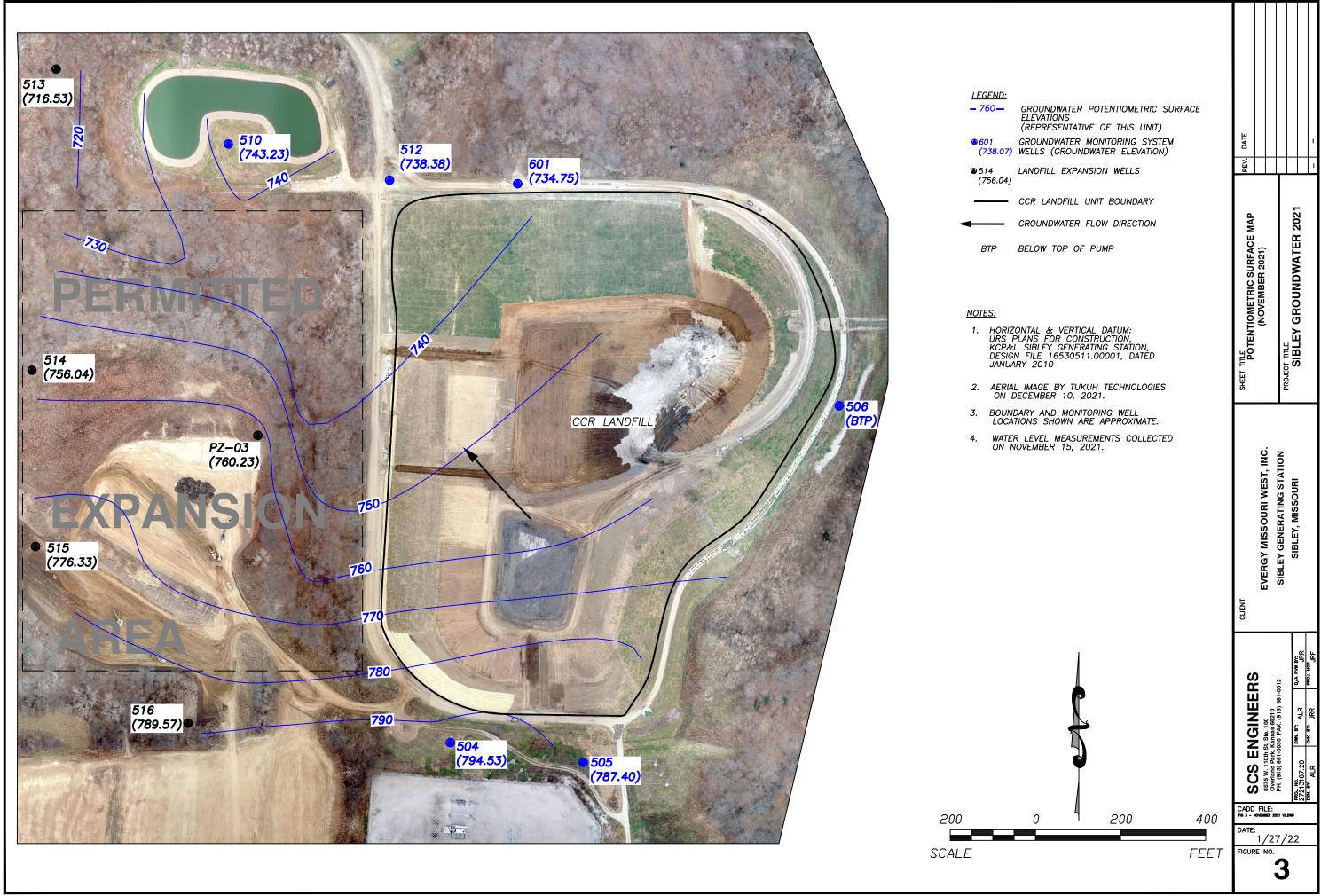

Figure 2: Potentiometric Surface Map (May 2021)

Figure 3: Potentiometric Surface Map (November 2021)

ındwater∖DWG\Sibley\Annual CCR Reporting\2021\20 - NOVEMBER_GW v2.dwg Jan 27, 2022 - 1:16pm Layout Name: Fig 2 By: 4415air

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1
CCR Landfill
Appendix III Detection Monitoring Results
Evergy Sibley Generating Station

		Appendix III Constituents							
Well	Sample	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids	
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(S.U.)	(mg/L)	(mg/L)	
MW-504	5/24/2021	<0.200	34.1	<1.00	0.201	7.29	32.4	174	
MW-504	11/15/2021	<0.200	35.3	<1.00	0.178 (B)	6.31	27.9	192	
MW-505	5/24/2021	<0.200	34.4	1.11	0.180	5.91	32.6	181	
MW-505	7/19/2021		*34.8			*6.65	*14.4	*184	
MW-505	9/2/2021		*34.1			**6.97		*188	
MW-505	11/15/2021	<0.200	27.7	1.13	0.181 (B)	6.37	20.4	181	
MW-506	2/3/2021					**7.32	*87.3		
MW-506	3/1/2021					**7.21	*88.9		
MW-506	5/24/2021	<0.200	91.4	8.09	0.344	6.62	89.1	433	
MW-506	7/19/2021			*8.01		*6.86	*89.1		
MW-506	9/2/2021			*8.03		**6.98	*88.7		
MW-506	11/15/2021	<0.200	98.8	7.78	0.275 (B)	6.65	89.8	466	
MW-510	5/24/2021	<0.200	116	3.53	0.338	6.36	14.5	468	
MW-510	7/19/2021					*7.36			
MW-510	11/15/2021	<0.200	124	3.33	0.271 (B)	6.94	21.4	486	
MW-512	2/3/2021		*117	*10.5		**7.34	*99.8	*487	
MW-512	3/1/2021		*117	*10.4		**6.86	*99.9	*508	
MW-512	5/24/2021	<0.200	114	10.6	0.318	7.17	110	505	
MW-512	7/19/2021		*120	*10.2		**6.78	*104	*524	
MW-512	9/2/2021		*114	*10.2		**7.13	*107	*555	
MW-512	11/15/2021	<0.200	121	9.69	0.257 (B)	6.25	93.1	527	
MW-601	5/24/2021	<0.200	97.4	3.40	0.278	6.31	9.71	381	
MW-601	7/19/2021					*7.21			
MW-601	11/15/2021	<0.200	95.6	3.44	0.234 (B)	6.71	9.32	399	

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

B - Same analyte is found in the associated laboratory blank

--- Not Sampled

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

Table 2 CCR Landfill

Detection Monitoring Field Measurements Evergy Sibley Generating Station

Well Number	Sample Date	pH (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-504	5/24/2021	7.29	325	16.00	0.0	141	2.54	20.19	796.13
MW-504	11/15/2021	6.31	289	15.46	0.0	-33	2.80	21.79	794.53
MW-505	5/24/2021	5.91	303	17.38	0.0	199	3.21	18.40	796.57
MW-505	7/19/2021	*6.65	264	17.79	0.0	162	9.59	25.38	789.59
MW-505	9/2/2021	**6.97	282	18.28	0.0	162	5.56	27.55	787.42
MW-505	11/15/2021	6.37	282	15.21	0.0	125	4.93	27.57	787.40
MW-506	2/3/2021	**7.32	639	15.19	0.0	144	5.59	ВТР	NA
MW-506	3/1/2021	**7.21	736	11.94	0.0	63	3.08	BTP	NA
MW-506	5/24/2021	6.62	707	20.53	0.0	158	4.99	ВТР	NA
MW-506	7/19/2021	*6.86	679	21.12	0.0	161	3.13	BTP	NA
MW-506	9/2/2021	**6.98	720	21.43	0.7	127	6.33	ВТР	NA
MW-506	11/15/2021	6.65	738	17.75	0.0	117	4.22	BTP	NA
MW-510	5/24/2021	6.36	765	21.23	0.0	111	1.25	37.80	747.99
MW-510	7/19/2021	*7.36	817	17.93	1.3	31	0.83	37.89	747.90
MW-510	11/15/2021	6.94	828	17.03	1.5	75	6.59	42.56	743.23
MW-512	2/3/2021	**7.34	770	13.36	0.0	146	8.98	29.98	740.15
MW-512	3/1/2021	**6.86	836	12.69	0.0	80	5.30	30.48	739.65
MW-512	5/24/2021	7.17	962	15.00	6.7	123	2.73	25.42	744.71
MW-512	7/19/2021	**6.78	778	19.13	0.0	163	3.32	27.11	743.02
MW-512	9/2/2021	**7.13	852	20.93	0.0	168	1.43	29.40	740.73
MW-512	11/15/2021	6.25	865	14.69	0.0	187	8.69	31.75	738.38
MW-601	5/24/2021	6.31	694	18.15	0.0	94	0.00	45.51	735.39
MW-601	7/19/2021	*7.21	702	18.29	0.0	92	0.11	45.73	735.17
MW-601	11/15/2021	6.71	702	15.39	0.0	75	0.00	46.15	734.75

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

BTP - Below Top of Pump

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATIONS

- C.1 Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2021)
- C.2 Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (January 2022)

C.1	Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (May 2021)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2020 GROUNDWATER MONITORING EVENT

CCR LANDFILL

Sibley Generating Station Evergy Missouri West, Inc. Sibley, Missouri

SCS ENGINEERS

May 2021 File No. 27213169.20

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Section								
CER	RTIFICA	ATIONS	i					
1	Regi	ulatory Framework						
2	Stat	istical Results	1					
3	Alternative Source Demonstration							
	3.1	Time Series Plots	2					
	3.2	Trend Analysis	3					
	3.3	Piper Diagram Plots	4					
	3.4	Box and Whiskers Plots	4					
	3.5	Binary Plots						
4	Con	clusion	5					
5	Gen	eral Comments	5					
Αŗ	pen	dices						
Арі	pendix	A Figure 1						
Ар	pendix	B Time Series Plots						

Appendix C

Appendix D

Appendix E

Appendix F

Trend Analysis

Binary Plots

Box and Whiskers Plots

Piper Diagram Plots and Analytical Results

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 11, 2020. Review and validation of the results from the November 2020 Detection Monitoring Event was completed on December 24, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 3, 2021 and March 1, 2021.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-506 and four Appendix III constituents above the prediction limits established for monitoring well MW-512.

Constituent/Monitoring Well	*UPL	Observation November 11, 2020	1st Verification February 3, 2021	2nd Verification March 1, 2021	
Calcium					
MW-512	111.3	115	117	117	
Chloride					
MW-512	5.094	9.75	10.5	10.4	
Total Dissolved Solids					
MW-512	466.4	508	487	508	

Constituent/Monitoring Well	*UPL	Observation November 11, 2020	1st Verification February 3, 2021	2nd Verification March 1, 2021
Sulfate				
MW-506	76.83	87	87.3	88.9
MW-512	44.8	92.6	99.8	99.9

^{*}UPL - Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified five SSIs above the background prediction limits. These include sulfate at monitoring well MW-506 and calcium, chloride, total dissolved solids, and sulfate at monitoring well MW-512.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for chloride in monitoring well MW-512 was compared to time series plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the concentrations in MW-512 are near concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill and the non-impacted groundwater can fluctuate naturally within a given non-impacted well such as MW-515 and PZ-03.

The time series plot for TDS in monitoring well MW-512 was compared to time series plots for TDS in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. TDS comparisons indicate the concentrations in MW-512 are within the range of concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

Time series plots for sulfate in monitoring wells MW-506 and MW-512 were compared to time series plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-512 are within or very near the range of concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill; specifically MW-515. Additionally, there are increasing concentrations in upgradient well

MW-504 and large variations of concentrations in MW-515, both of which have not been impacted by the landfill.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit variability that includes concentrations within the range or similar to those seen in MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill could have caused the SSIs over the background levels, or that the SSIs could have resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix B**.

3.2 TREND ANALYSIS

Trend analysis was performed to evaluate for statistically significant trends utilizing Sen's Slope/Mann-Kendall Statistical Analysis. Sen's Slope/Mann-Kendall statistical analysis is used to determine if the data exhibits an SSI or statistically significant decreasing (SSD) trend. A trend is the general increase or decrease in observed values of a variable over time. A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend. The Mann-Kendall test is nonparametric, meaning that it does not depend on an assumption of a particular underlying distribution. The test uses only the relative magnitude of data rather than actual values. Therefore, missing values are allowed, and values that are recorded as non-detects by the laboratory can still be used in the statistical analysis by assigning values equal to half their detection limits. Sen's Slope is a simple nonparametric procedure developed to estimate the true slope. The advantage of this method over linear regression is that it is not greatly affected by gross data errors or outliers, and can be computed when data are missing.

The Sen's Slope/Mann-Kendall Statistical Analysis was performed at the 98 percent confidence level utilizing the statistical program Sanitas[™]. Calcium data from December 2015 through the most recent data for upgradient wells MW-504 and MW-505 and downgradient well MW-512 were used to preform trend analysis. The trend analysis for calcium indicates upgradient well MW-505 and downgradient well MW-512 both have increasing trends. Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient wells can increase due to natural conditions not due to the unit.

Sulfate data from December 2015 through the most recent data for upgradient wells MW-504 and MW-505 and downgradient wells MW-506 and MW-512 were used to preform trend analysis. The trend analysis for sulfate indicates upgradient well MW-504 and downgradient wells MW-506 and MW-512 have increasing trends. Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient wells can increase due to natural conditions not due to the unit.

These trend analyses demonstrate that a source other than the CCR Landfill could have caused the SSIs over the background level for calcium and sulfate or that the SSIs resulted from natural variation in groundwater quality. Trend analyses for calcium and sulfate are provided in **Appendix C**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for upgradient wells 504 and MW-505, downgradient wells MW-506 and MW-512, and landfill leachate is provided in **Appendix D** along with analytical results. The piper diagram indicates the groundwater from these four wells have similar geochemical characteristics and do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate) and that both upgradient and downgradient groundwater characteristics are different from the leachate. This helps demonstrate that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs resulted from natural variation in groundwater quality.

3.4 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

The box and whiskers plot for chloride in monitoring well MW-512 was compared to box and whisker plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the concentrations in MW-512 are generally within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for sulfate in monitoring well MW-512 was compared to box and whisker plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-512

are generally within the range of concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill; specifically MW-515.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit variability that includes concentrations similar to those seen in MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs resulted from natural variation in groundwater quality. Box and whisker plots are provided in **Appendix E**.

3.5 BINARY PLOTS

Binary plots are another way to visualize data and allow evaluation of mixing of various waters. Binary plots for the monitoring wells and leachate were prepared for pairs of highly mobile constituents. These include chloride - sulfate, boron - sulfate, and boron - chloride. The chloride - sulfate plot identifies the mixing zone between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the data for the downgradient wells would fall within the mixing zone on the plot; however, the data for the downgradient wells falls below the mixing zone. The boron – sulfate and boron - chloride plots identify the mixing line between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the sulfate – boron and chloride – boron data for MW-506 and MW-512 would fall on the mixing line and the boron concentrations would range from 0.20 mg/L to 1.4 mg/L based on the sulfate mixing line and approximately 0.83 mg/L to 4.2 mg/L based on the chloride mixing line. However, the boron in downgradient wells was not detected at a concentration above the reporting limit of 0.2 mg/L. Therefore, because boron is present in the leachate but is not present in the downgradient wells, leachate is not mixing with groundwater.

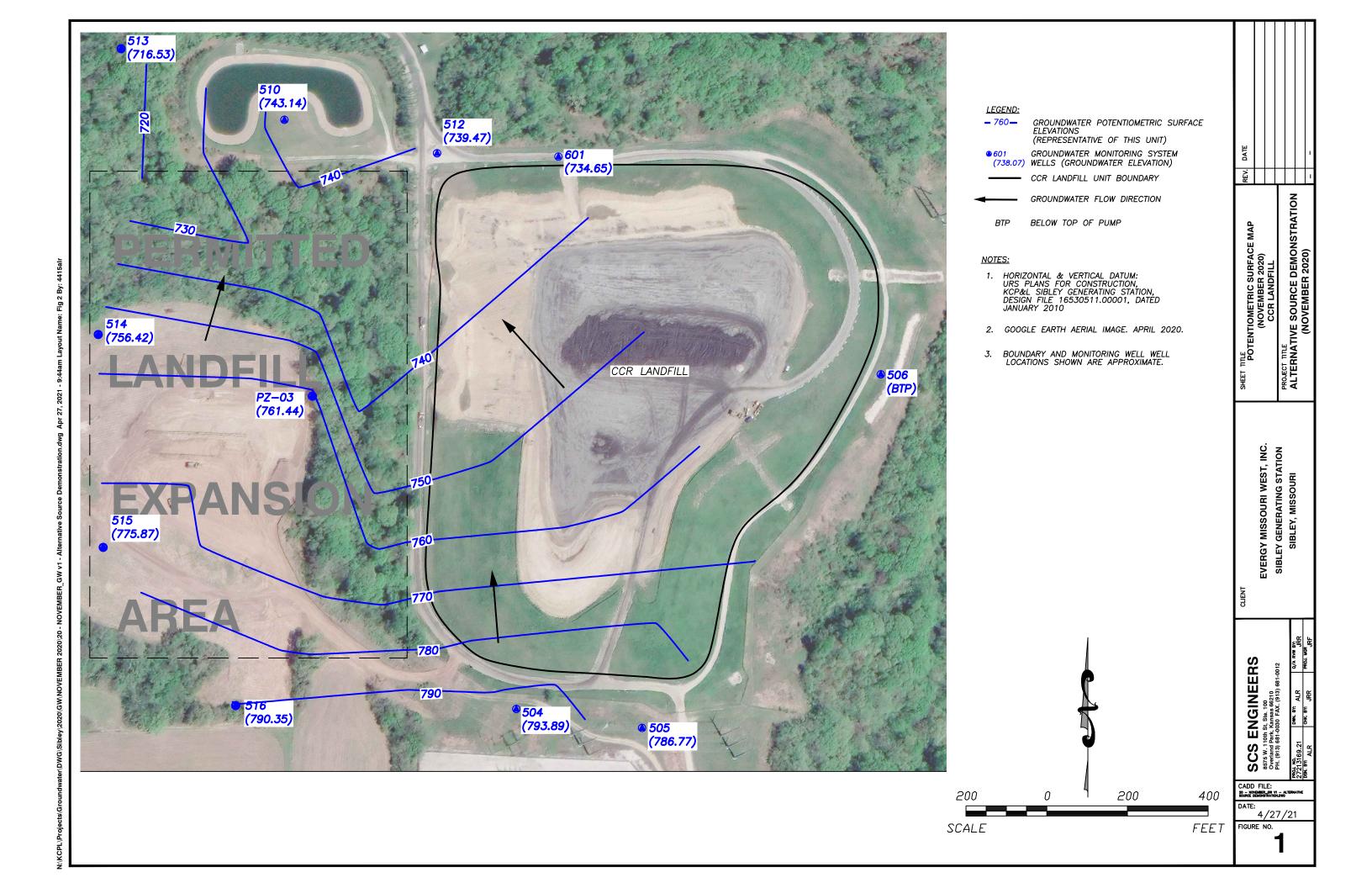
These binary plots demonstrate that leachate is not mixing with upgradient groundwater and that a source other than the CCR Landfill caused the SSI over the background level for sulfate or that the SSI resulted from natural variation in groundwater quality. Binary plots are provided in **Appendix F**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over the background level, or that the SSI resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

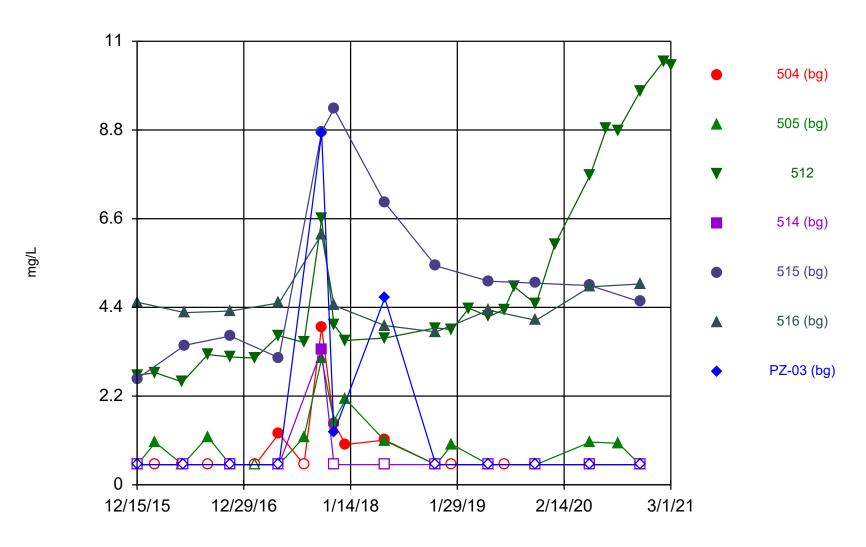
This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices,



within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc. for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

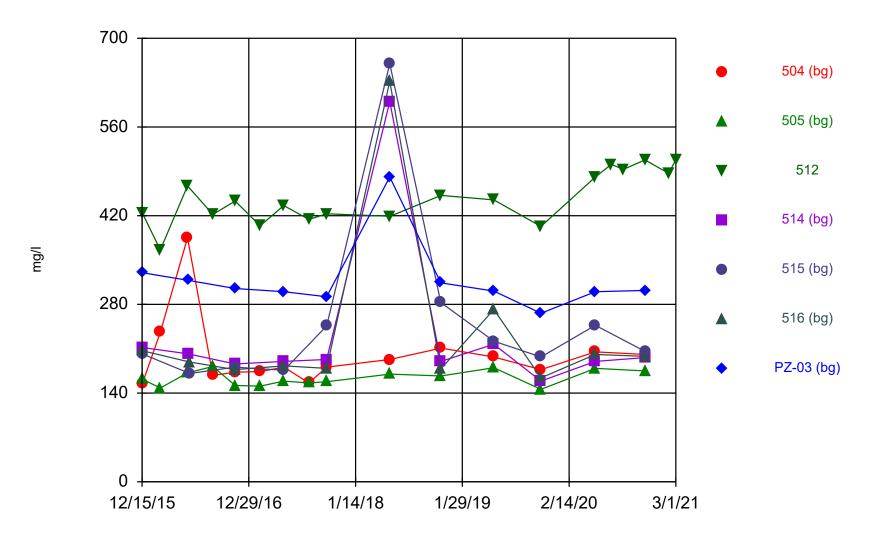

Figure 1

Appendix B

Time Series Plots

Time Series

Constituent: Chloride Analysis Run 4/14/2021 11:35 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

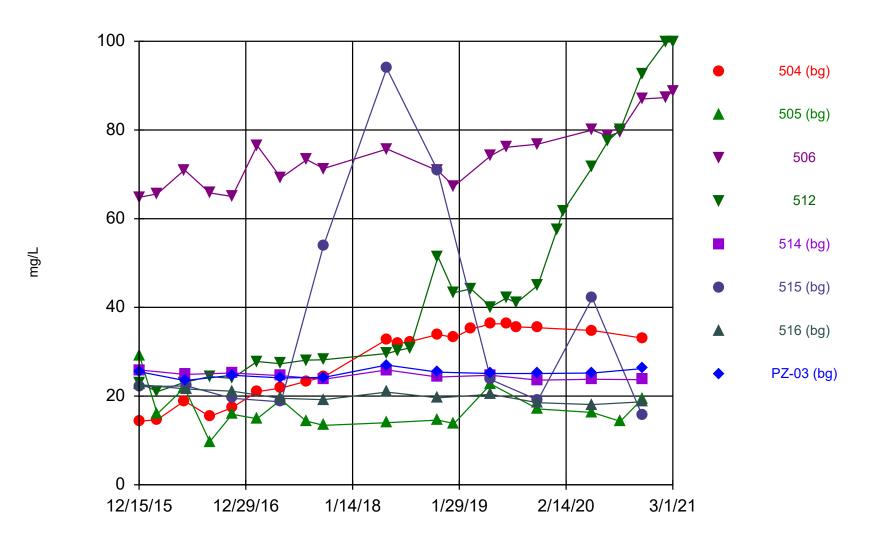

Time Series

Constituent: Chloride (mg/L) Analysis Run 4/14/2021 11:35 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

				olbicy oliciti. o	oo Engineero Dui	a. Olbicy	
	504 (bg)	505 (bg)	512	514 (bg)	515 (bg)	516 (bg)	PZ-03 (bg)
12/15/2015			2.72	<1	2.63	4.53	<1
12/16/2015	<1	<1					
2/18/2016	<1	1.05	2.78				
5/25/2016	<1	<1	2.55				
5/26/2016				<1			<1
6/2/2016					3.46	4.27	
8/23/2016	<1	1.19	3.23				
11/11/2016	<1	<1	3.17	<1	3.69	4.31	<1
2/8/2017	<1	<1	3.14				
5/3/2017			3.7				
5/4/2017	1.27	<1		<1	3.15	4.51	<1
8/1/2017	<1	1.18	3.53				
10/3/2017	3.91	3.13	6.59	3.34	8.75	6.21	8.73
11/16/2017	1.52	1.59	3.97	<1	9.33	4.45	1.3
12/28/2017	1	2.12	3.58				
5/16/2018				<1	7	3.95	4.63
5/17/2018	1.11	1.09	3.64				
11/14/2018				<1	5.43	3.79	<1
11/15/2018	<1	<1	3.89				
1/11/2019	<1	1	3.85				
3/12/2019			4.38				
5/22/2019	<1	<1	4.17	<1	5.05	4.33	<1
7/16/2019	<1		4.35				
8/21/2019			4.91				
11/6/2019	<1	<1	4.48	<1	5	4.08	<1
1/13/2020			5.97 (i)				
5/18/2020	<1	1.06	7.69	<1	4.94	4.91	<1
7/14/2020			8.83				
8/26/2020		1.03 (i)	8.79				
11/11/2020	<1	<1	9.75	<1	4.54	4.98	<1
2/3/2021			10.5				
3/1/2021			10.4				

Time Series


Constituent: Dissolved Solids Analysis Run 4/14/2021 11:33 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Time Series

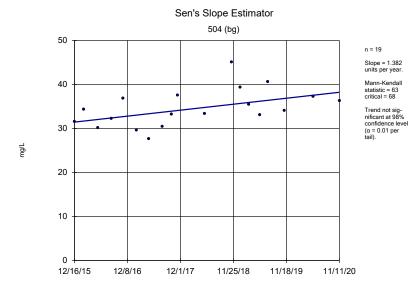
Constituent: Dissolved Solids (mg/l) Analysis Run 4/14/2021 11:34 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	504 (bg)	505 (bg)	512	514 (bg)	515 (bg)	516 (bg)	PZ-03 (bg)
12/15/2015			425	212	202	207	330
12/16/2015	155	162					
2/18/2016	236	148	366				
5/25/2016	385	172	467				
5/26/2016				202			318
6/2/2016					171	189	
8/23/2016	168	182	422				
11/11/2016	173	152	443	186	181	177	305
2/8/2017	174	151	404				
5/3/2017			436				
5/4/2017	181	159		190	176	183	300
8/1/2017	156	156	414				
10/3/2017	181	158	423	193	246	179	292
5/16/2018				600	660	632	481
5/17/2018	193	170	419				
11/14/2018				190	283	178	314
11/15/2018	211	167	452				
5/22/2019	197	180	445	217	222	272	301
11/6/2019	177	146	403	159	197	164	266
5/18/2020	205	179	481	190	247	201	300
7/14/2020			501				
8/26/2020			493				
11/11/2020	201	175	508	196	206	198	302
2/3/2021			487				
3/1/2021			508				

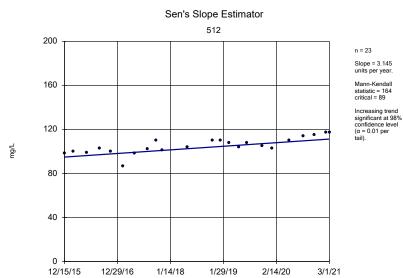
Constituent: Sulfate Analysis Run 4/14/2021 11:31 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 4/14/2021 11:32 AM View: LF III

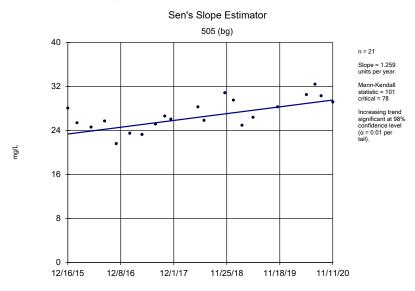

Sibley Client: SCS Engineers Data: Sibley

	504 (bg)	505 (bg)	506	512	514 (bg)	515 (bg)	516 (bg)	PZ-03 (bg)
12/15/2015			64.8	23	25.9	22.1	22.6	25.5
12/16/2015	14.3	29.2						
2/18/2016	14.7	16	65.6	21				
5/25/2016	18.9	21.9	71	23.1				
5/26/2016					24.9			23.5
6/2/2016						22.3	21.6	
8/23/2016	15.4	9.73	65.8	24.4				
11/11/2016	17.4	15.9	65	24	25.2	19.5	21.1	24.7
2/8/2017	21	14.9	76.5	27.8				
5/3/2017				27.3				
5/4/2017	21.8	19.2	69.2		24.6	18.7	19.5	24.1
8/1/2017	23.3	14.4		28.1				
8/4/2017			73.3					
10/3/2017	24.3	13.4	71.3	28.2	23.8	54	19.2	24.2
5/16/2018					25.9	93.9	20.9	27
5/17/2018	32.8	14	75.7	29.6				
6/27/2018	31.8			30.3				
8/8/2018	32.3			30.9				
11/14/2018					24.3	70.8	19.6	25.4
11/15/2018	33.9	14.6	70.8	51.4				
1/11/2019	33.2	13.8	67.3	43.3				
3/12/2019	35.1			44.2				
5/22/2019	36.3	22.7	74.2	40.1	24.7	23.7	20.4	25.1
7/16/2019	36.3		76.1	42.1				
8/21/2019	35.6			41				
11/6/2019	35.4	17.1	76.8	45	23.6	19.1	18.5	25.1
1/13/2020				57.5				
2/3/2020				61.6				
5/18/2020	34.8	16.3	80	71.6	23.8	42.1	18.1	25.2
7/14/2020			78.6	77.6				
8/26/2020		14.3 (i)	79.6	80.1				
11/11/2020	33.1	19.3	87	92.6	23.7	15.8	18.7	26.2
2/3/2021			87.3	99.8				
3/1/2021			88.8	99.9				

Appendix C

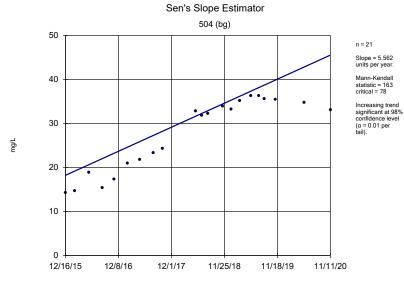

Trend Analysis

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

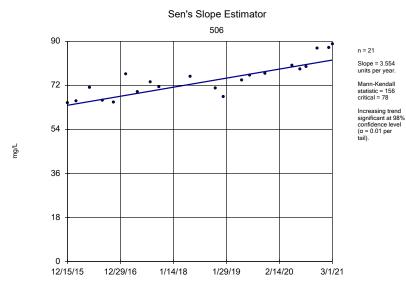

Constituent: Calcium Analysis Run 4/26/2021 12:18 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

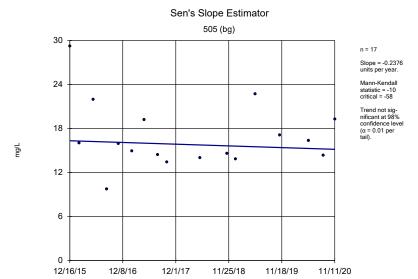
Constituent: Calcium Analysis Run 4/26/2021 12:18 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Constituent: Calcium Analysis Run 4/26/2021 12:18 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

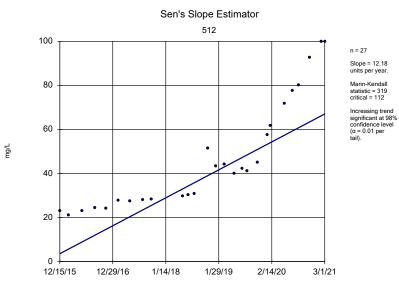

Trend Test

		Sibley Client: S	CS Engineers	Data: Sibley	Printed 4	/26/2021, 1	12:22 PM				
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	504 (bg)	1.382	63	68	No	19	0	n/a	n/a	0.02	NP
Calcium (mg/L)	505 (bg)	1.259	101	78	Yes	21	0	n/a	n/a	0.02	NP
Calcium (mg/L)	512	3.145	164	89	Yes	23	0	n/a	n/a	0.02	NP



Constituent: Sulfate Analysis Run 4/28/2021 8:58 AM View: LF III
Sibley Client: SCS Engineers Data: Sibley

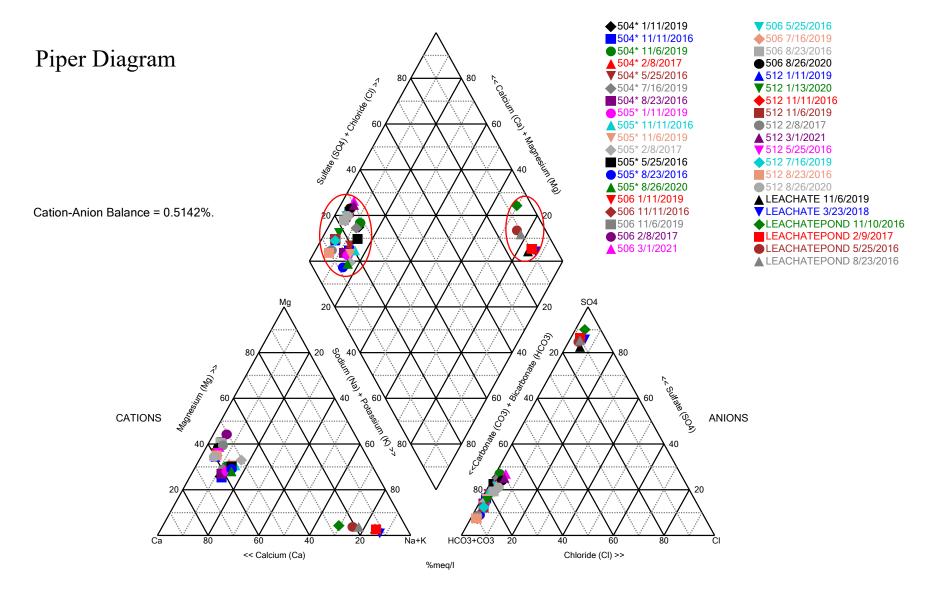
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Constituent: Sulfate Analysis Run 4/28/2021 8:58 AM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 4/28/2021 8:58 AM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG


Constituent: Sulfate Analysis Run 4/28/2021 8:58 AM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Trend Test

		Sibley Client: S	CS Engineers	Data: Sibley	Printed 4	4/28/2021,	9:01 AM				
Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	504 (bg)	5.562	163	78	Yes	21	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	505 (bg)	-0.2376	-10	-58	No	17	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	506	3.554	156	78	Yes	21	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	512	12.18	319	112	Yes	27	0	n/a	n/a	0.02	NP

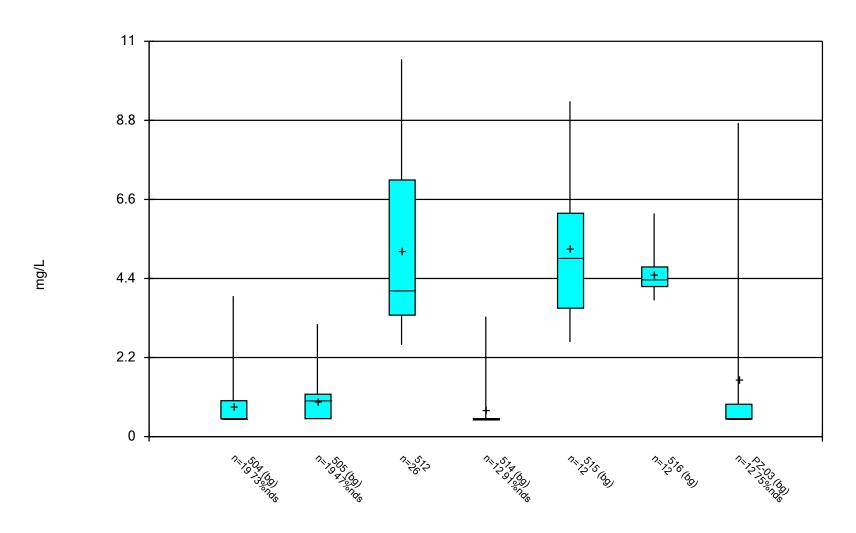
Appendix D

Piper Diagram Plots and Analytical Results

Analysis Run 4/26/2021 8:56 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Piper Diagram

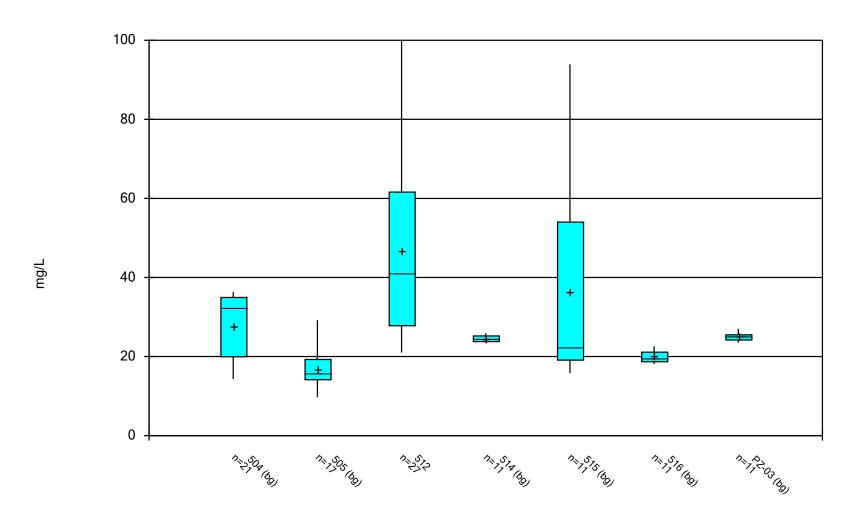

Analysis Run 4/26/2021 9:00 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mq	Cl	S04	HCO3	CO3
504* 5/25/2016	6.54	1.27	30.2	8.36	0.5	18.9	89	10
504* 8/23/2016	6.61	1.15	32.2	8.56	0.5	15.4	99.5	10
504 * 11/11/2016	8.17	1.3	36.9	8.97	0.5	17.4	94.7	10
504 * 2/8/2017	6.83	1.28	29.6	9.94	0.5	21	105	10
504 * 1/11/2019	7.64	1.9	39.3	9.85	0.5	33.2	103	10
504 * 7/16/2019	7.92	1.49	40.6	11.8	0.5	36.3	124	10
504* 11/6/2019	7.31	1.33	34.1	10.7	0.5	35.4	101	10
505* 5/25/2016	6.93	0.5	24.6	8.05	0.5	21.9	75.3	10
505* 8/23/2016	7.28	0.5	25.7	7.97	1.19	9.73	101	10
505* 11/11/2016	6.91	0.5	21.6	7.39	0.5	15.9	68.5	10
505* 2/8/2017	8.52	0.5	23.5	9.3	0.5	14.9	94	10
505* 2/6/2017	7.54	0.5	29.5	8.42	1	13.8	87.5	10
505* 1/11/2019	8.24	0.5	28.2	9.54	0.5	17.1	93.6	10
505* 8/26/2020	8.95	1	30.3	8.95	1.03	14.3	110	10
506 5/25/2016	8.51	2.19	98.3	43.6	5.76	71	304	10
506 8/23/2016	8.28	1.79	97.2	42.8	6.16	65.8	326	10
506 6/23/2016	8.44	2.37	96.5	41.2	6.13	65	312	10
506 2/8/2017	8.25	2.04	83.6	43.9	5.89	76.5	307	10
506 2/8/2017	8.25	1.85	93	39.7	6.39	67.3	292	10
506 7/16/2019	8.21	1.89	95.3	40.7	7.33	76.1	292	10
506 11/6/2019	8.1	1.89	93.7	40.7	6.66	76.1	306	10
	8.15	1.00	93.7	38.2		79.6		10
506 8/26/2020		1		38.2 38.8	7.31		289 277	10
506 3/1/2021	8.14 10	2.24	93	38.8	8.05	88.8 23.1		10
512 5/25/2016	10.3	2.24	98.9		2.55		356	10
512 8/23/2016			103	36.9	3.23	24.4	384	
512 11/11/2016	9.96	2.16	100	35.6	3.17	24	352	10
512 2/8/2017	10	2.35	86.4	37.9	3.14	27.8	358	10
512 1/11/2019	10.6	2.25	110	37.8	3.85	43.3	366	10
512 7/16/2019	10.4	2.33	108	38.6	4.35	42.1	363	10
512 11/6/2019	10	2.21	105	39.4	4.48	45	377	10
512 1/13/2020	9.87	2.18	103	38.4	5.97	57.5	391	10
512 8/26/2020	10.4	2.13	114	38.9	8.79	80.1	349	10
512 3/1/2021	10	2.13	117	40.8	10.4	99.9	340	10
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10	119
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10	104
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5	68.3
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9	146
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10	108
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3	125

Appendix E

Box and Whiskers Plots

Box & Whiskers Plot

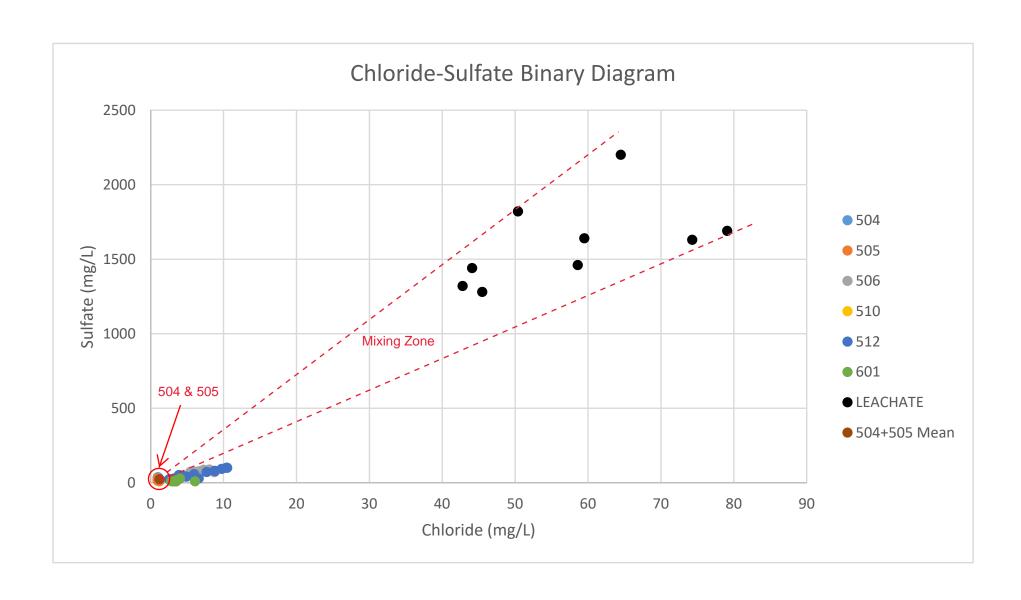


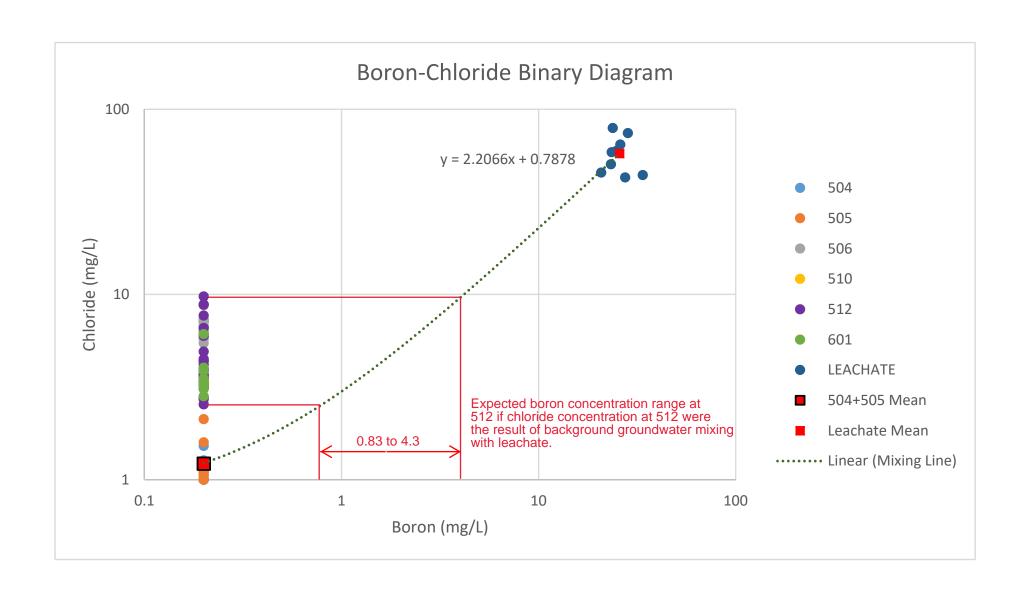
Constituent: Chloride Analysis Run 4/14/2021 11:36 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

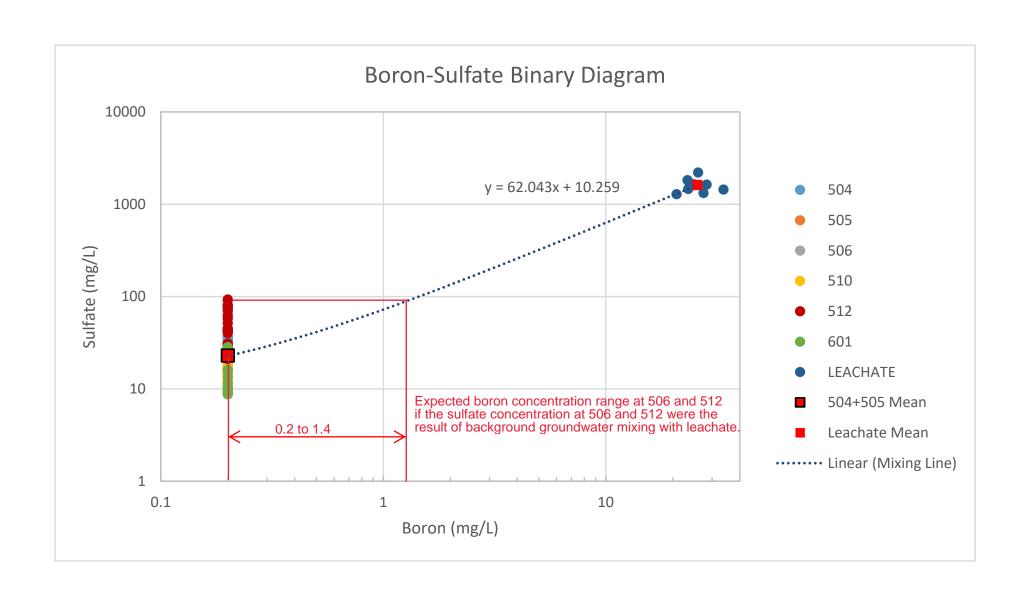
Box & Whiskers Plot

	Sibley	Client: SCS En	gineers Data:	Sibley Printed 4/	14/2021, 11:38 AM				
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Chloride (mg/L)	504 (bg)	19	0.8321	0.8092	0.1857	0.5	0.5	3.91	73.68
Chloride (mg/L)	505 (bg)	19	0.9968	0.6861	0.1574	1	0.5	3.13	47.37
Chloride (mg/L)	512	26	5.175	2.531	0.4963	4.07	2.55	10.5	0
Chloride (mg/L)	514 (bg)	12	0.7367	0.8198	0.2367	0.5	0.5	3.34	91.67
Chloride (mg/L)	515 (bg)	12	5.248	2.124	0.613	4.97	2.63	9.33	0
Chloride (mg/L)	516 (bg)	12	4.527	0.6338	0.183	4.39	3.79	6.21	0
Chloride (mg/L)	PZ-03 (bg)	12	1.597	2.541	0.7334	0.5	0.5	8.73	75

Box & Whiskers Plot


Constituent: Sulfate Analysis Run 4/14/2021 11:43 AM View: LF III Sibley Client: SCS Engineers Data: Sibley


Box & Whiskers Plot


	Sibley C	Client: SCS Eng	gineers Data:	Sibley Printed 4/	14/2021, 11:44 AM				
<u>Constituent</u> <u>Well</u>		<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Sulfate (mg/L) 504 (bg	1)	21	27.7	8.157	1.78	32.3	14.3	36.3	0
Sulfate (mg/L) 505 (bg	1)	17	16.87	4.522	1.097	15.9	9.73	29.2	0
Sulfate (mg/L) 512		27	46.87	24.77	4.767	41	21	99.9	0
Sulfate (mg/L) 514 (bg	1)	11	24.58	0.8376	0.2526	24.6	23.6	25.9	0
Sulfate (mg/L) 515 (bg	1)	11	36.55	25.92	7.815	22.3	15.8	93.9	0
Sulfate (mg/L) 516 (bg	1)	11	20.02	1.418	0.4274	19.6	18.1	22.6	0
Sulfate (mg/L) PZ-03 ((bg)	11	25.09	0.9803	0.2956	25.1	23.5	27	0

Appendix F

Binary Plots

C.2	Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (January 2022)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2021 GROUNDWATER MONITORING EVENT

CCR LANDFILL

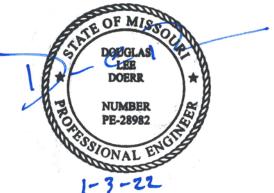
Sibley Generating Station Evergy Missouri West, Inc. Sibley, Missouri

SCS ENGINEERS

January 2022 File No. 27213169.21

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	ction		Page
CER	TIFICATION	ONS	i
1	Regula	tory Framework	1
2	Statist	ical Results	1
3	Alterna	ative Source Demonstration	2
	3.1	Fime Series Plots	2
	3.2 7	Frend Analysis	3
	3.3 F	Piper Diagram Plots	4
	3.4	Stiff Diagrams	5
	3.5 E	Box and Whiskers Plots	5
	3.6 E	Binary Plots	6
4	Conclu	sion	7
5	Genera	al Comments	7
Αŗ	pend	ices	
Арр	endix A	Figure 1	
App	endix B	Time Series Plots	
App	oendix C	Trend Analysis	
App	oendix D	Piper Diagram Plots and Analytical Results	
App	oendix E	Stiff Diagrams and Analytical Results	
Арр	endix F	Box and Whiskers Plots	
App	oendix G	Binary Plots	

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 24, 2021. Review and validation of the results from the May 2021 Detection Monitoring Event was completed on July 9, 2021, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 19, 2021 and September 2, 2021.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits established for upgradient monitoring well MW-505, two Appendix III constituents above their respective prediction limits established for monitoring well MW-506 and four Appendix III constituents above their respective prediction limits established for monitoring well MW-512.

Monitoring Well/Constituent	*UPL Observation May 24, 2021		1st Verification July 19, 2021	2nd Verification September 2, 2021	
MW-505					
Calcium	29.31	34.4	34.8	34.1	
Total Dissolved Solids	180.3	181	184	188	
MW-506					
Chloride	7.578	8.09	8.01	8.03	
Sulfate	76.83	89.1	89.1	88.7	

1

Monitoring Well/Constituent	*UPL	Observation May 24, 2021	1st Verification July 19, 2021	2nd Verification September 2, 2021	
MW-512					
Calcium	111.3	114	120	114	
Chloride	5.094	10.6	10.2	10.2	
Total Dissolved Solids	466.4	505	524	555	
Sulfate	44.8	110	104	107	

^{*}UPL - Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified eight SSIs above the background prediction limits. These include calcium and total dissolved solids (TDS) at upgradient monitoring well MW-505, chloride and sulfate at monitoring well MW-506, and calcium, chloride, TDS, and sulfate at monitoring well MW-512.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for chloride in monitoring wells MW-506 and MW-512 were compared to time series plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. The comparisons indicate the chloride concentrations have increased in upgradient wells MW-515 and MW-516 and the concentrations in MW-506 and MW-512 are near the concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill and that non-impacted groundwater chloride concentrations can fluctuate naturally within non-impacted wells such as MW-515 and MW-516.

The time series plots for TDS in upgradient monitoring well MW-505 and MW-512 were compared to time series plots for TDS in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. TDS comparisons indicate the concentrations in both MW-505 and MW-512 are within or near the range of concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

Time series plots for sulfate in monitoring wells MW-506 and MW-512 were compared to time series plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 and MW-512 are within or very near the range of concentration levels for upgradient groundwater in the vicinity of the CCR Landfill, which could not be impacted by landfill operations; specifically MW-515. Additionally, there has been increasing concentrations of sulfate in upgradient well MW-504 and large variations of concentrations in MW-515, both of which are upgradient and have not been impacted by the landfill.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit variability that includes concentrations within the range or similar to those seen in MW-505, MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSIs could have resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix B**.

3.2 TREND ANALYSIS

Trend analysis was performed to evaluate for statistically significant trends utilizing Sen's Slope/Mann-Kendall Statistical Analysis. Sen's Slope/Mann-Kendall statistical analysis is used to determine if the data exhibits an SSI or statistically significant decreasing (SSD) trend. A trend is the general increase or decrease in observed values of a variable over time. A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend. The Mann-Kendall test is nonparametric, meaning that it does not depend on an assumption of a particular underlying distribution. The test uses only the relative magnitude of data rather than actual values. Therefore, missing values are allowed, and values that are recorded as non-detects by the laboratory can still be used in the statistical analysis by assigning values equal to half their detection limits. Sen's Slope is a simple nonparametric procedure developed to estimate the true slope. The advantage of this method over linear regression is that it is not greatly affected by gross data errors or outliers, and can be computed when data are missing.

The Sen's Slope/Mann-Kendall Statistical Analysis was performed at the 98 percent confidence level utilizing the statistical program Sanitas[™]. Calcium data from December 2015 through the most recent data for upgradient wells MW-504 and MW-505 and downgradient well MW-512 were used to perform trend analysis. The trend analysis for calcium indicates upgradient well MW-505 and downgradient well MW-512 both have increasing trends and upgradient well MW-504 also has a positive slope (i.e. increasing trend but not statistically significant). Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient wells can increase due to natural conditions not due to the unit.

Chloride data from December 2015 through the most recent data for upgradient and side-gradient non-CCR monitoring system well MW-515 and downgradient wells MW-506 and MW-512 were used to perform trend analysis. The trend analysis for chloride indicates upgradient well MW-515 has a positive slope (i.e. increasing trend but not statistically significant) and concentrations greater than that of MW-

506 and near that of MW-512. Since this non-impacted upgradient well shows a positive concentration slope and a concentration range similar to MW-506 and MW-512 and represents un-impacted natural conditions, it is also likely the downgradient wells can increase similarly due to natural conditions and not due to impact from the unit.

TDS data from December 2015 through the most recent data for upgradient and side-gradient non-CCR monitoring system wells MW-504, MW-505 and MW-515 and downgradient well MW-512 were used to perform trend analysis. The trend analysis for TDS indicates upgradient well MW-505 and downgradient well MW-512 both have increasing trends and upgradient well MW-504 and side-gradient non-CCR well MW-515 both have positive slopes (i.e. increasing trend but not statistically significant). This indicates that non-impacted wells can have an increasing trend or positive concentration slope. Additionally, the concentration range for MW-512 is within the total range for MW-515. Since these non-impacted wells show an increasing trend or positive concentration slope, it is also likely that downgradient wells can increase similarly due to natural conditions and not due to impact from the unit.

Sulfate data from December 2015 through the most recent data for upgradient wells MW-504 and MW-505 and downgradient wells MW-506 and MW-512 were used to perform trend analysis. The trend analysis for sulfate indicates upgradient well MW-504 and downgradient wells MW-506 and MW-512 have increasing trends. Since an upgradient well has an increasing trend due to natural conditions not due to the unit, it is also likely the downgradient wells can also increase due to natural conditions not due to the unit.

These trend analyses demonstrate that a source other than the CCR Landfill could have caused the SSIs over the background level for calcium, chloride, TDS and sulfate or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Trend analyses are provided in **Appendix C**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A Piper diagram generated for upgradient wells MW-504 and MW-505, downgradient wells MW-506 and MW-512, and landfill leachate is provided in **Appendix D** along with analytical results. The Piper diagram

indicates the groundwater from these four wells have similar geochemical characteristics and do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate) and that both upgradient and downgradient groundwater characteristics are different from the leachate. This demonstrate that a source other than the CCR Landfill caused the SSIs over the background levels in MW-505, and MW-506, and MW-512, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.4 STIFF DIAGRAMS

Stiff diagrams are a graphical method commonly used to portray water compositions and facilitate the interpretation and presentation of chemical analysis. They visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

Stiff diagrams are calculated in terms of milliequivalents and take into account ionic charge and the formula weight for major ions, specifically Sodium (Na) plus Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3). The milliequivalents per liter of the cation and anions are plotted across from each other along a central vertical line and the distance from the center line is the value for each constituent.

Stiff diagrams were prepared for MW-505, MW-506 and MW-512 alongside Stiff diagrams calculated for leachate and are provided in **Appendix E**. The Stiff diagrams indicate the groundwater from these three wells have similar geochemical characteristics and do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate stiff diagram shapes are dis-similar indicating there is no mixing of the two types of water (groundwater and leachate) and that both upgradient and downgradient groundwater characteristics are different from the leachate. This demonstrate that a source other than the CCR Landfill caused the SSIs over the background levels in MW-505, and MW-506, and MW-512, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.5 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

The box and whiskers plot for chloride in monitoring wells MW-506 and MW-512 were compared to box and whisker plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the

concentrations in MW-506 and MW-512 are generally within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for TDS in monitoring wells MW-505 and MW-512 were compared to box and whisker plots for TDS in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. TDS comparisons indicate the concentrations in MW-505 and MW-512 are generally within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

The box and whiskers plot for sulfate in monitoring wells MW-506 and MW-512 were compared to box and whisker plots for sulfate in upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in MW-506 and MW-512 are generally within the range of concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill; specifically MW-515.

Figure 1 in **Appendix A** shows these upgradient and non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area where they could not be impacted by the landfill due to their upgradient and side-gradient locations, and exhibit natural variability that includes concentrations similar to those seen in MW-505, MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over the background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix F**.

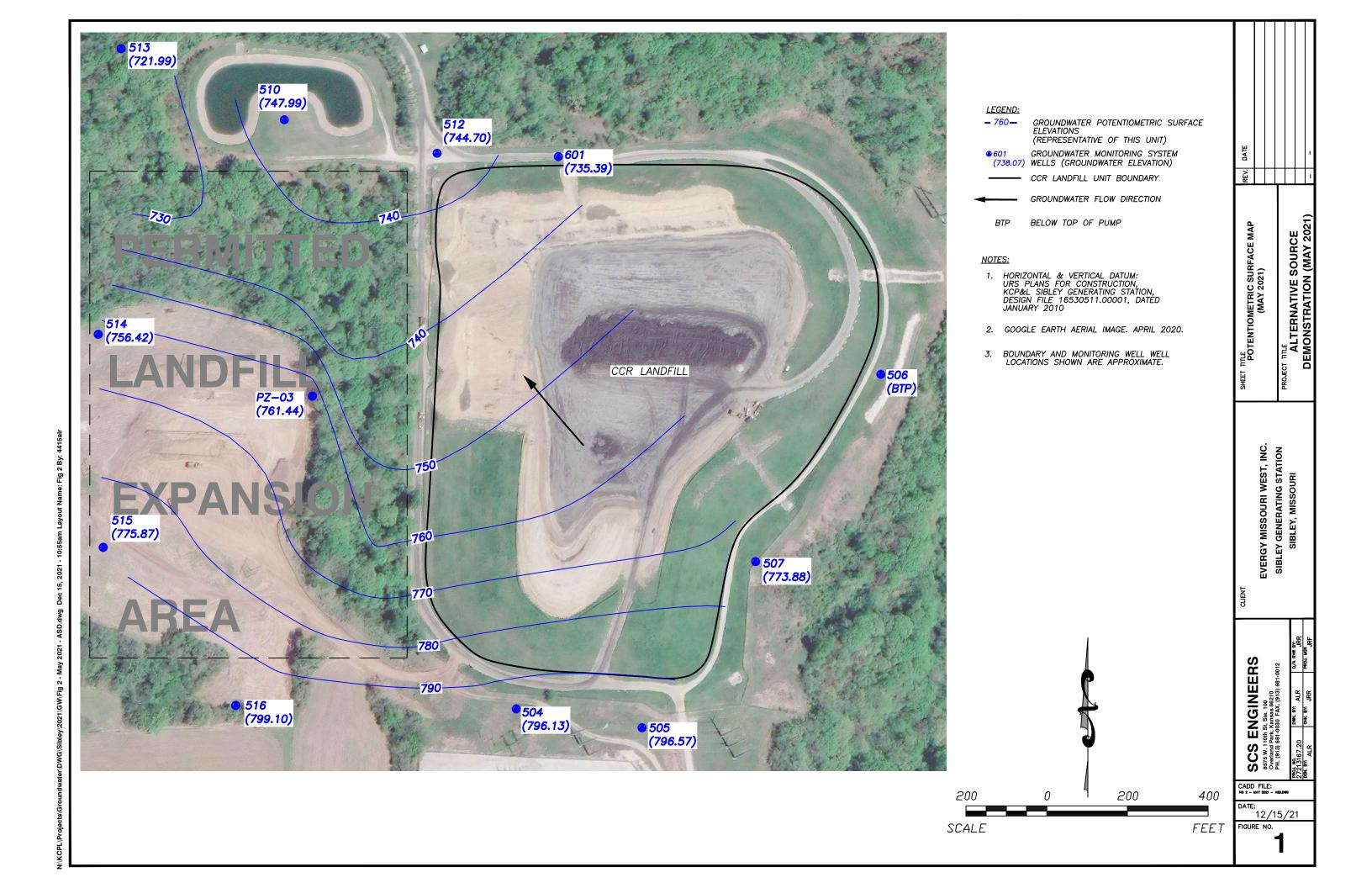
3.6 BINARY PLOTS

Binary plots are another way to visualize data and allow evaluation of mixing of various waters. Binary plots for the monitoring wells and leachate were prepared for pairs of highly mobile constituents. These include chloride - sulfate, boron - sulfate, and boron - chloride. The chloride - sulfate plot identifies the mixing zone between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the data for the downgradient wells would fall within the mixing zone on the plot; however, the data for the downgradient wells falls below the mixing zone. The boron – sulfate and boron - chloride plots identify the mixing line between the mean concentrations for upgradient groundwater (MW-504 and MW-505) and leachate. If leachate were mixing with upgradient groundwater, the sulfate – boron and chloride – boron data for MW-506 and MW-512 would fall on the mixing line and the boron concentrations would range from 0.20 mg/L to 1.65 mg/L based on the sulfate mixing line and approximately 0.83 mg/L to 4.6 mg/L based on the chloride mixing line. However, the boron in downgradient wells was not detected at a concentration above the reporting limit of 0.2 mg/L. Therefore, because boron is present in the leachate but is not present in the downgradient wells, leachate is not mixing with groundwater.

These binary plots demonstrate that leachate is not mixing with upgradient groundwater and that a source other than the CCR Landfill caused the SSI over the background level for sulfate or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Binary plots are provided in **Appendix G**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over the background level, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc. for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

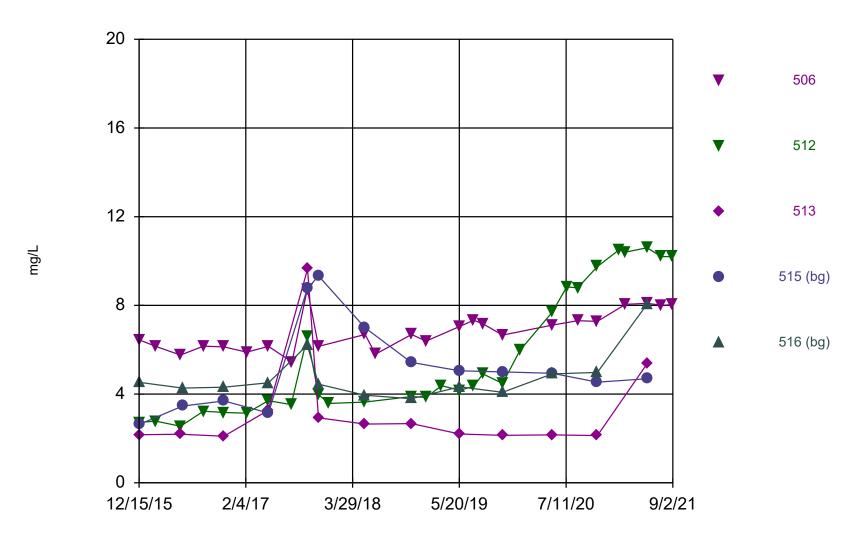
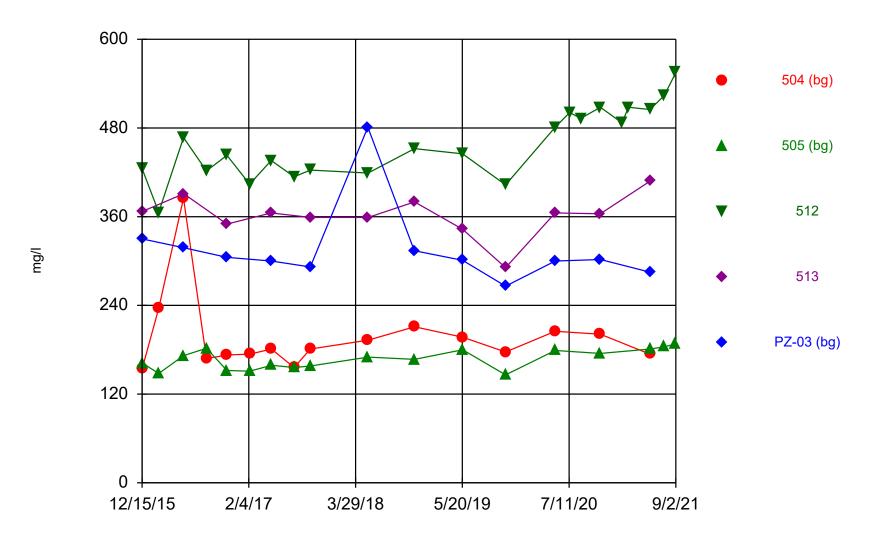

Appendix A

Figure 1

Appendix B

Time Series Plots

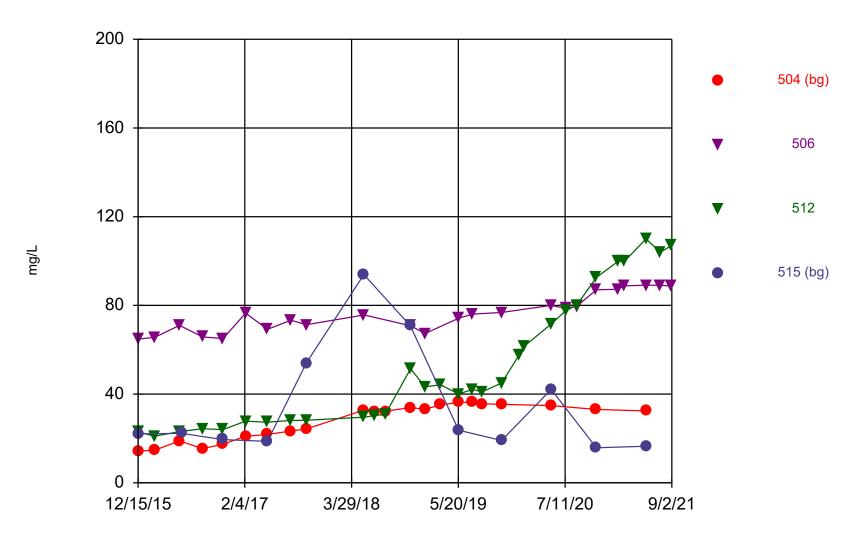


Constituent: Chloride Analysis Run 12/9/2021 1:23 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Chloride (mg/L) Analysis Run 12/9/2021 1:24 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

				Sibley Client: S	Subject Data: Sibley
	506	512	513	515 (bg)	516 (bg)
12/15/2015	6.45	2.72	2.17	2.63	4.53
2/18/2016	6.15	2.78			
5/25/2016	5.76	2.55			
5/26/2016			2.19		
6/2/2016				3.46	4.27
8/23/2016	6.16	3.23			
11/11/2016	6.13	3.17	2.1	3.69	4.31
2/8/2017	5.89	3.14			
5/3/2017		3.7	3.27		
5/4/2017	6.15			3.15	4.51
8/1/2017		3.53			
8/4/2017	5.45				
10/3/2017	8.74	6.59		8.75	6.21
10/4/2017			9.64		
11/16/2017	6.15	3.97	2.93	9.33	4.45
12/28/2017		3.58			
5/16/2018				7	3.95
5/17/2018	6.69	3.64	2.65		
6/27/2018	5.8				
11/14/2018				5.43	3.79
11/15/2018	6.69	3.89	2.67		
1/11/2019	6.39	3.85			
3/12/2019		4.38			
5/22/2019	7.05	4.17	2.2	5.05	4.33
7/16/2019	7.33	4.35			
8/21/2019	7.17	4.91			
11/6/2019	6.66	4.48	2.14	5	4.08
1/13/2020		5.97			
5/18/2020	7.11	7.69	2.16	4.94	4.91
7/14/2020		8.83			
8/26/2020	7.31	8.79			
11/11/2020	7.28	9.75	2.13	4.54	4.98
2/3/2021		10.5			
3/1/2021	8.05	10.4			
5/24/2021	8.09	10.6	5.36	4.69	8.05
7/19/2021	8.01	10.2			
9/2/2021	8.03	10.2			


Constituent: Dissolved Solids Analysis Run 12/9/2021 1:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Time Series

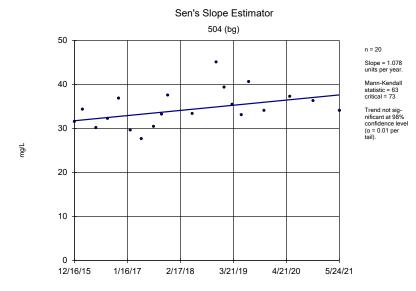
Constituent: Dissolved Solids (mg/l) Analysis Run 12/9/2021 1:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

				-	-
	504 (bg)	505 (bg)	512	513	PZ-03 (bg)
12/15/2015			425	367	330
12/16/2015	155	162			
2/18/2016	236	148	366		
5/25/2016	385	172	467		
5/26/2016				391	318
8/23/2016	168	182	422		
11/11/2016	173	152	443	350	305
2/8/2017	174	151	404		
5/3/2017			436	365	
5/4/2017	181	159			300
8/1/2017	156	156	414		
10/3/2017	181	158	423		292
10/4/2017				359	
5/16/2018					481
5/17/2018	193	170	419	359	
11/14/2018					314
11/15/2018	211	167	452	380	
5/22/2019	197	180	445	343	301
11/6/2019	177	146	403	291	266
5/18/2020	205	179	481	365	300
7/14/2020			501		
8/26/2020			493		
11/11/2020	201	175	508	364	302
2/3/2021			487		
3/1/2021			508		
5/24/2021	174	181	505	408	285
7/19/2021		184	524		
9/2/2021		188	555		

Time Series

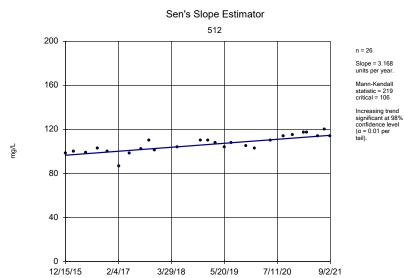
Constituent: Sulfate Analysis Run 12/9/2021 1:25 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Time Series

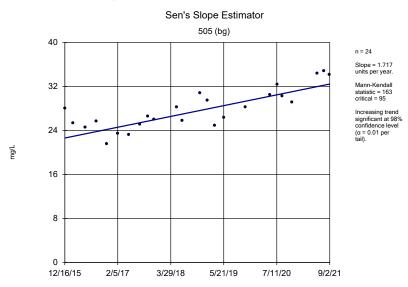

Constituent: Sulfate (mg/L) Analysis Run 12/9/2021 1:26 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

				Olbiey Client. 000 Engineers Data. Olbiey
	504 (bg)	506	512	515 (bg)
12/15/2015		64.8	23	22.1
12/16/2015	14.3			
2/18/2016	14.7	65.6	21	
5/25/2016	18.9	71	23.1	
6/2/2016				22.3
8/23/2016	15.4	65.8	24.4	
11/11/2016	17.4	65	24	19.5
2/8/2017	21	76.5	27.8	
5/3/2017			27.3	
5/4/2017	21.8	69.2		18.7
8/1/2017	23.3		28.1	
8/4/2017		73.3		
10/3/2017	24.3	71.3	28.2	54
5/16/2018				93.9
5/17/2018	32.8	75.7	29.6	
6/27/2018	31.8		30.3	
8/8/2018	32.3		30.9	
11/14/2018				70.8
11/15/2018	33.9	70.8	51.4	
1/11/2019	33.2	67.3	43.3	
3/12/2019	35.1		44.2	
5/22/2019	36.3	74.2	40.1	23.7
7/16/2019	36.3	76.1	42.1	
8/21/2019	35.6		41	
11/6/2019	35.4	76.8	45	19.1
1/13/2020			57.5	
2/3/2020			61.6	
5/18/2020	34.8	80	71.6	42.1
7/14/2020		78.6	77.6	
8/26/2020		79.6	80.1	
11/11/2020	33.1	87	92.6	15.8
2/3/2021		87.3	99.8	
3/1/2021		88.8	99.9	
5/24/2021	32.4	89.1	110	16.5
7/19/2021		89.1	104	
9/2/2021		88.7	107	

Appendix C


Trend Analysis

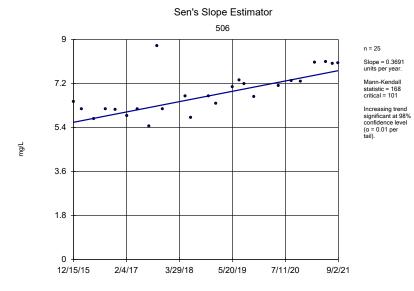
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Constituent: Calcium Analysis Run 11/30/2021 1:25 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

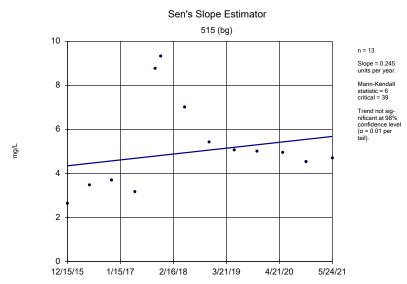
Constituent: Calcium Analysis Run 11/30/2021 1:25 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

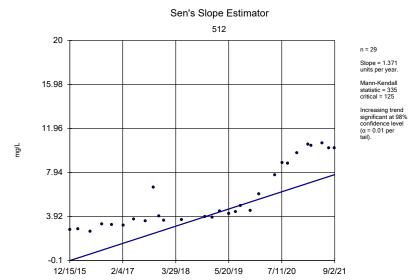


Constituent: Calcium Analysis Run 11/30/2021 1:25 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Trend Test

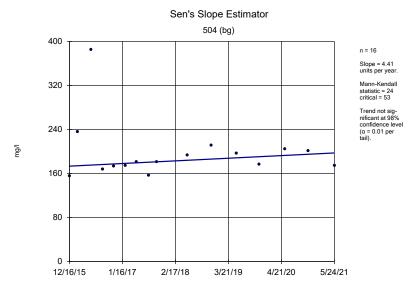

		Sibley Client: So	CS Engineers	Data: Sibley	Printed 1	1/30/2021,	1:26 PM				
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	504 (bg)	1.078	63	73	No	20	0	n/a	n/a	0.02	NP
Calcium (mg/L)	505 (bg)	1.717	163	95	Yes	24	0	n/a	n/a	0.02	NP
Calcium (mg/L)	512	3.168	219	106	Yes	26	0	n/a	n/a	0.02	NP

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

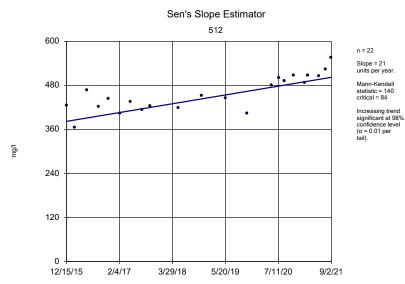

Constituent: Chloride Analysis Run 11/30/2021 1:22 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

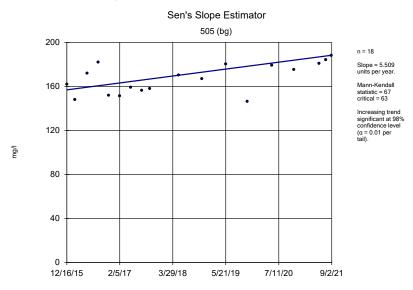
Constituent: Chloride Analysis Run 11/30/2021 1:22 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Constituent: Chloride Analysis Run 11/30/2021 1:22 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

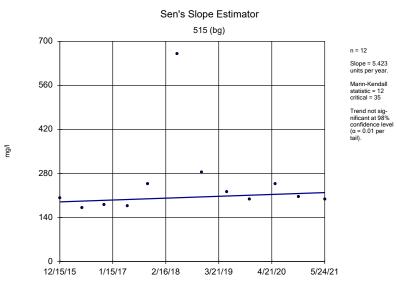

Trend Test

		Sibley Client: SC	S Engineers	Data: Sibley	Printed 1	1/30/2021,	1:24 PM				
Constituent	<u>Well</u>	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	506	0.3691	168	101	Yes	25	0	n/a	n/a	0.02	NP
Chloride (mg/L)	512	1.371	335	125	Yes	29	0	n/a	n/a	0.02	NP
Chloride (mg/L)	515 (bg)	0.245	6	39	No	13	0	n/a	n/a	0.02	NP



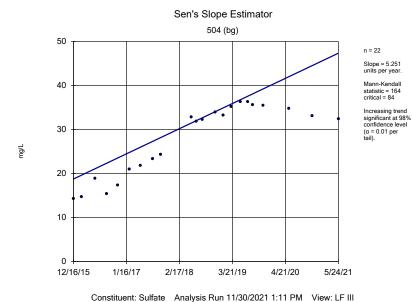
Constituent: Dissolved Solids Analysis Run 11/30/2021 1:20 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

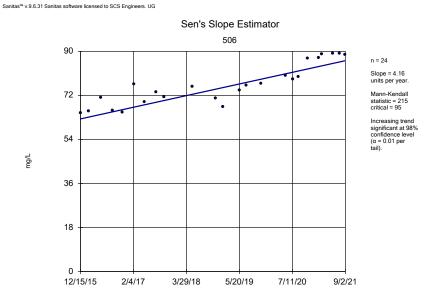


Constituent: Dissolved Solids Analysis Run 11/30/2021 1:20 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

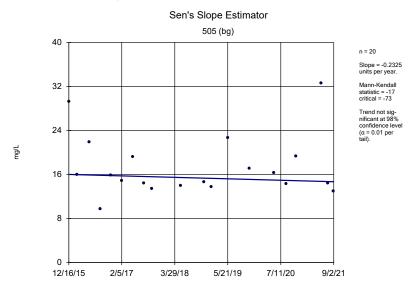
Constituent: Dissolved Solids Analysis Run 11/30/2021 1:20 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

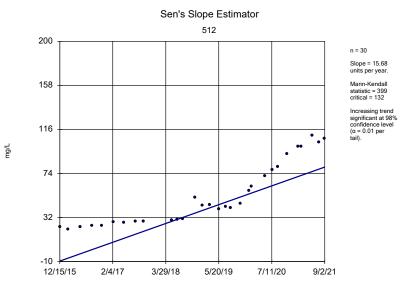
Constituent: Dissolved Solids Analysis Run 11/30/2021 1:20 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Trend Test

		Sibley Client: SC	S Engineers	Data: Sibley	Printed 11/30/2021, 1:22 PM						
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Dissolved Solids (mg/l)	504 (bg)	4.41	24	53	No	16	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	505 (bg)	5.509	67	63	Yes	18	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	512	21	140	84	Yes	22	0	n/a	n/a	0.02	NP
Dissolved Solids (mg/l)	515 (bg)	5.423	12	35	No	12	0	n/a	n/a	0.02	NP



Client: SCS Engineers Data: Sibley



Constituent: Sulfate Analysis Run 11/30/2021 1:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 11/30/2021 1:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Constituent: Sulfate Analysis Run 11/30/2021 1:11 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Trend Test

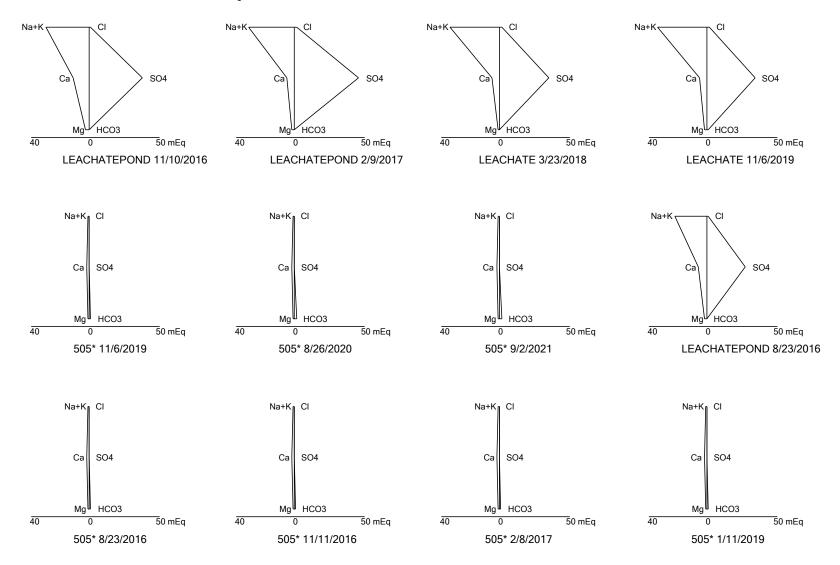
		Sibley Client: SC	S Engineers	Data: Sibley	ley Printed 11/30/2021, 1:12 PM						
Constituent	<u>Well</u>	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	504 (bg)	5.251	164	84	Yes	22	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	505 (bg)	-0.2325	-17	-73	No	20	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	506	4.16	215	95	Yes	24	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	512	15.68	399	132	Yes	30	0	n/a	n/a	0.02	NP

Appendix D

Piper Diagram Plots and Analytical Results

Analysis Run 11/30/2021 2:02 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

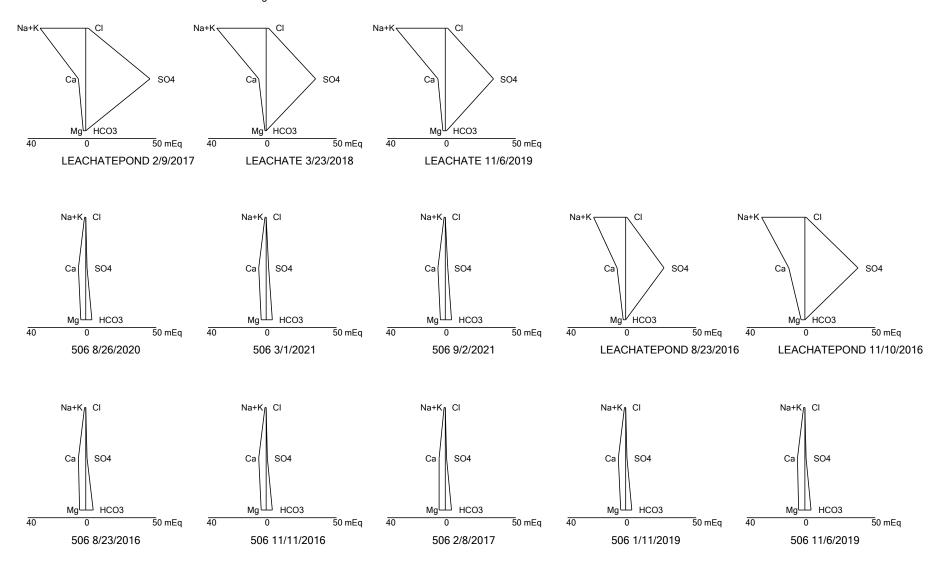

Piper Diagram

Analysis Run 11/30/2021 2:03 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3	CO3
504* 5/25/2016	6.54	1.27	30.2	8.36	0.5	18.9	89	10
504* 8/23/2016	6.61	1.15	32.2	8.56	0.5	15.4	99.5	10
504* 11/11/2016	8.17	1.3	36.9	8.97	0.5	17.4	94.7	10
504* 2/8/2017	6.83	1.28	29.6	9.94	0.5	21	105	10
504* 1/11/2019	7.64	1.9	39.3	9.85	0.5	33.2	103	10
504* 11/6/2019	7.31	1.33	34.1	10.7	0.5	35.4	101	10
505* 5/25/2016	6.93	0.5	24.6	8.05	0.5	21.9	75.3	10
505* 8/23/2016	7.28	0.5	25.7	7.97	1.19	9.73	101	10
505* 11/11/2016	6.91	0.5	21.6	7.39	0.5	15.9	68.5	10
505* 2/8/2017	8.52	0.5	23.5	9.3	0.5	14.9	94	10
505* 1/11/2019	7.54	0.5	29.5	8.42	1	13.8	87.5	10
505* 11/6/2019	8.24	0.5	28.2	9.54	0.5	17.1	93.6	10
505* 8/26/2020	8.95	1	30.3	8.95	1.03	14.3	110	10
505* 9/2/2021	8.97	1	34.1	9.34	1.23	13	118	10
506 5/25/2016	8.51	2.19	98.3	43.6	5.76	71	304	10
506 8/23/2016	8.28	1.79	97.2	42.8	6.16	65.8	326	10
506 11/11/2016	8.44	2.37	96.5	41.2	6.13	65	312	10
506 2/8/2017	8.25	2.04	83.6	43.9	5.89	76.5	307	10
506 1/11/2019	8.21	1.85	93	39.7	6.39	67.3	292	10
506 11/6/2019	8.1	1.88	93.7	42.2	6.66	76.8	306	10
506 8/26/2020	8.15	1	93.9	38.2	7.31	79.6	289	10
506 3/1/2021	8.14	1	93	38.8	8.05	88.8	277	10
506 9/2/2021	8.43	1	91.1	38.3	8.03	88.7	296	10
512 5/25/2016	10	2.24	98.9	36.8	2.55	23.1	356	10
512 8/23/2016	10.3	2.13	103	36.9	3.23	24.4	384	10
512 11/11/2016	9.96	2.16	100	35.6	3.17	24	352	10
512 2/8/2017	10	2.35	86.4	37.9	3.14	27.8	358	10
512 1/11/2019	10.6	2.25	110	37.8	3.85	43.3	366	10
512 11/6/2019	10	2.21	105	39.4	4.48	45	377	10
512 8/26/2020	10.4	2.13	114	38.9	8.79	80.1	349	10
512 3/1/2021	10	2.13	117	40.8	10.4	99.9	340	10
512 9/2/2021	10.3	2.16	114	39.9	10.2	107	349	10
LEACHATEPOND 5/25/2016	499	58.6	129	12.9	44.1	1440	10	119
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10	104
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5	68.3
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9	146
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10	108
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3	125

Appendix E

Stiff Diagrams and Analytical Results

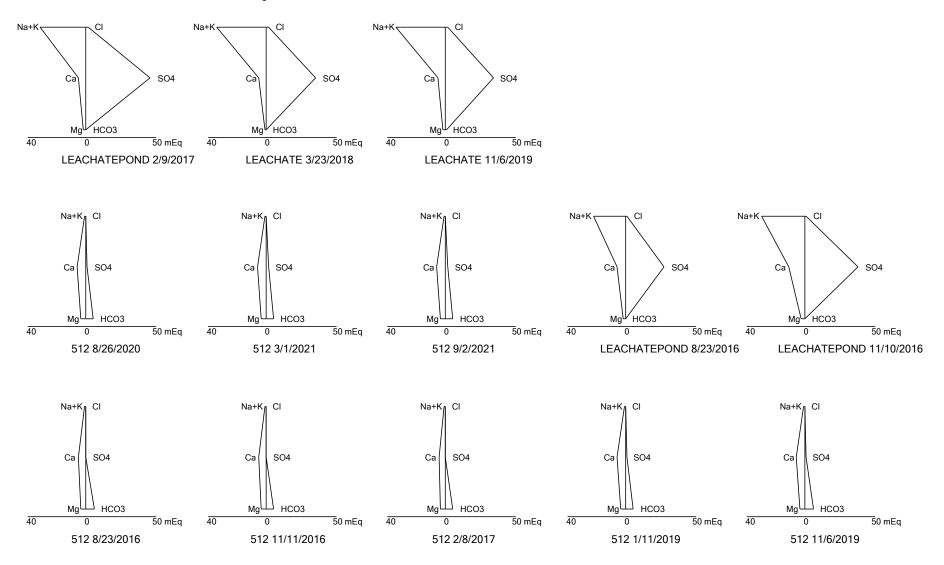


Stiff Diagram Analysis Run 11/30/2021 2:15 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Stiff Diagram

Analysis Run 11/30/2021 2:16 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3
505* 8/23/2016	7.28	0.5	25.7	7.97	1.19	9.73	101
505* 11/11/2016	6.91	0.5	21.6	7.39	0.5	15.9	68.5
505* 2/8/2017	8.52	0.5	23.5	9.3	0.5	14.9	94
505* 1/11/2019	7.54	0.5	29.5	8.42	1	13.8	87.5
505* 11/6/2019	8.24	0.5	28.2	9.54	0.5	17.1	93.6
505* 8/26/2020	8.95	1	30.3	8.95	1.03	14.3	110
505* 9/2/2021	8.97	1	34.1	9.34	1.23	13	118
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3



Stiff Diagram Analysis Run 11/30/2021 2:13 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

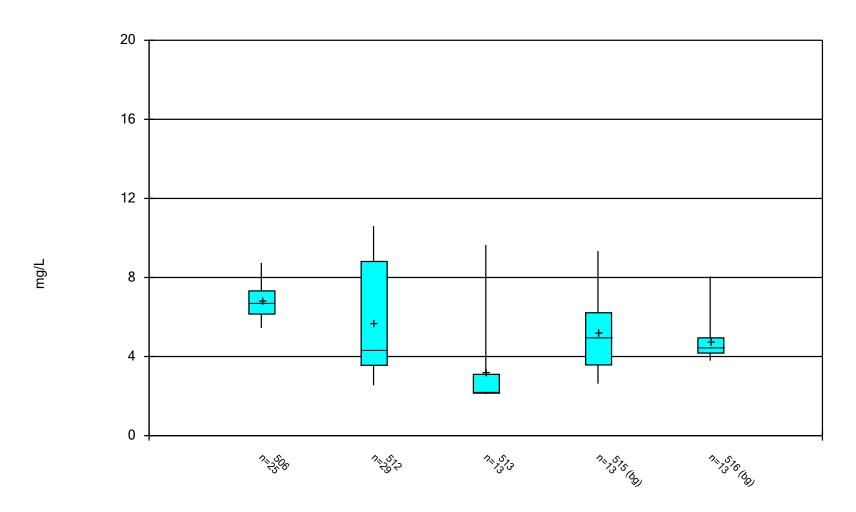
Stiff Diagram

Analysis Run 11/30/2021 2:14 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3
506 8/23/2016	8.28	1.79	97.2	42.8	6.16	65.8	326
506 11/11/2016	8.44	2.37	96.5	41.2	6.13	65	312
506 2/8/2017	8.25	2.04	83.6	43.9	5.89	76.5	307
506 1/11/2019	8.21	1.85	93	39.7	6.39	67.3	292
506 11/6/2019	8.1	1.88	93.7	42.2	6.66	76.8	306
506 8/26/2020	8.15	1	93.9	38.2	7.31	79.6	289
506 3/1/2021	8.14	1	93	38.8	8.05	88.8	277
506 9/2/2021	8.43	1	91.1	38.3	8.03	88.7	296
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/2016	651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3

Stiff Diagram Analysis Run 11/30/2021 2:12 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Stiff Diagram

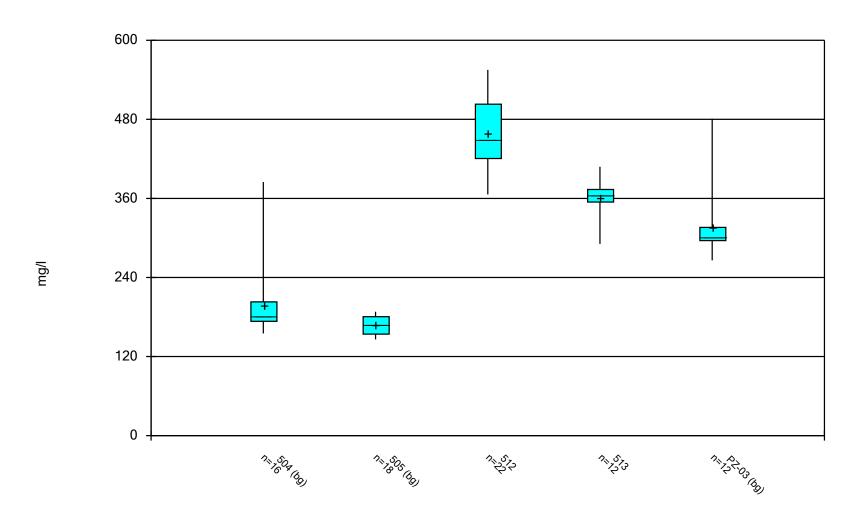

Analysis Run 11/30/2021 2:13 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3
512 8/23/2016	10.3	2.13	103	36.9	3.23	24.4	384
512 11/11/2016	9.96	2.16	100	35.6	3.17	24	352
512 2/8/2017	10	2.35	86.4	37.9	3.14	27.8	358
512 1/11/2019	10.6	2.25	110	37.8	3.85	43.3	366
512 11/6/2019	10	2.21	105	39.4	4.48	45	377
512 8/26/2020	10.4	2.13	114	38.9	8.79	80.1	349
512 3/1/2021	10	2.13	117	40.8	10.4	99.9	340
512 9/2/2021	10.3	2.16	114	39.9	10.2	107	349
LEACHATEPOND 8/23/2016	479	56.8	108	12.8	42.8	1320	10
LEACHATEPOND 11/10/201	6 651	75.3	224	22.5	50.4	1820	30.5
LEACHATEPOND 2/9/2017	678	66.2	89.4	10.8	64.5	2200	38.9
LEACHATE 3/23/2018	741	70.3	88.5	4.66	79.1	1690	10
LEACHATE 11/6/2019	732	76.4	101	13.5	74.3	1630	53.3

Appendix F

Box and Whiskers Plots

Box & Whiskers Plot

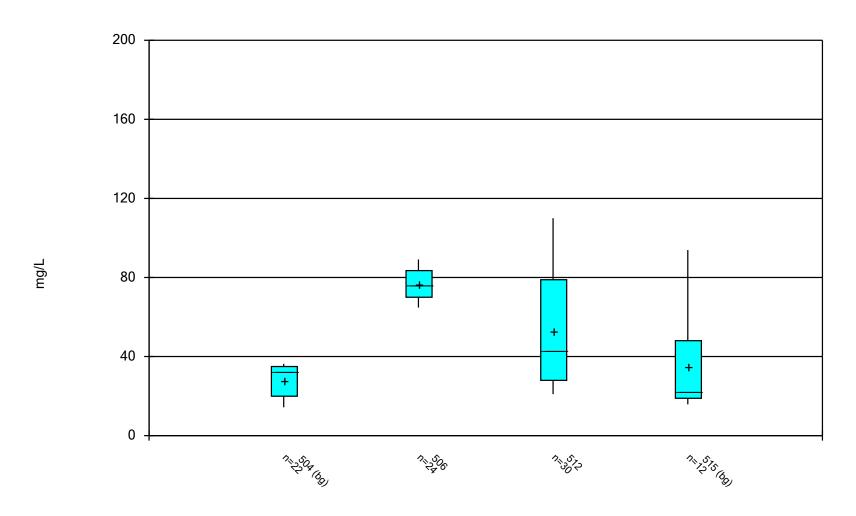


Constituent: Chloride Analysis Run 11/30/2021 3:23 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Box & Whiskers Plot

	Sibley 0	Client: SCS Er	gineers Data:	Sibley Printed 11	1/30/2021, 3:24 PM				
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
Chloride (mg/L)	506	25	6.828	0.871	0.1742	6.69	5.45	8.74	0
Chloride (mg/L)	512	29	5.709	2.877	0.5342	4.35	2.55	10.6	0
Chloride (mg/L)	513	13	3.201	2.13	0.5907	2.2	2.1	9.64	0
Chloride (mg/L)	515 (bg)	13	5.205	2.039	0.5655	4.94	2.63	9.33	0
Chloride (mg/L)	516 (bg)	13	4.798	1.15	0.319	4.45	3.79	8.05	0

Box & Whiskers Plot

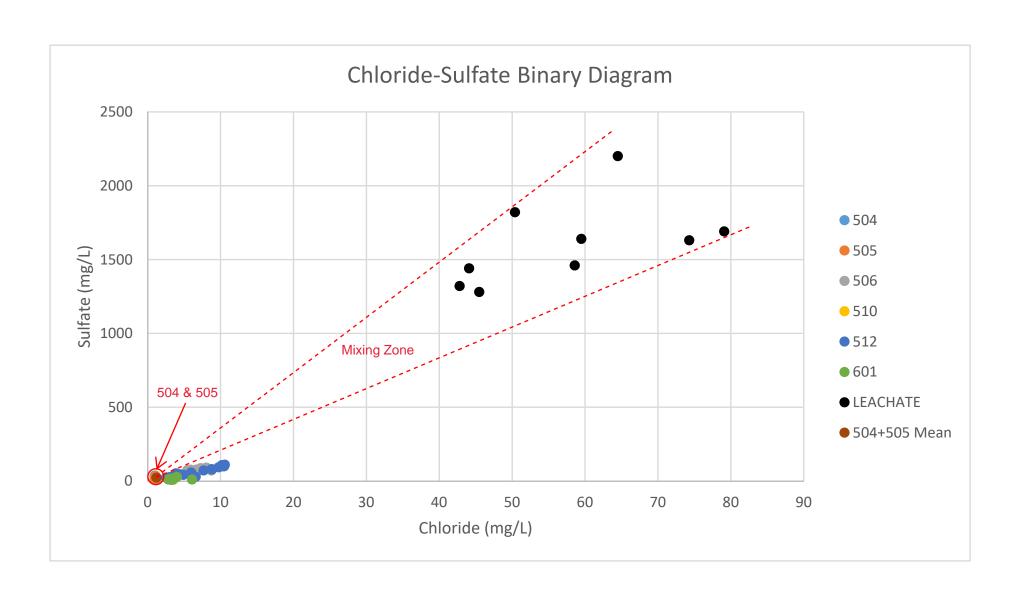


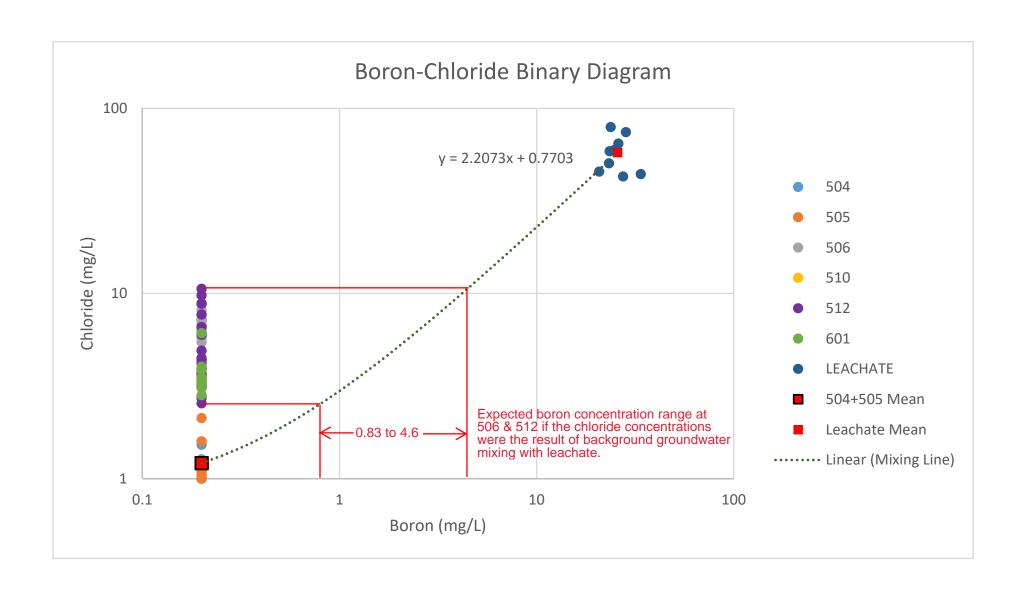
Constituent: Dissolved Solids Analysis Run 11/30/2021 3:44 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

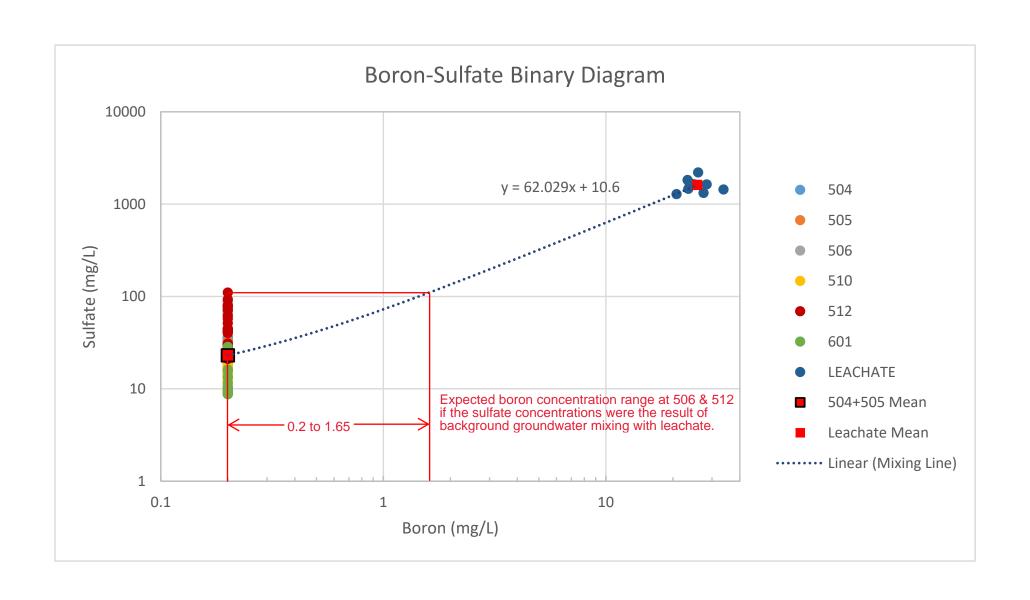
Box & Whiskers Plot

	Sibley	Client: SCS En	igineers Data:	Sibley Printed 1	1/30/2021, 3:45 PM				
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Dissolved Solids (mg/l)	504 (bg)	16	197.9	54.14	13.54	181	155	385	0
Dissolved Solids (mg/l)	505 (bg)	18	167.2	13.58	3.201	168.5	146	188	0
Dissolved Solids (mg/l)	512	22	458.2	47.75	10.18	448.5	366	555	0
Dissolved Solids (mg/l)	513	12	361.8	28.43	8.207	364.5	291	408	0
Dissolved Solids (mg/l)	PZ-03 (bg)	12	316.2	54.37	15.7	301.5	266	481	0

Box & Whiskers Plot


Constituent: Sulfate Analysis Run 11/30/2021 3:52 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Box & Whiskers Plot


	Sibley Cl	Client: SCS Engineers		Data: Sibley Printed 11/30/2021, 3:53 PM					
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
Sulfate (mg/L)	504 (bg)	22	27.91	8.023	1.71	32.35	14.3	36.3	0
Sulfate (mg/L)	506	24	76.32	8.384	1.711	75.9	64.8	89.1	0
Sulfate (mg/L)	512	30	52.88	29.79	5.438	42.7	21	110	0
Sulfate (mg/L)	515 (bg)	12	34.88	25.38	7.327	22.2	15.8	93.9	0

Appendix G

Binary Plots

Addendum 1

2021 Groundwater Monitoring and Corrective Action Report Addendum 1

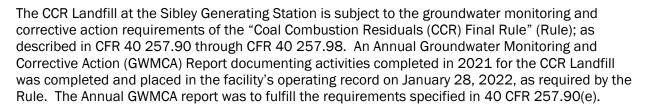
SCS ENGINEERS

December 16, 2022 File No. 27213167.21

To: Evergy Metro, Inc.

Jared Morrison - Director, Water and Waste Programs

From: SCS Engineers


Douglas L. Doerr, P.E. John R. Rockhold, P.G.

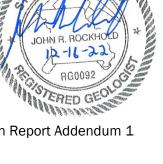
Subject: 2021 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

Evergy Missouri West, Inc.

CCR Landfill

Sibley Generating Station - Sibley, Missouri

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:


- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy'
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- February 2021 First verification sampling for the Fall 2020 detection monitoring sampling event.
- March 2021 Second verification sampling for the Fall 2020 detection monitoring sampling event.
- o May 2021 Spring 2021 semiannual detection monitoring sampling event.
- July 2021 First verification sampling for the Spring 2021 detection monitoring sampling event.
- September 2021 Second verification sampling for the Spring 2021 detection monitoring sampling event.
- November 2021 Fall 2021 semiannual detection monitoring sampling event.

Attachment 2 - Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2021 included the following:

- o Fall 2020 semiannual detection monitoring statistical analyses.
- Spring 2021 semiannual detection monitoring statistical analyses.

• Attachment 3 - Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o May 2021 Spring 2021 semiannual detection monitoring sampling event.
- o November 2021 Fall 2021 semiannual detection monitoring sampling event.

ATTACHMENT 1 Laboratory Analytical Reports

ATTACHMENT 1-1 February 2021 Sampling Event Laboratory Report

ANALYTICAL REPORT

February 16, 2021

SCS Engineers - KS

Sample Delivery Group:

L1314464

Samples Received:

02/05/2021

Project Number:

27213169.21

Description:

Sibley Generating Station

Report To:

Jason Franks

8575 W. 110th Street

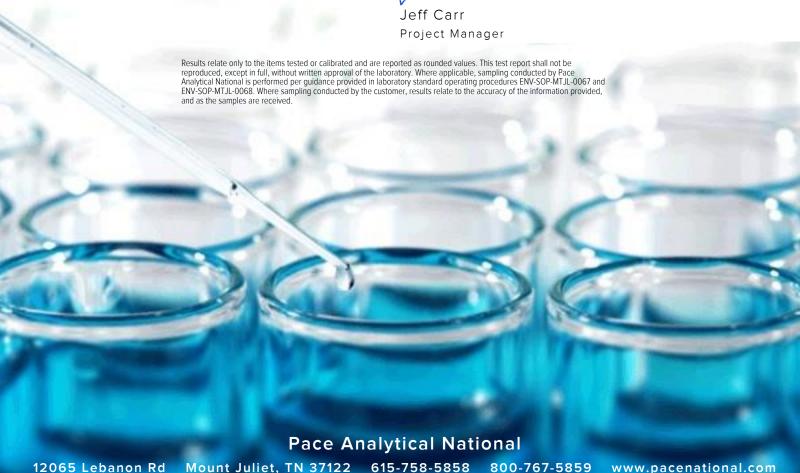
Overland Park, KS 66210

Wubb law

Al

GI

Ss


Cn

Sr

[°]Qc

Sc

Entire Report Reviewed By:

800-767-5859

www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1314464-01	5
MW-512 L1314464-02	6
DUPLICATE 1 L1314464-03	7
Qc: Quality Control Summary	8
Gravimetric Analysis by Method 2540 C-2011	8
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

			Collected by	Collected date/time	Received da	te/time
MW-506 L1314464-01 GW			G. Penaflor	02/03/2113:45	02/05/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1618819	1	02/11/21 16:55	02/11/21 16:55	MCG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1314464-02 GW			G. Penaflor	02/03/2113:20	02/05/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1618387	1	02/09/21 04:33	02/09/21 06:15	CAT	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1618819	1	02/11/21 17:08	02/11/21 17:08	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1618819	5	02/11/21 22:34	02/11/21 22:34	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1618516	1	02/11/21 16:01	02/11/21 19:15	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 1 L1314464-03 GW			G. Penaflor	02/03/2113:30	02/05/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1620060	1	02/11/21 17:03	02/11/21 18:23	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1618819	1	02/11/21 17:47	02/11/21 17:47	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1618819	5	02/11/21 22:47	02/11/21 22:47	MCG	Mt. Juliet, TN

WG1618516 1

02/11/21 16:01

02/11/21 19:39

CCE

Mt. Juliet, TN

Metals (ICP) by Method 6010B

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

MW-506

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 02/03/21 13:45

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	87300		5000	1	02/11/2021 16:55	WG1618819

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 02/03/21 13:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	487000	<u>J3</u>	10000	1	02/09/2021 06:15	<u>WG1618387</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	10500		1000	1	02/11/2021 17:08	WG1618819
Sulfate	99800		25000	5	02/11/2021 22:34	WG1618819

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	117000	V	1000	1	02/11/2021 19:15	WG1618516

Cn

СQс

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 02/03/21 13:30

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	500000		10000	1	02/11/2021 18:23	WG1620060

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	10400		1000	1	02/11/2021 17:47	WG1618819
Sulfate	100000		25000	5	02/11/2021 22:47	WG1618819

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	117000		1000	1	02/11/2021 19:39	WG1618516

СQс

Cn

7 of 15

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1314464-02

Method Blank (MB)

 (MB) R3621442-1
 02/09/21
 06:15

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Dissolved Solids
 U
 2820
 10000

(OS) L1314195-02 02/09/21 06:15 • (DUP) R3621442-3 02/09/21 06:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	10500000	11000000	1	4.83		5

[†]Cn

(OS) L1314464-02 02/09/21 06:15 • (DUP) R3621442-4 02/09/21 06:15

· ,	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	487000	459000	1	5.92	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3621442-2 02/09/21 06:15

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8660000	98.4	77.4-123	

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1314464-03

Method Blank (MB)

Dissolved Solids

(MB) R3622102-1 02/11/21 18:23 MB MDL MB RDL MB Result MB Qualifier

Laboratory Control Sample (LCS)

8800000

8380000

95.2

(LCS) R3622102-2 02/11/21 18:23 Spike Amount LCS Result Rec. Limits LCS Qualifier LCS Rec. % % Analyte ug/l ug/l

77.4-123

SDG:

L1314464

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1314464-01,02,03

Method Blank (MB)

(MB) R3621989-1 02/11/2	l 10:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Sulfate	U		594	5000

(OS) L1314344-02 02/11/21 15:25 • (D	OUP) R3621989-3 02/11/21 15:38
--------------------------------------	--------------------------------

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	ND	ND	5	0.000		15
Sulfate	482000	481000	5	0.208		15

(OS) L1314536-01 02/11/21 21:03 • (DUP) R3621989-10 02/11/21 21:16

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	38000	38500	1	1.32		15
Sulfate	64200	64500	1	0.526		15

Laboratory Control Sample (LCS)

(LCS) P3621989-2 02/11/21 10:37

(LC3) K3021909-2 02/11/	21 10.37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39900	99.7	80.0-120	
Sulfate	40000	40700	102	80.0-120	

L1314464-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1214/464 02 02/11/21 17:08 - (MS) D3621089 4 02/11/21 17:21 - (MSD) D3621089 5 02/11/21 17:24

(03) 11314404-02 02/11/2	33) LISTATON-02 02/11/21 17.00 • (NIS) KS021303-4 02/11/21 17.21 • (NISD) KS021303-5 02/11/21 17.54											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	10500	60400	61500	99.9	102	1	80.0-120			1.84	15
Sulfate	50000	102000	149000	151000	93.1	97.0	1	80.0-120	<u>E</u>	<u>E</u>	1.31	15

PROJECT:

27213169.21

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1314464-01,02,03

L1314460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1314460-02 02/11/21 19:18 • (MS) R3621989-6 02/11/21 19:32 • (MSD) R3621989-7 02/11/21 19:45

` '	, ,		•	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	16800	66700	67500	99.8	101	1	80.0-120			1.15	15
Sulfate	50000	ND	50800	51600	100	102	1	80 0-120			160	15

L1314503-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1314503-01 02/11/21 19:58 • (MS) R3621989-8 02/11/21 20:11 • (MSD) R3621989-9 02/11/21 20:24

(/				,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	59300	107000	104000	94.8	88.9	1	80.0-120	<u>E</u>	<u>E</u>	2.80	15
Sulfate	50000	1860000	1840000	1630000	0.000	0.000	1	80.0-120	ΕV	ΕV	12.1	15

PAGE:

11 of 15

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1314464-02,03

Method Blank (MB)

Calcium

(MB) R3621871-1 02/11	/21 18:58			
	MB Result	MB Qualifier	MB MDL	
Analyte	ua/l		ua/l	

(LCS) R3621871-2 02/11/21	19:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9900	99.0	80.0-120	

⁶Qc

L1314460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

79.3

MB RDL ug/l

1000

(OS) L1314460-02 02/11/21 19:04 • (MS) R3621871-4 02/11/21 19:09 • (MSD) R3621871-5 02/11/21 19:12

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	141000	149000	148000	79.2	72.0	1	75.0-125		V	0.485	20

L1314464-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1314464-02 02/11/21 19:15 • (MS) R3621871-6 02/11/21 19:17 • (MSD) R3621871-7 02/11/21 19:20

(,	Spike Amount	Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	117000	125000	124000	75.7	73.0	1	75.0-125		V	0.213	20

L1314558-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1314558-10 02/11/21 19:23 • (MS) R3621871-8 02/11/21 19:31 • (MSD) R3621871-9 02/11/21 19:34

(O3) L1314336-10 02/11/21 13.23 • (N13) R3021071-6 02/11/21 13.31 • (N13) R3021071-3 02/11/21 13.34												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	94400	102000	102000	78.5	79.6	1	75.0-125			0.112	20

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Apple viations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

Alabama	40160
ANSI National Accreditation Board	L2239

Pace Analytical National 660 Bercut Dr. Ste. C Sacramento, CA, 95811

California	2961	Oregon	CA300002
Minnesota	006-999-465	Washington	C926
North Dakota	D_21/I		

Pace Analytical National 6000 South Eastern Avenue Ste 9A Las Vegas, NV, 89119

Nevada NV009412021-1

Pace Analytical National 1606 E. Brazos Street Suite D Victoria, TX, 77901

Texas T104704328-20-18

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

mpan Name/Address:				Billing Infor	mation:		T			A	nalvsis / C	ontainer	/ Preserv	ative			Chain of Custody	Page of
CS Engineers - KS				8575 W. 110th Street			Pres Chk	1									Pace / National Ca	Analytical®
ors W. 110th Street verland Park, KS 66210		Overland Park, KS 66210															12065 Lebanon Road Mi	
eportio: ason Franks				Email To: jfranks@sc	sengineers.co	om;jay.martin@											Phone: 615-758-5858 Al Submitting a sample via	t: 800-767-5859 this chain of custody ment and acceptance of the
roject Description: ibley Generating Station			City/State Collected: 5	ibley,	110	Please PT MT			Pres							-	https://info.pacelabs.co terms.odf SDG # /3/	
hone: 913-681-0030	1	nt Project # 213169.18		AQUAOP	KS-SIBLEY		HNO3	125mlHDPE-NoPres	Se	SS						G189		
Collected by (print):	Site/	Facility ID	#		P.O.#			HDPEH	SmIHE	-NoPre	-NoPre						Acctnum: AQU	
Collected by (signature):	Rush? (Lab MUST Be Same Day Five 5 Day 5 Day 10 I		y Five 0	Day		esults Needed	No.	6010 250mlHDPE-HNO3	504	nIHD	250mIHDPE-NoPres						Prelogin: P82 PM: 206 - Jeff (5414
Immediately N Y Y	=	Three Da			7	tel	of	601	rid	12	25(Shipped Via:	
Sample ID	Con	mp/Grab	Matrix *	Depth	Date	Time	Cntrs	Ca -	Chloride,	504	TDS						Remarks	Sample # (lab only)
MW-506	G	RAD	GW		2/3/:	4 134	5 1			X								- 01
MW-512		1	GW		1	132	8 3	X	X		X					201	3(**	02
DUPLICATE 1			GW			133	5 3	X	X		X							03
MW-512 MS/MSD		1	GW		V	133	0 2	X	X									02
						7.50								. e. p				
at the second			7	4														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remark	ks:					pH Flow		TempOther _		COC S:	eal Pre igned/ es arri	e Receipt Chesent/Intact Accurate: ive intact: tles used:	$\stackrel{:}{ } \stackrel{\bigwedge}{ } \stackrel{\bigvee}{ } \stackrel{Y}{ } \stackrel{N}{ } \stackrel{N}{ }$				
WW - WasteWater DW - Drinking Water OT - Other	Sample UPS	es returned FedE	d via: xCourie	r		Tracking #		Sufficien VOA Zero						cient v	bottles used: nt volume sent; If Applicable Headspace: tion Correct/Checked: Y _N			
Relinquished by : (Signature) Partial Date: 2/3/ Relinquished by : (Signature) Date:			2/3/2) Tin		Received by: (Si Received by: (Si	shore	/	1340		Temp:	ip Blank Received: Yes /No) HOLLMOH TBR emp: °C Bottles Received:			RAD S	RAD Screen <0.5 mR/hr:N If preservation required by Login: Date/Time		
Relinquished by : (Signature)		C	Date:	Tir	ne:	Received for lake	by: (Sign	nature)	,0	0 N	Date: 2/5	1	Time:	330	Hold:			Condition: NCF / Ok

ATTACHMENT 1-2 March 2021 Sampling Event Laboratory Report

Pace Analytical® ANALYTICAL REPORT

March 10, 2021

SCS Engineers - KS

Sample Delivery Group:

L1322448

Samples Received:

03/03/2021

Project Number:

27213169.21

Description:

Sibley Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 12065 Lebanon Rd

615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1322448-01	5
MW-512 L1322448-02	6
DUPLICATE 1 L1322448-03	7
Qc: Quality Control Summary	8
Gravimetric Analysis by Method 2540 C-2011	8
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-506 L1322448-01 GW			Whit Martin	03/01/21 16:20	03/03/2113:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1631305	1	03/09/21 02:17	03/09/21 02:17	MCG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1322448-02 GW			Whit Martin	03/01/21 17:10	03/03/2113:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1629155	1	03/04/21 08:54	03/04/2110:27	CAT	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1631305	1	03/09/21 02:30	03/09/21 02:30	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1631305	5	03/09/21 08:56	03/09/21 08:56	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1629875	1	03/08/21 17:27	03/09/21 10:54	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 1 L1322448-03 GW			Whit Martin	03/01/21 17:10	03/03/2113:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1629155	1	03/04/21 08:54	03/04/2110:27	CAT	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1631305	1	03/09/21 03:09	03/09/21 03:09	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1631305	5	03/09/21 09:09	03/09/21 09:09	MCG	Mt. Juliet, TN

WG1629875

1

03/08/21 17:27

03/09/21 11:54

KMG

Mt. Juliet, TN

Metals (ICP) by Method 6010B

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

up lan

MW-506

SAMPLE RESULTS - 01

Collected date/time: 03/01/21 16:20

L1322448

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	88900		5000	1	03/09/2021 02:17	WG1631305

SAMPLE RESULTS - 02

Collected date/time: 03/01/21 17:10

L1322448

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	508		10.0	1	03/04/2021 10:27	WG1629155

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	10400		1000	1	03/09/2021 02:30	WG1631305
Sulfate	99900		25000	5	03/09/2021 08:56	WG1631305

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	117000	O1 V	1000	1	03/09/2021 10:54	WG1629875

DUPLICATE 1

SAMPLE RESULTS - 03

L1322448

Collected date/time: 03/01/21 17:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	505		10.0	1	03/04/2021 10:27	WG1629155

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	10400		1000	1	03/09/2021 03:09	WG1631305
Sulfate	103000		25000	5	03/09/2021 09:09	WG1631305

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Calcium	117000		1000	1	03/09/2021 11:54	WG1629875	

Cn

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1322448-02,03

Method Blank (MB)

(MB) R3627598-1 03/04/2	21 10:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1322448-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1322448-02 03/04/21 10:27 • (DUP) R3627598-3 03/04/21 10:27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	508	502	1	1.19		5

Ss

L1322448-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1322448-03 03/04/2110:27 • (DUP) R3627598-4 03/04/2110:27

(00, 2.022	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	505	500	1	0.995		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3627598-2 03/04/2110:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Dissolved Solids	8800	8700	98.9	77.4-123

QUALITY CONTROL SUMMARY

L1322448-01,02,03

Wet Chemistry by Method 9056A

Method Blank (MB)

Sulfate

(MB) R3628675-1 03/08/2	21 10:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000

(OS) L1322458-02 03/09/21 03:43 • (DUP) R3628675-5 03/09/21 03:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	17100	17100	1	0.0421		15
Sulfate	48300	48300	1	0.0213		15

594

5000

(OS) L1323107-06 03/09/21 08:04 • (DUP) R3628675-6 03/09/21 08:17

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	63100	63100	1	0.0518		15
Sulfate	ND	ND	1	8.37		15

Laboratory Control Sample (LCS)

(LCS) P3628675-2 03/08/2110:49

(LC3) K3028073-2 03/C	00/2110.49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40300	101	80.0-120	
Sulfate	40000	40300	101	80.0-120	

L1322448-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSLI 1322448 02 03/09/21 02:30 - (MS) D3628675 3 03/09/21 02:43 - (MSD) D3628675 4 03/09/21 02:56

(03) 11322440-02 03/03/	03) L1322440-02 03/03/21 02:30 • (M3) N3020073-3 03/03/21 02:33 • (M3D) N3020073-4 03/03/21 02:30												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	10400	63100	63100	105	105	1	80.0-120			0.0472	15	
Sulfate	50000	107000	156000	156000	99.2	99.3	1	80.0-120	<u>E</u>	<u>E</u>	0.0530	15	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1322448-01,02,03

L1323107-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1323107-06 03/09/21 08:04 • (MS) R3628675-7 03/09	3/09/21 08:30
---	---------------

(/	/ - /						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	63100	112000	98.0	1	80.0-120	<u>E</u>
Sulfate	50000	ND	53300	105	1	80.0-120	

QUALITY CONTROL SUMMARY

L1322448-02,03

Metals (ICP) by Method 6010B

Method Blank (MB)

(MB) R3628906-1 03/09/2	1 10:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3628906-2 03/09	/21 10:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9740	97.4	80.0-120	

(OS) L1322448-02 03/09/21 10:54 • (MS) R3628906-4 03/09/21 11:00 • (MSD) R3628906-5 03/09/21 11:02

(,	Spike Amount			MSD Result			Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	117000	125000	125000	77.5	74.0	1	75.0-125		V	0.278	20

PAGE:

11 of 14

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:			T	T		A	nalvsis /	Contai	ner / Pre	servative			Chain of Custody	Page of														
SCS Engineers - KS 8575 W. 110th Street			Procedures I dyabic				Pres Chk	or									Pace National Co	Analytical® anter for Testing & Innovation														
Overland Park, KS 66210	Perland Park, KS 66210												1																			
eport to: ason Franks			Email To:	csengineer	rs.com;ja	y.martin@e	vergy.c		*							12065 Lebanon Road Mt Juliet, TN Phone: 615-758-5858 Alt: 800-767 Submitting a sample via this chain constitutes acknowledgment and a																
Project Description: Sibley Generating Station			Sibler	, 40		Please Ci PT MT			res							Pace Terms and Conditions for https://info.pacelabs.com/hul		om/hubfs/pas-standard-														
Phone: 913-681-0030	Client Project 27213169	t#		Lab Project #				NO3	E-NoP								322446															
Collected by (print): Whit Martin	Site/Facility	D#	P.O. #					P.O. #		P.O. #		P.O. #		P.O. #		P.O.#		P.O.#						DPE-HA	MIHDE	NoPres	NoPres					
Collected by (signature): National American Street	Same I	(Lab MUST Be Day Five ay 5 Day ay 10 Day	Day y (Rad Only)	Quote		s Needed	No.	6010 250mlHDPE-HNO3	le, SO4 125mlHDPE-NoPres	125mlHDPE-NoPres	250mIHDPE-NoPres					Template: T117427 Prelogin: P830729 PM: 206 - Jeff Carr PB:		0729														
Packed on Ice N Y Sample ID	Comp/Grab	T	Depth	Da	ate	Time	of Cntrs	Ca - 60	Chloride,	504 12	TDS 25						Shipped Via: Remarks	Sample # (lab only)														
MW-506	Grab	GW		3/1/	/21	1620	1			X							*	-01														
WW-512	Grab	GW		3/11	/21	1710	3	X	X		X						7 3 4	02														
DUPLICATE 1	Grab	GW		3/11	/21	1710	3	X	X		X							03														
MW-512 MS/MSD	Grab	GW		3/1/	/21	1710	2	X	X									02														
							+																									
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay NW - WasteWater	Remarks:										pH Flow		_ Temp		COC S Bott	Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: NP N COC Signed/Accurate: N Correct bottles used: N N																
DW - Drinking Water DT - Other	Samples returned UPS FedE				Trackin	ng#								Suff:	icient v Zero Hea	olume sent: If Applicab dspace:	le _y_N															
Relinquished by : (Signature)		3/2/21	Time	24	Receive	ed by: (Signa	iture)	3-2	-21		Trip Blar	nk Rece		es /NO HCL / Meol TBR	RAD S		Correct/Che	ecked: Y N														
Relinquished by : (Signature)	C	ate:	Time		Receive	ed by: (Signa	iture)	2			Temp.	ACCUSTOMES 12-2	C Bott	les Received	l: If pre:	servation i	required by Log	gin: Date/Time														
Relinquished by : (Signature)	C	Date:	Time	e:	Receive	ed for lab by	: (Signal	ture)	4	1	Date:	6.1	, Tim	e: 130	Hold:			Condition- NCF / OK														

...

A HOLD TO BE A STATE OF THE STA

Pace Analytical® ANALYTICAL REPORT

March 10, 2021

SCS Engineers - KS

Project Number:

Sample Delivery Group: L1322455

Samples Received: 03/03/2021

Description: **Evergy Sibley Generating Station**

27213169.21

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National Mount Juliet, TN 37122 615-758-5858 800-767-5859

ACCOUNT: SCS Engineers - KS

12065 Lebanon Rd

PROJECT:

SDG:

DATE/TIME: 03/10/21 10:36 PAGE: 1 of 14

www.pacenational.com

27213169.21 L1322455

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1322455-01	5
MW-512 L1322455-02	6
MW-803 L1322455-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 2320 B-2011	8
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-506 L1322455-01 GW			Whit Martin	03/01/21 16:20	03/03/2113:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1629824	1	03/05/21 06:34	03/05/21 06:34	SL	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1630926	1	03/09/21 05:44	03/09/21 05:44	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1629875	1	03/08/21 17:27	03/09/21 11:56	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
MW-512 L1322455-02 GW			Whit Martin	03/01/21 17:10	03/03/21 13:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1629824	1	03/05/21 06:46	03/05/21 06:46	SL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1629875	1	03/08/21 17:27	03/09/21 11:59	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-803 L1322455-03 GW			Whit Martin	03/01/21 15:30	06:34 SL M 05:44 MCG M 11:56 KMG M d date/time Received date/tim 17:10 03/03/21 13:00 Analyst 06:46 SL M d date/time Received date/tim 15:30 03/03/21 13:00 Analyst 06:56 SL M	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1629824	1	03/05/21 06:56	03/05/21 06:56	SL	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1630926	5	03/09/21 06:00	03/09/21 06:00	MCG	Mt. Juliet, TN

WG1629875

1

03/08/21 17:27

03/09/21 12:02

KMG

Mt. Juliet, TN

Metals (ICP) by Method 6010B

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

up lan

L1322455

Collected date/time: 03/01/21 16:20

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	277000		20000	1	03/05/2021 06:34	WG1629824
Alkalinity, Carbonate	ND		20000	1	03/05/2021 06:34	WG1629824

Sample Narrative:

L1322455-01 WG1629824: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8050		1000	1	03/09/2021 05:44	WG1630926

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	93000		1000	1	03/09/2021 11:56	WG1629875
Magnesium	38800		1000	1	03/09/2021 11:56	WG1629875
Potassium	ND		2000	1	03/09/2021 11:56	WG1629875
Sodium	8140		3000	1	03/09/2021 11:56	WG1629875

Sample Narrative:

SAMPLE RESULTS - 02

Collected date/time: 03/01/21 17:10

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	340000		20000	1	03/05/2021 06:46	WG1629824
Alkalinity, Carbonate	ND		20000	1	03/05/2021 06:46	WG1629824

Metals (ICP) by Method 6010B

L1322455-02 WG1629824: Endpoint pH 4.5 Headspace

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Magnesium	40800		1000	1	03/09/2021 11:59	WG1629875
Potassium	2130		2000	1	03/09/2021 11:59	WG1629875
Sodium	10000		3000	1	03/09/2021 11:59	WG1629875

Cn

Wet Chemistry by Method 2320 B-2011

Collected date/time: 03/01/21 15:30

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	274000		20000	1	03/05/2021 06:56	WG1629824
Alkalinity.Carbonate	ND		20000	1	03/05/2021 06:56	WG1629824

Ss

Cn

Sample Narrative:

L1322455-03 WG1629824: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	115000		25000	5	03/09/2021 06:00	WG1630926

(/ /)						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	115000		1000	1	03/09/2021 12:02	WG1629875
Magnesium	22000		1000	1	03/09/2021 12:02	WG1629875
Potassium	2150		2000	1	03/09/2021 12:02	WG1629875
Sodium	23000		3000	1	03/09/2021 12:02	WG1629875

QUALITY CONTROL SUMMARY

L1322455-01,02,03

Wet Chemistry by Method 2320 B-2011

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity, Carbonate	U		8450	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

L1322190-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1322190-02 03/05/21 04:46 • (DUP) R3627767-2 03/05/21 04:59

(03) 1322130 02 03/03/2	1 04.40 - (D01	1130277072	03/03/21	04.55		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	145000	145000	1	0.147		20
Alkalinity,Carbonate	ND	ND	1	0.000		20

8 1

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1322687-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1322687-02 03/05/21 13:21 • (DUP) R3627767-4 03/05/21 13:35

(,						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	21300	20400	1	4.39		20
Alkalinity, Carbonate	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

L1322455-01,03

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3628601-1 03/08/	MB) R3628601-1 03/08/21 11:30									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Chloride	U		379	1000						
Sulfate	U		594	5000						

²Tc

3 Cc

4

L1322262-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1322262-01 03/08/21 21:48 • (DUP) R3628601-3 03/08/21 22:04

(12,	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	121000	121000	1	0.0180	<u>E</u>	15
Sulfate	53800	53800	1	0.0312		15

⁷Gl

L1322439-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1322439-02 03/09/21 04:55 • (DUP) R3628601-7 03/09/21 05:11

(,	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	58000	58100	1	0.206		15
Sulfate	1920000	1920000	1	0.0348	<u>E</u>	15

9 5 6

SC

Laboratory Control Sample (LCS)

(LCS) R3628601-2 03/08/21 11:46

(LC3) K3020001-2 03/C	76/21 11.40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40800	102	80.0-120	
Sulfate	40000	42200	105	80.0-120	

L1322262-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1322262-02 03/08/21 22:21 • (MS) R3628601-4 03/08/21 22:37

(03) 11322202 02 03/00	72122.21 · (IVIS)	113020001 + 0	00/2122.0	,			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	92600	141000	97.1	1	80.0-120	<u>E</u>
Sulfate	50000	37500	84100	93.2	1	80.0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1322455-01,03

L1322439-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322439-01 03/09/21 03:33 • (MS) R3628601-5 03/09/21 04:22 • (MSD) R3628601-6 03/09/21 04:38

· /	' '			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	58200	102000	102000	87.1	87.2	1	80.0-120	<u>E</u>	<u>E</u>	0.0505	15
Sulfate	50000	1920000	1890000	1900000	0.000	0.000	1	80.0-120	ΕV	ΕV	0.269	15

QUALITY CONTROL SUMMARY

L1322455-01,02,03

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3628906-1 03/09/2110:49 MB Result MB MDL MB RDL MB Qualifier Analyte ug/l ug/l ug/l Calcium U 79.3 1000 85.3 1000 Magnesium Potassium U 261 2000 Sodium U 504 3000

Sr

Laboratory Control Sample (LCS)

(LCS) R3628906-2 03/09/2110:52

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9740	97.4	80.0-120	
Magnesium	10000	9670	96.7	80.0-120	
Potassium	10000	9080	90.8	80.0-120	
Sodium	10000	9550	95.5	80.0-120	

L1322448-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1322448-02 03/09/21 10:54 • (MS) R3628906-4 03/09/21 11:00 • (MSD) R3628906-5 03/09/21 11:02

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	117000	125000	125000	77.5	74.0	1	75.0-125		$\underline{\vee}$	0.278	20
Magnesium	10000	40500	49100	49100	85.6	86.3	1	75.0-125			0.134	20
Potassium	10000	2180	11500	11500	93.2	93.6	1	75.0-125			0.379	20
Sodium	10000	10200	19700	19700	95.3	95.0	1	75.0-125			0.171	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information:							P	Analysis /	/ Contai	iner / Pro	eservative			Chain of Custody	Page of
SCS Engineers - KS			Account 8575 W.				Pres Chk		12		12						Pace	Analytical*
8575 W. 110th Street			Overland			10			-		V						Netional C	Senter for Testing & Innovation
Overland Park, KS 66210													100					
Report to:			Email To: jfranks@scsengineers.com;jay.martin@evergy.c						33								12065 Lebanon Road N Phone: 615-758-5858	Alt: 800-767-5859
Jason Franks		Lau ta	to distribution to be because						Ž.	SS	m						constitutes acknowled	a this chain of custody gment and acceptance of the
Project Description: Evergy Sibley Generating Station		City/State Collected:	sibley	, 40		Please Ci		125mlHDPE-NoPres	a - 6010 250mlHDPE-HNO3	Chloride - 9056 125mlHDPE-NoPres	6010 250mlHDPE-HNO3	Si					Pace Terms and Condit https://info.pacelabs.co terms.pdf	om/hubfs/pas-standard-
Phone: 913-681-0030	Client Project 27213169		,	AQUA	OPKS-S	SIBLEY						125mlHDPE-NoPres					SDG# 1096	5 र र र
Collected by (print): Whit Martin	Site/Facility	ID#		P.O. #				mIHD				HDPE					Acctnum: AQ	
Collected by (signature):	Rush?	(Lab MUST Be		Quote	#							.25ml					Template:T15 Prelogin: P83	
			y (Rad Only) ay (Rad Only)	Dat	te Result	s Needed	No.	ALKBI, ALKCA	Mg, Na	e - 90	Na - 6	9056 1					PM: 206 - Jeff PB:	Carr
Packed on Ice N Y	1111ee	T	T		JT		of	31,	X,	rig	Mg,	1					Shipped Via:	VIZ Torre
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	ALKI	Ca, L	Chlo	Α,	504					Remarks	Sample # (lab only)
MW-506	Grab	GW		3/1	/21	1620	3	X	Х	X								-01
MW-512	Grab			3/1	121	1710	2	X			X							02
MW-803	Grab			3/1/	/21	1530	3	X	X			Х						03
							1											
																	a first to a final factor of	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flow				COC Si	Sample Receipt Checklist COC Seal Present/Intact: NP Y COC Signed/Accurate: Bottles arrive intact:		
DW - Drinking Water	Samples returned				Tracki	ng#									Suffic	cient v	les used: colume sent: If Applicab dspace:	Le Y N
Relinquished by: (Signature) Date: 3/2/2			Time	214	Receiv	ed by: (Signat	Qure)		2-121	-/	Trip Blan	k Recei		es / NO/ HCL / MeoH IBR	Preser	rvation	Correct/Che	ecked: N
Relinquished by : (Signature)		Pate:	Time:		Received by: (Signature)				/	7	Temp/a	3=4	•	es Received:	If prese	ervation	required by Log	in: Date/Time
Relinquished by : (Signature)	C	Pate:	Time	¥ .	Receiv	ed for lab by:	(Signati	ure)	K	Į	Date:	191	Time	13011	Hold:			Condition: NCF / OK

ATTACHMENT 1-3 May 2021 Sampling Event Laboratory Report

Pace Analytical® ANALYTICAL REPORT

Ss

SCS Engineers - KS

Sample Delivery Group:

L1358236

Samples Received:

05/26/2021

Project Number:

27213169.21-A

Description:

Evergy - Sibley Generating Station

Tubb law

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-504 L1358236-01	6
MW-505 L1358236-02	7
MW-506 L1358236-03	8
MW-510 L1358236-04	9
MW-512 L1358236-05	10
MW-601 L1358236-06	11
DUPLICATE L1358236-07	12
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 9056A	14
Metals (ICP) by Method 6010B	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SAMPLE SUMMARY

			Calla stad by	Callanta data hisa	Danabarah da	4 - /ki
M/M/ EQ4 113E9336 01 C/M/			Collected by A. Thompson	Collected date/time 05/24/21 11:40	Received da 05/26/21 09	
MW-504 L1358236-01 GW	Datah	Diletter	· · · · · · · · · · · · · · · · · · ·			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 03:05	06/08/21 03:05	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 00:52	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-505 L1358236-02 GW			A. Thompson	05/24/21 10:45	05/26/21 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 04:11	06/08/21 04:11	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 01:01	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1358236-03 GW			A. Thompson	05/24/21 11:20	05/26/21 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 04:44	06/08/21 04:44	ELN	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 01:04	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-510 L1358236-04 GW			A. Thompson	05/24/21 13:35	05/26/21 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 05:17	06/08/21 05:17	ELN	Mt. Juliet, Th
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 01:07	EL	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-512 L1358236-05 GW			A. Thompson	05/24/21 12:35	05/26/21 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 05:50	06/08/21 05:50	ELN	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1682598	5	06/08/21 06:06	06/08/21 06:06	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 01:09	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-601 L1358236-06 GW			A. Thompson	05/24/21 12:10	05/26/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimatric Analysis by Mathad 2540 C 2011	MC167022F	1	05/28/21 19:41		VRP	M+ lulia+ T
Gravimetric Analysis by Method 2540 C-2011 Wet Chamistry by Method 2056A	WG1679335 WG1682598			05/28/21 20:56		Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 06:22	06/08/21 06:22	ELN	Mt. Juliet, TN

Metals (ICP) by Method 6010B

WG1685902

06/10/21 16:35

EL

Mt. Juliet, TN

06/10/21 23:58

SAMPLE SUMMARY

Collected by

Collected date/time Received date/time

DUPLICATE L1358236-07 GW			A. Thompson	05/24/21 12:20	05/26/21 09:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1679335	1	05/28/21 19:41	05/28/21 20:56	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1682598	1	06/08/21 08:01	06/08/21 08:01	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1685902	1	06/10/21 16:35	06/11/21 01:12	EL	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

PAGE:

5 of 19

Jeff Carr Project Manager

Wubb law

Collected date/time: 05/24/21 11:40

L1358236

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	174		10.0	1	05/28/2021 20:56	WG1679335

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ND		1000	1	06/08/2021 03:05	WG1682598
Fluoride	201		150	1	06/08/2021 03:05	WG1682598
Sulfate	32400		5000	1	06/08/2021 03:05	WG1682598

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	ND		200	1	06/11/2021 00:52	WG1685902	
Calcium	34100		1000	1	06/11/2021 00:52	WG1685902	

Collected date/time: 05/24/21 10:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	181		10.0	1	05/28/2021 20:56	WG1679335

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1110		1000	1	06/08/2021 04:11	WG1682598
Fluoride	180		150	1	06/08/2021 04:11	WG1682598
Sulfate	32600		5000	1	06/08/2021 04:11	WG1682598

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	06/11/2021 01:01	WG1685902
Calcium	34400		1000	1	06/11/2021 01:01	WG1685902

L1358236

Collected date/time: 05/24/21 11:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	433		10.0	1	05/28/2021 20:56	WG1679335

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8090		1000	1	06/08/2021 04:44	WG1682598
Fluoride	344		150	1	06/08/2021 04:44	WG1682598
Sulfate	89100		5000	1	06/08/2021 04:44	WG1682598

	Result	Qualifier F	DL [Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	l	g/l		date / time	
Boron	ND	2	00 1	l	06/11/2021 01:04	WG1685902
Calcium	91400	1	000 1	l	06/11/2021 01:04	WG1685902

Collected date/time: 05/24/21 13:35

1358236

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	468		10.0	1	05/28/2021 20:56	WG1679335

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3530		1000	1	06/08/2021 05:17	WG1682598
Fluoride	338		150	1	06/08/2021 05:17	WG1682598
Sulfate	14500		5000	1	06/08/2021 05:17	WG1682598

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	06/11/2021 01:07	WG1685902
Calcium	116000		1000	1	06/11/2021 01:07	WG1685902

Collected date/time: 05/24/21 12:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	505		10.0	1	05/28/2021 20:56	WG1679335

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	10600		1000	1	06/08/2021 05:50	WG1682598
Fluoride	318		150	1	06/08/2021 05:50	WG1682598
Sulfate	110000		25000	5	06/08/2021 06:06	WG1682598

Analyte	ug/l	ug/l		date / time	
Chloride	10600	1000	1	06/08/2021 05:50	WG1682598
Fluoride	318	150	1	06/08/2021 05:50	WG1682598
Sulfate	110000	25000	5	06/08/2021 06:06	WG1682598

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	06/11/2021 01:09	WG1685902
Calcium	114000		1000	1	06/11/2021 01:09	WG1685902

Collected date/time: 05/24/21 12:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	381		10.0	1	05/28/2021 20:56	WG1679335

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3400		1000	1	06/08/2021 06:22	WG1682598
Fluoride	278		150	1	06/08/2021 06:22	WG1682598
Sulfate	9710		5000	1	06/08/2021 06:22	WG1682598

Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	06/10/2021 23:58	WG1685902
Calcium	97400	V	1000	1	06/10/2021 23:58	WG1685902

Αl

DUPLICATE

SAMPLE RESULTS - 07

Collected date/time: 05/24/21 12:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	378		10.0	1	05/28/2021 20:56	WG1679335

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3400		1000	1	06/08/2021 08:01	WG1682598
Fluoride	279		150	1	06/08/2021 08:01	WG1682598
Sulfate	9590		5000	1	06/08/2021 08:01	WG1682598

— Cn

⁵Sr

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	06/11/2021 01:12	WG1685902
Calcium	96800		1000	1	06/11/2021 01:12	WG1685902

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1358236-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3661353-1 05/28/21 20:56

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	П		10.0	10.0

L1357998-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1357998-01 05/28/21 20:56 • (DUP) R3661353-3 05/28/21 20:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	550	571	1	3.75		5

⁶Qc

L1357998-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1357998-06 05/28/21 20:56 • (DUP) R3661353-4 05/28/21 20:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	651	654	1	0.460		5

PAGE:

13 of 19

Laboratory Control Sample (LCS)

(LCS) R3661353-2 05/28/21 20:56

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8420	95.7	77.4-123	

QUALITY CONTROL SUMMARY

L1358236-01,02,03,04,05,06,07

Wet Chemistry by Method 9056A

(MB) R3664365-1 06/07/2115:31

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

⁴Cn

(OS) L1358223-01 06/07/21 22:10 • (DUP) R3664365-3 06/07/21 22:27

(00) 2:000220 0: 00/0/	, 2 : 22 (2 0 .)	,				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	206000	205000	5	0.580		15
Fluoride	ND	ND	5	0.000		15
Sulfate	126000	126000	5	0.166		15

⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3664365-2 06/07/2115:47

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40100	100	80.0-120	
Fluoride	8000	8280	103	80.0-120	
Sulfate	40000	40200	100	80.0-120	

9

Sc

L1358223-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1358223-04 06/07/21 23:16 • (MS) R3664365-4 06/07/21 23:32

(03) 11336223-04 00/0	7/21 23.10 • (IVIS)	K3004303-4 C	10/0//21 23.3	_			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	159000	202000	87.5	1	80.0-120	<u>E</u>
Fluoride	5000	ND	5400	108	1	80.0-120	
Sulfate	50000	113000	152000	79.0	1	80.0-120	E J6

L1358236-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358236-06 06/08/21 06:22 • (MS) R3664365-6 06/08/21 07:12 • (MSD) R3664365-7 06/08/21 07:28

(03) [1338230-00 00/08/	, ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3400	50200	50500	93.5	94.2	1	80.0-120			0.652	15
Fluoride	5000	278	5070	5070	95.8	95.8	1	80.0-120			0.0592	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1358236-01,02,03,04,05,06,07

L1358236-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1358236-06 06/08/21 06:22 • (MS) R3664365-6 06/08/21 07:12 • (MSD) R3664365-7 06/08/21 07:28

(,		Original Result		MSD Result			Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	9710	54500	55300	89.5	91.1	1	80.0-120			1.49	15

QUALITY CONTROL SUMMARY

L1358236-01,02,03,04,05,06,07

Method Blank (MB)

Analyte

Calcium

Boron

Metals (ICP) by Method 6010B

(MB) R3666011-1 06/10/21 23:52 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

[†]Cn

Laboratory Control Sample (LCS)

ug/l

1000

10000

(LCS) R3666011-2 06/10/2	21 23:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	919	91.9	80.0-120	
Calcium	10000	9230	92.3	80.0-120	

MSD Rec.

%

92.3

68.9

Dilution Rec. Limits

1

%

75.0-125

75.0-125

GI

ug/l

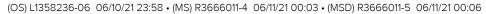
952

105000

MSD Result

ug/l

953

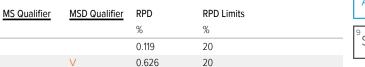

104000

MS Rec.

%

92.2

75.4


Spike Amount Original Result MS Result

ug/l

ND

97400

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	the second second		Billing Info	rmation:			d	3.7		12/1	Analysis /	Contai	ner / Preservati	ve			Chain of Custody	Page _ of 3						
SCS Engineers - KS	8575 W. 11			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			Pres Chk		r						ic.		— Pace Analytical*							
Overland Park, KS 66210 Report to: Jason Franks		Email To: jfranks@scsengineers.com;jay.martin@ev				ergy.c	Pres					457			3	12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of								
Project Description: Evergy - Sibley Generating Station		City/State Collected:	Please C PT MT					E-No								1	Pace Terms and Condition https://info.pacelabs.com terms.pdf	/hubfs/pas-standard-						
Phone: 913-681-0030	Client Project 27213169.		Lab Project # AQUAOPKS-SIBLEY					125mlHDPE-NoPres	HNO					÷ , ÷ i			sdg# (13	58236						
Collected by (print): A. Thompson	Site/Facility II	D#	P.O.#), #		P.O.#		P.O. #		Mr. e			50mlHDPE-HNO3	Pres							Table # Acctnum: AQU	AOPKS
Collected by (signature): Immediately Packed on Ice N Y	Rush? (I	y 5 Day y 10 Da		Quote #	esults Neede	d	No.	s (Cld, F, SO4)	6010 250mil	250mlHDPE-NoPres				Template:T136014 Prelogin: P846702 PM: 206 - Jeff Carr PB:		014 702								
Sample ID	Comp/Grab	Matrix *	Depth	Date	Tin	ne	Cntrs	Anions	В, Са-	TDS 2						S	Shipped Via: Fed Remarks	Sample # (lab only)						
MW-504	Grab	GW	Contract of	15/24	21 114	0	3	X	X	X								-01						
MW-505		GW		' '	104	5	3	X	Х	X	34 · 65		EARLY STATE	7				- 07						
MW-506		GW			112	0	3	X	X	X								- 03						
MW-510		GW			133	35	3	X	X	X						E i mesen y	THE ACT	-01						
MW-512		GW			123	5	3	X	Х	X				.2.7.9		gr. 151		-03						
MW-601	W	GW			121	0	3	X	Х	X								-06						
MS/MSD	and the second second	GW			121	5	3	X	Х	X				- 74			100	-96						
DUPLICATE 2 GOL	Y	GW		V		20	3	Х	Х	Х								-07						
											A													
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks:		12.50	-27/4-1			1			t de la companya de l	pH Flow		Temp		COC Sea COC Sig Bottles Correct	al Pres gned/Ac s arriv t bottl	Receipt Chesent/Intact: ccurate: ve intact: les used: olume sent:	NP Y N Y N Y N Y N Y N N Y N						
OT - Other	Samples returnedUPSFedEx	Courier			racking #								AND THE		VOA Zer	ro Head	If Applicable dspace: Correct/Chec	yn						
Relinquished by: (Signature)		5/25/	21 16	∞	eceived by: (S	ignatu	re)				Trip Blanl	k Receiv	ved: Yes/No HCL/Me TBR				0.5 mR/hr:	Y _N						
Relinquished by : (Signature)	Da	te:	Time:	R	eceived by: (S	ignatu	re)		Temp: HM AC Bottles Received:			If preser	vation r	equired by Logir	: Date/Time									
Relinquished by : (Signature)	Da	te:	Time:	R	eceived for la	b by: (5	Signatu				Hold:			Condition: NCF / OK										

ATTACHMENT 1-4 July 2021 Sampling Event Laboratory Report

Pace Analytical® ANALYTICAL REPORT

August 04, 2021

SCS Engineers - KS

Sample Delivery Group: L1381183

Samples Received: 07/21/2021

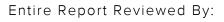
Project Number: 27213169.21 - G

Description: Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210



Jeff Carr

Tubb law

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-505 L1381183-01	5
MW-506 L1381183-02	6
MW-512 L1381183-03	7
DUPLICATE L1381183-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-505 L1381183-01 GW			Whit Martin	07/19/21 13:15	07/21/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1710219	1	07/22/21 15:12	07/22/21 16:20	KAB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1710980	1	07/27/21 11:43	07/27/21 11:43	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1712954	1	07/29/21 11:05	08/03/21 16:51	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1381183-02 GW			Whit Martin	07/19/21 14:15	07/21/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1710980	1	07/27/21 11:56	07/27/21 11:56	ELN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1381183-03 GW			Whit Martin	07/19/21 14:50	07/21/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1710219	1	07/22/21 15:12	07/22/21 16:20	KAB	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1710980	1	07/27/21 12:09	07/27/21 12:09	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1710980	5	07/27/21 20:05	07/27/21 20:05	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1712954	1	07/29/21 11:05	08/03/2116:33	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1381183-04 GW			Whit Martin	07/19/21 14:50	07/21/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1710219	1	07/22/21 15:12	07/22/21 16:20	KAB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1710980	1	07/27/21 13:28	07/27/21 13:28	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1710980	5	07/27/21 20:32	07/27/21 20:32	ELN	Mt. Juliet, TN

WG1712954

1

Metals (ICP) by Method 6010B

07/29/21 11:05

CCE

08/03/2116:59

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

PAGE:

4 of 15

Jeff Carr Project Manager

Wubb law

Collected date/time: 07/19/21 13:15

1381183

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	184		10.0	1	07/22/2021 16:20	WG1710219

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	14400		5000	1	07/27/2021 11:43	WG1710980

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	34800		1000	1	08/03/2021 16:51	WG1712954

Cn

MW-506

SAMPLE RESULTS - 02

Collected date/time: 07/19/21 14:15

L1381183

Wet Chemistry by Method 9056A

	Result	Qualifier RDL	Dilution	Analysis	Batch
Analyte	ug/l	ug/l		date / time	
Chloride	8010	1000	1	07/27/2021 11:56	WG1710980
Sulfate	89100	5000	1	07/27/2021 11:56	WG1710980

Collected date/time: 07/19/21 14:50

.1381183

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	524		10.0	1	07/22/2021 16:20	WG1710219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	10200		1000	1	07/27/2021 12:09	WG1710980
Sulfate	104000		25000	5	07/27/2021 20:05	WG1710980

Cn

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Calcium	120000	V	1000	1	08/03/2021 16:33	WG1712954	

DUPLICATE

SAMPLE RESULTS - 04

Collected date/time: 07/19/21 14:50

L1381183

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	529		10.0	1	07/22/2021 16:20	WG1710219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	10400		1000	1	07/27/2021 13:28	WG1710980
Sulfate	110000		25000	5	07/27/2021 20:32	WG1710980

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			
Calcium	115000		1000	1	08/03/2021 16:59	WG1712954		

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1381183-01,03,04

Method Blank (MB)

(MB) R3683581-1 07/22/21 16:20

()					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Dissolved Solids	П		10.0	10.0	

Ss

L1379748-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1379748-01 07/22/21 16:20 • (DUP) R3683581-3 07/22/21 16:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	2850	2910	1	2.08		5

L1380281-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1380281-01 07/22/21 16:20 • (DUP) R3683581-4 07/22/21 16:20

• •	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	2390	2490	1	4.10		5

Laboratory Control Sample (LCS)

(LCS) R3683581-2 07/22/21 16:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	9530	108	77 4-123	

QUALITY CONTROL SUMMARY

L1381183-01,02,03,04

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3684788-1 07/27/2110:21										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Chloride	U		379	1000						
Sulfato	H		59/	5000						

L1381183-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1381183-03 07/27/21 12:09 • (DUP) R3684788-3 07/27/21 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	10200	10100	1	0.600		15

⁷Gl

L1381288-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1381288-06 07/27/21 16:47 • (DUP) R3684788-6 07/27/21 17:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1420	1550	1	8.63		15

L1381183-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1381183-03 07/27/21 20:05 • (DUP) R3684788-8 07/27/21 20:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	104000	105000	5	0.569		15

L1381288-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1381288-06 07/27/21 21:11 • (DUP) R3684788-9 07/27/21 21:25

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	159000	159000	5	0.0388		15

QUALITY CONTROL SUMMARY

L1381183-01,02,03,04

Wet Chemistry by Method 9056A

Laboratory Control Sample (LCS)

(LCS) R3684788-2 07/27/21 10:3	LCS) I	R3684788-2	07/27/21 10:35	
--------------------------------	--------	------------	----------------	--

. ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40900	102	80.0-120	
Sulfate	40000	40700	102	80.0-120	

[†]Cn

L1381183-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(AC) 1 1201102 A2 A	77/77/21 12.00	/NAC\ DOCOATOO A	07/07/01/10/05	(MACD) DOCO 4700 E	07/27/21/21/0
(OS) L1381183-03 0	1//////////////////////////////////////	11VIST R3084788-4	U/////////// 55 •	11VISLULR3084788-5	07//2//2/12/49

(/				- /								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	10200	61800	62200	103	104	1	80.0-120			0.588	15
Sulfate	50000	115000	161000	162000	91.4	92.3	1	80.0-120	Е	Е	0.279	15

(OS) L1381288-06	07/27/21 16:47 •	(MS) R3684788-7	07/27/21 17:13

(US) L1381288-U6 U7/27/2	5) LI381288-06 07/27/21 16.47 • (IVIS) R3884788-7 07/27/21 17:13										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	ug/l	ug/l	ug/l	%		%					
Chloride	50000	1420	52300	102	1	80.0-120					
Sulfate	50000	167000	210000	84.9	1	80.0-120	E				

QUALITY CONTROL SUMMARY

L1381183-01,03,04

Metals (ICP) by Method 6010B

Method Blank (MB) (MB) R3687468-1 08/03/2116:28

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000

(LCS) R3687468-2 08/03/2116:30

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	10200	102	80.0-120	

(OS) L1381183-03 08/03/21 16:33 • (MS) R3687468-4 08/03/21 16:38 • (MSD) R3687468-5 08/03/21 16:40

(,	Spike Amount			MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	120000	127000	126000	68.3	58.6	1	75.0-125	V	V	0.766	20

L1381295-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1391205 OF 08/03/2116:43 - (MS) D3697469 6 08/03/2116:46 - (MSD) D3697469 7 08/03/2116:48

(03) [1361295-05 06/03/2	(US) LISSIZEES-US US/US/ZI 10.45 • (WIS) RSOS/400-0 US/US/ZI 10.40 • (WISD) RSOS/400-7 US/US/ZI 10.40											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	64600	73300	72600	86.9	79 4	1	75 0-125			102	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations an	d Delinitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Qualifier	Describtion

E	calibration (ICAL).
V	The sample concentration is too high to evaluate accurate spike recoveries.

¹Cp

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 27213169.21 - G
 L1381183
 08/04/21 14:11
 13 of 15

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	ormation	n:		T	T	1.37	- 1	nalysis / Co	ntainer / Pre	convatio	10	Harris III	Chain of Custo	dy Page 1
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payabl 8575 W. 110th S Overland Park, R		110th Street Chk		Pres Chk	0			TIAVSIS 7 CU		SCIVA			1	7 ice Analyti
Report to: Jason Franks		Email To: jfranks@s	jfranks@scsengineers.com;jay.martin@evergy.c												Submitting a sample	Mount Juliet, TN 37122	
Project Description: Sibley Generating Station	37.5	City/State Collected:	Sibles	bley, MO Please Circle: PT MT ET				res					ž		Pace Terms and Cor	edgment and acceptan ditions found at: s.com/hubfs/pas-stand	
Phone: 913-681-0030	27213169.				roject # IAOPKS-S			103	125mlHDPE-NoPres							SDG#	(135
Collected by (print): Whit Martin	Site/Facility II	D#		P.O.#			6010 250mlHDPE-HN03	MIHDP	Johnes	50mlHDPE-NoPres					Acctnum: AC	Acctnum: AQUAOPKS	
Collected by (signature):	Same D	ab MUST Be	Day			50mlH	504 125	125mIHDPE-NoPres						Template:T1 Prelogin: P8	61399		
mmediately Packed on Ice N Y	Next Da	/ 10 Da	(Rad Only) By (Rad Only)	D	St		No.	010 2	de, SC	ide, SC 25mlH 50mlH						PM: 206 - Jef PB:	f Carr
Sample ID	Comp/Grab	Matrix *	Depth		Date	Time	Critrs	1	Chloride,	504 1	TDS 2					Shipped Via: Remarks	Sample # (
1W-505	Grah	GW		19/	10/11	1216	3	ී X	U	X	X						1-71
IW-506	Grab	GW		7/1	19/21	1416	1	•	Х	^	^						-02
IW-512	Grah	GW		14/	19/21	1460	3	X	X		X						-03
IW-512 MS/MSD	Grab	GW	2	7/1	9/21	1460	2	X	X		^					Control of the Contro	02
UPLICATE	Grab	GW	125, 4503	7//	7/4	1460	3	X	X		X						-0
	0140			111	7/21	1170	+-	^	- A		^						
	- April 10			-		7,900					7-111						
		Gran		+-	Ale Salar											*	
				-													
				-		- A											
- Soil AIR - Air F - Filter N - Groundwater B - Bioassay W - WasteWater	arks:	1900									pH	Temp		1	COC Seal COC Signe Bottles a	mple Receipt (Present/Intac d/Accurate; rrive intact;	Checklist
	ples returned v PS FedEx				Trackin	B#511	74	143	111	63		\sim		·	Sufficien	ottles used: t volume sent If Applica Headspace:	
dinquished by : (Signature)	7/	20/21	150		Receive	d by: (Signat	ure)		and the second desired	Ī	rip Blank Re	CONTRACTOR OF THE PARTY OF THE	No CL/ Med		reservat	ion Correct/Cl n <0.5 mR/hr;	necked: Z
linquished by : (Signature)	Date	e:	Time:	1283	Receive	d by: (Signati	ure)				emp: D-1-4.	MA	s Receive	ed: I	f preservati	ion required by Lo	ogin: Date/Ti

ATTACHMENT 1-5 September 2021 Sampling Event Laboratory Report

Pace Analytical® ANALYTICAL REPORT

September 13, 2021

SCS Engineers - KS

Sample Delivery Group:

L1398802

Samples Received:

09/03/2021

Project Number:

27213169.21 - G

Description:

Sibley Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1					
Tc: Table of Contents	2					
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
MW-505 L1398802-01	5					
MW-506 L1398802-02	6					
MW-512 L1398802-03	7					
DUPLICATE L1398802-04	8					
Qc: Quality Control Summary	9					
Gravimetric Analysis by Method 2540 C-2011	9					
Wet Chemistry by Method 9056A	10					
Metals (ICP) by Method 6010B	12					
GI: Glossary of Terms	13					
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

SAMPLE SUMMARY

			Collected by	Collected date/time		
MW-505 L1398802-01 GW			Whit Martin	09/02/21 12:35	09/03/21 09:	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1737791	1	09/09/21 21:23	09/09/21 22:33	VRP	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1736127	1	09/08/21 21:42	09/09/21 21:19	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1398802-02 GW			Whit Martin	09/02/21 10:50	09/03/21 09:	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1734517	1	09/04/2110:45	09/04/2110:45	ELN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1398802-03 GW			Whit Martin	09/02/21 11:45	09/03/21 09:	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1737791	1	09/09/21 21:23	09/09/21 22:33	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1734517	1	09/04/21 11:18	09/04/21 11:18	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1734517	5	09/04/21 12:40	09/04/2112:40	ELN	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1736127	1	09/08/21 21:42	09/09/21 20:50	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1398802-04 GW			Whit Martin	09/02/21 11:45	09/03/21 09:	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1737791	1	09/09/21 21:23	09/09/21 22:33	VRP	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1734517	1	09/04/21 12:57	09/04/2112:57	ELN	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1734517	5	09/04/21 13:13	09/04/21 13:13	ELN	Mt. Juliet, TI

WG1736127

1

09/08/21 21:42

Metals (ICP) by Method 6010B

CCE

Mt. Juliet, TN

09/09/21 21:22

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

up lan

Collected date/time: 09/02/21 12:35

L1398802

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	188		10.0	1	09/09/2021 22:33	WG1737791

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Calcium	34100		1000	1	09/09/2021 21:19	WG1736127	

MW-506

SAMPLE RESULTS - 02

Collected date/time: 09/02/21 10:50

L1398802

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	"	Qualifier		Bilation	date / time	Date!!
Allalyte	ug/l		ug/l		uate / time	
Chloride	8030		1000	1	09/04/2021 10:45	WG1734517
Sulfate	88700		5000	1	09/04/2021 10:45	WG1734517

Collected date/time: 09/02/21 11:45

.1398802

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	555		10.0	1	09/09/2021 22:33	WG1737791

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	10200		1000	1	09/04/2021 11:18	WG1734517
Sulfate	107000		25000	5	09/04/202112:40	WG1734517

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Calcium	114000	V	1000	1	09/09/2021 20:50	WG1736127

Αl

DUPLICATE

SAMPLE RESULTS - 04

Collected date/time: 09/02/21 11:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	551		10.0	1	09/09/2021 22:33	WG1737791

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9990		1000	1	09/04/2021 12:57	WG1734517
Sulfate	108000		25000	5	09/04/2021 13:13	WG1734517

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	113000		1000	1	09/09/2021 21:22	WG1736127

Cn

L1398802 09/13/21 06:56

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1398802-01,03,04

Method Blank (MB)

	140.0
(MB) R3/03248-1	09/09/21 22:33

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

Ss

L1398830-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1398830-01 09/09/21 22:33 • (DUP) R3703248-3 09/09/21 22:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1310	1300	1	0.766		5

[†]Cn

L1400116-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1400116-01 09/09/21 22:33 • (DUP) R3703248-4 09/09/21 22:33

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	741	756	1	1.96		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3703248-2 09/09/21 22:33

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8500	96.6	77.4-123	

QUALITY CONTROL SUMMARY

L1398802-02,03,04

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3700955-1 09/03/2110:19										
(2)	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Chloride	501	<u>J</u>	379	1000						
Sulfate	U		594	5000						

Ср

(OS) L1398686-01 09/03/21 12:17 • (DUP) R3700955-3 09/03/21 12:31

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	10800	10800	1	0.0482		15
Sulfate	22900	22900	1	0.0577		15

(OS) L1398798-02 09/04/21 13:29 • (DUP) R3700966-3 09/04/21 13:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	20000	20100	1	0.264		15
Sulfate	ND	ND	1	0.832		15

Laboratory Control Sample (LCS)

(LCS) R3700955-2 09/03/2110:33

(LCS) K3700933-2 09/0	33/21 10.33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40100	100	80.0-120	
Sulfate	40000	40700	102	80.0-120	

L1398798-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1398798-01 09/03/21 17:08 • (MS) R3700955-4 09/03/21 17:23 • (MSD) R3700955-5 09/03/21 17:37

(03) [1390796-01 09/03/2	(C3) E1336730-01													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Chloride	50000	19800	70600	70800	102	102	1	80.0-120			0.275	15		
Sulfate	50000	ND	51100	51100	101	101	1	80.0-120			0.114	15		

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1398802-02,03,04

L1398802-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1398802-03 09/04/21 11:18 • (MS) R3700966-1 09/04/21 11:34 • (MSD) R3700966-2 09/04/21 11:51

(/														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Chloride	50000	10200	60900	60200	101	100	1	80.0-120			1.12	15		
Sulfate	50000	107000	152000	152000	90.3	89.2	1	80 0-120	F	F	0.389	15		

L1398798-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1398798-03 09/04/21 14:02 • (MS) R3700966-4 09/04/21 14:19 • (MSD) R3700966-5 09/04/21 14:35

(00) 210007 00 00 0070 17	(00) 21000700 00 0070 1/2171.02 (1110) 1/0700000 1 0070 1/2171.00														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%			
Chloride	50000	6750	57800	57800	102	102	1	80.0-120			0.0268	15			
Sulfate	50000	41700	89900	90400	96.4	97.4	1	80.0-120			0.582	15			

PAGE:

11 of 15

DATE/TIME:

09/13/21 06:56

QUALITY CONTROL SUMMARY

L1398802-01,03,04

Metals (ICP) by Method 6010B Method Blank (MB)

(MB) R3702618-1 09/09/21 20:45

MB Result MB Qualifier MB MDL MB RDL

Ss

Laboratory Control Sample (LCS)

(LCS) R3702618-2 09/09/21 20:47

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9420	94.2	80 0-120	

L1398802-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1398802-03 09/09/21 20:50 • (MS) R3702618-4 09/09/21 20:56 • (MSD) R3702618-5 09/09/21 20:59

(,	•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	114000	121000	122000	70.0	79.6	1	75.0-125	V		0.793	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Apple viations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

				-		-	_											4 1
SCS Engineers - KS			Account	ts Payable		Pres	8			Anaivsis	/ Conta	iner / Pr	eservativ	ve .			hain of Custody	Page of 1
8575 W. 110th Street Overland Park, KS 66210			8575 W.	d Park, KS 6		Chk	1										Pac	e Analytical®
Report to: Jason Franks		•	Email To: jfranks@s		m;jay.martin@e	vergy.c										Si	onstitutes acknowled	a this chain of custody gment and acceptance of the
Project Description: Sibley Generating Station		City/State Collected:	SibH	y,wo	Please C PT MT	ircle:		res								h	erms.pdf	om/hubfs/pas-standard-
Phone: 913-681-0030	Client Proj 2721316			Lab Project #			NO3	HDPE-NoPres									J1	398807 26
Collected by (print):	Site/Facilit	Site/Facility ID #					DPE-H		NoPres							A	acctnum: AQ	
Rush? (Lab MUST Be Notified Same Day Five Day Next Day 5 Day (Rad O Two Day 10 Day (Rad O Three Day			Day y (Rad Only)		sults Needed	No.	-6010 250mlHDPE-HNO3	de, SO4 125ml	250mlHDPE-NoPres							P	relogin: P87 M: 206 - Jeff PB:	0738
Sample 1D	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	Ca - 6	Chloride,	TDS 2							S	Remarks	Sample # (lab only)
MW-505	Prab	GW	ING	10/2/2	1 11235	- 2	X		X									-61
MW-506	Broxh) GW	Na	10/2/21	1050	1		X										The state of the s
MW-512	CHON	Action of Secure and Assessment of the con-	NA	01/2/2	1 1145	3	X	X	X									
MW-512 MS/MSD	Brigh	GW	NN	1 9/2/2	I WARDEN	1952	X	X										阿尔斯斯斯斯斯斯斯斯斯斯斯斯
DUPLICATE	CHAIC	GW	NN			3	X	Х	X									04
									*					·····				
* Matrix: Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater				1				1	L	pH Flow	,	_ Temp			COC Sea COC Sig Bottles	al Prese gned/Acc s arrive	ent/Intact: curate: e intact:	_NP / N
DW - Drinking Water OT - Other	Samples returned via:UPSFedExCourierTrackin							5117	' 4	431	0'	720			Suffici	ient vo.	lume sent: f Applicab	N
		Time 15	100 Rec	ceived by: (Signat	ture)			ACCUSED THE REAL PROPERTY.	economic participation of	nk Recei		es / No HCL / Med TBR	оН	Preserv	vation (Correct/Che	ecked: ZY N	
Relinquished by : (Signature) Date: Time:			e: Rec	ceived by: (Signat	ture)					1360	C Bott	les Receiv	ed:	If presen	vation re	quired by Log	in: Date/Time	
Relinquished by : (Signature) Date:			Time	e: Rec	reived for lab by:	(Signati				Date: 013		Tim	e: 130		Hold:	Sample Receipt Checklist Od		

Pace Analytical® ANALYTICAL REPORT

September 13, 2021

SCS Engineers - KS

Sample Delivery Group: L1398801

Samples Received: 09/03/2021

Project Number: 27213169.21 - G

Description: **Evergy Sibley Generating Station**

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-505 L1398801-01	5
MW-506 L1398801-02	6
MW-512 L1398801-03	7
MW-804 L1398801-04	8
MW-805 L1398801-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 2320 B-2011	10
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-505 L1398801-01 GW			Whit Martin	09/02/21 12:35	09/03/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1736008	1	09/07/21 12:56	09/07/2112:56	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1734517	1	09/04/21 15:08	09/04/21 15:08	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1736126	1	09/08/21 08:29	09/11/21 05:54	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1398801-02 GW			Whit Martin	09/02/21 10:50	09/03/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1736008	1	09/07/21 12:58	09/07/2112:58	ARD	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1736127	1	09/08/21 21:42	09/09/21 21:01	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-512 L1398801-03 GW			Whit Martin	09/02/21 11:45	09/03/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1737291	1	09/09/21 11:13	09/09/21 11:13	ARD	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1736127	1	09/08/21 21:42	09/09/21 21:04	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-804 L1398801-04 GW			Whit Martin	09/02/21 11:50	09/03/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1736008	1	09/07/21 13:02	09/07/2113:02	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1734517	1	09/04/21 09:56	09/04/21 09:56	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1736127	1	09/08/21 21:42	09/09/21 21:07	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-805 L1398801-05 GW			Whit Martin	09/02/21 12:35	09/03/21 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wat Chamistry by Mathad 2320 P 2011	WG1736008	1	09/07/21 13:05	09/07/21 13:05	ARD	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1/30008	ı	03/0//21 13.03	03/0//21 13.03	AKD	wit. Juliet, TN

WG1734517

1

WG1736127 1

09/04/21 10:12

09/08/21 21:42

09/04/21 10:12

09/09/21 21:10

ELN

CCE

Mt. Juliet, TN

Mt. Juliet, TN

Wet Chemistry by Method 9056A

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

PAGE:

4 of 18

Jeff Carr Project Manager

up lan

Collected date/time: 09/02/21 12:35 Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	118000		20000	1	09/07/2021 12:56	WG1736008
Alkalinity, Carbonate	ND		20000	1	09/07/2021 12:56	WG1736008

Sample Narrative:

L1398801-01 WG1736008: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1230	В	1000	1	09/04/2021 15:08	WG1734517
Sulfate	13000		5000	1	09/04/2021 15:08	WG1734517

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Magnesium	9340		1000	1	09/11/2021 05:54	WG1736126
Potassium	ND		2000	1	09/11/2021 05:54	WG1736126
Sodium	8970		3000	1	09/11/2021 05:54	WG1736126

Gl

Wet Chemistry by Method 2320 B-2011

Collected date/time: 09/02/21 10:50

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Alkalinity,Bicarbonate	296000		20000	1	09/07/2021 12:58	WG1736008	
Alkalinity.Carbonate	ND		20000	1	09/07/2021 12:58	WG1736008	

Cn

Sample Narrative:

L1398801-02 WG1736008: Endpoint pH 4.5 Headspace

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	91100		1000	1	09/09/2021 21:01	WG1736127
Magnesium	38300		1000	1	09/09/2021 21:01	WG1736127
Potassium	ND		2000	1	09/09/2021 21:01	WG1736127
Sodium	8430		3000	1	09/09/2021 21:01	WG1736127

Collected date/time: 09/02/21 11:45

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	349000		20000	1	09/09/2021 11:13	WG1737291
Alkalinity, Carbonate	ND		20000	1	09/09/2021 11:13	WG1737291

Sample Narrative: L1398801-03 WG1737291: Endpoint pH 4.5 headspace

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Magnesium	39900		1000	1	09/09/2021 21:04	WG1736127
Potassium	2160		2000	1	09/09/2021 21:04	WG1736127
Sodium	10300		3000	1	09/09/2021 21:04	WG1736127

Collected date/time: 09/02/21 11:50

....

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	554000		20000	1	09/07/2021 13:02	WG1736008
Alkalinity, Carbonate	ND		20000	1	09/07/2021 13:02	WG1736008

Sample Narrative:

L1398801-04 WG1736008: Endpoint pH 4.5 Headspace

⁴Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Sulfate	ND		5000	1	09/04/2021 09:56	WG1734517

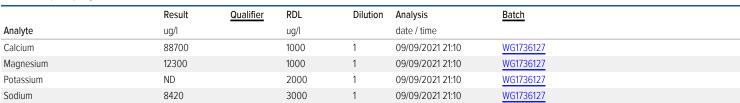
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	139000		1000	1	09/09/2021 21:07	WG1736127
Magnesium	34400		1000	1	09/09/2021 21:07	WG1736127
Potassium	5480		2000	1	09/09/2021 21:07	WG1736127
Sodium	27200		3000	1	09/09/2021 21:07	WG1736127

Collected date/time: 09/02/21 12:35

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	249000		20000	1	09/07/2021 13:05	WG1736008
Alkalinity, Carbonate	ND		20000	1	09/07/2021 13:05	WG1736008

L1398801-05 WG1736008: Endpoint pH 4.5 Headspace



Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	6830		1000	1	09/04/2021 10:12	WG1734517
Sulfate	41700		5000	1	09/04/2021 10:12	WG1734517

Metals (ICP) by Method 6010B

SDG:

L1398801

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 2320 B-2011

L1398801-01,02,04,05

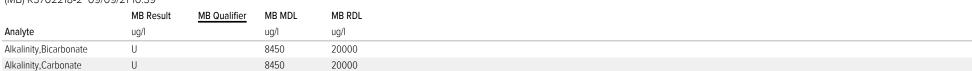
Method Blank (MB)

(MB) R3701170-2 09/07/21 12:38

(1112) 110701170 2 0370772				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity, Carbonate	U		8450	20000

Sample Narrative:

BLANK: Endpoint pH 4.5


QUALITY CONTROL SUMMARY

Wet Chemistry by Method 2320 B-2011

L1398801-03

Method Blank (MB)

(MB) R3702218-2 09/09	/21 10:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	

Ss

Sample Narrative:

BLANK: Endpoint pH 4.5

L1398801-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1398801-03 09/09/21 11:13 • (DUP) R3702218-3 09/09/21 11:16

(00) 21030001 00 03/03/2	(03) 21330001 03 03/03/21 11.13 (001) 113/02210 3 03/03/21 11.10									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Alkalinity,Bicarbonate	349000	354000	1	1.45		20				
Alkalinity, Carbonate	ND	ND	1	0.000		20				

Sample Narrative:

OS: Endpoint pH 4.5 headspace

DUP: Endpoint pH 4.5

L1399042-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1399042-01 09/09/21 11:26 • (DUP) R3702218-4 09/09/21 11:30

(00) 210000 12 01 00/00/	2111.20 (201)	110702210 1	00/00/21	1.00		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	100000	97400	1	2.71		20
Alkalinity, Carbonate	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5

DUP: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

L1398801-01,04,05

Wet Chemistry by Method 9056A

Method	l Blank ((MB)
--------	-----------	------

(MB) R3700955-1 09/03/2110:19												
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	ug/l		ug/l	ug/l								
Chloride	501	<u>J</u>	379	1000								
Sulfate	U		594	5000								

(OS) L1398686-01 09/03/21 12:17 • (DUP) R3700955-3 09/03/21 12:31

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	10800	10800	1	0.0482		15
Sulfate	22900	22900	1	0.0577		15

(OS) L1398798-02 09/04/21 13:29 • (DUP) R3700966-3 09/04/21 13:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	20000	20100	1	0.264		15
Sulfate	ND	ND	1	0.832		15

Laboratory Control Sample (LCS)

(LCS) P3700955-2 09/03/2110:33

(LC3) R3700933-2 0	09/03/21 10.33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40100	100	80.0-120	
Sulfate	40000	40700	102	80.0-120	

L1398798-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1328708 01 09/03/2117:08 - (MS) D37000E5 4 09/03/2117:23 - (MSD) D37000E5 5 09/03/2117:27

(03) [1390/90=01 09/03	(C3) E1336736-01 C370312117.06 + (NIS) K3700333-4 C3700333-3 C370033-3 C370033-3 C370033-3 C370033-3 C370033-3 C370033-3 C370033-3 C370033-3 C370033-3 C37003-3 C370003-3 C370003-3 C370003-3 C370003-3 C370003-3 C370000-3 C37000-3 C370000-3 C37000-3 C3700											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	19800	70600	70800	102	102	1	80.0-120			0.275	15
Sulfate	50000	ND	51100	51100	101	101	1	80.0-120			0.114	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1398801-01,04,05

L1398802-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1398802-03 09/04/21 11:18 • (MS) R3700966-1 09/04/21 11:34 • (MSD) R3700966-2 09/04/21 11:51

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	10200	60900	60200	101	100	1	80.0-120			1.12	15
Sulfate	50000	107000	152000	152000	90.3	89.2	1	80 0-120	F	F	0.389	15

L1398798-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1398798-03 09/04/21 14:02 • (MS) R3700966-4 09/04/21 14:19 • (MSD) R3700966-5 09/04/21 14:35

(00) 2.000700 00 0070 17			0,0,0,,2,,,,,	(0000000000							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6750	57800	57800	102	102	1	80.0-120			0.0268	15
Sulfate	50000	41700	89900	90400	96.4	97.4	1	80.0-120			0.582	15

SDG:

QUALITY CONTROL SUMMARY

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3703149-1 09/11/21 12:40

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Magnesium	U		85.3	1000
Potassium	U		261	2000
Sodium	U		504	3000

Laboratory Control Sample (LCS)

(I CS) P3703149-2 09/11/21 12:43

(LC3) R3/03149-2 09/11/2	C3) R3/03149-2 09/11/21 12.43									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Magnesium	10000	9230	92.3	80.0-120						
Potassium	10000	9210	92.1	80.0-120						
Sodium	10000	9670	96.7	80.0-120						

(OS) L1398737-01 09/11/21 12:45 • (MS) R3703149-4 09/11/21 12:51 • (MSD) R3703149-5 09/11/21 12:54

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Magnesium	10000	24700	33700	33500	90.3	88.9	1	75.0-125			0.423	20
Potassium	10000	6670	15900	15800	92.7	91.7	1	75.0-125			0.636	20
Sodium	10000	73700	81600	81100	79.3	73.5	1	75.0-125		V	0.710	20

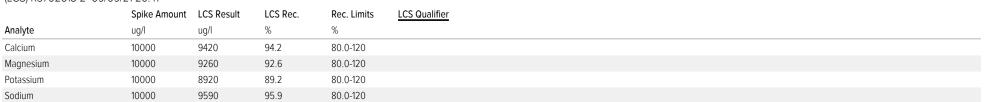
QUALITY CONTROL SUMMARY

L1398801-02,03,04,05

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3702618-1 09/09/21 20:45 MB Result MB Qualifier MB MDL MB RDL Analyte ug/l ug/l ug/l Calcium U 79.3 1000 U 85.3 1000 Magnesium Potassium U 261 2000 Sodium U 504 3000



Laboratory Control Sample (LCS)

(LCS) R3702618-2 09/09/21 20:47

Sr

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Daga Applytical National	1206E Lohanan Dd Maunt I	TNI 27122
Pace Analytical National	12065 Lebanon Rd Mount J	ullet. TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 1 6	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information:					Analysis / Container / Preservative Chain of Custody						Page of					
SCS Engineers - KS			Accounts Payable 8575 W. 110th Stree				Pres Chk											0)
8575 W. 110th Street Overland Park, KS 66210			Overland Park, KS 66210					NO3	103	oPres							- / Pace Analytical*		
Report to: Jason Franks				Email To: jfranks@scsengineers.com;jay.martin@evergy.c													12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at		
Project Description: Evergy Sibley Generating Station		City/State Collected:	SIDH	uin	0	Please Ci	1	res	PE-HI	E-HN	PE-N	INOB	S						com/hubfs/pas-standard-
Phone: 913-681-0030	Client Proje 2721316			AQUA		SIBLEY		E-NoP	250mIHDPE-HN03	MIHDF	125mlHDPE-NoPres	1DPE-1	NoPre					SDG# []	370601
Collected by (print):	Site/Facility ID #			P.O. #				25mIHDPE-NoPres	6010 250	6010 250mlHDPE-HN03	156 12	9056 125mlHDPE-No 0 250mlHDPE-HNO3	25mIHDPE-NoPres	HDPE-I				J127 Acctnum: AQUAUPNS	
Collected by (signature):	Same		Day y (Rad Only)	Dat	Quote # Date Results Needed			ALKCA 125	- eN	e Z	504 - 90	- 6010	10					Prelogin: P87	0744
Immediately Packed on Ice N Y Sample ID	TwoThre	e Day	Depth	T	S+	Time	No. ot Cntrs	ALKBI, AL	, K, Mg,	Ca,K, Mg,	Chloride,	Mg, Na	14 - 905					PB: . Shipped Via:	
MW-505	D. (M)-	T GW	1 100	Tak	7 121	Inala	1 2	X	Ca,	පී		∠² X	504					Remarks	Sample # (lab only)
W/W-506	Simp	GW GW	NO	1 24/7	1/21	1150	2	X		Х	X	^	-) <u>-</u>		26.5		-01
MW-512	CHUNC	THE RESERVE OF THE PARTY OF THE	Ma	1 1/1	7 h.	1146	2	X				X							02
MW-804	GLAVA	-	NO	017	121	1160	3	X	X				X		e e				04
MW-805	Chak	a marine and a	NO	OI	2/2/	1235	3	X	Х		Х		7,1					100	65
		23-90							-				1						
					16													7.5	
						95 - 7									4				
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	4 = -								pH Temp					Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: N Bottles arrive intact: N					
OW - Drinking Water OT - Other	Samples return UPS Fed				Trackin	ng #		E	511-	1 (-143	11 (272	0		Correct bottles used: Sufficient volume sent: If Applicable VOA Zero Headspace: Y N			Le Y N
Relinquished by: (Signature) Date: 9/2/21			Time: 1 1500		Received by: (Signature)			41		Trip Blank Rece		reived: Yes / No HCL / MeoH TBR			Preservation RAD Screen <		on Correct/Che <0.5 mR/hr:	ecked: ZY _N	
Relinquished by : (Signature)		Date:	Time		Receiv	ed by: (Signat	ure)		Temp.			Temp: 1360°C Bottles Received:			d:	If preservation required by Login: Date/Time		in: Date/Time	
Relinquished by : (Signature) Date:		Date:	Time	*	Receiv	ed for lab by:		ature)			Date: Time: 9/3/21)	Hold:		Condition: NCF OK		

ATTACHMENT 1-6 November 2021 Sampling Event Laboratory Report

Pace Analytical® ANALYTICAL REPORT

December 13, 2021

SCS Engineers - KS

Project Number:

Sample Delivery Group: L1432587

Samples Received: 11/17/2021

Description: Evergy - Sibley Generating Station

Report To: Jason Franks

8575 W. 110th Street

27213169.21-A

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager

Tubb lan

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-504 L1432587-01	6
MW-505 L1432587-02	7
MW-506 L1432587-03	8
MW-510 L1432587-04	9
MW-512 L1432587-05	10
MW-601 L1432587-06	11
DUPLICATE L1432587-07	12
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 9056A	15
Metals (ICP) by Method 6010D	17
GI: Glossary of Terms	19
Al: Accreditations & Locations	20
Sc: Sample Chain of Custody	21

SAMPLE SUMMARY

NAME			Collected by Jason R Franks	Collected date/time 11/15/21 13:55	Received da 11/17/21 09:0	
MW-504 L1432587-01 GW			Jason K Fidiks	11/13/21 13.33	11/17/21 09.0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Crouismobile Analysis by Mothod 2540 C 2041	WG1777787	1	date/time	date/time	VRP	M4 Indicat TNI
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A	WG177787 WG1785619	1 1	11/20/21 12:11 12/08/21 19:40	11/20/21 17:39 12/08/21 19:40	ELN	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785185	1	12/08/21 19:40	12/10/21 09:17	CCE	Mt. Juliet, TN
Metals (ICI) by Method 0010b	W01/63163	1	12/07/21 10:00	12/10/21 09.17	CCL	Mit. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-505 L1432587-02 GW			Jason R Franks	11/15/21 14:35	11/17/21 09:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1777787	1	11/20/21 12:11	11/20/21 17:39	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/08/21 20:06	12/08/21 20:06	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785689	1	12/08/21 00:49	12/10/21 21:35	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-506 L1432587-03 GW			Jason R Franks	11/15/21 12:35	11/17/21 09:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1777787	1	11/20/21 12:11	11/20/21 17:39	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/08/21 20:32	12/08/21 20:32	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785185	1	12/07/21 10:06	12/10/21 09:19	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-510 L1432587-04 GW			Jason R Franks	11/15/21 14:35	11/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1778639	1	11/22/21 14:27	11/22/21 15:59	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/08/21 20:58	12/08/21 20:58	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785185	1	12/07/21 10:06	12/10/21 09:22	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Pocoivod da	to/timo
MW-512 L1432587-05 GW			Jason R Franks	11/15/21 10:30	11/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Gravimetric Analysis by Method 2540 C-2011	WG1777787	1	11/20/21 12:11	11/20/21 17:39	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/08/21 21:50	12/08/21 21:50	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	10	12/08/21 22:03	12/08/21 22:03	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785185	1	12/07/21 10:06	12/10/21 09:25	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-601 L1432587-06 GW			Jason R Franks	11/15/21 11:10	11/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	, ,	
Gravimetric Analysis by Method 2540 C-2011	WG1777787	1	11/20/21 12:11	11/20/21 17:39	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/08/21 22:16	12/08/21 22:16	ELN	Mt. Juliet, TN
• •						

Metals (ICP) by Method 6010D

WG1785185 1

12/07/21 10:06

CCE

Mt. Juliet, TN

12/08/21 10:50

SAMPLE SUMMARY

DUPLICATE L1432587-07 GW			Collected by Jason R Franks	Collected date/time 11/15/21 11:20	Received date 11/17/21 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1777787	1	11/20/21 12:11	11/20/21 17:39	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1785619	1	12/09/21 03:39	12/09/21 03:39	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1785185	1	12/07/21 10:06	12/10/21 09:27	CCE	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

uph law

SAMPLE RESULTS - 01

Collected date/time: 11/15/21 13:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	192		10.0	1	11/20/2021 17:39	WG1777787

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ND		1000	1	12/08/2021 19:40	WG1785619
Fluoride	178	В	150	1	12/08/2021 19:40	WG1785619
Sulfate	27900		5000	1	12/08/2021 19:40	WG1785619

³Ss

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ug/l		date / time	
Boron	ND	200	1	12/10/2021 09:17	WG1785185
Calcium	35300	1000	1	12/10/2021 09:17	WG1785185

MW-505

SAMPLE RESULTS - 02

Collected date/time: 11/15/21 14:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	181		10.0	1	11/20/2021 17:39	WG1777787

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1130		1000	1	12/08/2021 20:06	WG1785619
Fluoride	181	В	150	1	12/08/2021 20:06	WG1785619
Sulfate	20400		5000	1	12/08/2021 20:06	WG1785619

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	12/10/2021 21:35	WG1785689
Calcium	27700		1000	1	12/10/2021 21:35	WG1785689

SAMPLE RESULTS - 03

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 11/15/21 12:35

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	466		10.0	1	11/20/2021 17:39	WG1777787

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	7780		1000	1	12/08/2021 20:32	WG1785619
Fluoride	275	В	150	1	12/08/2021 20:32	WG1785619
Sulfate	89800		5000	1	12/08/2021 20:32	WG1785619

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	12/10/2021 09:19	WG1785185
Calcium	98800		1000	1	12/10/2021 09:19	WG1785185

SAMPLE RESULTS - 04

Collected date/time: 11/15/21 14:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	486		10.0	1	11/22/2021 15:59	WG1778639

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3330		1000	1	12/08/2021 20:58	WG1785619
Fluoride	271	В	150	1	12/08/2021 20:58	WG1785619
Sulfate	21400		5000	1	12/08/2021 20:58	<u>WG1785619</u>

Sr

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	12/10/2021 09:22	WG1785185
Calcium	124000		1000	1	12/10/2021 09:22	WG1785185

MW-512

SAMPLE RESULTS - 05

Collected date/time: 11/15/21 10:30

1432587

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	527		10.0	1	11/20/2021 17:39	WG1777787

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9690		1000	1	12/08/2021 21:50	WG1785619
Fluoride	257	В	150	1	12/08/2021 21:50	WG1785619
Sulfate	93100		50000	10	12/08/2021 22:03	WG1785619

Cn

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	12/10/2021 09:25	WG1785185
Calcium	121000		1000	1	12/10/2021 09:25	WG1785185

MW-601

SAMPLE RESULTS - 06

Collected date/time: 11/15/21 11:10

L1432587

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	399		10.0	1	11/20/2021 17:39	WG1777787

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3440		1000	1	12/08/2021 22:16	WG1785619
Fluoride	234	В	150	1	12/08/2021 22:16	WG1785619
Sulfate	9320		5000	1	12/08/2021 22:16	WG1785619

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	ND		200	1	12/08/2021 10:50	WG1785185	
Calcium	95600		1000	1	12/08/2021 10:50	WG1785185	

DUPLICATE

SAMPLE RESULTS - 07

L1432587

Collected date/time: 11/15/21 11:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	398		10.0	1	11/20/2021 17:39	WG1777787

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3110		1000	1	12/09/2021 03:39	WG1785619
Fluoride	233	В	150	1	12/09/2021 03:39	WG1785619
Sulfate	8820		5000	1	12/09/2021 03:39	WG1785619

	Result <u>G</u>	ualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ug/l		date / time	
Boron	ND	200	1	12/10/2021 09:27	WG1785185
Calcium	102000	1000	1	12/10/2021 09:27	WG1785185

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1432587-01,02,03,05,06,07

Method Blank (MB)

(MB) R3733767-1 11/20/21 17:39

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

³Ss

[†]Cn

L1431968-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1431968-13 11/20/21 17:39 • (DUP) R3733767-3 11/20/21 17:39

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	626	620	1	0.963		5

⁶Qc

L1432587-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1432587-05 11/20/21 17:39 • (DUP) R3733767-4 11/20/21 17:39

. ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	527	535	1	1.51		5

Laboratory Control Sample (LCS)

(LCS) R3733767-2 11/20/21 17:39

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8660	98.4	77.4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1432587-04

Method Blank (MB)

(MB) R3733766-1	11/22/21 15:59

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

³Ss

L1432164-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1432164-05 11/22/21 15:59 • (DUP) R3733766-3 11/22/21 15:59

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	58.0	53.0	1	9.01	J3	5

[†]Cn

⁶Qc

L1432164-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1432164-06 11/22/21 15:59 • (DUP) R3733766-4 11/22/21 15:59

(03) 11432104 00 11/22/21	Original Result	39, 21, 102, 10 1, 103 1, 1, 12, 12, 1			DUP Qualifier	DUP RPD Limits
alyte	mg/l	alyte	mg/l	%		%
Dissolved Solids	263	issolved Solids	246 1	6.68	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3733766-2 11/22/21 15:59

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8130	92.4	77.4-123	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1432587-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3739336-1	12/08/21 12:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	69.7	<u>J</u>	64.0	150
Sulfate	U		594	5000

L1432580-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1432580-01 12/08/2116:25 • (DUP) R3739336-3 12/08/2116:38

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1580	1530	1	3.19		15

L1432580-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1432580-05 12/08/21 17:56 • (DUP) R3739336-6 12/08/21 18:09

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4170	4400	1	5.32		15

Laboratory Control Sample (LCS)

(LCS) R3739336-2 12/08/21 13:05

' '					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	38600	96.6	80.0-120	
Fluoride	8000	7890	98.6	80.0-120	
Sulfate	40000	38100	95.3	80.0-120	

L1432580-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSUL1422580 01 12/08/2116:25 - (MS) 02730336 4 12/08/2116:51 - (MSD) 02730336 5 12/08/2117:04

(O3) E1432300-01 12/00/21 10.25 • (M3) K3/33350-4 12/00/21 10.51 • (M3) K3/33350-3 12/00/21 17.04												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	1580	48800	49000	94.4	94.8	1	80.0-120			0.457	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1432587-01,02,03,04,05,06,07

L1432587-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1432587-06 12/08/21 22:16 • (MS) R3739336-9 12/09/21 10:21 • (MSD) R3739336-10 12/09/21 10:34

` '	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3440	51600	51700	96.4	96.6	1	80.0-120			0.191	15
Sulfate	50000	9320	56700	56500	94.8	94.4	1	80.0-120			0.376	15

QUALITY CONTROL SUMMARY

L1432587-01,03,04,05,06,07

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3738526-1 12/0	(MB) R3738526-1 12/08/2110:44									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Boron	U		20.0	200						
Calcium	U		79.3	1000						

Laboratory Control Sample (LCS)

(LCS)	R3738526-2	12/08/21	10:47
-------	------------	----------	-------

(ECS) NS730320 2 12/00/	2110.47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	881	88.1	80.0-120	
Calcium	10000	9160	91.6	80.0-120	

L1432587-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1432587-06 12/08/2	21 10:50 • (MS) F	₹3/38526-4 12	2/08/21 10:55 •	(MSD) R3/385	26-5 12/08/21	10:57						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	941	937	89.7	89.4	1	75.0-125			0.373	20
Calcium	10000	95600	104000	104000	86.9	87.2	1	75.0-125			0.0256	20

QUALITY CONTROL SUMMARY

L1432587-02

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3739621-1 12/10/	21 20:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

(LCS) R3739621-2	12/10/21	20:55
------	--------------	----------	-------

(200) 107000212 12/10/2	11 20.00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	953	95.3	80.0-120	
Calcium	10000	9560	95.6	80.0-120	

(OS) L1432167-02 12/10/21 20:58 • (MS) R3739621-4 12/10/21 21:03 • (MSD) R3739621-5 12/10/21 21:05

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	996	1010	97.1	98.2	1	75.0-125			1.08	20
Calcium	10000	82500	91600	90500	90.5	79.7	1	75.0-125			1.19	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 27213169.21-A
 L1432587
 12/13/21 09:17
 19 of 21

ACCREDITATIONS & LOCATIONS

Pace Analytical I	Vational	12065 Lebanon	Rd Mount	Juliet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

DATE/TIME:

12/13/21 09:17

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information:					Analysis / Container / Preservative								Chain of Custody Page of				
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210						5				-					1	Pace	Analytical [®]
Report to: Jason Franks			Email To: jfranks@scsengineers.com;jay.martin@evergy				vergy.c	Pres										Submitting a s	ample via th	duliet, TN 37122 his chain of custody ent and acceptance of the
		City/State Collected:	SIBLEY NO Please Circle					E-No												/hubfs/pas-standard-
Phone: 913-681-0030 Client Project # 27213169.21-A			Lab Project # AQUAOPKS-SIBLEY				125mlHDPE-NoPres	250mIHDPE-HN03									SDG#	158	32581	
Collected by (print): JASON R.FRAN				P.O. #				1) 1251	HDPE	lopres								Acctnum		
Collected by (signature):	Rush? (L	ab MUST Be	Day		Quote # Date Results Needed			d, F, SO4)	.0 250m	250mlHDPE-NoPres								Prelogin:	P885	801
Immediately Packed on Ice N Y	Two Day	/10 D	ay (Rad Only)	1		T	No. of Cntrs	Anions (Cld,	Ca - 6010									PB:		dEX Ground
Sample ID	Comp/Grab	Matrix *	Depth		Date	Time	Lines	Anic	B, C	TDS								Rema	rks	Sample # (lab only)
MW-504	GRAD	GW	-	11	15/2	1355	3	X	X	X										-01
MW-505		GW	-	'	1	1435	3	X	X	X								-		-01
MW-506		GW	-			1235	3	X	X	X										-03
MW-510		GW			-	1435	3	X	X	X							-			-04
MW-512		GW	-			1030	3	X.	X	X										-05
MW-601		GW				1110	3	X	X	X							-		1 24	-06
(QU) MS/MSD		GW	-	-		1115	3	X	X	X										
DUPLICATE	4	GW	_		1	1150	3	Х	X	X										-07
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	temarks:										pH Flow		_ Tem			COC S	eal Pr igned/ es arr	le Receir esent/In Accurate ive inta- tles use	tact: : ct:	NP N N
DW Drinking Water	Samples returned UPS FedEx				Tracki	ng#53c	00 4	120	14 0	620	5/62	249/	625	0/60	282	Suffi VOA Z	cient ero He	If Appl adspace:	ent: icable	Y N
Relinquished by : (Signature) Date:			Time	000	Receiv	ved by: (Signat	ture)				Trip Plank Possived: Vas No						Preservation Correct/Checked: 27 RAD Screen <0.5 mR/hr: 27			
Relinquished by : (Signature)	Da	te:	Time		Receiv	ved by: (Signat	ture)				Temp: Anbloc Bottles Received:					If preservation required by Login: Date/Time				
Relinquished by : (Signature)	Da	te:	Time	2:	1/	red for lab by:	(Signat	ure)	end	2	Date: //-/	7-2	Tim 1 C	ne: 290	0	Hold:				Condition: NCF / OR

ATTACHMENT 2 Statistical Analyses

ATTACHMENT 2-1

Fall 2020 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

March 24, 2021

To: **Sibley Generating Station** 33200 E Johnson Road Sibley, Missouri 64088

Evergy Missouri West, Inc.

From: SCS Engineers

Fall 2020 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 11, 2020. Review and validation of the results from the November 2020 Detection Monitoring Event was completed on December 24, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 3, 2021 and March 1, 2021.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-506 and four Appendix III constituents above the prediction limits established for monitoring well MW-512.

Constituent/Monitoring Well	*UPL	Observation November 11, 2020	1st Verification February 3, 2021	2nd Verification March 1, 2021
Calcium				
MW-512	111.3	115	117	117
Chloride				
MW-512	5.094	9.75	10.5	10.4
Total Dissolved Solids				
MW-512	466.4	508	487	508
Sulfate				_
MW-506	76.83	87	87.3	88.9
MW-512	44.8	92.6	99.8	99.9

*UPL - Upper Prediction Limit

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 24, 2021 Page 2 of 2

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified five SSIs above the background prediction limits. These include sulfate at monitoring well MW-506 and calcium, chloride, total dissolved solids, and sulfate at monitoring well MW-512.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

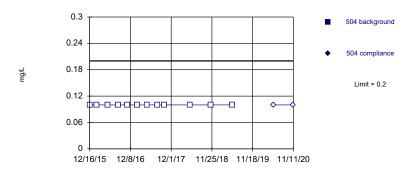
Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 24, 2021


ATTACHMENT 1

Sanitas™ Output

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

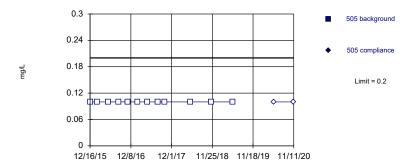
Within Limit Prediction Limit
Intrawell Non-parametric

0.3

0.24

506 background

506 compliance

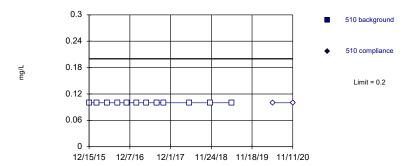

Limit = 0.2

12/15/15 12/7/16 12/1/17 11/24/18 11/18/19 11/11/20

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas[™] v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric



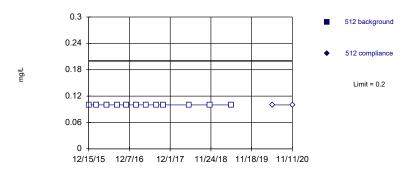
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas $^{\text{\tiny{IM}}}$ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonalize data were not deseasonalized.


Constituent: Boron Analysis Run 3/10/2021 1:17 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					<0.2		<0.2	
12/16/2015	<0.2		<0.2					
2/18/2016	<0.2		<0.2		<0.2		<0.2	
5/25/2016	<0.2		<0.2		<0.2		<0.2	
8/23/2016	<0.2		<0.2		<0.2		<0.2	
11/10/2016							<0.2	
11/11/2016	<0.2		<0.2		<0.2			
2/8/2017	<0.2		<0.2		<0.2		<0.2	
5/3/2017							<0.2	
5/4/2017	<0.2		<0.2		<0.2			
8/1/2017	<0.2		<0.2				<0.2	
8/4/2017					<0.2			
10/3/2017	<0.2		<0.2		<0.2		<0.2	
5/17/2018	<0.2		<0.2		<0.2		<0.2	
11/15/2018	<0.2		<0.2		<0.2		<0.2	
5/22/2019	<0.2		<0.2		<0.2		<0.2	
5/18/2020		<0.2		<0.2		<0.2		<0.2
11/11/2020		<0.2		<0.2		<0.2		<0.2

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

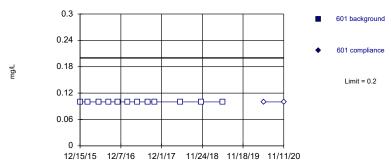
Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

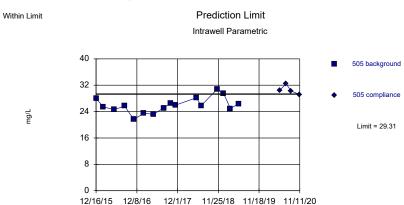
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit Intrawell Parametric 504 background 504 compliance Limit = 40.91

Background Data Summary: Mean=34.4, Std. Dev.=4.551, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas³⁴ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

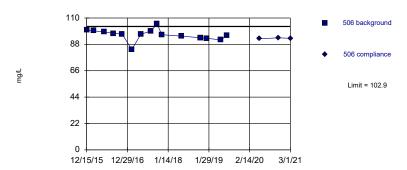
Within Limit Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

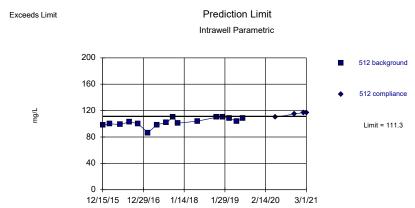
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

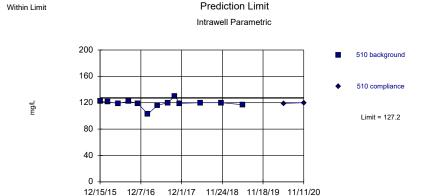

Background Data Summary: Mean=25.96, Std. Dev.=2.346, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9775, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron, Calcium Analysis Run 3/10/2021 1:17 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

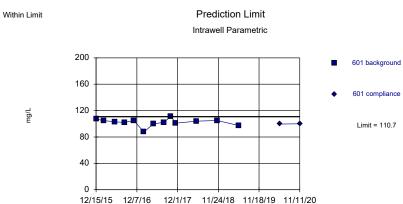
				,	3	,			
	512	512	601	601	504	504	505	505	
12/15/2015	<0.2		<0.2						
12/16/2015					31.5		28		
2/18/2016	<0.2		<0.2		34.3		25.4		
5/25/2016	<0.2				30.2		24.6		
5/26/2016			<0.2						
8/23/2016	<0.2		<0.2		32.2		25.7		
11/11/2016	<0.2		<0.2		36.9		21.6		
2/8/2017	<0.2		<0.2		29.6		23.5		
5/3/2017	<0.2		<0.2						
5/4/2017					27.7		23.2		
8/1/2017	<0.2		<0.2		30.5		25.1		
10/3/2017	<0.2		<0.2		33.2		26.6		
11/16/2017					37.6		26		
5/17/2018	<0.2		<0.2		33.3		28.2		
6/27/2018							25.8		
11/15/2018	<0.2		<0.2		45		30.8		
1/11/2019					39.3		29.5		
3/12/2019					35.4		24.9		
5/22/2019	<0.2		<0.2		33.1		26.4		
7/16/2019					40.6				
5/18/2020		<0.2		<0.2		37.2		30.5	
7/14/2020								32.4	1st Verification
8/26/2020								30.3	2nd Verification
11/11/2020		<0.2		<0.2		36.3		29.1	


Within Limit Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=95.97, Std. Dev.=4.734, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

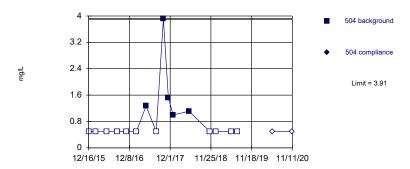

Background Data Summany: Mean=102.6, Std. Dev.=6.094, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Background Data Summary (based on cube transformation): Mean=1699613, Std. Dev.=238011, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8274, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=102.3, Std. Dev.=5.577, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8789, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.


Constituent: Calcium Analysis Run 3/10/2021 1:17 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

				0.0.0)	50 2.1g.110010 But	u. Cibicy		
	506	506	510	510	512	512	601	601
12/15/2015	100		122		98.1		107	
2/18/2016	99.3		121		100		105	
5/25/2016	98.3		119		98.9			
5/26/2016							103	
8/23/2016	97.2		122		103		102	
11/10/2016			119					
11/11/2016	96.5				100		105	
2/8/2017	83.6		103		86.4		87.5	
5/3/2017			116		98.4		100	
5/4/2017	96.4							
8/1/2017			120		102		102	
8/4/2017	99							
10/3/2017	105		130		110		111	
11/16/2017	96		119		101		101	
5/17/2018	94.9		120		104		104	
11/15/2018	93.4		120		110		105	
1/11/2019	93				110			
3/12/2019					108			
5/22/2019	91.7		117		104		97.4	
7/16/2019	95.3				108			
5/18/2020		92.7		119		110		99.6
11/11/2020		93.4		120		115		100
2/3/2021						117 1st Verificati	ion	
3/1/2021		93 Extra Sample	е			117 2nd Verifica	ation	

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

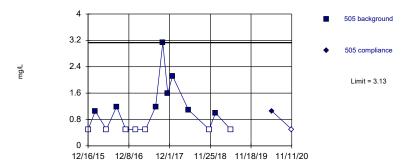
Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 3/10/2021 1:12 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

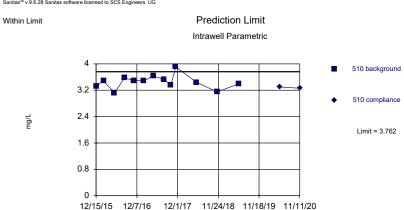
Prediction Limit Within Limit Intrawell Parametric 9 506 background 506 compliance Limit = 7.578 3.6 1.8 12/15/15 12/7/16 12/1/17 11/24/18 11/18/19 11/11/20


Background Data Summary: Mean=6.479, Std. Dev.=0.7774, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8712, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 3/10/2021 1:12 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

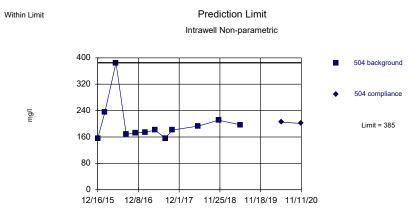
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



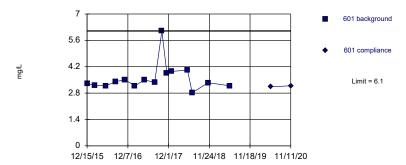
Background Data Summary: Mean=3.454, Std. Dev.=0.2034, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/10/2021 1:17 PM View: LF III

				Sibley	Client: SCS Engineers	Data: Sibley	
	504	504	505	505	506	506	
12/15/2015					6.45		
12/16/2015	<1		<1				

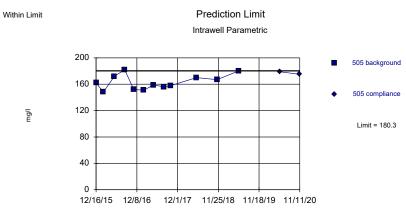

	504	504	505	505	506	506	510	510
12/15/2015					6.45		3.33	
12/16/2015	<1		<1					
2/18/2016	<1		1.05		6.15		3.48	
5/25/2016	<1		<1		5.76		3.12	
8/23/2016	<1		1.19		6.16		3.58	
11/10/2016							3.49	
11/11/2016	<1		<1		6.13			
2/8/2017	<1		<1		5.89		3.49	
5/3/2017							3.63	
5/4/2017	1.27		<1		6.15			
8/1/2017	<1		1.18				3.53	
8/4/2017					5.45			
10/3/2017	3.91		3.13		8.74		3.36	
11/16/2017	1.52		1.59		6.15		3.91	
12/28/2017	1		2.12					
5/17/2018	1.11		1.09		6.69		3.44	
6/27/2018					5.8			
11/15/2018	<1		<1		6.69		3.15	
1/11/2019	<1		1		6.39			
5/22/2019	<1		<1		7.05		3.39	
7/16/2019	<1				7.33			
8/21/2019					7.17			
5/18/2020		<1		1.06		7.11		3.3
11/11/2020		<1		<1		7.28		3.26

Background Data Summary: Mean=3.786, Std. Dev.=0.9366, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 3/10/2021 1:12 PM View: LF III
Siblev Client: SCS Engineers Data: Siblev

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=163.1, Std. Dev.=11.19, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9461, critical = 0.805. Kappa = 1.542 (e=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Chloride, Dissolved Solids Analysis Run 3/10/2021 1:17 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601	504	504	505	505
12/15/2015	2.72		3.3					
12/16/2015					155		162	
2/18/2016	2.78		3.22		236		148	
5/25/2016	2.55				385		172	
5/26/2016			3.18					
8/23/2016	3.23		3.41		168		182	
11/11/2016	3.17		3.51		173		152	
2/8/2017	3.14		3.19		174		151	
5/3/2017	3.7		3.5					
5/4/2017					181		159	
8/1/2017	3.53		3.37		156		156	
10/3/2017	6.59		6.1		181		158	
11/16/2017	3.97		3.87					
12/28/2017	3.58		3.95					
5/17/2018	3.64		4.02		193		170	
6/27/2018			2.82					
11/15/2018	3.89		3.35		211		167	
1/11/2019	3.85							
3/12/2019	4.38							
5/22/2019	4.17		3.19		197		180	
7/16/2019	4.35							
8/21/2019	4.91							
5/18/2020		7.69		3.13		205		179
7/14/2020		8.83 1st Verificat	ion					
8/26/2020		8.79 2nd Verifica	ation					
11/11/2020		9.75		3.19		201		175
2/3/2021		10.5 1st Verificati	ion					
3/1/2021		10.4 2nd Verificat	ion					

Within Limit

100 Intrawell Parametric

500 background

506 background

Limit = 491.2

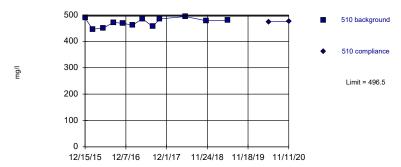
12/15/15 12/7/16 12/1/17 11/24/18 11/18/19 11/11/20

Prediction Limit

Background Data Summary (based on x^5 transformation): Mean=1.8e13, Std. Dev.=6.8e12, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8456, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/10/2021 1:12 PM View: LF III

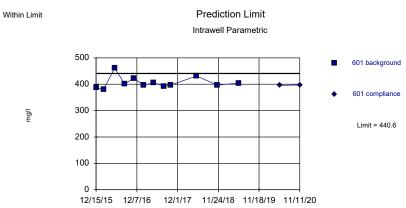
Siblev Client: SCS Engineers Data: Siblev


Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit Intrawell Parametric

600
480
360
240
120
12/15/15 12/29/16 1/14/18 1/29/19 2/14/20 3/1/21

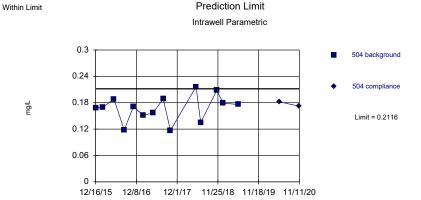
Background Data Summary: Mean=426.3, Std. Dev.=25.95, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9454, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=472.3, Std. Dev.=15.74, n=12. Insufficient data to test for seasonality: data were not deseasonalityed. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/10/2021 1:12 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

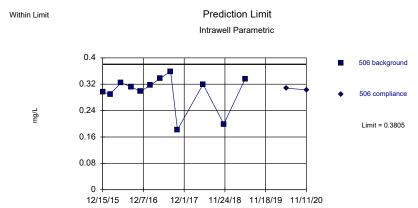
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=406.3, Std. Dev.=22.23, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8601, critical = 0.805. Kappa = 1.542 (e=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

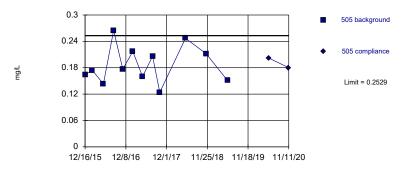
Constituent: Dissolved Solids Analysis Run 3/10/2021 1:17 PM View: LF III

508 2nd Verification

				Sibley C	lient: SCS Engineers	s Data: Sibley		
	506	506	510	510	512	512	601	601
12/15/2015	475		489		425		387	
2/18/2016	423		446		366		380	
5/25/2016	133		451		467			
5/26/2016							461	
8/23/2016	459		472		422		401	
11/10/2016			468					
11/11/2016	477				443		423	
2/8/2017	451		462		404		396	
5/3/2017			486		436		406	
5/4/2017	462							
8/1/2017			456		414		393	
8/4/2017	480							
10/3/2017	450		485		423		397	
5/17/2018	442		494		419		431	
11/15/2018	426		478		452		397	
5/22/2019	453		480		445		404	
5/18/2020		444		474		481		396
7/14/2020						501 1st Ve	erification	
8/26/2020						493 2nd	Verification	
11/11/2020		451		475		508		397
2/3/2021						487 1st Ve	erification	

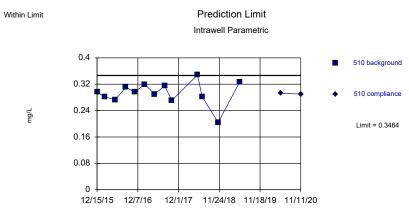

3/1/2021

Background Data Summary: Mean=0.1674, Std. Dev.=0.02979, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

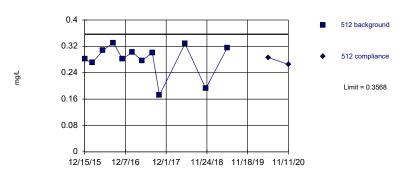
Background Data Summary: Mean=0.2976, Std. Dev.=0.05377, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8104, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.1867, Std. Dev.=0.04296, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

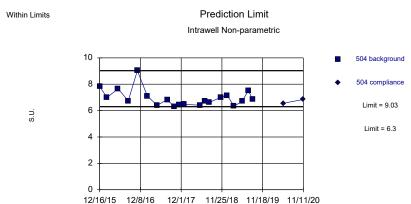
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=0.2934, Std. Dev=0.03503, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

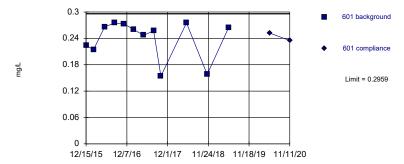
Constituent: Fluoride Analysis Run 3/10/2021 1:17 PM View: LF III

Sibley	Client: SCS Engineers	Data: Sibley
--------	-----------------------	--------------

	504	504	505	505	506	506	510	510
12/15/2015					0.296		0.296	
12/16/2015	0.168		0.164					
2/18/2016	0.17		0.174		0.29		0.282	
5/25/2016	0.188		0.143		0.324		0.273	
8/23/2016	0.118		0.265		0.312		0.311	
11/10/2016							0.296	
11/11/2016	0.171		0.177		0.298			
2/8/2017	0.151		0.217		0.317		0.32	
5/3/2017							0.29	
5/4/2017	0.157		0.16		0.338			
8/1/2017	0.189		0.206				0.315	
8/4/2017					0.359			
10/3/2017	0.117		0.124		0.182		0.271	
5/17/2018	0.216		0.247		0.32		0.348	
6/27/2018	0.135						0.282	
11/15/2018	0.208		0.212		0.199		0.204	
1/11/2019	0.179							
5/22/2019	0.176		0.151		0.336		0.326	
5/18/2020		0.182		0.202		0.308		0.293
11/11/2020		0.172		0.18		0.303		0.29


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.2799, Std. Dev.=0.04987, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8252, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 20 background values. Well-constituent pair annual alpha = 0.00225. Individual comparison alpha = 0.001125 (1 of 3). Seasonality was not detected with 95% confidence.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.0588, Std. Dev.=0.01866, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8225, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Non-parametric

505 background
505 compliance
Limit = 9.2
Limit = 6.6

12/16/15 12/8/16 12/1/17 11/25/18 11/18/19 11/11/20

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Seasonality was not detected with 95% confidence.


Constituent: Fluoride, pH Analysis Run 3/10/2021 1:17 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601	504	504	505	505
12/15/2015	0.281		0.224					
12/16/2015					7.83		7.74	
2/18/2016	0.27		0.214		6.99		6.88	
5/25/2016	0.308				7.66		7.42	
5/26/2016			0.266					
8/23/2016	0.331		0.275		6.74		6.79	
11/11/2016	0.282		0.273		9.03		9.2	
2/8/2017	0.302		0.26		7.09		6.84	
5/3/2017	0.277		0.247					
5/4/2017					6.4		6.8	
8/1/2017	0.301		0.257		6.83		7.44	
10/3/2017	0.172		0.154		6.3		6.98	
11/16/2017					6.45		6.84	
12/28/2017					6.47		6.85	
5/17/2018	0.328		0.275		6.41		6.6	
6/27/2018					6.7		6.82	
8/8/2018					6.62			
11/15/2018	0.192		0.158		7.01		7.09	
1/11/2019					7.15		7.08	
3/12/2019					6.34		6.78	
5/22/2019	0.315		0.264		6.7		6.85	
7/16/2019					7.53			
8/21/2019					6.85			
5/18/2020		0.286		0.252		6.55		6.26
7/14/2020								6.79 1st Verification
8/26/2020								6.96 Extra Sample
11/11/2020		0.265		0.235		6.85		6.75

Prediction Limit Within Limits

Intrawell Parametric

Background Data Summary: Mean=7.188, Std. Dev.=0.2694, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: pH Analysis Run 3/10/2021 1:13 PM View: LF III Siblev Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=7.071, Std. Dev.=0.2785, n=20. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8734, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Prediction Limit Within Limits Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.006393. Individual comparison alpha = 0.003199 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: pH Analysis Run 3/10/2021 1:13 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 3/10/2021 1:17 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	506	506	510	510	512	512	601	601
12/15/2015	7.78		7.14		7.29		8.11	
2/18/2016	6.97		7.05		7		6.8	
5/25/2016	7.24		7.95		7.18			
5/26/2016							8.13	
8/23/2016	7.04		6.84		6.77		6.75	
11/10/2016			8.15					
11/11/2016	7.58				6.8		6.71	
2/8/2017	7		7.06		7.7		6.93	
5/3/2017			6.94		6.92			
5/4/2017	7.59						6.81	
8/1/2017			6.95		6.97		6.84	
8/4/2017	6.98							
10/3/2017	6.88		6.72		6.79		6.65	
11/16/2017	6.96		6.9		6.92		6.84	
12/28/2017					6.88		6.78	
5/17/2018	6.97		6.82		6.85		6.72	
6/27/2018	7.02		7.01		6.95		6.98	
8/8/2018					6.78			
11/15/2018	7.08		7.05		7.09		6.96	
1/11/2019	7.4				7.34			
3/12/2019					7.23			
5/22/2019	7.16		7.01		7.25		6.97	
7/16/2019	7.43				7.7			
8/21/2019	7.11				7.01			
5/18/2020		6.76		6.95		6.86		6.77
7/14/2020		7.16 1st Verificat				6.94 1st Verification		
8/26/2020		7.17 Extra Samp	ole			7.02 Extra Sample	•	
11/11/2020		7.25		7.18		7.18		7.12
2/3/2021		7.32 Extra Samp	le			7.34 Extra Samp		
3/1/2021		7.21 Extra Samp	le			6.86 Extra Sampl	e	

6

Within Limit

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=26.58, Std. Dev.=8.293, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit

Intrawell Parametric

90
72
506 background
506 compliance
Limit = 76.83

Background Data Summary: Mean=70.47, Std. Dev.=4.276, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9125, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Intrawell Parametric

505 background

505 compliance

Limit = 24.65

Prediction Limit

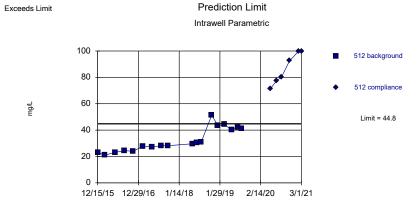
12/16/15 12/8/16 12/1/17 11/25/18 11/18/19 11/11/20

Background Data Summary: Mean=16.9, Std. Dev.=5.117, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8783, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

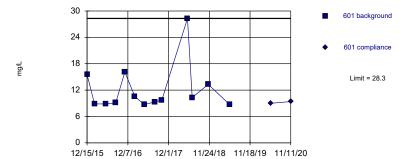


Background Data Summary: Mean=15.58, Std. Dev.=1.955, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.9362, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Sulfate Analysis Run 3/10/2021 1:17 PM View: LF III

Sibley	Client: SCS Engineers	Data: Sibley

ı	504	504	505	505	506	506	ľ	510	510
12/15/2015					64.8			14.7	
12/16/2015	14.3		29.2						
2/18/2016	14.7		16		65.6			12	
5/25/2016	18.9		21.9		71			18.1	
8/23/2016	15.4		9.73		65.8			12.7	
11/10/2016								16	
11/11/2016	17.4		15.9		65				
2/8/2017	21		14.9		76.5			16.1	
5/3/2017								15	
5/4/2017	21.8		19.2		69.2				
8/1/2017	23.3		14.4					16.8	
8/4/2017					73.3				
10/3/2017	24.3		13.4		71.3			16.9	
5/17/2018	32.8		14		75.7			17.3	
6/27/2018	31.8								
8/8/2018	32.3								
11/15/2018	33.9		14.6		70.8			17.5	
1/11/2019	33.2		13.8		67.3				
3/12/2019	35.1								
5/22/2019	36.3		22.7		74.2			13.8	
7/16/2019	36.3				76.1				
8/21/2019	35.6								
5/18/2020		34.8		16.3		80			12.3
7/14/2020						78.6	1st Verificat	ion	
8/26/2020						79.6	2nd Verifica	ation	
11/11/2020		33.1		19.3		87			13.7
2/3/2021							1st Verificat		
3/1/2021						88.8	2nd Verifica	ation	



Background Data Summary: Mean=32.21, Std. Dev.=9.019, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8926, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 3/10/2021 1:13 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 3/10/2021 1:17 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601			
12/15/2015	23		15.5				
2/18/2016	21		8.87				
5/25/2016	23.1						
5/26/2016			8.85				
8/23/2016	24.4		9.11				
11/11/2016	24		16.1				
2/8/2017	27.8		10.5				
5/3/2017	27.3		8.71				
8/1/2017	28.1		9.33				
10/3/2017	28.2		9.76				
5/17/2018	29.6		28.3				
6/27/2018	30.3		10.3				
8/8/2018	30.9						
11/15/2018	51.4		13.3				
1/11/2019	43.3						
3/12/2019	44.2						
5/22/2019	40.1		8.74				
7/16/2019	42.1						
8/21/2019	41						
5/18/2020		71.6		9			
7/14/2020		77.6 1st Verificat	tion				
8/26/2020		80.1 2nd Verific	ation				
11/11/2020		92.6		9.39			
2/3/2021		99.8 1st Verifica	ation				
3/1/2021		99.9 2nd Verific	ation				

			Sibley	Client: SCS Engineers	Data: Sibley	Printed 3	3/10/202	1, 1:17 PM			
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	504	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	505	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	506	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	510	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	512	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	601	0.2	n/a	11/11/2020	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Calcium (mg/L)	504	40.91	n/a	11/11/2020	36.3	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	505	29.31	n/a	11/11/2020	29.1	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	506	102.9	n/a	3/1/2021	93	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	510	127.2	n/a	11/11/2020	120	No	13	0	x^3	0.00188	Param Intra 1 of 3
Calcium (mg/L)	512	111.3	n/a	3/1/2021	117	Yes	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	601	110.7	n/a	11/11/2020	100	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	504	3.91	n/a	11/11/2020	0.5ND	No	16	68.75	n/a	0.001026	NP Intra (NDs) 1 of 3
Chloride (mg/L)	505	3.13	n/a	11/11/2020	0.5ND	No	15	46.67	n/a	0.001313	NP Intra (normality)
Chloride (mg/L)	506	7.578	n/a	11/11/2020	7.28	No	17	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	510	3.762	n/a	11/11/2020	3.26	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	512	5.094	n/a	3/1/2021	10.4	Yes	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	601	6.1	n/a	11/11/2020	3.19	No	15	0	n/a	0.001313	NP Intra (normality)
Dissolved Solids (mg/l)	504	385	n/a	11/11/2020	201	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	505	180.3	n/a	11/11/2020	175	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	491.2	n/a	11/11/2020	451	No	12	0	x^5	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	510	496.5	n/a	11/11/2020	475	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	512	466.4	n/a	3/1/2021	508	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	440.6	n/a	11/11/2020	397	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	504	0.2116	n/a	11/11/2020	0.172	No	14	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	505	0.2529	n/a	11/11/2020	0.18	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	506	0.3805	n/a	11/11/2020	0.303	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	510	0.3464	n/a	11/11/2020	0.29	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	512	0.3568	n/a	11/11/2020	0.265	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	601	0.2959	n/a	11/11/2020	0.235	No	12	0	x^2	0.00188	Param Intra 1 of 3
pH (S.U.)	504	9.03	6.3	11/11/2020	6.85	No	20	0	n/a	0.001125	NP Intra (normality)
pH (S.U.)	505	9.2	6.6	11/11/2020	6.75	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	506	7.568	6.807	3/1/2021	7.21	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	510	8.15	6.72	11/11/2020	7.18	No	14	0	n/a	0.003199	NP Intra (normality)
pH (S.U.)	512	7.45	6.692	3/1/2021	6.86	No	20	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	601	8.13	6.65	11/11/2020	7.12	No	15	0	n/a	0.002625	NP Intra (normality)
Sulfate (mg/L)	504	38.15	n/a	11/11/2020	33.1	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	505	24.65	n/a	11/11/2020	19.3	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	506	76.83	n/a	3/1/2021	88.8	Yes	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	510	18.59	n/a	11/11/2020	13.7	No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	512	44.8	n/a	3/1/2021	99.9	Yes	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	601	28.3	n/a	11/11/2020	9.39	No	13	0	n/a	0.001886	NP Intra (normality)

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 24, 2021

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	ı					
Non I	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 1 2000
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output T	rend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Use Modified Alp	oha 0.	.02						
✓ Test Residuals F	or Normality	(Parametric t	est only) using	Shapiro-Wilk/Fra	ancia v	at Alpha	= 0.01	~
Continue Pa	rametric if U	nable to Nom	nalize					
Transformation (Pa Use Ladder of Natural Log or Never Transfo Use Specific T	Powers No Transform	mation						
Use Best W St								
☐ Plot Transform	ed Values							
Use Non-Parametric Include 95. % Automatically Re	6 Confidence	Interval arou	and Trend Line	Non-Detects Perd	cent > 75			
Note: there is no ''Alw Mann-Kendall (the nor	•			•	•			

Data Output Trend Test Control Cht Prediction Lim 7	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
			sformation - Use Ladder	of Powers	
✓ Test for Normality using Shapiro-Wilk/Francia ∨ a	it Alpha = 0.01	~ O	Natural Log	or No Tran	sformation
☑ Use Non-Parametric Test when Non-Detects Percent > 50]	0	Never Tran	sform	
Use Aitchison's Adjustment V when Non-Detects Percent >	15	0	Use Specifi	c Transfom Natura	
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50	Use Best W	Statistic	
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	✓ Plot Ba	her Background Tr ckground Data andard Deviati		ed at Alpha	a = 0.05 ∨
Always Use Non-Parametric	Ovemide Di	F: (Override Kap	opa:	
Facility © Statistical Evaluations per Year: Constituents Analyzed: Downgradient (Compliance) Wells: 4	2-Tailed	tically Remove I Test Mode Deselected Data	a Lighter	~	
Sampling Plan Comparing Individual Observations 1 of 1	Highest Most R	etric Limit = [F etric Limit when t/Second High ecent PQL if a ecent Backgro	est Backgro vailable, or l	-Detects: ound Value MDL	

Data Output Trend Test Control Cht Prediction Lim Tolerance	im Conf/Tol Int	ANOVA	Welchs	Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney				
Use Modified Alpha 2-Tailed Test Mode	Combine Back	around Well	s on Mann	-Whitney
		g. 0 a		
Outlier Tests				
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)				
• Dixon's at $\alpha = 0.05 \lor$ or if n > $22 \lor$ Rosner's at $\alpha = 0.01 \lor$	✓ Use EPA Scree	ning to esta	blish Suspe	ected Outliers
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use	Ladder of Powers to	achieve B	est W Stat	
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1	~			
Stop if Non-Normal				
Continue with Parametric Test if Non-Normal				
○ Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers t	o achieve B	est W Stat	
✓ No Outlier If Less Than 3.0 Times Median				
Apply Rules found in Ohio Guidance Document 0715				
Combine Background Wells on the Outlier Report				
Piper, Stiff Diagram Combine Wells	✓ Label Constit	uente		
Combine Dates	✓ Label Constit	uents		
	✓ Note Cation-	Anion Balan	ce (Piner o	nlv)
Use Default Constituent Names Use Constituent Definition File Edit	- Hote cations	Thorr barain	oc (i ipci oi	,
O ose Consultaent Definition File Edit				

ATTACHMENT 2-2

Spring 2021 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

October 5, 2021 January 3, 2022 Revision 1

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 Evergy Missouri West, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2021 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 24, 2021. Review and validation of the results from the May 2021 Detection Monitoring Event was completed on July 9, 2021, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 19, 2021 and September 2, 2021.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits established for upgradient monitoring well MW-505, two Appendix III constituents above their respective prediction limits established for monitoring well MW-506 and four Appendix III constituents above their respective prediction limits established for monitoring well MW-512.

Monitoring Well/Constituent	*UPL	Observation May 24, 2021	1st Verification July 19, 2021	2nd Verification September 2, 2021
MW-505				
Calcium	29.31	34.4	34.8	34.1
Total Dissolved Solids	180.3	181	184	188
MW-506				
Chloride	7.578	8.09	8.01	8.03
Sulfate	76.83	89.1	89.1	88.7
MW-512				
Calcium	111.3	114	120	114
Chloride	5.094	10.6	10.2	10.2
Total Dissolved Solids	466.4	505	524	555
Sulfate	44.8	110	104	107

*UPL - Upper Prediction Limit

Sibley Generating Station
Determination of Statistically Significant Increases
CCR Landfill
October 5, 2021
January 3, 2022 Revision 1
Page 2 of 2

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified eight SSIs above the background prediction limits. These include calcium and total dissolved solids (TDS) at upgradient monitoring well MW-505, chloride and sulfate at monitoring well MW-506, and calcium, chloride, TDS, and sulfate at monitoring well MW-512.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

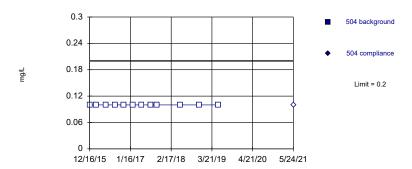
Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions
1	January 3, 2022	No	Date of completion for the review and validation of the results from the May 2021 Detection Monitoring Event was corrected to July 9, 2021 from the incorrect date of July 27, 2021.

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021 January 3, 2021 Revision 1


ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

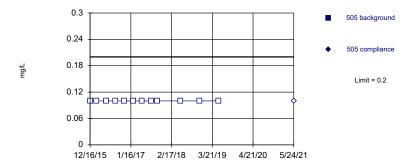
0.3

0.24

506 background

506 compliance

Limit = 0.2

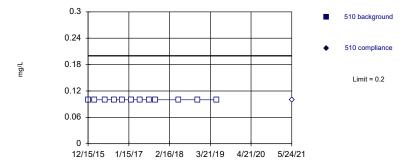

12/15/15 1/15/17 2/16/18 3/21/19 4/21/20 5/24/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas** v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

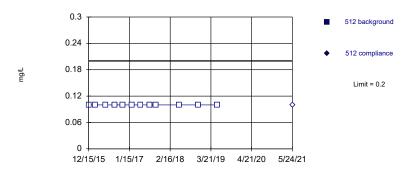
Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas $^{\text{\tiny{IM}}}$ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonalize data were not deseasonalized.

Constituent: Boron Analysis Run 9/20/2021 12:29 PM View: LF III


Sibley Client: SCS Engineers Data: Sibley

					ı		l	
	504	504	505	505	506	506	510	510
12/15/2015					<0.2		<0.2	
12/16/2015	<0.2		<0.2					
2/18/2016	<0.2		<0.2		<0.2		<0.2	
5/25/2016	<0.2		<0.2		<0.2		<0.2	
8/23/2016	<0.2		<0.2		<0.2		<0.2	
11/10/2016							<0.2	
11/11/2016	<0.2		<0.2		<0.2			
2/8/2017	<0.2		<0.2		<0.2		<0.2	
5/3/2017							<0.2	
5/4/2017	<0.2		<0.2		<0.2			
8/1/2017	<0.2		<0.2				<0.2	
8/4/2017					<0.2			
10/3/2017	<0.2		<0.2		<0.2		<0.2	
5/17/2018	<0.2		<0.2		<0.2		<0.2	
11/15/2018	<0.2		<0.2		<0.2		<0.2	
5/22/2019	<0.2		<0.2		<0.2		<0.2	
5/24/2021		<0.2		<0.2		<0.2		<0.2

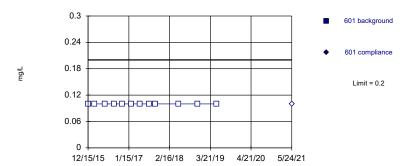
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

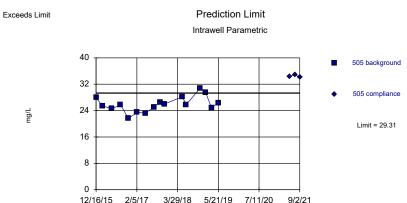
Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 504 background 504 compliance Limit = 40.91

Background Data Summary: Mean=34.4, Std. Dev.=4.551, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

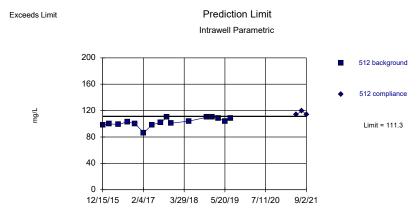
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=25.96, Std. Dev.=2.346, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9775, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

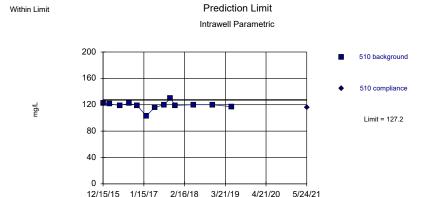
Constituent: Boron, Calcium Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

				•	•	•		
T	512	512	601	601	504	504	505	505
12/15/2015	<0.2		<0.2					
12/16/2015					31.5		28	
2/18/2016	<0.2		<0.2		34.3		25.4	
5/25/2016	<0.2				30.2		24.6	
5/26/2016			<0.2					
8/23/2016	<0.2		<0.2		32.2		25.7	
11/11/2016	<0.2		<0.2		36.9		21.6	
2/8/2017	<0.2		<0.2		29.6		23.5	
5/3/2017	<0.2		<0.2					
5/4/2017					27.7		23.2	
8/1/2017	<0.2		<0.2		30.5		25.1	
10/3/2017	<0.2		<0.2		33.2		26.6	
11/16/2017					37.6		26	
5/17/2018	<0.2		<0.2		33.3		28.2	
6/27/2018							25.8	
11/15/2018	<0.2		<0.2		45		30.8	
1/11/2019					39.3		29.5	
3/12/2019					35.4		24.9	
5/22/2019	<0.2		<0.2		33.1		26.4	
7/16/2019					40.6			
5/24/2021		<0.2		<0.2		34.1		34.4
7/19/2021								34.8
9/2/2021								34.1

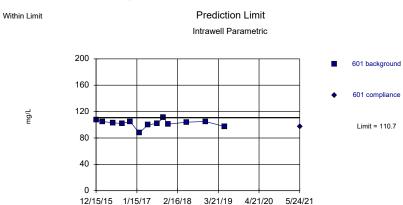

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=95.97, Std. Dev.=4,734, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.


Constituent: Calcium Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

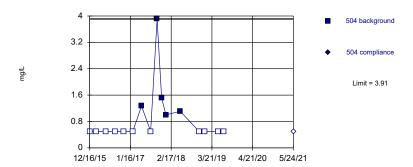
Background Data Summany: Mean=102.6, Std. Dev.=6.094, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary (based on cube transformation): Mean=1699613, Std. Dev.=238011, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilki @alpha = 0.01, calculated = 0.8274, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/20/2021 12:26 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

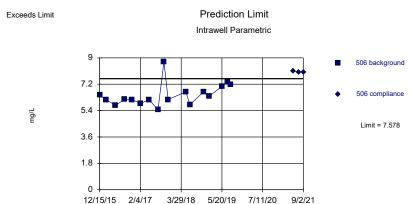
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=102.3, Std. Dev.=5.577, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8789, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Calcium Analysis Run 9/20/2021 12:29 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

				Sibley Ci	ient. 303 Engineers	Data. Sibley			
	506	506	510	510	512	512	601	601	
12/15/2015	100		122		98.1		107		
2/18/2016	99.3		121		100		105		
5/25/2016	98.3		119		98.9				
5/26/2016							103		
8/23/2016	97.2		122		103		102		
11/10/2016			119						
11/11/2016	96.5				100		105		
2/8/2017	83.6		103		86.4		87.5		
5/3/2017			116		98.4		100		
5/4/2017	96.4								
8/1/2017			120		102		102		
8/4/2017	99								
10/3/2017	105		130		110		111		
11/16/2017	96		119		101		101		
5/17/2018	94.9		120		104		104		
11/15/2018	93.4		120		110		105		
1/11/2019	93				110				
3/12/2019					108				
5/22/2019	91.7		117		104		97.4		
7/16/2019	95.3				108				
5/24/2021		91.4		116		114		97.4	
7/19/2021						120			
9/2/2021		91.1				114			

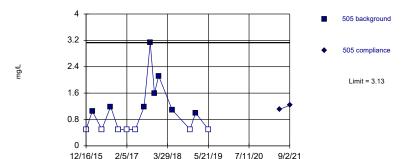
Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

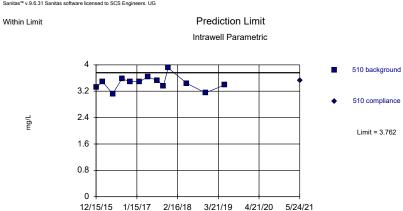
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=6.479, Std. Dev.=0.7774, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8712, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

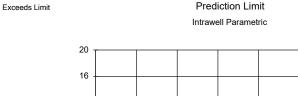
Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. 46.67% NDs. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=3.454, Std. Dev.=0.2034, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

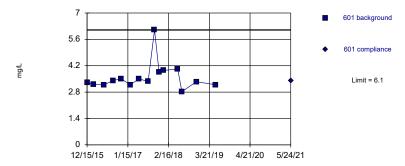
Constituent: Chloride Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley	Client: SCS Engineers	Data: Sibley

l	504	504	505	505	506	506	510	510
12/15/2015					6.45		3.33	
12/16/2015	<1		<1					
2/18/2016	<1		1.05		6.15		3.48	
5/25/2016	<1		<1		5.76		3.12	
8/23/2016	<1		1.19		6.16		3.58	
11/10/2016							3.49	
11/11/2016	<1		<1		6.13			
2/8/2017	<1		<1		5.89		3.49	
5/3/2017							3.63	
5/4/2017	1.27		<1		6.15			
8/1/2017	<1		1.18				3.53	
8/4/2017					5.45			
10/3/2017	3.91		3.13		8.74		3.36	
11/16/2017	1.52		1.59		6.15		3.91	
12/28/2017	1		2.12					
5/17/2018	1.11		1.09		6.69		3.44	
6/27/2018					5.8			
11/15/2018	<1		<1		6.69		3.15	
1/11/2019	<1		1		6.39			
5/22/2019	<1		<1		7.05		3.39	
7/16/2019	<1				7.33			
8/21/2019					7.17			
5/24/2021		<1		1.11		8.09		3.53
7/19/2021						8.01		
9/2/2021				1.23		8.03		

Background Data Summary: Mean=3.786, Std. Dev.=0.9366, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8846, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

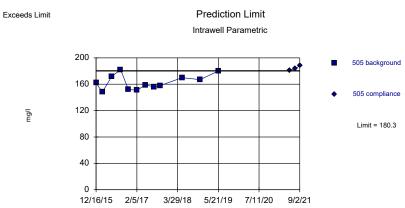
Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Non-parametric

504 background
504 compliance
Limit = 385

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

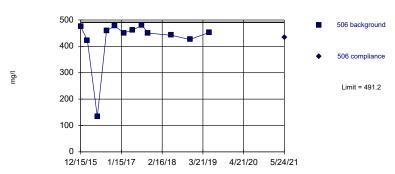

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 15 background values. Well-constituent pair annual alpha = 0.002624. Individual comparison alpha = 0.001313 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

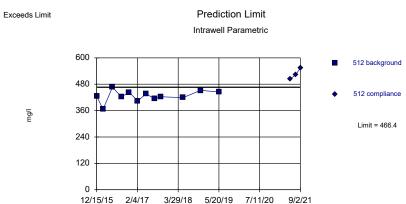
Background Data Summary: Mean=163.1, Std. Dev.=11.19, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9461, critical = 0.805. Kappa = 1.542 (e=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

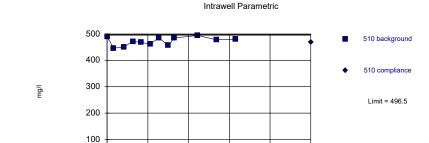

Constituent: Chloride, Dissolved Solids Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley	Client: SCS Engineers	Data: Sibley

ı	512	512		601	504	504	505	505
12/15/2015	2.72		3.3					
12/16/2015					155		162	
2/18/2016	2.78		3.22		236		148	
5/25/2016	2.55				385		172	
5/26/2016			3.18					
8/23/2016	3.23		3.41		168		182	
11/11/2016	3.17		3.51		173		152	
2/8/2017	3.14		3.19		174		151	
5/3/2017	3.7		3.5					
5/4/2017					181		159	
8/1/2017	3.53		3.37		156		156	
10/3/2017	6.59		6.1		181		158	
11/16/2017	3.97		3.87					
12/28/2017	3.58		3.95					
5/17/2018	3.64		4.02		193		170	
6/27/2018			2.82					
11/15/2018	3.89		3.35		211		167	
1/11/2019	3.85							
3/12/2019	4.38							
5/22/2019	4.17		3.19		197		180	
7/16/2019	4.35							
8/21/2019	4.91							
5/24/2021		10.6		3.4		174		181
7/19/2021		10.2						184
9/2/2021		10.2						188

Within Limit

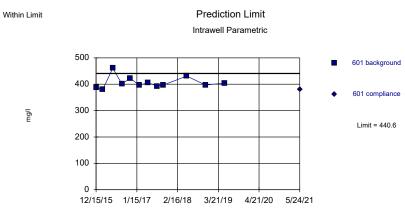



Background Data Summary (based on x^5 transformation): Mean=1.8e13, Std. Dev.=6.8e12, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8456, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=426.3, Std. Dev.=25.95, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9454, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

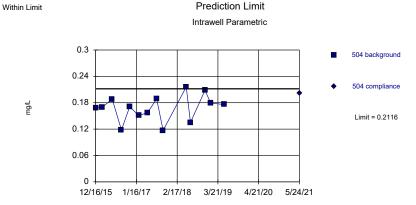

12/15/15 1/15/17 2/16/18 3/21/19 4/21/20 5/24/21

Prediction Limit

Background Data Summary: Mean=472.3, Std. Dev.=15.74, n=12. Insufficient data to test for seasonality: data were not deseasonalityed. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

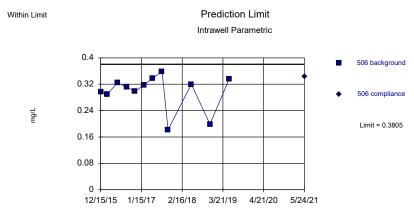
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



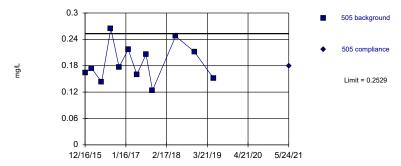
Background Data Summary: Mean=406.3, Std. Dev.=22.23, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8601, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.001832.

Constituent: Dissolved Solids Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley 12/15/2015 2/18/2016 5/25/2016 5/26/2016 8/23/2016 11/10/2016 11/11/2016 2/8/2017 5/3/2017 5/4/2017 8/1/2017 8/4/2017 10/3/2017 5/17/2018 11/15/2018 5/22/2019 5/24/2021 7/19/2021

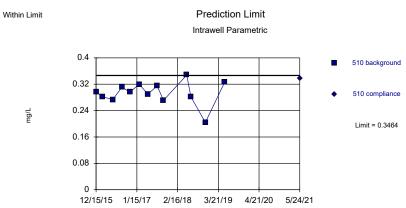

9/2/2021

Background Data Summary: Mean=0.1674, Std. Dev.=0.02979, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

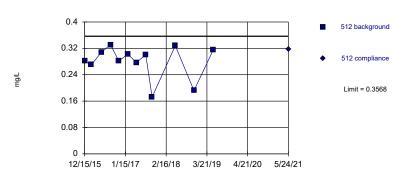
Background Data Summary: Mean=0.2976, Std. Dev_=0.05377, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8104, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.



Background Data Summary: Mean=0.1867, Std. Dev.=0.04296, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

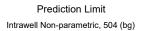
Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.2934, Std. Dev=0.03503, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

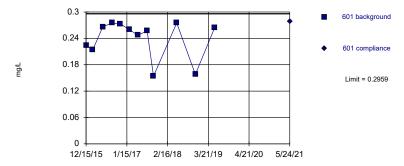
Constituent: Fluoride Analysis Run 9/20/2021 12:29 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

	504	504	505	505	506	506	510	510
12/15/2015					0.296		0.296	
12/16/2015	0.168		0.164					
2/18/2016	0.17		0.174		0.29		0.282	
5/25/2016	0.188		0.143		0.324		0.273	
8/23/2016	0.118		0.265		0.312		0.311	
11/10/2016							0.296	
11/11/2016	0.171		0.177		0.298			
2/8/2017	0.151		0.217		0.317		0.32	
5/3/2017							0.29	
5/4/2017	0.157		0.16		0.338			
8/1/2017	0.189		0.206				0.315	
8/4/2017					0.359			
10/3/2017	0.117		0.124		0.182		0.271	
5/17/2018	0.216		0.247		0.32		0.348	
6/27/2018	0.135						0.282	
11/15/2018	0.208		0.212		0.199		0.204	
1/11/2019	0.179							
5/22/2019	0.176		0.151		0.336		0.326	
5/24/2021		0.201		0.18		0.344		0.338


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.2799, Std. Dev.=0.04987, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8252, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 20 background values. Well-constituent pair annual alpha = 0.00225. Individual comparison alpha = 0.001125 (1 of 3). Assumes 1 future value. Seasonality was not detected with 95% confidence.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.0588, Std. Dev.=0.01866, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8225, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

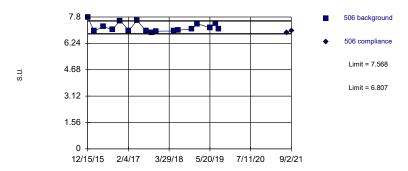
Constituent: Fluoride Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Seasonality was not detected with 95% confidence.

Constituent: Fluoride, pH Analysis Run 9/20/2021 12:29 PM View: LF III


6.97

Sibley Client: SCS Engineers Data: Sibley 512 512 601 601 504 505 12/15/2015 0.281 0.224 12/16/2015 7.83 7.74 2/18/2016 0.27 0.214 6.99 6.88 5/25/2016 0.308 7.42 7.66 5/26/2016 0.266 8/23/2016 0.331 0.275 6.74 6.79 0.282 11/11/2016 0.273 9.03 9.2 2/8/2017 0.302 0.26 7.09 6.84 5/3/2017 0.277 0.247 5/4/2017 6.4 6.8 8/1/2017 0.301 0.257 6.83 7.44 10/3/2017 0.172 0.154 6.3 6.98 11/16/2017 6.45 6.84 12/28/2017 6.47 6.85 5/17/2018 0.275 0.328 6.41 6.6 6/27/2018 6.7 6.82 8/8/2018 6.62 11/15/2018 0.192 0.158 7.01 7.09 1/11/2019 7.15 7.08 3/12/2019 6.34 6.78 5/22/2019 0.315 0.264 6.85 6.7 7/16/2019 7.53 8/21/2019 6.85 0.318 0.278 5/24/2021 7/19/2021 6.65

9/2/2021

ariitas - v.9.0.3 i Sariitas soltware licerised to SC3 Engineers. Od

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.188, Std. Dev.=0.2694, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8664, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/20/2021 12:27 PM View: LF III

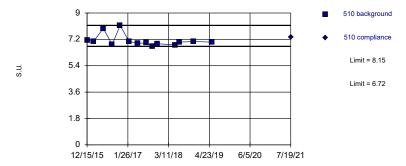
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

512 background


512 compliance
Limit = 7.45
Limit = 6.692

12/15/15 2/4/17 3/29/18 5/20/19 7/11/20

Background Data Summary: Mean=7.071, Std. Dev.=0.2785, n=20. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8734, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.006393. Individual comparison alpha = 0.003199 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/20/2021 12:27 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

601 background

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

					_			
	506	506	510	510	512	512	601	601
12/15/2015	7.78		7.14		7.29		8.11	
2/18/2016	6.97		7.05		7		6.8	
5/25/2016	7.24		7.95		7.18			
5/26/2016							8.13	
8/23/2016	7.04		6.84		6.77		6.75	
11/10/2016			8.15					
11/11/2016	7.58				6.8		6.71	
2/8/2017	7		7.06		7.7		6.93	
5/3/2017			6.94		6.92			
5/4/2017	7.59						6.81	
8/1/2017			6.95		6.97		6.84	
8/4/2017	6.98							
10/3/2017	6.88		6.72		6.79		6.65	
11/16/2017	6.96		6.9		6.92		6.84	
12/28/2017					6.88		6.78	
5/17/2018	6.97		6.82		6.85		6.72	
6/27/2018	7.02		7.01		6.95		6.98	
8/8/2018					6.78			
11/15/2018	7.08		7.05		7.09		6.96	
1/11/2019	7.4				7.34			
3/12/2019					7.23			
5/22/2019	7.16		7.01		7.25		6.97	
7/16/2019	7.43				7.7			
8/21/2019	7.11				7.01			
7/19/2021		6.86		7.36		6.78		7.21
9/2/2021		6.98				7.13		

Within Limit

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Intrawell Parametric

504 background

504 compliance

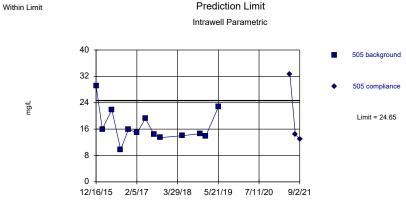
Limit = 38.15

12/16/15 1/16/17 2/17/18 3/21/19 4/21/20 5/24/21

Prediction Limit

Background Data Summary: Mean=26.58, Std. Dev.=8.293, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

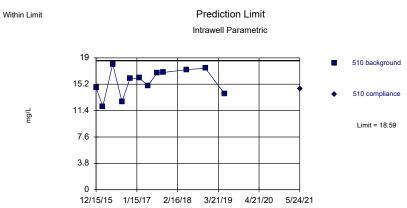
Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley


Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Prediction Limit
Intrawell Parametric

506 background
506 compliance

Limit = 76.83


Background Data Summary: Mean=70.47, Std. Dev.=4.276, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9125, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Background Data Summary: Mean=16.9, Std. Dev.=5.117, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8783, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=15.58, Std. Dev.=1.955, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Sulfate Analysis Run 9/20/2021 12:29 PM View: LF III

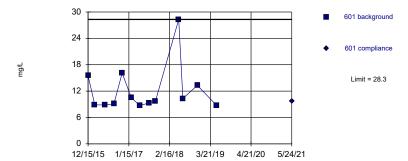
Sibley Client: SCS Engineers Data: Sibley

ı	504	504	505	505	506	506	510	510
12/15/2015					64.8		14.7	
12/16/2015	14.3		29.2					
2/18/2016	14.7		16		65.6		12	
5/25/2016	18.9		21.9		71		18.1	
8/23/2016	15.4		9.73		65.8		12.7	
11/10/2016							16	
11/11/2016	17.4		15.9		65			
2/8/2017	21		14.9		76.5		16.1	
5/3/2017							15	
5/4/2017	21.8		19.2		69.2			
8/1/2017	23.3		14.4				16.8	
8/4/2017					73.3			
10/3/2017	24.3		13.4		71.3		16.9	
5/17/2018	32.8		14		75.7		17.3	
6/27/2018	31.8							
8/8/2018	32.3							
11/15/2018	33.9		14.6		70.8		17.5	
1/11/2019	33.2		13.8		67.3			
3/12/2019	35.1							
5/22/2019	36.3		22.7		74.2		13.8	
7/16/2019	36.3				76.1			
8/21/2019	35.6							
5/24/2021		32.4		32.6		89.1		14.5
7/19/2021				14.4		89.1		
9/2/2021				13		88.7		

Exceeds Limit

| 120 | 512 background | 512 compliance | 120 | Limit = 44.8

12/15/15 2/4/17 3/29/18 5/20/19 7/11/20 9/2/21


Prediction Limit

Background Data Summary: Mean=32.21, Std. Dev.=9.019, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8926, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 9/20/2021 12:27 PM View: LF III
Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 9/20/2021 12:29 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

	512	512	601	601
12/15/2015	23		15.5	
2/18/2016	21		8.87	
5/25/2016	23.1			
5/26/2016			8.85	
8/23/2016	24.4		9.11	
11/11/2016	24		16.1	
2/8/2017	27.8		10.5	
5/3/2017	27.3		8.71	
8/1/2017	28.1		9.33	
10/3/2017	28.2		9.76	
5/17/2018	29.6		28.3	
6/27/2018	30.3		10.3	
8/8/2018	30.9			
11/15/2018	51.4		13.3	
1/11/2019	43.3			
3/12/2019	44.2			
5/22/2019	40.1		8.74	
7/16/2019	42.1			
8/21/2019	41			
5/24/2021		110		9.71
7/19/2021		104		
9/2/2021		107		

			Sibley	Client: SCS Engineers	Data: Sibley	Printed 9/	20/2021	, 12:29 PM			
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	504	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	505	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	506	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	510	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	512	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	601	0.2	n/a	5/24/2021	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Calcium (mg/L)	504	40.91	n/a	5/24/2021	34.1	No	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	505	29.31	n/a	9/2/2021	34.1	Yes	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	506	102.9	n/a	9/2/2021	91.1	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	510	127.2	n/a	5/24/2021	116	No	13	0	x^3	0.00188	Param Intra 1 of 3
Calcium (mg/L)	512	111.3	n/a	9/2/2021	114	Yes	16	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/L)	601	110.7	n/a	5/24/2021	97.4	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	504	3.91	n/a	5/24/2021	0.5ND	No	16	68.75	n/a	0.001026	NP Intra (NDs) 1 of 3
Chloride (mg/L)	505	3.13	n/a	9/2/2021	1.23	No	15	46.67	n/a	0.001313	NP Intra (normality)
Chloride (mg/L)	506	7.578	n/a	9/2/2021	8.03	Yes	17	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	510	3.762	n/a	5/24/2021	3.53	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	512	5.094	n/a	9/2/2021	10.2	Yes	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/L)	601	6.1	n/a	5/24/2021	3.4	No	15	0	n/a	0.001313	NP Intra (normality)
Dissolved Solids (mg/l)	504	385	n/a	5/24/2021	174	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	505	180.3	n/a	9/2/2021	188	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	491.2	n/a	5/24/2021	433	No	12	0	x^5	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	510	496.5	n/a	5/24/2021	468	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	512	466.4	n/a	9/2/2021	555	Yes	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	440.6	n/a	5/24/2021	381	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	504	0.2116	n/a	5/24/2021	0.201	No	14	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	505	0.2529	n/a	5/24/2021	0.18	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	506	0.3805	n/a	5/24/2021	0.344	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	510	0.3464	n/a	5/24/2021	0.338	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	512	0.3568	n/a	5/24/2021	0.318	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/L)	601	0.2959	n/a	5/24/2021	0.278	No	12	0	x^2	0.00188	Param Intra 1 of 3
pH (S.U.)	504	9.03	6.3	n/a	1 future	n/a	20	0	n/a	0.001125	NP Intra (normality)
pH (S.U.)	505	9.2	6.6	9/2/2021	6.97	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	506	7.568	6.807	9/2/2021	6.98	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	510	8.15	6.72	7/19/2021	7.36	No	14	0	n/a	0.003199	NP Intra (normality)
pH (S.U.)	512	7.45	6.692	9/2/2021	7.13	No	20	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	601	8.13	6.65	7/19/2021	7.21	No	15	0	n/a	0.002625	NP Intra (normality)
Sulfate (mg/L)	504	38.15	n/a	5/24/2021	32.4	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	505	24.65	n/a	9/2/2021	13	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	506	76.83	n/a	9/2/2021	88.7	Yes	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	510	18.59	n/a	5/24/2021	14.5	No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	512	44.8	n/a	9/2/2021	107	Yes	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/L)	601	28.3	n/a	5/24/2021	9.71	No	13	0	n/a	0.001886	NP Intra (normality)

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021 January 3, 2021 Revision 1

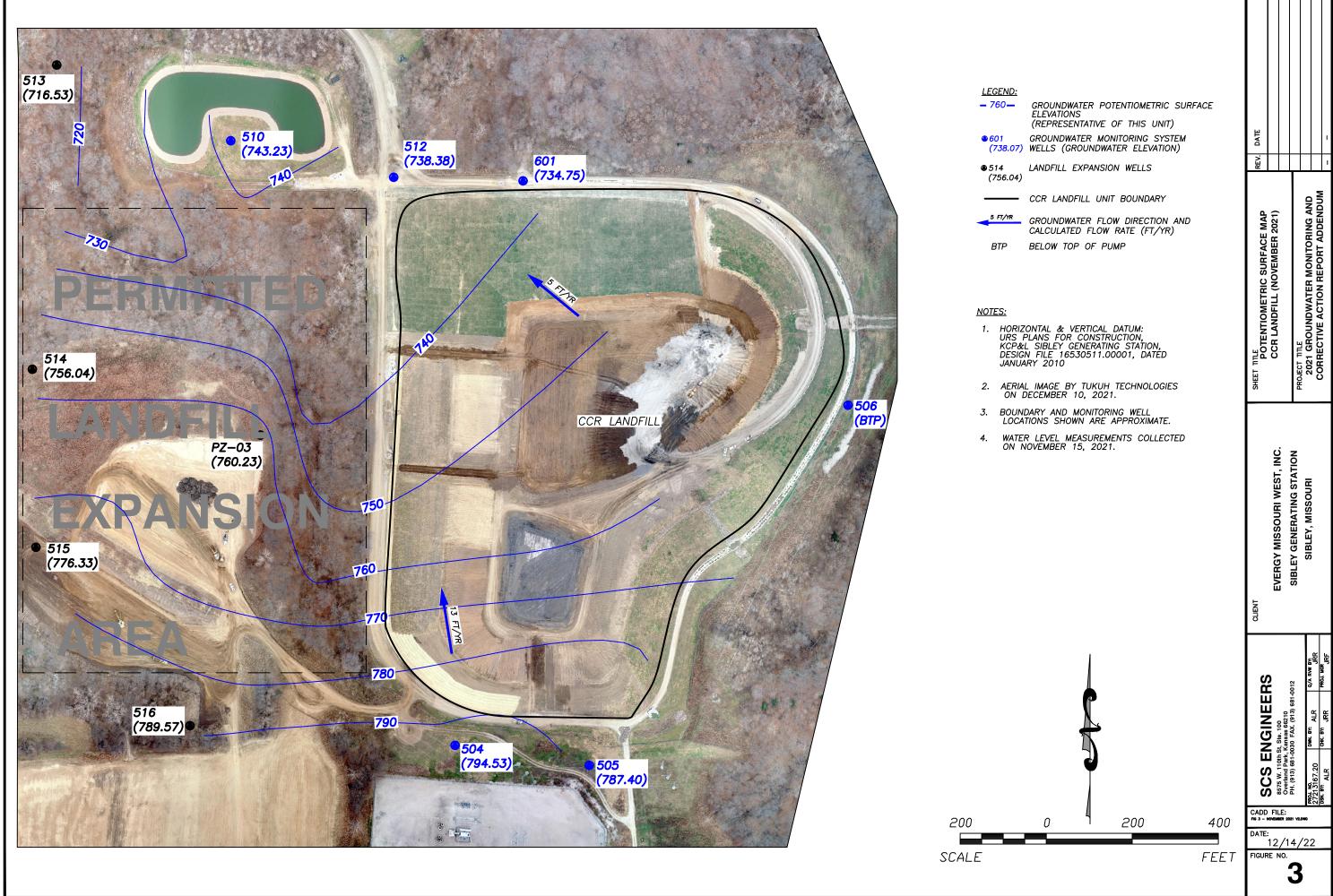
ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	1					
Non I	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 1 2000
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests


Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Use Modified	Alpha 0	.02						
✓ Test Residua	als For Normality	(Parametric f	test only) using	Shapiro-Wilk/Fra	ancia v	at Alpha	= 0.01	~
Continue	Parametric if U	Inable to Nom	malize					
Never Tran	r of Powers g or No Transfo	mation						
Use Best V	V Statistic							
☐ Plot Transf	omed Values							
Use Non-Parametric Test (Sen's Slope/Mann-Kendall) when Non-Detects Percent > 75 Include 95. % Confidence Interval around Trend Line Automatically Remove Outliers (Parametric test only)								
Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope / Mann-Kendall (the non-parametric alternative) is available as a report in its own right, under Analysis->Intrawell->Trend.								

Data Output Trend Test Control Cht Prediction Lim 7	olerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
			sformation - Use Ladder	of Powers			
✓ Test for Normality using Shapiro-Wilk/Francia ∨ a	t Alpha = 0.01	~ O	Natural Log	or No Tran	sformation		
☑ Use Non-Parametric Test when Non-Detects Percent > 50	0	Never Transform					
Use Aitchison's Adjustment V when Non-Detects Percent >	15	O Use Specific Transformation: Natural Log					
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50 Use Best W Statistic					
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es		
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation:						
Always Use Non-Parametric	Override D	F: (Override Kap	opa:			
Facility α Statistical Evaluations per Year: 2 Constituents Analyzed: 7 Downgradient (Compliance) Wells: 4							
Sampling Plan Comparing Individual Observations 1 of 1	Non-Parametric Limit = Highest Background Value Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)						

Data Output Trend Test Control Cht Prediction Lim Tolerance	Lim Conf/Tol Int	ANOVA	Welchs	Other Tests		
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney						
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney						
Outlier Tests						
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)						
Dixon's at α= 0.05 v or if n > 22 v Rosner's at α= 0.01 v Use EPA Screening to establish Suspected Outliers						
☐ Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use Ladder of Powers to achieve Best W Stat						
✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1 ✓						
Stop if Non-Normal						
Continue with Parametric Test if Non-Normal						
☐ Tukey's if Non-Normal, with IQR Multiplier = 3.0 ☐ Use Ladder of Powers to achieve Best W Stat						
✓ No Outlier If Less Than 3.0 Times Median						
Apply Rules found in Ohio Guidance Document 0715						
Combine Background Wells on the Outlier Report						
Piper, Stiff Diagram Combine Wells	✓ Label Constit	uents				
Combine Vells Combine Dates	✓ Label Axes	ucins				
Use Default Constituent Names	Note Cation-Anion Balance (Piper only)					
Use Constituent Definition File Edit						
O 350 CONSTITUTION FOR						

ATTACHMENT 3 Groundwater Potentiometric Surface Maps

l'gids∖AppData∖Local∖Temp∖AcPublish_16976∖Fig 3 - November 2021 v2.dwg Dec 14, 2022 - 10:47am Layout Name: CCR By: 5412jds