# 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

# CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To: Evergy Missouri West, Inc. (f/k/a KCP&L Greater Missouri Operations Co.)

# SCS ENGINEERS

27213169.19 | January 2020, Revised December 16, 2022

8575 W 110<sup>th</sup> Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

# CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



Douglas L. Doerr, P.E.

SCS Engineers

i

| Revision<br>Number | Revision<br>Date  | Revision Section | Summary of Revisions |
|--------------------|-------------------|------------------|----------------------|
| 0                  | January 2020      | NA               | Original Report.     |
| 1                  | December 16, 2022 | Addendum 1       | Added Addendum 1     |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |

## Table of Contents

| Sectio | on    |         | Pag                                                                                         | е   |
|--------|-------|---------|---------------------------------------------------------------------------------------------|-----|
| CERTIF | FICAT | IONS    |                                                                                             | . i |
| 1 1    | NTRO  | DUCTIO  | ON                                                                                          | 1   |
| 2 §    | 3 257 | 7.90(e) | ANNUAL REPORT REQUIREMENTS                                                                  | 1   |
| 2      | 2.1   | § 257.9 | 90(e)(1) Site Map                                                                           | 1   |
| 2      | 2.2   | § 257.9 | 90(e)(2) Monitoring System Changes                                                          | 1   |
| 2      |       |         | 90(e)(3) Summary of Sampling Events                                                         |     |
| 2      |       |         | 90(e)(4) Monitoring Transition Narrative                                                    |     |
| 2      | 2.5   | § 257.9 | 90(e)(5) Other Requirements                                                                 |     |
|        |       | 2.5.1   | § 257.90(e) Program Status                                                                  | 2   |
|        |       | 2.5.2   | § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency                 | 3   |
|        |       | 2.5.3   | § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration                          | 3   |
|        |       | 2.5.4   | § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency                |     |
|        |       |         |                                                                                             | 4   |
|        |       | 2.5.5   | § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater<br>Protection Standards | 4   |
|        |       | 2.5.6   | § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration                     | 4   |
|        |       | 2.5.7   | § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures         | 4   |
| 3 G    | GENE  | RAL CO  | MMENTS                                                                                      | 5   |

#### Appendices

Appendix A Figures Figure 1: Site Map

Appendix BTablesTable 1: Appendix III Detection Monitoring ResultsTable 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstrations

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (June 2019).
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2019).

Addendum 1 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

# 1 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared for Evergy Missouri West, Inc. (f/k/a KCP&L Greater Missouri Operations Company, Inc.) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station.

# 2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action, to the extent available:

# 2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

# 2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2019.

#### 2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2019). Samples collected in 2019 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include Fall 2018 semiannual detection monitoring data; and the initial Fall 2019 semiannual detection monitoring data.

#### 2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2019. Only detection monitoring was conducted in 2019.

### 2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

### 2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2018 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2018 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2018 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2018 semiannual detection monitoring sampling and analysis event,

- e. completion of the Spring 2019 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2019 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2019 semiannual detection monitoring sampling and analysis event, and
- h. initiation of the Fall 2019 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2020).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2019 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2020 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2020 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

### 2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by  $\S 257.90(e)$ .

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

# 2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included in **Appendix C**:

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (June 2019).
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2019).

### 2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

# 2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

# 2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

# 2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under

§ 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

## **3 GENERAL COMMENTS**

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Sibley Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc., for specific application to the Sibley Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

# APPENDIX A

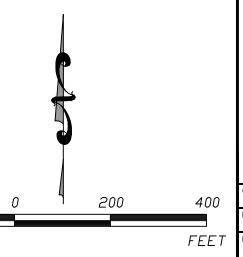
# FIGURES

Figure 1: Site Map



200 SCALE

LEGEND:


o 506

|   |     | GROUNDW<br>TEM WELLS |      | MONITORING |
|---|-----|----------------------|------|------------|
| - | CCR | LANDFILL             | UNIT | BOUNDARY   |

 HORIZONTAL & VERTICAL DATUM: URS PLANS FOR CONSTRUCTION, KCP&L SIBLEY GENERATING STATION, DESIGN FILE 16530511.00001, DATED JANUARY 2010

 GOOGLE EARTH AERIAL IMAGE, MARCH 2015. MONITOR WELL LOCATIONS ARE APPROXIMATE.

3. BOUNDARY AND MONITORING WELL LOCATIONS SHOWN ARE APPROXIMATE.



| REV. DATE            |              |                                                            |                                        |                           |                  | 1                                 |
|----------------------|--------------|------------------------------------------------------------|----------------------------------------|---------------------------|------------------|-----------------------------------|
| SHEET TITLE SITE MAP | CCR LANDFILL | CCR GROUNDWATER MONITORING SYSTEM                          |                                        |                           |                  | AND CORRECTIVE ACTION REPORT      |
| CLIENT               |              | EVERGY MISSOURI WEST, INC                                  |                                        | SIBLEY GENERATING STATION | SIBLEY, MISSOURI |                                   |
| SCS ENGINEERS        |              | overland Park, Kansas 66210<br>Overland Park, Kansas 66210 | PH. (913) 681-0030 FAX. (913) 681-0012 | PEOL NO DWN BY O A BYW BY | 167.19 TGW       | DSNLBY: TGW CHKLBY: JRF PROJ. MGR |
| CADD                 | IBLEY        | E:<br>17 W                                                 | 02.DW                                  | ,<br>'20                  | )                |                                   |

## APPENDIX B

# TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

#### Table 1 CCR Landfill Appendix III Detection Monitoring Results Evergy Sibley Generating Station

|                |                |                 |                   | Apper              | ndix III Consti    | tuents       |                   |                                        |
|----------------|----------------|-----------------|-------------------|--------------------|--------------------|--------------|-------------------|----------------------------------------|
| Well<br>Number | Sample<br>Date | Boron<br>(mg/L) | Calcium<br>(mg/L) | Chloride<br>(mg/L) | Fluoride<br>(mg/L) | рН<br>(S.U.) | Sulfate<br>(mg/L) | Total<br>Dissolved<br>Solids<br>(mg/L) |
| MW-504         | 1/11/2019      |                 | *39.3             |                    | *0.179             | **7.15       | *33.2             |                                        |
| MW-504         | 3/12/2019      |                 | *35.4             |                    |                    | **6.34       | *35.1             |                                        |
| MW-504         | 5/22/2019      | <0.200          | 33.1              | <1.00              | 0.176              | 6.70         | 36.3              | 197                                    |
| MW-504         | 7/16/2019      |                 |                   |                    |                    | **7.53       | *36.3             |                                        |
| MW-504         | 8/21/2019      |                 |                   |                    |                    | **6.85       | *35.6             |                                        |
| MW-504         | 11/6/2019      | <0.200          | 34.1              | <1.00              | 0.182              | 6.45         | 35.4              | 177                                    |
| MW-505         | 1/11/2019      |                 | *29.5             |                    |                    | **7.08       |                   |                                        |
| MW-505         | 3/12/2019      |                 | *24.9             |                    |                    | **6.78       |                   |                                        |
| MW-505         | 5/22/2019      | <0.200          | 26.4              | <1.00              | 0.151              | 6.85         | 22.7              | 180                                    |
| MW-505         | 11/6/2019      | <0.200          | 28.2              | <1.00              | 0.198              | 6.75         | 17.1              | 146                                    |
| MW-506         | 1/11/2019      |                 |                   | *6.39              |                    | **7.40       |                   |                                        |
| MW-506         | 5/22/2019      | <0.200          | 91.7              | 7.05               | 0.336              | 7.16         | 74.2              | 453                                    |
| MW-506         | 7/16/2019      |                 |                   | *7.33              |                    | **7.43       |                   |                                        |
| MW-506         | 8/21/2019      |                 |                   | *7.17              |                    | **7.11       |                   |                                        |
| MW-506         | 11/6/2019      | <0.200          | 93.7              | 6.66               | 0.309              | 7.20         | 76.8              | 410                                    |
| MW-510         | 5/22/2019      | <0.200          | 117               | 3.39               | 0.326              | 7.01         | 13.8              | 480                                    |
| MW-510         | 11/6/2019      | <0.200          | 120               | 3.08               | 0.298              | 6.97         | 14.6              | 427                                    |
| MW-512         | 1/11/2019      |                 | *110              | *3.85              |                    | **7.34       | *43.3             |                                        |
| MW-512         | 3/12/2019      |                 | *108              | *4.38              |                    | **7.23       | *44.2             |                                        |
| MW-512         | 5/22/2019      | <0.200          | 104               | 4.17               | 0.315              | 7.25         | 40.1              | 445                                    |
| MW-512         | 7/16/2019      |                 |                   | *4.35              |                    | **7.70       | *42.1             |                                        |
| MW-512         | 8/21/2019      |                 |                   | *4.91              |                    | **7.01       | *41.0             |                                        |
| MW-512         | 11/6/2019      | <0.200          | 105               | 4.48               | 0.286              | 7.02         | 45.0              | 403                                    |
| MW-601         | 5/22/2019      | <0.200          | 97.4              | 3.19               | 0.264              | 6.97         | 8.74              | 404                                    |
| MW-601         | 11/6/2019      | <0.200          | 101               | 3.09               | 0.248              | 6.65         | 11.4              | 361                                    |

\* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

#### Table 2 CCR Landfill Detection Monitoring Field Measurements Evergy Sibley Generating Station

| Well<br>Number | Sample<br>Date | рН<br>(S.U.) | Specific<br>Conductivity<br>(µS) | Temperature<br>(°C) | Turbidity<br>(NTU) | ORP<br>(mV) | DO<br>(mg/L) | Water Level<br>(ft btoc) | Groundwater<br>Elevation<br>(ft NGVD) |
|----------------|----------------|--------------|----------------------------------|---------------------|--------------------|-------------|--------------|--------------------------|---------------------------------------|
| MW-504         | 1/11/2019      | **7.15       | 317                              | 12.54               | 2.2                | 177         | 4.79         | 22.58                    | 793.74                                |
| MW-504         | 3/12/2019      | **6.34       | 440                              | 13.12               | 0.4                | 213         | 4.89         | 21.38                    | 794.94                                |
| MW-504         | 5/22/2019      | 6.70         | 789                              | 15.93               | 0.0                | 225         | 5.21         | 9.87                     | 806.45                                |
| MW-504         | 7/16/2019      | **7.53       | 351                              | 17.54               | 0.0                | 109         | 4.16         | 21.57                    | 794.75                                |
| MW-504         | 8/21/2019      | **6.85       | 297                              | 16.20               | 0.0                | 214         | 3.36         | 21.54                    | 794.78                                |
| MW-504         | 11/6/2019      | 6.45         | 436                              | 15.41               | 0.0                | 204         | 3.32         | 21.78                    | 794.54                                |
| MW-505         | 1/11/2019      | **7.08       | 253                              | 12.36               | 0.1                | 186         | 7.01         | 27.13                    | 787.84                                |
| MW-505         | 3/12/2019      | **6.78       | 338                              | 12.80               | 0.0                | 219         | 6.08         | 25.95                    | 789.02                                |
| MW-505         | 5/22/2019      | 6.85         | 254                              | 15.68               | 0.0                | 256         | 9.00         | 12.41                    | 802.56                                |
| MW-505         | 11/6/2019      | 6.75         | 359                              | 15.80               | 0.0                | 226         | 7.23         | 27.52                    | 787.45                                |
| MW-506         | 1/11/2019      | **7.40       | 755                              | 10.35               | 0.2                | 185         | 5.57         | BTP                      | NA                                    |
| MW-506         | 5/22/2019      | 7.16         | 745                              | 17.98               | 0.0                | 204         | 7.96         | BTP                      | NA                                    |
| MW-506         | 7/16/2019      | **7.43       | 772                              | 19.01               | 0.0                | 102         | 6.55         | BTP                      | NA                                    |
| MW-506         | 8/21/2019      | **7.11       | 703                              | 21.17               | 0.0                | 218         | 5.24         | BTP                      | NA                                    |
| MW-506         | 11/6/2019      | 7.20         | 950                              | 20.28               | 0.0                | 220         | 7.24         | BTP                      | NA                                    |
| MW-510         | 5/22/2019      | 7.01         | 850                              | 14.75               | 0.0                | 10          | 0.00         | 36.70                    | 749.09                                |
| MW-510         | 11/6/2019      | 6.97         | 799                              | 19.55               | 15.2               | -23         | 0.63         | 40.45                    | 745.34                                |
| MW-512         | 1/11/2019      | **7.34       | 805                              | 10.76               | 3.9                | 134         | 3.52         | 31.05                    | 739.08                                |
| MW-512         | 3/12/2019      | **7.23       | 804                              | 12.65               | 0.0                | 103         | 2.66         | 26.78                    | 743.35                                |
| MW-512         | 5/22/2019      | 7.25         | 746                              | 18.65               | 0.0                | 167         | 4.85         | 17.31                    | 752.82                                |
| MW-512         | 7/16/2019      | **7.70       | 788                              | 18.48               | 0.0                | 100         | 5.54         | 26.49                    | 743.64                                |
| MW-512         | 8/21/2019      | **7.01       | 718                              | 20.02               | 0.0                | 230         | 2.48         | 28.80                    | 741.33                                |
| MW-512         | 11/6/2019      | 7.02         | 756                              | 18.31               | 0.5                | 80          | 3.61         | 29.31                    | 740.82                                |
| MW-601         | 5/22/2019      | 6.97         | 701                              | 18.49               | 0.0                | 12          | 4.01         | 42.83                    | 738.07                                |
| MW-601         | 11/6/2019      | 6.65         | 936                              | 16.68               | 0.0                | 100         | 0.00         | 46.08                    | 734.82                                |

\* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

BTP - Below Top of Pump

# APPENDIX C

# ALTERNATIVE SOURCE DEMONSTRATIONS

- C.1 Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (June 2019)
- C.2 Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2019)

C.1 Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (June 2019)

# CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2018 GROUNDWATER MONITORING EVENT

# CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To:

**KCP&L Greater Missouri Operations Company** 

Presented By:

#### SCS ENGINEERS

8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

June 2019

File No. 27213169.18

# CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

**SCS Engineers** 

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E.

SCS Engineers

#### Table of Contents

#### Section

#### Page

| CERT | <b>IFICA</b> | TIONS                       | . i |
|------|--------------|-----------------------------|-----|
| 1    | Regu         | Ilatory Framework           | 1   |
| 2    | -            | stical Results              |     |
| 3    | Alter        | native Source Demonstration | 2   |
|      | 3.1          | Upgradient Well Location    | 2   |
|      | 3.2          | Box and Whiskers Plots      | 2   |
|      | 3.3          | Piper Diagram Plots         | 3   |
|      | 3.4          | Time Series Plots           | 4   |
| 4    | Conc         | lusion                      | 4   |
| 5    | Gene         | eral Comments               | 4   |
|      |              |                             |     |

#### Appendices

| Appendix A | Figure 1               |
|------------|------------------------|
| Appendix B | Box and Whiskers Plots |
| Appendix C | Piper Diagram          |
| Appendix D | Time Series Plots      |

## 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a gualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

# 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 15, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on January 2, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 11, 2019 and March 12, 2019.

The completed statistical evaluation identified four Appendix III constituents above their respective prediction limit in monitoring wells MW-504 and MW-512.

The prediction limit for calcium in monitoring well MW-512 is 107 mg/L. The detection monitoring sample was reported at 110 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 110 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 108 mg/L.

The prediction limit for chloride in monitoring well MW-512 is 3.826 mg/L. The detection monitoring sample was reported at 3.89 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 3.85 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 4.38 mg/L.

The prediction limit for sulfate in upgradient monitoring well MW-504 is 24.58 mg/L. The detection monitoring sample was reported at 33.9 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 33.2 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 35.1 mg/L.

The prediction limit for sulfate in monitoring well MW-512 is 29.55 mg/L. The detection monitoring sample was reported at 51.4 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 43.3 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 44.2 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-504, and the detection monitoring sample for calcium, chloride, and sulfate from monitoring well MW-512 exceed their respective prediction limits and are confirmed statistically significant increases (SSIs) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified four SSIs above the background prediction limits for sulfate in upgradient monitoring well MW-504, and calcium, chloride, and sulfate in downgradient monitoring well MW-512.

### 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 UPGRADIENT WELL LOCATION

**Figure 1** in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the CCR Landfill at the time of sampling. As seen on the map, monitoring well MW-504 is located upgradient from the CCR Landfill indicating the SSI is not caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for sulfate, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for calcium, chloride, and sulfate in monitoring wells MW-504 and MW-512 were compared to box and whisker plots for calcium, chloride, and sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the concentrations in both MW-504 and MW-512 are well within or below expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill. Chloride comparisons indicate the concentration in MW-512 is well within or below expected

concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill. The calcium comparison indicates the calcium concentration in MW-512 is a little above the expected concentration level for non-impacted groundwater wells such as PZ-03 but believed to still be in the range for natural variability within and between wells, especially given the location of MW-512 relative to the limestone gravel road and construction activities, including building additional limestone gravel roads (containing significant amounts of calcium) around MW-512. Refer to dated photographs below.



May 2016

June 2017

April 2018

**Figure 1** in **Appendix A** shows these upgradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area that has not been impacted by the landfill, and exhibit variability that includes calcium, chloride, and sulfate concentrations similar to those seen at MW-504 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over background level, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots for calcium, chloride, and sulfate are provided in **Appendix B**.

#### 3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-504, MW-512, and landfill leachate is provided in **Appendix C** and indicates the groundwater from these two wells does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating

there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.4 TIME SERIES PLOTS

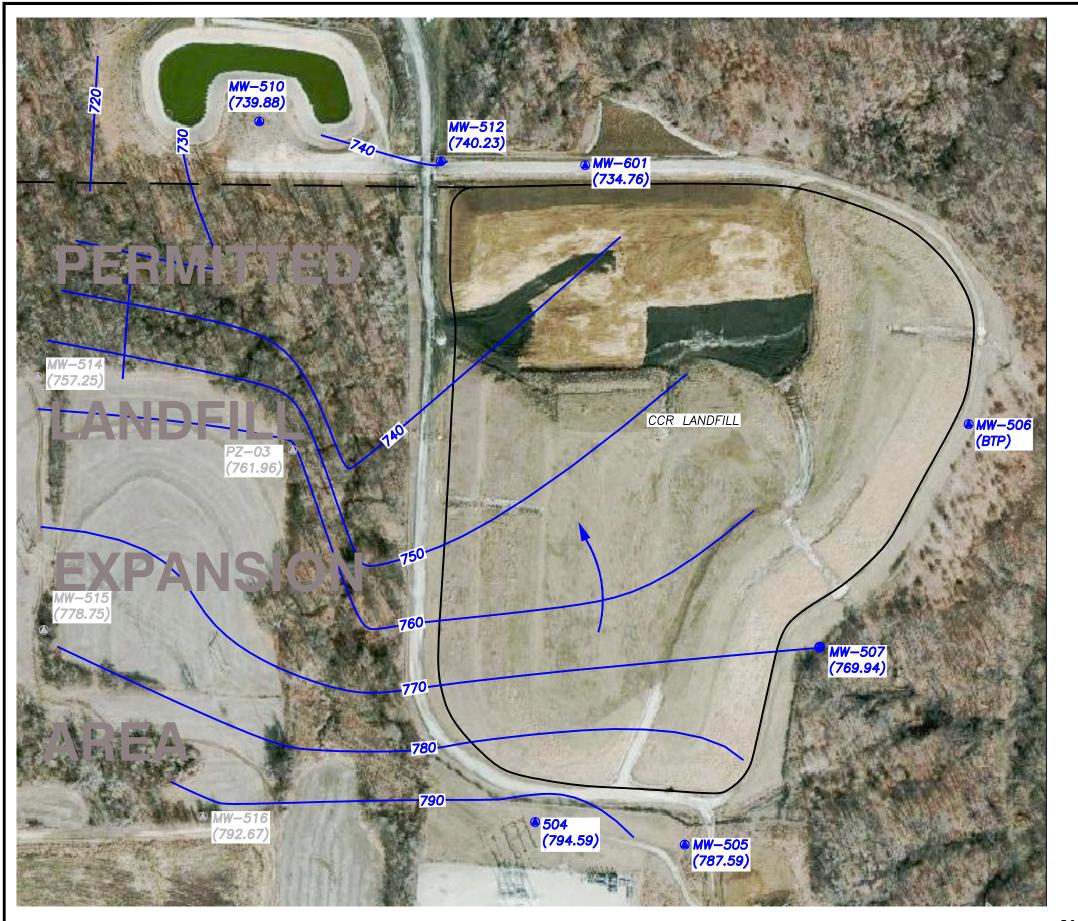
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Times series plots for calcium, chloride, and sulfate in monitoring wells MW-504 and MW-512 were compared to time series plots for calcium, chloride, and sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes.

Sulfate concentrations for MW-504 and MW-512 were plotted against sulfate concentrations in several upgradient and side-gradient non-CCR monitoring system wells. The sulfate concentrations in both upgradient well MW-504 and downgradient well MW-512 exhibit similar trends, are well within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill and are even below side-gradient non-CCR monitoring system well MW-516.

Chloride comparisons indicate the concentration in MW-512 tracks similarly to that of side-gradient non-CCR monitoring well MW-516 and that there is unexplained or natural fluctuations in concentration levels for many of the wells in the vicinity of the CCR Landfill beginning in 2017. The calcium comparison indicates the calcium concentration in MW-512 is a little above the expected concentration level for non-impacted groundwater wells such as PZ-03 but believed to still be in the range for natural variability within and between wells, especially given the location of MW-512 relative to the limestone gravel road and construction activities including the construction of additional limestone gravel roads around MW-512 as discussed above. Time series plots for calcium, chloride, and sulfate are provided in **Appendix D**.

# 4 CONCLUSION


Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

# 5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L Greater Missouri Operations Company for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made. The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1



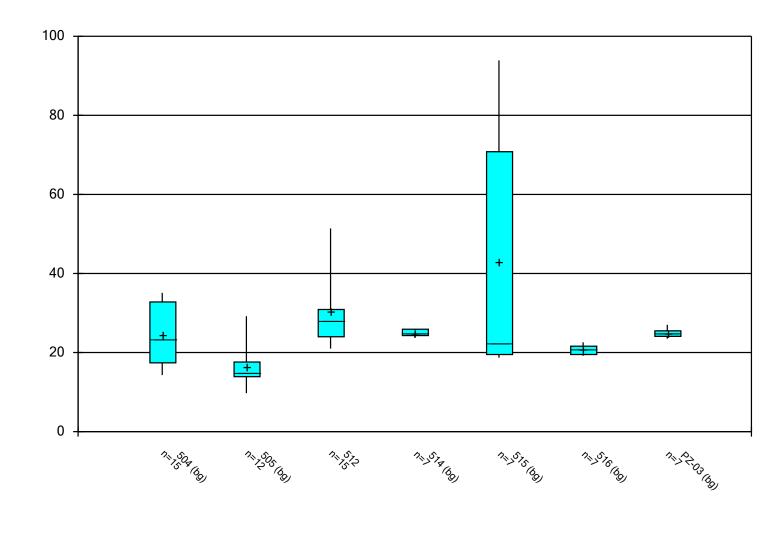
200

SCALE

| LEGEND:                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>760— GROUNDWATER SURFACE ELEVATIONS<br/>(REPRESENTATIVE OF THIS UNIT)</li> </ul>                                                               |
| <ul> <li>601 GROUNDWATER MONITORING SYSTEM<br/>(734.55) WELLS (GROUNDWATER ELEVATION)</li> </ul>                                                        |
| GROUNDWATER FLOW DIRECTION                                                                                                                              |
| BTP BELOW TOP OF PUMP                                                                                                                                   |
| PERMITTED LANDFILL EXPANSION AREA                                                                                                                       |
| PERMITTED LANDFILL EXPANSION AREA                                                                                                                       |
| 514 NON-CCR GROUNDWATER MONITORING<br>(756.11) WELLS                                                                                                    |
| NOTES:                                                                                                                                                  |
| 1. HORIZONTAL & VERTICAL DATUM:<br>URS PLANS FOR CONSTRUCTION,<br>KCP&L SIBLEY GENERATING STATION,<br>DESIGN FILE 16530511.00001, DATED<br>JANUARY 2010 |
| 2. GOOGLE EARTH AERIAL IMAGE. MARCH 2015.                                                                                                               |

ď

REV.


3. BOUI LOC

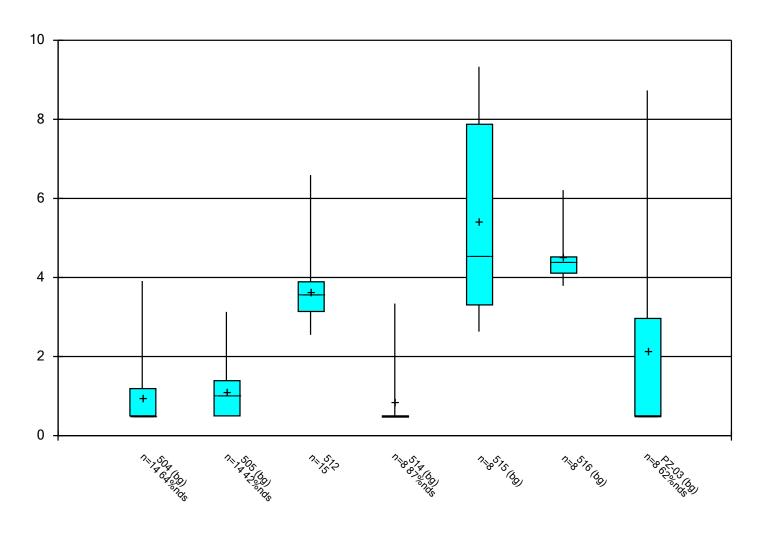
| BELOW TOP OF PUMP<br>PERMITTED LANDFILL EXPANSION AREA<br>PERMITTED LANDFILL EXPANSION AREA<br>NON-CCR GROUNDWATER MONITORING<br>WELLS<br>RIZONTAL & VERTICAL DATUM:<br>PLANS FOR CONSTRUCTION,<br>PLANS FOR CONST | SHEET TITLE<br>POTENTIOMETRIC SURFACE MAP (NOV. 2018)<br>CCR LANDFILL | PROJECT TILE<br>CCR ALTERNATIVE SOURCE<br>DEMONSTRATION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLENT<br>KCP&L GREATER MISSOURI OPERATIONS CO.                        | SIBLEY GENERATING STATION<br>SIBLEY, MISSOURI           |
| 0 200 400<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CADD FILE:<br>FIGURE NO.                                              | 27C<br>DSN                                              |

Appendix B

**Box and Whiskers Plots** 

mg/L




Box & Whiskers Plot

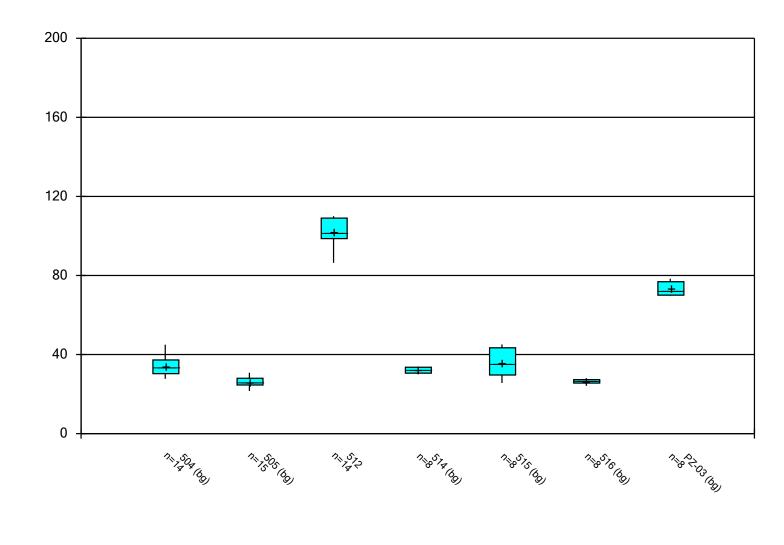
Constituent: Sulfate Analysis Run 4/12/2019 11:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 4/12/2019 11:30 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

|            |          |          |       | Sibley Client: So | CS Engineers Dat | a: Sibley |            |
|------------|----------|----------|-------|-------------------|------------------|-----------|------------|
|            | 504 (bg) | 505 (bg) | 512   | 514 (bg)          | 515 (bg)         | 516 (bg)  | PZ-03 (bg) |
| 12/15/2015 |          |          | 23    | 25.9              | 22.1             | 22.6      | 25.5       |
| 12/16/2015 | 14.3     | 29.2     |       |                   |                  |           |            |
| 2/18/2016  | 14.7     | 16       | 21    |                   |                  |           |            |
| 5/25/2016  | 18.9     | 21.9     | 23.1  |                   |                  |           |            |
| 5/26/2016  |          |          |       | 24.9              |                  |           | 23.5       |
| 6/2/2016   |          |          |       |                   | 22.3             | 21.6      |            |
| 8/23/2016  | 15.4     | 9.73     | 24.4  |                   |                  |           |            |
| 11/11/2016 | 17.4     | 15.9     | 24    | 25.2              | 19.5             | 21.1      | 24.7       |
| 2/8/2017   | 21       | 14.9     | 27.8  |                   |                  |           |            |
| 5/3/2017   |          |          | 27.3  |                   |                  |           |            |
| 5/4/2017   | 21.8     | 19.2     |       | 24.6              | 18.7             | 19.5      | 24.1       |
| 8/1/2017   | 23.3     | 14.4     | 28.1  |                   |                  |           |            |
| 10/3/2017  | 24.3     | 13.4     | 28.2  | 23.8              | 54               | 19.2      | 24.2       |
| 5/16/2018  |          |          |       | 25.9              | 93.9             | 20.9      | 27         |
| 5/17/2018  | 32.8     | 14       | 29.6  |                   |                  |           |            |
| 6/27/2018  | 31.8     |          | 30.3  |                   |                  |           |            |
| 8/8/2018   | 32.3     |          | 30.9  |                   |                  |           |            |
| 11/14/2018 |          |          |       | 24.3              | 70.8             | 19.6      | 25.4       |
| 11/15/2018 | 33.9     | 14.6     | 51.4  |                   |                  |           |            |
| 1/11/2019  | 33.2     | 13.8     | 43.3  |                   |                  |           |            |
| 3/12/2019  | 35.1     |          | 44.2  |                   |                  |           |            |
| Median     | 23.3     | 14.75    | 28.1  | 24.9              | 22.3             | 20.9      | 24.7       |
| LowerQ.    | 17.4     | 13.9     | 24    | 24.3              | 19.5             | 19.5      | 24.1       |
| UpperQ.    | 32.8     | 17.6     | 30.9  | 25.9              | 70.8             | 21.6      | 25.5       |
| Min        | 14.3     | 9.73     | 21    | 23.8              | 18.7             | 19.2      | 23.5       |
| Max        | 35.1     | 29.2     | 51.4  | 25.9              | 93.9             | 22.6      | 27         |
| Mean       | 24.68    | 16.42    | 30.44 | 24.94             | 43.04            | 20.64     | 24.91      |
|            |          |          |       |                   |                  |           |            |




Constituent: Chloride Analysis Run 4/12/2019 11:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

mg/L

Constituent: Chloride (mg/L) Analysis Run 4/12/2019 11:30 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

|            |          |          |       | Sibley Clie | Sibley Client: SCS Engineers Data: Sibley |          |            |  |  |
|------------|----------|----------|-------|-------------|-------------------------------------------|----------|------------|--|--|
|            | 504 (bg) | 505 (bg) | 512   | 514 (bg)    | 515 (bg)                                  | 516 (bg) | PZ-03 (bg) |  |  |
| 12/15/2015 |          |          | 2.72  | <1          | 2.63                                      | 4.53     | <1         |  |  |
| 12/16/2015 | <1       | <1       |       |             |                                           |          |            |  |  |
| 2/18/2016  | <1       | 1.05     | 2.78  |             |                                           |          |            |  |  |
| 5/25/2016  | <1       | <1       | 2.55  |             |                                           |          |            |  |  |
| 5/26/2016  |          |          |       | <1          |                                           |          | <1         |  |  |
| 6/2/2016   |          |          |       |             | 3.46                                      | 4.27     |            |  |  |
| 8/23/2016  | <1       | 1.19     | 3.23  |             |                                           |          |            |  |  |
| 11/11/2016 | <1       | <1       | 3.17  | <1          | 3.69                                      | 4.31     | <1         |  |  |
| 2/8/2017   | <1       | <1       | 3.14  |             |                                           |          |            |  |  |
| 5/3/2017   |          |          | 3.7   |             |                                           |          |            |  |  |
| 5/4/2017   | 1.27     | <1       |       | <1          | 3.15                                      | 4.51     | <1         |  |  |
| 8/1/2017   | <1       | 1.18     | 3.53  |             |                                           |          |            |  |  |
| 10/3/2017  | 3.91     | 3.13     | 6.59  | 3.34        | 8.75                                      | 6.21     | 8.73       |  |  |
| 11/16/2017 | 1.52     | 1.59     | 3.97  | <1          | 9.33                                      | 4.45     | 1.3        |  |  |
| 12/28/2017 | 1        | 2.12     | 3.58  |             |                                           |          |            |  |  |
| 5/16/2018  |          |          |       | <1          | 7                                         | 3.95     | 4.63       |  |  |
| 5/17/2018  | 1.11     | 1.09     | 3.64  |             |                                           |          |            |  |  |
| 11/14/2018 |          |          |       | <1          | 5.43                                      | 3.79     | <1         |  |  |
| 11/15/2018 | <1       | <1       | 3.89  |             |                                           |          |            |  |  |
| 1/11/2019  | <1       | 1        | 3.85  |             |                                           |          |            |  |  |
| 3/12/2019  |          |          | 4.38  |             |                                           |          |            |  |  |
| Median     | 0.5      | 1.025    | 3.58  | 0.5         | 4.56                                      | 4.38     | 0.5        |  |  |
| LowerQ.    | 0.5      | 0.5      | 3.14  | 0.5         | 3.305                                     | 4.11     | 0.5        |  |  |
| UpperQ.    | 1.19     | 1.39     | 3.89  | 0.5         | 7.875                                     | 4.52     | 2.965      |  |  |
| Min        | 0.5      | 0.5      | 2.55  | 0.5         | 2.63                                      | 3.79     | 0.5        |  |  |
| Max        | 3.91     | 3.13     | 6.59  | 3.34        | 9.33                                      | 6.21     | 8.73       |  |  |
| Mean       | 0.9507   | 1.096    | 3.648 | 0.855       | 5.43                                      | 4.503    | 2.145      |  |  |
|            |          |          |       |             |                                           |          |            |  |  |

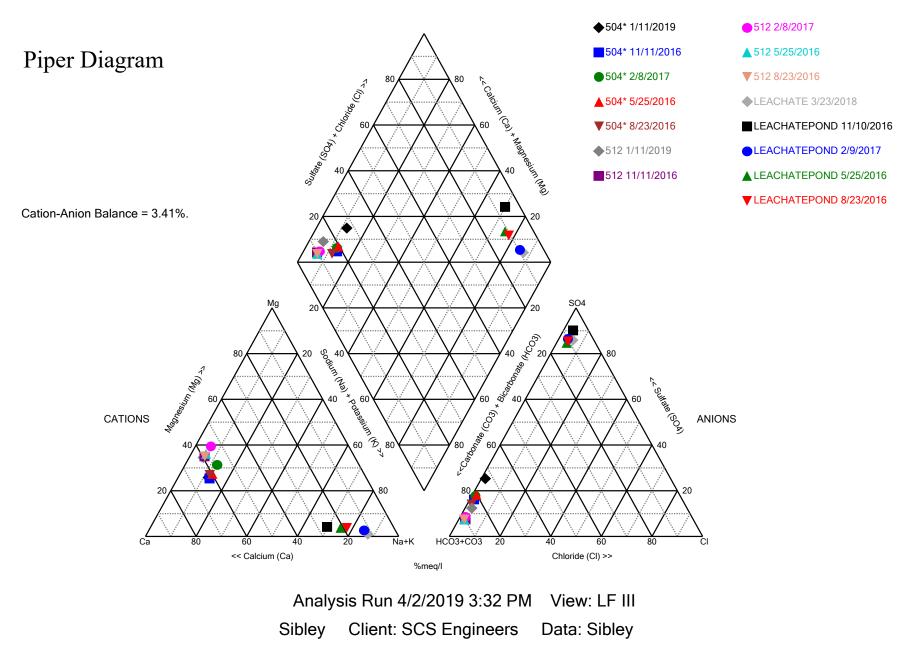


Constituent: Calcium Analysis Run 4/12/2019 11:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

mg/L

Constituent: Calcium (mg/L) Analysis Run 4/12/2019 11:30 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley


|            |          |          |       | Sibley Client: S | CS Engineers Da |          |            |
|------------|----------|----------|-------|------------------|-----------------|----------|------------|
|            | 504 (bg) | 505 (bg) | 512   | 514 (bg)         | 515 (bg)        | 516 (bg) | PZ-03 (bg) |
| 12/15/2015 |          |          | 98.1  | 33.4             | 32              | 27.2     | 78.4       |
| 12/16/2015 | 31.5     | 28       |       |                  |                 |          |            |
| 2/18/2016  | 34.3     | 25.4     | 100   |                  |                 |          |            |
| 5/25/2016  | 30.2     | 24.6     | 98.9  |                  |                 |          |            |
| 5/26/2016  |          |          |       | 33.9             |                 |          | 77.6       |
| 6/2/2016   |          |          |       |                  | 29.9            | 27.4     |            |
| 8/23/2016  | 32.2     | 25.7     | 103   |                  |                 |          |            |
| 11/11/2016 | 36.9     | 21.6     | 100   | 32.8             | 29.4            | 26.9     | 69.8       |
| 2/8/2017   | 29.6     | 23.5     | 86.4  |                  |                 |          |            |
| 5/3/2017   |          |          | 98.4  |                  |                 |          |            |
| 5/4/2017   | 27.7     | 23.2     |       | 30.2             | 25.6            | 25.1     | 70.3       |
| 8/1/2017   | 30.5     | 25.1     | 102   |                  |                 |          |            |
| 10/3/2017  | 33.2     | 26.6     | 110   | 33.8             | 38.4            | 28       | 73.7       |
| 11/16/2017 | 37.6 (i) | 26       | 101   | 30.5             | 44.9            | 25.1     | 71         |
| 5/16/2018  |          |          |       | 31.1             | 45.1            | 26.2     | 69.8       |
| 5/17/2018  | 33.3     | 28.2     | 104   |                  |                 |          |            |
| 6/27/2018  |          | 25.8     |       |                  |                 |          |            |
| 11/14/2018 |          |          |       | 30.7             | 41.9            | 26       | 76.1       |
| 11/15/2018 | 45       | 30.8     | 110   |                  |                 |          |            |
| 1/11/2019  | 39.3     | 29.5     | 110   |                  |                 |          |            |
| 3/12/2019  | 35.4     | 24.9     | 108   |                  |                 |          |            |
| Median     | 33.25    | 25.7     | 101.5 | 31.95            | 35.2            | 26.55    | 72.35      |
| LowerQ.    | 30.35    | 24.6     | 98.65 | 30.6             | 29.65           | 25.55    | 70.05      |
| UpperQ.    | 37.25    | 28       | 109   | 33.6             | 43.4            | 27.3     | 76.85      |
| Min        | 27.7     | 21.6     | 86.4  | 30.2             | 25.6            | 25.1     | 69.8       |
| Max        | 45       | 30.8     | 110   | 33.9             | 45.1            | 28       | 78.4       |
| Mean       | 34.05    | 25.93    | 102.1 | 32.05            | 35.9            | 26.49    | 73.34      |
|            |          |          |       |                  |                 |          |            |

Sibley Client: SCS Engineers Data: Sibley Printed 4/12/2019, 11:30 AM

|                 | ,          |          |        | ,,        |           |               |             |             |             |
|-----------------|------------|----------|--------|-----------|-----------|---------------|-------------|-------------|-------------|
| Constituent     | Well       | <u>N</u> | Mean   | Std. Dev. | Std. Err. | <u>Median</u> | <u>Min.</u> | <u>Max.</u> | <u>%NDs</u> |
| Calcium (mg/L)  | 504 (bg)   | 14       | 34.05  | 4.547     | 1.215     | 33.25         | 27.7        | 45          | 0           |
| Calcium (mg/L)  | 505 (bg)   | 15       | 25.93  | 2.425     | 0.6261    | 25.7          | 21.6        | 30.8        | 0           |
| Calcium (mg/L)  | 512        | 14       | 102.1  | 6.342     | 1.695     | 101.5         | 86.4        | 110         | 0           |
| Calcium (mg/L)  | 514 (bg)   | 8        | 32.05  | 1.578     | 0.5577    | 31.95         | 30.2        | 33.9        | 0           |
| Calcium (mg/L)  | 515 (bg)   | 8        | 35.9   | 7.629     | 2.697     | 35.2          | 25.6        | 45.1        | 0           |
| Calcium (mg/L)  | 516 (bg)   | 8        | 26.49  | 1.067     | 0.3772    | 26.55         | 25.1        | 28          | 0           |
| Calcium (mg/L)  | PZ-03 (bg) | 8        | 73.34  | 3.611     | 1.277     | 72.35         | 69.8        | 78.4        | 0           |
| Chloride (mg/L) | 504 (bg)   | 14       | 0.9507 | 0.9215    | 0.2463    | 0.5           | 0.5         | 3.91        | 64.29       |
| Chloride (mg/L) | 505 (bg)   | 14       | 1.096  | 0.764     | 0.2042    | 1.025         | 0.5         | 3.13        | 42.86       |
| Chloride (mg/L) | 512        | 15       | 3.648  | 0.9598    | 0.2478    | 3.58          | 2.55        | 6.59        | 0           |
| Chloride (mg/L) | 514 (bg)   | 8        | 0.855  | 1.004     | 0.355     | 0.5           | 0.5         | 3.34        | 87.5        |
| Chloride (mg/L) | 515 (bg)   | 8        | 5.43   | 2.636     | 0.932     | 4.56          | 2.63        | 9.33        | 0           |
| Chloride (mg/L) | 516 (bg)   | 8        | 4.503  | 0.739     | 0.2613    | 4.38          | 3.79        | 6.21        | 0           |
| Chloride (mg/L) | PZ-03 (bg) | 8        | 2.145  | 3.019     | 1.067     | 0.5           | 0.5         | 8.73        | 62.5        |
| Sulfate (mg/L)  | 504 (bg)   | 15       | 24.68  | 7.767     | 2.005     | 23.3          | 14.3        | 35.1        | 0           |
| Sulfate (mg/L)  | 505 (bg)   | 12       | 16.42  | 5.026     | 1.451     | 14.75         | 9.73        | 29.2        | 0           |
| Sulfate (mg/L)  | 512        | 15       | 30.44  | 8.858     | 2.287     | 28.1          | 21          | 51.4        | 0           |
| Sulfate (mg/L)  | 514 (bg)   | 7        | 24.94  | 0.7892    | 0.2983    | 24.9          | 23.8        | 25.9        | 0           |
| Sulfate (mg/L)  | 515 (bg)   | 7        | 43.04  | 30.26     | 11.44     | 22.3          | 18.7        | 93.9        | 0           |
| Sulfate (mg/L)  | 516 (bg)   | 7        | 20.64  | 1.258     | 0.4755    | 20.9          | 19.2        | 22.6        | 0           |
| Sulfate (mg/L)  | PZ-03 (bg) | 7        | 24.91  | 1.165     | 0.4405    | 24.7          | 23.5        | 27          | 0           |
|                 |            |          |        |           |           |               |             |             |             |

Appendix C

Piper Diagram



### Piper Diagram

Analysis Run 4/2/2019 3:32 PM View: LF III

| Totals (ppm)            | Na   | K    | Ca   | Mg   | Cl   | SO4  | HCO3 | C03  |
|-------------------------|------|------|------|------|------|------|------|------|
| 504* 5/25/2016          | 6.54 | 1.27 | 30.2 | 8.36 | 0.5  | 18.9 | 89   | 10   |
| 504* 8/23/2016          | 6.61 | 1.15 | 32.2 | 8.56 | 0.5  | 15.4 | 99.5 | 10   |
| 504* 11/11/2016         | 8.17 | 1.3  | 36.9 | 8.97 | 0.5  | 17.4 | 94.7 | 10   |
| 504* 2/8/2017           | 6.83 | 1.28 | 29.6 | 9.94 | 0.5  | 21   | 105  | 10   |
| 504* 1/11/2019          | 7.64 | 1.9  | 39.3 | 9.85 | 0.5  | 33.2 | 103  | 10   |
| 512 5/25/2016           | 10   | 2.24 | 98.9 | 36.8 | 2.55 | 23.1 | 356  | 10   |
| 512 8/23/2016           | 10.3 | 2.13 | 103  | 36.9 | 3.23 | 24.4 | 384  | 10   |
| 512 11/11/2016          | 9.96 | 2.16 | 100  | 35.6 | 3.17 | 24   | 352  | 10   |
| 512 2/8/2017            | 10   | 2.35 | 86.4 | 37.9 | 3.14 | 27.8 | 358  | 10   |
| 512 1/11/2019           | 10.6 | 2.25 | 110  | 37.8 | 3.85 | 43.3 | 366  | 10   |
| LEACHATEPOND 5/25/2016  | 499  | 58.6 | 129  | 12.9 | 44.1 | 1440 | 10   | 119  |
| LEACHATEPOND 8/23/2016  | 479  | 56.8 | 108  | 12.8 | 42.8 | 1320 | 10   | 104  |
| LEACHATEPOND 11/10/2016 | 651  | 75.3 | 224  | 22.5 | 50.4 | 1820 | 30.5 | 68.3 |
| LEACHATEPOND 2/9/2017   | 678  | 66.2 | 89.4 | 10.8 | 64.5 | 2200 | 38.9 | 146  |
| LEACHATE 3/23/2018      | 741  | 70.3 | 88.5 | 4.66 | 79.1 | 1690 | 10   | 108  |
|                         |      |      |      |      |      |      |      |      |

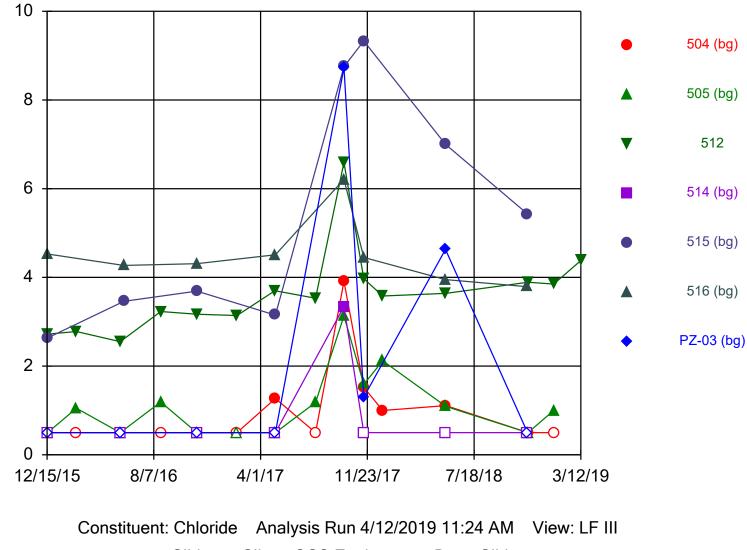
Appendix D

**Time Series Plots** 

200 504 (bg) 505 (bg) 160 512 ▼ 120 514 (bg) 515 (bg) 80 516 (bg) PZ-03 (bg) 40 0 12/15/15 8/7/16 4/1/17 11/23/17 7/18/18 3/12/19 Constituent: Calcium Analysis Run 4/12/2019 11:24 AM View: LF III

**Time Series** 

Sibley Client: SCS Engineers Data: Sibley


mg/L

Constituent: Calcium (mg/L) Analysis Run 4/12/2019 11:25 AM View: LF III

|            |          |          |      | ,        | <b>J</b> | · · · · <b>,</b> |            |
|------------|----------|----------|------|----------|----------|------------------|------------|
|            | 504 (bg) | 505 (bg) | 512  | 514 (bg) | 515 (bg) | 516 (bg)         | PZ-03 (bg) |
| 12/15/2015 |          |          | 98.1 | 33.4     | 32       | 27.2             | 78.4       |
| 12/16/2015 | 31.5     | 28       |      |          |          |                  |            |
| 2/18/2016  | 34.3     | 25.4     | 100  |          |          |                  |            |
| 5/25/2016  | 30.2     | 24.6     | 98.9 |          |          |                  |            |
| 5/26/2016  |          |          |      | 33.9     |          |                  | 77.6       |
| 6/2/2016   |          |          |      |          | 29.9     | 27.4             |            |
| 8/23/2016  | 32.2     | 25.7     | 103  |          |          |                  |            |
| 11/11/2016 | 36.9     | 21.6     | 100  | 32.8     | 29.4     | 26.9             | 69.8       |
| 2/8/2017   | 29.6     | 23.5     | 86.4 |          |          |                  |            |
| 5/3/2017   |          |          | 98.4 |          |          |                  |            |
| 5/4/2017   | 27.7     | 23.2     |      | 30.2     | 25.6     | 25.1             | 70.3       |
| 8/1/2017   | 30.5     | 25.1     | 102  |          |          |                  |            |
| 10/3/2017  | 33.2     | 26.6     | 110  | 33.8     | 38.4     | 28               | 73.7       |
| 11/16/2017 | 37.6 (i) | 26       | 101  | 30.5     | 44.9     | 25.1             | 71         |
| 5/16/2018  |          |          |      | 31.1     | 45.1     | 26.2             | 69.8       |
| 5/17/2018  | 33.3     | 28.2     | 104  |          |          |                  |            |
| 6/27/2018  |          | 25.8     |      |          |          |                  |            |
| 11/14/2018 |          |          |      | 30.7     | 41.9     | 26               | 76.1       |
| 11/15/2018 | 45       | 30.8     | 110  |          |          |                  |            |
| 1/11/2019  | 39.3     | 29.5     | 110  |          |          |                  |            |
| 3/12/2019  | 35.4     | 24.9     | 108  |          |          |                  |            |
|            |          |          |      |          |          |                  |            |

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.





Sibley Client: SCS Engineers Data: Sibley

mg/L

Constituent: Chloride (mg/L) Analysis Run 4/12/2019 11:25 AM View: LF III

|            | 504 (bg) | 505 (bg) | 512  | 514 (bg) | 515 (bg) | 516 (bg) | PZ-03 (bg) |  |
|------------|----------|----------|------|----------|----------|----------|------------|--|
| 12/15/2015 |          |          | 2.72 | <1       | 2.63     | 4.53     | <1         |  |
| 12/16/2015 | <1       | <1       |      |          |          |          |            |  |
| 2/18/2016  | <1       | 1.05     | 2.78 |          |          |          |            |  |
| 5/25/2016  | <1       | <1       | 2.55 |          |          |          |            |  |
| 5/26/2016  |          |          |      | <1       |          |          | <1         |  |
| 6/2/2016   |          |          |      |          | 3.46     | 4.27     |            |  |
| 8/23/2016  | <1       | 1.19     | 3.23 |          |          |          |            |  |
| 11/11/2016 | <1       | <1       | 3.17 | <1       | 3.69     | 4.31     | <1         |  |
| 2/8/2017   | <1       | <1       | 3.14 |          |          |          |            |  |
| 5/3/2017   |          |          | 3.7  |          |          |          |            |  |
| 5/4/2017   | 1.27     | <1       |      | <1       | 3.15     | 4.51     | <1         |  |
| 8/1/2017   | <1       | 1.18     | 3.53 |          |          |          |            |  |
| 10/3/2017  | 3.91     | 3.13     | 6.59 | 3.34     | 8.75     | 6.21     | 8.73       |  |
| 11/16/2017 | 1.52     | 1.59     | 3.97 | <1       | 9.33     | 4.45     | 1.3        |  |
| 12/28/2017 | 1        | 2.12     | 3.58 |          |          |          |            |  |
| 5/16/2018  |          |          |      | <1       | 7        | 3.95     | 4.63       |  |
| 5/17/2018  | 1.11     | 1.09     | 3.64 |          |          |          |            |  |
| 11/14/2018 |          |          |      | <1       | 5.43     | 3.79     | <1         |  |
| 11/15/2018 | <1       | <1       | 3.89 |          |          |          |            |  |
| 1/11/2019  | <1       | 1        | 3.85 |          |          |          |            |  |
| 3/12/2019  |          |          | 4.38 |          |          |          |            |  |

100 504 (bg) 505 (bg) 80 512 ▼ 60 514 (bg) 515 (bg) 40 516 (bg) PZ-03 (bg) 20 0 12/15/15 8/7/16 4/1/17 11/23/17 7/18/18 3/12/19

**Time Series** 

Constituent: Sulfate Analysis Run 4/12/2019 11:24 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

mg/L

Constituent: Sulfate (mg/L) Analysis Run 4/12/2019 11:25 AM View: LF III

|            | 504 (bg) | 505 (bg) | 512  | 514 (bg) | 515 (bg) | 516 (bg) | PZ-03 (bg) |
|------------|----------|----------|------|----------|----------|----------|------------|
| 12/15/2015 |          |          | 23   | 25.9     | 22.1     | 22.6     | 25.5       |
| 12/16/2015 | 14.3     | 29.2     |      |          |          |          |            |
| 2/18/2016  | 14.7     | 16       | 21   |          |          |          |            |
| 5/25/2016  | 18.9     | 21.9     | 23.1 |          |          |          |            |
| 5/26/2016  |          |          |      | 24.9     |          |          | 23.5       |
| 6/2/2016   |          |          |      |          | 22.3     | 21.6     |            |
| 8/23/2016  | 15.4     | 9.73     | 24.4 |          |          |          |            |
| 11/11/2016 | 17.4     | 15.9     | 24   | 25.2     | 19.5     | 21.1     | 24.7       |
| 2/8/2017   | 21       | 14.9     | 27.8 |          |          |          |            |
| 5/3/2017   |          |          | 27.3 |          |          |          |            |
| 5/4/2017   | 21.8     | 19.2     |      | 24.6     | 18.7     | 19.5     | 24.1       |
| 8/1/2017   | 23.3     | 14.4     | 28.1 |          |          |          |            |
| 10/3/2017  | 24.3     | 13.4     | 28.2 | 23.8     | 54       | 19.2     | 24.2       |
| 5/16/2018  |          |          |      | 25.9     | 93.9     | 20.9     | 27         |
| 5/17/2018  | 32.8     | 14       | 29.6 |          |          |          |            |
| 6/27/2018  | 31.8     |          | 30.3 |          |          |          |            |
| 8/8/2018   | 32.3     |          | 30.9 |          |          |          |            |
| 11/14/2018 |          |          |      | 24.3     | 70.8     | 19.6     | 25.4       |
| 11/15/2018 | 33.9     | 14.6     | 51.4 |          |          |          |            |
| 1/11/2019  | 33.2     | 13.8     | 43.3 |          |          |          |            |
| 3/12/2019  | 35.1     |          | 44.2 |          |          |          |            |

C.2 Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2019)

# CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2019 GROUNDWATER MONITORING EVENT

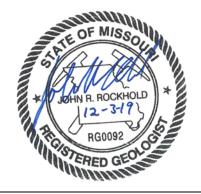
# CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To:

Evergy Missouri West, Inc.

Presented By:

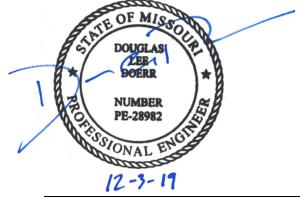
#### SCS ENGINEERS


8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

December 2019 File No. 27213169.18

### CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E.

SCS Engineers

### Table of Contents

#### Section

#### Page

| CERT | IFICAT | 'IONS                       | . i |
|------|--------|-----------------------------|-----|
| 1    | Regu   | latory Framework            | 1   |
| 2    | Statis | stical Results              | 1   |
| 3    | Alter  | native Source Demonstration | 2   |
|      | 3.1    | Upgradient Well Location    | 2   |
|      | 3.2    | Box and Whiskers Plots      | 2   |
|      | 3.3    | Piper Diagram Plots         | 3   |
|      | 3.4    | Time Series Plots           | 3   |
| 4    | Conc   | lusion                      | 4   |
| 5    | Gene   | ral Comments                | 4   |

### Appendices

| Appendix A | Figure 1               |
|------------|------------------------|
| Appendix B | Box and Whiskers Plots |
| Appendix C | Piper Diagram          |
| Appendix D | Time Series Plots      |

### 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

# 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 22, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on July 3, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 16, 2019 and August 21, 2019.

| Constituent/Monitoring Well | *UPL Observation<br>May 22, 2019 |      | 1st Verification<br>July 16, 2019 | 2nd Verification<br>August 21, 2019 |
|-----------------------------|----------------------------------|------|-----------------------------------|-------------------------------------|
| Chloride                    |                                  |      |                                   |                                     |
| 506                         | 6.573                            | 7.05 | 7.33                              | 7.17                                |
| 512                         | 3.826                            | 4.17 | 4.35                              | 4.91                                |
| Sulfate                     |                                  |      |                                   |                                     |
| 504                         | 24.58                            | 36.3 | 36.3                              | 35.6                                |
| 512                         | 29.55                            | 40.1 | 42.1                              | 41.0                                |
|                             |                                  |      |                                   |                                     |

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limit in monitoring wells MW-504, MW-506, and MW-512.

\*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation confirmed four SSIs above the background prediction limits. These include chloride in downgradient monitoring wells MW-506 and MW-512 and sulfate in upgradient monitoring well MW-504 and downgradient monitoring well MW-512.

### 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

### 3.1 UPGRADIENT WELL LOCATION

**Figure 1** in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the CCR Landfill at the time of sampling. As seen on the map, monitoring well MW-504 is located upgradient from the CCR Landfill indicating the SSI for sulfate is not caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for sulfate, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

### 3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for chloride in monitoring wells MW-506 and MW-512 were compared to box and whisker plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Chloride comparisons indicate the concentrations in MW-506 and MW-512 are well within or below expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

Box and whiskers plots for sulfate in monitoring wells MW-504 and MW-512 were compared to box and whisker plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. Sulfate comparisons indicate the

concentrations in MW-504 and MW-512 are well within or below expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill.

**Figure 1** in **Appendix A** shows these upgradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area that has not been impacted by the landfill, and exhibit variability that includes chloride and sulfate concentrations similar to those seen at MW-504, MW-506 and MW-512, the observed concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over background level, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots for chloride and sulfate are provided in **Appendix B**.

### 3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-504, MW-506, MW-512, and landfill leachate is provided in **Appendix C** and indicates the groundwater from these three wells does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

### 3.4 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Times series plots for chloride in monitoring wells MW-506 and MW-512 and sulfate in monitoring wells MW-504 and MW-512 were compared to time series plots for chloride and sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes.

Sulfate concentrations for MW-504 and MW-512 were plotted against sulfate concentrations in several upgradient and side-gradient non-CCR monitoring system wells. The sulfate concentrations in both upgradient well MW-504 and downgradient well MW-512 exhibit similar trends, are well within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill, and are even below side-gradient non-CCR monitoring system well MW-516.

Chloride concentrations for MW-506 and MW-512 were plotted against chloride concentrations in several upgradient and side-gradient non-CCR monitoring system wells. Chloride comparisons indicate the concentration in MW-506 and MW-512 are within the range of natural variation in the area and track similarly to that of side-gradient non-CCR monitoring well MW-516. There are natural fluctuations in concentration levels for many of the wells in the vicinity of the CCR Landfill beginning in 2017.

These time series plots demonstrate that a source other than the CCR Landfill caused the SSIs over background levels for chloride and sulfate or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots for calcium, chloride, and sulfate are provided in **Appendix D**.

### 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

## 5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Missouri West, Inc. for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

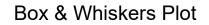
The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental,

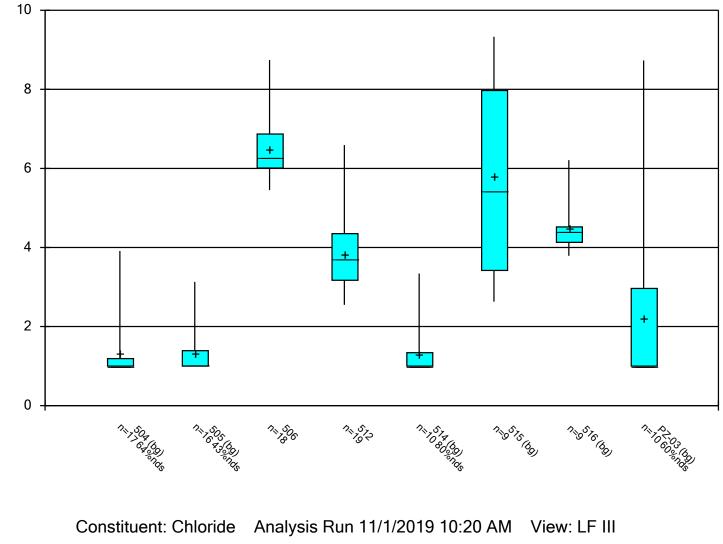
geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1




200


SCALE

| LEGEND:<br>- 760 - GROUNDWATER SURFACE ELEVATIONS<br>(REPRESENTATIVE OF THIS UNIT)<br>6601 GROUNDWATER MONITORING SYSTEM<br>(738.07) WELLS (GROUNDWATER ELEVATION)<br>CCR LANDFILL UNIT BOUNDARY<br>GROUNDWATER FLOW DIRECTION<br>* WELL(S) ABANDONED APRIL 2017<br>DUE TO INSUFFICIENT WATER<br>BTP BELOW TOP OF PUMP<br>NOTES:<br>1. HORIZONTAL & VERTICAL DATUM: | REV. DATE   | ACE MAP (MAY 2019)<br>JFILL                           |                                                                                 |                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>URS PLANS FOR CONSTRUCTION,<br/>KCP&amp;L SIBLEY GENERATING STATION,<br/>DESIGN FILE 16530511.00001, DATED<br/>JANUARY 2010</li> <li>2. GOOGLE EARTH AERIAL IMAGE. MARCH 2015.</li> <li>3. BOUNDARY AND MONITORING WELL WELL<br/>LOCATIONS SHOWN ARE APPROXIMATE.</li> </ul>                                                                               | SHEET TITLE | POTENTIOMETRIC SURFACE MAP (MAY 2019)<br>CCR LANDFILL | PROJECT TITLE                                                                   | ALI EKNATIVE SOURCE<br>DEMONSTRATION                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                     | CLIENT      | EVERGY MISSOURI WEST, INC                             | SIBLEY GENERATING STATION                                                       | SIBLEY, MISSOURI                                                                                                              |  |
| e FEET                                                                                                                                                                                                                                                                                                                                                              | DATE        | ) FILE:                                               | PH. (913) 681-0030 FAX. (913) 681-<br>2000 FAX. (913) 681-0030 FAX. (913) 681-0 | C 0001 2721.316.7.19 DMN. BY: DAW 9/A RW BY:<br>2721.316.7.19 CMK BY: DAW 9/A RW BY:<br>284. BY: 7704. CMK BY: DD PROL 407 DC |  |

Appendix B

**Box and Whiskers Plots** 



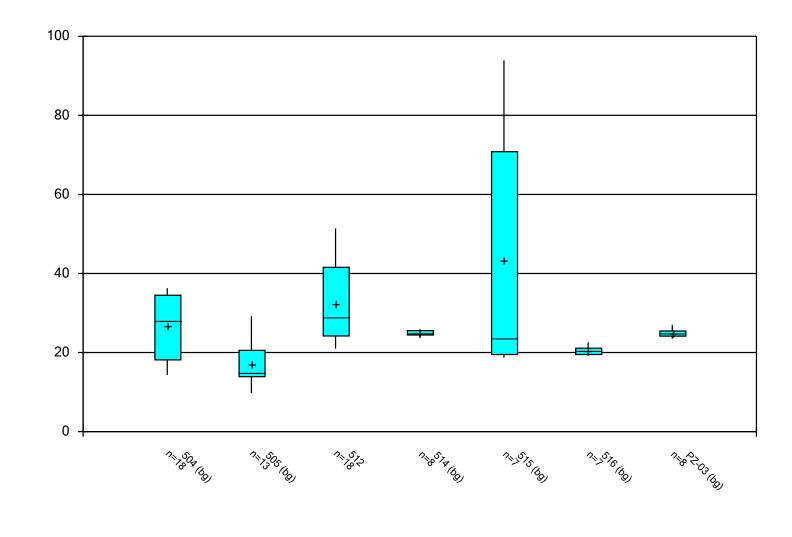


Sibley Client: SCS Engineers Data: Sibley

mg/L

#### **Box & Whiskers Plot**

Constituent: Chloride (mg/L) Analysis Run 11/1/2019 10:21 AM View: LF III


|            |          |          |       | olbicy olicit. of | oo Engineero Dut | a. Obicy |          |            |
|------------|----------|----------|-------|-------------------|------------------|----------|----------|------------|
|            | 504 (bg) | 505 (bg) | 506   | 512               | 514 (bg)         | 515 (bg) | 516 (bg) | PZ-03 (bg) |
| 12/15/2015 |          |          | 6.45  | 2.72              | <1               | 2.63     | 4.53     | <1         |
| 12/16/2015 | <1       | <1       |       |                   |                  |          |          |            |
| 2/18/2016  | <1       | 1.05     | 6.15  | 2.78              |                  |          |          |            |
| 5/25/2016  | <1       | <1       | 5.76  | 2.55              |                  |          |          |            |
| 5/26/2016  |          |          |       |                   | <1               |          |          | <1         |
| 8/23/2016  | <1       | 1.19     | 6.16  | 3.23              |                  |          |          |            |
| 11/11/2016 | <1       | <1       | 6.13  | 3.17              | <1               | 3.69     | 4.31     | <1         |
| 2/8/2017   | <1       | <1       | 5.89  | 3.14              |                  |          |          |            |
| 5/3/2017   |          |          |       | 3.7               |                  |          |          |            |
| 5/4/2017   | 1.27     | <1       | 6.15  |                   | <1               | 3.15     | 4.51     | <1         |
| 8/1/2017   | <1       | 1.18     |       | 3.53              |                  |          |          |            |
| 8/4/2017   |          |          | 5.45  |                   |                  |          |          |            |
| 10/3/2017  | 3.91     | 3.13     | 8.74  | 6.59              | 3.34             | 8.75     | 6.21     | 8.73       |
| 10/5/2017  | 2.52     | 2.06     | 6.47  | 4.68              | 1.68             | 7.19     | 4.39     | 1.29       |
| 11/16/2017 | 1.52     | 1.59     | 6.15  | 3.97              | <1               | 9.33     | 4.45     | 1.3        |
| 12/28/2017 | 1        | 2.12     |       | 3.58              |                  |          |          |            |
| 5/16/2018  |          |          |       |                   | <1               | 7        | 3.95     | 4.63       |
| 5/17/2018  | 1.11     | 1.09     | 6.69  | 3.64              |                  |          |          |            |
| 6/27/2018  |          |          | 5.8   |                   |                  |          |          |            |
| 11/14/2018 |          |          |       |                   | <1               | 5.43     | 3.79     | <1         |
| 11/15/2018 | <1       | <1       | 6.69  | 3.89              |                  |          |          |            |
| 1/11/2019  | <1       | 1        | 6.39  | 3.85              |                  |          |          |            |
| 3/12/2019  |          |          |       | 4.38              |                  |          |          |            |
| 5/22/2019  | <1       | <1       | 7.05  | 4.17              | <1               | 5.05     | 4.33     | <1         |
| 7/16/2019  | <1 (i)   |          | 7.33  | 4.35              |                  |          |          |            |
| 8/21/2019  |          |          | 7.17  | 4.91              |                  |          |          |            |
| Median     | 1        | 1.025    | 6.275 | 3.7               | 1                | 5.43     | 4.39     | 1          |
| LowerQ.    | 1        | 1        | 6.01  | 3.17              | 1                | 3.42     | 4.13     | 1          |
| UpperQ.    | 1.19     | 1.39     | 6.87  | 4.35              | 1.34             | 7.97     | 4.52     | 2.965      |
| Min        | 1        | 1        | 5.45  | 2.55              | 1                | 2.63     | 3.79     | 1          |
| Max        | 3.91     | 3.13     | 8.74  | 6.59              | 3.34             | 9.33     | 6.21     | 8.73       |
| Mean       | 1.314    | 1.338    | 6.479 | 3.833             | 1.302            | 5.802    | 4.497    | 2.195      |
|            |          |          |       |                   |                  |          |          |            |

### Box & Whiskers Plot

Sibley Client: SCS Engineers Data: Sibley Printed 11/1/2019, 10:21 AM

| Constituent     | Well       | <u>N</u> | Mean  | Std. Dev. | Std. Err. | <u>Median</u> | <u>Min.</u> | <u>Max.</u> | <u>%NDs</u> |
|-----------------|------------|----------|-------|-----------|-----------|---------------|-------------|-------------|-------------|
| Chloride (mg/L) | 504 (bg)   | 17       | 1.314 | 0.769     | 0.1865    | 1             | 1           | 3.91        | 64.71       |
| Chloride (mg/L) | 505 (bg)   | 16       | 1.338 | 0.6062    | 0.1516    | 1.025         | 1           | 3.13        | 43.75       |
| Chloride (mg/L) | 506        | 18       | 6.479 | 0.7542    | 0.1778    | 6.275         | 5.45        | 8.74        | 0           |
| Chloride (mg/L) | 512        | 19       | 3.833 | 0.933     | 0.214     | 3.7           | 2.55        | 6.59        | 0           |
| Chloride (mg/L) | 514 (bg)   | 10       | 1.302 | 0.7473    | 0.2363    | 1             | 1           | 3.34        | 80          |
| Chloride (mg/L) | 515 (bg)   | 9        | 5.802 | 2.418     | 0.8059    | 5.43          | 2.63        | 9.33        | 0           |
| Chloride (mg/L) | 516 (bg)   | 9        | 4.497 | 0.6902    | 0.2301    | 4.39          | 3.79        | 6.21        | 0           |
| Chloride (mg/L) | PZ-03 (bg) | 10       | 2.195 | 2.557     | 0.8085    | 1             | 1           | 8.73        | 60          |
|                 |            |          |       |           |           |               |             |             |             |

mg/L



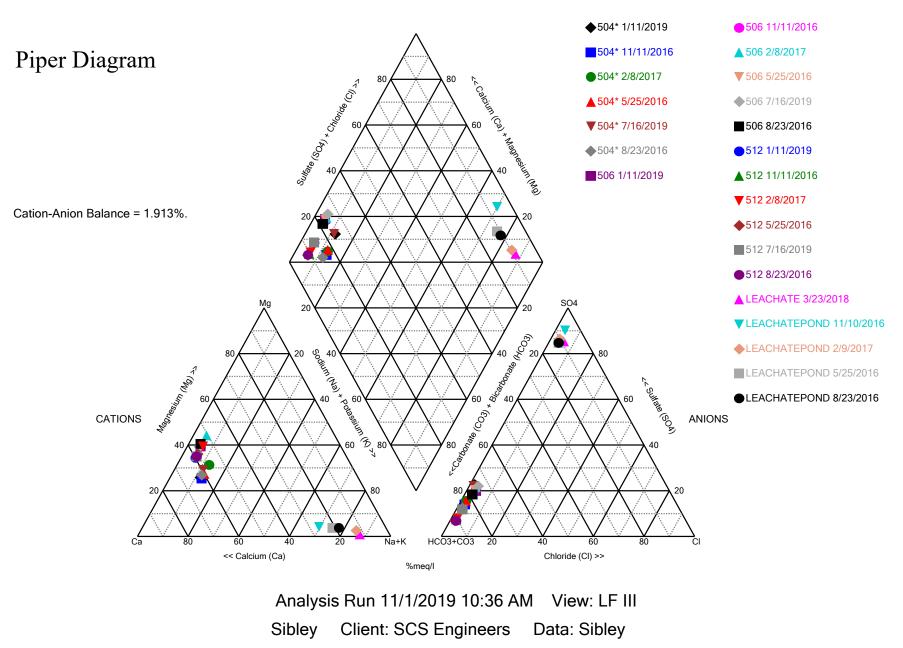
Box & Whiskers Plot

Constituent: Sulfate Analysis Run 11/1/2019 10:22 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

#### **Box & Whiskers Plot**

Constituent: Sulfate (mg/L) Analysis Run 11/1/2019 10:23 AM View: LF III

|            |          |          |       | Sibley Client: So | CS Engineers Dat | a: Sibley |            |
|------------|----------|----------|-------|-------------------|------------------|-----------|------------|
| <br>       | 504 (bg) | 505 (bg) | 512   | 514 (bg)          | 515 (bg)         | 516 (bg)  | PZ-03 (bg) |
| 12/15/2015 |          |          | 23    | 25.9              | 22.1             | 22.6      | 25.5       |
| 12/16/2015 | 14.3     | 29.2     |       |                   |                  |           |            |
| 2/18/2016  | 14.7     | 16       | 21    |                   |                  |           |            |
| 5/25/2016  | 18.9     | 21.9     | 23.1  |                   |                  |           |            |
| 5/26/2016  |          |          |       | 24.9              |                  |           | 23.5       |
| 8/23/2016  | 15.4     | 9.73     | 24.4  |                   |                  |           |            |
| 11/11/2016 | 17.4     | 15.9     | 24    | 25.2              | 19.5             | 21.1      | 24.7       |
| 2/8/2017   | 21       | 14.9     | 27.8  |                   |                  |           |            |
| 5/3/2017   |          |          | 27.3  |                   |                  |           |            |
| 5/4/2017   | 21.8     | 19.2     |       | 24.6              | 18.7             | 19.5      | 24.1       |
| 8/1/2017   | 23.3     | 14.4     | 28.1  |                   |                  |           |            |
| 10/3/2017  | 24.3     | 13.4     | 28.2  | 23.8              | 54               | 19.2      | 24.2       |
| 5/16/2018  |          |          |       | 25.9              | 93.9             | 20.9      | 27         |
| 5/17/2018  | 32.8     | 14       | 29.6  |                   |                  |           |            |
| 6/27/2018  | 31.8     |          | 30.3  |                   |                  |           |            |
| 8/8/2018   | 32.3     |          | 30.9  |                   |                  |           |            |
| 11/14/2018 |          |          |       | 24.3              | 70.8             | 19.6      | 25.4       |
| 11/15/2018 | 33.9     | 14.6     | 51.4  |                   |                  |           |            |
| 1/11/2019  | 33.2     | 13.8     | 43.3  |                   |                  |           |            |
| 3/12/2019  | 35.1     |          | 44.2  |                   |                  |           |            |
| 5/22/2019  | 36.3     | 22.7     | 40.1  | 24.7              | 23.7             | 20.4      | 25.1       |
| 7/16/2019  | 36.3     |          | 42.1  |                   |                  |           |            |
| 8/21/2019  | 35.6     |          | 41    |                   |                  |           |            |
| Median     | 28.05    | 14.9     | 28.9  | 24.8              | 23.7             | 20.4      | 24.9       |
| LowerQ.    | 18.15    | 13.9     | 24.2  | 24.45             | 19.5             | 19.5      | 24.15      |
| UpperQ.    | 34.5     | 20.55    | 41.55 | 25.55             | 70.8             | 21.1      | 25.45      |
| Min        | 14.3     | 9.73     | 21    | 23.8              | 18.7             | 19.2      | 23.5       |
| Max        | 36.3     | 29.2     | 51.4  | 25.9              | 93.9             | 22.6      | 27         |
| Mean       | 26.58    | 16.9     | 32.21 | 24.91             | 43.24            | 20.47     | 24.94      |


### Box & Whiskers Plot

Sibley Client: SCS Engineers Data: Sibley Printed 11/1/2019, 10:23 AM

| <u>Constituent</u> | Well       | <u>N</u> | Mean  | Std. Dev. | Std. Err. | Median | <u>Min.</u> | <u>Max.</u> | <u>%NDs</u> |
|--------------------|------------|----------|-------|-----------|-----------|--------|-------------|-------------|-------------|
| Sulfate (mg/L)     | 504 (bg)   | 18       | 26.58 | 8.293     | 1.955     | 28.05  | 14.3        | 36.3        | 0           |
| Sulfate (mg/L)     | 505 (bg)   | 13       | 16.9  | 5.117     | 1.419     | 14.9   | 9.73        | 29.2        | 0           |
| Sulfate (mg/L)     | 512        | 18       | 32.21 | 9.019     | 2.126     | 28.9   | 21          | 51.4        | 0           |
| Sulfate (mg/L)     | 514 (bg)   | 8        | 24.91 | 0.7357    | 0.2601    | 24.8   | 23.8        | 25.9        | 0           |
| Sulfate (mg/L)     | 515 (bg)   | 7        | 43.24 | 30.1      | 11.38     | 23.7   | 18.7        | 93.9        | 0           |
| Sulfate (mg/L)     | 516 (bg)   | 7        | 20.47 | 1.186     | 0.4481    | 20.4   | 19.2        | 22.6        | 0           |
| Sulfate (mg/L)     | PZ-03 (bg) | 8        | 24.94 | 1.081     | 0.3822    | 24.9   | 23.5        | 27          | 0           |

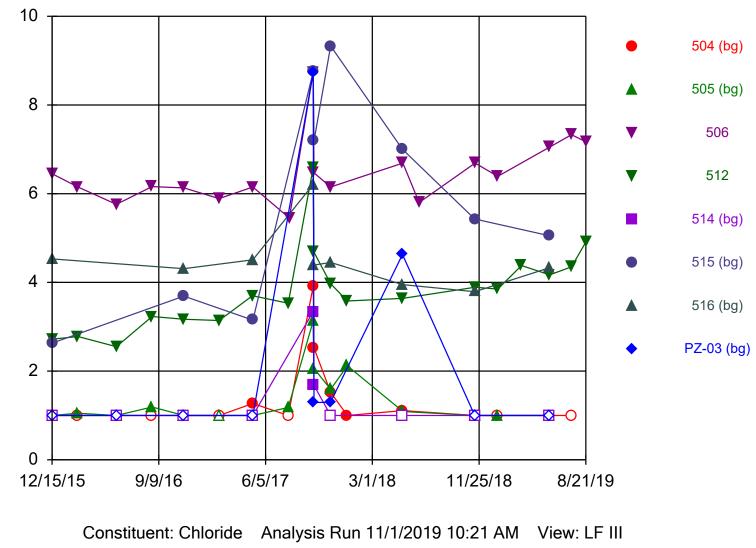
Appendix C

Piper Diagram



### Piper Diagram

Analysis Run 11/1/2019 10:38 AM View: LF III

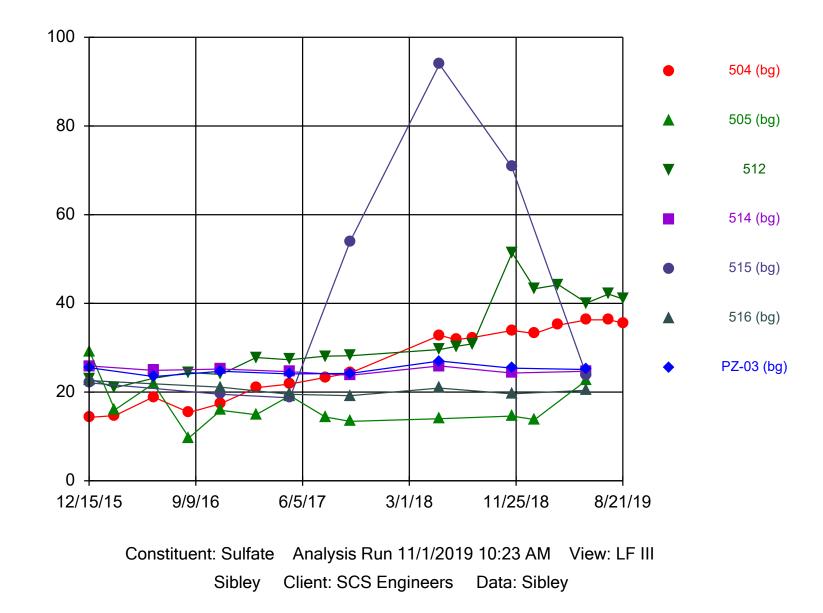

| Totals (ppm)            | Na   | K    | Ca   | Mg   | Cl   | S04  | HCO3 | CO3  |
|-------------------------|------|------|------|------|------|------|------|------|
| 504* 5/25/2016          | 6.54 | 1.27 | 30.2 | 8.36 | 1    | 18.9 | 89   | 20   |
| 504* 8/23/2016          | 6.61 | 1.15 | 32.2 | 8.56 | 1    | 15.4 | 99.5 | 20   |
| 504* 11/11/2016         | 8.17 | 1.3  | 36.9 | 8.97 | 1    | 17.4 | 94.7 | 20   |
| 504* 2/8/2017           | 6.83 | 1.28 | 29.6 | 9.94 | 1    | 21   | 105  | 20   |
| 504* 1/11/2019          | 7.64 | 1.9  | 39.3 | 9.85 | 1    | 33.2 | 103  | 20   |
| 504* 7/16/2019          | 7.92 | 1.49 | 40.6 | 11.8 | 1    | 36.3 | 124  | 20   |
| 506 5/25/2016           | 8.51 | 2.19 | 98.3 | 43.6 | 5.76 | 71   | 304  | 20   |
| 506 8/23/2016           | 8.28 | 1.79 | 97.2 | 42.8 | 6.16 | 65.8 | 326  | 20   |
| 506 11/11/2016          | 8.44 | 2.37 | 96.5 | 41.2 | 6.13 | 65   | 312  | 20   |
| 506 2/8/2017            | 8.25 | 2.04 | 83.6 | 43.9 | 5.89 | 76.5 | 307  | 20   |
| 506 1/11/2019           | 8.21 | 1.85 | 93   | 39.7 | 6.39 | 67.3 | 292  | 20   |
| 506 7/16/2019           | 8.24 | 1.89 | 95.3 | 40.7 | 7.33 | 76.1 | 291  | 20   |
| 512 5/25/2016           | 10   | 2.24 | 98.9 | 36.8 | 2.55 | 23.1 | 356  | 20   |
| 512 8/23/2016           | 10.3 | 2.13 | 103  | 36.9 | 3.23 | 24.4 | 384  | 20   |
| 512 11/11/2016          | 9.96 | 2.16 | 100  | 35.6 | 3.17 | 24   | 352  | 20   |
| 512 2/8/2017            | 10   | 2.35 | 86.4 | 37.9 | 3.14 | 27.8 | 358  | 20   |
| 512 1/11/2019           | 10.6 | 2.25 | 110  | 37.8 | 3.85 | 43.3 | 366  | 20   |
| 512 7/16/2019           | 10.4 | 2.33 | 108  | 38.6 | 4.35 | 42.1 | 363  | 20   |
| LEACHATEPOND 5/25/2016  | 499  | 58.6 | 129  | 12.9 | 44.1 | 1440 | 20   | 119  |
| LEACHATEPOND 8/23/2016  | 479  | 56.8 | 108  | 12.8 | 42.8 | 1320 | 20   | 104  |
| LEACHATEPOND 11/10/2016 | 651  | 75.3 | 224  | 22.5 | 50.4 | 1820 | 30.5 | 68.3 |
| LEACHATEPOND 2/9/2017   | 678  | 66.2 | 89.4 | 10.8 | 64.5 | 2200 | 38.9 | 146  |
| LEACHATE 3/23/2018      | 741  | 70.3 | 88.5 | 4.66 | 79.1 | 1690 | 20   | 108  |
|                         |      |      |      |      |      |      |      |      |

Appendix D

**Time Series Plots** 

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.






Sibley Client: SCS Engineers Data: Sibley

mg/L

Constituent: Chloride (mg/L) Analysis Run 11/1/2019 10:22 AM View: LF III

|            |          |          |      |      | ee Engineere Du |          |          |            |
|------------|----------|----------|------|------|-----------------|----------|----------|------------|
|            | 504 (bg) | 505 (bg) | 506  | 512  | 514 (bg)        | 515 (bg) | 516 (bg) | PZ-03 (bg) |
| 12/15/2015 |          |          | 6.45 | 2.72 | <1              | 2.63     | 4.53     | <1         |
| 12/16/2015 | <1       | <1       |      |      |                 |          |          |            |
| 2/18/2016  | <1       | 1.05     | 6.15 | 2.78 |                 |          |          |            |
| 5/25/2016  | <1       | <1       | 5.76 | 2.55 |                 |          |          |            |
| 5/26/2016  |          |          |      |      | <1              |          |          | <1         |
| 8/23/2016  | <1       | 1.19     | 6.16 | 3.23 |                 |          |          |            |
| 11/11/2016 | <1       | <1       | 6.13 | 3.17 | <1              | 3.69     | 4.31     | <1         |
| 2/8/2017   | <1       | <1       | 5.89 | 3.14 |                 |          |          |            |
| 5/3/2017   |          |          |      | 3.7  |                 |          |          |            |
| 5/4/2017   | 1.27     | <1       | 6.15 |      | <1              | 3.15     | 4.51     | <1         |
| 8/1/2017   | <1       | 1.18     |      | 3.53 |                 |          |          |            |
| 8/4/2017   |          |          | 5.45 |      |                 |          |          |            |
| 10/3/2017  | 3.91     | 3.13     | 8.74 | 6.59 | 3.34            | 8.75     | 6.21     | 8.73       |
| 10/5/2017  | 2.52     | 2.06     | 6.47 | 4.68 | 1.68            | 7.19     | 4.39     | 1.29       |
| 11/16/2017 | 1.52     | 1.59     | 6.15 | 3.97 | <1              | 9.33     | 4.45     | 1.3        |
| 12/28/2017 | 1        | 2.12     |      | 3.58 |                 |          |          |            |
| 5/16/2018  |          |          |      |      | <1              | 7        | 3.95     | 4.63       |
| 5/17/2018  | 1.11     | 1.09     | 6.69 | 3.64 |                 |          |          |            |
| 6/27/2018  |          |          | 5.8  |      |                 |          |          |            |
| 11/14/2018 |          |          |      |      | <1              | 5.43     | 3.79     | <1         |
| 11/15/2018 | <1       | <1       | 6.69 | 3.89 |                 |          |          |            |
| 1/11/2019  | <1       | 1        | 6.39 | 3.85 |                 |          |          |            |
| 3/12/2019  |          |          |      | 4.38 |                 |          |          |            |
| 5/22/2019  | <1       | <1       | 7.05 | 4.17 | <1              | 5.05     | 4.33     | <1         |
| 7/16/2019  | <1 (i)   |          | 7.33 | 4.35 |                 |          |          |            |
| 8/21/2019  |          |          | 7.17 | 4.91 |                 |          |          |            |
|            |          |          |      |      |                 |          |          |            |



mg/L

Constituent: Sulfate (mg/L) Analysis Run 11/1/2019 10:24 AM View: LF III

|            |          |          |      | olbiey olient. o | CO Eligineero Da | a. Obley |            |
|------------|----------|----------|------|------------------|------------------|----------|------------|
|            | 504 (bg) | 505 (bg) | 512  | 514 (bg)         | 515 (bg)         | 516 (bg) | PZ-03 (bg) |
| 12/15/2015 |          |          | 23   | 25.9             | 22.1             | 22.6     | 25.5       |
| 12/16/2015 | 14.3     | 29.2     |      |                  |                  |          |            |
| 2/18/2016  | 14.7     | 16       | 21   |                  |                  |          |            |
| 5/25/2016  | 18.9     | 21.9     | 23.1 |                  |                  |          |            |
| 5/26/2016  |          |          |      | 24.9             |                  |          | 23.5       |
| 8/23/2016  | 15.4     | 9.73     | 24.4 |                  |                  |          |            |
| 11/11/2016 | 17.4     | 15.9     | 24   | 25.2             | 19.5             | 21.1     | 24.7       |
| 2/8/2017   | 21       | 14.9     | 27.8 |                  |                  |          |            |
| 5/3/2017   |          |          | 27.3 |                  |                  |          |            |
| 5/4/2017   | 21.8     | 19.2     |      | 24.6             | 18.7             | 19.5     | 24.1       |
| 8/1/2017   | 23.3     | 14.4     | 28.1 |                  |                  |          |            |
| 10/3/2017  | 24.3     | 13.4     | 28.2 | 23.8             | 54               | 19.2     | 24.2       |
| 5/16/2018  |          |          |      | 25.9             | 93.9             | 20.9     | 27         |
| 5/17/2018  | 32.8     | 14       | 29.6 |                  |                  |          |            |
| 6/27/2018  | 31.8     |          | 30.3 |                  |                  |          |            |
| 8/8/2018   | 32.3     |          | 30.9 |                  |                  |          |            |
| 11/14/2018 |          |          |      | 24.3             | 70.8             | 19.6     | 25.4       |
| 11/15/2018 | 33.9     | 14.6     | 51.4 |                  |                  |          |            |
| 1/11/2019  | 33.2     | 13.8     | 43.3 |                  |                  |          |            |
| 3/12/2019  | 35.1     |          | 44.2 |                  |                  |          |            |
| 5/22/2019  | 36.3     | 22.7     | 40.1 | 24.7             | 23.7             | 20.4     | 25.1       |
| 7/16/2019  | 36.3     |          | 42.1 |                  |                  |          |            |
| 8/21/2019  | 35.6     |          | 41   |                  |                  |          |            |
|            |          |          |      |                  |                  |          |            |

# Addendum 1

## 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

# SCS ENGINEERS

December 16, 2022 File No. 27213167.19

| To: | Evergy Metro, Inc.                                  |
|-----|-----------------------------------------------------|
|     | Jared Morrison – Director, Water and Waste Programs |

From: SCS Engineers Douglas L. Doerr, P.E. John R. Rockhold, P.G.



Subject: 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Missouri West, Inc. CCR Landfill Sibley Generating Station – Sibley, Missouri

The CCR Landfill at the Sibley Generating Station is subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2019 for the CCR Landfill was completed and placed in the facility's operating record on January 30, 2020, as required by the Rule. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy'
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:



- January 2019 First verification sampling for the Fall 2018 detection monitoring sampling event.
- March 2019 Second verification sampling for the Fall 2018 detection monitoring sampling event.
- May 2019 Spring 2019 semiannual detection monitoring sampling event.
- July 2019 First verification sampling for the Spring 2019 detection monitoring sampling event.
- August 2019 Second verification sampling for the Spring 2019 detection monitoring sampling event.
- November 2019 Fall 2019 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2019 included the following:

- Fall 2018 semiannual detection monitoring statistical analyses.
- Spring 2019 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o May 2019 Spring 2019 semiannual detection monitoring sampling event.
- November 2019 Fall 2019 semiannual detection monitoring sampling event.

Jared Morrison December 16, 2022

#### ATTACHMENT 1

Laboratory Analytical Reports

Jared Morrison December 16, 2022

### ATTACHMENT 1-1 January 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

January 21, 2019

#### **SCS Engineers - KS**

| Sample Delivery Group: | L1060639                  |
|------------------------|---------------------------|
| Samples Received:      | 01/12/2019                |
| Project Number:        | 27213168.19               |
| Description:           | Sibley Generating Station |

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approach of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

#### TABLE OF CONTENTS

| *               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |

Sc

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-504 L1060639-01                         | 6  |
| MW-505 L1060639-02                         | 7  |
| MW-506 L1060639-03                         | 8  |
| MW-512 L1060639-04                         | 9  |
| DUPLICATE 1 L1060639-05                    | 10 |
| MW-801 L1060639-06                         | 11 |
| MW-802 L1060639-07                         | 12 |
| MW-803 L1060639-08                         | 13 |
| MW-804 L1060639-09                         | 14 |
| MW-806R L1060639-10                        | 15 |
| DUPLICATE 2 L1060639-11                    | 16 |
| Qc: Quality Control Summary                | 17 |
| Gravimetric Analysis by Method 2540 C-2011 | 17 |
| Wet Chemistry by Method 9056A              | 18 |
| Metals (ICP) by Method 6010B               | 22 |
| GI: Glossary of Terms                      | 24 |
| Al: Accreditations & Locations             | 25 |
| Sc: Sample Chain of Custody                | 26 |
|                                            |    |

SDG: L1060639 DATE/TIME: 01/21/19 12:26

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                               | SAMPLE SU | JIVIIVIAI | τĭ                          | ON                                    | E LAB. NATIONWI                      |
|-------------------------------|-----------|-----------|-----------------------------|---------------------------------------|--------------------------------------|
| MW-504 L1060639-01 GW         |           |           | Collected by<br>G. Penaflor | Collected date/time<br>01/11/19 10:20 | Received date/time<br>01/12/19 08:30 |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224997 | 1         | 01/18/19 17:28              | 01/18/19 17:28                        | ELN                                  |
| Metals (ICP) by Method 6010B  | WG1223402 | 1         | 01/15/19 08:53              | 01/15/19 16:15                        | TRB                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-505 L1060639-02 GW         |           |           | G. Penaflor                 | 01/11/19 09:45                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Metals (ICP) by Method 6010B  | WG1223402 | 1         | 01/15/19 08:53              | 01/15/19 16:18                        | TRB                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-506 L1060639-03 GW         |           |           | G. Penaflor                 | 01/11/19 11:10                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224997 | 1         | 01/18/19 17:43              | 01/18/19 17:43                        | ELN                                  |
| · ·                           |           |           |                             |                                       |                                      |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-512 L1060639-04 GW         |           |           | G. Penaflor                 | 01/11/19 11:45                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224700 | 1         | 01/18/19 17:25              | 01/18/19 17:25                        | ELN                                  |
| Metals (ICP) by Method 6010B  | WG1223402 | 1         | 01/15/19 08:53              | 01/15/19 15:40                        | TRB                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| DUPLICATE1 L1060639-05 GW     |           |           | G. Penaflor                 | 01/11/19 11:50                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224700 | 1         | 01/18/19 18:20              | 01/18/19 18:20                        | ELN                                  |
| Metals (ICP) by Method 6010B  | WG1223402 | 1         | 01/15/19 08:53              | 01/15/19 16:21                        | TRB                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-801 L1060639-06 GW         |           |           | G. Penaflor                 | 01/11/19 09:30                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224700 | 5         | 01/18/19 18:41              | 01/18/19 18:41                        | ELN                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-802 L1060639-07 GW         |           |           | G. Penaflor                 | 01/11/19 10:10                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Metals (ICP) by Method 6010B  | WG1223402 | 1         | 01/15/19 08:53              | 01/15/19 16:24                        | TRB                                  |
|                               |           |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-803 L1060639-08 GW         |           |           | G. Penaflor                 | 01/11/19 10:55                        | 01/12/19 08:30                       |
| Method                        | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1224700 | 1         | 01/18/19 18:52              | 01/18/19 18:52                        | ELN                                  |

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 SCS Engineers - KS
 27213168.19
 L1060639
 01/21/19 12:26

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

₩

|                                            |           |          | Collected by   | Collected date/time | Received date/time |
|--------------------------------------------|-----------|----------|----------------|---------------------|--------------------|
| MW-804 L1060639-09 GW                      |           |          | G. Penaflor    | 01/11/19 11:35      | 01/12/19 08:30     |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst            |
|                                            |           |          | date/time      | date/time           |                    |
| Wet Chemistry by Method 9056A              | WG1224700 | 1        | 01/18/19 19:03 | 01/18/19 19:03      | ELN                |
| Metals (ICP) by Method 6010B               | WG1223402 | 1        | 01/15/19 08:53 | 01/15/19 16:26      | TRB                |
|                                            |           |          | Collected by   | Collected date/time | Received date/time |
| MW-806R L1060639-10 GW                     |           |          | G. Penaflor    | 01/11/19 12:20      | 01/12/19 08:30     |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst            |
|                                            |           |          | date/time      | date/time           |                    |
| Gravimetric Analysis by Method 2540 C-2011 | WG1224054 | 1        | 01/16/19 15:53 | 01/16/19 16:19      | AJS                |
| Wet Chemistry by Method 9056A              | WG1224997 | 5        | 01/19/19 10:54 | 01/19/19 10:54      | ELN                |
| Metals (ICP) by Method 6010B               | WG1223747 | 1        | 01/16/19 09:51 | 01/16/19 12:51      | TRB                |
|                                            |           |          | Collected by   | Collected date/time | Received date/time |
| DUPLICATE 2 L1060639-11 GW                 |           |          | G. Penaflor    | 01/11/19 12:20      | 01/12/19 08:30     |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst            |
|                                            |           |          | date/time      | date/time           |                    |
| Gravimetric Analysis by Method 2540 C-2011 | WG1224054 | 1        | 01/16/19 15:53 | 01/16/19 16:19      | AJS                |
| Wet Chemistry by Method 9056A              | WG1224700 | 5        | 01/19/19 10:43 | 01/19/19 10:43      | ELN                |
| Metals (ICP) by Method 6010B               | WG1223402 | 1        | 01/15/19 08:53 | 01/15/19 16:29      | TRB                |

SDG: L1060639 DATE/TIME:

01/21/19 12:26

#### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213168.19

SDG: L1060639 0<sup>.</sup>

**PAGE**: 5 of 28

#### SAMPLE RESULTS - 01 L1060639

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|-------------------|--------------|-----------|------|----------|------------------|-----------|--|
| Analyte           | ug/l         |           | ug/l |          | date / time      |           |  |
| Fluoride          | 179          |           | 100  | 1        | 01/18/2019 17:28 | WG1224997 |  |
| Sulfate           | 33200        |           | 5000 | 1        | 01/18/2019 17:28 | WG1224997 |  |
| Metals (ICP) by I | Method 6010B |           |      |          |                  |           |  |
|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
| Analyte           | ug/l         |           | ug/l |          | date / time      |           |  |
| Colcium           | 20200        |           | 1000 | 1        | 01/1E/2010 16:1E | WC1222402 |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn       |
|---------|--------|-----------|------|----------|------------------|-----------|-----------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |                 |
| Calcium | 39300  |           | 1000 | 1        | 01/15/2019 16:15 | WG1223402 | <sup>5</sup> Sr |

# SAMPLE RESULTS - 02



Ср

Тс

#### Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           | 1'0 |
|---------|--------|-----------|------|----------|------------------|-----------|-----|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |     |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Calcium | 29500  |           | 1000 | 1        | 01/15/2019 16:18 | WG1223402 | T   |



#### SAMPLE RESULTS - 03 L1060639

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | , , |          |            |     |          |                  |           | 'Cn |
|----------|-----|----------|------------|-----|----------|------------------|-----------|-----|
|          | R   | esult Qu | alifier RI | DL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte  | U   | g/l      | ug         | g/l |          | date / time      |           | 2   |
| Chloride | 6   | 390      | 10         | 000 | 1        | 01/18/2019 17:43 | WG1224997 | ⁻Tc |

#### SAMPLE RESULTS - 04 L1060639

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                 | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch           | [C             |
|-----------------|--------------|-----------|-------|----------|------------------|-----------------|----------------|
| Analyte         | ug/l         |           | ug/l  |          | date / time      |                 | 2              |
| Chloride        | 3850         |           | 1000  | 1        | 01/18/2019 17:25 | WG1224700       | T              |
| Sulfate         | 43300        |           | 5000  | 1        | 01/18/2019 17:25 | WG1224700       |                |
| Metals (ICP) by | Method 6010B |           |       |          |                  |                 | <sup>3</sup> S |
|                 | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch           | <sup>4</sup> C |
| Analyte         | ug/l         |           | ug/l  |          | date / time      |                 |                |
| <u></u>         | 440.000      | 0.1       | 40.00 |          | 04/45/2040 45 40 | 11/01/2020 10/2 |                |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |
|---------|--------|-----------|------|----------|------------------|-----------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | CII       |
| Calcium | 110000 | 01        | 1000 | 1        | 01/15/2019 15:40 | WG1223402 | 5_        |

#### DUPLICATE 1 Collected date/time: 01/11/19 11:50

#### SAMPLE RESULTS - 05 L1060639



Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |   |
|-------------------|--------------|-----------|------|----------|------------------|-----------|---|
| Analyte           | ug/l         |           | ug/l |          | date / time      |           | 2 |
| Chloride          | 3810         |           | 1000 | 1        | 01/18/2019 18:20 | WG1224700 |   |
| Sulfate           | 42200        |           | 5000 | 1        | 01/18/2019 18:20 | WG1224700 |   |
|                   |              |           |      |          |                  |           | 3 |
| Metals (ICP) by I | Method 6010B |           |      |          |                  |           |   |

#### Metals (ICP) by Method 6010B

| Metals (ICP) by Method 6010B |        |           |      |          |                  |           |  |           |
|------------------------------|--------|-----------|------|----------|------------------|-----------|--|-----------|
|                              | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  | $^{4}$ Cn |
| Analyte                      | ug/l   |           | ug/l |          | date / time      |           |  | CII       |
| Calcium                      | 110000 |           | 1000 | 1        | 01/15/2019 16:21 | WG1223402 |  | 5_        |

# SAMPLE RESULTS - 06

\*

Ср

#### Wet Chemistry by Method 9056A

|          | ,      | ·         |      |          |                  |           | <br>l'c |
|----------|--------|-----------|------|----------|------------------|-----------|---------|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |         |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Chloride | 124000 |           | 5000 | 5        | 01/18/2019 18:41 | WG1224700 | T       |



# SAMPLE RESULTS - 07



Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           | <br>Col |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср      |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Calcium | 111000 |           | 1000 | 1        | 01/15/2019 16:24 | WG1223402 | Tc      |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |

SDG: L1060639 DATE/TIME: 01/21/19 12:26

PAGE: 12 of 28

#### SAMPLE RESULTS - 08 L1060639

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | , ,  |                     |      |          |                  |           | Cn l |
|----------|------|---------------------|------|----------|------------------|-----------|------|
|          | Resi | lt <u>Qualifier</u> | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte  | ug/l |                     | ug/l |          | date / time      |           | 2    |
| Chloride | 1600 | 0                   | 1000 | 1        | 01/18/2019 18:52 | WG1224700 | ⁻Tc  |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213168.19

SDG: L1060639

DATE/TIME: 01/21/19 12:26

PAGE: 13 of 28

#### SAMPLE RESULTS - 09 L1060639

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

| thet entermotify s |              |           |      |          |                  |           | l' Co           |
|--------------------|--------------|-----------|------|----------|------------------|-----------|-----------------|
|                    | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte            | ug/l         |           | ug/l |          | date / time      |           | 2               |
| Fluoride           | 234          |           | 100  | 1        | 01/18/2019 19:03 | WG1224700 | Tc              |
| Sulfate            | 31800        |           | 5000 | 1        | 01/18/2019 19:03 | WG1224700 |                 |
| Metals (ICP) by N  | lethod 6010B |           |      |          |                  |           | <sup>3</sup> Ss |

#### Metals (ICP) by Method 6010B

| wetais (ICP) by w | iethod 6010B |           |      |          |                  |           |           |
|-------------------|--------------|-----------|------|----------|------------------|-----------|-----------|
|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |
| Analyte           | ug/l         |           | ug/l |          | date / time      |           | CII       |
| Boron             | 8710         |           | 200  | 1        | 01/15/2019 16:26 | WG1223402 | 5_        |

# SAMPLE RESULTS - 10

\*

Qc

Gl

ΆI

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                    | Result       | Qualifier | RDL           | Dilution | Analysis                        | Batch            |
|--------------------|--------------|-----------|---------------|----------|---------------------------------|------------------|
| Analyte            | ug/l         |           | ug/l          |          | date / time                     |                  |
| Dissolved Solids   | 739000       |           | 13300         | 1        | 01/16/2019 16:19                | WG1224054        |
| Wet Chemistry by   | Method 9056A |           |               | Dilution | Analysis                        | Datab            |
|                    | Result       | Qualifier | RDL           | Dilution | Analysis                        | Batch            |
|                    |              |           |               |          |                                 |                  |
| Analyte            | ug/l         |           | ug/l          |          | date / time                     |                  |
| Analyte<br>Sulfate |              |           | ug/l<br>25000 | 5        | date / time<br>01/19/2019 10:54 | <u>WG1224997</u> |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 5760   |           | 200  | 1        | 01/16/2019 12:51 | WG1223747 |
| Calcium | 175000 | V         | 1000 | 1        | 01/16/2019 12:51 | WG1223747 |

# SAMPLE RESULTS - 11

\*

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                   | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|-------------------|----------------|-----------|-------|----------|------------------|-----------|
| Analyte           | ug/l           |           | ug/l  |          | date / time      |           |
| Dissolved Solids  | 723000         |           | 13300 | 1        | 01/16/2019 16:19 | WG1224054 |
| Wet Chemistry by  | y Method 9056A | A         |       |          |                  |           |
|                   | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |
| Analyte           | ug/l           |           | ug/l  |          | date / time      |           |
| Sulfate           | 239000         |           | 25000 | 5        | 01/19/2019 10:43 | WG1224700 |
| Metals (ICP) by M | ethod 6010B    |           |       |          |                  |           |
|                   | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |
| Analyte           | ug/l           |           | ug/l  |          | date / time      |           |
| Boron             | 5920           |           | 200   | 1        | 01/15/2019 16:29 | WG1223402 |
| Calcium           | 178000         |           | 1000  | 1        | 01/15/2019 16:29 | WG1223402 |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

#### WG1224054

Gravimetric Analysis by Method 2540 C-2011

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3376679-1 01/16/19 16:19 |           |              |        |        |  |
|--------------------------------|-----------|--------------|--------|--------|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |
| Dissolved Solids               | U         |              | 2820   | 10000  |  |

#### L1060411-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1060411-05 | 01/16/19 16:19 | • (DUP) R3376679-3 | 01/16/19 16:19 |
|------------------|----------------|--------------------|----------------|
|------------------|----------------|--------------------|----------------|

|                  | Original Result | Result DUP | JP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|-----------|----------|---------|---------------|-------------------|
| alyte            | ug/l            | ug/l       | j/l       |          | %       |               | %                 |
| Dissolved Solids | 400000          | 3840       | 34000     | 1        | 4.08    |               | 5                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3376679-2 0' | 1/16/19 16:19 |            |          |             |               |
|---------------------|---------------|------------|----------|-------------|---------------|
|                     | Spike Amount  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte             | ug/l          | ug/l       | %        | %           |               |
| Dissolved Solids    | 8800000       | 8820000    | 100      | 85.0-115    |               |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

DATE/TIME: 01/21/19 12:26

PAGE: 17 of 28

#### WG1224700

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1060639-04,05,06,08,09,11

Method Blank (MB)

| (MB) R3377160-1 | 01/18/19 15:30 |
|-----------------|----------------|
|                 |                |

|          | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |
|----------|-----------|--------------|--------|--------|--|--|
| Analyte  | ug/l      |              | ug/l   | ug/l   |  |  |
| Chloride | U         |              | 51.9   | 1000   |  |  |
| Fluoride | U         |              | 9.90   | 100    |  |  |
| Sulfate  | U         |              | 77.4   | 5000   |  |  |

#### L1060639-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1060639-05 | 01/18/19 18:20 | (DUP) R3377160-7 | 01/18/19 18:31 |
|------------------|----------------|------------------|----------------|
| (                |                | ( - )            |                |

| . ,      | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 3810            | 3810       | 1        | 0.0288  |               | 15                |
| Fluoride | 239             | 242        | 1        | 1.46    |               | 15                |
| Sulfate  | 42200           | 42400      | 1        | 0.437   |               | 15                |

#### L1060642-08 Original Sample (OS) • Duplicate (DUP)

| (OS) L1060642-08 01/18/19 20:52 • (DUP) R3377160-8 01/18/19 21:03 |                 |            |          |         |               |                   |  |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |
| Chloride                                                          | 17600           | 17600      | 1        | 0.327   |               | 15                |  |  |  |  |
| Fluoride                                                          | 192             | 288        | 1        | 39.9    | <u>P1</u>     | 15                |  |  |  |  |
| Sulfate                                                           | 31900           | 32000      | 1        | 0.396   |               | 15                |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3377160-2 01/18/19 15:41 |              |            |          |             |               |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |  |
| Chloride                        | 40000        | 37700      | 94.4     | 80.0-120    |               |  |  |  |
| Fluoride                        | 8000         | 7770       | 97.1     | 80.0-120    |               |  |  |  |
| Sulfate                         | 40000        | 38200      | 95.6     | 80.0-120    |               |  |  |  |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213168.19

DATE/TIME: 01/21/19 12:26

PAGE: 18 of 28



Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

#### L1060634-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1060634-08 01/18/1 | (OS) L1060634-08 01/18/19 16:31 • (MS) R3377160-3 01/18/19 16:42 • (MSD) R3377160-4 01/18/19 16:53 |                 |           |            |         |          |          |             |              |               |       |            |
|--------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                          | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                  | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride                 | 50000                                                                                              | 17200           | 64400     | 64900      | 94.3    | 95.4     | 1        | 80.0-120    |              |               | 0.836 | 15         |
| Fluoride                 | 5000                                                                                               | 133             | 4720      | 4760       | 91.8    | 92.6     | 1        | 80.0-120    |              |               | 0.892 | 15         |
| Sulfate                  | 50000                                                                                              | 878000          | 900000    | 911000     | 43.6    | 65.4     | 1        | 80.0-120    | EV           | EV            | 1.20  | 15         |

#### L1060639-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| OS) L1060639-04 01/18/19 17:25 • (MS) R3377160-5 01/18/19 17:36 • (MSD) R3377160-6 01/18/19 18:09 |              |                 |           |            |         |          |          |             |              |               |        |            |
|---------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|
|                                                                                                   | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |
| Chloride                                                                                          | 50000        | 3850            | 51800     | 51600      | 95.8    | 95.4     | 1        | 80.0-120    |              |               | 0.364  | 15         |
| Fluoride                                                                                          | 5000         | 243             | 5120      | 5110       | 97.5    | 97.4     | 1        | 80.0-120    |              |               | 0.0938 | 15         |
| Sulfate                                                                                           | 50000        | 43300           | 88100     | 88000      | 89.5    | 89.3     | 1        | 80.0-120    |              |               | 0.103  | 15         |

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.19

SDG: L1060639 DATE/TIME: 01/21/19 12:26 PAGE: 19 of 28

#### WG1224997

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1060639-01,03,10

Ср

<sup>4</sup>Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3377122-1 | 01/18/19 16:42 |
|-----------------|----------------|
|                 |                |

|          | MB Result | MB Qualifier | MB MDL | MB RDL |  |
|----------|-----------|--------------|--------|--------|--|
| Analyte  | ug/l      |              | ug/l   | ug/l   |  |
| Chloride | U         |              | 51.9   | 1000   |  |
| Fluoride | U         |              | 9.90   | 100    |  |
| Sulfate  | U         |              | 77.4   | 5000   |  |

#### L1060639-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1060639-03 | 01/18/19 17:43 • (DUP) | R3377122-3 | 01/18/19 17:5 | 9        |                |
|------------------|------------------------|------------|---------------|----------|----------------|
|                  | Original Posult        |            | Dilution      | חסם מווח | DLIP Qualifior |

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 6390            | 6420       | 1        | 0.442   |               | 15                |
| Fluoride | 300             | 300        | 1        | 0.0667  |               | 15                |
| Sulfate  | 72800           | 73100      | 1        | 0.368   |               | 15                |

#### L1061236-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1061236-05 01/18/19 | (OS) L1061236-05 01/18/19 21:50 • (DUP) R3377122-6 01/18/19 22:05 |            |          |         |               |                   |  |  |  |  |  |
|---------------------------|-------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|
|                           | Original Result                                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |
| Analyte                   | ug/l                                                              | ug/l       |          | %       |               | %                 |  |  |  |  |  |
| Chloride                  | 4840                                                              | 4840       | 1        | 0.134   |               | 15                |  |  |  |  |  |
| Fluoride                  | 102                                                               | 101        | 1        | 1.19    |               | 15                |  |  |  |  |  |
| Sulfate                   | 911                                                               | 928        | 1        | 1.85    | J             | 15                |  |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3377122-2 01/18/1 | LCS) R3377122-2 01/18/19 16:57 |            |          |             |               |  |  |  |  |  |
|--------------------------|--------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                          | Spike Amount                   | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                  | ug/l                           | ug/l       | %        | %           |               |  |  |  |  |  |
| Chloride                 | 40000                          | 38800      | 96.9     | 80.0-120    |               |  |  |  |  |  |
| Fluoride                 | 8000                           | 7960       | 99.6     | 80.0-120    |               |  |  |  |  |  |
| Sulfate                  | 40000                          | 39200      | 97.9     | 80.0-120    |               |  |  |  |  |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.19

DATE/TIME: 01/21/19 12:26

PAGE: 20 of 28 Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

#### L1060639-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1060639-10 01/18/19 | (OS) L1060639-10 01/18/19 18:14 • (MS) R3377122-4 01/18/19 18:29 • (MSD) R3377122-5 01/18/19 18:45 |                 |           |            |         |          |          |             |              |               |         |            |
|---------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|---------|------------|
|                           | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD     | RPD Limits |
| Analyte                   | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %       | %          |
| Chloride                  | 50000                                                                                              | 28300           | 77600     | 77700      | 98.5    | 98.9     | 1        | 80.0-120    |              |               | 0.257   | 15         |
| Fluoride                  | 5000                                                                                               | 205             | 5030      | 4990       | 96.4    | 95.7     | 1        | 80.0-120    |              |               | 0.741   | 15         |
| Sulfate                   | 50000                                                                                              | 244000          | 286000    | 286000     | 83.0    | 82.9     | 1        | 80.0-120    | E            | E             | 0.00953 | 15         |

#### L1061236-05 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1061236-05 01/18/1 | 19 21:50 • (MS) R | 3377122-7 01/1  | 8/19 22:51 |         |          |             |              |
|--------------------------|-------------------|-----------------|------------|---------|----------|-------------|--------------|
|                          | Spike Amount      | Original Result | MS Result  | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                  | ug/l              | ug/l            | ug/l       | %       |          | %           |              |
| Chloride                 | 50000             | 4840            | 54700      | 99.7    | 1        | 80.0-120    |              |
| Fluoride                 | 5000              | 102             | 4950       | 97.1    | 1        | 80.0-120    |              |
| Sulfate                  | 50000             | 911             | 50000      | 98.2    | 1        | 80.0-120    |              |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.19

SDG: L1060639 DATE/TIME: 01/21/19 12:26

PAGE: 21 of 28

#### WG1223402

Method Blank (MB) (MB) R3376059-1 01/15/19 15:32

Analyte

Calcium

Analyte

Calcium

Analyte

Calcium

Boron

Boron

Boron

Metals (ICP) by Method 6010B

MB Result

(LCS) R3376059-2 01/15/19 15:35 • (LCSD) R3376059-3 01/15/19 15:37

Spike Amount LCS Result

ug/l

1040

10200

ug/l

U

U

ug/l

1000

10000

MB Qualifier

MB MDL

ug/l

12.6

46.3

LCSD Result

ug/l

1010

L1060639-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

#### QUALITY CONTROL SUMMARY L1060639-01,02,04,05,07,09,11

MB RDL

ug/l

200

1000

LCS Rec.

%

104

102

LCSD Rec.

%

101

102

Тс

Ss Cn

# Sr

GI

Sc

<sup>°</sup>Qc

Â

# **RPD** Limits

(OS) L1060639-04 01/15/19 15:40 • (MS) R3376059-5 01/15/19 15:45 • (MSD) R3376059-6 01/15/19 15:48 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD % % % % % ug/l ug/l ug/l ug/l 1000 ND 1160 1160 104 104 1 75.0-125 0.251 20 10000 110000 118000 118000 83.0 85.8 1 75.0-125 0.234 20

Rec. Limits

80.0-120

80.0-120

%

PROJECT: 27213168.19

SDG: L1060639

LCSD Qualifier

LCS Qualifier

RPD

%

2.89

0.416

**RPD** Limits

%

20

20

DATE/TIME: 01/21/19 12:26

PAGE: 22 of 28

#### WG1223747

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1060639-10

⁺Cn

Sr

Qc

GI

0

Method Blank (MB)

| Method Blat                    | ik (ivib) |              |        |        |  | $^{1}C$        |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|----------------|--|--|--|--|
| (MB) R3376257-1 01/16/19 12:43 |           |              |        |        |  |                |  |  |  |  |
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  | 2              |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  | T              |  |  |  |  |
| Boron                          | U         |              | 12.6   | 200    |  |                |  |  |  |  |
| Calcium                        | U         |              | 46.3   | 1000   |  | <sup>3</sup> S |  |  |  |  |
|                                |           |              |        |        |  | Ĭ              |  |  |  |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3376257-2 01/16/1 | (LCS) R3376257-2 01/16/19 12:46 • (LCSD) R3376257-3 01/16/19 12:49 |            |             |          |           |             |               |                |      |            |  |  |  |  |
|--------------------------|--------------------------------------------------------------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|--|--|--|--|
|                          | Spike Amount                                                       | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |  |  |  |  |
| Analyte                  | ug/l                                                               | ug/l       | ug/l        | %        | %         | %           |               |                | %    | %          |  |  |  |  |
| Boron                    | 1000                                                               | 1000       | 979         | 100      | 97.9      | 80.0-120    |               |                | 2.19 | 20         |  |  |  |  |
| Calcium                  | 10000                                                              | 10100      | 9860        | 101      | 98.6      | 80.0-120    |               |                | 2.04 | 20         |  |  |  |  |

#### L1060639-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1060639-10 01/16/19 | 9 12:51 • (MS) R3 | 3376257-5 01/   | 16/19 12:57 • (N | ISD) R3376257 | -6 01/16/19 12: | 59       |          |             |                    |                    |        |            | A  |
|---------------------------|-------------------|-----------------|------------------|---------------|-----------------|----------|----------|-------------|--------------------|--------------------|--------|------------|----|
|                           | Spike Amount      | Original Result | MS Result        | MSD Result    | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD    | RPD Limits |    |
| Analyte                   | ug/l              | ug/l            | ug/l             | ug/l          | %               | %        |          | %           |                    |                    | %      | %          | 9  |
| Boron                     | 1000              | 5760            | 6690             | 6690          | 93.0            | 93.3     | 1        | 75.0-125    |                    |                    | 0.0442 | 20         | Sc |
| Calcium                   | 10000             | 175000          | 181000           | 181000        | 68.3            | 64.8     | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.195  | 20         |    |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213168.19

SDG: L1060639

DATE/TIME: 01/21/19 12:26

PAGE: 23 of 28

#### GLOSSARY OF TERMS

#### \*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description                                                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| E         | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).     |
| J         | The identification of the analyte is acceptable; the reported value is an estimate.                                                             |
| O1        | The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference. |
| P1        | RPD value not applicable for sample concentrations less than 5 times the reporting limit.                                                       |
| V         | The sample concentration is too high to evaluate accurate spike recoveries.                                                                     |

PROJECT: 27213168.19

SDG: L1060639

#### **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebra  |
|------------------------|-------------|--------|
| Alaska                 | 17-026      | Nevad  |
| Arizona                | AZ0612      | New H  |
| Arkansas               | 88-0469     | New J  |
| California             | 2932        | New M  |
| Colorado               | TN00003     | New Y  |
| Connecticut            | PH-0197     | North  |
| Florida                | E87487      | North  |
| Georgia                | NELAP       | North  |
| Georgia <sup>1</sup>   | 923         | North  |
| Idaho                  | TN00003     | Ohio-  |
| Illinois               | 200008      | Oklah  |
| Indiana                | C-TN-01     | Orego  |
| lowa                   | 364         | Penns  |
| Kansas                 | E-10277     | Rhode  |
| Kentucky 16            | 90010       | South  |
| Kentucky <sup>2</sup>  | 16          | South  |
| Louisiana              | AI30792     | Tenne  |
| Louisiana <sup>1</sup> | LA180010    | Texas  |
| Maine                  | TN0002      | Texas  |
| Maryland               | 324         | Utah   |
| Massachusetts          | M-TN003     | Vermo  |
| Michigan               | 9958        | Virgin |
| Minnesota              | 047-999-395 | Washi  |
| Mississippi            | TN00003     | West   |
| Missouri               | 340         | Wisco  |
| Montana                | CERT0086    | Wyom   |
|                        |             |        |

| lebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee <sup>14</sup>     | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas ⁵                     | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |
|                             |                   |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213168.19

L1060639

01/21/19 12:26



| and Maria                                                                                                 |                                | 1.1.1.1        | Billing Infor                   | mation:              | -               |              | 1            | 1           | 150            |                     | An             | alysis / (                       | ontaine               | r / Pres                 | ervative         | -            | 1           | Cita             | in of Custody                                                                                          | Page of              |
|-----------------------------------------------------------------------------------------------------------|--------------------------------|----------------|---------------------------------|----------------------|-----------------|--------------|--------------|-------------|----------------|---------------------|----------------|----------------------------------|-----------------------|--------------------------|------------------|--------------|-------------|------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| CS Engineers - KS<br>575 W. 110th Street<br>overland Park, KS 66210                                       |                                |                | Accounts<br>8575 W.<br>Overland | Payabl<br>110th S    | treet           | .0           |              | Pres<br>Chk |                |                     | 2              |                                  |                       |                          |                  |              |             |                  | <u> Clean</u> tri                                                                                      | 1999<br>1999<br>1999 |
| eport to:<br>ason Franks                                                                                  | 1                              | -              | Email To: jf<br>jay.martin      |                      |                 |              |              | 1           |                |                     |                | es                               | 9056 125mlHDPE-NoPres |                          |                  |              |             | No.<br>Ph        | 065 Lebanon Rd<br>ount Juliet, TN 3712<br>ione: 615 758-5858<br>ione: 800-767-5859<br>in: 615-758-5859 | HE HE HE             |
| roject<br>Description: KCP&L Sibley Gene                                                                  | rating Station                 |                |                                 | City/Sta<br>Collecte | :d:             |              |              | 1           | 33             | 103                 | FONH           | NoPr                             | DPE-                  |                          |                  |              |             | L                |                                                                                                        | 0639                 |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                                  | Client Project #<br>27213168.1 | 1              | -                               | Lab Pro              | ject #<br>OPKS- | SIBLE        | Y            | J.          | E-HNC          | PE-HN               | 250mlHDPE-HNO3 | Chloride - 9056 125mlHDPE-NoPres | 25mlH                 | oPres                    | es .             |              |             | т                | F05                                                                                                    |                      |
| collected by (print):                                                                                     | Site/Facility ID # P.O. #      |                |                                 |                      | in the          | 1            | 1            |             | 250mlHDPE-HNO3 | 6010 250miHDPE-HNO3 | SomIH          | L25mll                           | 056 13                | DPE-NO                   | 250mlHDPE-NoPres | -            |             |                  | Acctnum: AQU<br>Template:T125                                                                          |                      |
| Collected by (signifyre)                                                                                  | Rush? (U                       | ab MUST Be     |                                 | ified) Quote #       |                 |              |              | -           | ) 250n         | 10 250              | 6010 2         | 9056 1                           | 504 - 9               | SmiHE                    | HDPE             |              |             | 1                | Prelogin: P68                                                                                          | 9274                 |
| Hallfoch                                                                                                  | Next Day<br>Two Day<br>Three D | y 5 Da         | ay (Rad Only)<br>Day (Rad Only) |                      | Date Res        |              | eded         | No.<br>of   | - 6010         | 1.11                | 1 A A          | ride - 9                         | Fluoride, S           | Sulfate 125mlHDPE-NoPres |                  |              |             |                  | PB:<br>Shipped Via:                                                                                    |                      |
| Packed on ice N Y A                                                                                       | Comp/Grab                      | Matrix *       | Depth                           | 1                    | Date            |              | Time         | Cntr        | B, Ca          | Boron               | Calcium        | Chlo                             | Fluo                  | Sulf                     | TDS              | 200          |             |                  | Rømarks                                                                                                | Sample # (tab only   |
| MW-504                                                                                                    | Comp                           | GW             |                                 | 1/1                  | 1/19            |              | 020          | 2           |                |                     | X              |                                  | X                     |                          |                  |              |             |                  |                                                                                                        | -01                  |
| MW-505                                                                                                    | 1 int                          | GW             | ales des                        |                      | 1               | 0            | 945          | 1           | -              | -                   | X              | 1                                | -                     | -                        | -                |              |             |                  | 3                                                                                                      | 0                    |
| MW-506                                                                                                    | 11/2 18-2                      | GW             |                                 |                      |                 | 1            | 110          | 1           |                | 1                   | -              | X                                | -                     | -                        | -                | 100          |             |                  | 140.000                                                                                                | OL                   |
| MW-512                                                                                                    |                                | GW             |                                 | 1                    |                 | 1            | 145          | 2           |                | -                   | X              | -                                | X                     | -                        | -                | -            |             |                  |                                                                                                        | 0                    |
| DUPLICATE 1                                                                                               |                                | GW             |                                 |                      | 1               | 1            | 150          | 2           | 1.000          | -                   | X              | -                                | X                     | -                        |                  |              |             | -                |                                                                                                        | 01                   |
| 512 MS/MSD                                                                                                |                                | GW             | 2                               |                      |                 | 1            | 155          | 2           | 1 1 1 1 1 1 1  | -                   | X              | -                                | X                     | -                        |                  | -            |             | -                |                                                                                                        | 0                    |
| MW-801                                                                                                    |                                | GW             |                                 |                      |                 | C            | 930          | _           | -              | -                   | -              | X                                | -                     | -                        |                  | -            |             | -                |                                                                                                        | 0                    |
| MW-802                                                                                                    |                                | GW             |                                 |                      |                 |              | 010          | 1           |                | -                   | X              |                                  | -                     | -                        | -                | -            | -           | and a            | CREEN: <                                                                                               | 0.5 1.0 6            |
| MW-803                                                                                                    |                                | GW             |                                 |                      | 1               | 1            | 055          | -           | -              | -                   | -              | X                                | -                     | -                        | -                | -            | -           | The              |                                                                                                        | 6                    |
| MW-804                                                                                                    | V                              | GW             |                                 | -                    | Y               | 11           | 135          |             | 2              | ×                   |                |                                  | X                     | -                        | -                | -            | -           | Sam              | ple Receipt                                                                                            | Checklist y          |
| Matrix: Remarks:     SS - Soil AIR - Air F - Filter     GW - Groundwater B - Bioassay     WW - WasteWater |                                |                |                                 |                      |                 | 1            |              |             |                |                     |                |                                  | pH Temp<br>Flow Other |                          |                  |              | COC<br>Bott | signed<br>les ar | resent/Inta<br>//Accurate:<br>crive intact<br>ttles used<br>t volume sen<br>If Applis                  | ti Zy                |
| DW - Drinking Water                                                                                       | Samples ret                    | FedEx          | Courier                         | Time:                | -               | Track        | ing # 4      |             |                | 5869                | S              | Trip                             | Blank R               | eceived                  | Yes /            | No<br>7 MeoH | Pres        | Zero I<br>servat | Headspace:<br>ion Correct/                                                                             | Y                    |
| Religioushed by Stendure Date: 1/1/19                                                                     |                                | 1/19           | 12                              | 50                   | 4               | Ned by: (Sig | mt           | Ju          | es             |                     | Ten            | <b>ν</b> ρ:                      | °C                    | Bottles R                | 14               |              | eservat     | ion required by  | /Login: Date/Tim                                                                                       |                      |
|                                                                                                           |                                |                |                                 |                      |                 | T            | ived for lab |             | 1              | 2)                  |                | Dat                              |                       |                          | Time:            |              | Hold        | d:               |                                                                                                        | Conditio<br>NCF /    |
| Relinquished by : (Signature)                                                                             | 1                              | Date:<br>Date: |                                 | Time:<br>Time:       |                 | T            |              |             | 1              | 2)                  |                | 1.7<br>Dat                       | -1=1-6                | An -                     | 29               |              |             |                  |                                                                                                        |                      |

|                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUL I-fr                     | antion                                      | The second se |           |                   |                | Ana                | alysis / C       | sis / Container / Preservative |        |                      |        | 1                                                    |                   | of Custody Page                                                                                   |                                                                                                                |    |                 |   |
|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------------|----------------|--------------------|------------------|--------------------------------|--------|----------------------|--------|------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----|-----------------|---|
| CS Engineers - KS<br>75 W. 110th Street<br>verland Park, KS 66210            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overland                     | Payable<br>10th Street<br>Park, KS 66210    | )<br>)                                                                                                          | Pres Z    | 2                 |                |                    |                  | S                              |        |                      |        |                                                      | 1206              | S Lebanon Rd.                                                                                     |                                                                                                                |    |                 |   |
| son Franks                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email To: jfr<br>jay.martin@ | anks@scsenginee<br>Pkcpl.com;<br>City/State |                                                                                                                 |           |                   | 8              | res                | 125miHDPE-NoPres |                                |        |                      |        | Phor                                                 | WHO DEDOTATED TO  |                                                                                                   |                                                                                                                |    |                 |   |
| oject<br>escription: KCP&L Sibley Generating Station                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Collected:                                  | -                                                                                                               | 33        | 103               | ONH            | Nop                | HDPE             | 245                            |        | 1                    | -      | L#                                                   | 21060             | 639                                                                                               |                                                                                                                |    |                 |   |
| hone: 913-681-0030<br>ax: 913-681-0012                                       | Client Project # 27213168.19                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Lab Project #<br>AQUAOPKS-S                 | IBLEY                                                                                                           |           | 250mIHDPE-HNO3    | 250mlHDPE-HNO3 | 6010 250mlHDPE-HNO | 125mlHDPE-NoPres | 125ml                          | NoPres | res                  |        |                                                      | 100               | ble #                                                                                             | oks.                                                                                                           |    |                 |   |
| collected by (print):<br>W. Martín                                           | Site/Facility ID F                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | P.O. #                                      | 201.20                                                                                                          |           |                   |                |                    |                  | HIMOS                          | 250ml  | i 125m               | 9056 3 | HDPE-N                                               | 250mIHDPE-NoPres  | -                                                                                                 | +                                                                                                              | Te | emplate:T129789 | • |
| Collected by (signature):                                                    |                                                       | Rush? (Lab MUST Be Notified) Quote #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                             | and and the                                                                                                     |           |                   | 10 2           | 010                | 9056             | 504 -                          | Smit   | ICHU                 |        | Prelogin: P689274<br>TSR: 206 - Jeff Carr            |                   |                                                                                                   |                                                                                                                |    |                 |   |
| Immediately<br>Packed on Ice N Y )c                                          | Next Day 5 Day (Rad Only)<br>Two Day10 Day (Rad Only) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Rest                    |                                             |                                                                                                                 | Ca - 6010 | Boron - 6010      | Calcium - 6    |                    |                  |                                | S 250m |                      |        | -                                                    | 8:<br>hipped Via: | mpin # (lab only)                                                                                 |                                                                                                                |    |                 |   |
| Sample ID                                                                    | Comp/Grab                                             | Matrix *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth                        | Date                                        | Time                                                                                                            | Cntrs     | œ                 | Bor            | Cat                | CP               | Flu                            | X Su   | × TDS                |        |                                                      | -                 |                                                                                                   | 10                                                                                                             |    |                 |   |
| MW-86R                                                                       | comp                                                  | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 1/11/19                                     | 1220                                                                                                            | 3         | 1 1 1 1 2 2 2 2 2 | 1.0            | -                  | 1                | -                              | x      | X                    |        |                                                      |                   | 1.000                                                                                             | 11                                                                                                             |    |                 |   |
| DUPLICATE 2                                                                  | 1                                                     | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 1                                           |                                                                                                                 | -         | -                 |                | -                  |                  |                                | x      | x                    |        |                                                      | 1                 | 6                                                                                                 | 10                                                                                                             |    |                 |   |
| BOLGE MS/ MSD                                                                | 4                                                     | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.15                         | X                                           | 1225                                                                                                            | 3         | ^                 |                |                    |                  |                                |        |                      |        |                                                      | -                 | 1                                                                                                 |                                                                                                                |    |                 |   |
|                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                             |                                                                                                                 |           |                   | -              | -                  | -                | -                              | -      |                      |        |                                                      |                   |                                                                                                   |                                                                                                                |    |                 |   |
|                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                             | -                                                                                                               | +         |                   |                |                    |                  |                                |        |                      |        |                                                      |                   |                                                                                                   |                                                                                                                |    |                 |   |
|                                                                              | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            |                                             |                                                                                                                 |           |                   |                |                    | -                | -                              | -      | -                    | -      |                                                      |                   |                                                                                                   |                                                                                                                |    |                 |   |
|                                                                              |                                                       | 1 Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            | -                                           | -                                                                                                               | +         | -                 | -              |                    | -                |                                |        |                      |        |                                                      |                   | SCREEN: <                                                                                         | the second s |    |                 |   |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                             |                                                                                                                 | 2         |                   |                |                    |                  | pH                             |        | emp                  |        | COC S<br>Bottl                                       | es ar             | <pre>&gt;&gt;le Receipt Che resent/Intact: /Accurate: rive intact: ttles used: volume sent:</pre> |                                                                                                                |    |                 |   |
| WW - WasteWater<br>DW - Drinking Water<br>OT - Other                         | Samples retu<br>UPSF                                  | urned via:<br>FedEx(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Courler                      |                                             | Tracking #<br>Received by: (Signature                                                                           |           |                   |                | A                  | Tri              | Trip Blank Received: Yes / 10  |        |                      | MeoH   | VOA Zero Headspace:<br>Preservation Correct/Checked: |                   |                                                                                                   |                                                                                                                |    |                 |   |
| Relingenched by Stepatore                                                    |                                                       | successive statements where the successive statements where th | 11/19                        | Time:<br>1250                               | Received by: (Sil                                                                                               | 1         | A                 | yl             | W                  | Те               | mp:                            | °C     | TBR<br>Bottles I     |        | If pres                                              | servati           | on required by Log                                                                                | gin: Date/Time                                                                                                 |    |                 |   |
| Relinquished by : (Signature)                                                |                                                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | Time:                                       | Received for lab                                                                                                |           |                   |                |                    |                  | 1.71-1.6%<br>Date:             |        | 2,9<br>Time:<br>0830 |        | Hold:                                                |                   |                                                                                                   | Condition:<br>NCF / OK                                                                                         |    |                 |   |

# Jeff Carr

From: Sent: To: Subject:

Franks, Jason <JFranks@scsengineers.com> Monday, January 14, 2019 11:35 AM Jeff Carr

Re: Pace Analytical National Login for 27213168.19 Sibley Generating Station L1060639.

512 ms mad duplicate should be analyzed for chloride not fluoride.

Sent from my Verizon, Samsung Galaxy smartphone

To: "Franks, Jason" <//r>
JFranks@scsengineers.com>, bob.beck@kcpl.com, jay.martin@kcpl.com, "Rockhold, Subject: Pace Analytical National Login for 27213168.19 Sibley Generating Station L1060639 From: Jeff Carr <jcarr@pacenational.com> John" <JRockhold@scsengineers.com> Date: 1/12/19 4:51 PM (GMT-06:00) · Original message -

Thank you for choosing Pace National! Please find enclosed PDF files containing your laboratory login confirmation and chain of custody.

Manager to learn how to create historical Excel tables or access data in real time using powerful and intuitive software Pace National is leading the laboratory industry with our On-line Data Management tools. Please contact your Project that is only available at https://www.pacenational.com.

Visit Pace National's secure data management web site - myData - for all your reporting and data management needs at https://www.pacenational.com/login

Pace National ... "Your Lab of Choice"

Jeff Carr Technical Service Representative 615-773-9667

Pace Analytical National 12065 Lebanon Rd. Mt. Juliet, TN 37122 Notice: This communication and any attached files may contain privileged or other confidential information. If you have received this in error, please contact the sender immediately via reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you, Jared Morrison December 16, 2022

### ATTACHMENT 1-2 March 2019 Sampling Event Laboratory Report



#### ANALYTICAL REPORT March 20, 2019

#### **SCS Engineers - KS**

| Sample Delivery Group: | L1078397                  |
|------------------------|---------------------------|
| Samples Received:      | 03/13/2019                |
| Project Number:        | 27213168.18               |
| Description:           | Sibley Generating Station |

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approach of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

#### TABLE OF CONTENTS

| E. | ₩               |  |
|----|-----------------|--|
|    | <sup>1</sup> Cp |  |
|    | <sup>2</sup> Tc |  |
|    | <sup>3</sup> Ss |  |
|    | <sup>4</sup> Cn |  |
|    | ⁵Sr             |  |
|    | <sup>6</sup> Qc |  |
|    | <sup>7</sup> Gl |  |
|    | <sup>8</sup> AI |  |
|    | °Sc             |  |
|    |                 |  |

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-504 L1078397-01                         | 6  |
| MW-505 L1078397-02                         | 7  |
| MW-512 L1078397-03                         | 8  |
| DUPLICATE 1 L1078397-04                    | 9  |
| MW-801 L1078397-05                         | 10 |
| MW-802 L1078397-06                         | 11 |
| MW-804 L1078397-07                         | 12 |
| MW-806R L1078397-08                        | 13 |
| DUPLICATE 2 L1078397-09                    | 14 |
| Qc: Quality Control Summary                | 15 |
| Gravimetric Analysis by Method 2540 C-2011 | 15 |
| Wet Chemistry by Method 9056A              | 16 |
| Metals (ICP) by Method 6010B               | 18 |
| GI: Glossary of Terms                      | 19 |
| Al: Accreditations & Locations             | 20 |
| Sc: Sample Chain of Custody                | 21 |
|                                            |    |

SDG: L1078397

DATE/TIME: 03/20/19 11:20

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

<sup>2</sup>Tc

³Ss

⁴Cn

Sr

Qc

GI

<sup>°</sup>Al

°Sc

| MW-504 L1078397-01 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 09:55              | Received da 03/13/19 08:             |                                                    |        |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------------------|--------|
| /lethod                                                                                                     | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Vet Chemistry by Method 9056A<br>Ietals (ICP) by Method 6010B                                               | WG1251927<br>WG1249633              | 1<br>1      | 03/19/19 22:06<br>03/16/19 08:36                   | 03/19/19 22:06<br>03/19/19 17:53                   | ELN<br>CCE                           | Mt. Juliet, TN<br>Mt. Juliet, TN                   |        |
| WW-505 L1078397-02 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 10:40              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Metals (ICP) by Method 6010B                                                                                | WG1249633                           | 1           | 03/16/19 08:36                                     | 03/19/19 17:56                                     | CCE                                  | Mt. Juliet, TN                                     |        |
| MW-512 L1078397-03 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 11:25              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B                                               | WG1251927<br>WG1249633              | 1<br>1      | 03/19/19 18:56<br>03/16/19 08:36                   | 03/19/19 18:56<br>03/19/19 16:56                   | ELN<br>CCE                           | Mt. Juliet, TN<br>Mt. Juliet, TN                   |        |
| DUPLICATE 1 L1078397-04 GW                                                                                  |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 11:25              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Net Chemistry by Method 9056A<br>Netals (ICP) by Method 6010B                                               | WG1251927<br>WG1249633              | 1<br>1      | 03/19/19 22:22<br>03/16/19 08:36                   | 03/19/19 22:22<br>03/19/19 17:59                   | ELN<br>CCE                           | Mt. Juliet, TN<br>Mt. Juliet, TN                   |        |
| MW-801 L1078397-05 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 12:10              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Net Chemistry by Method 9056A                                                                               | WG1251927                           | 5           | 03/19/19 22:38                                     | 03/19/19 22:38                                     | ELN                                  | Mt. Juliet, TN                                     |        |
| MW-802 L1078397-06 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 12:45              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Metals (ICP) by Method 6010B                                                                                | WG1249633                           | 1           | 03/16/19 08:36                                     | 03/19/19 18:01                                     | CCE                                  | Mt. Juliet, TN                                     |        |
| MW-804 L1078397-07 GW                                                                                       |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 14:05              | Received date/time<br>03/13/19 08:45 |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B                                               | WG1251927<br>WG1249633              | 1<br>1      | 03/19/19 22:54<br>03/16/19 08:36                   | 03/19/19 22:54<br>03/19/19 18:04                   | ELN<br>CCE                           | Mt. Juliet, TN<br>Mt. Juliet, TN                   |        |
| MW-806R L1078397-08 GW                                                                                      |                                     |             | Collected by<br>Whit Martin                        | Collected date/time<br>03/12/19 13:20              | Received da<br>03/13/19 08:          |                                                    |        |
| Method                                                                                                      | Batch                               | Dilution    | Preparation<br>date/time                           | Analysis<br>date/time                              | Analyst                              | Location                                           |        |
| Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B | WG1251060<br>WG1251927<br>WG1249633 | 1<br>5<br>1 | 03/18/19 10:51<br>03/20/19 04:12<br>03/16/19 08:36 | 03/18/19 13:36<br>03/20/19 04:12<br>03/19/19 17:06 | AEC<br>ELN<br>CCE                    | Mt. Juliet, TN<br>Mt. Juliet, TN<br>Mt. Juliet, TN |        |
| ACCOUNT:<br>SCS Engineers - KS                                                                              | PROJECT: 27213168.18                |             | SDG:<br>L1078397                                   |                                                    | DATE/TIME:<br>03/20/19 11:20         |                                                    | Р<br>3 |

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| DUPLICATE 2 L1078397-09 GW                 |           |          | Collected by<br>Whit Martin | Collected date/time<br>03/12/19 13:20 | Received da<br>03/13/19 08:4 |                |
|--------------------------------------------|-----------|----------|-----------------------------|---------------------------------------|------------------------------|----------------|
| Method                                     | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
|                                            |           |          | date/time                   | date/time                             |                              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1251060 | 1        | 03/18/19 10:51              | 03/18/19 13:36                        | AEC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1251927 | 5        | 03/19/19 23:58              | 03/19/19 23:58                        | ELN                          | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1249633 | 1        | 03/16/19 08:36              | 03/19/19 18:07                        | CCE                          | Mt. Juliet, TN |

\*

Ср

| ACCOUNT:          |   |  |  |  |  |
|-------------------|---|--|--|--|--|
| SCS Engineers - k | ŝ |  |  |  |  |

SDG: L1078397 DATE/TIME: 03/20/19 11:20

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213168.18

SDG: L1078397

DATE/TIME: 03/20/19 11:20

PAGE: 5 of 22

## SAMPLE RESULTS - 01

\*

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                   | ,             |           |      |          |                  |           | L'Cr            |
|-------------------|---------------|-----------|------|----------|------------------|-----------|-----------------|
|                   | Result        | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср              |
| Analyte           | ug/l          |           | ug/l |          | date / time      |           | 2               |
| Sulfate           | 35100         |           | 5000 | 1        | 03/19/2019 22:06 | WG1251927 | <sup>2</sup> Tc |
| Metals (ICP) by N | /lethod 6010B |           |      |          |                  |           | <sup>3</sup> Ss |
|                   | Result        | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte           | ug/l          |           | ug/l |          | date / time      |           | <sup>4</sup> Cr |
| Calcium           | 35400         |           | 1000 | 1        | 03/19/2019 17:53 | WG1249633 |                 |

## Collected date/time: 03/12/19 10:40

#### SAMPLE RESULTS - 02 L1078397



Metals (ICP) by Method 6010B

|         | 00108  |           |      |          |                  |           |   | 'cn |
|---------|--------|-----------|------|----------|------------------|-----------|---|-----|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |   | Ср  |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | ī | 2   |
| Calcium | 24900  |           | 1000 | 1        | 03/19/2019 17:56 | WG1249633 |   | ⁻Tc |



SDG: L1078397

DATE/TIME: 03/20/19 11:20 PAGE: 7 of 22

## Collected date/time: 03/12/19 11:25

#### SAMPLE RESULTS - 03 L1078397

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                 |              |           |      |          |                  |                  | ľ( |
|-----------------|--------------|-----------|------|----------|------------------|------------------|----|
|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch            |    |
| Analyte         | ug/l         |           | ug/l |          | date / time      |                  | 2  |
| Chloride        | 4380         |           | 1000 | 1        | 03/19/2019 18:56 | <u>WG1251927</u> |    |
| Sulfate         | 44200        |           | 5000 | 1        | 03/19/2019 18:56 | <u>WG1251927</u> |    |
|                 |              |           |      |          |                  |                  | 3  |
| Metals (ICP) by | Method 6010B |           |      |          |                  |                  | Ľ  |
|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch            | 4  |
| Analyte         | ug/l         |           | ug/l |          | date / time      |                  |    |
| Coleium         | 100000       |           | 1000 | 4        | 02/10/2010 10-50 | WC1240C22        |    |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |
|---------|--------|-----------|------|----------|------------------|-----------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | CII       |
| Calcium | 108000 |           | 1000 | 1        | 03/19/2019 16:56 | WG1249633 | 5         |

#### SAMPLE RESULTS - 04 L1078397

¥

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
|-----------------|--------------|-----------|------|----------|------------------|-----------|-----------------|
| Analyte         | ug/l         |           | ug/l |          | date / time      |           | 2               |
| Chloride        | 4360         |           | 1000 | 1        | 03/19/2019 22:22 | WG1251927 | É T c           |
| Sulfate         | 44400        |           | 5000 | 1        | 03/19/2019 22:22 | WG1251927 |                 |
| Metals (ICP) by | Method 6010B |           |      |          |                  |           | <sup>3</sup> Ss |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |   |
|---------|--------|-----------|------|----------|------------------|-----------|-----------|---|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | CII       | 1 |
| Calcium | 109000 |           | 1000 | 1        | 03/19/2019 17:59 | WG1249633 | 5_        |   |

## Collected date/time: 03/12/19 12:10

#### SAMPLE RESULTS - 05 L1078397

¥

Ср

#### Wet Chemistry by Method 9056A

|          | , , |                |           |      |          |                  |           | L' C |
|----------|-----|----------------|-----------|------|----------|------------------|-----------|------|
|          | R   | esult <u>G</u> | Qualifier | RDL  | Dilution | Analysis         | Batch     |      |
| Analyte  | u   | ıg/l           |           | ug/l |          | date / time      |           | 2    |
| Chloride | 14  | 44000          |           | 5000 | 5        | 03/19/2019 22:38 | WG1251927 | ¯Τα  |

| <sup>2</sup> Tc |  |
|-----------------|--|
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |
| °Sc             |  |

#### SAMPLE RESULTS - 06 L1078397



Ср

#### Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           | <br>1' |
|---------|--------|-----------|------|----------|------------------|-----------|--------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |        |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2      |
| Calcium | 107000 |           | 1000 | 1        | 03/19/2019 18:01 | WG1249633 | T      |



PROJECT: 27213168.18

SDG: L1078397

DATE/TIME: 03/20/19 11:20 PAGE: 11 of 22

#### SAMPLE RESULTS - 07 L1078397

Qc

Gl

Â

Sc

#### Wet Chemistry by Method 9056A

|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     | 'C             |
|-----------------|--------------|-----------|------|----------|------------------|-----------|----------------|
| Analyte         | ug/l         |           | ug/l |          | date / time      |           |                |
| Sulfate         | ND           |           | 5000 | 1        | 03/19/2019 22:54 | WG1251927 | <sup>2</sup> T |
| Metals (ICP) by | Method 6010B |           |      |          |                  |           | <sup>3</sup> S |
|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                |
| Analyte         | ug/l         |           | ug/l |          | date / time      |           | <sup>4</sup>   |
| Boron           | 5710         |           | 200  | 1        | 03/19/2019 18:04 | WG1249633 |                |

Sulfate

#### SAMPLE RESULTS - 08 L1078397

ΆI

Sc

#### Gravimetric Analysis by Method 2540 C-2011

256000

| Oravimetric Analy | sis by Method 2 | -5+0 C-20 | /11   |          |                  |           | $^{1}$ Cn       |
|-------------------|-----------------|-----------|-------|----------|------------------|-----------|-----------------|
|                   | Result          | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср              |
| Analyte           | ug/l            |           | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids  | 681000          |           | 13300 | 1        | 03/18/2019 13:36 | WG1251060 | Tc              |
| Wet Chemistry by  | Method 9056A    | A         |       |          |                  |           | <sup>3</sup> Ss |
|                   | Result          | Qualifier | RDL   | Dilution | Analysis         | Batch     |                 |
| Analyte           | ug/l            |           | ug/l  |          | date / time      |           | <sup>4</sup> Cn |
| Culfete           | 250000          |           | 25000 | -        | 02/20/2010 04:12 | WC12E1027 |                 |

03/20/2019 04:12

WG1251927

#### Metals (ICP) by Method 6010B

| Metals (ICP) by | Metals (ICP) by Method 6010B |           |      |          |                  |                  |                 |  |
|-----------------|------------------------------|-----------|------|----------|------------------|------------------|-----------------|--|
|                 | Result                       | Qualifier | RDL  | Dilution | Analysis         | Batch            | 6               |  |
| Analyte         | ug/l                         |           | ug/l |          | date / time      |                  | ိုင္ရင          |  |
| Boron           | 5750                         |           | 200  | 1        | 03/19/2019 17:06 | WG1249633        |                 |  |
| Calcium         | 173000                       | V         | 1000 | 1        | 03/19/2019 17:06 | <u>WG1249633</u> | <sup>7</sup> Gl |  |
|                 |                              |           |      |          |                  |                  | 01              |  |

5

25000

#### SAMPLE RESULTS - 09 L1078397

Cn

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

256000

|                  | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch     | Cp             |
|------------------|--------------|-----------|-------|----------|------------------|-----------|----------------|
| Analyte          | ug/l         |           | ug/l  |          | date / time      |           | 2              |
| Dissolved Solids | 717000       |           | 13300 | 1        | 03/18/2019 13:36 | WG1251060 | Tc             |
| Wet Chemistry by | Method 9056A |           |       |          |                  |           | ³Ss            |
|                  | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch     |                |
| Analyte          | ug/l         |           | ug/l  |          | date / time      |           | <sup>4</sup> C |

03/19/2019 23:58

WG1251927

#### Metals (ICP) by Method 6010B

Sulfate

| Metals (ICP) by Method 6010B |        |           |      |          |                  |           |  |                 |  |  |  |
|------------------------------|--------|-----------|------|----------|------------------|-----------|--|-----------------|--|--|--|
|                              | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  | 6               |  |  |  |
| Analyte                      | ug/l   |           | ug/l |          | date / time      |           |  | <sup>°</sup> Qc |  |  |  |
| Boron                        | 5670   |           | 200  | 1        | 03/19/2019 18:07 | WG1249633 |  |                 |  |  |  |
| Calcium                      | 171000 |           | 1000 | 1        | 03/19/2019 18:07 | WG1249633 |  | <sup>7</sup> Gl |  |  |  |
|                              |        |           |      |          |                  |           |  |                 |  |  |  |

5

25000

### WG1251060

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3393128-1 03 | /IB) R3393128-1 03/18/19 13:36 |              |        |        |  |  |  |
|--------------------|--------------------------------|--------------|--------|--------|--|--|--|
|                    | MB Result                      | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte            | ug/l                           |              | ug/l   | ug/l   |  |  |  |
| Dissolved Solids   | U                              |              | 2820   | 10000  |  |  |  |

#### L1079558-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1079558-03 03 | 3/18/19 13:36 • (DU | P) R3393128-3 | 03/18/19 1 | 3:36    |               |                   |
|---------------------|---------------------|---------------|------------|---------|---------------|-------------------|
|                     | Original Resu       | It DUP Result | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte             | ug/l                | ug/l          |            | %       |               | %                 |
| Dissolved Solids    | 301000              | 295000        | 1          | 2.01    |               | 5                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3393128-2 03 | 3/18/19 13:36 |            |          |             |               |
|---------------------|---------------|------------|----------|-------------|---------------|
|                     | Spike Amount  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte             | ug/l          | ug/l       | %        | %           |               |
| Dissolved Solids    | 8800000       | 8480000    | 96.4     | 85.0-115    |               |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

### WG1251927

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

| (MB) R3393205-1 ( | 03/19/19 18:05 |              |        |        |
|-------------------|----------------|--------------|--------|--------|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l           |              | ug/l   | ug/l   |
| Chloride          | U              |              | 51.9   | 1000   |
| Sulfate           | U              |              | 77.4   | 5000   |
|                   |                |              |        |        |

#### L1078397-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1078397-03 03/19/ | (OS) L1078397-03 03/19/19 18:56 • (DUP) R3393205-3 03/19/19 19:11 |            |          |         |               |                   |  |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|--|
|                         | Original Result                                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |  |
| Analyte                 | ug/l                                                              | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |  |
| Chloride                | 4380                                                              | 4380       | 1        | 0.0206  |               | 15                |  |  |  |  |  |  |  |
| Sulfate                 | 44200                                                             | 44300      | 1        | 0.134   |               | 15                |  |  |  |  |  |  |  |

### L1078452-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1078452-04 03/20/ | 19 02:37 • (DUF | P) R3393205-1 | 0 03/20/1 | 9 02:53 |               |                   |  |  |  |
|-------------------------|-----------------|---------------|-----------|---------|---------------|-------------------|--|--|--|
|                         | Original Result | DUP Result    | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                 | ug/l            | ug/l          |           | %       |               | %                 |  |  |  |
| Chloride                | 4740            | 4710          | 1         | 0.722   |               | 15                |  |  |  |
| Sulfate                 | 52100           | 52000         | 1         | 0.195   |               | 15                |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3393205-2 03/19 | CS) R3393205-2 03/19/19 18:21 |            |          |             |               |  |  |  |  |  |
|------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                        | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |  |
| Chloride               | 40000                         | 40700      | 102      | 80.0-120    |               |  |  |  |  |  |
| Sulfate                | 40000                         | 41100      | 103      | 80.0-120    |               |  |  |  |  |  |

#### L1078397-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1078397-03 03/19/19 18:56 • (MS) R3393205-4 03/19/19 19:27 • (MSD) R3393205-5 03/19/19 19:43 |              |                 |           |            |         |          |          |             |              |               |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride                                                                                           | 50000        | 4380            | 55100     | 55700      | 101     | 103      | 1        | 80.0-120    |              |               | 1.19  | 15         |
| Sulfate                                                                                            | 50000        | 44200           | 93500     | 94100      | 98.6    | 99.8     | 1        | 80.0-120    |              |               | 0.615 | 15         |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:    |
|--------------------|-------------|----------|----------------|----------|
| SCS Engineers - KS | 27213168.18 | L1078397 | 03/20/19 11:20 | 16 of 22 |



Â

Sc

⁺Cn

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

1

Τс

Ss

Cn

Sr

Qc

#### L1078397-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1078397-08 03/19/19                                                                                                         | (OS) L1078397-08 03/19/19 23:10 • (MS) R3393205-6 03/19/19 23:26 • (MSD) R3393205-7 03/19/19 23:42 |        |        |        |      |      |   |          |    |    |        |    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|------|------|---|----------|----|----|--------|----|--|--|
| Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |                                                                                                    |        |        |        |      |      |   |          |    |    |        |    |  |  |
| Analyte                                                                                                                           | ug/l                                                                                               | ug/l   | ug/l   | ug/l   | %    | %    |   | %        |    |    | %      | %  |  |  |
| Chloride                                                                                                                          | 50000                                                                                              | 29300  | 79400  | 79000  | 100  | 99.4 | 1 | 80.0-120 |    |    | 0.470  | 15 |  |  |
| Sulfate                                                                                                                           | 50000                                                                                              | 257000 | 288000 | 288000 | 62.2 | 62.4 | 1 | 80.0-120 | EV | EV | 0.0316 | 15 |  |  |

#### L1078452-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1078452-01 03/20/1 | (OS) L1078452-01 03/20/19 01:33 • (MS) R3393205-8 03/20/19 01:49 • (MSD) R3393205-9 03/20/19 02:05 |                 |           |            |         |          |          |             |              |               |         |            |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|---------|------------|--|--|
|                          | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD     | RPD Limits |  |  |
| Analyte                  | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %       | %          |  |  |
| Chloride                 | 50000                                                                                              | 15700           | 66200     | 66200      | 101     | 101      | 1        | 80.0-120    |              |               | 0.00423 | 15         |  |  |
| Sulfate                  | 50000                                                                                              | 1420000         | 1360000   | 1360000    | 0.000   | 0.000    | 1        | 80.0-120    | EV           | ΕV            | 0.0425  | 15         |  |  |

| <sup>7</sup> Gl |
|-----------------|
| <sup>8</sup> AI |
| °Sc             |
|                 |

### WG1249633

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1078397-01,02,03,04,06,07,08,09

Тс

Cn Sr

Ss

Sc

Method Blank (MB)

|                    | ( )           |              |        |        |
|--------------------|---------------|--------------|--------|--------|
| (MB) R3393175-1 03 | 3/19/19 16:48 |              |        |        |
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | ug/l          |              | ug/l   | ug/l   |
| Boron              | U             |              | 12.6   | 200    |
| Calcium            | U             |              | 46.3   | 1000   |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3393175-2 03/19/19 16:51 • (LCSD) R3393175-3 03/19/19 16:53 |              |            |             |          |           |             |               |                |       |            |  |  |  |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|--|--|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |  |  |
| Analyte                                                            | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |  |  |  |
| Boron                                                              | 1000         | 975        | 987         | 97.5     | 98.7      | 80.0-120    |               |                | 1.16  | 20         |  |  |  |
| Calcium                                                            | 10000        | 9790       | 9750        | 97.9     | 97.5      | 80.0-120    |               |                | 0.431 | 20         |  |  |  |

#### L1078397-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1078397-03 03/19/19 | 9 16:56 • (MS) R | 3393175-5 03    | /19/19 17:01 • (N | /ISD) R3393175 | -6 03/19/19 17: | 04       |          |             |              |               |       |            | 8 |
|---------------------------|------------------|-----------------|-------------------|----------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|---|
|                           | Spike Amount     | Original Result | MS Result         | MSD Result     | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits | L |
| Analyte                   | ug/l             | ug/l            | ug/l              | ug/l           | %               | %        |          | %           |              |               | %     | %          | ć |
| Boron                     | 1000             | ND              | 1070              | 1070           | 97.1            | 97.8     | 1        | 75.0-125    |              |               | 0.681 | 20         |   |
| Calcium                   | 10000            | 108000          | 118000            | 117000         | 93.2            | 86.7     | 1        | 75.0-125    |              |               | 0.554 | 20         |   |

#### L1078397-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1078397-08 03/19/19 17:06 • (MS) R3393175-7 03/19/19 17:09 • (MSD) R3393175-8 03/19/19 17:11 |                                                                                                                                   |        |        |        |      |      |   |          |                    |  |       |    |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|------|------|---|----------|--------------------|--|-------|----|--|--|
|                                                                                                    | Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |        |        |        |      |      |   |          |                    |  |       |    |  |  |
| Analyte                                                                                            | ug/l                                                                                                                              | ug/l   | ug/l   | ug/l   | %    | %    |   | %        |                    |  | %     | %  |  |  |
| Boron                                                                                              | 1000                                                                                                                              | 5750   | 6630   | 6610   | 88.0 | 85.8 | 1 | 75.0-125 |                    |  | 0.334 | 20 |  |  |
| Calcium                                                                                            | 10000                                                                                                                             | 173000 | 179000 | 182000 | 60.0 | 88.1 | 1 | 75.0-125 | $\underline{\vee}$ |  | 1.56  | 20 |  |  |

## GLOSSARY OF TERMS

## \*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                               | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analyte                         | reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E                               | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

V The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213168.18

SDG: L1078397

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebr  |
|------------------------|-------------|-------|
| Alaska                 | 17-026      | Neva  |
| Arizona                | AZ0612      | New   |
| Arkansas               | 88-0469     | New   |
| California             | 2932        | New   |
| Colorado               | TN00003     | New   |
| Connecticut            | PH-0197     | North |
| Florida                | E87487      | North |
| Georgia                | NELAP       | North |
| Georgia <sup>1</sup>   | 923         | North |
| Idaho                  | TN00003     | Ohio  |
| Illinois               | 200008      | Oklal |
| Indiana                | C-TN-01     | Oreg  |
| lowa                   | 364         | Penn  |
| Kansas                 | E-10277     | Rhod  |
| Kentucky <sup>16</sup> | 90010       | South |
| Kentucky <sup>2</sup>  | 16          | South |
| Louisiana              | AI30792     | Tenn  |
| Louisiana <sup>1</sup> | LA180010    | Texa  |
| Maine                  | TN0002      | Texa  |
| Maryland               | 324         | Utah  |
| Massachusetts          | M-TN003     | Verm  |
| Michigan               | 9958        | Virgi |
| Minnesota              | 047-999-395 | Wash  |
| Mississippi            | TN00003     | West  |
| Missouri               | 340         | Wisc  |
| Montana                | CERT0086    | Wyor  |
|                        |             |       |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213168.18

L1078397

PAGE: 20 of 22

03/20/19 11:20

| SCS Engineers - KS                                                                                                                   |                                                                                                                                                               | Billing Inf | ormati                      | on:                          |                                  |                          |                    |             |                                             | A         | nalysis                  | / Conta                                  | iner / Pr        | eservati                  | ve                                           |                              |                            | Chain of Custor                                                                                                | dy Page of                                                                                              |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|------------------------------|----------------------------------|--------------------------|--------------------|-------------|---------------------------------------------|-----------|--------------------------|------------------------------------------|------------------|---------------------------|----------------------------------------------|------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                                                                |                                                                                                                                                               |             | Accoun<br>8575 W<br>Overlar | . 110                        | th Str                           | eet                      |                    | Pres<br>Chk |                                             |           |                          |                                          |                  |                           |                                              |                              |                            |                                                                                                                | National                                                                                                | Center for Testing & Innovation                     |
| Report to:<br>Jason Franks                                                                                                           |                                                                                                                                                               |             | Email To:<br>jay.marti      | n@kcp                        |                                  |                          | eers.com;          |             |                                             |           | N                        |                                          | 125mlHDPE-NoPres |                           |                                              |                              |                            |                                                                                                                | 12065 Lebanon R<br>Mount Juliet, TN                                                                     |                                                     |
| Project<br>Description: KCP&L Sibley Gene                                                                                            | erating Statio                                                                                                                                                | n           | <u>  11-6 - 1-1</u>         | City                         | /State<br>lected:                | -                        | <u></u>            |             | 22                                          | 367       | V                        | Pres                                     |                  | res                       |                                              |                              |                            |                                                                                                                | Phone: 615-758-5<br>Phone: 800-767-5<br>Fax: 615-758-585                                                | 859                                                 |
| Phone: <b>913-681-0030</b><br>Fax: <b>913-681-0012</b>                                                                               | Client Project <b>27213168</b> .                                                                                                                              |             |                             |                              | Lab Project #<br>AQUAOPKS-SIBLEY |                          |                    | E-HNO3      | 250mlHDPE-HNO3                              | DPE-HN    | DPE-No                   | SmIHDF                                   | PE-NoP           |                           |                                              |                              |                            | L#<br>102                                                                                                      | 1078397                                                                                                 |                                                     |
| Collected by (print):<br>Whit Martin                                                                                                 | Site/Facility ID #                                                                                                                                            |             |                             |                              | . #                              |                          |                    |             | 250mIHDPE                                   | mIHDP     | m - 6010 250mlHDPE-HNO3  | de - 9056 125mlHDPE-NoPres               | SO4 - 9056       | SmIHD                     | E-NoPres                                     |                              |                            |                                                                                                                | Acctnum: AC                                                                                             | QUAOPKS                                             |
| Collected by (signature):<br>What Mathe<br>Immediately<br>Packed on Ice N Y X                                                        | Rush?       (Lab MUST Be Notified)        Same Day      Five Day        Next Day      5 Day (Rad Only)        Two Day      10 Day (Rad Only)        Three Day |             |                             |                              |                                  | e Res<br>SH              | ults Needed        | No.<br>of   | - 6010 250n                                 | - 6010    |                          |                                          |                  | e - 9056 125mlHDPE-NoPres | 50mlHDPE-1                                   |                              |                            |                                                                                                                | Template: <b>T1</b><br>Prelogin: <b>P6</b><br>TSR: <b>206 - Jef</b><br>PB:                              | 98295                                               |
| Sample ID                                                                                                                            | Comp/Grab                                                                                                                                                     | Matrix *    | Depth                       | Τ                            | Date                             |                          | Time               | Cntrs       | 10000000                                    | Boron     | Calcium                  | Chloride                                 | Chloride,        | Sulfate -                 | S 2                                          |                              |                            |                                                                                                                | Shipped Via:                                                                                            |                                                     |
| ANN E04                                                                                                                              |                                                                                                                                                               | CIN         | T                           |                              | 1                                | 1                        | Loore              |             | 8,                                          | Bc        | 1                        | 5                                        | 5                |                           | 10                                           |                              |                            |                                                                                                                | Remarks                                                                                                 | Sample # (lab only)                                 |
| MW-504                                                                                                                               | Grab                                                                                                                                                          | GW          |                             | 3                            | 1                                | 19                       | 0955               | 2           | -                                           |           | X                        | Constant<br>Constant                     |                  | X                         |                                              |                              |                            |                                                                                                                | 1                                                                                                       | -01                                                 |
| MW-505                                                                                                                               | Grab                                                                                                                                                          | GW          |                             | 3                            | 1 4                              | 19                       | 1040               | 1           | 1                                           | 1.4.4     | X                        | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                  | 1.1.1.1                   |                                              |                              |                            | 1.1                                                                                                            |                                                                                                         | -02                                                 |
| MW-512                                                                                                                               | Grab                                                                                                                                                          | GW          |                             | 3                            | 121                              | 19                       | 1125               | 2           |                                             | 1. A. A.  | X                        |                                          | X                | Vinter a M                |                                              |                              | -                          | unier.                                                                                                         | 1.1                                                                                                     | - 03                                                |
| DUPLICATE 1                                                                                                                          | Grab                                                                                                                                                          | GW          |                             | 3                            | 1 1                              | 19                       | 1125               | 2           |                                             |           | X                        |                                          | X                |                           | and the second                               |                              |                            | 1.17.17.17                                                                                                     |                                                                                                         | 4000                                                |
| MW-512 MS/MSD                                                                                                                        | Grab                                                                                                                                                          | GW          |                             | 131                          | 171                              | 19                       | 1130               | 2           |                                             |           | X                        |                                          | X                |                           |                                              |                              |                            | an with                                                                                                        | and the second                                                                                          |                                                     |
| MW-801                                                                                                                               | Grab                                                                                                                                                          | GW          | 1.0<br>                     | 3                            | 12/                              | 19                       | 1210               | 1           |                                             | 12.3      |                          | X                                        |                  | Lan                       |                                              |                              |                            | and and a second se | and a state of the second                                                                               | -05                                                 |
| MW-802                                                                                                                               | Grab                                                                                                                                                          | GW          | Second and                  | 3                            | 112/                             | 19                       | 1245               | 1           |                                             |           | X                        |                                          |                  |                           |                                              |                              |                            |                                                                                                                |                                                                                                         | - 96                                                |
| MW-804                                                                                                                               | Grab                                                                                                                                                          | GW          |                             | 3                            | 12/1                             | 19                       | 1405               | 2           |                                             | X         |                          |                                          |                  | X                         |                                              |                              |                            |                                                                                                                |                                                                                                         | -07                                                 |
| MW-806R                                                                                                                              | Grab                                                                                                                                                          | GW          |                             | 3                            | 12/1                             | 19                       | 1320               | 3           | X                                           |           |                          |                                          |                  | X                         | X                                            |                              |                            |                                                                                                                |                                                                                                         | 80,                                                 |
| DUPLICATE 2                                                                                                                          | Grab                                                                                                                                                          | GW          |                             | 31                           | 12/1                             | 19                       | 1320               | 3           | X                                           |           |                          |                                          |                  | x                         | X                                            | 1.4                          |                            | 1                                                                                                              |                                                                                                         | 12:                                                 |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water<br>OT - Other | Remarks:       Samples returned via:      UPSFedExCourier                                                                                                     |             |                             |                              |                                  | 7-                       | racking #          |             |                                             |           |                          | pH<br>Flov                               |                  | Tem<br>Oth                | ip<br>er                                     |                              | COC S:<br>Bottle<br>Correc | eal Print                                                                                                      | Dle Receipt (<br>resent/Intac<br>/Accurate:<br>rive intact:<br>ttles used:<br>volume sent<br>If Applica | t: NP Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |
| Relinquished by : (Signature)                                                                                                        |                                                                                                                                                               |             |                             | Time:                        |                                  | -                        | eceived by: (Signa | ature)      |                                             |           |                          | Trin Pla                                 | nk Roco          | ived:                     | es / No                                      |                              |                            |                                                                                                                | eadspace:<br>on Correct/C                                                                               | YN                                                  |
| Mart Marta                                                                                                                           | 3/12/19 155                                                                                                                                                   |             |                             | 55                           |                                  |                          |                    |             |                                             |           | пр віа                   |                                          |                  | HCL/N<br>TBR              | 1eoH                                         |                              |                            |                                                                                                                |                                                                                                         |                                                     |
| Relinquished by : (Signature)                                                                                                        | Date: Time:                                                                                                                                                   |             |                             | Re                           | Received by: (Signature)         |                          |                    |             | Temp: °C Bottles Received:<br>2.3+1=2.4 2 2 |           |                          |                                          |                  | ved:                      | If preservation required by Login: Date/Time |                              |                            |                                                                                                                |                                                                                                         |                                                     |
| Relinquished by : (Signature)                                                                                                        | Date: Ti                                                                                                                                                      |             | Time:                       | 1000<br>1000<br>1000<br>1000 | Re                               | eceived for lab by Multh |                    | ture)       |                                             | 1.2.2.2.1 | Date: Time:<br>3/13 8:45 |                                          |                  |                           |                                              | Hold: Condition:<br>NCF / OK |                            |                                                                                                                |                                                                                                         |                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Billing Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ormation:                                | on:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                | A              | nalysis                          | / Contai         | ner / Pr                         | eservat                    | ive                    |                                                                     |                                                   | Chain of Custody                                                              | Page of                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------------------------|------------------|----------------------------------|----------------------------|------------------------|---------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8575 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Payable<br>110th Stree<br>d Park, KS 6 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pres<br>Chk    |                |                |                |                                  |                  |                                  |                            |                        |                                                                     |                                                   | National C                                                                    | enter for Testing & Innovation |
| Overland Park, KS 66210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u i uni, i i i i                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  |                  |                                  |                            |                        |                                                                     |                                                   |                                                                               |                                |
| Report to:<br>Jason Franks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @kcpl.com;                               | nks@scsengineers.com;<br>kcpl.com; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  | Pres             |                                  |                            |                        |                                                                     |                                                   | 12065 Lebanon Rd<br>Mount Juliet, TN 37<br>Phone: 615-758-58                  |                                |
| Project<br>Description: KCP&L Sibley Gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rating Statior                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City/State<br>Collected:                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 322            | )3             | 103            | oPres                            | PE-No            | Pres                             |                            |                        |                                                                     |                                                   | Phone: 800-767-58<br>Fax: 615-758-5859                                        |                                |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client Project<br>27213168.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab Project #                            |                                    | EY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 250mlHDPE-HNO3 | 250mlHDPE-HNO3 | 250mlHDPE-HNO3 | IDPE-N                           | 125mlHDPE-NoPres | PE-Nol                           | s                          |                        |                                                                     |                                                   | L#                                                                            | -1078397                       |
| Collected by (print):<br>Whit Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site/Facility ID                        | )#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P.O. #                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | mIHDP          | DMIHDI         | 50mlH          | 125mlH                           | 9056 12          | 25mlHC                           | -NoPre                     |                        |                                                                     |                                                   | Acctnum: AQ                                                                   |                                |
| Collected by (signature):<br>Mathematical<br>Immediately<br>Packed on Ice N Y _X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the start start all a succession        | 10 Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quote #                                  | Results N<br>Std                   | leeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.<br>of      | - 6010 250     | - 6010         | - 6010         | Chloride - 9056 125mlHDPE-NoPres | S04 -            | e - 9056 125mlHDPE-NoPres        | 50mlHDPE-NoPres            |                        |                                                                     |                                                   | Template: <b>T12</b><br>Prelogin: <b>P69</b><br>TSR: <b>206 - Jeff</b><br>PB: | 8295                           |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comp/Grab                               | Matrix *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date                                     |                                    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cntrs          | Ca             | Boron          | Calcium        | hlori                            | Chloride,        | Sulfate -                        | S 2                        |                        |                                                                     | ation of                                          | Shipped Via:                                                                  |                                |
| MWBOGR MS/MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grab                                    | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/12/1                                   | 9 1                                | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3              | X<br>X         | 8              | U              | U                                | 0                | N N                              | X TD                       |                        |                                                                     |                                                   | Remarks                                                                       | Sample # (lab only)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d              |                | 1.00           |                |                                  |                  |                                  |                            | 1997-1997<br>1997-1997 |                                                                     |                                                   |                                                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  |                  | 1.00 m                           |                            | der Franzer            |                                                                     | andra daj                                         |                                                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                | 1. 18 S                          |                  |                                  |                            |                        |                                                                     |                                                   |                                                                               |                                |
| in an ann ann an Airpeannach<br>Iomraichte ann an Airpeannach<br>Iomraichte an Airpeannach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | in series and a second s | n <mark>e en provinsi de la composicione de la composicio</mark> |                                          | Provide Grant of                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  |                  | tane col                         |                            | te sette pa            |                                                                     | n d ortage                                        |                                                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 20 16 AM                             | e de region de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n and the set of                         | frange in                          | Beer day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -71            |                | a cuire        |                | er - 1 (19)                      |                  | 2. (C) 3<br>2. (C) 3<br>2. (C) 4 |                            |                        |                                                                     | and the second                                    | a and a second                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  |                  |                                  |                            | 12/15                  |                                                                     |                                                   |                                                                               |                                |
| and the second sec | City City City City City City City City |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second second                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                                  |                  |                                  |                            |                        |                                                                     | 2                                                 |                                                                               |                                |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remarks:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                    | and the second s |                |                | рН             |                | Tem                              | np               |                                  | COC S                      | eal Priigned,          | <u>ole Receipt C</u><br>resent/Intact<br>/Accurate:<br>rive intact: | ··· Y N                                           |                                                                               |                                |
| WW - WasteWater<br>DW - Drinking Water<br>OT - Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Samples retur                           | ned via:<br>dEx Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | urier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | Trackin                            | ng #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |                | <u> </u>       | Flow Other                       |                  |                                  |                            | Corre                  | ct bot<br>cient                                                     | ttles used:<br>volume sent:<br><u>If Applicat</u> | ole                                                                           |                                |
| Relinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Date:<br>3/12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time:<br>1555                            | Receive                            | ed by: (Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ature)         |                |                |                | Trip Bla                         | nk Rece          | eived:                           | Yes / No<br>HCL / I<br>TBR |                        | VOA Zero Headspace: _Y _N<br>Preservation Correct/Checked: _Y _N    |                                                   |                                                                               |                                |
| Relinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time:                                    | Receive                            | ed by: (Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ature)         |                |                |                | Temp:<br>2.3+.                   | 1=2.4            | °C Bot                           | ttles Rec                  | eived:                 | If prese                                                            | ervatio                                           | on required by Lo                                                             | gin: Date/Time                 |
| Relinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time:                                    |                                    | ed for lab by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Statistics and |                |                |                | Date:                            | 3                |                                  | ne:<br>8:4                 | 3                      | Hold:                                                               |                                                   |                                                                               | Condition:<br>NCF / ØR         |

Jared Morrison December 16, 2022

## ATTACHMENT 1-3 May 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

### SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1102438 05/24/2019 27213169.18 KCP&L Sibley Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: SCS Engineers - KS PROJECT: 27213169.18

SDG: L1102438

## TABLE OF CONTENTS

|   | ₩               |  |
|---|-----------------|--|
|   | <sup>1</sup> Cp |  |
|   | <sup>2</sup> Tc |  |
| [ | <sup>3</sup> Ss |  |
|   | <sup>4</sup> Cn |  |
|   | ⁵Sr             |  |
| [ | <sup>6</sup> Qc |  |
|   | <sup>7</sup> Gl |  |
|   | <sup>8</sup> AI |  |

Sc

| Cp: Cover Page                             | 1  |  |  |  |  |
|--------------------------------------------|----|--|--|--|--|
| Tc: Table of Contents                      | 2  |  |  |  |  |
| Ss: Sample Summary                         |    |  |  |  |  |
| Cn: Case Narrative                         |    |  |  |  |  |
| Sr: Sample Results                         | 6  |  |  |  |  |
| MW-504 L1102438-01                         | 6  |  |  |  |  |
| MW-505 L1102438-02                         | 7  |  |  |  |  |
| MW-506 L1102438-03                         | 8  |  |  |  |  |
| MW-510 L1102438-04                         | 9  |  |  |  |  |
| MW-512 L1102438-05                         | 10 |  |  |  |  |
| MW-601 L1102438-06                         | 11 |  |  |  |  |
| DUPLICATE L1102438-07                      | 12 |  |  |  |  |
| Qc: Quality Control Summary                | 13 |  |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | 13 |  |  |  |  |
| Wet Chemistry by Method 9056A              | 15 |  |  |  |  |
| Metals (ICP) by Method 6010B               | 17 |  |  |  |  |
| GI: Glossary of Terms                      | 18 |  |  |  |  |
| Al: Accreditations & Locations             |    |  |  |  |  |
| Sc: Sample Chain of Custody                | 20 |  |  |  |  |
|                                            |    |  |  |  |  |

SDG: L1102438

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                            | SAMPLES                |          | IARI                         |                                       | ONL                        | LAB. INATION                     |
|--------------------------------------------|------------------------|----------|------------------------------|---------------------------------------|----------------------------|----------------------------------|
| MW-504 L1102438-01 GW                      |                        |          | Collected by<br>Jason Franks | Collected date/time<br>05/22/19 10:45 | Received da 05/24/19 08    |                                  |
| Method                                     | Batch                  | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287422              | 1        | 05/29/19 11:45               | 05/29/19 12:33                        | MMF                        | Mt. Juliet, TN                   |
| Wet Chemistry by Method 9056A              | WG1290105              | 1        | 06/03/19 22:34               | 06/03/19 22:34                        | ELN                        | Mt. Juliet, TI                   |
| Metals (ICP) by Method 6010B               | WG1287640              | 1        | 05/29/19 10:08               | 05/29/19 19:01                        | CCE                        | Mt. Juliet, T                    |
| MW-505 L1102438-02 GW                      |                        |          | Collected by<br>Jason Franks | Collected date/time<br>05/22/19 11:55 | Received da<br>05/24/19 08 |                                  |
| Method                                     | Batch                  | Dilution | Proparation                  |                                       |                            |                                  |
| Method                                     | Balch                  | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287422              | 1        | 05/29/19 11:45               | 05/29/19 12:33                        | MMF                        | Mt. Juliet, TI                   |
| Wet Chemistry by Method 9056A              | WG1290105              | 1        | 06/03/19 22:52               | 06/03/19 22:52                        | ELN                        | Mt. Juliet, TI                   |
| Metals (ICP) by Method 6010B               | WG1287640              | 1        | 05/29/19 10:08               | 05/29/19 19:04                        | CCE                        | Mt. Juliet, TN                   |
|                                            |                        |          | Collected by                 | Collected date/time                   | Received da                | te/time                          |
| MW-506 L1102438-03 GW                      |                        |          | Jason Franks                 | 05/22/19 12:35                        | 05/24/19 08                | :00                              |
| Method                                     | Batch                  | Dilution | Preparation                  | Analysis                              | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287422              | 1        | date/time<br>05/29/19 11:45  | date/time<br>05/29/19 12:33           | MMF                        | Mt. Juliet, T                    |
| Wet Chemistry by Method 9056A              | WG1287422<br>WG1290105 | 1        | 05/29/19 11:45               | 06/03/19 23:09                        | ELN                        | Mt. Juliet, TI<br>Mt. Juliet, TI |
| Metals (ICP) by Method 6010B               | WG1290105<br>WG1287640 | 1        | 05/29/19 10:08               | 05/29/19 19:06                        | CCE                        | Mt. Juliet, T                    |
|                                            | W01287040              | I        | 03/23/13 10.08               | 03/23/13 13:00                        | CCL                        | Mit. Juliet, II                  |
|                                            |                        |          | Collected by                 | Collected date/time                   | Received da                |                                  |
| MW-510 L1102438-04 GW                      |                        |          | Jason Franks                 | 05/22/19 15:35                        | 05/24/19 08                | :00                              |
| Method                                     | Batch                  | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287425              | 1        | 05/29/19 09:09               | 05/29/19 10:01                        | MMF                        | Mt. Juliet, TI                   |
| Wet Chemistry by Method 9056A              | WG1290105              | 1        | 06/03/19 23:27               | 06/03/19 23:27                        | ELN                        | Mt. Juliet, TI                   |
| Metals (ICP) by Method 6010B               | WG1287640              | 1        | 05/29/19 10:08               | 05/29/19 19:09                        | CCE                        | Mt. Juliet, T                    |
|                                            |                        |          | Collected by                 | Collected date/time                   | Received da                | te/time                          |
| MW-512 L1102438-05 GW                      |                        |          | Jason Franks                 | 05/22/19 14:25                        | 05/24/19 08                | :00                              |
| Method                                     | Batch                  | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287425              | 1        | 05/29/19 09:09               | 05/29/19 10:01                        | MMF                        | Mt. Juliet, T                    |
| Wet Chemistry by Method 9056A              | WG1290105              | 1        | 06/03/19 23:45               | 06/03/19 23:45                        | ELN                        | Mt. Juliet, T                    |
| Metals (ICP) by Method 6010B               | WG1287640              | 1        | 05/29/19 10:08               | 05/29/19 19:11                        | CCE                        | Mt. Juliet, TI                   |
|                                            |                        |          | Collected by                 | Collected date/time                   | Received da                | te/time                          |
| MW-601 L1102438-06 GW                      |                        |          | Jason Franks                 | 05/22/19 13:25                        | 05/24/19 08                | :00                              |
| Method                                     | Batch                  | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287425              | 1        | 05/29/19 09:09               | 05/29/19 10:01                        | MMF                        | Mt. Juliet, TI                   |
| Wet Chemistry by Method 9056A              | WG1290105              | 1        | 06/03/19 18:28               | 06/03/19 18:28                        | ELN                        | Mt. Juliet, TI                   |
| Metals (ICP) by Method 6010B               | WG1287640              | 1        | 05/29/19 10:08               | 05/29/19 18:36                        | CCE                        | Mt. Juliet, TN                   |

SDG: L1102438

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

|                                            |           |          |                | Collected date/time | Received da | te/time        |
|--------------------------------------------|-----------|----------|----------------|---------------------|-------------|----------------|
| DUPLICATE L1102438-07 GW                   |           |          |                | 05/22/19 13:35      | 05/24/19 08 | 00             |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst     | Location       |
|                                            |           |          | date/time      | date/time           |             |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287425 | 1        | 05/29/19 09:09 | 05/29/19 10:01      | MMF         | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1290105 | 1        | 06/04/19 00:02 | 06/04/19 00:02      | ELN         | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1287640 | 1        | 05/29/19 10:08 | 05/29/19 19:14      | CCE         | Mt. Juliet, TN |

\*

Ср

| A     | CCOUNT:     |    |
|-------|-------------|----|
| SCS E | Engineers - | KS |

PROJECT: 27213169.18

SDG: L1102438

DATE/TIME: 06/04/19 11:28

PAGE: 4 of 20

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213169.18

SDG: L1102438 DATE/TIME: 06/04/19 11:28

**ИЕ:** 1:28 PAGE: 5 of 20

#### SAMPLE RESULTS - 01 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | Ср |
|------------------|--------|-----------|-------|----------|------------------|------------------|----|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2  |
| Dissolved Solids | 197000 |           | 10000 | 1        | 05/29/2019 12:33 | <u>WG1287422</u> | Tc |

#### Wet Chemistry by Method 9056A

| Wet Chemistry | by Method 90564 | 4         |      |          |                  |           | [ |
|---------------|-----------------|-----------|------|----------|------------------|-----------|---|
|               | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch     | [ |
| Analyte       | ug/l            |           | ug/l |          | date / time      |           |   |
| Chloride      | ND              |           | 1000 | 1        | 06/03/2019 22:34 | WG1290105 |   |
| Fluoride      | 176             |           | 100  | 1        | 06/03/2019 22:34 | WG1290105 |   |
| Sulfate       | 36300           |           | 5000 | 1        | 06/03/2019 22:34 | WG1290105 |   |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:01 | WG1287640 |
| Calcium | 33100  |           | 1000 | 1        | 05/29/2019 19:01 | WG1287640 |

#### SAMPLE RESULTS - 02 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср              |
|------------------|--------|-----------|-------|----------|------------------|-----------|-----------------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids | 180000 |           | 10000 | 1        | 05/29/2019 12:33 | WG1287422 | <sup>2</sup> Tc |

#### Wet Chemistry by Method 9056A

| Analyte         ug/l         date / time           Dissolved Solids         18000         1         05/29/2019 12:33         WG1287422 |
|----------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Solids 180000 10000 1 05/29/2019 12:33 WG1287422                                                                             |
|                                                                                                                                        |
| Wet Chemistry by Method 9056A                                                                                                          |
| Result Qualifier RDL Dilution Analysis <u>Batch</u>                                                                                    |
|                                                                                                                                        |
| Analyte ug/l ug/l date / time                                                                                                          |
|                                                                                                                                        |
| Analyte ug/l ug/l date / time                                                                                                          |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:04 | WG1287640 |
| Calcium | 26400  |           | 1000 | 1        | 05/29/2019 19:04 | WG1287640 |

#### SAMPLE RESULTS - 03 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier RDL | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|---------------|----------|------------------|-----------|--------|
| Analyte          | ug/l   | ug/l          |          | date / time      |           | 2      |
| Dissolved Solids | 453000 | 100           | 00 1     | 05/29/2019 12:33 | WG1287422 | Tc     |

#### Wet Chemistry by Method 9056A

| Analyte       ug/l       date / time       Image: Constraint of the constraint o |                     | Result      | Quaimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RDL   | Dilution | Allalysis        | Balch            |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------------|------------------|-----------------|
| Wet Chemistry by Method 9056A       Result       Qualifier       RDL       Dilution       Analysis       Batch       3Ss         Analyte       ug/l       ug/l       date / time       4cm       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte             | ug/l        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l  |          | date / time      |                  | 2               |
| Result         Qualifier         RDL         Dilution         Analysis         Batch           Analyte         ug/l         ug/l         date / time         date / time         4 Cn           Chloride         7050         1000         1         06/03/2019 23:09         WG1290105         4 Cn           Fluoride         336         100         1         06/03/2019 23:09         WG1290105         5 Cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dissolved Solids    | 453000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000 | 1        | 05/29/2019 12:33 | WG1287422        | Tc              |
| Analyte         ug/l         date / time         4 Cn           Chloride         7050         1000         1         06/03/2019 23:09         WG1290105         4 Cn           Fluoride         336         100         1         06/03/2019 23:09         WG1290105         5 Cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wet Chemistry by Me | ethod 9056A | A Contraction of the second se |       |          |                  |                  | <sup>3</sup> Ss |
| Chloride         7050         1000         1         06/03/2019 23:09         WG1290105         Chloride         Chloride         Sector         Chloride         Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Result      | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RDL   | Dilution | Analysis         | Batch            |                 |
| Chloride         7050         1000         1         06/03/2019 23:09         WG1290105         Image: Chloride         Image: Chloride <td>Analyte</td> <td>ug/l</td> <td></td> <td>ug/l</td> <td></td> <td>date / time</td> <td></td> <td><math>^{4}</math>Cn</td>                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte             | ug/l        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/l  |          | date / time      |                  | $^{4}$ Cn       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloride            | 7050        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000  | 1        | 06/03/2019 23:09 | <u>WG1290105</u> |                 |
| Sulfate         74200         5000         1         06/03/2019 23:09         WG1290105         Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluoride            | 336         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100   | 1        | 06/03/2019 23:09 | <u>WG1290105</u> | 5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfate             | 74200       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000  | 1        | 06/03/2019 23:09 | WG1290105        | Sr              |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:06 | WG1287640 |
| Calcium | 91700  |           | 1000 | 1        | 05/29/2019 19:06 | WG1287640 |

SDG: L1102438

#### SAMPLE RESULTS - 04 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | – Cp |
|------------------|--------|-----------|-------|----------|------------------|------------------|------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2    |
| Dissolved Solids | 480000 |           | 10000 | 1        | 05/29/2019 10:01 | <u>WG1287425</u> | Tc   |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |      |          |                  |                  |                 |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|------------------|-----------------|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |                 |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |                  | <sup>4</sup> Cr |  |  |
| Chloride                      | 3390   |           | 1000 | 1        | 06/03/2019 23:27 | WG1290105        |                 |  |  |
| Fluoride                      | 326    |           | 100  | 1        | 06/03/2019 23:27 | <u>WG1290105</u> | 5               |  |  |
| Sulfate                       | 13800  |           | 5000 | 1        | 06/03/2019 23:27 | WG1290105        | <sup>5</sup> Sr |  |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:09 | WG1287640 |
| Calcium | 117000 |           | 1000 | 1        | 05/29/2019 19:09 | WG1287640 |

#### SAMPLE RESULTS - 05 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср |   |
|------------------|--------|-----------|-------|----------|------------------|-----------|--------|---|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2      | i |
| Dissolved Solids | 445000 |           | 10000 | 1        | 05/29/2019 10:01 | WG1287425 | Tc     |   |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/22/19 14:25

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |                 |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|-----------------|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |  |  |
| Chloride                      | 4170   |           | 1000 | 1        | 06/03/2019 23:45 | WG1290105 |                 |  |  |
| Fluoride                      | 315    |           | 100  | 1        | 06/03/2019 23:45 | WG1290105 | 5               |  |  |
| Sulfate                       | 40100  |           | 5000 | 1        | 06/03/2019 23:45 | WG1290105 | ⁵Sr             |  |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:11 | WG1287640 |
| Calcium | 104000 |           | 1000 | 1        | 05/29/2019 19:11 | WG1287640 |

#### SAMPLE RESULTS - 06 L1102438

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier F | RDL   | Dilution | Analysis         | Batch     | Ср  |
|------------------|--------|-------------|-------|----------|------------------|-----------|-----|
| Analyte          | ug/l   | ι           | ug/l  |          | date / time      |           | 2   |
| Dissolved Solids | 404000 | 1           | 10000 | 1        | 05/29/2019 10:01 | WG1287425 | ́Тс |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/22/19 13:25

| Wet Chemistry b | by Method 9056A | Ą         |      |          |                  |                  | 3  |
|-----------------|-----------------|-----------|------|----------|------------------|------------------|----|
|                 | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch            | L  |
| Analyte         | ug/l            |           | ug/l |          | date / time      |                  | 4  |
| Chloride        | 3190            |           | 1000 | 1        | 06/03/2019 18:28 | <u>WG1290105</u> |    |
| Fluoride        | 264             |           | 100  | 1        | 06/03/2019 18:28 | WG1290105        | 5  |
| Sulfate         | 8740            |           | 5000 | 1        | 06/03/2019 18:28 | WG1290105        | Ĭ. |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 18:36 | WG1287640 |
| Calcium | 97400  |           | 1000 | 1        | 05/29/2019 18:36 | WG1287640 |

SDG: L1102438

#### SAMPLE RESULTS - 07 L1102438



Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср          |
|------------------|--------|-----------|-------|----------|------------------|-----------|-----------------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids | 402000 |           | 10000 | 1        | 05/29/2019 10:01 | WG1287425 | <sup>2</sup> Tc |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by | / Method 90564 | Ą         |      |          |                  |           | <sup>3</sup> Ss |
|------------------|----------------|-----------|------|----------|------------------|-----------|-----------------|
|                  | Result         | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte          | ug/l           |           | ug/l |          | date / time      |           | ⁴Cn             |
| Chloride         | 3200           |           | 1000 | 1        | 06/04/2019 00:02 | WG1290105 | CII             |
| Fluoride         | 265            |           | 100  | 1        | 06/04/2019 00:02 | WG1290105 | 5               |
| Sulfate          | 9720           |           | 5000 | 1        | 06/04/2019 00:02 | WG1290105 | Sr              |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/29/2019 19:14 | WG1287640 |
| Calcium | 99400  |           | 1000 | 1        | 05/29/2019 19:14 | WG1287640 |

### WG1287422

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3416808-1 05 | 5/29/19 12:33 |              |        |        |
|--------------------|---------------|--------------|--------|--------|
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | ug/l          |              | ug/l   | ug/l   |
| Dissolved Solids   | U             |              | 2820   | 10000  |

#### L1102435-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1102435-04 05 | 5/29/19 12:33 • (DU | P) R3416808-3 | 05/29/19 | 12:33   |               |                   |
|---------------------|---------------------|---------------|----------|---------|---------------|-------------------|
|                     | Original Resu       | It DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte             | ug/l                | ug/l          |          | %       |               | %                 |
| Dissolved Solids    | 361000              | 351000        | 1        | 2.81    |               | 5                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3416808-2 05 | (LCS) R3416808-2 05/29/19 12:33 |            |          |             |               |  |  |
|---------------------|---------------------------------|------------|----------|-------------|---------------|--|--|
|                     | Spike Amount                    | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |
| Analyte             | ug/l                            | ug/l       | %        | %           |               |  |  |
| Dissolved Solids    | 8800000                         | 8500000    | 96.6     | 85.0-115    |               |  |  |

DATE/TIME: 06/04/19 11:28 PAGE: 13 of 20

### WG1287425

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3416415-1 05/2 | 29/19 10:01 |              |        |        |
|----------------------|-------------|--------------|--------|--------|
|                      | MB Result   | MB Qualifier | MB MDL | MB RDL |
| Analyte              | ug/l        |              | ug/l   | ug/l   |
| Dissolved Solids     | U           |              | 2820   | 10000  |

#### L1102662-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1102662-04 05/29/19 10:01 • (DUP) R3416415-3 05/29/19 10:01 |                 |            |          |         |               |                   |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids                                                  | 2700000         | 2510000    | 1        | 7.49    | <u>J3</u>     | 5                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3416415-2 05/29/19 10:01 |              |            |          |             |               |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |
| Dissolved Solids                | 8800000      | 8810000    | 100      | 85.0-115    |               |  |

DATE/TIME: 06/04/19 11:28 PAGE: 14 of 20 Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

| Method Didni      |               |              |        |        |  |
|-------------------|---------------|--------------|--------|--------|--|
| (MB) R3417495-1 C | 6/03/19 14:39 |              |        |        |  |
|                   | MB Result     | MB Qualifier | MB MDL | MB RDL |  |
| Analyte           | ug/l          |              | ug/l   | ug/l   |  |
| Chloride          | U             |              | 51.9   | 1000   |  |
| Fluoride          | U             |              | 9.90   | 100    |  |
| Sulfate           | U             |              | 77.4   | 5000   |  |

#### L1102438-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1102438-06 | 06/03/19 18:28 | • (DUP) R3417495-3 | 06/03/19 18:45 |  |
|------------------|----------------|--------------------|----------------|--|
|------------------|----------------|--------------------|----------------|--|

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 3190            | 3170       | 1        | 0.695   |               | 15                |
| Fluoride | 264             | 263        | 1        | 0.418   |               | 15                |
| Sulfate  | 8740            | 8690       | 1        | 0.562   |               | 15                |

#### L1102624-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1102624-03 06/04/19 02:41 • (DUP) R3417495-6 06/04/19 02:58 |                 |            |          |         |               |                   |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |  |
| Chloride                                                          | 32700           | 32600      | 1        | 0.216   |               | 15                |  |  |  |  |  |
| Fluoride                                                          | 383             | 382        | 1        | 0.236   |               | 15                |  |  |  |  |  |
| Sulfate                                                           | 7440            | 7460       | 1        | 0.170   |               | 15                |  |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3417495-2 06/03 | /19 14:57    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | ug/l         | ug/l       | %        | %           |               |
| Chloride               | 40000        | 40000      | 99.9     | 80.0-120    |               |
| Fluoride               | 8000         | 8050       | 101      | 80.0-120    |               |
| Sulfate                | 40000        | 40100      | 100      | 80.0-120    |               |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213169.18

DATE/TIME: 06/04/19 11:28 PAGE: 15 of 20

<sup>4</sup>Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

#### L1102438-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1102438-06 06/03/1 | 19 18:28 • (MS) | R3417495-4 06   | 6/03/19 19:03 • | (MSD) R341749 | 95-5 06/03/19 | 19:20    |          |             |              |               |         |            |
|--------------------------|-----------------|-----------------|-----------------|---------------|---------------|----------|----------|-------------|--------------|---------------|---------|------------|
|                          | Spike Amount    | Original Result | MS Result       | MSD Result    | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD     | RPD Limits |
| Analyte                  | ug/l            | ug/l            | ug/l            | ug/l          | %             | %        |          | %           |              |               | %       | %          |
| Chloride                 | 50000           | 3190            | 53900           | 53900         | 102           | 102      | 1        | 80.0-120    |              |               | 0.00445 | 15         |
| Fluoride                 | 5000            | 264             | 5330            | 5330          | 101           | 101      | 1        | 80.0-120    |              |               | 0.0563  | 15         |
| Sulfate                  | 50000           | 8740            | 58600           | 58600         | 99.7          | 99.7     | 1        | 80.0-120    |              |               | 0.0729  | 15         |

#### L1102624-03 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1102624-03 06/04/ | '19 02:41 • (MS) I | R3417495-7 06   | 6/04/19 03:16 |         |          |             |              |
|-------------------------|--------------------|-----------------|---------------|---------|----------|-------------|--------------|
|                         | Spike Amount       | Original Result | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                 | ug/l               | ug/l            | ug/l          | %       |          | %           |              |
| Chloride                | 50000              | 32700           | 81900         | 98.5    | 1        | 80.0-120    |              |
| Fluoride                | 5000               | 383             | 5430          | 101     | 1        | 80.0-120    |              |
| Sulfate                 | 50000              | 7440            | 57200         | 99.6    | 1        | 80.0-120    |              |

DATE/TIME: 06/04/19 11:28 Sc

### WG1287640

Metals (ICP) by Method 6010B

## QUALITY CONTROL SUMMARY

<sup>1</sup>Cp <sup>2</sup>Tc <sup>3</sup>Ss

## <sup>4</sup>Cn <sup>5</sup>Sr

<sup>6</sup>Qc

GI

Method Blank (MB)

| (MB) R3416044-1 0 | 5/29/19 18:28 |              |        |        |
|-------------------|---------------|--------------|--------|--------|
|                   | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l          |              | ug/l   | ug/l   |
| Boron             | U             |              | 12.6   | 200    |
| Calcium           | 48.1          | J            | 46.3   | 1000   |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3416044-2 05/29/19 18:31 • (LCSD) R3416044-3 05/29/19 18:33 |         |              |            |             |          |           |             |               |                |       |            |
|--------------------------------------------------------------------|---------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                                                                    |         | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|                                                                    | Analyte | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |
|                                                                    | Boron   | 1000         | 1010       | 984         | 101      | 98.4      | 80.0-120    |               |                | 2.75  | 20         |
|                                                                    | Calcium | 10000        | 10000      | 10000       | 100      | 100       | 80.0-120    |               |                | 0.190 | 20         |

### L1102438-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1102438-06 05/29/1 | 9 18:36 • (MS) F | 3416044-5 05    | 5/29/19 18:41 • ( | MSD) R341604 | 4-6 05/29/191 | /19 18:43 |          |             |              |               |       |            | <sup>8</sup> A |
|--------------------------|------------------|-----------------|-------------------|--------------|---------------|-----------|----------|-------------|--------------|---------------|-------|------------|----------------|
|                          | Spike Amount     | Original Result | MS Result         | MSD Result   | MS Rec.       | MSD Rec.  | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |                |
| Analyte                  | ug/l             | ug/l            | ug/l              | ug/l         | %             | %         |          | %           |              |               | %     | %          | 9              |
| Boron                    | 1000             | ND              | 1060              | 1020         | 99.8          | 96.1      | 1        | 75.0-125    |              |               | 3.54  | 20         | 15             |
| Calcium                  | 10000            | 97400           | 106000            | 106000       | 86.9          | 81.1      | 1        | 75.0-125    |              |               | 0.548 | 20         |                |

## GLOSSARY OF TERMS

## \*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resu<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                              |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J                               | The identification of the analyte is acceptable; the reported value is an estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

The associated batch QC was outside the established quality control range for precision.

| ACCOUNT:          |   |
|-------------------|---|
| SCS Engineers - K | S |

JЗ

PROJECT: 27213169.18

SDG: L1102438 DATE/TIME: 06/04/19 11:28 PAGE: 18 of 20

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebras   |
|------------------------|-------------|----------|
| Alaska                 | 17-026      | Nevada   |
| Arizona                | AZ0612      | New Ha   |
| Arkansas               | 88-0469     | New Je   |
| California             | 2932        | New Me   |
| Colorado               | TN00003     | New Yo   |
| Connecticut            | PH-0197     | North C  |
| Florida                | E87487      | North C  |
| Georgia                | NELAP       | North C  |
| Georgia <sup>1</sup>   | 923         | North D  |
| ldaho                  | TN00003     | Ohio-V   |
| Illinois               | 200008      | Oklaho   |
| Indiana                | C-TN-01     | Oregon   |
| lowa                   | 364         | Pennsy   |
| Kansas                 | E-10277     | Rhode I  |
| Kentucky <sup>16</sup> | 90010       | South C  |
| Kentucky <sup>2</sup>  | 16          | South D  |
| Louisiana              | AI30792     | Tennes   |
| Louisiana <sup>1</sup> | LA180010    | Texas    |
| Maine                  | TN0002      | Texas ⁵  |
| Maryland               | 324         | Utah     |
| Massachusetts          | M-TN003     | Vermon   |
| Michigan               | 9958        | Virginia |
| Minnesota              | 047-999-395 | Washin   |
| Mississippi            | TN00003     | West Vi  |
| Missouri               | 340         | Wiscons  |
| Montana                | CERT0086    | Wyomir   |
|                        |             |          |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico 1                | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 14                | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

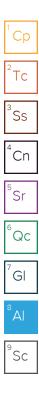
| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.




27213169.18

L1102438

PAGE: 19 of 20

06/04/19 11:28



| SCS Engineers - KS<br>8575 W. 110th Street                                                      |                      | Billing Information:     |                                       |                           |                                      | Analysis / Container / Preservative |                   |                        |                |                   |          | Chain of Custody Page of      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|-------------------------------------------------------------------------------------------------|----------------------|--------------------------|---------------------------------------|---------------------------|--------------------------------------|-------------------------------------|-------------------|------------------------|----------------|-------------------|----------|-------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                 |                      |                          | Pres<br>Chk                           |                           |                                      |                                     | 27                |                        |                |                   |          | Pace An                       |                                        | Analytical*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| Overland Park, KS 66210                                                                         |                      |                          |                                       |                           |                                      |                                     | res               |                        |                |                   |          |                               |                                        | / National G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inter for Testing & Innovat |
| Report to:<br>Jason Franks                                                                      |                      |                          | Email To:<br>jfranks@                 | o:<br>s:@scsengineers.com |                                      |                                     | - NoPres          |                        |                |                   |          |                               |                                        | 12065 Lebanon Rd<br>Mount Juliet, TN 37<br>Phone: 615-758-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| Project<br>Description: KCP&L Sibley Gene                                                       | erationg Sta         | ation                    |                                       | City/State<br>Collected:  | SIBLEY A                             | ro                                  | IDPE              | INOS                   |                |                   |          |                               |                                        | Phone: 615-758-5858<br>Phone: 800-767-5859<br>Fax: 615-758-5859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| Phone: 913-681-0030                                                                             | Client Projec        |                          |                                       | Lab Project #             |                                      |                                     | 125ml HDPE        | 6010 250ml HDPE - HNO3 | -NoPres        | 1.0               |          |                               |                                        | L# L   10<br>1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| JASON R. Frances                                                                                | Site/Facility I      | D#                       |                                       | P.O. #                    | P.O. #                               |                                     |                   | HIM                    |                |                   |          |                               |                                        | Acctnum: AQUAOPKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| Collected by (signature):                                                                       |                      | (Lab MUST Be<br>Day Five |                                       | Quote #                   |                                      |                                     | d,F,S             | 0 250                  | IHDI           |                   |          |                               |                                        | Template:<br>Prelogin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| Immediately<br>Packed on Ice N Y                                                                | mediately            |                          | · · · · · · · · · · · · · · · · · · · | Date Results Needed       |                                      |                                     | Anions(Cld,F,SO4) | 1 1                    | 250ml HDPE     |                   |          |                               |                                        | TSR:<br>PB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| Sample ID                                                                                       | Comp/Grab            | Matrix *                 | Depth                                 | Date                      | Time                                 | Cntrs                               | Anio              | B,Ca                   | TDS            |                   |          |                               |                                        | Shipped Via:<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample # (lab only          |
| WW-504                                                                                          | GRAS                 | GW                       | -                                     | 5/22/1                    | 1045                                 | 3                                   | ×                 | ×                      | X              |                   |          |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -01                         |
| MW-505                                                                                          | 1                    | GW                       | -                                     |                           | 1155                                 | 3                                   | X                 | ×                      | ×              |                   |          | R                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02                          |
| MW-506                                                                                          |                      | GW                       | -                                     |                           | 1235                                 | 3                                   | ×                 | X                      | X              |                   |          | S.                            |                                        | and the second sec | 03                          |
| MW-510                                                                                          |                      | GW                       | -                                     |                           | 1535                                 | 3                                   | ×                 | X                      | X              |                   |          | 10                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04                          |
| MW-512                                                                                          |                      | GW                       | -                                     |                           | 1425                                 | 3                                   | ×                 | ×                      | ×              |                   |          | A.                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04                          |
| MW-601                                                                                          |                      | GW                       | -                                     |                           | 1325                                 | 3                                   | ×                 | X                      | ×              |                   |          | 0.5                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06                          |
| DUPLICATE                                                                                       |                      | GW                       | -                                     |                           | 1330                                 | 3                                   | ×                 | ×                      | ×              |                   |          | m                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                          |
| LODI MS/MSO                                                                                     |                      | GW                       | -                                     |                           | 1335                                 | 3                                   | ×                 | ×                      | X              |                   |          | mRVhr                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                          |
| MSD                                                                                             |                      | GW                       |                                       | 4                         |                                      | 3                                   | X                 | ×                      | X              |                   |          |                               | . And                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|                                                                                                 | V                    |                          | 17 A.                                 |                           |                                      |                                     |                   |                        |                |                   |          |                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                           |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:             |                          |                                       |                           |                                      |                                     |                   |                        |                | рН                | Temp     | 1000                          | COC Seal I<br>COC Signed<br>Bottles at | mple Receipt C<br>Present/Intact<br>d/Accurate:<br>rrive intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| WW - Wastewater<br>DW - Drinking Water<br>OT - Other                                            | Samples retu<br>UPSF | irned via:<br>edEx Coi   | urier                                 | T                         | racking #                            |                                     |                   |                        | <u>- 19</u> 75 | Flow Other        |          |                               | Sufficien                              | orrect bottles used:<br>ufficient volume sent:<br><u>If Applicable</u><br>OA Zero Headspace:<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| Relinguished by : (Signature)                                                                   | n la                 | Date:<br>5/2             |                                       | Time: R                   | eceived y: (Signa                    | (are)                               | 5                 | 23.                    | -19<br>D       | Trip Blank R      |          | es / No<br>HCL / MeoH<br>I'BR |                                        | ion Correct/Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ecked: ZY _                 |
| Relinquished by (Signature)                                                                     |                      | Date:<br>5/2             | 3/15                                  | 1700                      | eceived by: (Signation $S \otimes A$ |                                     |                   |                        |                | Temp:<br>1-0-10-1 | C Bott   | es Received:                  | If preservati                          | on required by Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gin: Date/Time              |
| Relinquished by : (Signature)                                                                   |                      | Date:                    | 1                                     | Time: R                   | eceived for lab by:                  | Signa                               | ture)             |                        |                | Date:             | ) 19 Tim | 8.00                          | Hold:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Condition<br>NCF / OK       |

## ATTACHMENT 1-4 July 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

## SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1119586 07/17/2019 27213168.18 Sibley Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1119586 DATE/TIME: 07/29/19 14:53 PAGE: 1 of 24

## TABLE OF CONTENTS

| E. | *               |  |
|----|-----------------|--|
|    | <sup>1</sup> Cp |  |
|    | <sup>2</sup> Tc |  |
|    | <sup>3</sup> Ss |  |
|    | <sup>4</sup> Cn |  |
|    | ⁵Sr             |  |
|    | <sup>6</sup> Qc |  |
|    | <sup>7</sup> Gl |  |
|    | <sup>8</sup> AI |  |
|    | <sup>9</sup> Sc |  |
|    |                 |  |

| Cp: Cover Page                             |    |  |  |  |  |
|--------------------------------------------|----|--|--|--|--|
| Tc: Table of Contents                      |    |  |  |  |  |
| Ss: Sample Summary                         | 3  |  |  |  |  |
| Cn: Case Narrative                         | 5  |  |  |  |  |
| Sr: Sample Results                         | 6  |  |  |  |  |
| MW-504 L1119586-01                         | 6  |  |  |  |  |
| MW-506 L1119586-02                         | 7  |  |  |  |  |
| MW-512 L1119586-03                         | 8  |  |  |  |  |
| MW-703 L1119586-04                         | 9  |  |  |  |  |
| MW-704 L1119586-05                         | 10 |  |  |  |  |
| DUPLICATE 1 L1119586-06                    | 11 |  |  |  |  |
| MW-801 L1119586-07                         | 12 |  |  |  |  |
| DUPLICATE 2 L1119586-08                    | 13 |  |  |  |  |
| MW-804 L1119586-09                         | 14 |  |  |  |  |
| MW-806R L1119586-10                        | 15 |  |  |  |  |
| Qc: Quality Control Summary                | 16 |  |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | 16 |  |  |  |  |
| Wet Chemistry by Method 9056A              | 17 |  |  |  |  |
| Metals (ICP) by Method 6010B               | 20 |  |  |  |  |
| GI: Glossary of Terms                      | 21 |  |  |  |  |
| Al: Accreditations & Locations             | 22 |  |  |  |  |
| Sc: Sample Chain of Custody                | 23 |  |  |  |  |
|                                            |    |  |  |  |  |

SDG: L1119586

DATE/TIME: 07/29/19 14:53

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

⁴Cn

Sr

Qc

GI

ΆI

Sc

|                                            | SAWFLE      |          | MARI                        |                                       | ONEL                          | AB. NATION     |
|--------------------------------------------|-------------|----------|-----------------------------|---------------------------------------|-------------------------------|----------------|
| MW-504 L1119586-01 GW                      |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 10:55 | Received da<br>07/17/19 08:4  |                |
| lethod                                     | Batch       | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| /et Chemistry by Method 9056A              | WG1314866   | 1        | 07/22/19 20:43              | 07/22/19 20:43                        | LDC                           | Mt. Juliet, TN |
| /W-506 L1119586-02 GW                      |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 11:47 | Received da<br>07/17/19 08:4  |                |
| lethod                                     | Batch       | Dilution | Preparation                 | Analysis                              | Analyst                       | Location       |
| Vet Chemistry by Method 9056A              | WG1314866   | 1        | date/time<br>07/22/19 20:57 | date/time<br>07/22/19 20:57           | LDC                           | Mt. Juliet, TN |
|                                            |             |          |                             |                                       |                               |                |
| MW-512 L1119586-03 GW                      |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 12:30 | Received dat<br>07/17/19 08:4 |                |
| Aethod                                     | Batch       | Dilution | Preparation                 | Analysis                              | Analyst                       | Location       |
| Net Chemistry by Method 9056A              | WG1314866   | 1        | date/time<br>07/22/19 21:27 | date/time<br>07/22/19 21:27           | LDC                           | Mt. Juliet, TN |
|                                            |             |          |                             |                                       | <b>D</b>                      |                |
| MW-703 L1119586-04 GW                      |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 12:40 | Received dat<br>07/17/19 08:4 |                |
| Nethod                                     | Batch       | Dilution | Preparation                 | Analysis                              | Analyst                       | Location       |
| Vet Chemistry by Method 9056A              | WG1314866   | 1        | date/time<br>07/22/19 21:42 | date/time<br>07/22/19 21:42           | LDC                           | Mt. Juliet, TN |
|                                            |             |          | Collected by                | Collected date/time                   | Received da                   | te/time        |
| WW-704 L1119586-05 GW                      |             |          | Whit Martin                 | 07/16/19 13:15                        | 07/17/19 08:4                 |                |
| Aethod                                     | Batch       | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Vet Chemistry by Method 9056A              | WG1314866   | 1        | 07/22/19 21:57              | 07/22/19 21:57                        | LDC                           | Mt. Juliet, TN |
|                                            |             |          | Collected by                | Collected date/time                   | Received da                   | te/time        |
| DUPLICATE 1 L1119586-06 GW                 |             |          | Whit Martin                 | 07/16/19 13:15                        | 07/17/19 08:4                 |                |
| Aethod                                     | Batch       | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Vet Chemistry by Method 9056A              | WG1314866   | 1        | 07/22/19 23:11              | 07/22/19 23:11                        | LDC                           | Mt. Juliet, TN |
| MW-801 L1119586-07 GW                      |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 13:55 | Received da:<br>07/17/19 08:4 |                |
| <i>I</i> ethod                             | Batch       | Dilution | Preparation                 | Analysis                              | Analyst                       | Location       |
| avimetric Analysis by Method 2540 C-2011   | WG1313293   | 1        | date/time<br>07/19/19 07:21 | date/time<br>07/19/19 07:42           | TH                            | Mt. Juliet, TN |
| Vet Chemistry by Method 9056A              | WG1314866   | 1        | 07/22/19 23:26              | 07/22/19 23:26                        | LDC                           | Mt. Juliet, TN |
| Vet Chemistry by Method 9056A              | WG1314866   | 5        | 07/23/19 00:11              | 07/23/19 00:11                        | LDC                           | Mt. Juliet, TN |
| letals (ICP) by Method 6010B               | WG1313404   | 1        | 07/18/19 17:12              | 07/19/19 18:36                        | EL                            | Mt. Juliet, TN |
| DUPLICATE 2 L1119586-08 GW                 |             |          | Collected by<br>Whit Martin | Collected date/time<br>07/16/19 13:55 | Received dat<br>07/17/19 08:4 |                |
| <b>N</b> ethod                             | Batch       | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1313293   | 1        | 07/19/19 07:21              | 07/19/19 07:42                        | TH                            | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1314866   | 1        | 07/23/19 00:26              | 07/23/19 00:26                        | LDC                           | Mt. Juliet, TN |
| Net Chemistry by Method 9056A              | WG1314866   | 5        | 07/23/19 00:41              | 07/23/19 00:41                        | LDC                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1313404   | 1        | 07/18/19 17:12              | 07/19/19 18:48                        | EL                            | Mt. Juliet, TN |
| ACCOUNT:                                   | PROJECT:    |          | SDG:                        | DAT                                   | E/TIME:                       |                |
| SCS Engineers VS                           | 27212160 10 |          | 1 1110 5 9 6                | 07/20                                 | 0/10 11.52                    |                |

27213168.18

L1119586

SCS Engineers - KS

**PAGE**: 3 of 24

07/29/19 14:53

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                                                             |                        |          | Collected by   | Collected date/time | Received dat  | te/time                          |
|-----------------------------------------------------------------------------|------------------------|----------|----------------|---------------------|---------------|----------------------------------|
| MW-804 L1119586-09 GW                                                       |                        |          | Whit Martin    | 07/16/19 13:20      | 07/17/19 08:4 | 15                               |
| Method                                                                      | Batch                  | Dilution | Preparation    | Analysis            | Analyst       | Location                         |
|                                                                             |                        |          | date/time      | date/time           |               |                                  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1313293              | 1        | 07/19/19 07:21 | 07/19/19 07:42      | TH            | Mt. Juliet, TN                   |
| Metals (ICP) by Method 6010B                                                | WG1313404              | 1        | 07/18/19 17:12 | 07/19/19 18:51      | EL            | Mt. Juliet, TN                   |
|                                                                             |                        |          | Collected by   | Collected date/time | Received dat  | te/time                          |
| MW-806R L1119586-10 GW                                                      |                        |          | Whit Martin    | 07/16/19 14:05      | 07/17/19 08:4 | 15                               |
| Method                                                                      | Batch                  | Dilution | Preparation    | Analysis            | Analyst       | Location                         |
|                                                                             |                        |          | date/time      | date/time           |               |                                  |
|                                                                             |                        |          | date/ time     | date/time           |               |                                  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1313293              | 1        | 07/19/19 07:21 | 07/19/19 07:42      | TH            | Mt. Juliet, TN                   |
| Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A | WG1313293<br>WG1317958 | 1<br>5   |                |                     | TH<br>LDC     | Mt. Juliet, TN<br>Mt. Juliet, TN |

SDG: L1119586

## CASE NARRATIVE

\*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

#### **Project Narrative**

This report has been revised. Sample L1119586-10 was re-analyzed for Sulfate and the results of the second run are presented within this report.

SDG: L1119586

#### SAMPLE RESULTS - 01 L1119586

¥

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>'Ср |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Sulfate | 36300  |           | 5000 | 1        | 07/22/2019 20:43 | WG1314866 | ¯Тс     |



#### SAMPLE RESULTS - 02 L1119586

¥

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>'Ср |
|----------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Chloride | 7330   |           | 1000 | 1        | 07/22/2019 20:57 | WG1314866 | ⁻Tc     |



SDG: L1119586

DATE/TIME: 07/29/19 14:53 PAGE:

7 of 24

## SAMPLE RESULTS - 03

\*

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

| there energies any | by method boob, |           |      |          |                  |           |                 |
|--------------------|-----------------|-----------|------|----------|------------------|-----------|-----------------|
|                    | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte            | ug/l            |           | ug/l |          | date / time      |           | 2               |
| Chloride           | 4350            |           | 1000 | 1        | 07/22/2019 21:27 | WG1314866 | Tc              |
| Sulfate            | 42100           |           | 5000 | 1        | 07/22/2019 21:27 | WG1314866 |                 |
|                    |                 |           |      |          |                  |           | <sup>3</sup> Ss |

SDG: L1119586 DATE/TIME: 07/29/19 14:53 PAGE: 8 of 24

#### SAMPLE RESULTS - 04 L1119586

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>'Ср |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Sulfate | 11100  |           | 5000 | 1        | 07/22/2019 21:42 | WG1314866 | Tc      |

SDG: L1119586

DATE/TIME: 07/29/19 14:53

#### SAMPLE RESULTS - 05 L1119586

¥

Ср

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | — Ср            |
|----------|--------|-----------|------|----------|------------------|-----------|-----------------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2               |
| Chloride | 19500  |           | 1000 | 1        | 07/22/2019 21:57 | WG1314866 | Tc              |
| Fluoride | 157    |           | 100  | 1        | 07/22/2019 21:57 | WG1314866 |                 |
|          |        |           |      |          |                  |           | <sup>3</sup> Ss |

#### SAMPLE RESULTS - 06 L1119586

¥

Ср

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            | <br>Ср |
|----------|--------|-----------|------|----------|------------------|------------------|--------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  | 2      |
| Chloride | 19500  |           | 1000 | 1        | 07/22/2019 23:11 | <u>WG1314866</u> | Tc     |
| Fluoride | 160    |           | 100  | 1        | 07/22/2019 23:11 | <u>WG1314866</u> |        |
|          |        |           |      |          |                  |                  | ³Ss    |

SDG: L1119586

#### SAMPLE RESULTS - 07 L1119586

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | <br>Ср |
|------------------|--------|-----------|-------|----------|------------------|------------------|--------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2      |
| Dissolved Solids | 613000 |           | 13300 | 1        | 07/19/2019 07:42 | <u>WG1313293</u> | Tc     |

#### Wet Chemistry by Method 9056A

Collected date/time: 07/16/19 13:55

| Wet Chemistry | by Method 9056A | A         |      |          |                  |           | ³Ss             |
|---------------|-----------------|-----------|------|----------|------------------|-----------|-----------------|
|               | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte       | ug/l            |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride      | 127000          |           | 5000 | 5        | 07/23/2019 00:11 | WG1314866 |                 |
| Sulfate       | 56600           |           | 5000 | 1        | 07/22/2019 23:26 | WG1314866 | 5               |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier          | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|--------------------|------|----------|------------------|-----------|
| Analyte | ug/l   |                    | ug/l |          | date / time      |           |
| Boron   | 326    |                    | 200  | 1        | 07/19/2019 18:36 | WG1313404 |
| Calcium | 152000 | $\underline{\vee}$ | 1000 | 1        | 07/19/2019 18:36 | WG1313404 |

SDG: L1119586

#### SAMPLE RESULTS - 08 L1119586

Qc

GI

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | <u> </u> |              |           |                  |                  | [ Cn |
|------------------|----------|--------------|-----------|------------------|------------------|------|
|                  | Result   | Qualifier RD | L Dilutio | n Analysis       | Batch            | Ср   |
| Analyte          | ug/l     | ug/          | l         | date / time      |                  | 2    |
| Dissolved Solids | 612000   | 133          | 00 1      | 07/19/2019 07:42 | <u>WG1313293</u> | Tc   |

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 128000 |           | 5000 | 5        | 07/23/2019 00:41 | WG1314866 |
| Sulfate  | 56700  |           | 5000 | 1        | 07/23/2019 00:26 | WG1314866 |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 321    |           | 200  | 1        | 07/19/2019 18:48 | WG1313404 |
| Calcium | 152000 |           | 1000 | 1        | 07/19/2019 18:48 | WG1313404 |

Collected date/time: 07/16/19 13:20

#### SAMPLE RESULTS - 09 L1119586



Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

| eravine the range  |             | -0.0020   |       |          |                  |           | 1 co            |
|--------------------|-------------|-----------|-------|----------|------------------|-----------|-----------------|
|                    | Result      | Qualifier | RDL   | Dilution | Analysis         | Batch     | Cp              |
| Analyte            | ug/l        |           | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids   | 585000      |           | 13300 | 1        | 07/19/2019 07:42 | WG1313293 | Tc              |
| Metals (ICP) by Me | ethod 6010B |           |       |          |                  |           | <sup>3</sup> Ss |
|                    | Result      | Qualifier | RDL   | Dilution | Analysis         | Batch     |                 |
| Analyte            | ug/l        |           | ug/l  |          | date / time      |           | <sup>4</sup> Cr |
| Boron              | 7590        |           | 200   | 1        | 07/19/2019 18:51 | WG1313404 |                 |

## SAMPLE RESULTS - 10

\*

1

ΆI

Sc

|--|

|                   | Result                 | Qualifier | RDL         | Dilution      | Analysis                | Batch              |  |
|-------------------|------------------------|-----------|-------------|---------------|-------------------------|--------------------|--|
| Analyte           | ug/l                   |           | ug/l        |               | date / time             |                    |  |
| Dissolved Solids  | 671000                 |           | 13300       | 1             | 07/19/2019 07:42        | WG1313293          |  |
| Wet Chemistry b   | y Method 9056A         | L         |             |               |                         |                    |  |
|                   | Result                 | Qualifier | RDL         | Dilution      | Analysis                | Batch              |  |
| Analyte           | ug/l                   |           | ug/l        |               | date / time             |                    |  |
| Sulfate           | 244000                 |           | 25000       | 5             | 07/26/2019 17:29        | WG1317958          |  |
|                   |                        |           |             |               |                         |                    |  |
| Metals (ICP) by M | 1ethod 6010B           |           |             |               |                         |                    |  |
| Metals (ICP) by N | Nethod 6010B<br>Result | Qualifier | RDL         | Dilution      | Analysis                | Batch              |  |
| Metals (ICP) by M |                        | Qualifier | RDL<br>ug/l | Dilution      | Analysis<br>date / time | Batch              |  |
|                   | Result                 | Qualifier |             | Dilution<br>1 |                         | Batch<br>WG1313404 |  |

SDG: L1119586

## WG1313293

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY

Τс

Ss

⁴Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3432683-1 07/ | /19/19 07:42 |              |        |        |
|---------------------|--------------|--------------|--------|--------|
|                     | MB Result    | MB Qualifier | MB MDL | MB RDL |
| Analyte             | ug/l         |              | ug/l   | ug/l   |
| Dissolved Solids    | U            |              | 2820   | 10000  |

#### L1119481-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1119481-01 07/19 | /19 07:42 • (DUP) | R3432683-3 (  | 07/19/19 07 | /:42    |               |                   |
|------------------------|-------------------|---------------|-------------|---------|---------------|-------------------|
|                        | Original Resu     | It DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | ug/l              | ug/l          |             | %       |               | %                 |
| Dissolved Solids       | 93000             | 97000         | 1           | 4.21    |               | 5                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3432683-2 07 | 7/19/19 07:42 |            |          |             |               |
|---------------------|---------------|------------|----------|-------------|---------------|
|                     | Spike Amount  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte             | ug/l          | ug/l       | %        | %           |               |
| Dissolved Solids    | 8800000       | 8470000    | 96.3     | 85.0-115    |               |

SDG: L1119586 DATE/TIME: 07/29/19 14:53 PAGE: 16 of 24 Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

Ср

<sup>1</sup>Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3433129-1 | 07/22/19 19:56 |
|-----------------|----------------|
|                 |                |

|          | MB Result | MB Qualifier | MB MDL | MB RDL |  |
|----------|-----------|--------------|--------|--------|--|
| Analyte  | ug/l      |              | ug/l   | ug/l   |  |
| Chloride | U         |              | 51.9   | 1000   |  |
| Fluoride | U         |              | 9.90   | 100    |  |
| Sulfate  | U         |              | 77.4   | 5000   |  |

#### L1119586-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1119586-02 07/22/19 20:57 • (DUP) R3433129-3 07/22/19 21:12 | (OS) L1119586-02 | 07/22/19 20:57 • | (DUP) R3433129-3 | 07/22/19 21:12 |
|-------------------------------------------------------------------|------------------|------------------|------------------|----------------|
|-------------------------------------------------------------------|------------------|------------------|------------------|----------------|

| (        |                 |            |          |         |               |                   |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 7330            | 7360       | 1        | 0.475   |               | 15                |
| Fluoride | 325             | 325        | 1        | 0.0924  |               | 15                |
| Sulfate  | 75900           | 75800      | 1        | 0.120   |               | 15                |

#### L1119894-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1119894-04 07/23/19 04:10 · (DUP) R3433129-8 07/23/19 04:25 |                 |            |          |         |               |                   |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |
| Chloride                                                          | 4090            | 4170       | 1        | 1.98    |               | 15                |  |  |  |
| Fluoride                                                          | ND              | 0.000      | 1        | 0.000   |               | 15                |  |  |  |
| Sulfate                                                           | ND              | 0.000      | 1        | 0.000   |               | 15                |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3433129-2 07/2 | 2/19 20:10   |            |          |             |               |
|-----------------------|--------------|------------|----------|-------------|---------------|
|                       | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte               | ug/l         | ug/l       | %        | %           |               |
| Chloride              | 40000        | 39800      | 99.4     | 80.0-120    |               |
| Fluoride              | 8000         | 8090       | 101      | 80.0-120    |               |
| Sulfate               | 40000        | 41000      | 102      | 80.0-120    |               |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.18

SDG: L1119586 DATE/TIME: 07/29/19 14:53 PAGE: 17 of 24 Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

### L1119586-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1119586-05 07/22/19 | (OS) L1119586-05 07/22/19 21:57 • (MS) R3433129-4 07/22/19 22:12 • (MSD) R3433129-5 07/22/19 22:27 |                 |           |            |         |          |          |             |              |               |       |            |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|--|--|
|                           | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |  |  |
| Analyte                   | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |  |  |
| Chloride                  | 50000                                                                                              | 19500           | 70100     | 70200      | 101     | 101      | 1        | 80.0-120    |              |               | 0.177 | 15         |  |  |  |
| Fluoride                  | 5000                                                                                               | 157             | 5270      | 5300       | 102     | 103      | 1        | 80.0-120    |              |               | 0.594 | 15         |  |  |  |
| Sulfate                   | 50000                                                                                              | 43000           | 91600     | 91900      | 97.1    | 97.7     | 1        | 80.0-120    |              |               | 0.359 | 15         |  |  |  |

#### L1119586-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1119586-07 07/22/19 | 9 23:26 • (MS) F | 83433129-6 07   | /22/19 23:41 • | (MSD) R343312 | 9-7 07/22/19 2 | 23:56    |          |             |              |               |       |            |
|---------------------------|------------------|-----------------|----------------|---------------|----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount     | Original Result | MS Result      | MSD Result    | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l             | ug/l            | ug/l           | ug/l          | %              | %        |          | %           |              |               | %     | %          |
| Fluoride                  | 5000             | 170             | 5170           | 5280          | 100            | 102      | 1        | 80.0-120    |              |               | 2.01  | 15         |
| Sulfate                   | 50000            | 56600           | 104000         | 104000        | 94.0           | 95.4     | 1        | 80.0-120    | E            | E             | 0.660 | 15         |

DATE/TIME: 07/29/19 14:53 Sc

### WG1317958

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1119586-10

Ср

Τс

Ss

Cn

Sr

Qc

#### Method Blank (MB)

| (MB) R3434874-1 07/26/19 09:08 |           |              |        |        |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |
| Sulfate                        | U         |              | 77.4   | 5000   |  |  |

#### L1122561-11 Original Sample (OS) • Duplicate (DUP)

| (OS) L1122561-11 07/26/19 | 14:11 • (DUP) R3 | 434874-6 07 | /26/19 14:2 | 9       |               |                   |
|---------------------------|------------------|-------------|-------------|---------|---------------|-------------------|
|                           | Original Result  | DUP Result  | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l             | ug/l        |             | %       |               | %                 |
| Sulfate                   | 62000            | 61800       | 1           | 0.310   |               | 15                |

#### L1121946-01 Original Sample (OS) • Duplicate (DUP)

| L1121946-01 Origin        | <sup>7</sup> GI    |              |             |         |               |                   |  |                 |  |  |  |
|---------------------------|--------------------|--------------|-------------|---------|---------------|-------------------|--|-----------------|--|--|--|
| (OS) L1121946-01 07/26/19 | 19 17:48 • (DUP) F | ,3434874-8 ( | ٦7/26/19 ١٢ | 3:06    |               |                   |  |                 |  |  |  |
|                           | Original Result    | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | <sup>8</sup> Al |  |  |  |
| Analyte                   | ug/l               | ug/l         |             | %       |               | %                 |  |                 |  |  |  |
| Sulfate                   | 20900              | 20800        | 1           | 0.554   |               | 15                |  | <sup>9</sup> Sc |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3434874-2 07/26 | .CS) R3434874-2 07/26/19 09:25 |            |          |             |               |  |  |  |
|------------------------|--------------------------------|------------|----------|-------------|---------------|--|--|--|
|                        | Spike Amount                   | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                | ug/l                           | ug/l       | %        | %           |               |  |  |  |
| Sulfate                | 40000                          | 40200      | 100      | 80.0-120    |               |  |  |  |

#### L1122561-11 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1122561-11 07/26/19 | (OS) L1122561-11 07/26/19 14:11 • (MS) R3434874-7 07/26/19 14:46 |                 |           |         |          |             |              |  |  |  |
|---------------------------|------------------------------------------------------------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|
|                           | Spike Amount                                                     | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |
| Analyte                   | ug/l                                                             | ug/l            | ug/l      | %       |          | %           |              |  |  |  |
| Sulfate                   | 50000                                                            | 62000           | 109000    | 94.1    | 1        | 80.0-120    | E            |  |  |  |

#### L1121946-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1121946-01   | 07/26/19 17:48 • (MS) R3 | 3434874-9 07/   | 26/19 18:23 • | (MSD) R343487 | 74-10 07/26/ | 19 18:41 |          |             |              |               |                |            |       |
|--------------------|--------------------------|-----------------|---------------|---------------|--------------|----------|----------|-------------|--------------|---------------|----------------|------------|-------|
|                    | Spike Amount             | Original Result | MS Result     | MSD Result    | MS Rec.      | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD            | RPD Limits |       |
| Analyte            | ug/l                     | ug/l            | ug/l          | ug/l          | %            | %        |          | %           |              |               | %              | %          |       |
| Sulfate            | 50000                    | 20900           | 70800         | 70600         | 99.8         | 99.3     | 1        | 80.0-120    |              |               | 0.326          | 15         |       |
|                    | ACCOUNT:                 |                 |               | PRC           | JECT:        |          |          | SDG:        |              | DATE          | TIME:          |            | PAGE: |
| SCS Engineers - KS |                          |                 |               | 27213168.18   |              |          |          | L1119586    |              |               | 07/29/19 14:53 |            |       |

### WG1313404

Metals (ICP) by Method 6010B

## QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Method Blank (MB)

| Mictiliou Diul  |                |              |        |        |   |
|-----------------|----------------|--------------|--------|--------|---|
| (MB) R3432671-1 | 07/19/19 18:29 |              |        |        |   |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | 2 |
| Analyte         | ug/l           |              | ug/l   | ug/l   |   |
| Boron           | U              |              | 12.6   | 200    |   |
| Calcium         | U              |              | 46.3   | 1000   | 3 |
|                 |                |              |        |        |   |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3432671-2 07/19/ | 19 18:31 • (LCSD) | ) R3432671-3 | 07/19/19 18:33 |          |           |             |               |                |      |            |  |
|-------------------------|-------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|--|
|                         | Spike Amount      | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |  |
| Analyte                 | ug/l              | ug/l         | ug/l           | %        | %         | %           |               |                | %    | %          |  |
| Boron                   | 1000              | 963          | 995            | 96.3     | 99.5      | 80.0-120    |               |                | 3.26 | 20         |  |
| Calcium                 | 10000             | 9800         | 9910           | 98.0     | 99.1      | 80.0-120    |               |                | 1.17 | 20         |  |

#### L1119586-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1119586-07 07/19/19 | 9 18:36 • (MS) R | 3432671-5 07/   | 19/19 18:41 • (M | ISD) R3432671- | 6 07/19/19 18:4 | 43       |          |             |                    |                    |         |            | <sup>8</sup> Al |
|---------------------------|------------------|-----------------|------------------|----------------|-----------------|----------|----------|-------------|--------------------|--------------------|---------|------------|-----------------|
|                           | Spike Amount     | Original Result | MS Result        | MSD Result     | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD     | RPD Limits |                 |
| Analyte                   | ug/l             | ug/l            | ug/l             | ug/l           | %               | %        |          | %           |                    |                    | %       | %          | 9               |
| Boron                     | 1000             | 326             | 1280             | 1300           | 95.5            | 97.8     | 1        | 75.0-125    |                    |                    | 1.79    | 20         | Sc              |
| Calcium                   | 10000            | 152000          | 158000           | 158000         | 60.2            | 60.3     | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.00424 | 20         |                 |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.18

SDG: L1119586 DATE/TIME: 07/29/19 14:53 PAGE: 20 of 24

## GLOSSARY OF TERMS

## \*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                              |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                   |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E                               | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

V

PROJECT: 27213168.18

The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1119586 DATE/TIME: 07/29/19 14:53

PAGE: 21 of 24

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                |
|------------------------|-------------|-------------------------|
| Alaska                 | 17-026      | Nevada                  |
| Arizona                | AZ0612      | New Hampshire           |
| Arkansas               | 88-0469     | New Jersey–NE           |
| California             | 2932        | New Mexico <sup>1</sup> |
| Colorado               | TN00003     | New York                |
| Connecticut            | PH-0197     | North Carolina          |
| Florida                | E87487      | North Carolina          |
| Georgia                | NELAP       | North Carolina          |
| Georgia <sup>1</sup>   | 923         | North Dakota            |
| Idaho                  | TN00003     | Ohio–VAP                |
| Illinois               | 200008      | Oklahoma                |
| Indiana                | C-TN-01     | Oregon                  |
| lowa                   | 364         | Pennsylvania            |
| Kansas                 | E-10277     | Rhode Island            |
| Kentucky <sup>16</sup> | 90010       | South Carolina          |
| Kentucky <sup>2</sup>  | 16          | South Dakota            |
| Louisiana              | AI30792     | Tennessee <sup>14</sup> |
| Louisiana <sup>1</sup> | LA180010    | Texas                   |
| Maine                  | TN0002      | Texas ⁵                 |
| Maryland               | 324         | Utah                    |
| Massachusetts          | M-TN003     | Vermont                 |
| Michigan               | 9958        | Virginia                |
| Minnesota              | 047-999-395 | Washington              |
| Mississippi            | TN00003     | West Virginia           |
| Missouri               | 340         | Wisconsin               |
| Montana                | CERT0086    | Wyoming                 |
|                        |             |                         |

| Vebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 14                | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
|                             |                  |

#### Third Party Federal Accreditations

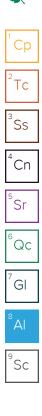
| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.




27213168.18

L1119586

PAGE: 22 of 24

07/29/19 14:53



|                                                                                                                                   | 1                                          |                                                                 | Billing Inf                      | ormation:           |                                                             |                  |               |            |                                                       | A                         | nalysis /         | Contair                | ner / Pre               | servativ         | e      |                             |                                               | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page of                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------------------|---------------------|-------------------------------------------------------------|------------------|---------------|------------|-------------------------------------------------------|---------------------------|-------------------|------------------------|-------------------------|------------------|--------|-----------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                                                             |                                            | Accounts Payable<br>8575 W. 110th Stree<br>Overland Park, KS 66 |                                  |                     |                                                             |                  | Pres<br>Chk   | K2         | 22                                                    |                           |                   |                        |                         |                  |        |                             |                                               | Netonel Cen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter for Teating & Innov                  |  |
| Report to:<br>Jason Franks                                                                                                        | 1.4                                        | jay.martin@kcpl.com;                                            |                                  |                     | Email To: jfranks@scsengineers.com;<br>jay.martin@kcpl.com; |                  |               |            |                                                       |                           |                   | S                      | Pres                    |                  |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12065 Lebanon Rd<br>Mount Juliet, TN 371 |  |
| Project<br>Description: Sibley Generating S                                                                                       |                                            |                                                                 |                                  | City/Sta<br>Collect | ite                                                         | L-L LI.MI        |               | 3          |                                                       | oPres                     | NoPre             | PE-No                  | res                     |                  |        |                             |                                               | Phone: 615-758-5858<br>Phone: 800-767-5859<br>Fax: 615-758-5859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |  |
| Phone: <b>913-681-0030</b><br>Fax: <b>913-681-0012</b>                                                                            | Client Project 27213168.1                  |                                                                 | Lab Project #<br>AQUAOPKS-SIBLEY |                     | SIBLEY                                                      |                  | 250mIHDPE-HNO | E-HNO3     | DPE-No                                                | 5mIHDPE-NoPres            | SmIHD             | PE-NoF                 | 5                       |                  |        |                             | L# L119                                       | and the second se |                                          |  |
| Collected by (print):<br>Whit Martin                                                                                              | Site/Facility ID                           | #                                                               |                                  | P.O. #              | P.O. #                                                      |                  |               | mIHDF      | 6010 250mIHDPE                                        | e - 9056 125mlHDPE-NoPres | F - 9056 12       | SO4 - 9056             | - 9056 125mlHDPE-NoPres | NoPres           |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acctnum: AQUAOPKS                        |  |
| Collected by (signature):                                                                                                         | MatterSame DayFive Day<br>Next Day5 Day (R |                                                                 | Day                              |                     | Quote # Date Results Needed                                 |                  | No.           | 6010 250   |                                                       |                           |                   |                        |                         | 250mIHDPE-NoPres |        |                             |                                               | Template: <b>T129789</b><br>Prelogin: <b>P719408</b><br>TSR: <b>206</b> - Jeff Carr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |  |
| Packed on Ice N Y X                                                                                                               | Three Da                                   |                                                                 |                                  | 1                   | B - 6                                                       | ride             | pride         | chloride,  | ate .                                                 |                           |                   |                        |                         | PB:              |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |  |
| Sample ID                                                                                                                         | Comp/Grab                                  | Matrix *                                                        | Depth                            | D                   | ate                                                         | Time             | Cntrs         | Boron      | Ca, E                                                 | Chloride                  | Chloride,         | chlo                   | Sulfate                 | TDS              |        |                             |                                               | Shipped Via:<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample # (lab or                         |  |
| MW-504                                                                                                                            | Grah                                       | GW                                                              |                                  | 7/1                 | 6/19                                                        | 1055             | 1             |            | 1.50                                                  |                           |                   |                        | X                       |                  |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0                                       |  |
| MW-506                                                                                                                            | Grab                                       | GW                                                              |                                  | 7/1                 | 6/19                                                        | 1147             | 1             |            | 14-1-14-1<br>14-1-14-14-14-14-14-14-14-14-14-14-14-14 | x                         |                   |                        |                         |                  |        |                             | i.<br>David                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                       |  |
| MW-512                                                                                                                            | Grab                                       | GW                                                              |                                  | 7/1                 | 5/19                                                        | 1230             | 1             |            |                                                       |                           | 15/13             | х                      |                         |                  |        |                             | 1999 - 1999<br>- 1999 - 1999<br>- 1999 - 1999 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ő                                        |  |
| MW-703                                                                                                                            | Brab                                       | GW                                                              |                                  | 7/1                 | 6/19                                                        | 1240             | 1             | 1          |                                                       |                           | 1.12              |                        | x                       |                  |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04                                       |  |
| MW-704                                                                                                                            | Grab                                       | GW                                                              |                                  | 7/1                 | 119                                                         | 1315             | 1             |            |                                                       |                           | X                 |                        |                         |                  |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                        |  |
| MW-704 MS/MSD                                                                                                                     | Grab                                       | GW                                                              |                                  | 7/1                 | 5/19                                                        | 1315             | 1             | 15         |                                                       |                           | X                 |                        |                         |                  |        |                             |                                               | 24 - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%                                       |  |
| DUPLICATE 1                                                                                                                       | Grab                                       | GW                                                              | 14                               | 7/1                 | ,119                                                        | 1315             | 1             |            |                                                       |                           | x                 |                        |                         |                  |        | 1.41                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06                                       |  |
| MW-801                                                                                                                            | Grab                                       | GW                                                              | 1.10                             | 7/1                 | 119                                                         | 1355             | 3             | 1          | x                                                     |                           |                   | x                      |                         | x                | gine i |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                        |  |
| MW-801 MS/MSD                                                                                                                     | Grab                                       | GW                                                              |                                  | 7/10                | ,/19                                                        | 1355             | 3             | 1          | X                                                     |                           | -                 | x                      |                         | x                |        |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                        |  |
| DUPLICATE 2                                                                                                                       | Grab                                       | GW                                                              |                                  | 7/1                 | 6/19                                                        | 1355             | 3             |            | X                                                     |                           |                   | x                      |                         | X                | 1.4    |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                        |  |
| Matrix:<br>S - Soil AIR - Air F - Filter<br>SW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water<br>DT - Other | Remarks:<br>Samples return                 | ned via:<br>dEx <u> </u>                                        | rier                             |                     |                                                             | AD SCREE         | N: <0.        | 5mR<br>acl | /hr                                                   | 91                        | pH<br>Flov<br>339 | ·                      | _ Tem<br>_ Oth<br>2 U   | (Alternation)    | _      | COC S<br>Bottl<br>Corre     | Seal P<br>Signed<br>les ar                    | ole Receipt Ch<br>resent/Intact:<br>/Accurate:<br>rive intact:<br>ttles used:<br>volume sent:<br>If Applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |
| Relinquished by : (Signature)                                                                                                     |                                            |                                                                 | Re                               | ceived by: (Sign    | mf                                                          | 1 mil            | pl            | Ŷ          |                                                       | nk Rece                   |                   | Yes No<br>HCL/N<br>TBR | 1eoH                    | Prese            | ervati | eadspace:<br>on Correct/Che |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |  |
| Relinquished by: (Signature)                                                                                                      | ill                                        | Date:<br>7/16                                                   | 119                              | Time:               | O Be                                                        | ceived by: (Sign | ature)/       |            | 1                                                     |                           | Temp:             | 4                      | °C Bot                  | tles Rece        | ived:  | If pres                     | ervatio                                       | n required by Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in: Date/Time                            |  |
| Relinquished by : (Signature)                                                                                                     |                                            | Date:                                                           |                                  | Time:               | Re                                                          | ceived for lab b | y: (Signa     | ture)      |                                                       |                           | Date:             | 110                    | Tir                     | ne:<br>82        | 15     | Hold:                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Condition                                |  |

|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | Billing Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ormation:                                    |                                   |             |            |        | A                    | nalysis /        | Contair         | ner / Pre  | servativ                   | /e                                                                                         |                           |                                  | Chain of Custody                                                                                  | Page Z of Z                              |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|-------------|------------|--------|----------------------|------------------|-----------------|------------|----------------------------|--------------------------------------------------------------------------------------------|---------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|
| CS Engineers - KS                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 8575 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ts Payable<br>. 110th Stree<br>d Park, KS 66 |                                   | Pres<br>Chk |            | 14     |                      |                  |                 |            |                            |                                                                                            |                           |                                  | Netional Center                                                                                   | r for Testing & Innovation               |
| son Franks                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ifranks@scseng<br>n@kcpl.com;                |                                   |             |            |        |                      | s                | oPres           |            |                            |                                                                                            |                           |                                  | 12065 Lebanon Rd<br>Mount Juliet, TN 37122<br>Phone: 615-758-5858                                 |                                          |
| escription: Sibley Generating                                                                                          | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | City/State<br>Collected:                     | Lit Li 101<br>                    |             | m          |        | oPres                | NoPre            |                 | res        |                            |                                                                                            |                           |                                  | Phone: 800-767-5859<br>Fax: 615-758-5859                                                          |                                          |
| 913-681-0030<br>913-681-0012                                                                                           | Client Project<br>27213169.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab Project #                                |                                   |             | E-HNO      | E-HNO3 | SmIHDPE-NoPres       | 125mIHDPE-NoPres | 125mlHDPE-N     | E-NoF      |                            | 12.                                                                                        |                           |                                  | L# L1119586                                                                                       |                                          |
| ollected by (print):                                                                                                   | Site/Facility ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) #                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P.O. #                                       |                                   | nIHDP       | DP         | SmIHE  | 125m                 | 0                | 25mlHDPE-NoPres | oPres      |                            |                                                                                            |                           | Table # Acctnum: AQUAOPKS        |                                                                                                   |                                          |
| nmediately<br>acked on Ice N Y X                                                                                       | and the second sec | 10 D                   | and the second se |                                              | esults Needed                     |             | , F - 905( | SO SO  | e, 504 -<br>- 9056 1 | 250mlHDPE-NoPres |                 |            |                            | Template: <b>T129789</b><br>Prelogin: <b>P719408</b><br>TSR: <b>206 - Jeff Carr</b><br>PB: |                           |                                  |                                                                                                   |                                          |
| Sample ID                                                                                                              | Comp/Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix *               | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                         | Time                              | Cntrs       | Boron      | Ca, B  | Chloride             | Chlor            | Chlorid         | Sulfate    | TDS 3                      |                                                                                            |                           |                                  | Shipped Via:<br>Remarks                                                                           | Sample # (lab only)                      |
| MW-804                                                                                                                 | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GW                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/16/19                                      | 1 1320                            | 2           | Х          |        |                      |                  |                 |            | X                          |                                                                                            |                           | San a                            | - side                                                                                            | -09                                      |
| MW-806R                                                                                                                | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GW                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/16/19                                      | 1 1405                            | 3           |            | X      |                      |                  |                 | X          | X                          |                                                                                            |                           |                                  |                                                                                                   | 10                                       |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |             |            |        |                      |                  |                 | 12         |                            |                                                                                            |                           |                                  |                                                                                                   |                                          |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |             |            |        |                      |                  |                 |            | 13<br>13                   |                                                                                            |                           |                                  |                                                                                                   |                                          |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | antiku.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |                                   |             |            |        | F                    |                  |                 |            | 1                          |                                                                                            |                           |                                  |                                                                                                   | an a |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |             | 1.5%       |        |                      | 12               |                 |            |                            |                                                                                            |                           |                                  |                                                                                                   |                                          |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                   |             |            |        |                      |                  |                 | ar some op | r sh                       | des                                                                                        |                           |                                  |                                                                                                   |                                          |
| * Matrix:<br>ss - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ned via:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RAD                                          | SCREEN: <0.                       | 5 mR/       | hr         |        |                      | pH<br>Flov       | <br>v           | _ Tem      |                            |                                                                                            | COC S.<br>Bottle<br>Corre | eal P<br>igned<br>es ar<br>ct bo | ple Receipt Che<br>resent/Intact:<br>//Accurate:<br>rrive intact:<br>uttles used:<br>volume sent: |                                          |
| ot - Other<br>Relinquished by : (Signature)                                                                            | UPS Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | îme:                                         | Tracking #<br>Received by: (Signa | U<br>ture)  | 79         | 4      | 82                   | 739<br>Trip Bla  | 2<br>nk Rece    |            | G<br>Yes / No              |                                                                                            | VOA Z                     | ero H                            | If Applicabl<br>leadspace:<br>.on Correct/Che                                                     | <u>.e</u> YN                             |
| Relinquished by: (Signature)                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/16<br>Date:<br>7-/6- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1515<br>1500                                 | Received by: (Signa               | ture)       | A          | m      | U                    | Temp:            |                 | °C Bot     | HCL/1<br>TBR<br>ttles Rece | Иеон                                                                                       | If prese                  | ervatio                          | on required by Log                                                                                | in: Date/Time                            |
| Reinquished by : (Signature)                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | Received for lab by               | : (Signat   | ure)       |        |                      | Date;            | -10             | Tin        |                            | 2                                                                                          | Hold:                     |                                  |                                                                                                   | Condition:<br>NCF / OK                   |

Jared Morrison December 16, 2022

## ATTACHMENT 1-5 August 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

August 30, 2019

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description: L1132073 08/23/2019 27213168.18 Sibley Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

### Entire Report Reviewed By:

Jason Romer Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28 PAGE: 1 of 24 Тс

Ss

Cn

Śr

*Q*c

Gl

ΆI

Sc

## TABLE OF CONTENTS

-

| *               |
|-----------------|
|                 |
| Ср              |
| <sup>2</sup> Tc |
|                 |
| <sup>3</sup> Ss |
| 4               |
| <sup>4</sup> Cn |
| <sup>5</sup> Sr |
|                 |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| G               |
| <sup>8</sup> Al |
|                 |
| <sup>9</sup> Sc |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |

| Cp: Cover Page                 | 1  |
|--------------------------------|----|
| Tc: Table of Contents          | 2  |
| Ss: Sample Summary             | 3  |
| Cn: Case Narrative             | 5  |
| Sr: Sample Results             | 6  |
| MW-504 L1132073-01             | 6  |
| MW-506 L1132073-02             | 7  |
| MW-512 L1132073-03             | 8  |
| MW-703 L1132073-04             | 9  |
| MW-704 L1132073-05             | 10 |
| MW-801 L1132073-06             | 11 |
| MW-804 L1132073-07             | 12 |
| MW-806R L1132073-08            | 13 |
| DUPLICATE 1 L1132073-09        | 14 |
| DUPLICATE 2 L1132073-10        | 15 |
| Qc: Quality Control Summary    | 16 |
| Wet Chemistry by Method 9056A  | 16 |
| Metals (ICP) by Method 6010B   | 20 |
| GI: Glossary of Terms          | 21 |
| Al: Accreditations & Locations | 22 |
| Sc: Sample Chain of Custody    | 23 |
|                                |    |

SDG: L1132073 DATE/TIME: 08/30/19 15:28

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                               | SAMI EE S |          |                             |                                       |                                      |                |
|-------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------------------|----------------|
| MW-504 L1132073-01 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 16:20 | Received da 08/23/19 08              |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1333739 | 1        | 08/23/19 22:09              | 08/23/19 22:09                        | LDC                                  | Mt. Juliet, TN |
| MW-506 L1132073-02 GW         |           |          | Collected by<br>Whit Martin | Collected date/time 08/21/19 13:10    | Received da 08/23/19 08              |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Net Chemistry by Method 9056A | WG1333739 | 1        | 08/23/19 22:24              | 08/23/19 22:24                        | LDC                                  | Mt. Juliet, TN |
| MW-512 L1132073-03 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 13:50 | Received da 08/23/19 08              |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1333739 | 1        | 08/23/19 22:39              | 08/23/19 22:39                        | LDC                                  | Mt. Juliet, TN |
| MW-703 L1132073-04 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 11:50 | Received da<br>08/23/19 08           |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1334249 | 1        | 08/24/19 12:29              | 08/24/19 12:29                        | ST                                   | Mt. Juliet, TN |
| MW-704 L1132073-05 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 12:20 | Received date/time<br>08/23/19 08:45 |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1334249 | 1        | 08/24/19 13:02              | 08/24/19 13:02                        | ST                                   | Mt. Juliet, TN |
| MW-801 L1132073-06 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 14:20 | Received da<br>08/23/19 08           |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1334249 | 5        | 08/24/19 14:07              | 08/24/19 14:07                        | ST                                   | Mt. Juliet, TN |
| MW-804 L1132073-07 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 15:00 | Received da<br>08/23/19 08           |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Metals (ICP) by Method 6010B  | WG1334216 | 1        | 08/24/19 11:18              | 08/25/19 08:57                        | EL                                   | Mt. Juliet, TN |
| MW-806R L1132073-08 GW        |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/21/19 15:30 | Received da<br>08/23/19 08           |                |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              | Location       |
| Wet Chemistry by Method 9056A | WG1334249 | 5        | 08/25/19 14:32              | 08/25/19 14:32                        | ST                                   | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B  | WG1334216 | 1        | 08/24/19 11:18              | 08/25/19 08:17                        | EL                                   | Mt. Juliet, TN |

PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28 **PAGE**: 3 of 24

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| DUPLICATE 1 L1132073-09 GW                                    |                        |          | Collected by<br>Whit Martin      | Collected date/time<br>08/21/19 12:20 | Received da<br>08/23/19 08:          |                                  |
|---------------------------------------------------------------|------------------------|----------|----------------------------------|---------------------------------------|--------------------------------------|----------------------------------|
| Method                                                        | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              | Location                         |
| Wet Chemistry by Method 9056A                                 | WG1334249              | 1        | 08/24/19 15:46                   | 08/24/19 15:46                        | ST                                   | Mt. Juliet, TN                   |
| DUPLICATE 2 L1132073-10 GW                                    |                        |          | Collected by<br>Whit Martin      | Collected date/time<br>08/21/19 15:30 | Received date/time<br>08/23/19 08:45 |                                  |
| Method                                                        | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              | Location                         |
| Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B | WG1334249<br>WG1334216 | 5<br>1   | 08/24/19 16:19<br>08/24/19 11:18 | 08/24/19 16:19<br>08/25/19 09:00      | ST<br>EL                             | Mt. Juliet, TN<br>Mt. Juliet, TN |

\*

Ср

Tc

SDG: L1132073 DATE/TIME: 08/30/19 15:28

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

<sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Sr <sup>6</sup> Qc <sup>7</sup> Gl <sup>8</sup> Al <sup>9</sup> Sc

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28 **PAGE**: 5 of 24

#### SAMPLE RESULTS - 01 L1132073

¥

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier RDL | Dilution | Analysis         | Batch     | Ср |
|---------|--------|---------------|----------|------------------|-----------|----|
| Analyte | ug/l   | ug/l          |          | date / time      | —         | 2  |
| Sulfate | 35600  | 5000          | 1        | 08/23/2019 22:09 | WG1333739 | Tc |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |
|                 |

ACCOUNT: SCS Engineers - KS

PROJECT: 27213168.18

SDG: L1132073

DATE/TIME: 08/30/19 15:28 PAGE: 6 of 24

#### SAMPLE RESULTS - 02 L1132073

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier RI | DL Dilution | Analysis         | Batch     | Ср |
|----------|--------|--------------|-------------|------------------|-----------|----|
| Analyte  | ug/l   | ug           | /I          | date / time      |           | 2  |
| Chloride | 7170   | 10           | 00 1        | 08/23/2019 22:24 | WG1333739 | Tc |

SDG: L1132073

DATE/TIME: 08/30/19 15:28

#### SAMPLE RESULTS - 03 L1132073

\*

Ср

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>Ср |
|----------|--------|-----------|------|----------|------------------|-----------|--------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2      |
| Chloride | 4910   |           | 1000 | 1        | 08/23/2019 22:39 | WG1333739 | Tc     |
| Sulfate  | 41000  |           | 5000 | 1        | 08/23/2019 22:39 | WG1333739 |        |

| <sup>3</sup> Ss |  |
|-----------------|--|
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> AI |  |
| °Sc             |  |

SDG: L1132073

#### SAMPLE RESULTS - 04 L1132073

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>'Ср |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Sulfate | 5730   |           | 5000 | 1        | 08/24/2019 12:29 | WG1334249 | Tc      |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

SDG: L1132073



#### SAMPLE RESULTS - 05 L1132073

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | 5 5 |                  |            |        |       |                  |           | 'Cn |
|----------|-----|------------------|------------|--------|-------|------------------|-----------|-----|
|          | Re  | esult <u>Qua</u> | alifier RD | _ Dilu | ution | Analysis         | Batch     | Ср  |
| Analyte  | ц   | g/I              | ug/        |        |       | date / time      |           | 2   |
| Chloride | 15  | 200              | 100        | 0 1    |       | 08/24/2019 13:02 | WG1334249 | ⁻Tc |

SDG: L1132073

#### SAMPLE RESULTS - 06 L1132073

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | 'Ср |
|----------|--------|-----------|------|----------|------------------|-----------|-----|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Chloride | 124000 |           | 5000 | 5        | 08/24/2019 14:07 | WG1334249 | Tc  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.18

SDG: L1132073

# SAMPLE RESULTS - 07



Τс

#### Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           | <br>1'0 |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |         |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Boron   | 8140   |           | 200  | 1        | 08/25/2019 08:57 | WG1334216 |         |



ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1132073

)73

DATE/TIME: 08/30/19 15:28 PAGE: 12 of 24

#### SAMPLE RESULTS - 08 L1132073

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

| · · · · · · · · · · · · · · · · · · · | ,            |           |       |          |                  |           | · · · · |
|---------------------------------------|--------------|-----------|-------|----------|------------------|-----------|---------|
|                                       | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch     | [ (     |
| Analyte                               | ug/l         |           | ug/l  |          | date / time      |           | 2       |
| Sulfate                               | 241000       |           | 25000 | 5        | 08/25/2019 14:32 | WG1334249 | 2_      |
| Metals (ICP) by                       | Method 6010B |           |       |          |                  |           | 3       |
|                                       | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch     |         |
| Analyte                               | ug/l         |           | ug/l  |          | date / time      |           | 4       |
| Boron                                 | 5660         |           | 200   | 1        | 08/25/2019 08:17 | WG1334216 |         |
| Calcium                               | 170000       |           | 1000  | 1        | 08/25/2019 08:17 | WG1334216 | -       |

#### SAMPLE RESULTS - 09 L1132073

¥

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier RDL | Dilution | Analysis         | Batch     | Ср |
|----------|--------|---------------|----------|------------------|-----------|----|
| Analyte  | ug/l   | ug/l          |          | date / time      |           | 2  |
| Chloride | 16500  | 1000          | 1        | 08/24/2019 15:46 | WG1334249 | Tc |



ACCOUNT: SCS Engineers - KS

PROJECT: 27213168.18

SDG: L1132073

DATE/TIME: 08/30/19 15:28

PAGE: 14 of 24

# SAMPLE RESULTS - 10

\*

1

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                               | Result                 | Qualifier | RDL         | Dilution      | Analysis                | Batch              |    |
|-------------------------------|------------------------|-----------|-------------|---------------|-------------------------|--------------------|----|
| Analyte                       | ug/l                   |           | ug/l        |               | date / time             |                    | 2  |
| Sulfate                       | 243000                 |           | 25000       | 5             | 08/24/2019 16:19        | WG1334249          | 2. |
|                               |                        |           |             |               |                         |                    |    |
| Metals (ICP) by               | Method 6010B           |           |             |               |                         |                    | 3  |
| Metals (ICP) by               | Method 6010B<br>Result | Qualifier | RDL         | Dilution      | Analysis                | Batch              | 3  |
| . , ,                         |                        | Qualifier | RDL<br>ug/l | Dilution      | Analysis<br>date / time | Batch              | 4  |
| Metals (ICP) by Analyte Boron | Result                 | Qualifier |             | Dilution<br>1 |                         | Batch<br>WG1334216 | 4  |

# WG1333739

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

| (MB) R3443601-1 0 | 08/23/19 08:00 |              |        |        |  |  |  |
|-------------------|----------------|--------------|--------|--------|--|--|--|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte           | ug/l           |              | ug/l   | ug/l   |  |  |  |
| Chloride          | U              |              | 51.9   | 1000   |  |  |  |
| Sulfate           | U              |              | 77.4   | 5000   |  |  |  |
|                   |                |              |        |        |  |  |  |

#### L1131956-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1131956-01 08/23/19 | 13:42 • (DUP) F | 23443601-3 0 | 8/23/19 13 | :57     |               |                   |
|---------------------------|-----------------|--------------|------------|---------|---------------|-------------------|
|                           | Original Result | DUP Result   | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l            | ug/l         |            | %       |               | %                 |
| Chloride                  | 271000          | 271000       | 1          | 0.0581  | E             | 15                |
| Sulfate                   | 161000          | 160000       | 1          | 0.0640  | E             | 15                |

### L1131956-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1131956-01 08/23/ | 19 14:12 • (DUP) F | 83443601-4 0 | 8/23/19 14 | :27     |               |                   |   |
|-------------------------|--------------------|--------------|------------|---------|---------------|-------------------|---|
|                         | Original Result    | DUP Result   | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | 9 |
| Analyte                 | ug/l               | ug/l         |            | %       |               | %                 | L |
| Chloride                | 271000             | 318000       | 5          | 15.7    | <u>J3</u>     | 15                |   |
| Sulfate                 | 160000             | 161000       | 5          | 0.579   |               | 15                |   |

#### L1131992-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1131992-01 08/23/19 | 9 19:10 • (DUP) R | 3443601-7 0 | 8/23/19 19 | :25     |               |                   |
|---------------------------|-------------------|-------------|------------|---------|---------------|-------------------|
|                           | Original Result   | DUP Result  | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l              | ug/l        |            | %       |               | %                 |
| Chloride                  | 4190              | 4140        | 1          | 1.20    |               | 15                |
| Sulfate                   | ND                | 2500        | 1          | 0.000   |               | 15                |

### Laboratory Control Sample (LCS)

| (LCS) R3443601-2 08/23/ | 19 08:15     |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | ug/l         | ug/l       | %        | %           |               |
| Chloride                | 40000        | 39200      | 98.0     | 80.0-120    |               |
| Sulfate                 | 40000        | 40200      | 101      | 80.0-120    |               |

| ACCOUNT:          |    |
|-------------------|----|
| SCS Engineers - I | κs |

PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28

PAGE: 16 of 24 Ср

⁺Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

# <sup>1</sup>Cp <sup>2</sup>Tc <sup>3</sup>Ss

# <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr

Sc

Qc

L1131956-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1131956-02 08/23/19 | 9 15:11 • (MS) R3 | 443601-5 08/2   | 23/19 15:26 • (N | /ISD) R344360' | 1-6 08/23/19 15 | :41      |          |             |              |               |       |            |
|---------------------------|-------------------|-----------------|------------------|----------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount      | Original Result | MS Result        | MSD Result     | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l              | ug/l            | ug/l             | ug/l           | %               | %        |          | %           |              |               | %     | %          |
| Chloride                  | 50000             | 267000          | 303000           | 304000         | 71.9            | 73.2     | 1        | 80.0-120    | EV           | EV            | 0.206 | 15         |
| Sulfate                   | 50000             | 151000          | 193000           | 193000         | 83.8            | 83.2     | 1        | 80.0-120    | E            | E             | 0.153 | 15         |

#### L1132011-01 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1132011-01 08/23/19 | 19:40 • (MS) R3 | 3443601-8 08/3  | 23/19 19:55 |         |          |             |              |
|---------------------------|-----------------|-----------------|-------------|---------|----------|-------------|--------------|
|                           | Spike Amount    | Original Result | MS Result   | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                   | ug/l            | ug/l            | ug/l        | %       |          | %           |              |
| Chloride                  | 50000           | 54100           | 102000      | 95.6    | 1        | 80.0-120    | E            |
| Sulfate                   | 50000           | 276000          | 309000      | 66.8    | 1        | 80.0-120    | EV           |

# WG1334249

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1132073-04,05,06,08,09,10

| (MB) R3443951-1 C | 8/24/19 09:56 |              |        |        |
|-------------------|---------------|--------------|--------|--------|
|                   | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l          |              | ug/l   | ug/l   |
| Chloride          | U             |              | 51.9   | 1000   |
| Sulfate           | U             |              | 77.4   | 5000   |
|                   |               |              |        |        |

#### L1132073-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1132073-05 08/24/ | 19 13:02 • (DUP) | R3443951-4 | 08/24/19 1 | 3:18    |               |                   |  |
|-------------------------|------------------|------------|------------|---------|---------------|-------------------|--|
|                         | Original Result  | DUP Result | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |
| Analyte                 | ug/l             | ug/l       |            | %       |               | %                 |  |
| Chloride                | 15200            | 15100      | 1          | 0.528   |               | 15                |  |
| Sulfate                 | 26000            | 26000      | 1          | 0.219   |               | 15                |  |

### L1132269-02 Original Sample (OS) • Duplicate (DUP)

| L1132269-02 Ori       | ginai Sampie       | $(OS) \cdot Dup$ | silcate ( | DUP)    |               |                | 8  |
|-----------------------|--------------------|------------------|-----------|---------|---------------|----------------|----|
| (OS) L1132269-02 08/2 | 24/19 20:08 • (DUF | P) R3443951-9    | 08/24/19  | 20:25   |               |                | AI |
|                       | Original Result    | DUP Result       | Dilution  | DUP RPD | DUP Qualifier | IP RPD<br>nits | 9  |
| Analyte               | ug/l               | ug/l             |           | %       |               |                | SC |
| Chloride              | 185000             | 184000           | 20        | 0.549   |               |                |    |
| Sulfate               | 11400              | 11300            | 20        | 1.53    | J             |                |    |

#### Laboratory Control Sample (LCS)

| (LCS) R3443951-3 08/24 | /19 10:45    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | ug/l         | ug/l       | %        | %           |               |
| Chloride               | 40000        | 38400      | 96.1     | 80.0-120    |               |
| Sulfate                | 40000        | 38400      | 96.1     | 80.0-120    |               |

#### L1132073-05 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1132073-05 08/24/ | S) L1132073-05 08/24/19 13:02 • (MS) R3443951-5 08/24/19 13:35 |                 |           |         |          |             |              |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|--|--|
|                         | Spike Amount                                                   | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |  |  |
| Analyte                 | ug/l                                                           | ug/l            | ug/l      | %       |          | %           |              |  |  |  |  |  |
| Chloride                | 50000                                                          | 15200           | 65200     | 100     | 1        | 80.0-120    |              |  |  |  |  |  |
| Sulfate                 | 50000                                                          | 26000           | 76200     | 100     | 1        | 80.0-120    |              |  |  |  |  |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213168.18

SDG: L1132073

DATE/TIME: 08/30/19 15:28

PAGE: 18 of 24

ONE LAB. NATIONWIDE.

Cn

Sr

Qc

GI

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

### L1132073-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1132073-08 08/24/1 | 9 14:57 • (MS) F | 3443951-7 08    | /24/19 15:13 • ( | MSD) R344395 | 1-8 08/24/19 1 | 5:29     |          |             |              |               |        |            |
|--------------------------|------------------|-----------------|------------------|--------------|----------------|----------|----------|-------------|--------------|---------------|--------|------------|
|                          | Spike Amount     | Original Result | MS Result        | MSD Result   | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                  | ug/l             | ug/l            | ug/l             | ug/l         | %              | %        |          | %           |              |               | %      | %          |
| Chloride                 | 50000            | 28500           | 79100            | 79000        | 101            | 101      | 1        | 80.0-120    |              |               | 0.0506 | 15         |
| Sulfate                  | 50000            | 254000          | 297000           | 297000       | 86.6           | 85.7     | 1        | 80.0-120    | E            | E             | 0.149  | 15         |

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28 PAGE: 19 of 24

### WG1334216

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1132073-07,08,10

⁺Cn

Sr

Qc

GI

Method Blank (MB)

| Method Blat     | ik (IVIB)      |              |        |        |  |  |
|-----------------|----------------|--------------|--------|--------|--|--|
| (MB) R3443985-1 | 08/25/19 08:10 |              |        |        |  |  |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |  |  |
| Analyte         | ug/l           |              | ug/l   | ug/l   |  |  |
| Boron           | U              |              | 12.6   | 200    |  |  |
| Calcium         | U              |              | 46.3   | 1000   |  |  |
|                 |                |              |        |        |  |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3443985-2 08/25 | /19 08:12 • (LCS | D) R3443985- | 3 08/25/19 08: | 15       |           |             |               |                |       |            |
|------------------------|------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                        | Spike Amount     | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                | ug/l             | ug/l         | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                  | 1000             | 955          | 954            | 95.5     | 95.4      | 80.0-120    |               |                | 0.149 | 20         |
| Calcium                | 10000            | 9720         | 9920           | 97.2     | 99.2      | 80.0-120    |               |                | 2.08  | 20         |

#### L1132073-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| Eliszors de oligi       | iui Sumpic      | (00) - Mati     | ix opine (i   |               | Spine Dup    |          |          |             |              |               |      |            |                     |
|-------------------------|-----------------|-----------------|---------------|---------------|--------------|----------|----------|-------------|--------------|---------------|------|------------|---------------------|
| (OS) L1132073-08 08/25/ | 19 08:17 • (MS) | R3443985-5 0    | 8/25/19 08:22 | • (MSD) R3443 | 985-6 08/25/ | 19 08:25 |          |             |              |               |      |            | <br><sup>8</sup> AI |
|                         | Spike Amount    | Original Result | MS Result     | MSD Result    | MS Rec.      | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |                     |
| Analyte                 | ug/l            | ug/l            | ug/l          | ug/l          | %            | %        |          | %           |              |               | %    | %          | 9                   |
| Boron                   | 1000            | 5660            | 6550          | 6640          | 89.2         | 98.5     | 1        | 75.0-125    |              |               | 1.41 | 20         | SC                  |
| Calcium                 | 10000           | 170000          | 179000        | 181000        | 83.7         | 106      | 1        | 75.0-125    |              |               | 1.22 | 20         |                     |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213168.18

SDG: L1132073

DATE/TIME: 08/30/19 15:28

PAGE: 20 of 24

# GLOSSARY OF TERMS

# \*

Τс

ŚS

Cn

Sr

ʹQc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                              |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol<br>observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will<br>be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                   |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| EThe analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial<br>calibration (ICAL).JThe identification of the analyte is acceptable; the reported value is an estimate.J3The associated batch QC was outside the established quality control range for precision.VThe sample concentration is too high to evaluate accurate spike recoveries. | Guanner | Description                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------|
| J3 The associated batch QC was outside the established quality control range for precision.                                                                                                                                                                                                                                                                                                               | E       |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                           | J       | The identification of the analyte is acceptable; the reported value is an estimate.      |
| V The sample concentration is too high to evaluate accurate spike recoveries.                                                                                                                                                                                                                                                                                                                             | J3      | The associated batch QC was outside the established quality control range for precision. |
|                                                                                                                                                                                                                                                                                                                                                                                                           | V       | The sample concentration is too high to evaluate accurate spike recoveries.              |

PROJECT: 27213168.18

SDG: L1132073 DATE/TIME: 08/30/19 15:28

PAGE: 21 of 24

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska                 |
|------------------------|-------------|--------------------------|
| Alaska                 | 17-026      | Nevada                   |
| Arizona                | AZ0612      | New Hampshir             |
| Arkansas               | 88-0469     | New Jersey–N             |
| California             | 2932        | New Mexico <sup>1</sup>  |
| Colorado               | TN00003     | New York                 |
| Connecticut            | PH-0197     | North Carolina           |
| Florida                | E87487      | North Carolina           |
| Georgia                | NELAP       | North Carolina           |
| Georgia <sup>1</sup>   | 923         | North Dakota             |
| Idaho                  | TN00003     | Ohio–VAP                 |
| Illinois               | 200008      | Oklahoma                 |
| Indiana                | C-TN-01     | Oregon                   |
| lowa                   | 364         | Pennsylvania             |
| Kansas                 | E-10277     | Rhode Island             |
| Kentucky <sup>16</sup> | 90010       | South Carolina           |
| Kentucky <sup>2</sup>  | 16          | South Dakota             |
| Louisiana              | AI30792     | Tennessee <sup>1 4</sup> |
| Louisiana 1            | LA180010    | Texas                    |
| Maine                  | TN0002      | Texas ⁵                  |
| Maryland               | 324         | Utah                     |
| Massachusetts          | M-TN003     | Vermont                  |
| Michigan               | 9958        | Virginia                 |
| Minnesota              | 047-999-395 | Washington               |
| Mississippi            | TN00003     | West Virginia            |
| Missouri               | 340         | Wisconsin                |
| Montana                | CERT0086    | Wyoming                  |
|                        |             |                          |

| lebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>14</sup>     | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |

#### Third Party Federal Accreditations

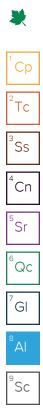
| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.




27213168.18

L1132073

PAGE: 22 of 24

08/30/19 15:28



|                                                                                                          |                                  |                    | Billing Info                   | rmation:     | 4. · · · ·                                                                                                      |                         |             |                |                                          | A                | nalvsis /        | Contair        | er / Pres | ervati                                | ve    |         |                                                                                                                                                  | Chain of Custody                                                | Page of                    |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|--------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------|----------------|------------------------------------------|------------------|------------------|----------------|-----------|---------------------------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|--|
| SCS Engineers - KS<br>3575 W. 110th Street<br>Overland Park, KS 66210                                    |                                  |                    | Account<br>8575 W.<br>Overland | 110th        | Street                                                                                                          | 10                      | Pres<br>Chk | r<br>V         | 22                                       |                  |                  |                |           |                                       |       |         |                                                                                                                                                  | National Car                                                    | nter for Testing & Innoval |  |
| Report to:<br>ason Franks                                                                                |                                  |                    | Email To: ji<br>jay.martin     | @kcpl.co     | 100 million 100 |                         |             |                |                                          |                  | Pres             |                |           |                                       |       |         |                                                                                                                                                  | 12065 Lebanon Rd<br>Mount Juliet, TN 371<br>Phone: 615-758-5851 |                            |  |
| Project                                                                                                  |                                  | City/State         |                                |              | 2                                                                                                               | Please Circ<br>PT MT CT |             |                |                                          | res              | N-N              | es             |           |                                       |       |         |                                                                                                                                                  | Phone: 800-767-5859<br>Fax: 615-758-5859                        |                            |  |
| Description: Sibley Generating S<br>Phone: 913-681-0030<br>Fax: 913-681-0012                             | Client Project #<br>27213168.18  |                    | Sibley                         | Lab Pro      | oject #<br>AOPKS-:                                                                                              |                         |             | 250mlHDPE-HNO3 | E-HNO3                                   | 125mlHDPE-NoPres | 125mlHDPE-NoPres | 5mIHDPE-NoPres |           |                                       |       |         |                                                                                                                                                  | SDG # 11 3                                                      | 32073<br>A050              |  |
| Collected by (print):<br>Whit Martin                                                                     | Site/Facility ID                 | Site/Facility ID # |                                | P.O. #       |                                                                                                                 |                         | MIHDP       | 250mIHDPE      | 25mlH                                    | 9056 12          | SmIHD            |                |           |                                       |       |         | Acctnum: AQUAOPKS<br>Template:T129789                                                                                                            |                                                                 |                            |  |
| Collected by (signature):                                                                                |                                  | 10 Da              |                                | Quote        | Date Resi                                                                                                       | ults Needed             | No.<br>of   | - 6010         | 6010 250n                                | - 9056           | 504 -            | - 9056 12      |           |                                       |       | . 120-1 |                                                                                                                                                  | Prelogin: <b>P724</b><br>PM: <b>206</b> - Jeff C<br>PB:         | 4464                       |  |
| Sample ID                                                                                                | Comp/Grab                        | Matrix *           | Depth                          |              | Date                                                                                                            | Time                    | Cntrs       | Boron          | Ca, B                                    | Chloride         | Chloride,        | Sulfate.       |           |                                       |       |         |                                                                                                                                                  | Shipped Via:<br>Remarks                                         | Sample # (lab on           |  |
| MW-504                                                                                                   | Grab                             | GW                 | 1                              | 8/2          | 1/19                                                                                                            | 1620                    | 1           |                | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                  |                  | X              |           |                                       |       |         | 12                                                                                                                                               |                                                                 | $\left  \neg \right $      |  |
| MW-506                                                                                                   | Grah                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1310                    | 1           |                |                                          | X                | 1                |                |           |                                       |       |         |                                                                                                                                                  | 20 Ay<br>1 Aug<br>1                                             | -2                         |  |
| MW-512                                                                                                   | Grah                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1350                    | 1           |                | at de la                                 |                  | X                |                | 2015      | lan.                                  | 14.15 |         |                                                                                                                                                  |                                                                 | -3                         |  |
| MW-703                                                                                                   | Grab                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1150                    | 1           |                | 1                                        |                  |                  | x              |           |                                       |       | 1. Call |                                                                                                                                                  |                                                                 | -4                         |  |
| MW-704                                                                                                   | Grab                             | GW                 | -                              | 8/2          | 1/19                                                                                                            | 1220                    | 1           |                |                                          | X                |                  | 1.5            |           | i de se                               |       |         |                                                                                                                                                  |                                                                 | - 5                        |  |
| MW-801                                                                                                   | Grab                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1420                    | 1           | -              |                                          | X                |                  |                |           | 2010)<br>                             |       |         |                                                                                                                                                  | Att Card                                                        | - 4                        |  |
| MW-804                                                                                                   | Grab                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1500                    | 1           | X              |                                          |                  | 1 martin         | (Ber           |           | 4.<br>19 -                            |       | 35      |                                                                                                                                                  |                                                                 | -7                         |  |
| MW-806R                                                                                                  | Grab                             | GW                 |                                | 6/2          | 1/19                                                                                                            | 1530                    | 2           |                | X                                        |                  | 1                | X              |           |                                       |       |         |                                                                                                                                                  |                                                                 | - 8                        |  |
| DUPLICATE 1                                                                                              | Grab                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1220                    | 1           |                |                                          | X                |                  |                |           |                                       |       | 10.19   |                                                                                                                                                  |                                                                 | - 9                        |  |
| 704 MS/MSD                                                                                               | Grab                             | GW                 |                                | 8/2          | 1/19                                                                                                            | 1220                    | 1           |                |                                          | X                |                  |                |           | Ster                                  |       |         |                                                                                                                                                  |                                                                 |                            |  |
| * Matrix: Remarks:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater |                                  |                    |                                |              |                                                                                                                 |                         |             |                |                                          |                  | pH<br>Flov       | 2              | Other     |                                       |       |         | Sample Receipt Checklist<br>COC Seal Present/Intact: MP Y N<br>COC Signed/Accurate: Y N<br>Bottles arrive intact: Y N<br>Correct bottles used: N |                                                                 |                            |  |
| DW - Drinking Water<br>OT - Other                                                                        | Samples retur<br>UPSFe           | ned via:<br>dExCou | irier                          |              |                                                                                                                 | acking #                |             |                |                                          |                  |                  |                | · · ·     |                                       |       | VOA 2   | Zero H                                                                                                                                           | volume sent:<br><u>If Applicab</u><br>Meadspace:                | <u>y</u>                   |  |
| Relinquished by : (Signature)                                                                            |                                  | Date:<br>8/22      | la                             | Time:<br>095 | 54                                                                                                              | ecoved by: (Sign        | e           |                |                                          |                  |                  |                |           | es / No<br>HCL / N<br>TBR<br>tes Reco | ИеоН  | RAD 8   | Screen                                                                                                                                           | on Correct/Chu<br>1 <0.5 mR/hr:                                 | ₩¥ -                       |  |
| Keundpisned by : (Signature)                                                                             | inglished by : (Signature) Date: |                    | 19                             | Time:        |                                                                                                                 | eceived by: (Sign       | ature)      |                |                                          |                  |                  | 430F<br>20=2   | <b>C</b>  | ics neu                               | )1    | in pres | servatic                                                                                                                                         | ni required by Lo                                               | Sur care inite             |  |
| Relinquished by : (Signature)                                                                            |                                  | Date:              |                                | Time:        | and so in the second | eceived for lab by      | y: (Signa   | ture)          |                                          |                  | Date:            | 12:            | Tim       | State Street                          | 45    | Hold:   |                                                                                                                                                  |                                                                 | Condition:<br>NCF / OK     |  |

| SCS Engineers - KS                                                                                                                       |                                                        |                                      | Accour<br>8575 M                              | formation:<br>hts Payable<br>V. 110th Stree<br>nd Park, KS 66 | t                     | Pres                                     |                    | 2                       | The second     | Analys               | is / Cont       | ainer / Preservat                                  | ive                                      | Chain of C                                                                                   | ustody Pageo                          |             |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------|------------------------------------------|--------------------|-------------------------|----------------|----------------------|-----------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| eport to:<br>ason Franks                                                                                                                 |                                                        | Email To:<br>Jay.marti               | ); jfranks@scsengineers.com;<br>tin@kcpl.com; |                                                               |                       |                                          |                    |                         | res            |                      |                 |                                                    | 12065 Leban                              | 12065 Lebanon Ad                                                                             |                                       |             |
| esciption: Sibley Generatin<br>hone: 913-681-0030<br>ax: 913-681-0012<br>offected by (print):<br>Whit Martin<br>offected by (signature): | g Station<br>Client Proje<br>27213168<br>Site/Facility | Collected: 0                         | Sibley                                        | Lab Project #<br>AQUAOPKS<br>P.O. #                           | Please Circ<br>PT MT  | Ie:<br>ET                                | HDPE-HNO3          | DPE-HNO3                | SmiHDPE-Nopres | 125mlHDPE-NoPres     | 125mHDPE-NoPres |                                                    |                                          | Mount Juliet,<br>Phone: 615-7<br>Phone: 80-7<br>Fax: 615-758-<br>SDG #                       | TN 37122 50 100<br>58-5858 57-5859 51 | N BIZ       |
| And Marts<br>nmediately<br>acked on Ice N_YX<br>Sample ID                                                                                | Same  <br>Next D                                       | 1                                    | ay<br>Rado-La                                 |                                                               | ults Needed           | No.<br>of<br>Cntrs                       | on - 6010 250mlHDP | B - 6010 250m/HDPE-HNO3 | 9056 12        | Chloride, 504 - 9056 | 9056            |                                                    |                                          | Acctnum: A<br>Template:T<br>Prelogin: P<br>PM: 206 - Je<br>PB:                               | 724464                                | ľ           |
| DUPLICATE 2<br>MW-806R MS/MSD                                                                                                            | Grab<br>Grab                                           | GW<br>GW                             |                                               | 8/21/19<br>8/21/19                                            | 1530<br>1530          | 2 2                                      | Boron              | X Ca,                   | chic           | Chio                 | × × Sulfate     |                                                    |                                          | Shipped Via:<br>Remarks                                                                      | Semple # (lab only)                   | - 70<br>- 0 |
|                                                                                                                                          |                                                        |                                      |                                               |                                                               |                       |                                          |                    |                         |                |                      |                 |                                                    |                                          |                                                                                              |                                       |             |
| atrix:<br>Soil AIR - Air F - Filter                                                                                                      | Remarks:                                               |                                      |                                               |                                                               |                       |                                          |                    |                         |                |                      |                 |                                                    |                                          |                                                                                              |                                       |             |
| y Groundwater B - Bioassay<br>N - WasteWater<br>y Drinking Water<br>. Other<br>inquished by : (Signature)                                | Samples returne<br>UPSFed1                             | ExCourier                            |                                               | Track                                                         | ting #                | le l |                    |                         | F              | pH                   |                 | Femp                                               | Correct boy                              | ple Receipt CP<br>resent/Intact<br>/Accurate:<br>rive intact:<br>ttles used:<br>volume sent: | MORE N N                              |             |
| hquished by : (Signature)                                                                                                                |                                                        | Date:<br>8/12/19<br>Date:<br>\$22/14 | Time<br>09<br>Time<br>5 42                    | 55 A<br>Recei                                                 | wed by: (Signature)   | e                                        |                    |                         | Temp           | Mank R               | F°C B           | Yes (No)<br>HCL / MeoH<br>TBR<br>Bottles Received: | VOA Zero He<br>Preservatio<br>RAD Screen | TE Brown St.                                                                                 | cked: $V_{Y} = N_{N}$                 |             |
|                                                                                                                                          |                                                        | late:                                | Time:                                         | Receiv                                                        | red (or Jab by: (Sign | ature)                                   |                    |                         | Date:          | 12                   | T               | Ime:<br>8:45                                       | Hold:                                    |                                                                                              | Condition:<br>NCF / OK                |             |

Jared Morrison December 16, 2022

# ATTACHMENT 1-6 November 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

November 15, 2019

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description: L1158865 11/08/2019 27213169.10 KCP&L Sibley Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr ʹQc Gl AI Sc

#### Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213169.10

SDG: L1158865 DATE/TIME: 11/15/19 11:12

PAGE:

1 of 20

# TABLE OF CONTENTS

| *               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |

Sc

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-504 L1158865-01                         | 6  |
| MW-505 L1158865-02                         | 7  |
| MW-506 L1158865-03                         | 8  |
| MW-510 L1158865-04                         | 9  |
| MW-512 L1158865-05                         | 10 |
| MW-601 L1158865-06                         | 11 |
| MW-601 (MS/MSD) L1158865-07                | 12 |
| DUPLICATE 1 L1158865-08                    | 13 |
| Qc: Quality Control Summary                | 14 |
| Gravimetric Analysis by Method 2540 C-2011 | 14 |
| Wet Chemistry by Method 9056A              | 15 |
| Metals (ICP) by Method 6010B               | 17 |
| GI: Glossary of Terms                      | 18 |
| Al: Accreditations & Locations             | 19 |
| Sc: Sample Chain of Custody                | 20 |
|                                            |    |

SDG: L1158865 DATE/TIME: 11/15/19 11:12

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                            | SAMPLES   | ONE LAB. NATIONW |                                |                                       |                           |                |
|--------------------------------------------|-----------|------------------|--------------------------------|---------------------------------------|---------------------------|----------------|
| MW-504 L1158865-01 GW                      |           |                  | Collected by<br>Jason R Franks | Collected date/time<br>11/06/19 11:20 | Received da 11/08/19 08:3 |                |
| Method                                     | Batch     | Dilution         | Preparation                    | Analysis                              | Analyst                   | Location       |
|                                            |           |                  | date/time                      | date/time                             |                           |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, TI |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 15:10                 | 11/12/19 15:10                        | ST                        | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 01:43                        | EL                        | Mt. Juliet, Tl |
|                                            |           |                  | Collected by                   | Collected date/time                   | Received da               | te/time        |
| MW-505 L1158865-02 GW                      |           |                  | Jason R Franks                 | 11/06/19 12:10                        | 11/08/19 08:3             | 80             |
| Method                                     | Batch     | Dilution         | Preparation<br>date/time       | Analysis<br>date/time                 | Analyst                   | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 15:26                 | 11/12/19 15:26                        | ST                        | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 01:46                        | EL                        | Mt. Juliet, T  |
|                                            | W01500311 | ·                | 11/11/13 20.50                 | 11/10/10 01.10                        | LL                        | wit. Suilet, I |
|                                            |           |                  | Collected by                   | Collected date/time                   | Received da               |                |
| MW-506 L1158865-03 GW                      |           |                  | Jason R Franks                 | 11/06/19 14:00                        | 11/08/19 08:3             | 80             |
| Method                                     | Batch     | Dilution         | Preparation                    | Analysis                              | Analyst                   | Location       |
|                                            |           |                  | date/time                      | date/time                             |                           |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 15:42                 | 11/12/19 15:42                        | ST                        | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 01:49                        | EL                        | Mt. Juliet, T  |
|                                            |           |                  | Collected by                   | Collected date/time                   | Received da               | te/time        |
| MW-510 L1158865-04 GW                      |           |                  | Jason R Franks                 | 11/06/19 14:05                        | 11/08/19 08:3             |                |
| Method                                     | Batch     | Dilution         | Preparation                    | Analysis                              | Analyst                   | Location       |
|                                            |           |                  | date/time                      | date/time                             |                           |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 16:14                 | 11/12/19 16:14                        | ST                        | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 01:57                        | EL                        | Mt. Juliet, T  |
|                                            |           |                  | Collected by                   | Collected date/time                   | Received da               | te/time        |
| MW-512 L1158865-05 GW                      |           |                  | Jason R Franks                 | 11/06/19 15:35                        | 11/08/19 08:3             | 80             |
| Method                                     | Batch     | Dilution         | Preparation                    | Analysis                              | Analyst                   | Location       |
|                                            | W01070100 | 4                | date/time                      | date/time                             | <b>T</b> 11               |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, TI |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 17:17                 | 11/12/19 17:17                        | ST                        | Mt. Juliet, TI |
| Vetals (ICP) by Method 6010B               | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 02:00                        | EL                        | Mt. Juliet, Tl |
|                                            |           |                  | Collected by                   | Collected date/time                   | Received da               | te/time        |
| MW-601 L1158865-06 GW                      |           |                  | Jason R Franks                 | 11/06/19 15:20                        | 11/08/19 08:3             | 80             |
| Method                                     | Batch     | Dilution         | Preparation<br>date/time       | Analysis<br>date/time                 | Analyst                   | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1                | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                        | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378892 | 1                | 11/12/19 17:33                 | 11/12/19 17:33                        | ST                        | Mt. Juliet, T  |
|                                            | WG1380311 | 1                | 11/14/19 20:36                 | 11/15/19 02:03                        | EL                        | Mt. Juliet, Tl |

PROJECT: 27213169.10

SDG: L1158865 DATE/TIME: 11/15/19 11:12

# SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| MW-601 (MS/MSD) L1158865-07 GW             |           |          | Collected by<br>Jason R Franks | Collected date/time<br>11/06/19 15:30 | Received da 11/08/19 08:3    |                |
|--------------------------------------------|-----------|----------|--------------------------------|---------------------------------------|------------------------------|----------------|
| Method                                     | Batch     | Dilution | Preparation date/time          | Analysis<br>date/time                 | Analyst                      | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1        | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378892 | 1        | 11/12/19 18:05                 | 11/12/19 18:05                        | ST                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1380311 | 1        | 11/14/19 20:36                 | 11/15/19 02:06                        | EL                           | Mt. Juliet, TN |
| DUPLICATE 1 L1158865-08 GW                 |           |          | Collected by<br>Jason R Franks | Collected date/time<br>11/06/19 15:25 | Received da<br>11/08/19 08:3 |                |
| Method                                     | Batch     | Dilution | Preparation<br>date/time       | Analysis<br>date/time                 | Analyst                      | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378166 | 1        | 11/11/19 06:34                 | 11/11/19 08:05                        | TH                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378892 | 1        | 11/12/19 18:21                 | 11/12/19 18:21                        | ST                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1380311 | 1        | 11/14/19 20:36                 | 11/15/19 02:08                        | EL                           | Mt. Juliet, TN |

<sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

\*

Ср

Tc

# CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213169.10

SDG: L1158865 DATE/TIME: 11/15/19 11:12 PAGE: 5 of 20

#### SAMPLE RESULTS - 01 L1158865

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  |               |           |       |          |                  |             | 1  |
|------------------|---------------|-----------|-------|----------|------------------|-------------|----|
|                  | Result        | Qualifier | RDL   | Dilution | Analysis         | Batch       |    |
| Analyte          | ug/l          |           | ug/l  |          | date / time      |             | 2  |
| Dissolved Solids | 177000        |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166   | 2. |
| Wet Chemistry by | / Method 9056 | Д         |       |          |                  |             | 3  |
|                  | Result        | Qualifier | RDL   | Dilution | Analysis         | Batch       |    |
| Analyte          | ug/l          |           | ug/l  |          | date / time      |             | 4  |
| Chloride         | ND            |           | 1000  | 1        | 11/12/2019 15:10 | WG1378892   |    |
| <b>F</b> 1 1 1   | 100           |           | 10.0  |          | 44/40/0040 45 40 | 11101070000 |    |

### Wet Chemistry by Method 9056A

|          | , , |        |           |      |          |                  |                  | 55              |
|----------|-----|--------|-----------|------|----------|------------------|------------------|-----------------|
|          |     | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |                 |
| Analyte  |     | ug/l   |           | ug/l |          | date / time      |                  | <sup>4</sup> Cn |
| Chloride |     | ND     |           | 1000 | 1        | 11/12/2019 15:10 | WG1378892        | CII             |
| Fluoride |     | 182    |           | 100  | 1        | 11/12/2019 15:10 | <u>WG1378892</u> | 5               |
| Sulfate  |     | 35400  |           | 5000 | 1        | 11/12/2019 15:10 | WG1378892        | ँSr             |
|          |     |        |           |      |          |                  |                  |                 |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |
|---------|--------|-----------|------|----------|------------------|------------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |                  |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 01:43 | WG1380311        |
| Calcium | 34100  |           | 1000 | 1        | 11/15/2019 01:43 | <u>WG1380311</u> |

SDG: L1158865

#### SAMPLE RESULTS - 02 L1158865

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  |        |              |            |                  |                  | 1 Cn | н |
|------------------|--------|--------------|------------|------------------|------------------|------|---|
|                  | Result | Qualifier RD | L Dilution | Analysis         | Batch            | Ср   |   |
| Analyte          | ug/l   | ug/          | l          | date / time      |                  | 2    | 1 |
| Dissolved Solids | 146000 | 100          | 000 1      | 11/11/2019 08:05 | <u>WG1378166</u> | Tc   |   |

#### Wet Chemistry by Method 9056A

|                  | Result       | Quanner   | NDL   | Dilution | Analysis         | Daten     |  |
|------------------|--------------|-----------|-------|----------|------------------|-----------|--|
| Analyte          | ug/l         |           | ug/l  |          | date / time      |           |  |
| Dissolved Solids | 146000       |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166 |  |
| Wet Chemistry by | Method 9056A | λ.        |       |          |                  |           |  |
|                  | Result       | Qualifier | RDL   | Dilution | Analysis         | Batch     |  |
| Analyte          | ug/l         |           | ug/l  |          | date / time      |           |  |
| Chloride         | ND           |           | 1000  | 1        | 11/12/2019 15:26 | WG1378892 |  |
| Fluoride         | 198          |           | 100   | 1        | 11/12/2019 15:26 | WG1378892 |  |
| Sulfate          | 17100        |           | 5000  | 1        | 11/12/2019 15:26 | WG1378892 |  |
|                  |              |           |       |          |                  |           |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 01:46 | WG1380311 |
| Calcium | 28200  |           | 1000 | 1        | 11/15/2019 01:46 | WG1380311 |

SDG: L1158865

#### SAMPLE RESULTS - 03 L1158865



Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     | C              |
|------------------|----------------|-----------|-------|----------|------------------|-----------|----------------|
| Analyte          | ug/l           |           | ug/l  |          | date / time      |           | 2              |
| Dissolved Solids | 410000         |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166 | Ť              |
| Wet Chemistry by | / Method 90564 | 4         |       |          |                  |           | <sup>3</sup> S |
|                  | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |                |
| Analyte          | ug/l           |           | ug/l  |          | date / time      |           | 4<br>C         |
| Chloride         | 6660           |           | 1000  | 1        | 11/12/2019 15:42 | WG1378892 |                |
| Fluoride         | 309            |           | 100   | 1        | 11/12/2019 15:42 | WG1378892 |                |

#### Wet Chemistry by Method 9056A

| -        |        |           |      |          |                  |           | 55              |
|----------|--------|-----------|------|----------|------------------|-----------|-----------------|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride | 6660   |           | 1000 | 1        | 11/12/2019 15:42 | WG1378892 | CII             |
| Fluoride | 309    |           | 100  | 1        | 11/12/2019 15:42 | WG1378892 | 5               |
| Sulfate  | 76800  |           | 5000 | 1        | 11/12/2019 15:42 | WG1378892 | Sr              |
|          |        |           |      |          |                  |           |                 |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |  |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 01:49 | WG1380311 |  |
| Calcium | 93700  |           | 1000 | 1        | 11/15/2019 01:49 | WG1380311 |  |

#### SAMPLE RESULTS - 04 L1158865

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier RDL | Dilution | Analysis         | Batch     | <br>Ср          |
|------------------|--------|---------------|----------|------------------|-----------|-----------------|
| Analyte          | ug/l   | ug/l          |          | date / time      |           | 2               |
| Dissolved Solids | 427000 | 10000         | 1        | 11/11/2019 08:05 | WG1378166 | <sup>2</sup> Tc |

#### Wet Chemistry by Method 9056A

|                  | Result         | Quanner   | NDL   | Dilution | Analysis         | Daten     |                                       |
|------------------|----------------|-----------|-------|----------|------------------|-----------|---------------------------------------|
| Analyte          | ug/l           |           | ug/l  |          | date / time      |           |                                       |
| Dissolved Solids | 427000         |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166 |                                       |
| Wet Chemistry by | / Method 9056A |           |       |          |                  |           |                                       |
|                  | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |                                       |
| Analyte          | ug/l           |           | ug/l  |          | date / time      |           |                                       |
| Chloride         | 3080           |           | 1000  | 1        | 11/12/2019 16:14 | WG1378892 |                                       |
| Fluoride         | 298            |           | 100   | 1        | 11/12/2019 16:14 | WG1378892 |                                       |
| Sulfate          | 14600          |           | 5000  | 1        | 11/12/2019 16:14 | WG1378892 |                                       |
|                  |                |           |       |          |                  |           | · · · · · · · · · · · · · · · · · · · |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 01:57 | WG1380311 |
| Calcium | 120000 |           | 1000 | 1        | 11/15/2019 01:57 | WG1380311 |

#### SAMPLE RESULTS - 05 L1158865

.

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier RDL | Dilution | Analysis         | Batch     | <br>Ср          |
|------------------|--------|---------------|----------|------------------|-----------|-----------------|
| Analyte          | ug/l   | ug/l          |          | date / time      |           | 2               |
| Dissolved Solids | 403000 | 10000         | 1        | 11/11/2019 08:05 | WG1378166 | <sup>-</sup> Tc |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/06/19 15:35

| Wet Chemistry b | y Method 9056 | 4         |      |          |                  |           |
|-----------------|---------------|-----------|------|----------|------------------|-----------|
|                 | Result        | Qualifier | RDL  | Dilution | Analysis         | Batch     |
| nalyte          | ug/l          |           | ug/l |          | date / time      |           |
| oride           | 4480          |           | 1000 | 1        | 11/12/2019 17:17 | WG1378892 |
| ıoride          | 286           |           | 100  | 1        | 11/12/2019 17:17 | WG1378892 |
| Sulfate         | 45000         |           | 5000 | 1        | 11/12/2019 17:17 | WG1378892 |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 02:00 | WG1380311 |
| Calcium | 105000 |           | 1000 | 1        | 11/15/2019 02:00 | WG1380311 |

#### SAMPLE RESULTS - 06 L1158865

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | · | ,      |           |       |          |                  |           | 1'C |
|------------------|---|--------|-----------|-------|----------|------------------|-----------|-----|
|                  |   | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |     |
| Analyte          |   | ug/l   |           | ug/l  |          | date / time      |           | 2   |
| Dissolved Solids |   | 361000 |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166 | Tc  |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/06/19 15:20

|                     | Result         | Qualifier        | RDL         | Dilution           | Analysis                | Batch              |  |
|---------------------|----------------|------------------|-------------|--------------------|-------------------------|--------------------|--|
| Analyte             | ug/l           |                  | ug/l        |                    | date / time             |                    |  |
| Dissolved Solids    | 361000         |                  | 10000       | 1                  | 11/11/2019 08:05        | WG1378166          |  |
| Net Chemistry by    | / Method 90564 | 4                |             |                    |                         |                    |  |
|                     | Result         | Qualifier        | RDI         | Dilution           | Analysis                | Batch              |  |
| Analyte             | Result<br>ug/l | Qualifier        | RDL<br>ug/l | Dilution           | Analysis<br>date / time | Batch              |  |
| Analyte<br>Chloride |                | <u>Qualifier</u> |             | Dilution           |                         | Batch<br>WG1378892 |  |
| •                   | ug/l           | <u>Qualifier</u> | ug/l        | Dilution<br>1<br>1 | date / time             |                    |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 02:03 | WG1380311 |
| Calcium | 101000 |           | 1000 | 1        | 11/15/2019 02:03 | WG1380311 |

#### SAMPLE RESULTS - 07 L1158865

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср    |
|------------------|--------|-----------|-------|----------|------------------|-----------|-------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | <br>2 |
| Dissolved Solids | 380000 |           | 10000 | 1        | 11/11/2019 08:05 | WG1378166 | Tc    |

#### Wet Chemistry by Method 9056A

| wet Chemistry i | by Method 9056<br>Result |           | וחס  | Dilution | Applycic                | Datab     |
|-----------------|--------------------------|-----------|------|----------|-------------------------|-----------|
| Analyto         |                          | Qualifier | RDL  | Dilution | Analysis<br>date / time | Batch     |
| Analyte         | ug/l                     |           | ug/l | 4        |                         | W04270002 |
| Chloride        | 3120                     |           | 1000 | 1        | 11/12/2019 18:05        | WG1378892 |
| Fluoride        | 248                      |           | 100  | 1        | 11/12/2019 18:05        | WG1378892 |
| Sulfate         | 12300                    |           | 5000 | 1        | 11/12/2019 18:05        | WG1378892 |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 02:06 | WG1380311 |
| Calcium | 101000 |           | 1000 | 1        | 11/15/2019 02:06 | WG1380311 |

#### SAMPLE RESULTS - 08 L1158865

# 

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier RDL | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|---------------|----------|------------------|-----------|--------|
| Analyte          | ug/l   | ug/l          |          | date / time      |           | 2      |
| Dissolved Solids | 366000 | 1000          | 0 1      | 11/11/2019 08:05 | WG1378166 | Tc     |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by | Method 9056 | 4         |      |          |                  |           | <sup>3</sup> Ss |
|------------------|-------------|-----------|------|----------|------------------|-----------|-----------------|
|                  | Result      | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte          | ug/l        |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride         | 3080        |           | 1000 | 1        | 11/12/2019 18:21 | WG1378892 | CII             |
| Fluoride         | 247         |           | 100  | 1        | 11/12/2019 18:21 | WG1378892 | 5               |
| Sulfate          | 11500       |           | 5000 | 1        | 11/12/2019 18:21 | WG1378892 | Sr              |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/15/2019 02:08 | WG1380311 |
| Calcium | 100000 |           | 1000 | 1        | 11/15/2019 02:08 | WG1380311 |



# WG1378166

Gravimetric Analysis by Method 2540 C-2011

#### QUALITY CONTROL SUMMARY L1158865-01,02,03,04,05,06,07,08

Τс

Ss

Cn

Sr

ິQc

#### Method Blank (MB)

| (MB) R3470987-1 11/11/ | /19 08:05 |              |        |        |
|------------------------|-----------|--------------|--------|--------|
|                        | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                | ug/l      |              | ug/l   | ug/l   |
| Dissolved Solids       | 3000      | J            | 2820   | 10000  |

#### L1158861-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1158861-04 11/11/19 ( | 08:05 • (DUP) R | 3470987-3 11 | /11/19 08:0 | 5       |               |                   |
|-----------------------------|-----------------|--------------|-------------|---------|---------------|-------------------|
|                             | Original Result | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                     | ug/l            | ug/l         |             | %       |               | %                 |
| Dissolved Solids            | 197000          | 198000       | 1           | 0.506   |               | 5                 |

#### L1158873-05 Original Sample (OS) • Duplicate (DUP)

| L1158873-05 Orig         | ginal Sample       | (OS) • Dup   | plicate (    | DUP)    |               |                   | <sup>7</sup> Gl |
|--------------------------|--------------------|--------------|--------------|---------|---------------|-------------------|-----------------|
| (OS) L1158873-05 11/11/1 | 19 08:05 • (DUP) F | 23470987-4 1 | 1/11/19 08:0 | )5      |               |                   |                 |
|                          | Original Result    | DUP Result   | Dilution     | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |
| Analyte                  | ug/l               | ug/l         |              | %       |               | %                 |                 |
| Dissolved Solids         | 567000             | 585000       | 1            | 3.13    |               | 5                 | <sup>9</sup> Sc |

#### Laboratory Control Sample (LCS)

| (LCS) R3470987-2 11/11 | .CS) R3470987-2 11/11/19 08:05 |            |          |             |               |  |  |  |
|------------------------|--------------------------------|------------|----------|-------------|---------------|--|--|--|
|                        | Spike Amount                   | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                | ug/l                           | ug/l       | %        | %           |               |  |  |  |
| Dissolved Solids       | 8800000                        | 8270000    | 94.0     | 85.0-115    |               |  |  |  |

DATE/TIME: 11/15/19 11:12

# WG1378892

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1158865-01,02,03,04,05,06,07,08

Ср

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3471242-1 | 11/12/19 09:25 |
|-----------------|----------------|
|-----------------|----------------|

| (IVID) R34/1242-1 | 11/12/19 09.25 |              |        |        |   |
|-------------------|----------------|--------------|--------|--------|---|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |   |
| Analyte           | ug/l           |              | ug/l   | ug/l   |   |
| Chloride          | U              |              | 51.9   | 1000   |   |
| Fluoride          | U              |              | 9.90   | 100    | 3 |
| Sulfate           | U              |              | 77.4   | 5000   |   |
|                   |                |              |        |        | 4 |
|                   |                |              |        |        |   |

#### L1158858-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1158858-01 11/12/19 | 11:27 • (DUP) R3 | 3471242-3 11/1 | 2/19 11:43 |         |               |                   |
|---------------------------|------------------|----------------|------------|---------|---------------|-------------------|
|                           | Original Result  | DUP Result     | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l             | ug/l           |            | %       |               | %                 |
| Chloride                  | 19900            | 19900          | 1          | 0.177   |               | 15                |
| Fluoride                  | 309              | 312            | 1          | 0.838   |               | 15                |

#### L1158865-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1158865-03 11/12/19 15:42 • (DUP) R3471242-6 11/12/19 15:58

| (,       | Original Result |       |   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|-------|---|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l  |   | %       |               | %                 |
| Chloride | 6660            | 6640  | 1 | 0.329   |               | 15                |
| Fluoride | 309             | 310   | 1 | 0.259   |               | 15                |
| Sulfate  | 76800           | 76700 | 1 | 0.163   |               | 15                |

#### L1158858-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1158858-01 11/12/19 | 19:25 • (DUP) R | 3471242-8 11/ | 12/19 20:12 | 2       |               |                   |
|---------------------------|-----------------|---------------|-------------|---------|---------------|-------------------|
|                           | Original Result | DUP Result    | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l            | ug/l          |             | %       |               | %                 |
| Sulfate                   | 181000          | 180000        | 5           | 0.212   |               | 15                |

#### Laboratory Control Sample (LCS)

| CS) R3471242-2 11/12/19 09:40 |                                                            |                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Spike Amount                  | LCS Result                                                 | LCS Rec.                                                                                                              | Rec. Limits                                                                                                                                 | LCS Qualifier                                                                                                                                                                                                                             |  |  |  |
| ug/l                          | ug/l                                                       | %                                                                                                                     | %                                                                                                                                           |                                                                                                                                                                                                                                           |  |  |  |
| 40000                         | 38400                                                      | 96.1                                                                                                                  | 80.0-120                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |
| 8000                          | 8040                                                       | 101                                                                                                                   | 80.0-120                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |
| 40000                         | 38900                                                      | 97.2                                                                                                                  | 80.0-120                                                                                                                                    |                                                                                                                                                                                                                                           |  |  |  |
|                               | Spike Amount           ug/l           40000           8000 | Spike Amount         LCS Result           ug/l         ug/l           40000         38400           8000         8040 | Spike Amount         LCS Result<br>ug/l         LCS Rec.           40000         38400         96.1           8000         8040         101 | Spike Amount         LCS Result         LCS Rec.         Rec. Limits           ug/l         ug/l         %         %           40000         38400         96.1         80.0-120           8000         8040         101         80.0-120 |  |  |  |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:    |
|--------------------|-------------|----------|----------------|----------|
| SCS Engineers - KS | 27213169.10 | L1158865 | 11/15/19 11:12 | 15 of 20 |

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

### L1158861-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1158861-01 11/12/19 | 12:31 • (MS) R34 | 71242-4 11/12/1 | 9 12:47 • (MSE | D) R3471242-5 | 11/12/19 13:03 |          |          |             |              |               |        |            |
|---------------------------|------------------|-----------------|----------------|---------------|----------------|----------|----------|-------------|--------------|---------------|--------|------------|
|                           | Spike Amount     | Original Result | MS Result      | MSD Result    | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                   | ug/l             | ug/l            | ug/l           | ug/l          | %              | %        |          | %           |              |               | %      | %          |
| Chloride                  | 50000            | 1720            | 50900          | 51100         | 98.4           | 98.8     | 1        | 80.0-120    |              |               | 0.420  | 15         |
| Fluoride                  | 5000             | 193             | 5040           | 5160          | 97.0           | 99.4     | 1        | 80.0-120    |              |               | 2.36   | 15         |
| Sulfate                   | 50000            | 38900           | 88100          | 88100         | 98.4           | 98.4     | 1        | 80.0-120    |              |               | 0.0267 | 15         |

#### L1158865-04 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1158865-04 11/12/19 | 9 16:14 • (MS) R34 | 471242-7 11/12/ | 19 17:01  |         |          |             |              |
|---------------------------|--------------------|-----------------|-----------|---------|----------|-------------|--------------|
|                           | Spike Amount       | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                   | ug/l               | ug/l            | ug/l      | %       |          | %           |              |
| Chloride                  | 50000              | 3080            | 52000     | 97.9    | 1        | 80.0-120    |              |
| Fluoride                  | 5000               | 298             | 5210      | 98.1    | 1        | 80.0-120    |              |
| Sulfate                   | 50000              | 14600           | 63800     | 98.5    | 1        | 80.0-120    |              |

DATE/TIME: 11/15/19 11:12

# WG1380311

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

# <sup>2</sup>Tc <sup>3</sup>Ss

# <sup>5</sup>Sr <sup>6</sup>Qc

Cn

<sup>7</sup>Gl

Method Blank (MB)

| (MB) R3472206-1 1 | 11/15/19 00:51 |              |        |        |
|-------------------|----------------|--------------|--------|--------|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l           |              | ug/l   | ug/l   |
| Boron             | U              |              | 12.6   | 200    |
| Calcium           | U              |              | 46.3   | 1000   |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3472206-2 11/15/1 | 9 00:54 • (LCSE | ) R3472206-3 | 11/15/19 00:56 | 5        |           |             |               |                |       |            |
|--------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                          | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                  | ug/l            | ug/l         | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                    | 1000            | 1000         | 999            | 100      | 99.9      | 80.0-120    |               |                | 0.402 | 20         |
| Calcium                  | 10000           | 10000        | 9900           | 100      | 99.0      | 80.0-120    |               |                | 1.43  | 20         |

#### L1158861-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1158861-12 11/15 | 5/19 00:59 • (MS) R3 | 472206-5 11/15  | 5/19 01:04 • (N | ISD) R3472206 | 5-6 11/15/19 0 | 1:07     |          |             |              |               |       |            | Å |
|------------------------|----------------------|-----------------|-----------------|---------------|----------------|----------|----------|-------------|--------------|---------------|-------|------------|---|
|                        | Spike Amount         | Original Result | MS Result       | MSD Result    | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |   |
| Analyte                | ug/l                 | ug/l            | ug/l            | ug/l          | %              | %        |          | %           |              |               | %     | %          | 9 |
| Boron                  | 1000                 | ND              | 1040            | 1030          | 102            | 101      | 1        | 75.0-125    |              |               | 1.26  | 20         |   |
| Calcium                | 10000                | 99800           | 109000          | 108000        | 88.7           | 83.7     | 1        | 75.0-125    |              |               | 0.461 | 20         | L |

**PROJECT:** 27213169.10

SDG: L1158865 DATE/TIME: 11/15/19 11:12 PAGE: 17 of 20

# GLOSSARY OF TERMS

# \*

Ср

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PROJECT: 27213169.10

SDG: L1158865 DATE/TIME: 11/15/19 11:12 PAGE: 18 of 20

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebr  |
|------------------------|-------------|-------|
| Alaska                 | 17-026      | Neva  |
| Arizona                | AZ0612      | New   |
| Arkansas               | 88-0469     | New   |
| California             | 2932        | New   |
| Colorado               | TN00003     | New   |
| Connecticut            | PH-0197     | North |
| Florida                | E87487      | North |
| Georgia                | NELAP       | North |
| Georgia <sup>1</sup>   | 923         | North |
| Idaho                  | TN00003     | Ohio  |
| Illinois               | 200008      | Oklal |
| Indiana                | C-TN-01     | Oreg  |
| lowa                   | 364         | Penn  |
| Kansas                 | E-10277     | Rhod  |
| Kentucky <sup>16</sup> | 90010       | South |
| Kentucky <sup>2</sup>  | 16          | South |
| Louisiana              | AI30792     | Tenn  |
| Louisiana <sup>1</sup> | LA180010    | Texa  |
| Maine                  | TN0002      | Texa  |
| Maryland               | 324         | Utah  |
| Massachusetts          | M-TN003     | Verm  |
| Michigan               | 9958        | Virgi |
| Minnesota              | 047-999-395 | Wash  |
| Mississippi            | TN00003     | West  |
| Missouri               | 340         | Wisc  |
| Montana                | CERT0086    | Wyor  |
|                        |             |       |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee <sup>1 4</sup>    | 2006             |
| Texas                       | T104704245-18-15 |
| Texas ⁵                     | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213169.10

L1158865

PAGE: 19 of 20

11/15/19 11:12

Τс Ss Cn Sr Qc Gl AI Sc

|                                                                                                 |                                            |                                | Billing Info            | rmation:                                  |                    | TT          |           | 1 1       | A                                         | nalvsis / Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ontaine | er / Prese    | rvative    |        |                              | Chain of Custody                                                                                                                                                                                                                   | Page of                      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-------------------------|-------------------------------------------|--------------------|-------------|-----------|-----------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|------------|--------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                           |                                            |                                | 8575 W.                 | s Payable<br>110th Stree<br>d Park, KS 66 |                    | Pres<br>Chk |           |           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              | National Cor                                                                                                                                                                                                                       | nar for Tasting & Innovation |
| Report to:<br>Jason Franks<br>Project                                                           |                                            | City/State                     | jay.martin              | franks@scseng<br>@kcpl.com;               | Please Circ        |             | E-NoPres  | Col       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              | 12065 Lebanon Rd<br>Mount Juliet, TN 371<br>Phone: 615-758-585<br>Phone: 800-767-585<br>Fax: 615-758-5859                                                                                                                          |                              |
| Description: <b>KCP&amp;L</b> Sibley Gener<br>Phone: 913-681-0030<br>Fax: 913-681-0012          | Client Project 4<br>27213169.1             | #0                             | JIBU                    | Lab Project #                             |                    |             | 125mlHDPE | E-HNO3    | 5                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              | SDG #                                                                                                                                                                                                                              | 158865<br>33                 |
| Collected by (print):<br>JASONR FRANK<br>Collected by (signature):                              |                                            | ab MUST Be                     | Notified)               | P.O. #<br>Quote #                         |                    |             | S04) 125  | 250mIHDPE | E-NoPres                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              | Acctnum: AQU<br>Template:T130                                                                                                                                                                                                      | 5014                         |
| Unmediately<br>Packed on Ice N Y                                                                | Same Da<br>Next Day<br>Two Day<br>Three Da | y Five  <br>y 5 Day<br>/ 10 Da |                         | Date F                                    | Results Needed     | No.<br>of   | (Cld, F,  | - 6010 25 | SOMIHDP                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              | Prelogin: <b>P736</b><br>PM: <b>206 - Jeff C</b><br>PB:                                                                                                                                                                            |                              |
| Sample ID                                                                                       | Comp/Grab                                  | Matrix *                       | Depth                   | Date                                      | Time               | Cntrs       | Anions    | B, Ca     | TDS 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | - 2-          |            |        |                              | Shipped Via:<br>Remarks                                                                                                                                                                                                            | Sample # (lab only)          |
| MW-504                                                                                          | GRAG                                       | GW                             | - 1                     | 11/6                                      | 1/9/120            | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2.2           |            |        |                              |                                                                                                                                                                                                                                    | -01                          |
| MW-505                                                                                          | UNIZ                                       | GW                             | -                       |                                           | 1210               | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              |                                                                                                                                                                                                                                    | -0)                          |
| MW-506                                                                                          |                                            | GW                             | 1.2-                    |                                           | 1400               | 3           | X         | x         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              |                                                                                                                                                                                                                                    | -03                          |
| MW-510                                                                                          |                                            | GW                             |                         |                                           | 1405               | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.1    |               |            |        |                              |                                                                                                                                                                                                                                    | -04                          |
| MW-512                                                                                          |                                            | GW                             |                         |                                           | 1535               | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              |                                                                                                                                                                                                                                    | -05                          |
| MW-601                                                                                          |                                            | GW                             | · · · · · · · · · · · · | Take Mar                                  | 1500               | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        | 1995 (1<br>4) (1)<br>(2) (2) | and a second s                                                                                                                   | -06                          |
| MW-601 (MS/MSD)                                                                                 |                                            | GW                             | 2                       |                                           | 1530               | 3           | X         | X         | X                                         | in the second se |         | and and       |            |        |                              | ala ang kanalan ng kan<br>Kanalan ng kanalan ng ka | -07                          |
| DUPLICATE 1                                                                                     | V                                          | GW                             | 1                       |                                           | 1525               | 3           | X         | X         | X                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              |                                                                                                                                                                                                                                    | -06                          |
|                                                                                                 |                                            |                                | 1 28                    | a started                                 |                    |             | <u> </u>  |           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            |        |                              |                                                                                                                                                                                                                                    |                              |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:                                   |                                | 1                       |                                           |                    |             |           |           |                                           | pH<br>Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Temp<br>Other |            | C<br>E | OC Seal<br>OC Sign<br>ottles | ample Receipt C<br>Present/Intact<br>ed/Accurate:<br>arrive intact:<br>bottles used:                                                                                                                                               |                              |
| DW - Drinking Water<br>OT - Other                                                               | Samples returned                           | rned via:<br>edEx Co           | urier                   |                                           | Tracking #         |             |           | 5         | W                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |            | 1      | OA Zero                      | nt volume sent:<br>If Applical<br>Headspace:                                                                                                                                                                                       | bleYN                        |
| Relinquiphed by : (Signature)                                                                   | he                                         | Date:                          | 19                      | Time:<br>1455                             | Received by: (Sign | ature       | n         | 1-7-      | 19                                        | Trip Blan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k Recei | г             | ICL / Meol | ł      | AD Scre                      | tion Correct/Cl<br>en <0.5 mR/hr:                                                                                                                                                                                                  | N                            |
| Refinquished by : (Signature)                                                                   | )                                          | Date:                          | 119                     | Time:                                     | Received by: (Sign |             |           |           | 1997 - 1997<br>1997 - 1997<br>1997 - 1997 | Temp: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | An a    | Y             | es Receive | 1      |                              | ation required by Lo                                                                                                                                                                                                               |                              |
| Relinquished by : (Signature)                                                                   |                                            | Date:                          |                         | Time:                                     | Received for lab b | y: (Sign    | attere)   | _ ;       |                                           | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - (     | Time          | $\sim$     | ŀ      | lold:                        | n an a                                                                                                                                                                                                                             | Condition:<br>NCF / OK       |

Jared Morrison December 16, 2022

# ATTACHMENT 2 Statistical Analyses

Jared Morrison December 16, 2022

## ATTACHMENT 2-1

# Fall 2018 Semiannual Detection Monitoring Statistical Analyses

#### **MEMORANDUM**

March 29, 2019



To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 KCP&L Greater Missouri Operations Company

#### From: SCS Engineers

#### RE: Determination of Statistically Significant Increases - CCR Landfill Fall 2018 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 15, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on January 2, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 11, 2019 and March 12, 2019.

The completed statistical evaluation identified four Appendix III constituents above their respective prediction limit in monitoring wells MW-504 and MW-512.

The prediction limit for calcium in monitoring well MW-512 is 107 mg/L. The detection monitoring sample was reported at 110 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 110 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 108 mg/L.

The prediction limit for chloride in monitoring well MW-512 is 3.826 mg/L. The detection monitoring sample was reported at 3.89 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 3.85 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 4.38 mg/L.

The prediction limit for sulfate in upgradient monitoring well MW-504 is 24.58 mg/L. The detection monitoring sample was reported at 33.9 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 33.2 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 35.1 mg/L.

The prediction limit for sulfate in monitoring well MW-512 is 29.55 mg/L. The detection monitoring sample was reported at 51.4 mg/L. The first verification re-sample was collected on January 11, 2019 with a result of 43.3 mg/L. The second verification re-sample was collected on March 12, 2019 with a result of 44.2 mg/L.

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 29, 2019 Page 2 of 2

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-504, and the detection monitoring sample for calcium, chloride, and sulfate from monitoring well MW-512 exceed their respective prediction limits and are confirmed statistically significant increases (SSIs) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified four SSIs above the background prediction limits for sulfate in upgradient monitoring well MW-504, and calcium, chloride, and sulfate in downgradient monitoring well MW-512.

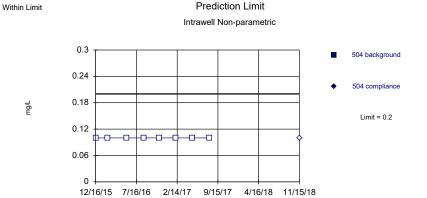
Attached to this memorandum are the following backup information:

Attachment 1: Sanitas<sup>™</sup> Output:

Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas<sup>™</sup> Configuration Settings:

Screen shots of the applicable Sanitas<sup>TM</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 29, 2019

#### ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.



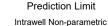
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

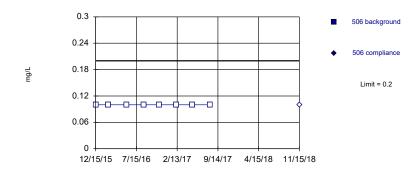
Constituent: Boron Analysis Run 3/28/2019 8:28 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Prediction Limit Within Limit Intrawell Non-parametric 0.3 505 background 0.24 505 compliance 0.18 mg/L Limit = 0.20.12 <u>₽-0--0-0-0-0-0</u> 0.06 0 12/16/15 7/16/16 2/14/17 9/15/17 4/16/18 11/15/18

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG


Hollow symbols indicate censored values.

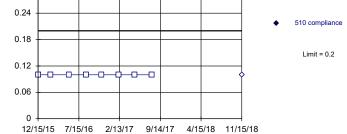

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/28/2019 8:28 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit






Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Hollow symbols indicate censored values.
Within Limit
Prediction Limit
Intrawell Non-parametric
0.3
0.24

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

mg/L



510 background

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

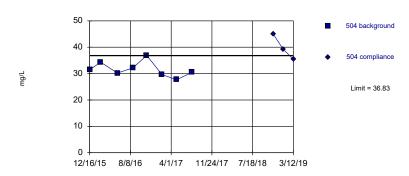
|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/4/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/10/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 512 background 0.24 512 compliance 0.18 ng/L Limit = 0.20.12 -0--0+0-0-0-0-0 0.06 0 12/15/15 7/15/16 2/13/17 9/14/17 4/15/18 11/15/18

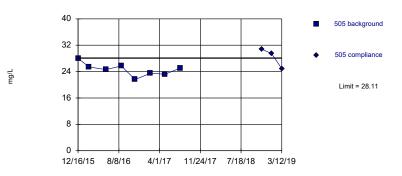

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/28/2019 8:28 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Boron Analysis Run 3/28/2019 8:28 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

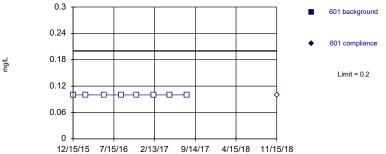



Background Data Summary: Mean=31.61, Std. Dev.=2.882, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9573, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=24.64, Std. Dev.=1.921, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9774, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Within Limit



Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Calcium Analysis Run 3/28/2019 8:28 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

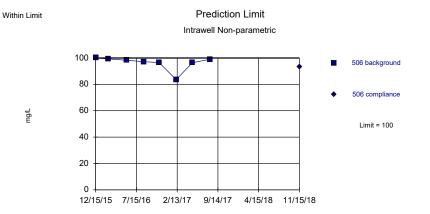
Constituent: Calcium Analysis Run 3/28/2019 8:28 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512  | 512  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/26/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 11/15/2018 |      | <0.2 |
|            |      |      |


Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504  | 504  |                            |
|------------|------|------|----------------------------|
| 12/16/2015 | 31.5 |      |                            |
| 2/18/2016  | 34.3 |      |                            |
| 5/25/2016  | 30.2 |      |                            |
| 8/23/2016  | 32.2 |      |                            |
| 11/11/2016 | 36.9 |      |                            |
| 2/8/2017   | 29.6 |      |                            |
| 5/4/2017   | 27.7 |      |                            |
| 8/1/2017   | 30.5 |      |                            |
| 11/15/2018 |      | 45   |                            |
| 1/11/2019  |      | 39.3 | 1st verification re-sample |
| 3/12/2019  |      | 35.4 | 2nd verification re-sample |
|            |      |      |                            |

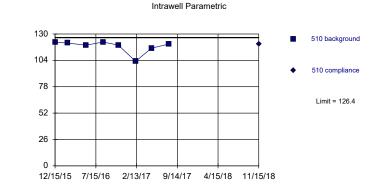
Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505  | 505  |                            |
|------------|------|------|----------------------------|
|            | 505  | 505  |                            |
| 12/16/2015 | 28   |      |                            |
| 2/18/2016  | 25.4 |      |                            |
| 5/25/2016  | 24.6 |      |                            |
| 8/23/2016  | 25.7 |      |                            |
| 11/11/2016 | 21.6 |      |                            |
| 2/8/2017   | 23.5 |      |                            |
| 5/4/2017   | 23.2 |      |                            |
| 8/1/2017   | 25.1 |      |                            |
| 11/15/2018 |      | 30.8 |                            |
| 1/11/2019  |      | 29.5 | 1st verification re-sample |
| 3/12/2019  |      | 24.9 | 2nd verification re-sample |
|            |      |      |                            |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Calcium Analysis Run 3/28/2019 8:28 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

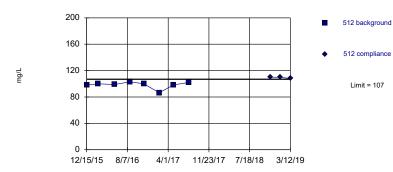
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

mg/L



Prediction Limit

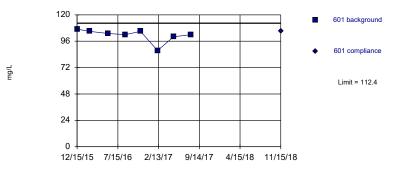

Background Data Summary (based on x<sup>5</sup> transformation): Mean=2.3e10, Std. Dev =5.1e9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7559, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/28/2019 8:28 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit

Prediction Limit Intrawell Parametric




Background Data Summary (based on square transformation): Mean=9696, Std. Dev.=964.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7552, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=101.4, Std. Dev.=6.044, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7624, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

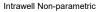
Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

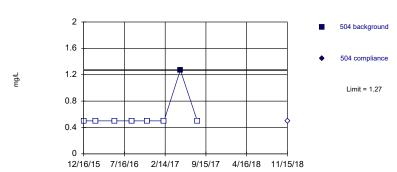
|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | 100  |      |
|            |      |      |
| 2/18/2016  | 99.3 |      |
| 5/25/2016  | 98.3 |      |
|            |      |      |
| 8/23/2016  | 97.2 |      |
| 11/11/2016 | 96.5 |      |
| 2/8/2017   | 83.6 |      |
| 5/4/2017   | 96.4 |      |
|            |      |      |
| 8/4/2017   | 99   |      |
| 11/15/2018 |      | 93.4 |
|            |      |      |
|            |      |      |

Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510 |     |
|------------|-----|-----|
| 12/15/2015 | 122 |     |
|            |     |     |
| 2/18/2016  | 121 |     |
| 5/25/2016  | 119 |     |
| 8/23/2016  | 122 |     |
|            |     |     |
| 11/10/2016 | 119 |     |
| 2/8/2017   | 103 |     |
| 5/3/2017   | 116 |     |
| 8/1/2017   | 120 |     |
|            | 120 |     |
| 11/15/2018 |     | 120 |
|            |     |     |
|            |     |     |

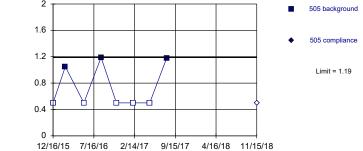
Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III


|            | 512  | 512 |                            |
|------------|------|-----|----------------------------|
| 12/15/2015 | 98.1 |     |                            |
| 2/18/2016  | 100  |     |                            |
| 5/25/2016  | 98.9 |     |                            |
| 8/23/2016  | 103  |     |                            |
| 11/11/2016 | 100  |     |                            |
| 2/8/2017   | 86.4 |     |                            |
| 5/3/2017   | 98.4 |     |                            |
| 8/1/2017   | 102  |     |                            |
| 11/15/2018 |      | 110 |                            |
| 1/11/2019  |      | 110 | 1st verification re-sample |
| 3/12/2019  |      |     |                            |
|            |      | 108 | 2nd verification re-sample |


Constituent: Calcium (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601  | 601 |
|------------|------|-----|
| 12/15/2015 | 107  |     |
| 2/18/2016  | 105  |     |
| 5/26/2016  | 103  |     |
| 8/23/2016  | 102  |     |
| 11/11/2016 | 105  |     |
| 2/8/2017   | 87.5 |     |
| 5/3/2017   | 100  |     |
| 8/1/2017   | 102  |     |
| 11/15/2018 |      | 105 |
|            |      |     |

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit


#### Prediction Limit





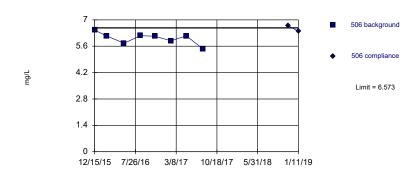
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.





Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 3/28/2019 8:28 AM View: LF III


Sibley Client: SCS Engineers Data: Sibley

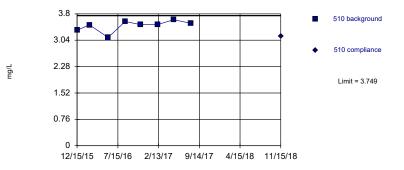
Constituent: Chloride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=6.018, Std. Dev.=0.307, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9179, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit Intrawell Parametric



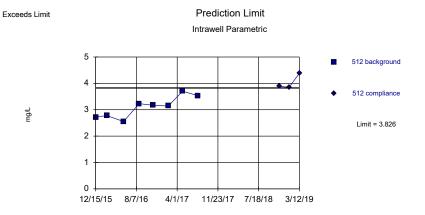
Background Data Summary: Mean=3.456, Std. Dev.=0.1616, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8599, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504  | 504 |
|------------|------|-----|
| 12/16/2015 | <1   |     |
| 2/18/2016  | <1   |     |
| 5/25/2016  | <1   |     |
| 8/23/2016  | <1   |     |
| 11/11/2016 | <1   |     |
| 2/8/2017   | <1   |     |
| 5/4/2017   | 1.27 |     |
| 8/1/2017   | <1   |     |
| 11/15/2018 |      | <1  |
|            |      |     |

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505  | 505 |
|------------|------|-----|
| 12/16/2015 | <1   |     |
| 2/18/2016  | 1.05 |     |
| 5/25/2016  | <1   |     |
| 8/23/2016  | 1.19 |     |
| 11/11/2016 | <1   |     |
| 2/8/2017   | <1   |     |
| 5/4/2017   | <1   |     |
| 8/1/2017   | 1.18 |     |
| 11/15/2018 |      | <1  |
|            |      |     |

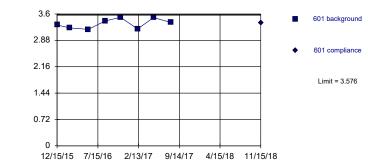

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 506  | 506  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 6.45 |      |                            |
| 2/18/2016  | 6.15 |      |                            |
| 5/25/2016  | 5.76 |      |                            |
| 8/23/2016  | 6.16 |      |                            |
| 11/11/2016 | 6.13 |      |                            |
| 2/8/2017   | 5.89 |      |                            |
| 5/4/2017   | 6.15 |      |                            |
| 8/4/2017   | 5.45 |      |                            |
| 11/15/2018 |      | 6.69 |                            |
| 1/11/2019  |      | 6.39 | 1st verification re-sample |
|            |      |      |                            |

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|           | 510      | 510  |
|-----------|----------|------|
| 10/15/00  | 15 0.00  |      |
| 12/15/20  | 3.33     |      |
| 2/18/201  | 6 3.48   |      |
|           |          |      |
| 5/25/201  | 6 3.12   |      |
| 8/23/201  | 6 3.58   |      |
|           |          |      |
| 11/10/20  | 016 3.49 |      |
| 2/8/2017  | 3.49     |      |
| E (2/0017 |          |      |
| 5/3/2017  | 3.63     |      |
| 8/1/2017  | 3.53     |      |
| 11/15/00  |          | 0.45 |
| 11/15/20  | 18       | 3.15 |
|           |          |      |
|           |          |      |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=3.103, Std. Dev.=0.3996, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9537, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



mg/L

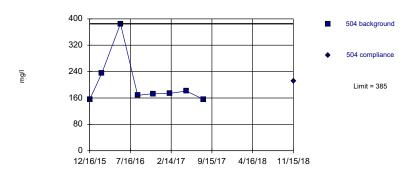


Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=3.335, Std. Dev.=0.1332, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/28/2019 8:29 AM View: LF III

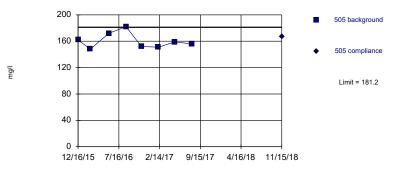

Sibley Client: SCS Engineers Data: Sibley

Constituent: Chloride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



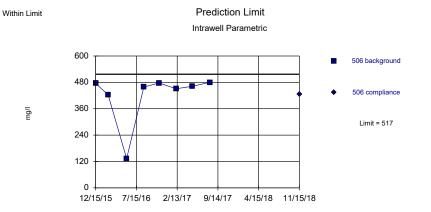
Background Data Summary: Mean=160.3, Std. Dev.=11.57, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9053, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512  | 512  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 2.72 |      |                            |
| 2/18/2016  | 2.78 |      |                            |
| 5/25/2016  | 2.55 |      |                            |
| 8/23/2016  | 3.23 |      |                            |
| 11/11/2016 | 3.17 |      |                            |
| 2/8/2017   | 3.14 |      |                            |
| 5/3/2017   | 3.7  |      |                            |
| 8/1/2017   | 3.53 |      |                            |
| 11/15/2018 |      | 3.89 |                            |
| 1/11/2019  |      | 3.85 | 1st verification re-sample |
| 3/12/2019  |      | 4.38 | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Chloride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 3.3  |      |
| 2/18/2016  | 3.22 |      |
|            |      |      |
| 5/26/2016  | 3.18 |      |
| 8/23/2016  | 3.41 |      |
| 11/11/2016 | 3.51 |      |
| 2/8/2017   | 3.19 |      |
| 5/3/2017   | 3.5  |      |
|            |      |      |
| 8/1/2017   | 3.37 |      |
| 11/15/2018 |      | 3.35 |
|            |      |      |
|            |      |      |

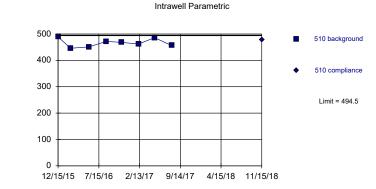

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504 | 504 |
|------------|-----|-----|
| 12/16/2015 | 155 |     |
| 2/18/2016  | 236 |     |
| 5/25/2016  | 385 |     |
| 8/23/2016  | 168 |     |
| 11/11/2016 | 173 |     |
| 2/8/2017   | 174 |     |
| 5/4/2017   | 181 |     |
| 8/1/2017   | 156 |     |
| 11/15/2018 |     | 211 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505 | 505 |
|------------|-----|-----|
| 12/16/2015 | 162 |     |
| 2/18/2016  | 148 |     |
| 5/25/2016  | 172 |     |
| 8/23/2016  | 182 |     |
| 11/11/2016 | 152 |     |
| 2/8/2017   | 151 |     |
| 5/4/2017   | 159 |     |
| 8/1/2017   | 156 |     |
| 11/15/2018 |     | 167 |
|            |     |     |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG




Background Data Summary (based on x<sup>4</sup> transformation): Mean=4.0e10, Std. Dev.=1.7e10, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk@alpha = 0.01; calculated = 0.7517, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

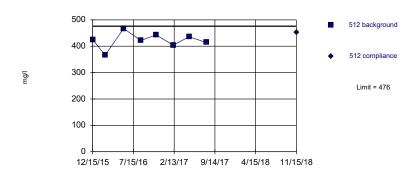
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



l/gr



Prediction Limit

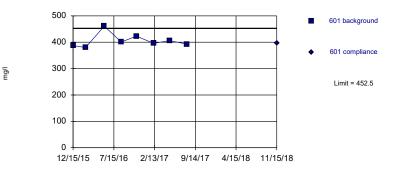

Background Data Summary: Mean=466.3, Std. Dev.=15.63, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9464, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/28/2019 8:29 AM View: LF III Siblev Client: SCS Engineers Data: Siblev Constituent: Dissolved Solids Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=422.1, Std. Dev.=29.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9687, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



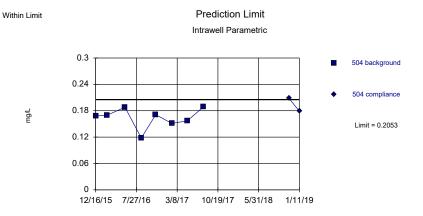
Background Data Summary: Mean=405.9, Std. Dev.=25.76, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8534, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 506 | 506 |
|------------|-----|-----|
| 12/15/2015 | 475 |     |
| 2/18/2016  | 423 |     |
| 5/25/2016  | 133 |     |
| 8/23/2016  | 459 |     |
| 11/11/2016 | 477 |     |
| 2/8/2017   | 451 |     |
| 5/4/2017   | 462 |     |
| 8/4/2017   | 480 |     |
| 11/15/2018 |     | 426 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510 | 510 |
|------------|-----|-----|
|            |     | 510 |
| 12/15/2015 | 489 |     |
| 2/18/2016  | 446 |     |
| 5/25/2016  | 451 |     |
| 8/23/2016  | 472 |     |
| 11/10/2016 | 468 |     |
| 2/8/2017   | 462 |     |
| 5/3/2017   | 486 |     |
| 8/1/2017   | 456 |     |
| 11/15/2018 |     | 478 |
|            |     |     |
|            |     |     |

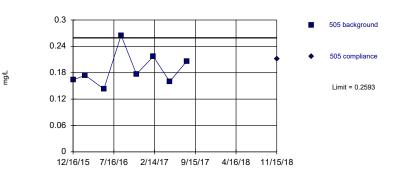

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512 | 512 |
|------------|-----|-----|
| 12/15/2015 | 425 |     |
|            |     |     |
| 2/18/2016  | 366 |     |
| 5/25/2016  | 467 |     |
| 8/23/2016  | 422 |     |
|            |     |     |
| 11/11/2016 | 443 |     |
| 2/8/2017   | 404 |     |
| 5/3/2017   | 436 |     |
| 8/1/2017   | 414 |     |
|            |     |     |
| 11/15/2018 |     | 452 |
|            |     |     |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601 | 601 |
|------------|-----|-----|
|            |     |     |
| 12/15/2015 | 387 |     |
|            |     |     |
| 2/18/2016  | 380 |     |
| 5/26/2016  | 461 |     |
| 0,20,2010  |     |     |
| 8/23/2016  | 401 |     |
| 11/11/2016 | 400 |     |
| 11/11/2016 | 423 |     |
| 2/8/2017   | 396 |     |
|            |     |     |
| 5/3/2017   | 406 |     |
| 8/1/2017   | 393 |     |
| 0/1/2017   | 393 |     |
| 11/15/2018 |     | 397 |
|            |     |     |
|            |     |     |
|            |     |     |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



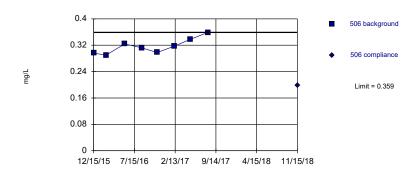

Background Data Summary: Mean=0.164, Std. Dev.=0.02279, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



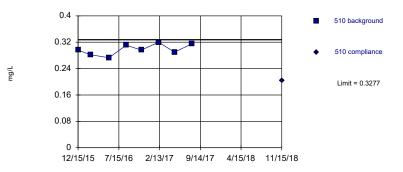

Background Data Summary: Mean=0.1883, Std. Dev.=0.03927, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0512). Report alpha = 0.05188.

Constituent: Fluoride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Fluoride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=0.3168, Std. Dev.=0.02333, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9406, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0512). Report alpha = 0.05188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



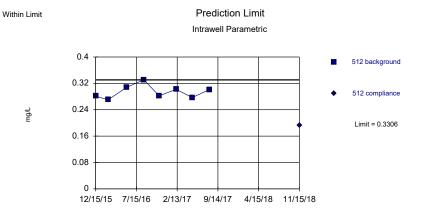
Background Data Summary: Mean=0.2979, Std. Dev.=0.01645, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9553, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05123). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504   | 504   |                            |
|------------|-------|-------|----------------------------|
| 12/16/2015 | 0.168 |       |                            |
| 2/18/2016  | 0.17  |       |                            |
| 5/25/2016  | 0.188 |       |                            |
| 8/23/2016  | 0.118 |       |                            |
| 11/11/2016 | 0.171 |       |                            |
| 2/8/2017   | 0.151 |       |                            |
| 5/4/2017   | 0.157 |       |                            |
| 8/1/2017   | 0.189 |       |                            |
| 11/15/2018 |       | 0.208 |                            |
| 1/11/2019  |       | 0.179 | 1st verification re-sample |
|            |       |       |                            |

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505   | 505   |
|------------|-------|-------|
| 12/16/2015 | 0.164 |       |
| 2/18/2016  | 0.174 |       |
| 5/25/2016  | 0.143 |       |
| 8/23/2016  | 0.265 |       |
| 11/11/2016 | 0.177 |       |
| 2/8/2017   | 0.217 |       |
| 5/4/2017   | 0.16  |       |
| 8/1/2017   | 0.206 |       |
| 11/15/2018 |       | 0.212 |
|            |       |       |

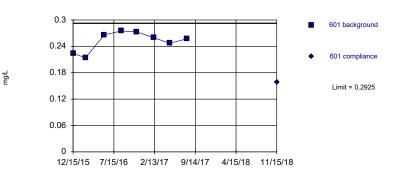

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 506   | 506   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.29  |       |
| 5/25/2016  | 0.324 |       |
| 8/23/2016  | 0.312 |       |
| 11/11/2016 | 0.298 |       |
| 2/8/2017   | 0.317 |       |
| 5/4/2017   | 0.338 |       |
| 8/4/2017   | 0.359 |       |
| 11/15/2018 |       | 0.199 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510   | 510   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.282 |       |
| 5/25/2016  | 0.273 |       |
| 8/23/2016  | 0.311 |       |
| 11/10/2016 | 0.296 |       |
| 2/8/2017   | 0.32  |       |
| 5/3/2017   | 0.29  |       |
| 8/1/2017   | 0.315 |       |
| 11/15/2018 |       | 0.204 |
|            |       |       |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



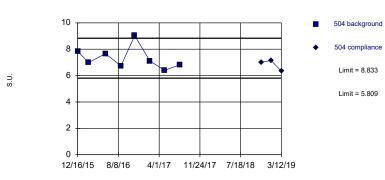

Background Data Summary: Mean=0.294, Std. Dev.=0.0202, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9269, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



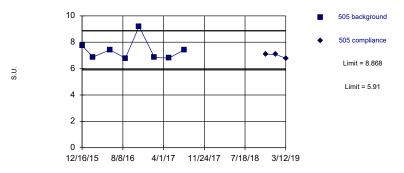

Background Data Summary: Mean=0.252, Std. Dev.=0.02239, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8908, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Fluoride Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.321, Std. Dev.=0.8353, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8916, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



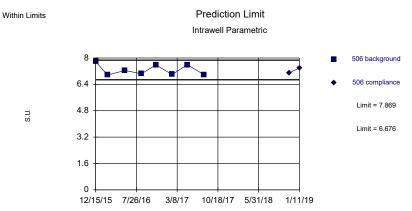
Background Data Summary: Mean-7.389, Std. Dev.=0.817, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7651, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512   | 512   |
|------------|-------|-------|
| 12/15/2015 | 0.281 |       |
| 2/18/2016  | 0.27  |       |
| 5/25/2016  | 0.308 |       |
| 8/23/2016  | 0.331 |       |
| 11/11/2016 | 0.282 |       |
| 2/8/2017   | 0.302 |       |
| 5/3/2017   | 0.277 |       |
| 8/1/2017   | 0.301 |       |
| 11/15/2018 |       | 0.192 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601   | 601   |
|------------|-------|-------|
| 12/15/2015 | 0.224 |       |
| 2/18/2016  | 0.214 |       |
| 5/26/2016  | 0.266 |       |
| 8/23/2016  | 0.275 |       |
| 11/11/2016 | 0.273 |       |
| 2/8/2017   | 0.26  |       |
| 5/3/2017   | 0.247 |       |
| 8/1/2017   | 0.257 |       |
| 11/15/2018 |       | 0.158 |
|            |       |       |

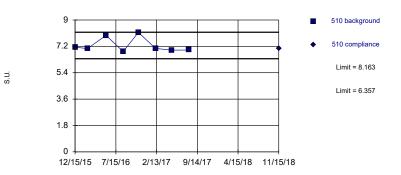

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504  | 504  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.83 |      |              |
| 2/18/2016  | 6.99 |      |              |
| 5/25/2016  | 7.66 |      |              |
| 8/23/2016  | 6.74 |      |              |
| 11/11/2016 | 9.03 |      |              |
| 2/8/2017   | 7.09 |      |              |
| 5/4/2017   | 6.4  |      |              |
| 8/1/2017   | 6.83 |      |              |
| 11/15/2018 |      | 7.01 |              |
| 1/11/2019  |      | 7.15 | extra sample |
| 3/12/2019  |      | 6.34 | extra sample |

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505  | 505  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.74 |      |              |
| 2/18/2016  | 6.88 |      |              |
| 5/25/2016  | 7.42 |      |              |
| 8/23/2016  | 6.79 |      |              |
| 11/11/2016 | 9.2  |      |              |
| 2/8/2017   | 6.84 |      |              |
| 5/4/2017   | 6.8  |      |              |
| 8/1/2017   | 7.44 |      |              |
| 11/15/2018 |      | 7.09 |              |
| 1/11/2019  |      | 7.08 | extra sample |
| 3/12/2019  |      | 6.78 | extra sample |
|            |      |      |              |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



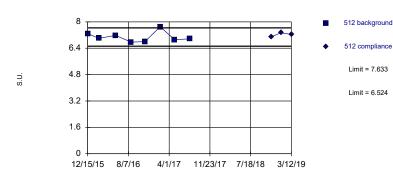

Background Data Summary: Mean=7.273, Std. Dev.=0.3294, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8334, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Constituent: pH Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



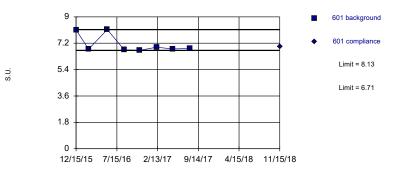

Background Data Summary: Mean=7.26, Std. Dev.=0.4988, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7542, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.079, Std. Dev.=0.3064, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8903, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Non-parametric



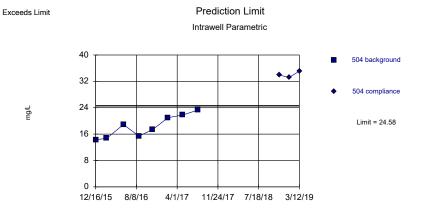
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.02358. Individual comparison alpha = 0.01182 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 506  | 506  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.78 |      |              |
| 2/18/2016  | 6.97 |      |              |
| 5/25/2016  | 7.24 |      |              |
| 8/23/2016  | 7.04 |      |              |
| 11/11/2016 | 7.58 |      |              |
| 2/8/2017   | 7    |      |              |
| 5/4/2017   | 7.59 |      |              |
| 8/4/2017   | 6.98 |      |              |
| 11/15/2018 |      | 7.08 |              |
| 1/11/2019  |      | 7.4  | extra sample |
|            |      |      |              |

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | 7.14 |      |
| 12/15/2015 | 7.14 |      |
| 2/18/2016  | 7.05 |      |
| 5/25/2016  | 7.95 |      |
|            |      |      |
| 8/23/2016  | 6.84 |      |
| 11/10/2016 | 8.15 |      |
| 2/8/2017   | 7.06 |      |
| 5/3/2017   | 6.94 |      |
|            |      |      |
| 8/1/2017   | 6.95 |      |
| 11/15/2018 |      | 7.05 |
|            |      |      |
|            |      |      |

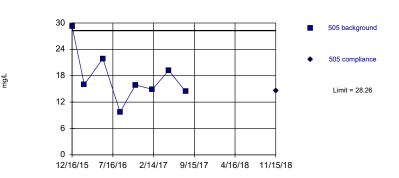

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512  | 512  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.29 |      |              |
| 2/18/2016  | 7    |      |              |
| 5/25/2016  | 7.18 |      |              |
| 8/23/2016  | 6.77 |      |              |
| 11/11/2016 | 6.8  |      |              |
| 2/8/2017   | 7.7  |      |              |
| 5/3/2017   | 6.92 |      |              |
| 8/1/2017   | 6.97 |      |              |
| 11/15/2018 |      | 7.09 |              |
| 1/11/2019  |      | 7.34 | extra sample |
| 3/12/2019  |      | 7.23 | extra sample |

Constituent: pH (S.U.) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
|            |      | 001  |
| 12/15/2015 | 8.11 |      |
| 2/18/2016  | 6.8  |      |
| 5/26/2016  | 8.13 |      |
| 8/23/2016  | 6.75 |      |
| 11/11/2016 | 6.71 |      |
| 2/8/2017   | 6.93 |      |
| 5/4/2017   | 6.81 |      |
| 8/1/2017   | 6.84 |      |
| 11/15/2018 |      | 6.96 |
|            |      |      |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=18.35, Std. Dev.=3.445, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9225, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

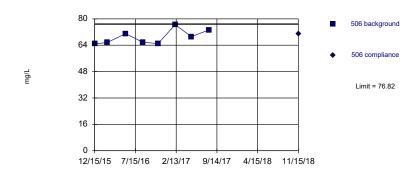


Prediction Limit



Background Data Summary: Mean=17.65, Std. Dev.=5.862, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9245, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/28/2019 8:29 AM View: LF III

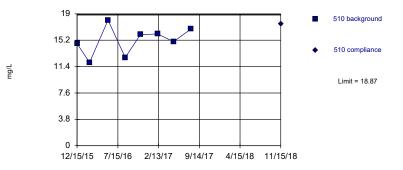

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=68.9, Std. Dev.=4.378, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8758, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=15.18, Std. Dev.=2.042, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

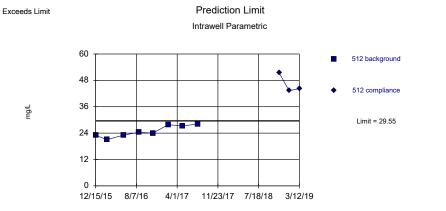
Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 504  | 504  |                            |
|------------|------|------|----------------------------|
| 12/16/2015 | 14.3 |      |                            |
| 2/18/2016  | 14.7 |      |                            |
| 5/25/2016  | 18.9 |      |                            |
| 8/23/2016  | 15.4 |      |                            |
| 11/11/2016 | 17.4 |      |                            |
| 2/8/2017   | 21   |      |                            |
| 5/4/2017   | 21.8 |      |                            |
| 8/1/2017   | 23.3 |      |                            |
| 11/15/2018 |      | 33.9 |                            |
| 1/11/2019  |      | 33.2 | 1st verification re-sample |
| 3/12/2019  |      | 35.1 | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 505  | 50   |
|------------|------|------|
| 12/16/2015 | 29.2 |      |
| 2/18/2016  | 16   |      |
| 5/25/2016  | 21.9 |      |
| 8/23/2016  | 9.73 |      |
| 11/11/2016 | 15.9 |      |
| 2/8/2017   | 14.9 |      |
| 5/4/2017   | 19.2 |      |
| 8/1/2017   | 14.4 |      |
| 11/15/2018 |      | 14.6 |
|            |      |      |

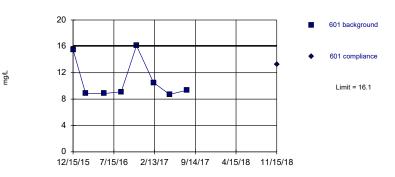
Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III


|               | 06 50 | 506  |
|---------------|-------|------|
|               |       |      |
| 12/15/2015 64 | 4.8   |      |
| 2/18/2016 65  | 5.6   |      |
| 5/25/2016 71  | 1     |      |
| 8/23/2016 65  | 5.8   |      |
| 11/11/2016 65 | 5     |      |
|               |       |      |
| 2/8/2017 76   | 6.5   |      |
| 5/4/2017 69   | 9.2   |      |
| 8/4/2017 73   | 3.3   |      |
| 11/15/2018    | 70    | 70.8 |
|               |       |      |

Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | 14.7 |      |
|            |      |      |
| 2/18/2016  | 12   |      |
| 5/25/2016  | 18.1 |      |
| 8/23/2016  | 12.7 |      |
|            |      |      |
| 11/10/2016 | 16   |      |
| 2/8/2017   | 16.1 |      |
| 5/3/2017   | 15   |      |
|            |      |      |
| 8/1/2017   | 16.8 |      |
| 11/15/2018 |      | 17.5 |
|            |      |      |
|            |      |      |

Sanitas<sup>™</sup> v.9.6.12 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=24.84, Std. Dev.=2.605, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9088, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 3/28/2019 8:29 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 3/28/2019 8:29 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 512  | 512  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 23   |      |                            |
| 2/18/2016  | 21   |      |                            |
| 5/25/2016  | 23.1 |      |                            |
| 8/23/2016  | 24.4 |      |                            |
| 11/11/2016 | 24   |      |                            |
| 2/8/2017   | 27.8 |      |                            |
| 5/3/2017   | 27.3 |      |                            |
| 8/1/2017   | 28.1 |      |                            |
| 11/15/2018 |      | 51.4 |                            |
| 1/11/2019  |      | 43.3 | 1st verification re-sample |
| 3/12/2019  |      | 44.2 | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Sulfate (mg/L) Analysis Run 3/28/2019 8:31 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 15.5 |      |
| 2/18/2016  | 8.87 |      |
| 5/26/2016  | 8.85 |      |
| 8/23/2016  | 9.11 |      |
| 11/11/2016 | 16.1 |      |
| 2/8/2017   | 10.5 |      |
| 5/3/2017   | 8.71 |      |
| 8/1/2017   | 9.33 |      |
| 11/15/2018 |      | 13.3 |
|            |      |      |

Sibley Client: SCS Engineers Data: Sibley Printed 3/28/2019, 8:31 AM

|                         |      |                   | Obley      | Client. 000 Engineers | Data. Obley | ninted 5    | /20/201     | 5, 0.51 AW |                  |              |                       |
|-------------------------|------|-------------------|------------|-----------------------|-------------|-------------|-------------|------------|------------------|--------------|-----------------------|
| <u>Constituent</u>      | Well | <u>Upper Lim.</u> | Lower Lim. | Date                  | Observ.     | <u>Sig.</u> | <u>Bg N</u> |            | <u>Transform</u> | <u>Alpha</u> | Method                |
| Boron (mg/L)            | 504  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 505  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 506  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 510  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 512  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              | 0.005912     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 601  | 0.2               | n/a        | 11/15/2018            | 0.1ND       | No          | 8           | 100        | n/a              | 0.005912     | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | 504  | 36.83             | n/a        | 3/12/2019             | 35.4        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 505  | 28.11             | n/a        | 3/12/2019             | 24.9        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 506  | 100               | n/a        | 11/15/2018            | 93.4        | No          | 8           | 0          | n/a              | 0.005912     | NP Intra (normality)  |
| Calcium (mg/L)          | 510  | 126.4             | n/a        | 11/15/2018            | 120         | No          | 8           | 0          | x^5              | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 512  | 107               | n/a        | 3/12/2019             | 108         | Yes         | 8           | 0          | x^2              | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 601  | 112.4             | n/a        | 11/15/2018            | 105         | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 504  | 1.27              | n/a        | 11/15/2018            | 0.5ND       | No          | 8           | 87.5       | n/a              | 0.005912     | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 505  | 1.19              | n/a        | 11/15/2018            | 0.5ND       | No          | 8           | 62.5       | n/a              | 0.005912     | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 506  | 6.573             | n/a        | 1/11/2019             | 6.39        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 510  | 3.749             | n/a        | 11/15/2018            | 3.15        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 512  | 3.826             | n/a        | 3/12/2019             | 4.38        | Yes         | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 601  | 3.576             | n/a        | 11/15/2018            | 3.35        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 504  | 385               | n/a        | 11/15/2018            | 211         | No          | 8           | 0          | n/a              | 0.005912     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | 505  | 181.2             | n/a        | 11/15/2018            | 167         | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506  | 517               | n/a        | 11/15/2018            | 426         | No          | 8           | 0          | x^4              | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 510  | 494.5             | n/a        | 11/15/2018            | 478         | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 512  | 476               | n/a        | 11/15/2018            | 452         | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601  | 452.5             | n/a        | 11/15/2018            | 397         | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 504  | 0.2053            | n/a        | 1/11/2019             | 0.179       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 505  | 0.2593            | n/a        | 11/15/2018            | 0.212       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 506  | 0.359             | n/a        | 11/15/2018            | 0.199       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 510  | 0.3277            | n/a        | 11/15/2018            | 0.204       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 512  | 0.3306            | n/a        | 11/15/2018            | 0.192       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 601  | 0.2925            | n/a        | 11/15/2018            | 0.158       | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 504  | 8.833             | 5.809      | 3/12/2019             | 6.34        | No          | 8           | 0          | No               | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 505  | 8.868             | 5.91       | 3/12/2019             | 6.78        | No          | 8           | 0          | No               | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 506  | 7.869             | 6.676      | 1/11/2019             | 7.4         | No          | 8           | 0          | No               | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 510  | 8.163             | 6.357      | 11/15/2018            | 7.05        | No          | 8           | 0          | No               | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 512  | 7.633             | 6.524      | 3/12/2019             | 7.23        | No          | 8           | 0          | No               | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 601  | 8.13              | 6.71       | 11/15/2018            | 6.96        | No          | 8           | 0          | n/a              | 0.01182      | NP Intra (normality)  |
| Sulfate (mg/L)          | 504  | 24.58             | n/a        | 3/12/2019             | 35.1        | Yes         | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 505  | 28.26             | n/a        | 11/15/2018            | 14.6        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 506  | 76.82             | n/a        | 11/15/2018            | 70.8        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 510  | 18.87             | n/a        | 11/15/2018            | 17.5        | No          | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 512  | 29.55             | n/a        | 3/12/2019             | 44.2        | Yes         | 8           | 0          | No               | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 601  | 16.1              | n/a        | 11/15/2018            | 13.3        | No          | 8           | 0          | n/a              | 0.005912     | NP Intra (normality)  |
|                         |      |                   |            |                       |             |             |             |            |                  |              | · • •                 |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill March 29, 2019

#### ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Data                  | Output                  | Trend Test                    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |  |  |
|-----------------------|-------------------------|-------------------------------|-------------|----------------|---------------|--------------|-------|--------|-------------|--|--|
| Exclude data flags: i |                         |                               |             |                |               |              |       |        |             |  |  |
| Data Reading Options  |                         |                               |             |                |               |              |       |        |             |  |  |
| 🔘 In                  | Individual Observations |                               |             |                |               |              |       |        |             |  |  |
| $\bigcirc$ M          | lean of Eac             | :h:                           | O Month     |                |               |              |       |        |             |  |  |
| $\bigcirc$ M          | ledian of Ea            | ach:                          | Seasor      | n              |               |              |       |        |             |  |  |
| Setup                 | Seasons                 | ace Handling.<br>Process Resa |             |                |               |              |       |        |             |  |  |

| Data Output Trend Test Control Cht                                                                                                                                                                                                                                                                                                                                                                                                   | Prediction Lim     | Tolerance Lim                                                                                                                                                                                 | Conf/Tol Int                                           | ANOVA                                                                                                   | Welchs                                                                 | Other Tests |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|--|--|
| ✓ Test for Normality using Shapiro-Wilk/Fra<br>✓ Use Non-Parametric Test when Non-Deter                                                                                                                                                                                                                                                                                                                                              |                    | at Alpha = 0.01       V         0       Vever Transform                                                                                                                                       |                                                        |                                                                                                         |                                                                        |             |  |  |
| Use Aitchison's Adjustment $\lor$ when Non-De                                                                                                                                                                                                                                                                                                                                                                                        | etects Percent >   | 15                                                                                                                                                                                            | 5 Use Specific Transformation:                         |                                                                                                         |                                                                        |             |  |  |
| Optional Further Refinement: Use       Aitchison's       when NDs % > 50       Use Best W Statistic                                                                                                                                                                                                                                                                                                                                  |                    |                                                                                                                                                                                               |                                                        |                                                                                                         |                                                                        |             |  |  |
| Use Poisson Prediction Limit when Non-De                                                                                                                                                                                                                                                                                                                                                                                             | etects Percent >   | 90                                                                                                                                                                                            |                                                        | Plot Transfo                                                                                            | ormed Value                                                            | es          |  |  |
| Deseasonalize (Intra- and InterWell)<br>● If Seasonality Is Detected<br>O If Seasonality Is Detected Or Insufficient<br>O Always (When Sufficient Data)<br>O I<br>Always Use Non-Parametric<br>Facility @<br>Statistical Evaluations per Year:<br>Constituents Analyzed:<br>Downgradient (Compliance) Wells:<br>Sampling Plan<br>Comparing Individual Observations<br>O 1 of 1 O 1 of 2 ● 1 of 3<br>O 2 of 4 ("Modified California") | t to Test<br>Never | <ul> <li>Plot Bac<br/>Override St</li> <li>Override DI</li> <li>Automat</li> <li>2-Tailed</li> <li>Show D</li> <li>Non-Parame</li> <li>Non-Parame</li> <li>Highest</li> <li>Most R</li> </ul> | Background Tr<br>ckground Data<br>andard Deviati<br>F: | on:<br>Dverride Kap<br>Backgroun<br>a Lighter<br>Highest Bac<br>100% Non<br>est Backgro<br>vailable, or | ppa:<br>d Outliers<br><br>kground Va<br>-Detects:<br>bund Value<br>MDL | lue V       |  |  |

| Data          | Output                                                               | Trend Test      | Control Cht      | Prediction Lim | Tolerance Lim | Conf/Tol Int     | ANOVA        | Welchs      | Other Tests    |  |  |
|---------------|----------------------------------------------------------------------|-----------------|------------------|----------------|---------------|------------------|--------------|-------------|----------------|--|--|
| - Rank \      | Von Neum                                                             | ann, Wilcoxor   | n Rank Sum /     | Mann-Whitney - |               |                  |              |             |                |  |  |
| Us            | Use Modified Alpha 2-Tailed Test Mode                                |                 |                  |                |               |                  |              |             |                |  |  |
|               |                                                                      |                 |                  |                |               |                  |              |             |                |  |  |
| Outlier Tests |                                                                      |                 |                  |                |               |                  |              |             |                |  |  |
| () EF         | EPA 1989 Outlier Screening (fixed alpha of 0.05)                     |                 |                  |                |               |                  |              |             |                |  |  |
| 🔘 Di          | ixon's at α=                                                         | = 0.05 ~ or     | ∵ifn.> 22 ∨      | Rosner's at α= | 0.01 🗸 🔽 l    | Jse EPA Scree    | ning to esta | blish Suspe | ected Outliers |  |  |
| O Tu          | ukey's Outl                                                          | ier Screening,  | with IQR Mult    | tiplier = 3.0  | Use Lado      | ler of Powers to | o achieve B  | est W Stat  |                |  |  |
| 🗹 Te          | est For Nor                                                          | mality using \$ | Shapiro-Wilk/F   | Francia 🗸 at / | Alpha = 0.1   | $\sim$           |              |             |                |  |  |
| ۲             | Stop if N                                                            | lon-Normal      |                  |                |               |                  |              |             |                |  |  |
| C             | ) Continue                                                           | e with Parame   | tric Test if Nor | n-Normal       |               |                  |              |             |                |  |  |
| C             | ) Tukey's                                                            | if Non-Normal   | , with IQR Mu    | tiplier = 3.0  | ) Use Lad     | der of Powers t  | o achieve E  | Best W Stat |                |  |  |
| ⊠ No          | o Outlier If                                                         | Less Than       | 3.0 Times        | Median         |               |                  |              |             |                |  |  |
| Ap            | oply Rules                                                           | found in Ohio   | Guidance Do      | cument 0715    |               |                  |              |             |                |  |  |
|               | Combine Background Wells on the Outlier Report                       |                 |                  |                |               |                  |              |             |                |  |  |
| Piper, S      | Piper, Stiff Diagram                                                 |                 |                  |                |               |                  |              |             |                |  |  |
|               | Combine Wells                                                        |                 |                  |                |               |                  |              |             |                |  |  |
|               | Combine Dates 🗹 Label Axes                                           |                 |                  |                |               |                  |              |             |                |  |  |
| 🔘 Us          | Use Default Constituent Names Note Cation-Anion Balance (Piper only) |                 |                  |                |               |                  |              |             |                |  |  |
| O Us          | se Constitu                                                          | ent Definition  | File Edit        |                |               |                  |              |             |                |  |  |
|               |                                                                      |                 |                  |                |               |                  |              |             |                |  |  |

# ATTACHMENT 2-2

Spring 2019 Semiannual Detection Monitoring Statistical Analyses

#### MEMORANDUM

September 27, 2019

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 KCP&L Greater Missouri Operations Company



#### From: SCS Engineers

#### RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2019 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 22, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on July 3, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 16, 2019 and August 21, 2019.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limit in monitoring wells MW-504, MW-506, and MW-512.

| Constituent/Monitoring Well | *UPL  | Observation<br>May 22, 2019 | 1st Verification<br>July 16, 2019 | 2nd Verification<br>August 21, 2019 |
|-----------------------------|-------|-----------------------------|-----------------------------------|-------------------------------------|
| Chloride                    |       |                             |                                   |                                     |
| 506                         | 6.573 | 7.05                        | 7.33                              | 7.17                                |
| 512                         | 3.826 | 4.17                        | 4.35                              | 4.91                                |
|                             |       |                             |                                   |                                     |
| Sulfate                     |       |                             |                                   |                                     |
| 504                         | 24.58 | 36.3                        | 36.3                              | 35.6                                |
| 512                         | 29.55 | 40.1                        | 42.1                              | 41.0                                |
|                             |       |                             |                                   |                                     |

\*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation confirmed four SSIs above the background prediction limits. These include chloride in downgradient monitoring wells MW-506 and MW-512 and sulfate in upgradient monitoring well MW-504 and downgradient monitoring well MW-512. Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill September 27, 2019 Page 2 of 2

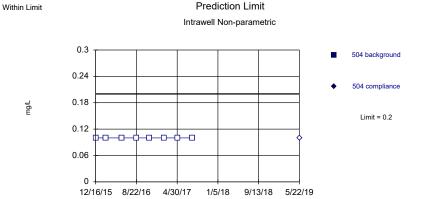
Attached to this memorandum are the following backup information:

Attachment 1: Sanitas<sup>™</sup> Output:

Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas<sup>™</sup> Configuration Settings:

Screen shots of the applicable Sanitas<sup>™</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill September 27, 2019

#### ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

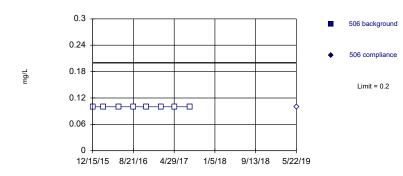


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/23/2019 1:57 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Prediction Limit Within Limit Intrawell Non-parametric 0.3 505 background 0.24 505 compliance 0.18 mg/L Limit = 0.20.12 0.06 0 12/16/15 8/22/16 4/30/17 1/5/18 9/13/18 5/22/19


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanias \*\* v.9.6.23 Sanias software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit Prediction Limit Intrawell Non-parametric

mg/L

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.



510 background

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 9/23/2019 1:59 PM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 9/23/2019 1:59 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 9/23/2019 1:59 PM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/4/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 9/23/2019 1:59 PM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/10/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 512 background 0.24 512 compliance 0.18 ng/L Limit = 0.20.12 -0-0-0-0-0-0-0 0.06 0 12/15/15 8/21/16 4/29/17 1/5/18 9/13/18 5/22/19

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

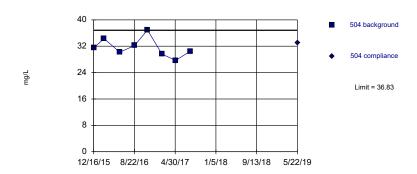
Constituent: Boron Analysis Run 9/23/2019 1:57 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

0.3 601 background 0.24 601 compliance 0.18 mg/L Limit = 0.20.12 ₲╺────────────── 0.06 0 12/15/15 8/21/16 4/29/17 1/5/18 9/13/18 5/22/19

Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

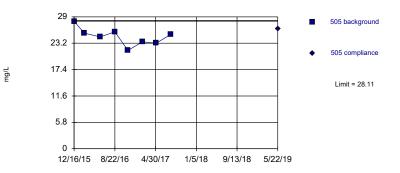
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=31.61, Std. Dev.=2.882, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9573, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=24.64, Std. Dev.=1.921, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9774, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

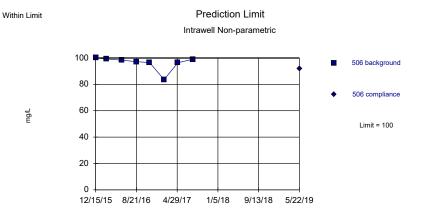
Constituent: Calcium Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512  | 512  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/26/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/22/2019  |      | <0.2 |
|            |      |      |


Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | 31.5 |      |
| 2/18/2016  | 34.3 |      |
| 5/25/2016  | 30.2 |      |
| 8/23/2016  | 32.2 |      |
| 11/11/2016 | 36.9 |      |
| 2/8/2017   | 29.6 |      |
| 5/4/2017   | 27.7 |      |
| 8/1/2017   | 30.5 |      |
| 5/22/2019  |      | 33.1 |
|            |      |      |

Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | 28   |      |
| 2/18/2016  | 25.4 |      |
| 5/25/2016  | 24.6 |      |
| 8/23/2016  | 25.7 |      |
| 11/11/2016 | 21.6 |      |
| 2/8/2017   | 23.5 |      |
| 5/4/2017   | 23.2 |      |
| 8/1/2017   | 25.1 |      |
| 5/22/2019  |      | 26.4 |
|            |      |      |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Calcium Analysis Run 9/23/2019 1:57 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

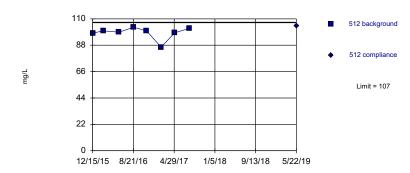
130

Within Limit

mg/L

Prediction Limit Intrawell Parametric 



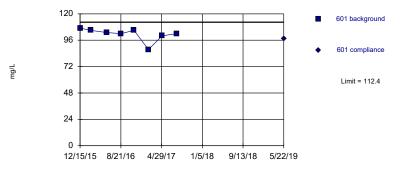

Background Data Summary (based on x<sup>5</sup> transformation): Mean=2.3e10, Std. Dev.=5.1e9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7559, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Calcium Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary (based on square transformation): Mean=9696, Std. Dev.=964.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7552, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=101.4, Std. Dev.=6.044, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7624, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

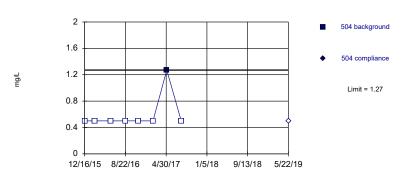
|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | 100  |      |
|            |      |      |
| 2/18/2016  | 99.3 |      |
| 5/25/2016  | 98.3 |      |
| 8/23/2016  | 97.2 |      |
| 11/11/2016 | 96.5 |      |
|            |      |      |
| 2/8/2017   | 83.6 |      |
| 5/4/2017   | 96.4 |      |
| 8/4/2017   | 99   |      |
| 5/22/2019  |      | 91.7 |
|            |      |      |
|            |      |      |

Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 540 | 540 |
|------------|-----|-----|
|            | 510 | 510 |
| 12/15/2015 | 122 |     |
| 2/18/2016  | 121 |     |
|            |     |     |
| 5/25/2016  | 119 |     |
| 8/23/2016  | 122 |     |
| 11/10/2016 | 119 |     |
| 2/8/2017   | 103 |     |
|            | 116 |     |
| 5/3/2017   |     |     |
| 8/1/2017   | 120 |     |
| 5/22/2019  |     | 117 |
|            |     |     |
|            |     |     |

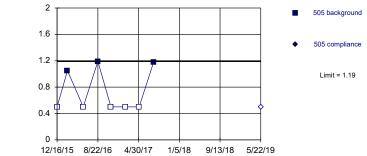
Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512  | 512 |
|------------|------|-----|
|            |      | 512 |
| 12/15/2015 | 98.1 |     |
| 2/18/2016  | 100  |     |
| 5/25/2016  | 98.9 |     |
| 8/23/2016  | 103  |     |
| 11/11/2016 | 100  |     |
| 2/8/2017   | 86.4 |     |
| 5/3/2017   | 98.4 |     |
| 8/1/2017   | 102  |     |
| 5/22/2019  |      | 104 |
|            |      |     |


Constituent: Calcium (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 107  |      |
| 2/18/2016  | 105  |      |
| 5/26/2016  | 103  |      |
| 8/23/2016  | 102  |      |
| 11/11/2016 | 105  |      |
| 2/8/2017   | 87.5 |      |
| 5/3/2017   | 100  |      |
| 8/1/2017   | 102  |      |
| 5/22/2019  |      | 97.4 |
|            |      |      |

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit


#### Prediction Limit





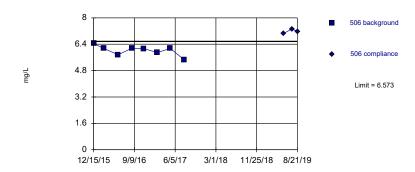
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.





Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 9/23/2019 1:57 PM View: LF III


Sibley Client: SCS Engineers Data: Sibley

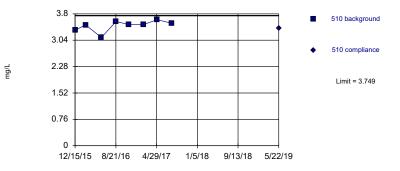
Constituent: Chloride Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=6.018, Std. Dev.=0.307, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9179, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit Intrawell Parametric



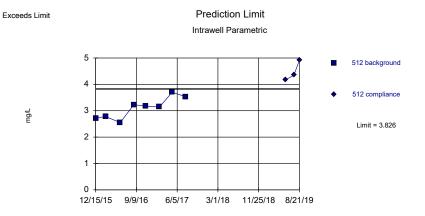
Background Data Summary: Mean=3.456, Std. Dev.=0.1616, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8599, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504  | 504 |
|------------|------|-----|
| 12/16/2015 | <1   |     |
| 2/18/2016  | <1   |     |
| 5/25/2016  | <1   |     |
| 8/23/2016  | <1   |     |
| 11/11/2016 | <1   |     |
| 2/8/2017   | <1   |     |
| 5/4/2017   | 1.27 |     |
| 8/1/2017   | <1   |     |
| 5/22/2019  |      | <1  |
|            |      |     |

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505  | 505 |
|------------|------|-----|
| 12/16/2015 | <1   |     |
| 2/18/2016  | 1.05 |     |
| 5/25/2016  | <1   |     |
| 8/23/2016  | 1.19 |     |
| 11/11/2016 | <1   |     |
| 2/8/2017   | <1   |     |
| 5/4/2017   | <1   |     |
| 8/1/2017   | 1.18 |     |
| 5/22/2019  |      | <1  |
|            |      |     |

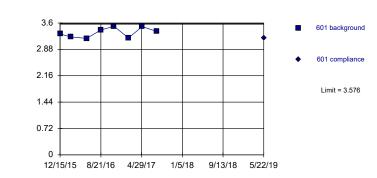

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 506  | 506  |                         |
|------------|------|------|-------------------------|
| 12/15/2015 | 6.45 |      |                         |
| 2/18/2016  | 6.15 |      |                         |
| 5/25/2016  | 5.76 |      |                         |
| 8/23/2016  | 6.16 |      |                         |
| 11/11/2016 | 6.13 |      |                         |
| 2/8/2017   | 5.89 |      |                         |
| 5/4/2017   | 6.15 |      |                         |
| 8/4/2017   | 5.45 |      |                         |
| 5/22/2019  |      | 7.05 |                         |
| 7/16/2019  |      | 7.33 | 1st verification sample |
| 8/21/2019  |      | 7.17 | 2nd verification sample |
|            |      |      |                         |

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 510  | 510  |
|------------|------|------|
|            |      |      |
| 12/15/2015 | 3.33 |      |
| 2/18/2016  | 3.48 |      |
|            |      |      |
| 5/25/2016  | 3.12 |      |
| 8/23/2016  | 3.58 |      |
|            |      |      |
| 11/10/2016 | 3.49 |      |
| 2/8/2017   | 3.49 |      |
|            |      |      |
| 5/3/2017   | 3.63 |      |
| 8/1/2017   | 3.53 |      |
|            | 0.00 |      |
| 5/22/2019  |      | 3.39 |
|            |      |      |
|            |      |      |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=3.103, Std. Dev.=0.3996, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9537, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG



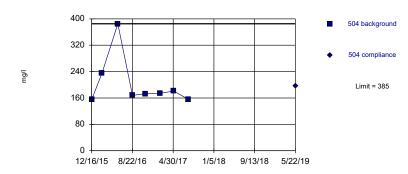
mg/L



Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=3.335, Std. Dev.=0.1332, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

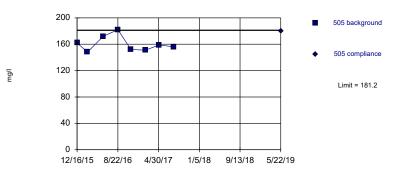

Constituent: Chloride Analysis Run 9/23/2019 1:57 PM View: LF III Siblev Client: SCS Engineers Data: Siblev



Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



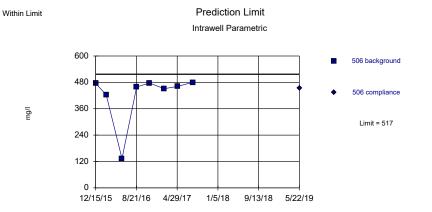
Background Data Summary: Mean=160.3, Std. Dev.=11.57, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9053, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512  | 512  |                         |
|------------|------|------|-------------------------|
| 12/15/2015 | 2.72 |      |                         |
| 2/18/2016  | 2.78 |      |                         |
| 5/25/2016  | 2.55 |      |                         |
| 8/23/2016  | 3.23 |      |                         |
| 11/11/2016 | 3.17 |      |                         |
| 2/8/2017   | 3.14 |      |                         |
| 5/3/2017   | 3.7  |      |                         |
| 8/1/2017   | 3.53 |      |                         |
| 5/22/2019  |      | 4.17 |                         |
| 7/16/2019  |      | 4.35 | 1st verification sample |
| 8/21/2019  |      | 4.91 | 2nd verification sample |
|            |      |      |                         |

Constituent: Chloride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
|            | 601  | 601  |
| 12/15/2015 | 3.3  |      |
| 2/18/2016  | 3.22 |      |
| 5/26/2016  | 3.18 |      |
| 8/23/2016  | 3.41 |      |
|            |      |      |
| 11/11/2016 | 3.51 |      |
| 2/8/2017   | 3.19 |      |
| 5/3/2017   | 3.5  |      |
| 8/1/2017   | 3.37 |      |
| 5/22/2019  |      | 3.19 |
|            |      |      |
|            |      |      |

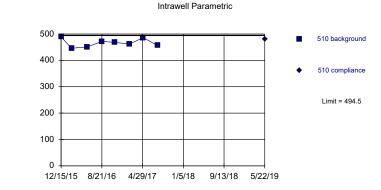

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504 | 504 |
|------------|-----|-----|
| 12/16/2015 | 155 |     |
| 2/18/2016  | 236 |     |
| 5/25/2016  | 385 |     |
| 8/23/2016  | 168 |     |
| 11/11/2016 | 173 |     |
| 2/8/2017   | 174 |     |
| 5/4/2017   | 181 |     |
| 8/1/2017   | 156 |     |
| 5/22/2019  |     | 197 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505 | 505 |
|------------|-----|-----|
| 12/16/2015 | 162 |     |
| 2/18/2016  | 148 |     |
| 5/25/2016  | 172 |     |
| 8/23/2016  | 182 |     |
| 11/11/2016 | 152 |     |
| 2/8/2017   | 151 |     |
| 5/4/2017   | 159 |     |
| 8/1/2017   | 156 |     |
| 5/22/2019  |     | 180 |
|            |     |     |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Background Data Summary (based on x<sup>4</sup> transformation): Mean=4.0e10, Std. Dev.=1.7e10, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk@alpha = 0.01; calculated = 0.7517, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

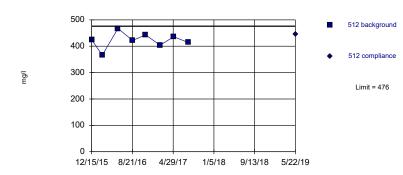
Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG



l/gr



Prediction Limit

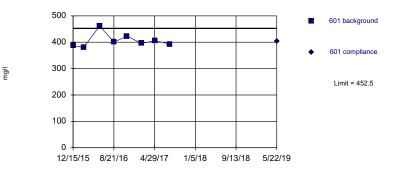

Background Data Summary: Mean=466.3, Std. Dev.=15.63, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9464, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Dissolved Solids Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=422.1, Std. Dev.=9.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9687, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



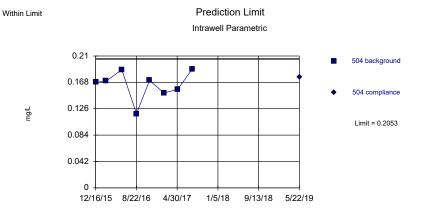
Background Data Summary: Mean=405.9, Std. Dev.=25.76, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8534, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 506 | 506 |
|------------|-----|-----|
| 12/15/2015 | 475 |     |
|            |     |     |
| 2/18/2016  | 423 |     |
| 5/25/2016  | 133 |     |
| 9/00/0016  | 450 |     |
| 8/23/2016  | 459 |     |
| 11/11/2016 | 477 |     |
| 2/8/2017   | 451 |     |
| 5/4/2017   | 462 |     |
|            |     |     |
| 8/4/2017   | 480 |     |
| 5/22/2019  |     | 453 |
|            |     |     |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 510 | 510 |
|------------|-----|-----|
|            |     |     |
| 12/15/2015 | 489 |     |
|            |     |     |
| 2/18/2016  | 446 |     |
| 5/25/2016  | 451 |     |
| 5/25/2010  | 401 |     |
| 8/23/2016  | 472 |     |
|            |     |     |
| 11/10/2016 | 468 |     |
| 2/8/2017   | 462 |     |
| 210/2017   |     |     |
| 5/3/2017   | 486 |     |
|            |     |     |
| 8/1/2017   | 456 |     |
| 5/22/2019  |     | 480 |
| 5/22/2019  |     | 460 |
|            |     |     |
|            |     |     |

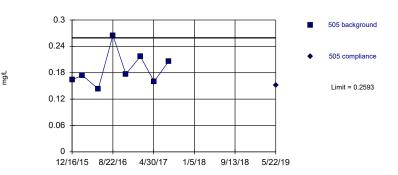

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512 | 512 |
|------------|-----|-----|
|            |     |     |
| 12/15/2015 | 425 |     |
| 2/18/2016  | 366 |     |
| 2/10/2010  | 300 |     |
| 5/25/2016  | 467 |     |
| 0/00/0010  | 100 |     |
| 8/23/2016  | 422 |     |
| 11/11/2016 | 443 |     |
|            |     |     |
| 2/8/2017   | 404 |     |
| 5/3/2017   | 436 |     |
|            |     |     |
| 8/1/2017   | 414 |     |
| 5/22/2019  |     | 445 |
| 5/22/2019  |     | 440 |
|            |     |     |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 9/23/2019 2:00 PM View: LF III

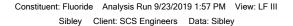
|            | 601 | 601 |
|------------|-----|-----|
| 12/15/2015 | 387 |     |
| 2/18/2016  | 380 |     |
| 5/26/2016  | 461 |     |
| 8/23/2016  | 401 |     |
| 11/11/2016 | 423 |     |
| 2/8/2017   | 396 |     |
| 5/3/2017   | 406 |     |
| 8/1/2017   | 393 |     |
| 5/22/2019  |     | 404 |
|            |     |     |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=0.164, Std. Dev.=0.02279, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188.

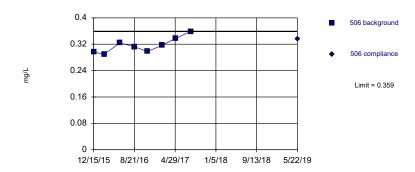
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Prediction Limit



Background Data Summary: Mean=0.1883, Std. Dev.=0.03927, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0512). Report alpha = 0.05188.

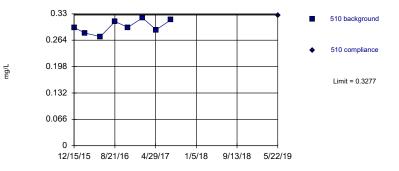

Constituent: Fluoride Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley



Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=0.3168, Std. Dev.=0.02333, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9406, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0512). Report alpha = 0.05188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



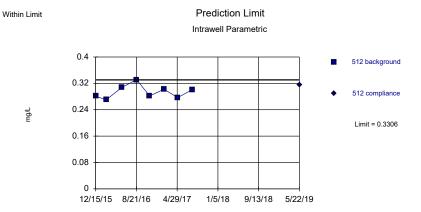
Background Data Summary: Mean=0.2979, Std. Dev.=0.01645, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9553, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05123). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504   | 504   |
|------------|-------|-------|
| 12/16/2015 | 0.168 |       |
| 2/18/2016  | 0.17  |       |
| 5/25/2016  | 0.188 |       |
| 8/23/2016  | 0.118 |       |
| 11/11/2016 | 0.171 |       |
| 2/8/2017   | 0.151 |       |
| 5/4/2017   | 0.157 |       |
| 8/1/2017   | 0.189 |       |
| 5/22/2019  |       | 0.176 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505   | 505   |
|------------|-------|-------|
| 12/16/2015 | 0.164 |       |
| 2/18/2016  | 0.174 |       |
| 5/25/2016  | 0.143 |       |
| 8/23/2016  | 0.265 |       |
| 11/11/2016 | 0.177 |       |
| 2/8/2017   | 0.217 |       |
| 5/4/2017   | 0.16  |       |
| 8/1/2017   | 0.206 |       |
| 5/22/2019  |       | 0.151 |
|            |       |       |

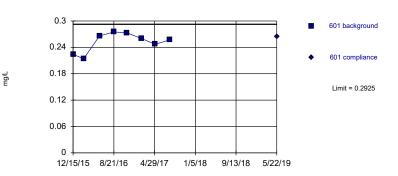

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 506   | 506   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.29  |       |
| 5/25/2016  | 0.324 |       |
| 8/23/2016  | 0.312 |       |
| 11/11/2016 | 0.298 |       |
| 2/8/2017   | 0.317 |       |
| 5/4/2017   | 0.338 |       |
| 8/4/2017   | 0.359 |       |
| 5/22/2019  |       | 0.336 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

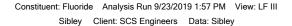
|            | 510   | 510   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.282 |       |
| 5/25/2016  | 0.273 |       |
| 8/23/2016  | 0.311 |       |
| 11/10/2016 | 0.296 |       |
| 2/8/2017   | 0.32  |       |
| 5/3/2017   | 0.29  |       |
| 8/1/2017   | 0.315 |       |
| 5/22/2019  |       | 0.326 |
|            |       |       |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=0.294, Std. Dev.=0.0202, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9269, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

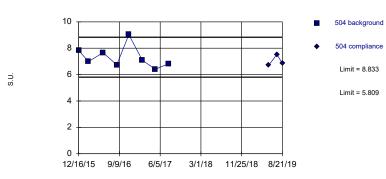
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Prediction Limit



Background Data Summary: Mean=0.252, Std. Dev=0.02239, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8908, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

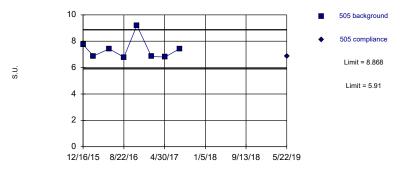

Constituent: Fluoride Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley



Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.321, Std. Dev.=0.8353, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8916, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



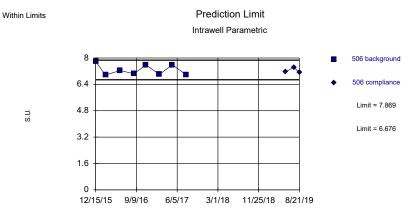
Background Data Summary: Mean=7.389, Std. Dev.=0.817, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7651, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512   | 512   |
|------------|-------|-------|
| 12/15/2015 | 0.281 |       |
| 2/18/2016  | 0.27  |       |
| 5/25/2016  | 0.308 |       |
| 8/23/2016  | 0.331 |       |
| 11/11/2016 | 0.282 |       |
| 2/8/2017   | 0.302 |       |
| 5/3/2017   | 0.277 |       |
| 8/1/2017   | 0.301 |       |
| 5/22/2019  |       | 0.315 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601   | 601   |
|------------|-------|-------|
| 12/15/2015 | 0.224 |       |
| 2/18/2016  | 0.214 |       |
| 5/26/2016  | 0.266 |       |
| 8/23/2016  | 0.275 |       |
| 11/11/2016 | 0.273 |       |
| 2/8/2017   | 0.26  |       |
| 5/3/2017   | 0.247 |       |
| 8/1/2017   | 0.257 |       |
| 5/22/2019  |       | 0.264 |
|            |       |       |

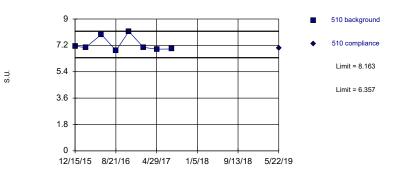

Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504  | 504  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.83 |      |              |
| 2/18/2016  | 6.99 |      |              |
| 5/25/2016  | 7.66 |      |              |
| 8/23/2016  | 6.74 |      |              |
| 11/11/2016 | 9.03 |      |              |
| 2/8/2017   | 7.09 |      |              |
| 5/4/2017   | 6.4  |      |              |
| 8/1/2017   | 6.83 |      |              |
| 5/22/2019  |      | 6.7  |              |
| 7/16/2019  |      | 7.53 | extra sample |
| 8/21/2019  |      | 6.85 | extra sample |

Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
|            | 505  | 505  |
| 12/16/2015 | 7.74 |      |
| 2/18/2016  | 6.88 |      |
| 5/25/2016  | 7.42 |      |
| 8/23/2016  | 6.79 |      |
| 0/23/2010  | 0.79 |      |
| 11/11/2016 | 9.2  |      |
| 2/8/2017   | 6.84 |      |
| 5/4/2017   | 6.8  |      |
| 8/1/2017   | 7.44 |      |
| 5/22/2019  |      | 6.85 |
|            |      |      |
|            |      |      |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



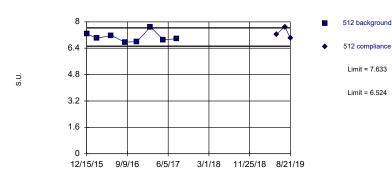

Background Data Summary: Mean=7.273, Std. Dev.=0.3294, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8334, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Constituent: pH Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



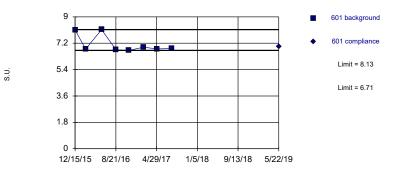

Background Data Summary: Mean=7.26, Std. Dev.=0.4988, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7542, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/23/2019 1:57 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.079, Std. Dev.=0.3064, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8903, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.02358. Individual comparison alpha = 0.01182 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 506  | 506  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.78 |      |              |
| 2/18/2016  | 6.97 |      |              |
| 5/25/2016  | 7.24 |      |              |
| 8/23/2016  | 7.04 |      |              |
| 11/11/2016 | 7.58 |      |              |
| 2/8/2017   | 7    |      |              |
| 5/4/2017   | 7.59 |      |              |
| 8/4/2017   | 6.98 |      |              |
| 5/22/2019  |      | 7.16 |              |
| 7/16/2019  |      | 7.43 | extra sample |
| 8/21/2019  |      | 7.11 | extra sample |
|            |      |      |              |

Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | 7.14 |      |
| 12/13/2013 | 7.14 |      |
| 2/18/2016  | 7.05 |      |
| 5/25/2016  | 7.95 |      |
|            |      |      |
| 8/23/2016  | 6.84 |      |
| 11/10/2016 | 8.15 |      |
| 2/8/2017   | 7.06 |      |
| 5/3/2017   | 6.94 |      |
|            |      |      |
| 8/1/2017   | 6.95 |      |
| 5/22/2019  |      | 7.01 |
|            |      |      |
|            |      |      |

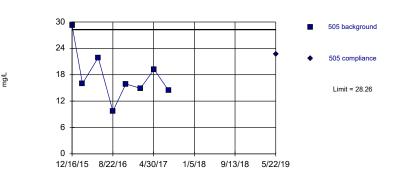
Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512  | 512  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.29 |      |              |
| 2/18/2016  | 7    |      |              |
| 5/25/2016  | 7.18 |      |              |
| 8/23/2016  | 6.77 |      |              |
| 11/11/2016 | 6.8  |      |              |
| 2/8/2017   | 7.7  |      |              |
| 5/3/2017   | 6.92 |      |              |
| 8/1/2017   | 6.97 |      |              |
| 5/22/2019  |      | 7.25 |              |
| 7/16/2019  |      | 7.7  | extra sample |
| 8/21/2019  |      | 7.01 | extra sample |

Constituent: pH (S.U.) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 8.11 |      |
|            |      |      |
| 2/18/2016  | 6.8  |      |
| 5/26/2016  | 8.13 |      |
| 8/23/2016  | 6.75 |      |
| 0/23/2010  | 0.75 |      |
| 11/11/2016 | 6.71 |      |
| 2/8/2017   | 6.93 |      |
| 5/4/2017   | 6.81 |      |
|            |      |      |
| 8/1/2017   | 6.84 |      |
| 5/22/2019  |      | 6.97 |
|            |      |      |
|            |      |      |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



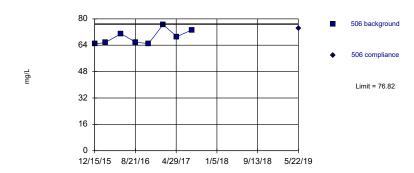

Background Data Summary: Mean=18.35, Std. Dev.=3.445, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9225, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



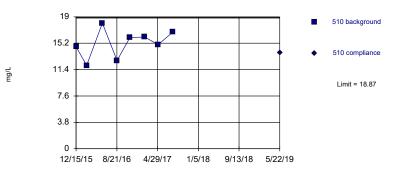

Background Data Summary: Mean=17.65, Std. Dev=5.862, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9245, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/23/2019 1:58 PM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Sulfate Analysis Run 9/23/2019 1:58 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=68.9, Std. Dev.=4.378, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8758, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



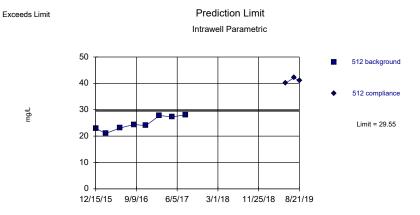
Background Data Summary: Mean=15.18, Std. Dev.=2.042, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 504  | 504  |                         |
|------------|------|------|-------------------------|
| 12/16/2015 | 14.3 |      |                         |
| 2/18/2016  | 14.7 |      |                         |
| 5/25/2016  | 18.9 |      |                         |
| 8/23/2016  | 15.4 |      |                         |
| 11/11/2016 | 17.4 |      |                         |
| 2/8/2017   | 21   |      |                         |
| 5/4/2017   | 21.8 |      |                         |
| 8/1/2017   | 23.3 |      |                         |
| 5/22/2019  |      | 36.3 |                         |
| 7/16/2019  |      | 36.3 | 1st verification sample |
| 8/21/2019  |      | 35.6 | 2nd verification sample |

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | 29.2 |      |
| 2/18/2016  | 16   |      |
| 5/25/2016  | 21.9 |      |
| 8/23/2016  | 9.73 |      |
| 11/11/2016 | 15.9 |      |
| 2/8/2017   | 14.9 |      |
| 5/4/2017   | 19.2 |      |
| 8/1/2017   | 14.4 |      |
| 5/22/2019  |      | 22.7 |
|            |      |      |

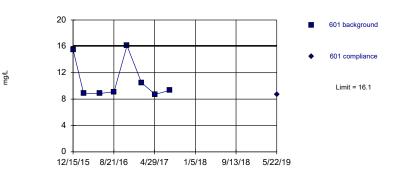

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 10/15/0015 |      | 000  |
| 12/15/2015 | 64.8 |      |
| 2/18/2016  | 65.6 |      |
| 5/25/2016  | 71   |      |
| 8/23/2016  | 65.8 |      |
| 11/11/2016 |      |      |
|            |      |      |
| 2/8/2017   | 76.5 |      |
| 5/4/2017   | 69.2 |      |
| 8/4/2017   | 73.3 |      |
| 5/22/2019  |      | 74.2 |
| 1.11.2010  |      |      |
|            |      |      |

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 510  | 510  |
|------------|------|------|
|            |      |      |
| 12/15/2015 | 14.7 |      |
| 2/18/2016  | 12   |      |
| 2/16/2016  | 12   |      |
| 5/25/2016  | 18.1 |      |
| 0/00/0010  | 10 7 |      |
| 8/23/2016  | 12.7 |      |
| 11/10/2016 | 16   |      |
|            |      |      |
| 2/8/2017   | 16.1 |      |
| 5/3/2017   | 15   |      |
|            |      |      |
| 8/1/2017   | 16.8 |      |
| 5/22/2019  |      | 13.8 |
| 5/22/2019  |      | 13.0 |
|            |      |      |
|            |      |      |

Sanitas<sup>™</sup> v.9.6.23 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=24.84, Std. Dev.=2.605, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9088, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 9/23/2019 1:58 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 9/23/2019 1:58 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 512  | 512  |                         |
|------------|------|------|-------------------------|
| 12/15/2015 | 23   |      |                         |
| 2/18/2016  | 21   |      |                         |
| 5/25/2016  | 23.1 |      |                         |
| 8/23/2016  | 24.4 |      |                         |
| 11/11/2016 | 24   |      |                         |
| 2/8/2017   | 27.8 |      |                         |
| 5/3/2017   | 27.3 |      |                         |
| 8/1/2017   | 28.1 |      |                         |
| 5/22/2019  |      | 40.1 |                         |
| 7/16/2019  |      | 42.1 | 1st verification sample |
| 8/21/2019  |      | 41   | 2nd verification sample |
|            |      |      |                         |

Constituent: Sulfate (mg/L) Analysis Run 9/23/2019 2:00 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 15.5 |      |
|            |      |      |
| 2/18/2016  | 8.87 |      |
| 5/26/2016  | 8.85 |      |
| 8/23/2016  | 9.11 |      |
| 0/23/2010  | 9.11 |      |
| 11/11/2016 | 16.1 |      |
| 2/8/2017   | 10.5 |      |
| 5/3/2017   | 8.71 |      |
|            |      |      |
| 8/1/2017   | 9.33 |      |
| 5/22/2019  |      | 8.74 |
|            |      |      |
|            |      |      |

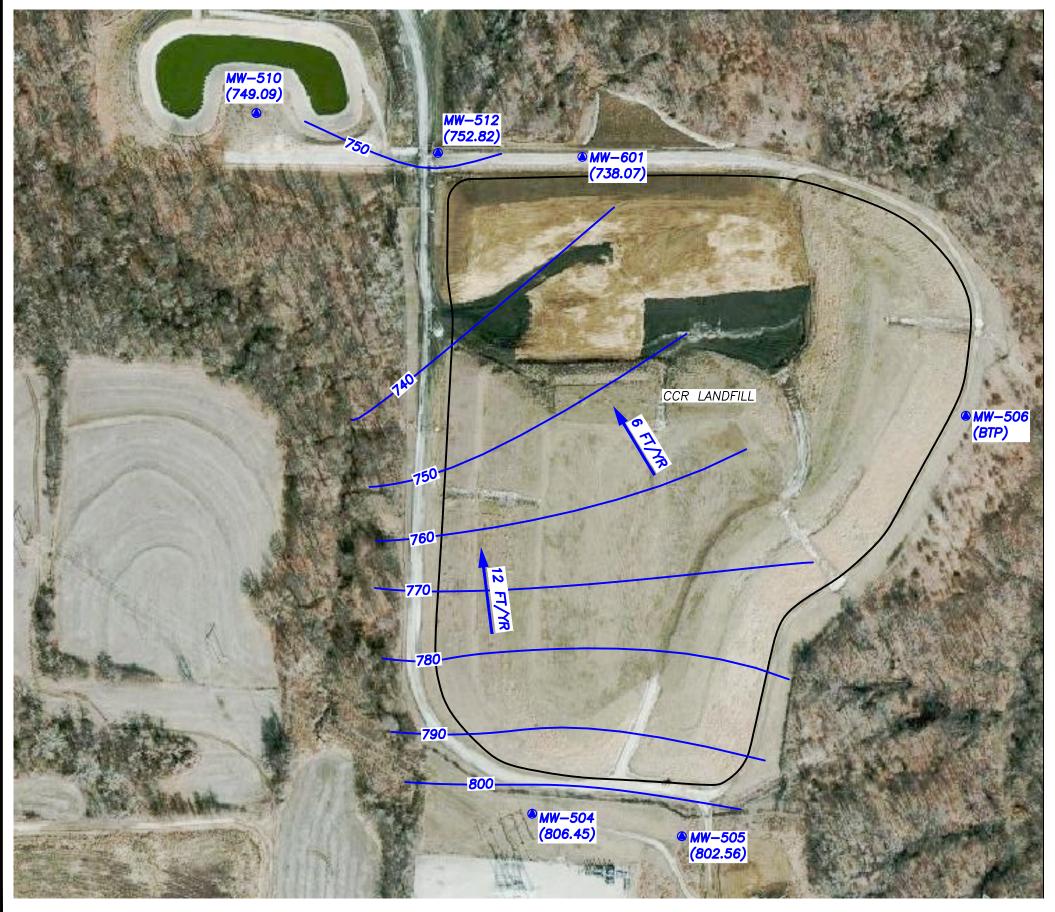
Sibley Client: SCS Engineers Data: Sibley Printed 9/23/2019, 2:00 PM

|                         |      |                   | Obley      | Ū.        | ,              |             |             | 5, 2.00 T W |           |              |                       |
|-------------------------|------|-------------------|------------|-----------|----------------|-------------|-------------|-------------|-----------|--------------|-----------------------|
| <u>Constituent</u>      | Well | <u>Upper Lim.</u> | Lower Lim. | Date      | <u>Observ.</u> | <u>Sig.</u> | <u>Bg N</u> |             | Transform | <u>Alpha</u> | Method                |
| Boron (mg/L)            | 504  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 505  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 506  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 510  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 512  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       |              | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 601  | 0.2               | n/a        | 5/22/2019 | 0.1ND          | No          | 8           | 100         | n/a       | 0.005912     | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | 504  | 36.83             | n/a        | 5/22/2019 | 33.1           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 505  | 28.11             | n/a        | 5/22/2019 | 26.4           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 506  | 100               | n/a        | 5/22/2019 | 91.7           | No          | 8           | 0           | n/a       | 0.005912     | NP Intra (normality)  |
| Calcium (mg/L)          | 510  | 126.4             | n/a        | 5/22/2019 | 117            | No          | 8           | 0           | x^5       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 512  | 107               | n/a        | 5/22/2019 | 104            | No          | 8           | 0           | x^2       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 601  | 112.4             | n/a        | 5/22/2019 | 97.4           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 504  | 1.27              | n/a        | 5/22/2019 | 0.5ND          | No          | 8           | 87.5        | n/a       | 0.005912     | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 505  | 1.19              | n/a        | 5/22/2019 | 0.5ND          | No          | 8           | 62.5        | n/a       | 0.005912     | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 506  | 6.573             | n/a        | 8/21/2019 | 7.17           | Yes         | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 510  | 3.749             | n/a        | 5/22/2019 | 3.39           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 512  | 3.826             | n/a        | 8/21/2019 | 4.91           | Yes         | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 601  | 3.576             | n/a        | 5/22/2019 | 3.19           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 504  | 385               | n/a        | 5/22/2019 | 197            | No          | 8           | 0           | n/a       | 0.005912     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | 505  | 181.2             | n/a        | 5/22/2019 | 180            | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506  | 517               | n/a        | 5/22/2019 | 453            | No          | 8           | 0           | x^4       | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 510  | 494.5             | n/a        | 5/22/2019 | 480            | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 512  | 476               | n/a        | 5/22/2019 | 445            | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601  | 452.5             | n/a        | 5/22/2019 | 404            | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 504  | 0.2053            | n/a        | 5/22/2019 | 0.176          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 505  | 0.2593            | n/a        | 5/22/2019 | 0.151          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 506  | 0.359             | n/a        | 5/22/2019 | 0.336          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 510  | 0.3277            | n/a        | 5/22/2019 | 0.326          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 512  | 0.3306            | n/a        | 5/22/2019 | 0.315          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 601  | 0.2925            | n/a        | 5/22/2019 | 0.264          | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 504  | 8.833             | 5.809      | 8/21/2019 | 6.85           | No          | 8           | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 505  | 8.868             | 5.91       | 5/22/2019 | 6.85           | No          | 8           | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 506  | 7.869             | 6.676      | 8/21/2019 | 7.11           | No          | 8           | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 510  | 8.163             | 6.357      | 5/22/2019 | 7.01           | No          | 8           | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 512  | 7.633             | 6.524      | 8/21/2019 | 7.01           | No          | 8           | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 601  | 8.13              | 6.71       | 5/22/2019 | 6.97           | No          | 8           | 0           | n/a       | 0.01182      | NP Intra (normality)  |
| Sulfate (mg/L)          | 504  | 24.58             | n/a        | 8/21/2019 | 35.6           | Yes         | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 505  | 28.26             | n/a        | 5/22/2019 | 22.7           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 506  | 76.82             | n/a        | 5/22/2019 | 74.2           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 510  | 18.87             | n/a        | 5/22/2019 | 13.8           | No          | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 512  | 29.55             | n/a        | 8/21/2019 | 41             | Yes         | 8           | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 601  | 16.1              | n/a        | 5/22/2019 | 8.74           | No          | 8           | 0           | n/a       | 0.005912     | NP Intra (normality)  |
|                         |      |                   |            |           |                |             |             |             |           |              |                       |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill September 27, 2019

#### ATTACHMENT 2

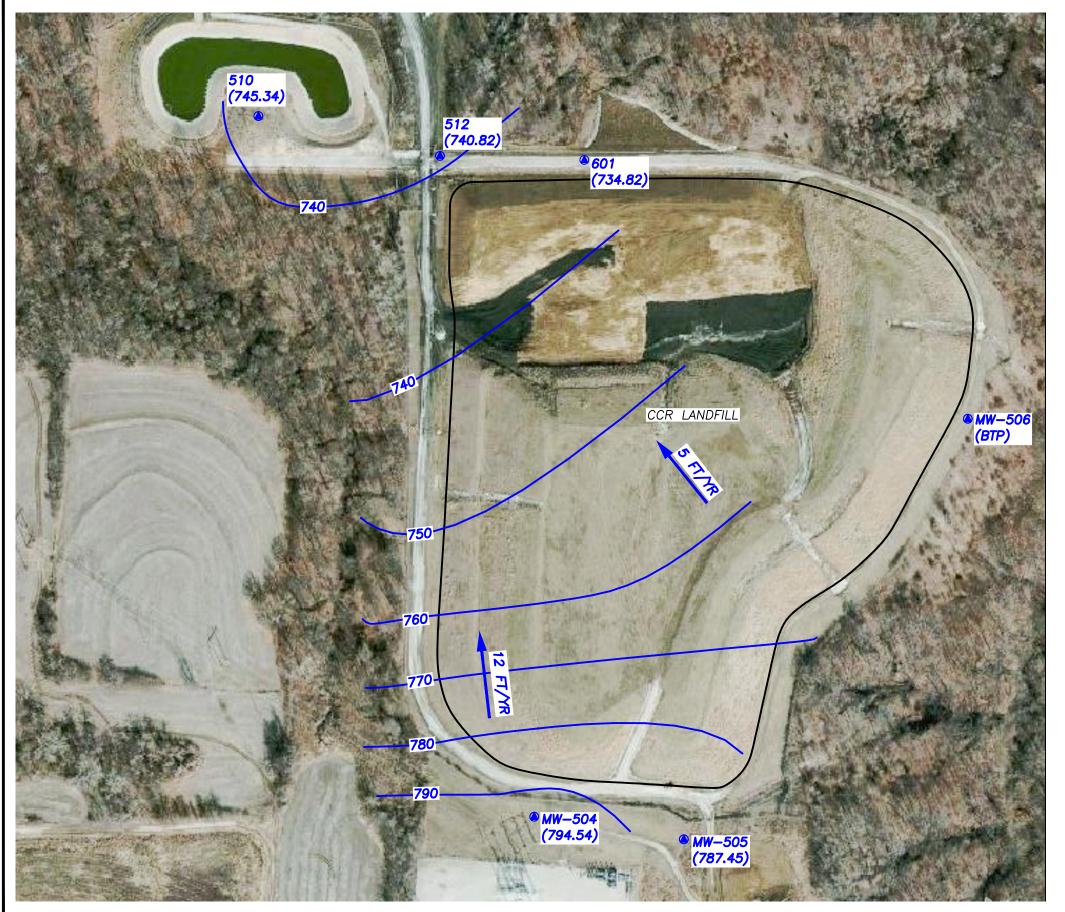
Sanitas<sup>™</sup> Configuration Settings


| Data         | Output       | Trend Test                    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|--------------|--------------|-------------------------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
| Exclud       | le data flag | s: i                          |             |                |               |              |       |        |             |
| Data         | Reading O    | eading Options                |             |                |               |              |       |        |             |
| 🔘 In         | ndividual Ob | oservations                   |             |                |               |              |       |        |             |
| $\bigcirc$ M | lean of Eac  | :h:                           | O Month     |                |               |              |       |        |             |
| $\bigcirc$ M | ledian of Ea | ach:                          | Seasor      | n              |               |              |       |        |             |
| Setup        | Seasons      | ace Handling.<br>Process Resa |             |                |               |              |       |        |             |

| Data Output Trend Test Control Cht                                                                                                                                                                                                                                                                                                                                                                                                  | Prediction Lim   | Tolerance Lim                                                                                                                                                                                        | Conf/Tol Int                                           | ANOVA                                                                                                   | Welchs                                                                  | Other Tests |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|--|--|
| <ul> <li>✓ Test for Normality using Shapiro-Wilk/Fra</li> <li>✓ Use Non-Parametric Test when Non-Detect</li> </ul>                                                                                                                                                                                                                                                                                                                  |                  | at Alpha = 0.01                                                                                                                                                                                      | <ul> <li>✓</li> <li>○</li> <li>○</li> <li>○</li> </ul> | sformation<br>Use Ladder<br>Natural Log<br>Never Tran                                                   | or No Tran<br>sform                                                     |             |  |  |  |
| Use Aitchison's Adjustment $\lor$ when Non-De                                                                                                                                                                                                                                                                                                                                                                                       | etects Percent > | 15                                                                                                                                                                                                   | 15 Use Specific Transformation:<br>Natural Log         |                                                                                                         |                                                                         |             |  |  |  |
| Optional Further Refinement: Use Aitchison's vhen NDs % > 50 Use Best W Statistic                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                      |                                                        |                                                                                                         |                                                                         |             |  |  |  |
| Use Poisson Prediction Limit when Non-De                                                                                                                                                                                                                                                                                                                                                                                            | etects Percent > | 90                                                                                                                                                                                                   |                                                        | Plot Transfo                                                                                            | ormed Value                                                             | es          |  |  |  |
| Deseasonalize (Intra- and InterWell)<br>● If Seasonality Is Detected<br>○ If Seasonality Is Detected Or Insufficient<br>○ Always (When Sufficient Data) ○ I<br>□ Always Use Non-Parametric<br>Facility α<br>Statistical Evaluations per Year:<br>Constituents Analyzed:<br>Downgradient (Compliance) Wells:<br>Sampling Plan<br>Comparing Individual Observations<br>○ 1 of 1 ○ 1 of 2 ● 1 of 3<br>○ 2 of 4 ("Modified California") | to Test<br>Never | <ul> <li>Plot Bar</li> <li>Override St</li> <li>Override DI</li> <li>Automat</li> <li>2-Tailed</li> <li>Show D</li> <li>Non-Paramet</li> <li>Non-Paramet</li> <li>Highest</li> <li>Most R</li> </ul> | Background Tr<br>ckground Data<br>andard Deviati<br>F: | on:<br>Dverride Kap<br>Backgroun<br>a Lighter<br>Highest Bac<br>100% Non<br>est Backgro<br>vailable, or | ppa:<br>nd Outliers<br><br>kground Va<br>-Detects:<br>pund Value<br>MDL | lue V       |  |  |  |

| Data                                  | Output          | Trend Test      | Control Cht      | Prediction Lim | Tolerance Lim | Conf/Tol Int     | ANOVA        | Welchs      | Other Tests    |  |
|---------------------------------------|-----------------|-----------------|------------------|----------------|---------------|------------------|--------------|-------------|----------------|--|
| Rank                                  | Von Neum        | ann, Wilcoxon   | n Rank Sum /     | Mann-Whitney-  |               |                  |              |             |                |  |
| Use Modified Alpha 2-Tailed Test Mode |                 |                 |                  |                |               |                  |              |             |                |  |
|                                       | _               |                 |                  |                |               |                  |              |             |                |  |
| _                                     | er Tests        |                 |                  |                |               |                  |              |             |                |  |
| 0                                     | EPA 1989 O      | utlier Screenin | ng (fixed alpha  | of 0.05)       |               |                  |              |             |                |  |
| ۱                                     | Dixon's at α=   | = 0.05 ~ or     | ∵ifn.> 22 ∨      | Rosner's at α= | 0.01 🗸 🔽 l    | Jse EPA Scree    | ning to esta | blish Suspe | ected Outliers |  |
| 0                                     | Tukey's Outl    | lier Screening, | with IQR Mult    | tiplier = 3.0  | Use Lado      | ler of Powers to | o achieve B  | est W Stat  |                |  |
| 2                                     | Test For Nor    | mality using \$ | Shapiro-Wilk/F   | Francia 🗸 at i | Alpha = 0.1   | $\sim$           |              |             |                |  |
|                                       | Stop if N       | Ion-Normal      |                  |                |               |                  |              |             |                |  |
|                                       |                 | e with Paramet  | tric Test if Nor | n-Normal       |               |                  |              |             |                |  |
|                                       | ◯ Tukey's       | if Non-Normal   | , with IQR Mu    | tiplier = 3.0  | ) Use Lad     | der of Powers t  | o achieve E  | Best W Stat |                |  |
|                                       | No Outlier If   | Less Than       | 3.0 Times        | Median         |               |                  |              |             |                |  |
|                                       | Apply Rules     | found in Ohio   | Guidance Do      | cument 0715    |               |                  |              |             |                |  |
|                                       | Combine Ba      | ckground Wel    | lls on the Outli | er Report      |               |                  |              |             |                |  |
| Piper                                 | r, Stiff Diagra | am              |                  |                |               |                  |              |             |                |  |
|                                       | Combine We      | ells            |                  |                | $\checkmark$  | Label Constit    | uents        |             |                |  |
|                                       | Combine Dat     | tes             |                  |                | $\checkmark$  | Label Axes       |              |             |                |  |
|                                       | Use Default     | Constituent N   | ames             |                | $\checkmark$  | Note Cation-/    | Anion Balan  | ce (Piper o | nly)           |  |
| 0                                     | Use Constitu    | ent Definition  | File Edit        |                |               |                  |              |             |                |  |
|                                       |                 |                 |                  |                |               |                  |              |             |                |  |

Jared Morrison December 16, 2022


# ATTACHMENT 3 Groundwater Potentiometric Surface Maps



200

SCALE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                             |                                               | <del></del>                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------|
| LEGEND:<br>- 760- GROUNDWATER SURFACE ELEVATIONS<br>(REPRESENTATIVE OF THIS UNIT)<br>• 601 GROUNDWATER MONITORING SYSTEM<br>(738.07) WELLS (GROUNDWATER ELEVATION)<br>- CCR LANDFILL UNIT BOUNDARY<br>- 12 FT/R GROUNDWATER ELOW DIRECTION                                                                                                                                                                                                       | REV. DATE                                 |                             |                                               |                                     |
| GROUNDWATER FLOW DIRECTION<br>AND FLOW RATE (FEET/YEAR)                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                             |                                               | J<br>N<br>N                         |
| <ul> <li>BTP BELOW TOP OF PUMP</li> <li>NOTES:</li> <li>1. HORIZONTAL &amp; VERTICAL DATUM:<br/>URS PLANS FOR CONSTRUCTION,<br/>KCP&amp;L SIBLEY GENERATING STATION,<br/>DESIGN FILE 16530511.00001, DATED<br/>JANUARY 2010</li> <li>2. GOOGLE EARTH AERIAL IMAGE. MARCH 2015.</li> <li>3. BOUNDARY AND MONITORING WELL WELL<br/>LOCATIONS SHOWN ARE APPROXIMATE.</li> <li>4. WATER LEVEL MEASUREMENTS COMPLETED<br/>ON MAY 22, 2019.</li> </ul> | SHEET TITLE<br>POTENTIOMETRIC SURFACE MAP | (MAY 2019)<br>CCR I ANDEILI |                                               | CORRECTIVE ACTION REPORT ADDENDUM   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLIENT                                    | EVERGY MISSOURI WEST, INC.  | SIBLEY GENERATING STATION<br>SIBLEY. MISSOURI |                                     |
| 0 200 400                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                             | 81-0030 FAX. (913) 681-C                      | 11111111111111111111111111111111111 |
| E FEET                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE:                                     |                             | 13/2                                          | 2                                   |



200 SCALE

| LEGEND:                                                                                                              |                                  |                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 760- GROUNDWATER SURFACE ELEVATIONS<br>(REPRESENTATIVE OF THIS UNIT)                                               |                                  |                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>601 GROUNDWATER MONITORING SYSTEM<br/>(738.07) WELLS (GROUNDWATER ELEVATION)</li> </ul>                     | DATE                             |                                     |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CCR LANDFILL UNIT BOUNDARY                                                                                           | REV.                             |                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BTP BELOW TOP OF PUMP                                                                                                | ACE MAP                          | (                                   |                           | 2019 GROUNDWATER MONITORING AND<br>CORRECTIVE ACTION REPORT ADDENDUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>NOTES:</u><br>1. HORIZONTAL & VERTICAL DATUM:                                                                     | URF/                             | 1 2019)<br>FILL                     |                           | EPOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| URS PLANS FOR CONSTRUCTION,<br>KCP&L SIBLEY GENERATING STATION,<br>DESIGN FILE 16530511.00001, DATED<br>JANUARY 2010 | LE<br>POTENTIOMETRIC SUBFACE MAP | (NOVEMBER 201<br>CCR LANDFILL       |                           | WATER N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. GOOGLE EARTH AERIAL IMAGE. MARCH 2015.                                                                            | ENTIC                            | Z -                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3. BOUNDARY AND MONITORING WELL WELL<br>LOCATIONS SHOWN ARE APPROXIMATE.                                             | POT                              |                                     | PROJECT TITLE             | ) GRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>WATER LEVEL MEASUREMENTS COMPLETED<br/>ON NOVEMBER 6, 2019.</li> </ol>                                      | SHEET                            |                                     | PRO, IFC                  | 2015<br>CORF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                      | CLIENT                           | EVERGY MISSOURI WEST, INC.          | SIBLEY GENERATING STATION | SIBLEY, MISSOURI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 200 400                                                                                                            |                                  | FILE:<br>V. GW ALTERN<br>RATION DWG | ATIVE S                   | Domestic         Domestic         Domestic         Domestic         Dimestic         Dimestic |
| E FEET                                                                                                               | FIGU                             | 12/1<br>RE NO.                      |                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |