# 2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

# CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To: KCP&L Greater Missouri Operations Company

# SCS ENGINEERS

27213169.18 | January 2019, Revised December 16, 2022

8575 W 110<sup>th</sup> Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

# CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



Douglas L. Doerr, P.E.

SCS Engineers

| Revision<br>Number | Revision<br>Date  | Revision Section | Summary of Revisions |
|--------------------|-------------------|------------------|----------------------|
| 0                  | January 2019      | NA               | Original Report.     |
| 1                  | December 16, 2022 | Addendum 1       | Added Addendum 1     |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |

## Table of Contents

| Secti | ion   |         | Page                                                                                        | ŗ |
|-------|-------|---------|---------------------------------------------------------------------------------------------|---|
| CERTI | FICAT | IONS    |                                                                                             | í |
| 1     | INTRO | ODUCTIO | ON1                                                                                         | - |
| 2     | § 257 | 7.90(e) | ANNUAL REPORT REQUIREMENTS1                                                                 |   |
|       | 2.1   | § 257.  | 90(e)(1) Site Map1                                                                          |   |
|       | 2.2   | § 257.  | 90(e)(2) Monitoring System Changes1                                                         | • |
|       | 2.3   |         | 90(e)(3) Summary of Sampling Events1                                                        |   |
|       |       |         | 90(e)(4) Monitoring Transition Narrative2                                                   |   |
|       | 2.5   | § 257.  | 90(e)(5) Other Requirements2                                                                |   |
|       |       | 2.5.1   | § 257.90(e) Program Status2                                                                 |   |
|       |       | 2.5.2   | § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency3                | , |
|       |       | 2.5.3   | § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration                          | 5 |
|       |       | 2.5.4   | § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency                |   |
|       |       |         |                                                                                             | • |
|       |       | 2.5.5   | § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater<br>Protection Standards |   |
|       |       | 2.5.6   | § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration4                    |   |
|       |       | 2.5.7   | § 257.96(a) Demonstration for Additional Time for Assessment of Corrective<br>Measures      |   |
| 3     | GENE  | ERAL CO | MMENTS                                                                                      | j |

#### Appendices

Appendix A Figures Figure 1: Site Map

Appendix BTablesTable 1: Appendix III Detection Monitoring ResultsTable 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstrations

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (April 2018).
- C.2. Supplemental Data for CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (April 2018).
- C.3 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2018).
- C.4 Supplemental Data for Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2018).

Addendum 1: 2018 Groundwater Monitoring and Corrective Action Report Addendum 1

# 1 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Sibley Generating Station.

# 2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

# 2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

# 2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2018.

# 2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and

downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2018). Samples collected in 2018 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include both the Spring 2018 semiannual detection monitoring data and the Fall 2018 semiannual detection monitoring data.

#### 2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2018. Only detection monitoring was conducted in 2018.

# 2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

#### 2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the statistical evaluation of the initial Fall 2017 semiannual detection monitoring event per the certified statistical method,
- b. completion of the 2017 Annual Groundwater Monitoring and Corrective Action Report,
- c. completion of a successful alternative source demonstration for the Fall 2017 semiannual detection monitoring event,
- d. completion of the Spring 2018 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- e. completion of the statistical evaluation of the Spring 2018 semiannual detection monitoring event per the certified statistical method,
- f. completion of a successful alternative source demonstration for the Spring 2018 semiannual

detection monitoring event, and

g. initiation of the Fall 2018 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2019).

Semiannual Spring and Fall 2019 groundwater sampling and analysis. Completion of verification sampling and analyses and statistical evaluation of Fall 2018 and Spring 2019 detection monitoring data and, if required, alternative source demonstration(s).

#### 2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by  $\S 257.90(e)$ .

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

# 2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following reports are included in **Appendix C**:

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (April 2018).
- C.2. Supplemental Data for CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (April 2018).
- C.3 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2018).

C.4 Supplemental Data for Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2018).

# 2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by  $\S 257.90(e)$ .

Not applicable because there was no assessment monitoring conducted.

# 2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

# 2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

# 2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases

and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

#### 3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Sibley Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L Greater Missouri Operations Company for specific application to the Sibley Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

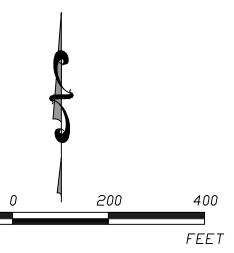
# APPENDIX A

# FIGURES

Figure 1: Site Map



# NOTES:


200 SCALE

|   |     | GROUNDV<br>TEM WELLS |      | MONITORING |
|---|-----|----------------------|------|------------|
| _ | CCR | LANDFILL             | UNIT | BOUNDARY   |

HORIZONTAL & VERTICAL DATUM: URS PLANS FOR CONSTRUCTION, KCP&L SIBLEY GENERATING STATION, DESIGN FILE 16530511.00001, DATED JANUARY 2010

GOOGLE EARTH AERIAL IMAGE, MARCH 2015. MONITOR WELL LOCATIONS ARE APPROXIMATE.

3. BOUNDARY AND MONITORING WELL LOCATIONS SHOWN ARE APPROXIMATE.



| 1                    |              |                                       |                  |                           |                  |                              |
|----------------------|--------------|---------------------------------------|------------------|---------------------------|------------------|------------------------------|
| REV. DATE            |              |                                       |                  |                           |                  | 1                            |
| æ                    |              |                                       | Γ                |                           |                  | -                            |
| SHEET TITLE SITE MAP | CCR LANDFILL | CCR GROUNDWATER MONITORING SYSTEM     |                  |                           |                  | AND CORRECTIVE ACTION REPORT |
| CLIENT               |              | KCP&L GREATER MISSOURI OPERATIONS CO. |                  | SIBLEY GENERATING STATION | SIBLEY. MISSOURI |                              |
|                      |              |                                       |                  | w av                      | JRF              | ucr<br>JRF                   |
|                      |              |                                       | 81-0012          |                           | :<br>            | PROJ. MGR                    |
| SCS ENGINEERS        |              | overland Park, Kansas 66210           | 030 FAX. (913) 6 | DIAN DV-                  | TGW              | CHK. BY: JRF                 |
| Ц<br>С<br>С<br>С     |              | Overland Park,                        | PH. (913) 681-0  | ON POOR                   | 27213167.18      | DSN. BY: TGW                 |
| CADD<br>FIG 1 - S    | BLEY         | .E:<br>ur va                          | 02.DW            |                           |                  |                              |
|                      | •            |                                       |                  |                           |                  |                              |
| DATE                 | 1            | /2<br>10.                             | 2/               | 19                        |                  | _                            |

## APPENDIX B

# TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

#### Table 1 CCR Landfill Appendix III Detection Monitoring Results KCP&L GMO Sibley Generating Station

|                |                |                 |                   | Apper              | ndix III Consti    | tuents       |                   |                                        |
|----------------|----------------|-----------------|-------------------|--------------------|--------------------|--------------|-------------------|----------------------------------------|
| Well<br>Number | Sample<br>Date | Boron<br>(mg/L) | Calcium<br>(mg/L) | Chloride<br>(mg/L) | Fluoride<br>(mg/L) | рН<br>(S.U.) | Sulfate<br>(mg/L) | Total<br>Dissolved<br>Solids<br>(mg/L) |
| MW-504         | 5/17/2018      | <0.200          | 33.3              | 1.11               | 0.216              | 6.41         | 32.8              | 193                                    |
| MW-504         | 6/27/2018      |                 |                   |                    | *0.135             | **6.70       | *31.8             |                                        |
| MW-504         | 8/8/2018       |                 |                   |                    |                    | **6.62       | *32.3             |                                        |
| MW-504         | 11/15/2018     | <0.200          | 45.0              | <1.00              | 0.208              | 7.01         | 33.9              | 211                                    |
| MW-505         | 5/17/2018      | <0.200          | 28.2              | 1.09               | 0.247              | 6.60         | 14.0              | 170                                    |
| MW-505         | 6/27/2018      |                 | *25.8             |                    |                    | **6.82       |                   |                                        |
| MW-505         | 11/15/2018     | <0.200          | 30.8              | <1.00              | 0.212              | 7.09         | 14.6              | 167                                    |
| MW-506         | 5/17/2018      | <0.200          | 94.9              | 6.69               | 0.32               | 6.97         | 75.7              | 442                                    |
| MW-506         | 6/27/2018      |                 |                   | *5.80              |                    | **7.02       |                   |                                        |
| MW-506         | 11/15/2018     | <0.200          | 93.4              | 6.69               | 0.199              | 7.08         | 70.8              | 426                                    |
| MW-510         | 5/17/2018      | <0.200          | 120               | 3.44               | 0.348              | 6.82         | 17.3              | 494                                    |
| MW-510         | 6/27/2018      |                 |                   |                    | *0.282             | **7.01       |                   |                                        |
| MW-510         | 11/15/2018     | <0.200          | 120               | 3.15               | 0.204              | 7.05         | 17.5              | 478                                    |
| MW-512         | 5/17/2018      | <0.200          | 104               | 3.64               | 0.328              | 6.85         | 29.6              | 419                                    |
| MW-512         | 6/27/2018      |                 |                   |                    |                    | **6.95       | *30.3             |                                        |
| MW-512         | 8/8/2018       |                 |                   |                    |                    | **6.78       | *30.9             |                                        |
| MW-512         | 11/15/2018     | <0.200          | 110               | 3.89               | 0.192              | 7.09         | 51.4              | 452                                    |
| MW-601         | 5/17/2018      | <0.200          | 104               | 4.02               | 0.275              | 6.72         | 28.3              | 431                                    |
| MW-601         | 6/27/2018      |                 |                   | *2.82              |                    | **6.98       | *10.3             |                                        |
| MW-601         | 11/15/2018     | <0.200          | 105               | 3.35               | 0.158              | 6.96         | 13.3              | 397                                    |

\* Verification sample obtained per certified statistical method and Statistical Analysis of Groundwater

Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

S.U. - Standard Units

--- Not Sampled

#### Table 2 CCR Landfill Detection Monitoring Field Measurements KCP&L GMO Sibley Generating Station

| Well<br>Number | Sample<br>Date | рН<br>(S.U.) | Specific<br>Conductivity<br>(μS) | Temperature<br>(°C) | ORP<br>(mV) | Turbidity<br>(NTU) | DO<br>(mg/L) | Water Level<br>(ft btoc) | Groundwater<br>Elevation<br>(ft NGVD) |
|----------------|----------------|--------------|----------------------------------|---------------------|-------------|--------------------|--------------|--------------------------|---------------------------------------|
| MW-504         | 5/17/2018      | 6.41         | 300                              | 16.96               | 183         | 0.0                | 4.66         | 21.86                    | 794.46                                |
| MW-504         | 6/27/2018      | **6.70       | 257                              | 15.96               | 157         | 0.0                | 3.95         | 22.48                    | 793.84                                |
| MW-504         | 8/8/2018       | **6.62       | 255                              | 18.77               | 141         | 0.0                | 4.52         | 23.32                    | 793.00                                |
| MW-504         | 11/15/2018     | 7.01         | 380                              | 11.13               | 190         | 0.0                | 0.00         | 21.73                    | 794.59                                |
| MW-505         | 5/17/2018      | 6.60         | 228                              | 17.16               | 220         | 0.0                | 8.25         | 27.81                    | 787.16                                |
| MW-505         | 6/27/2018      | **6.82       | 249                              | 16.19               | 166         | 0.0                | 5.09         | 28.10                    | 786.87                                |
| MW-505         | 11/15/2018     | 7.09         | 278                              | 12.27               | 183         | 0.0                | 0.00         | 27.38                    | 787.59                                |
| MW-506         | 5/17/2018      | 6.97         | 693                              | 18.61               | 217         | 0.0                | 6.52         | BTP                      | NA                                    |
| MW-506         | 6/27/2018      | **7.02       | 710                              | 21.45               | 161         | 0.0                | 6.12         | BTP                      | NA                                    |
| MW-506         | 11/15/2018     | 7.08         | 727                              | 12.13               | 189         | 0.0                | 0.20         | BTP                      | NA                                    |
| MW-510         | 5/17/2018      | 6.82         | 748                              | 17.00               | 229         | 0.0                | 3.10         | 45.50                    | 740.29                                |
| MW-510         | 6/27/2018      | **7.01       | 752                              | 17.39               | 165         | 0.0                | 0.54         | 45.88                    | 739.91                                |
| MW-510         | 11/15/2018     | 7.05         | 898                              | 12.47               | 101         | 1.4                | 4.00         | 45.91                    | 739.88                                |
| MW-512         | 5/17/2018      | 6.85         | 683                              | 17.00               | 107         | 0.0                | 3.09         | 32.35                    | 737.78                                |
| MW-512         | 6/27/2018      | **6.95       | 658                              | 19.95               | 163         | 0.0                | 0.29         | 32.99                    | 737.14                                |
| MW-512         | 8/8/2018       | **6.78       | 583                              | 26.27               | 39          | 0.0                | 3.96         | 34.00                    | 736.13                                |
| MW-512         | 11/15/2018     | 7.09         | 792                              | 13.36               | 120         | 0.0                | 0.00         | 29.90                    | 740.23                                |
| MW-601         | 5/17/2018      | 6.72         | 656                              | 16.77               | 189         | 0.0                | 1.14         | 46.35                    | 734.55                                |
| MW-601         | 6/27/2018      | **6.98       | 603                              | 16.48               | 169         | 0.0                | 0.56         | 46.57                    | 734.33                                |
| MW-601         | 11/15/2018     | 6.96         | 753                              | 12.86               | 105         | 0.0                | 0.00         | 46.14                    | 734.76                                |

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

BTP - Below Top of Pump

NA - Not Applicable

# APPENDIX C

# ALTERNATIVE SOURCE DEMONSTRATIONS

- C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event
- C.2. Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event
- C.3 Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event
- C.4 Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

#### CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT OCTOBER 2017 GROUNDWATER MONITORING EVENT

#### CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To:

**KCP&L Greater Missouri Operations Company** 

Presented By:

## SCS ENGINEERS

7311 West 130th Street, Suite 100 Overland Park, Kansas 66213 (913) 681-0030

> April 2018 File No. 27213169.17


# CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G. SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E. SCS Engineers

#### Table of Contents

#### Section

#### Page

| CERTI | IFICATIONS                       | I   |
|-------|----------------------------------|-----|
| 1     | REGULATORY FRAMEWORK             | . 1 |
| 2     | STATISTICAL RESULTS              | . 1 |
| 3     | ALTERNATIVE SOURCE DEMONSTRATION | . 2 |
|       | 3.1 Upgradient Well Location     |     |
|       | 3.2 Box and Whiskers Plots       | 2   |
|       | 3.3 Piper Diagram Plots          | 3   |
|       | 3.4 Time Series Plots            | 3   |
| 4     | CONCLUSION                       | . 4 |
| 5     | GENERAL COMMENTS                 | . 4 |

#### Appendices

| Appendix A | Figure 1                      |
|------------|-------------------------------|
| Appendix B | <b>Box and Whiskers Plots</b> |
| Appendix C | Piper Diagram                 |
| Appendix D | Time Series Plots             |

## 1 REGULATORY FRAMEWORK

In accordance with the Coal Combustion Residuals (CCR) Final Rule § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

# 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at KCP&L Greater Missouri Operations Company's Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a SSI over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

If an SSI is preliminarily identified by the prediction limit analysis, verification retesting will be performed in accordance with the certified statistical method and the resampling plan to verify the result is not due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Up to two rounds of verification sampling and retesting may be conducted. Verification retesting with a "1 of 2" or "1 of 3" resampling plan is performed by collecting a verification sample(s) and comparing it to the calculated prediction limit. If the resulting concentration of any verification sample is not above the prediction limit, then an SSI has not occurred.

Determinations of SSIs for the CCR Landfill at the Sibley Generating Station were completed no later than January 15, 2018 and placed into the CCR Operating Record.

The completed statistical evaluation identified Appendix III constituent, chloride, above its prediction limit in monitoring wells MW-505 and MW-601. The prediction limit for chloride in upgradient monitoring well MW-505 is 1.19 mg/L. The detection monitoring sample was reported at 3.13 mg/L. The first verification sample was collected on November 16, 2017 with a result of 1.59 mg/L. The second verification sample was collected on December 28, 2017 with a result of 2.12 mg/L.

The prediction limit for chloride in monitoring well MW-601 is 3.58 mg/L. The detection monitoring sample was reported at 6.1 mg/L. The first verification sample was collected on November 16, 2017 with a result of 3.87 mg/L. The second verification sample was collected on December 28, 2017 with a result of 3.95 mg/L.

Therefore, in accordance with the procedures outlined in the Statistical Method Certification, the detection monitoring samples for chloride from monitoring wells MW-505 and MW-601 exceed their prediction limits and are confirmed SSIs over background.

## 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 UPGRADIENT WELL LOCATION

**Figure 1** in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the CCR Landfill at the time of sampling. Although the groundwater flow directions indicated are for the October 2017 groundwater monitoring event, the flow directions shown are typical. As seen in the map, monitoring well MW-505 is located upgradient from the CCR Landfill indicating the SSI is not caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axes to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for chloride in monitoring wells MW-505 and MW-601 were compared to box and whisker plots for chloride in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. The comparison indicates the chloride concentrations in both MW-505 and MW-601 are well within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill. **Figure 1** in **Appendix A** shows these upgradient non-CCR monitoring system wells and their relationships

to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area that has not been impacted by the landfill, and exhibit variability that includes chloride concentrations similar to those seen at MW-505 and MW-601, the observed chloride concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for chloride, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix B**.

#### 3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analysis. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-505, MW-601, and landfill leachate is provided in **Appendix C** and indicates the groundwater from these two wells does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.4 TIME SERIES PLOTS

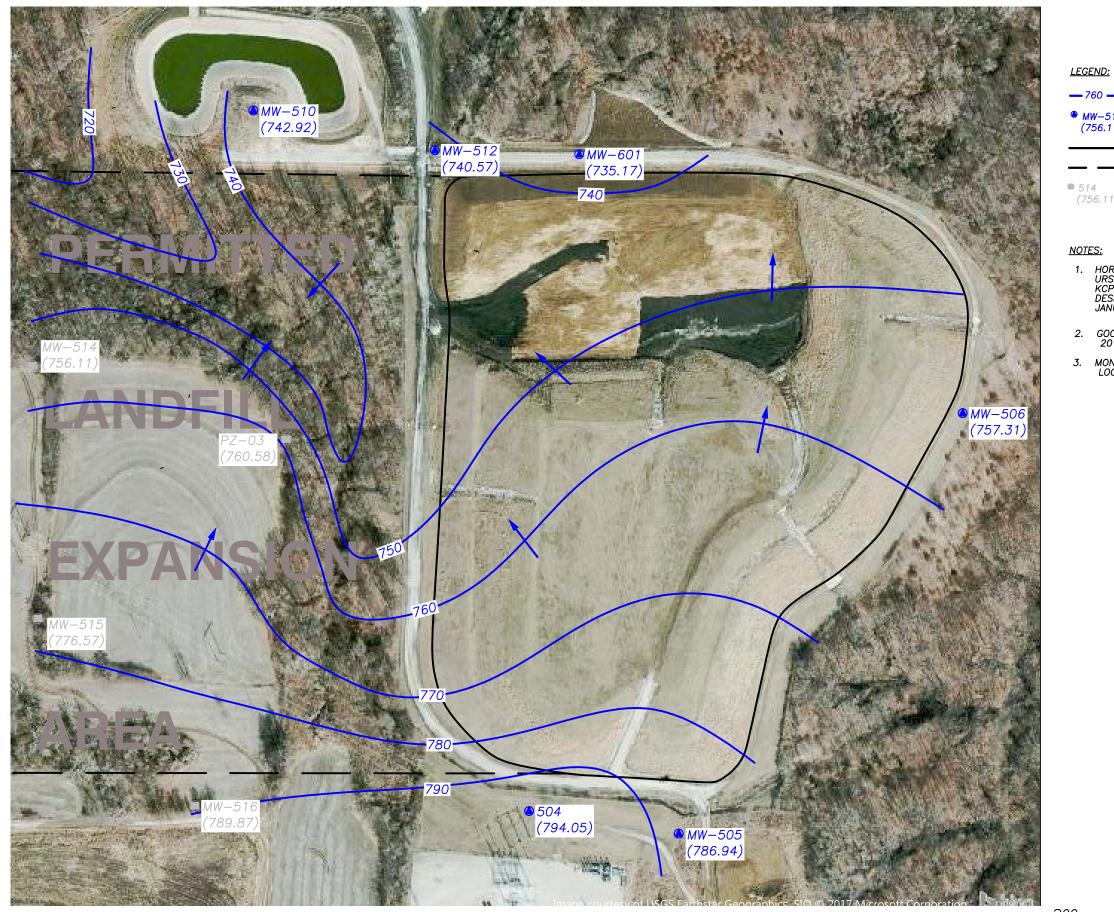
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for the CCR monitoring system wells indicate parallel "spikes" in concentration levels from both upgradient and downgradient wells and from upgradient non-CCR monitoring

system wells. Time series plots for both CCR monitoring system wells and the non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes are provided in **Appendix D**. These "spikes", similar in magnitude but from different monitor wells, are an indication of an otherwise unidentifiable laboratory or sampling issue, problem or change, and that the spikes are not likely the result of a release from the CCR Landfill, since a release would not be expected to cause such an increase across multiple wells (including upgradient wells) simultaneously. This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for chloride, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

# 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


## 5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L Greater Missouri Operations Company for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of his knowledge, information, and belief in the exercise of his professional judgement in accordance with the standard of practice, it is his professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by him are made on the basis of his experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

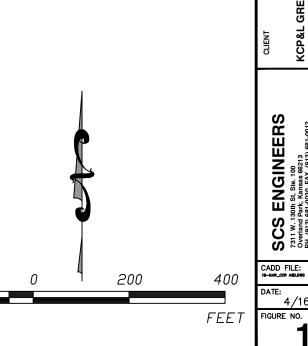
Appendix A

Figure 1



200

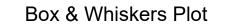
SCALE

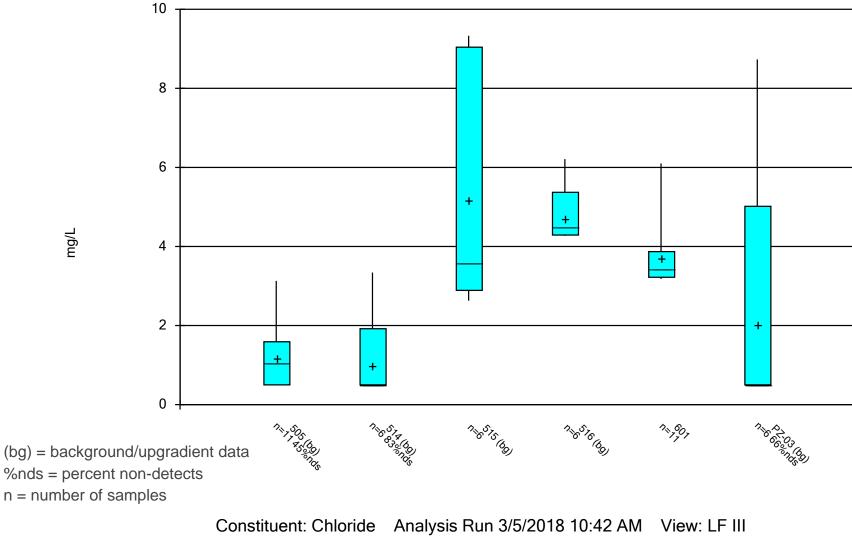

 — 760 — GROUNDWATER SURFACE ELEVATIONS (REPRESENTATIVE OF THIS UNIT)
 • MW-514 CCR GROUNDWATER MONITORING SYSTEM (756.11) WELLS (GROUNDWATER ELEVATION)

- --- PERMITTED LANDFILL EXPANSION AREA
- 514 NON-CCR GROUNDWATER MONITORING (756.11) WELLS

 HORIZONTAL & VERTICAL DATUM: URS PLANS FOR CONSTRUCTION, KCP&L SIBLEY GENERATING STATION, DESIGN FILE 16530511.00001, DATED JANUARY 2010

2. GOOGLE EARTH AERIAL IMAGE, MARCH 2015.


3. MONITORING WELL AND UNIT BOUNDARY LOCATIONS SHOWN ARE APPROXIMATE.




| REV. DATE                    |                                       |                                       |                                        |                           |                  | 1                                   |
|------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------|------------------|-------------------------------------|
| SHEET TITLE                  | POTENTIOMETRIC SURFACE MAP (OCT 2017) | CCR LANDFILL                          |                                        |                           |                  | DEMONSIRATION                       |
| CLIENT                       |                                       | KCP&L GREATER MISSOURI OPERATIONS CO. |                                        | SIBLEY GENERATING STATION | SIBLEY, MISSOURI |                                     |
|                              |                                       | Overland Park, Kansas 66213           | PH. (913) 681-0030 FAX. (913) 681-0012 | PBCIND DWN BY D/4 BYW BY  | RCW              | DSN. BT: RCW CHK. BT: JRR PROJ. MOR |
| CAL<br>18-144<br>DA1<br>FIGL | r_cor a                               | _E:<br>80.0%0                         | 6/                                     | ′1E                       |                  |                                     |

#### Appendix B

#### **Box and Whiskers Plots**





Sibley Client: SCS Engineers Data: Sibley

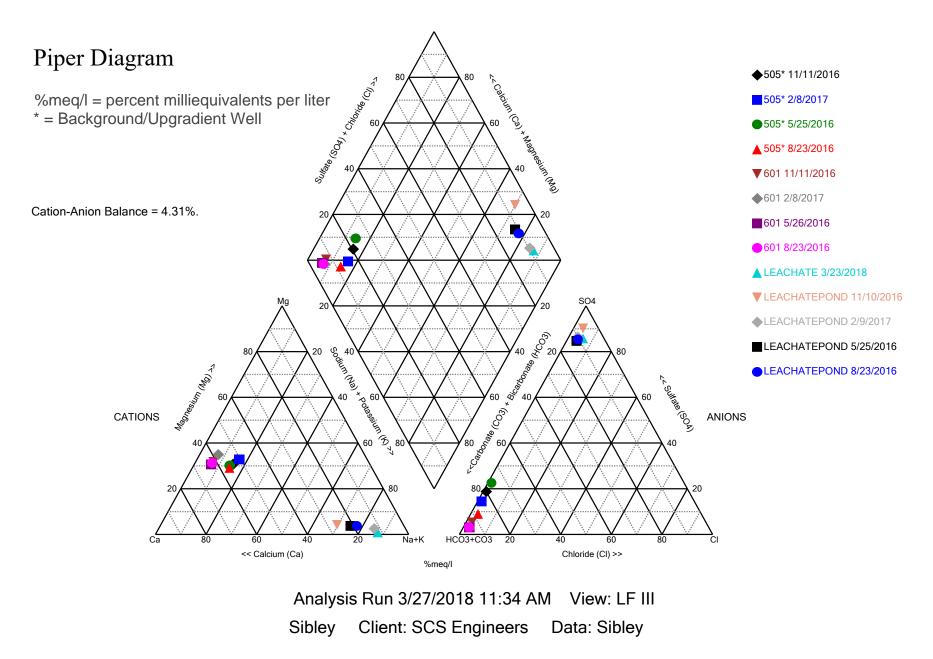
The basic box plot graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range. The mean is denoted by a "+".

#### **Box & Whiskers Plot**

Constituent: Chloride (mg/L) Analysis Run 3/5/2018 10:44 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

|            |          |          |          | Sibley Cile | III. SCS Eligilieei | s Data. Sibley |  |
|------------|----------|----------|----------|-------------|---------------------|----------------|--|
|            | 505 (bg) | 514 (bg) | 515 (bg) | 516 (bg)    | 601                 | PZ-03 (bg)     |  |
| 12/15/2015 |          | <1       | 2.63     | 4.53        | 3.3                 | <1             |  |
| 12/16/2015 | <1       |          |          |             |                     |                |  |
| 2/18/2016  | 1.05     |          |          |             | 3.22                |                |  |
| 5/25/2016  | <1       |          |          |             |                     |                |  |
| 5/26/2016  |          | <1       |          |             | 3.18                | <1             |  |
| 6/2/2016   |          |          | 3.46     | 4.27        |                     |                |  |
| 8/23/2016  | 1.19     |          |          |             | 3.41                |                |  |
| 11/11/2016 | <1       | <1       | 3.69     | 4.31        | 3.51                | <1             |  |
| 2/8/2017   | <1       |          |          |             | 3.19                |                |  |
| 5/3/2017   |          |          |          |             | 3.5                 |                |  |
| 5/4/2017   | <1       | <1       | 3.15     | 4.51        |                     | <1             |  |
| 8/1/2017   | 1.18     |          |          |             | 3.37                |                |  |
| 10/3/2017  | 3.13     | 3.34     | 8.75     | 6.21        | 6.1                 | 8.73           |  |
| 11/16/2017 | 1.59     | <1       | 9.33     | 4.45        | 3.87                | 1.3            |  |
| 12/28/2017 | 2.12     |          |          |             | 3.95                |                |  |
| Median     | 1.05     | 0.5      | 3.58     | 4.48        | 3.41                | 0.5            |  |
| LowerQ.    | 0.5      | 0.5      | 2.89     | 4.29        | 3.22                | 0.5            |  |
| UpperQ.    | 1.59     | 1.92     | 9.04     | 5.37        | 3.87                | 5.02           |  |
| Min        | 0.5      | 0.5      | 2.63     | 4.27        | 3.18                | 0.5            |  |
| Max        | 3.13     | 3.34     | 9.33     | 6.21        | 6.1                 | 8.73           |  |
| Mean       | 1.16     | 0.973    | 5.17     | 4.71        | 3.69                | 2.01           |  |
|            |          |          |          |             |                     |                |  |

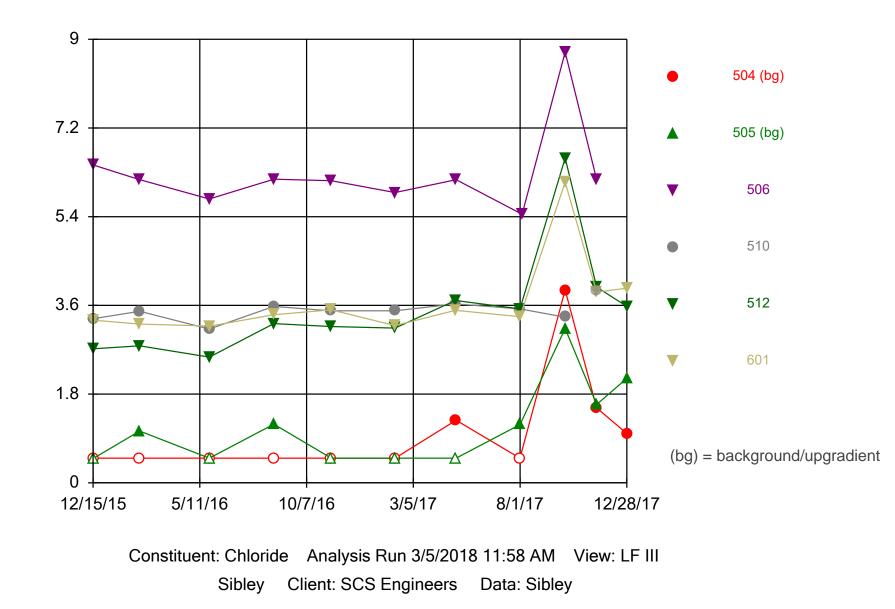

#### Box & Whiskers Plot

Sibley Client: SCS Engineers Data: Sibley Printed 3/5/2018, 10:44 AM

| Constituent     | Well       | <u>N</u> | <u>Mean</u> | Std. Dev. | Std. Err. | <u>Median</u> | <u>Min.</u> | Max. | <u>%NDs</u> |
|-----------------|------------|----------|-------------|-----------|-----------|---------------|-------------|------|-------------|
| Chloride (mg/L) | 505 (bg)   | 11       | 1.16        | 0.847     | 0.255     | 1.05          | 0.5         | 3.13 | 45.5        |
| Chloride (mg/L) | 514 (bg)   | 6        | 0.973       | 1.16      | 0.473     | 0.5           | 0.5         | 3.34 | 83.3        |
| Chloride (mg/L) | 515 (bg)   | 6        | 5.17        | 3.03      | 1.24      | 3.58          | 2.63        | 9.33 | 0           |
| Chloride (mg/L) | 516 (bg)   | 6        | 4.71        | 0.741     | 0.302     | 4.48          | 4.27        | 6.21 | 0           |
| Chloride (mg/L) | 601        | 11       | 3.69        | 0.839     | 0.253     | 3.41          | 3.18        | 6.1  | 0           |
| Chloride (mg/L) | PZ-03 (bg) | 6        | 2.01        | 3.31      | 1.35      | 0.5           | 0.5         | 8.73 | 66.7        |

Appendix C

Piper Diagram




Appendix D

**Time Series Plots** 

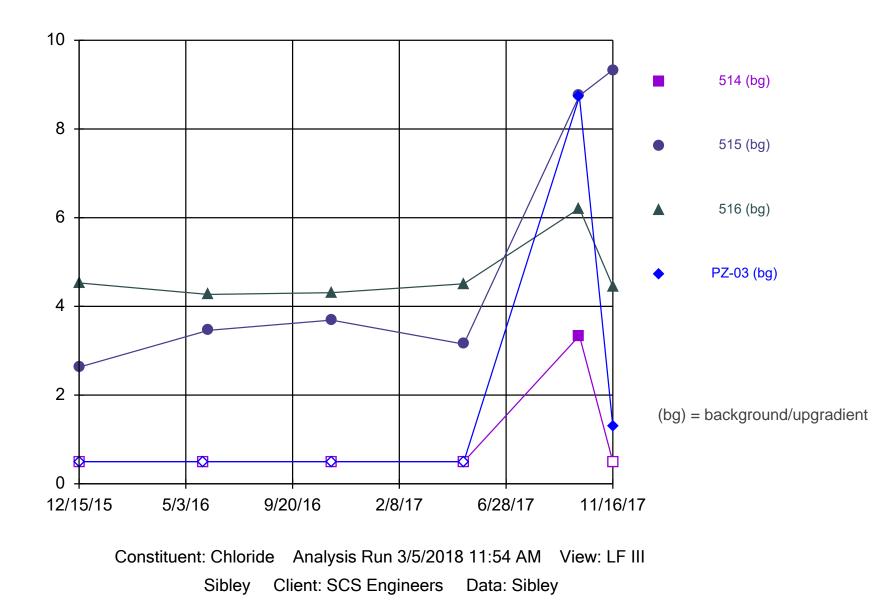
Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.





mg/L

#### **Time Series**


Constituent: Chloride (mg/L) Analysis Run 3/5/2018 11:59 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

|            | 504 (bg) | 505 (bg) | 506  | 510      | 512  | 601  |
|------------|----------|----------|------|----------|------|------|
| 12/15/2015 |          |          | 6.45 | 3.33     | 2.72 | 3.3  |
| 12/16/2015 | <1       | <1       |      |          |      |      |
| 2/18/2016  | <1       | 1.05     | 6.15 | 3.48     | 2.78 | 3.22 |
| 5/25/2016  | <1       | <1       | 5.76 | 3.12     | 2.55 |      |
| 5/26/2016  |          |          |      |          |      | 3.18 |
| 8/23/2016  | <1       | 1.19     | 6.16 | 3.58     | 3.23 | 3.41 |
| 11/10/2016 |          |          |      | 3.49     |      |      |
| 11/11/2016 | <1       | <1       | 6.13 |          | 3.17 | 3.51 |
| 2/8/2017   | <1       | <1       | 5.89 | 3.49     | 3.14 | 3.19 |
| 5/3/2017   |          |          |      | 3.63     | 3.7  | 3.5  |
| 5/4/2017   | 1.27     | <1       | 6.15 |          |      |      |
| 8/1/2017   | <1       | 1.18     |      | 3.53     | 3.53 | 3.37 |
| 8/4/2017   |          |          | 5.45 |          |      |      |
| 10/3/2017  | 3.91     | 3.13     | 8.74 | 3.36     | 6.59 | 6.1  |
| 11/16/2017 | 1.52     | 1.59     | 6.15 | 3.91 (i) | 3.97 | 3.87 |
| 12/28/2017 | 1        | 2.12     |      |          | 3.58 | 3.95 |
|            |          |          |      |          |      |      |

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.





mg/L

#### **Time Series**

Constituent: Chloride (mg/L) Analysis Run 3/5/2018 11:57 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

|            | 514 (bg) | 515 (bg) | 516 (bg) | PZ-03 (bg) |
|------------|----------|----------|----------|------------|
| 12/15/2015 | <1       | 2.63     | 4.53     | <1         |
| 5/26/2016  | <1       |          |          | <1         |
| 6/2/2016   |          | 3.46     | 4.27     |            |
| 11/11/2016 | <1       | 3.69     | 4.31     | <1         |
| 5/4/2017   | <1       | 3.15     | 4.51     | <1         |
| 10/3/2017  | 3.34     | 8.75     | 6.21     | 8.73       |
| 11/16/2017 | <1       | 9.33     | 4.45     | 1.3        |
|            |          |          |          |            |

C.2. Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

## Piper Diagram

Analysis Run 1/24/2019 5:26 PM View: Pipers ASD

Sibley Client: SCS Engineers Data: Sibley

| Totals (ppm)            | Na   | K    | Ca   | Mg   | Cl   | S04  | HCO3 | CO3  |
|-------------------------|------|------|------|------|------|------|------|------|
| 505* 5/25/2016          | 6.93 | 0.5  | 24.6 | 8.05 | 0.5  | 21.9 | 75.3 | 10   |
| 505* 8/23/2016          | 7.28 | 0.5  | 25.7 | 7.97 | 1.19 | 9.73 | 101  | 10   |
| 505* 11/11/2016         | 6.91 | 0.5  | 21.6 | 7.39 | 0.5  | 15.9 | 68.5 | 10   |
| 505* 2/8/2017           | 8.52 | 0.5  | 23.5 | 9.3  | 0.5  | 14.9 | 94   | 10   |
| 601 5/26/2016           | 11.9 | 1.55 | 103  | 30.4 | 3.18 | 8.85 | 361  | 10   |
| 601 8/23/2016           | 12.2 | 1.32 | 102  | 30.8 | 3.41 | 9.11 | 379  | 10   |
| 601 11/11/2016          | 12.9 | 1.78 | 105  | 32.8 | 3.51 | 16.1 | 359  | 10   |
| 601 2/8/2017            | 12.1 | 1.36 | 87.5 | 31.8 | 3.19 | 10.5 | 361  | 10   |
| LEACHATEPOND 5/25/2016  | 499  | 58.6 | 129  | 12.9 | 44.1 | 1440 | 10   | 119  |
| LEACHATEPOND 8/23/2016  | 479  | 56.8 | 108  | 12.8 | 42.8 | 1320 | 10   | 104  |
| LEACHATEPOND 11/10/2016 | 651  | 75.3 | 224  | 22.5 | 50.4 | 1820 | 30.5 | 68.3 |
| LEACHATEPOND 2/9/2017   | 678  | 66.2 | 89.4 | 10.8 | 64.5 | 2200 | 38.9 | 146  |
| LEACHATE 3/23/2018      | 741  | 70.3 | 88.5 | 4.66 | 79.1 | 1690 | 10   | 108  |
|                         |      |      |      |      |      |      |      |      |

C.3 Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

# CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2018 GROUNDWATER MONITORING EVENT

# CCR LANDFILL SIBLEY GENERATING STATION SIBLEY, MISSOURI

Presented To:

**KCP&L Greater Missouri Operations Company** 

Presented By:

#### SCS ENGINEERS

8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

(913) 681-0030

December 2018

File No. 27213169.18

## CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Sibley Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.





SCS Engineers

#### Section

#### Page

| <b>IFICA</b> | TIONS                                                       | . i                                                                                                                                                                                                                                    |
|--------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regu         | Ilatory Framework                                           | 1                                                                                                                                                                                                                                      |
| -            | •                                                           |                                                                                                                                                                                                                                        |
| Alter        | native Source Demonstration                                 | 2                                                                                                                                                                                                                                      |
| 3.1          | Upgradient Well Location                                    | 2                                                                                                                                                                                                                                      |
| 3.2          | Box and Whiskers Plots                                      | 2                                                                                                                                                                                                                                      |
| 3.3          | Piper Diagram Plots                                         | 3                                                                                                                                                                                                                                      |
| 3.4          | Time Series Plots                                           | 3                                                                                                                                                                                                                                      |
| Conc         | lusion                                                      | 4                                                                                                                                                                                                                                      |
| Gene         | eral Comments                                               | 4                                                                                                                                                                                                                                      |
|              | Regu<br>Statis<br>Alter<br>3.1<br>3.2<br>3.3<br>3.4<br>Conc | IFICATIONS<br>Regulatory Framework<br>Statistical Results<br>Alternative Source Demonstration<br>3.1 Upgradient Well Location<br>3.2 Box and Whiskers Plots.<br>3.3 Piper Diagram Plots.<br>3.4 Time Series Plots<br>General Comments. |

#### Appendices

| Appendix A | Figure 1               |
|------------|------------------------|
| Appendix B | Box and Whiskers Plots |
| Appendix C | Piper Diagram          |
| Appendix D | Time Series Plots      |

## 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternate source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a gualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

## 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at KCP&L Greater Missouri Operations Company's Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Detection monitoring groundwater samples were collected on May 17, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 15, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on June 27, 2018 and August 8, 2018.

If an SSI is preliminarily identified by the prediction limit analysis, verification retesting is performed in accordance with the certified statistical method and the resampling plan to verify the result is not due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Up to two rounds of verification sampling and retesting may be conducted. Verification retesting with a "1 of 2" or "1 of 3" resampling plan is performed by collecting a verification sample(s) and comparing it to the calculated prediction limit. If the resulting concentration of any verification sample is not above the prediction limit, then an SSI is not confirmed.

Determinations of SSIs for the CCR Landfill at the Sibley Generating Station were completed September 12, 2018 and placed into the CCR Operating Record.

The completed statistical evaluation identified Appendix III constituent, sulfate, above its respective prediction limit in monitoring wells MW-504 and MW-512.

The prediction limit for sulfate in upgradient monitoring well MW-504 is 24.6 milligrams per liter (mg/L). The detection monitoring sample was reported at 32.8 mg/L. The first verification re-sample was collected on June 27, 2018 with a result of 31.8 mg/L. The second verification re-sample was collected on August 8, 2018 with a result of 32.3 mg/L.

The prediction limit for sulfate in monitoring well MW-512 is 29.6 mg/L. The detection monitoring sample was reported at 29.6 mg/L. The first verification re-sample was collected on June 27, 2018 with a result of 30.3 mg/L. The second verification re-sample was collected on August 8, 2018 with a result of 30.9 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring wells MW-504 and MW-512 exceed their respective prediction limits and are confirmed statistically significant increases (SSIs) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified two SSIs above the background prediction limits for sulfate in upgradient monitoring well MW-504 and downgradient monitor well MW-512.

## 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above-identified SSIs for the CCR Landfill at the Sibley Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 UPGRADIENT WELL LOCATION

**Figure 1** in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the CCR Landfill at the time of sampling. As seen on the map, monitoring well MW-504 is located upgradient from the CCR Landfill indicating the SSI is not caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for sulfate, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axes to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for sulfate in monitoring wells MW-504 and MW-512 were compared to box and whisker plots for sulfate in several upgradient and side-gradient non-CCR monitoring system wells installed for future state-permitted landfill expansion purposes. The comparison indicates the sulfate concentrations in both MW-504 and MW-512 are well within expected concentration levels for nonimpacted groundwater in the vicinity of the CCR Landfill. **Figure 1** in **Appendix A** shows these upgradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area that has not been impacted by the landfill, and exhibit variability that includes sulfate concentrations similar to those seen at MW-504 and MW-512, the observed sulfate concentrations are within the range of expected natural spatial variation within and between wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots for sulfate are provided in **Appendix B**.

### 3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analysis. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-504, MW-512, and landfill leachate is provided in **Appendix C** and indicates the groundwater from these two wells does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

## 3.4 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

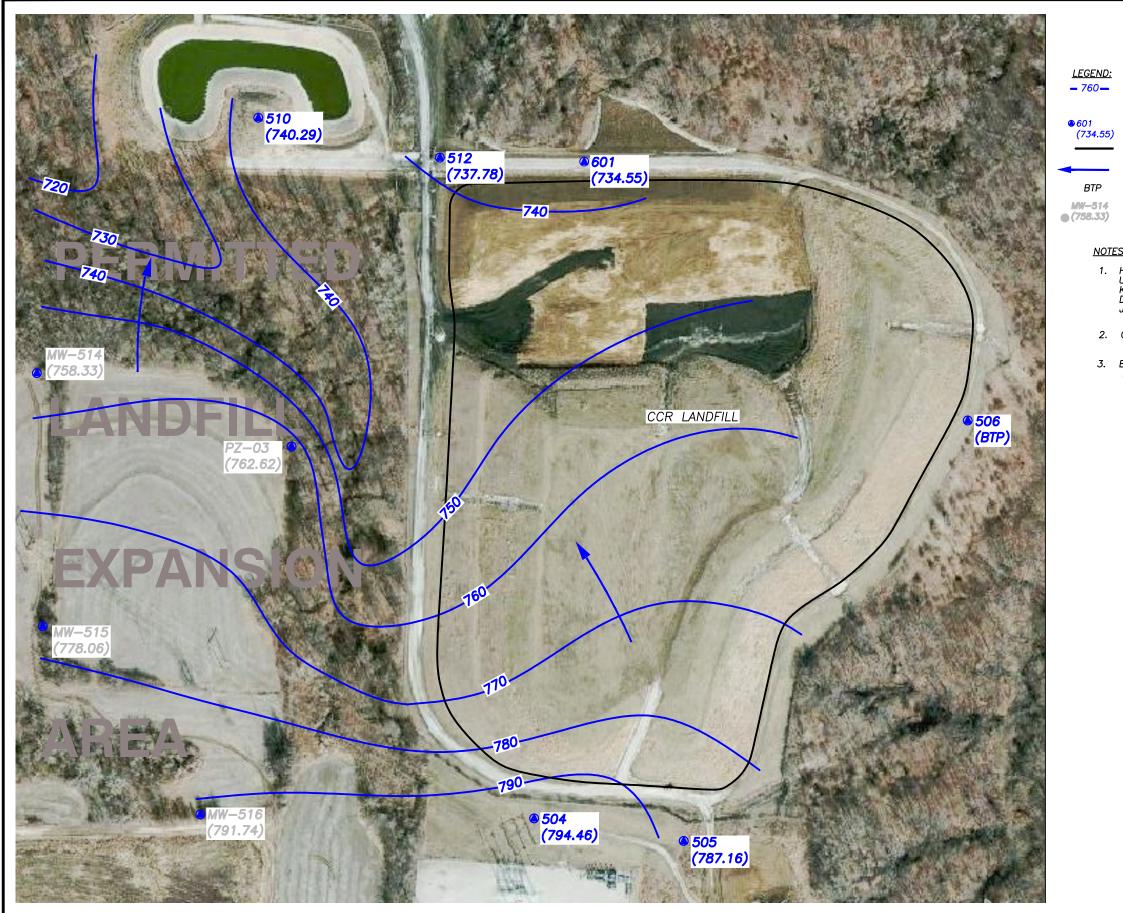
Sulfate concentrations for MW-504 and MW-512 were plotted against sulfate concentrations in several upgradient and side-gradient non-CCR monitoring system wells. The comparison indicates the sulfate concentrations in both upgradient well MW-504 and downgradient well MW-512 exhibit similar

trends are well within expected concentration levels for non-impacted groundwater in the vicinity of the CCR Landfill. **Figure 1** in **Appendix A** shows these upgradient and side-gradient non-CCR monitoring system wells and their relationships to groundwater flow near and beneath the CCR Landfill. Because the non-CCR monitoring system wells are located in a nearby area that has not been impacted by the landfill, and exhibit variability that includes sulfate concentrations similar to those seen at MW-504 and MW-512 (including similar but small upward trends), and a significant upward trend in upgradient well MW-515, the observed sulfate concentrations are within the range of expected natural spatial variation within and between wells. A release from the CCR Landfill would not be expected to cause an increase across multiple wells (including upgradient wells) simultaneously. This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots for sulfate are provided in **Appendix D**.

This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

## 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


## 5 GENERAL COMMENTS

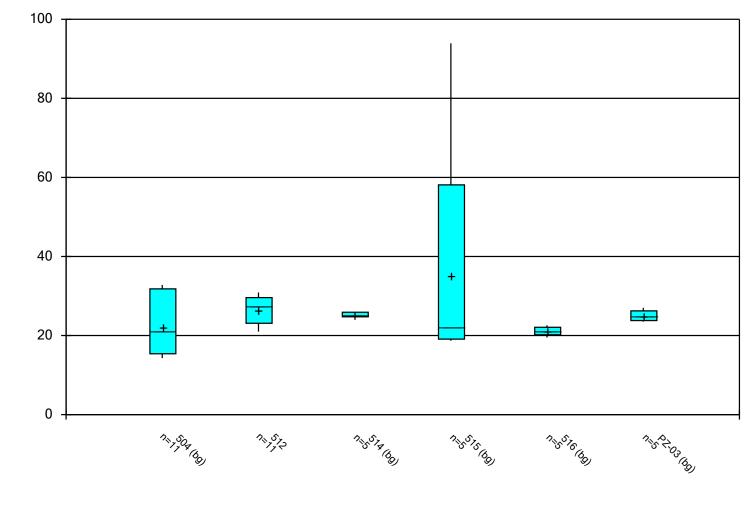
This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L Greater Missouri Operations Company for specific application to the Sibley Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of his professional judgement in accordance with the standard of practice, it is his professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of his experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1




SCALE

| T T                                                                                                                                                                                                                                                                                                                                         |             |                                                       |                           |                          |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------|---------------------------|--------------------------|-------------------------------------|
| GROUNDWATER POTENTIOMETRIC<br>SURFACE ELEVATIONS<br>(REPRESENTATIVE OF THIS UNIT)<br>GROUNDWATER MONITORING SYSTEM<br>WELLS (GROUNDWATER ELEVATION)<br>CCR LANDFILL UNIT BOUNDARY<br>GROUNDWATER FLOW DIRECTION                                                                                                                             | ev. DATE    |                                                       |                           |                          |                                     |
| BELOW TOP OF PUMP                                                                                                                                                                                                                                                                                                                           | REV.        |                                                       |                           |                          | 1                                   |
| NON-CCR GROUNDWATER MONITORING<br>WELLS (GROUNDWATER ELEVATION)<br>S:<br>HORIZONTAL & VERTICAL DATUM:<br>URS PLANS FOR CONSTRUCTION,<br>KCP&L SIBLEY GENERATING STATION,<br>DESIGN FILE 16530511.00001, DATED<br>JANUARY 2010<br>GOOGLE EARTH AERIAL IMAGE. MARCH 2015.<br>BOUNDARY AND MONITORING WELL<br>LOCATIONS SHOWN ARE APPROXIMATE. | SHEET TITLE | POTENTIOMETRIC SURFACE MAP (MAY 2018)<br>CCR LANDFILL |                           | CCH ALIERNATIVE SOURCE   | DEMONSTRATION                       |
|                                                                                                                                                                                                                                                                                                                                             | CLIENT      | KCP&L GREATER MISSOURI OPERATIONS CO.                 | SIBLEY GENERATING STATION | SIBLEY. MISSOURI         |                                     |
| 0 200 400                                                                                                                                                                                                                                                                                                                                   | COR ALTE    | FILE:                                                 | 0-100 (CIE)               | 27213167.18 DWN. BY: TGW | DSN: BY: JRR CHK: BY: JRR PROJ. MGR |
|                                                                                                                                                                                                                                                                                                                                             | DATE:       | 10/2<br>E NO.                                         | 5/1                       | 8                        |                                     |

Appendix B

**Box and Whiskers Plots** 

mg/L



Box & Whiskers Plot

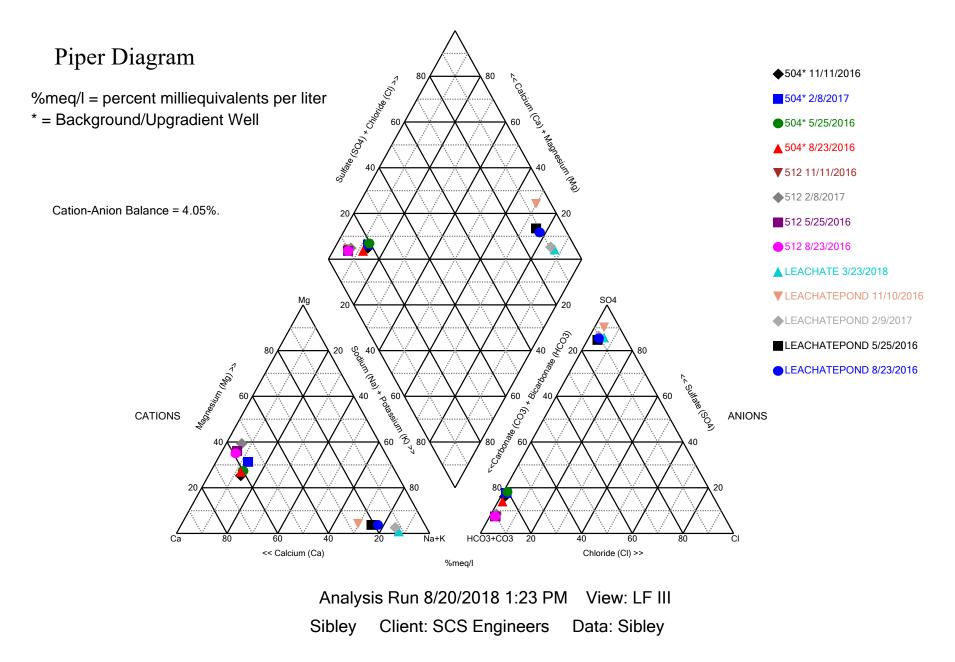
Constituent: Sulfate Analysis Run 8/20/2018 12:25 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

#### **Box & Whiskers Plot**

Constituent: Sulfate (mg/L) Analysis Run 8/20/2018 12:25 PM View: LF III

Siblev Client: SCS Engineers Data: Siblev

|        |           |        |          | Sibley Clie | Sibley Client: SCS Engineers Data: Sibley |            |  |  | Sibley Client: SCS Engineers Data: Sibley |  |  |
|--------|-----------|--------|----------|-------------|-------------------------------------------|------------|--|--|-------------------------------------------|--|--|
|        | 504 (b    | g) 512 | 514 (bg) | 515 (bg)    | 516 (bg)                                  | PZ-03 (bg) |  |  |                                           |  |  |
| 12/15/ | 2015      | 23     | 25.9     | 22.1        | 22.6                                      | 25.5       |  |  |                                           |  |  |
| 12/16/ | 2015 14.3 |        |          |             |                                           |            |  |  |                                           |  |  |
| 2/18/2 | 016 14.7  | 21     |          |             |                                           |            |  |  |                                           |  |  |
| 5/25/2 | 016 18.9  | 23.1   |          |             |                                           |            |  |  |                                           |  |  |
| 5/26/2 | 016       |        | 24.9     |             |                                           | 23.5       |  |  |                                           |  |  |
| 6/2/20 | 16        |        |          | 22.3        | 21.6                                      |            |  |  |                                           |  |  |
| 8/23/2 | 016 15.4  | 24.4   |          |             |                                           |            |  |  |                                           |  |  |
| 11/11/ | 2016 17.4 | 24     | 25.2     | 19.5        | 21.1                                      | 24.7       |  |  |                                           |  |  |
| 2/8/20 | 17 21     | 27.8   |          |             |                                           |            |  |  |                                           |  |  |
| 5/3/20 | 17        | 27.3   |          |             |                                           |            |  |  |                                           |  |  |
| 5/4/20 | 17 21.8   |        | 24.6     | 18.7        | 19.5                                      | 24.1       |  |  |                                           |  |  |
| 8/1/20 | 17 23.3   | 28.1   |          |             |                                           |            |  |  |                                           |  |  |
| 5/16/2 | 018       |        | 25.9     | 93.9        | 20.9                                      | 27         |  |  |                                           |  |  |
| 5/17/2 | 018 32.8  | 29.6   |          |             |                                           |            |  |  |                                           |  |  |
| 6/27/2 | 018 31.8  | 30.3   |          |             |                                           |            |  |  |                                           |  |  |
| 8/8/20 | 18 32.3   | 30.9   |          |             |                                           |            |  |  |                                           |  |  |
| Media  | n 21      | 27.3   | 25.2     | 22.1        | 21.1                                      | 24.7       |  |  |                                           |  |  |
| Lower  | Q. 15.4   | 23.1   | 24.8     | 19.1        | 20.2                                      | 23.8       |  |  |                                           |  |  |
| Upper  | Q. 31.8   | 29.6   | 25.9     | 58.1        | 22.1                                      | 26.3       |  |  |                                           |  |  |
| Min    | 14.3      | 21     | 24.6     | 18.7        | 19.5                                      | 23.5       |  |  |                                           |  |  |
| Max    | 32.8      | 30.9   | 25.9     | 93.9        | 22.6                                      | 27         |  |  |                                           |  |  |
| Mean   | 22.2      | 26.3   | 25.3     | 35.3        | 21.1                                      | 25         |  |  |                                           |  |  |
|        |           |        |          |             |                                           |            |  |  |                                           |  |  |


#### Box & Whiskers Plot

Sibley Client: SCS Engineers Data: Sibley Printed 8/20/2018, 12:25 PM

| Constituent    | Well       | <u>N</u> | <u>Mean</u> | Std. Dev. | Std. Err. | <u>Median</u> | Min. | <u>Max.</u> | <u>%NDs</u> |
|----------------|------------|----------|-------------|-----------|-----------|---------------|------|-------------|-------------|
| Sulfate (mg/L) | 504 (bg)   | 11       | 22.2        | 7.13      | 2.15      | 21            | 14.3 | 32.8        | 0           |
| Sulfate (mg/L) | 512        | 11       | 26.3        | 3.36      | 1.01      | 27.3          | 21   | 30.9        | 0           |
| Sulfate (mg/L) | 514 (bg)   | 5        | 25.3        | 0.587     | 0.263     | 25.2          | 24.6 | 25.9        | 0           |
| Sulfate (mg/L) | 515 (bg)   | 5        | 35.3        | 32.8      | 14.7      | 22.1          | 18.7 | 93.9        | 0           |
| Sulfate (mg/L) | 516 (bg)   | 5        | 21.1        | 1.13      | 0.505     | 21.1          | 19.5 | 22.6        | 0           |
| Sulfate (mg/L) | PZ-03 (bg) | 5        | 25          | 1.36      | 0.608     | 24.7          | 23.5 | 27          | 0           |

Appendix C

Piper Diagram



Appendix D

**Time Series Plots** 

100 504 (bg) 505 (bg) 80 512 ▼ 60 514 (bg) 515 (bg) 40 516 (bg) PZ-03 (bg) 20 0 12/15/15 6/25/16 1/4/17 7/17/17 1/26/18 8/8/18

**Time Series** 

Constituent: Sulfate Analysis Run 11/7/2018 3:06 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

mg/L

#### **Time Series**

Constituent: Sulfate (mg/L) Analysis Run 11/7/2018 3:07 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

514 (bg) 505 (bg) 512 516 (bg) PZ-03 (bg) 504 (bg) 515 (bg) 12/15/2015 23 25.9 22.1 22.6 25.5 12/16/2015 29.2 14.3 2/18/2016 14.7 16 21 5/25/2016 18.9 21.9 23.1 23.5 5/26/2016 24.9 6/2/2016 22.3 21.6 8/23/2016 15.4 9.73 24.4 11/11/2016 17.4 15.9 24 25.2 19.5 21.1 24.7 2/8/2017 21 14.9 27.8 5/3/2017 27.3 5/4/2017 19.2 19.5 24.1 21.8 24.6 18.7 8/1/2017 23.3 14.4 28.1 10/3/2017 13.4 28.2 23.8 19.2 24.2 24.3 54 20.9 5/16/2018 25.9 93.9 27 5/17/2018 32.8 14 29.6 6/27/2018 30.3 31.8 8/8/2018 32.3 30.9

C.4 Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

## Piper Diagram

Analysis Run 1/24/2019 5:29 PM View: Pipers ASD

Sibley Client: SCS Engineers Data: Sibley

| Totals (ppm)            | Na   | K    | Ca   | Mg   | Cl   | SO4  | HCO3 | CO3  |
|-------------------------|------|------|------|------|------|------|------|------|
| 504* 5/25/2016          | 6.54 | 1.27 | 30.2 | 8.36 | 0.5  | 18.9 | 89   | 10   |
| 504* 8/23/2016          | 6.61 | 1.15 | 32.2 | 8.56 | 0.5  | 15.4 | 99.5 | 10   |
| 504* 11/11/2016         | 8.17 | 1.3  | 36.9 | 8.97 | 0.5  | 17.4 | 94.7 | 10   |
| 504* 2/8/2017           | 6.83 | 1.28 | 29.6 | 9.94 | 0.5  | 21   | 105  | 10   |
| 512 5/25/2016           | 10   | 2.24 | 98.9 | 36.8 | 2.55 | 23.1 | 356  | 10   |
| 512 8/23/2016           | 10.3 | 2.13 | 103  | 36.9 | 3.23 | 24.4 | 384  | 10   |
| 512 11/11/2016          | 9.96 | 2.16 | 100  | 35.6 | 3.17 | 24   | 352  | 10   |
| 512 2/8/2017            | 10   | 2.35 | 86.4 | 37.9 | 3.14 | 27.8 | 358  | 10   |
| LEACHATEPOND 5/25/2016  | 499  | 58.6 | 129  | 12.9 | 44.1 | 1440 | 10   | 119  |
| LEACHATEPOND 8/23/2016  | 479  | 56.8 | 108  | 12.8 | 42.8 | 1320 | 10   | 104  |
| LEACHATEPOND 11/10/2016 | 651  | 75.3 | 224  | 22.5 | 50.4 | 1820 | 30.5 | 68.3 |
| LEACHATEPOND 2/9/2017   | 678  | 66.2 | 89.4 | 10.8 | 64.5 | 2200 | 38.9 | 146  |
| LEACHATE 3/23/2018      | 741  | 70.3 | 88.5 | 4.66 | 79.1 | 1690 | 10   | 108  |

# Addendum 1

## 2018 Groundwater Monitoring and Corrective Action Report Addendum 1

# SCS ENGINEERS

December 16, 2022 File No. 27213167.18

| To: | Evergy Metro, Inc.                                  |
|-----|-----------------------------------------------------|
|     | Jared Morrison – Director, Water and Waste Programs |

From: SCS Engineers Douglas L. Doerr, P.E. John R. Rockhold, P.G.



Subject: 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Missouri West, Inc. CCR Landfill Sibley Generating Station – Sibley, Missouri

The CCR Landfill at the Sibley Generating Station is subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2018 for the CCR Landfill was completed and placed in the facility's operating record on January 30, 2019, as required by the Rule. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy'
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:



- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- June 2018 First verification sampling for the Spring 2018 detection monitoring sampling event.
- August 2018 Second verification sampling for the Spring 2018 detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2018 included the following:

- Fall 2017 semiannual detection monitoring statistical analyses.
- Spring 2018 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.

Jared Morrison December 16, 2022

## ATTACHMENT 1

Laboratory Analytical Reports

Jared Morrison December 16, 2022

# ATTACHMENT 1-1 May 2018 Sampling Event Laboratory Report



# ANALYTICAL REPORT



#### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description: L995364 05/19/2018 27213169.18 KCP&L Sibley Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jubb land

Jeff Carr Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

### TABLE OF CONTENTS

| ¥               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |

Sc

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-504 L995364-01                          | 6  |
| MW-505 L995364-02                          | 7  |
| MW-506 L995364-03                          | 8  |
| MW-510 L995364-04                          | 9  |
| MW-512 L995364-05                          | 10 |
| MW-601 L995364-06                          | 11 |
| DUPLICATE L995364-07                       | 12 |
| Qc: Quality Control Summary                | 13 |
| Gravimetric Analysis by Method 2540 C-2011 | 13 |
| Wet Chemistry by Method 9056A              | 14 |
| Metals (ICP) by Method 6010B               | 18 |
| GI: Glossary of Terms                      | 19 |
| Al: Accreditations & Locations             | 20 |
| Sc: Sample Chain of Custody                | 21 |
|                                            |    |

SDG: L995364 DATE/TIME: 05/29/18 13:47

#### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                            | SAMPLE SU    | JIVIIVIAI | τĭ                          | UN                                    | E LAD. NATIONWI                      |
|--------------------------------------------|--------------|-----------|-----------------------------|---------------------------------------|--------------------------------------|
| MW-504 L995364-01 GW                       |              |           | Collected by<br>Whit Martin | Collected date/time<br>05/17/18 14:00 | Received date/time<br>05/19/18 08:45 |
| <i>M</i> ethod                             | Batch        | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
| Net Chemistry by Method 9056A              | WG1114106    | 1         | 05/22/18 07:19              | 05/22/18 07:19                        | MAJ                                  |
| letals (ICP) by Method 6010B               | WG1113971    | 1         | 05/24/18 07:33              | 05/24/18 18:16                        | ST                                   |
|                                            |              |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-505 L995364-02 GW                       |              |           | Whit Martin                 | 05/17/18 10:15                        | 05/19/18 08:45                       |
| lethod                                     | Batch        | Dilution  | Preparation                 | Analysis                              | Analyst                              |
|                                            | 11/04/44/200 |           | date/time                   | date/time                             | DC                                   |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
| /et Chemistry by Method 9056A              | WG1114106    | 1         | 05/22/18 07:34              | 05/22/18 07:34                        | MAJ                                  |
| Ietals (ICP) by Method 6010B               | WG1113971    | 1         | 05/24/18 07:33              | 05/24/18 18:19                        | ST                                   |
|                                            |              |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-506 L995364-03 GW                       |              |           | Whit Martin                 | 05/17/18 10:05                        | 05/19/18 08:45                       |
| <i>M</i> ethod                             | Batch        | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
| Vet Chemistry by Method 9056A              | WG1114106    | 1         | 05/22/18 07:50              | 05/22/18 07:50                        | MAJ                                  |
| Ietals (ICP) by Method 6010B               | WG1113971    | 1         | 05/24/18 07:33              | 05/24/18 18:22                        | ST                                   |
|                                            |              |           |                             |                                       |                                      |
| MW-510 L995364-04 GW                       |              |           | Collected by<br>Whit Martin | Collected date/time<br>05/17/18 13:50 | Received date/time<br>05/19/18 08:45 |
| Aethod                                     | Batch        | Dilution  | Preparation                 | Analysis                              | Analyst                              |
|                                            |              |           | date/time                   | date/time                             |                                      |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
| Vet Chemistry by Method 9056A              | WG1114107    | 1         | 05/23/18 00:36              | 05/23/18 00:36                        | MAJ                                  |
| letals (ICP) by Method 6010B               | WG1113971    | 1         | 05/24/18 07:33              | 05/24/18 18:24                        | ST                                   |
|                                            |              |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-512 L995364-05 GW                       |              |           | Whit Martin                 | 05/17/18 12:55                        | 05/19/18 08:45                       |
| fethod                                     | Batch        | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| iravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
| Vet Chemistry by Method 9056A              | WG1114107    | 1         | 05/23/18 01:22              | 05/23/18 01:22                        | MAJ                                  |
| letals (ICP) by Method 6010B               | WG1113971    | 1         | 05/24/18 07:33              | 05/24/18 18:27                        | ST                                   |
|                                            |              |           | Collected by                | Collected date/time                   | Received date/time                   |
| MW-601 L995364-06 GW                       |              |           | Whit Martin                 | 05/17/18 11:25                        | 05/19/18 08:45                       |
| fethod                                     | Batch        | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722    | 1         | 05/23/18 17:13              | 05/23/18 17:38                        | BS                                   |
|                                            | WG1114107    | 1         | 05/23/18 01:37              | 05/23/18 01:37                        | MAJ                                  |
| Net Chemistry by Method 9056A              | WG1114107    | 1         | 00/20/10 01.07              |                                       |                                      |

PROJECT: 27213169.18

SDG: L995364 DATE/TIME: 05/29/18 13:47

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

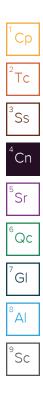
| DUPLICATE L995364-07 GW                    |           |          | Collected by Whit Martin | Collected date/time<br>05/17/18 00:00 | Received date/time<br>05/19/18 08:45 | 1  |
|--------------------------------------------|-----------|----------|--------------------------|---------------------------------------|--------------------------------------|----|
| Method                                     | Batch     | Dilution | Preparation<br>date/time | Analysis<br>date/time                 | Analyst                              | 2, |
| Gravimetric Analysis by Method 2540 C-2011 | WG1114722 | 1        | 05/23/18 17:13           | 05/23/18 17:38                        | BS                                   | L  |
| Wet Chemistry by Method 9056A              | WG1114107 | 1        | 05/23/18 01:53           | 05/23/18 01:53                        | MAJ                                  | 3  |
| Metals (ICP) by Method 6010B               | WG1113971 | 1        | 05/24/18 07:33           | 05/24/18 18:30                        | ST                                   |    |



\*

Ср

SDG: L995364 DATE/TIME: 05/29/18 13:47


#### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb an

Jeff Carr Technical Service Representative



ACCOUNT: SCS Engineers - KS PROJECT: 27213169.18

SDG: L995364 DATE/TIME: 05/29/18 13:47

PAGE: 5 of 21

#### SAMPLE RESULTS - 01 L995364

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier R | DL Dilutio | n Analysis       | Batch            | Ср |
|------------------|--------|-------------|------------|------------------|------------------|----|
| Analyte          | ug/l   | ц           | g/l        | date / time      |                  | 2  |
| Dissolved Solids | 193000 | 10          | 0000 1     | 05/23/2018 17:38 | <u>WG1114722</u> | Tc |

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |  |
|---------|--------|-----------|------|----------|------------------|------------------|--|
| Analyte | ug/l   |           | ug/l |          | date / time      |                  |  |
| hloride | 1110   |           | 1000 | 1        | 05/22/2018 07:19 | <u>WG1114106</u> |  |
| luoride | 216    |           | 100  | 1        | 05/22/2018 07:19 | WG1114106        |  |
| Sulfate | 32800  |           | 5000 | 1        | 05/22/2018 07:19 | WG1114106        |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |  |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:16 | WG1113971 |  |
| Calcium | 33300  |           | 1000 | 1        | 05/24/2018 18:16 | WG1113971 |  |

#### SAMPLE RESULTS - 02 L995364

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|-----------|-------|----------|------------------|-----------|--------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2      |
| Dissolved Solids | 170000 |           | 10000 | 1        | 05/23/2018 17:38 | WG1114722 | Tc     |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/17/18 10:15

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|------|----------|------------------|-----------|--|
| analyte | ug/l   |           | ug/l |          | date / time      |           |  |
| hloride | 1090   |           | 1000 | 1        | 05/22/2018 07:34 | WG1114106 |  |
| luoride | 247    |           | 100  | 1        | 05/22/2018 07:34 | WG1114106 |  |
| Sulfate | 14000  |           | 5000 | 1        | 05/22/2018 07:34 | WG1114106 |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:19 | WG1113971 |
| Calcium | 28200  |           | 1000 | 1        | 05/24/2018 18:19 | WG1113971 |

#### SAMPLE RESULTS - 03 L995364

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср              |
|------------------|--------|-----------|-------|----------|------------------|-----------|-----------------|
| Analyte          | ug/l   | I         | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids | 442000 |           | 10000 | 1        | 05/23/2018 17:38 | WG1114722 | <sup>-</sup> Tc |

#### Wet Chemistry by Method 9056A

| Net Chemistry by Method 9056A |        |           |      |          |                  |           |  |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|--|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           |  |  |  |
| Chloride                      | 6690   |           | 1000 | 1        | 05/22/2018 07:50 | WG1114106 |  |  |  |
| Fluoride                      | 320    |           | 100  | 1        | 05/22/2018 07:50 | WG1114106 |  |  |  |
| Sulfate                       | 75700  |           | 5000 | 1        | 05/22/2018 07:50 | WG1114106 |  |  |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:22 | WG1113971 |
| Calcium | 94900  |           | 1000 | 1        | 05/24/2018 18:22 | WG1113971 |

#### SAMPLE RESULTS - 04 L995364

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|-----------|-------|----------|------------------|-----------|--------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2      |
| Dissolved Solids | 494000 |           | 10000 | 1        | 05/23/2018 17:38 | WG1114722 | Tc     |

### Wet Chemistry by Method 9056A

| Wet Chemistry b | by Method 90564 | 4         |      |          |                  |           |  |
|-----------------|-----------------|-----------|------|----------|------------------|-----------|--|
|                 | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
| Analyte         | ug/l            |           | ug/l |          | date / time      |           |  |
| Chloride        | 3440            |           | 1000 | 1        | 05/23/2018 00:36 | WG1114107 |  |
| Fluoride        | 348             |           | 100  | 1        | 05/23/2018 00:36 | WG1114107 |  |
| Sulfate         | 17300           |           | 5000 | 1        | 05/23/2018 00:36 | WG1114107 |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:24 | WG1113971 |
| Calcium | 120000 |           | 1000 | 1        | 05/24/2018 18:24 | WG1113971 |

#### SAMPLE RESULTS - 05 L995364

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |   | Ср |   |
|------------------|--------|-----------|-------|----------|------------------|-----------|---|----|---|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | - | 2  | i |
| Dissolved Solids | 419000 |           | 10000 | 1        | 05/23/2018 17:38 | WG1114722 |   | Tc |   |

### Wet Chemistry by Method 9056A

Collected date/time: 05/17/18 12:55

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
| nalyte   | ug/l   |           | ug/l |          | date / time      |           |  |
| hloride  | 3640   |           | 1000 | 1        | 05/23/2018 01:22 | WG1114107 |  |
| Fluoride | 328    |           | 100  | 1        | 05/23/2018 01:22 | WG1114107 |  |
| Sulfate  | 29600  |           | 5000 | 1        | 05/23/2018 01:22 | WG1114107 |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:27 | WG1113971 |
| Calcium | 104000 |           | 1000 | 1        | 05/24/2018 18:27 | WG1113971 |

### SAMPLE RESULTS - 06 L995364

Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | Ср |
|------------------|--------|-----------|-------|----------|------------------|------------------|----|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2  |
| Dissolved Solids | 431000 |           | 10000 | 1        | 05/23/2018 17:38 | <u>WG1114722</u> | Tc |

### Wet Chemistry by Method 9056A

Collected date/time: 05/17/18 11:25

|         | by Method 9056<br>Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |    |
|---------|--------------------------|-----------|------|----------|------------------|-----------|----|
| Analyte | ug/l                     |           | ug/l |          | date / time      | —         | 4  |
| hloride | 4020                     |           | 1000 | 1        | 05/23/2018 01:37 | WG1114107 |    |
| luoride | 275                      |           | 100  | 1        | 05/23/2018 01:37 | WG1114107 | 5  |
| Sulfate | 28300                    |           | 5000 | 1        | 05/23/2018 01:37 | WG1114107 | ັຽ |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 17:27 | WG1113971 |
| Calcium | 104000 |           | 1000 | 1        | 05/24/2018 17:27 | WG1113971 |

### SAMPLE RESULTS - 07 L995364



Qc

Gl

Â

Sc

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|-----------|-------|----------|------------------|-----------|--------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2      |
| Dissolved Solids | 399000 |           | 10000 | 1        | 05/23/2018 17:38 | WG1114722 | ¯Тс    |

### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |    |
|---------|--------|-----------|------|----------|------------------|-----------|----|
| analyte | ug/l   |           | ug/l |          | date / time      |           | 4  |
| hloride | 3440   |           | 1000 | 1        | 05/23/2018 01:53 | WG1114107 | C  |
| luoride | 273    |           | 100  | 1        | 05/23/2018 01:53 | WG1114107 | 5  |
| Sulfate | 9840   |           | 5000 | 1        | 05/23/2018 01:53 | WG1114107 | Ľ۵ |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/24/2018 18:30 | WG1113971 |
| Calcium | 102000 |           | 1000 | 1        | 05/24/2018 18:30 | WG1113971 |

### WG1114722

Gravimetric Analysis by Method 2540 C-2011

### QUALITY CONTROL SUMMARY L99<u>5364-01,02,03,04,05,06,07</u>

### Method Blank (MB)

| (MB) R3313267-1 05 | 5/23/18 17:38 |              |        |        |
|--------------------|---------------|--------------|--------|--------|
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | ug/l          |              | ug/l   | ug/l   |
| Dissolved Solids   | U             |              | 2820   | 10000  |

### L995364-01 Original Sample (OS) • Duplicate (DUP)

| L995364-01 Orig       | jinal Sample (      | ,OS) • Dur     | licate (۲  | DUP)      |               |                   | <br> | <br> |  |  |
|-----------------------|---------------------|----------------|------------|-----------|---------------|-------------------|------|------|--|--|
| (OS) L995364-01 05/23 | 23/18 17:38 • (DUP) | , R3313267-4 / | 05/23/18 1 | 7:38      |               |                   |      |      |  |  |
|                       | Original Result     | C DUP Result   | Dilution   | 1 DUP RPD | DUP Qualifier | DUP RPD<br>Limits |      |      |  |  |
| Analyte               | ug/l                | ug/l           |            | %         |               | %                 |      |      |  |  |
| Dissolved Solids      | 193000              | 192000         | 1          | 0.519     |               | 5                 |      |      |  |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3313267-2 05/23/18 | 8 17:38 • (LCSE | ) R3313267-3 | 05/23/18 17:38 |          |           |             |               |                |      |            |
|---------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                           | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                   | ug/l            | ug/l         | ug/l           | %        | %         | %           |               |                | %    | %          |
| Dissolved Solids          | 8800000         | 8600000      | 8750000        | 97.7     | 99.4      | 85.0-115    |               |                | 1.73 | 5          |

DATE/TIME: 05/29/18 13:47 Тс

Ss

GI

Â

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

| (MB) R3311871-1 05 | 5/21/18 18:02 |              |        |        |
|--------------------|---------------|--------------|--------|--------|
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | ug/l          |              | ug/l   | ug/l   |
| Chloride           | U             |              | 51.9   | 1000   |
| Fluoride           | U             |              | 9.90   | 100    |
| Sulfate            | U             |              | 77.4   | 5000   |

### L995361-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L995361-01 05/22/18 03:58 • (DUP) R3311871-4 05/22/18 04:14 |                 |            |          |         |               |                   |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |
| Chloride                                                         | 2500            | 2500       | 1        | 0.232   |               | 15                |  |  |  |
| Fluoride                                                         | 209             | 194        | 1        | 7.51    |               | 15                |  |  |  |
| Sulfate                                                          | 46800           | 46600      | 1        | 0.537   |               | 15                |  |  |  |

### L995361-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L995361-05 05/22/18 06:17 • (DUP) R3311871-7 05/22/18 06:33 |                 |            |          |         |               |                   |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |
| Chloride                                                         | 3950            | 3990       | 1        | 1.03    |               | 15                |  |  |
| Fluoride                                                         | 235             | 213        | 1        | 9.96    |               | 15                |  |  |
| Sulfate                                                          | 20900           | 21000      | 1        | 0.267   |               | 15                |  |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3311871-2 05/21/18 | 18:17 • (LCSD) F | 23311871-3 05 | /21/18 18:33 |          |           |             |               |                |       |            |  |
|---------------------------|------------------|---------------|--------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
|                           | Spike Amount     | LCS Result    | LCSD Result  | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
| Analyte                   | ug/l             | ug/l          | ug/l         | %        | %         | %           |               |                | %     | %          |  |
| Chloride                  | 40000            | 39800         | 39800        | 99.6     | 99.5      | 80.0-120    |               |                | 0.121 | 15         |  |
| Fluoride                  | 8000             | 8270          | 8330         | 103      | 104       | 80.0-120    |               |                | 0.721 | 15         |  |
| Sulfate                   | 40000            | 40200         | 40300        | 101      | 101       | 80.0-120    |               |                | 0.226 | 15         |  |

| ACCOUNT:           | PROJECT:    | SDG:    | DATE/TIME:     | PAGE:    |
|--------------------|-------------|---------|----------------|----------|
| SCS Engineers - KS | 27213169.18 | L995364 | 05/29/18 13:47 | 14 of 21 |

<sup>2</sup>Tc <sup>3</sup>Ss

Cn

Sr

<sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

### L995361-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L995361-01 05/22/1 | 18 03:58 • (MS) F | 23311871-5 05/  | 22/18 04:29 • | (MSD) R331187 | 1-6 05/22/18 | 04:45    |          |             |              |               |      |            |
|-------------------------|-------------------|-----------------|---------------|---------------|--------------|----------|----------|-------------|--------------|---------------|------|------------|
|                         | Spike Amount      | Original Result | MS Result     | MSD Result    | MS Rec.      | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                 | ug/l              | ug/l            | ug/l          | ug/l          | %            | %        |          | %           |              |               | %    | %          |
| Chloride                | 50000             | 2500            | 57200         | 56600         | 109          | 108      | 1        | 80.0-120    |              |               | 1.08 | 15         |
| Fluoride                | 5000              | 209             | 5630          | 5780          | 108          | 112      | 1        | 80.0-120    |              |               | 2.79 | 15         |
| Sulfate                 | 50000             | 46800           | 96800         | 100000        | 100          | 107      | 1        | 80.0-120    |              | E             | 3.52 | 15         |

### L995361-05 Original Sample (OS) • Matrix Spike (MS)

| (OS) L995361-05 05/22/ | 18 06:17 • (MS) R | 3311871-8 05/2  | 22/18 06:48 |         |          |             |              |
|------------------------|-------------------|-----------------|-------------|---------|----------|-------------|--------------|
|                        | Spike Amount      | Original Result | MS Result   | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                | ug/l              | ug/l            | ug/l        | %       |          | %           |              |
| Chloride               | 50000             | 3950            | 59800       | 112     | 1        | 80.0-120    |              |
| Fluoride               | 5000              | 235             | 5720        | 110     | 1        | 80.0-120    |              |
| Sulfate                | 50000             | 20900           | 73800       | 106     | 1        | 80.0-120    |              |

SDG: L995364 DATE/TIME: 05/29/18 13:47 PAGE: 15 of 21 Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

| (MB) R3312329-1 05/ | /22/18 11:31 |              |        |        |
|---------------------|--------------|--------------|--------|--------|
|                     | MB Result    | MB Qualifier | MB MDL | MB RDL |
| Analyte             | ug/l         |              | ug/l   | ug/l   |
| Chloride            | 222          | J            | 51.9   | 1000   |
| Fluoride            | U            |              | 9.90   | 100    |
| Sulfate             | 233          | J            | 77.4   | 5000   |

### L995364-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L995364-04 05/23 | 3/18 00:36 • (DUP | r) R3312329-4 | 05/23/18 | 00:51   |               |                   |
|-----------------------|-------------------|---------------|----------|---------|---------------|-------------------|
|                       | Original Result   | DUP Result    | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte               | ug/l              | ug/l          |          | %       |               | %                 |
| Chloride              | 3440              | 3380          | 1        | 1.76    |               | 15                |
| Fluoride              | 348               | 338           | 1        | 2.91    |               | 15                |
| Sulfate               | 17300             | 17300         | 1        | 0.123   |               | 15                |

### L995367-06 Original Sample (OS) • Duplicate (DUP)

| Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD<br>Limits |  |
|------------------------------------------------------------------------------------|--|
| Analyte ug/l ug/l % %                                                              |  |
| Chloride 49300 49500 1 0.302 15                                                    |  |
| Fluoride 249 242 1 2.85 15                                                         |  |
| Sulfate 33900 34000 1 0.0907 15                                                    |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3312329-2 05/22/ | '18 11:47 • (LCSD | ) R3312329-3 | 05/22/18 12:0 | 2        |           |             |               |                |       |            |
|-------------------------|-------------------|--------------|---------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                         | Spike Amount      | LCS Result   | LCSD Result   | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l              | ug/l         | ug/l          | %        | %         | %           |               |                | %     | %          |
| Chloride                | 40000             | 39800        | 39800         | 99.6     | 99.5      | 80.0-120    |               |                | 0.145 | 15         |
| Fluoride                | 8000              | 7950         | 7960          | 99.3     | 99.5      | 80.0-120    |               |                | 0.200 | 15         |
| Sulfate                 | 40000             | 39900        | 40000         | 99.7     | 99.9      | 80.0-120    |               |                | 0.225 | 15         |

| ACCOUNT:           | PROJECT:    | SDG:    | DATE/TIME:     | PAGE:    |
|--------------------|-------------|---------|----------------|----------|
| SCS Engineers - KS | 27213169.18 | L995364 | 05/29/18 13:47 | 16 of 21 |

ONE LAB. NATIONWIDE.

<sup>2</sup>Tc <sup>3</sup>Ss

Cn

Â

Sc

# QUALITY CONTROL SUMMARY

### L995364-04 Original Sample (OS) • Matrix Spike (MS)

| (OS) L995364-04 05/23 | 3/18 00:36 • (MS) | R3312329-5 0    | 5/23/18 01:07 | 7       |          |             |              |
|-----------------------|-------------------|-----------------|---------------|---------|----------|-------------|--------------|
|                       | Spike Amount      | Original Result | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte               | ug/l              | ug/l            | ug/l          | %       |          | %           |              |
| Chloride              | 50000             | 3440            | 53500         | 100     | 1        | 80.0-120    |              |
| Fluoride              | 5000              | 348             | 5250          | 98.0    | 1        | 80.0-120    |              |
| Sulfate               | 50000             | 17300           | 62900         | 91.1    | 1        | 80.0-120    |              |

### L995367-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L995367-06 05/23/1 | 18 04:12 • (MS) F | R3312329-7 05   | 5/23/18 04:42 • | (MSD) R33123 | 29-8 05/23/18 | 04:58    |          |             |              |               |       |            |
|-------------------------|-------------------|-----------------|-----------------|--------------|---------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                         | Spike Amount      | Original Result | MS Result       | MSD Result   | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l              | ug/l            | ug/l            | ug/l         | %             | %        |          | %           |              |               | %     | %          |
| Chloride                | 50000             | 49300           | 98300           | 98100        | 97.9          | 97.5     | 1        | 80.0-120    |              |               | 0.211 | 15         |
| Fluoride                | 5000              | 249             | 5070            | 5430         | 96.4          | 104      | 1        | 80.0-120    |              |               | 6.91  | 15         |
| Sulfate                 | 50000             | 33900           | 77900           | 81900        | 87.8          | 95.9     | 1        | 80.0-120    |              |               | 5.05  | 15         |

DATE/TIME: 05/29/18 13:47 Sc

### WG1113971

Metals (ICP) by Method 6010B

### QUALITY CONTROL SUMMARY L995364-01,02,03,04,05,06,07

°Cn

Sr

Qc

GI

Â

Sc

### Method Blank (MB)

| Method Bidi     | ik (ivid)      |              |        |        |  |
|-----------------|----------------|--------------|--------|--------|--|
| (MB) R3312956-1 | 05/24/18 17:09 |              |        |        |  |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |  |
| Analyte         | ug/l           |              | ug/l   | ug/l   |  |
| Boron           | U              |              | 12.6   | 200    |  |
| Calcium         | U              |              | 46.3   | 1000   |  |
|                 |                |              |        |        |  |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3312956-2 05/24/ | 18 17:12 • (LCSD | ) R3312956-3 | 05/24/18 17:14 |          |           |             |               |                |       |            |
|-------------------------|------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                         | Spike Amount     | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l             | ug/l         | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                   | 1000             | 979          | 977            | 97.9     | 97.7      | 80.0-120    |               |                | 0.185 | 20         |
| Calcium                 | 10000            | 9970         | 9930           | 99.7     | 99.3      | 80.0-120    |               |                | 0.468 | 20         |

### L995361-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L995361-12 05/24/18 | 17:17 • (MS) R33 | 312956-5 05/2   | 4/18 17:22 • (M | SD) R3312956- | 6 05/24/18 17: | 24       |          |             |              |               |        |            | 18 |
|--------------------------|------------------|-----------------|-----------------|---------------|----------------|----------|----------|-------------|--------------|---------------|--------|------------|----|
|                          | Spike Amount     | Original Result | MS Result       | MSD Result    | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits | L  |
| Analyte                  | ug/l             | ug/l            | ug/l            | ug/l          | %              | %        |          | %           |              |               | %      | %          | ç  |
| Boron                    | 1000             | ND              | 1130            | 1100          | 101            | 98.4     | 1        | 75.0-125    |              |               | 2.52   | 20         |    |
| Calcium                  | 10000            | 104000          | 114000          | 114000        | 96.6           | 95.6     | 1        | 75.0-125    |              |               | 0.0871 | 20         |    |

### L995364-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L995364-06 05/24/1 | 8 17:27 • (MS) R | 3312956-7 05    | /24/18 17:29 • ( | (MSD) R331295 | 6-8 05/24/18 | 17:32    |          |             |              |               |       |            |
|-------------------------|------------------|-----------------|------------------|---------------|--------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                         | Spike Amount     | Original Result | MS Result        | MSD Result    | MS Rec.      | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l             | ug/l            | ug/l             | ug/l          | %            | %        |          | %           |              |               | %     | %          |
| Boron                   | 1000             | ND              | 1110             | 1120          | 99.2         | 99.6     | 1        | 75.0-125    |              |               | 0.394 | 20         |
| Calcium                 | 10000            | 104000          | 113000           | 112000        | 95.7         | 86.2     | 1        | 75.0-125    |              |               | 0.839 | 20         |

| ACCOUNT:          |   |
|-------------------|---|
| SCS Engineers - k | S |

PROJECT: 27213169.18

SDG: L995364

DATE/TIME: 05/29/18 13:47

PAGE: 18 of 21

### GLOSSARY OF TERMS

### \*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| etected at the Reporting Limit (or MDL where applicable).<br>ted Detection Limit.<br>rery.<br>/e Percent Difference.<br>le Delivery Group.<br>etected at the Reporting Limit (or MDL where applicable).<br>ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>itory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ted Detection Limit.<br>rery.<br>/e Percent Difference.<br>le Delivery Group.<br>etected at the Reporting Limit (or MDL where applicable).<br>ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>tory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>e are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG. |
| ve Percent Difference.<br>le Delivery Group.<br>etected at the Reporting Limit (or MDL where applicable).<br>ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>tory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG.                                    |
| le Delivery Group.<br>etected at the Reporting Limit (or MDL where applicable).<br>ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>itory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG.                                                             |
| etected at the Reporting Limit (or MDL where applicable).<br>ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>itory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>e are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG.                                                                                 |
| ame of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>itory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>• are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>• method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>• on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>•. The Original Sample may not be included within the reported SDG.                                                                                                                                            |
| ed.<br>sample matrix contains an interfering material, the sample preparation volume or weight values differ from the<br>ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>itory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.<br>• are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                             |
| ard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the<br>tory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the<br>reported has already been corrected for this factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| e method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>ated within these ranges.<br>on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control<br>e. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| olumn provides a letter and/or number designation that corresponds to additional information concerning the result<br>ed. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>tially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ctual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>easurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>v Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>od Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>ort for this analyte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| f discussion about the included sample results, including a discussion of any non-conformances to protocol ved either at sample receipt by the laboratory from the field or during the analytical process. If present, there will ection in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ection of the report includes the results of the laboratory quality control analyses required by procedure or<br>ical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| the document created in the field when your samples were initially collected. This is used to verify the time and<br>of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This<br>of custody also documents all persons (excluding commercial shippers) that have had control or possession of the<br>es from the time of collection until delivery to the laboratory for analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ection of your report will provide the results of all testing performed on your samples. These results are provided nple ID and are separated by the analyses performed on each sample. The header line of each analysis section for sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ection of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Description                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
| The identification of the analyte is acceptable; the reported value is an estimate.                                                         |
|                                                                                                                                             |

PROJECT: 27213169.18

SDG: L995364 DATE/TIME: 05/29/18 13:47

PAGE: 19 of 21

### **ACCREDITATIONS & LOCATIONS**

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. \* Not all certifications held by the laboratory are applicable to the results reported in the attached report. \* Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

#### State Accreditations

| Alabama                | 40660       | Nebraska                    |
|------------------------|-------------|-----------------------------|
| Alaska                 | 17-026      | Nevada                      |
| Arizona                | AZ0612      | New Hampshire               |
| Arkansas               | 88-0469     | New Jersey-NELAP            |
| California             | 2932        | New Mexico <sup>1</sup>     |
| Colorado               | TN00003     | New York                    |
| Connecticut            | PH-0197     | North Carolina              |
| Florida                | E87487      | North Carolina <sup>1</sup> |
| Georgia                | NELAP       | North Carolina <sup>3</sup> |
| Georgia <sup>1</sup>   | 923         | North Dakota                |
| Idaho                  | TN00003     | Ohio-VAP                    |
| Illinois               | 200008      | Oklahoma                    |
| Indiana                | C-TN-01     | Oregon                      |
| lowa                   | 364         | Pennsylvania                |
| Kansas                 | E-10277     | Rhode Island                |
| Kentucky <sup>16</sup> | 90010       | South Carolina              |
| Kentucky <sup>2</sup>  | 16          | South Dakota                |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     |
| Louisiana 1            | LA180010    | Texas                       |
| Maine                  | TN0002      | Texas <sup>5</sup>          |
| Maryland               | 324         | Utah                        |
| Massachusetts          | M-TN003     | Vermont                     |
| Michigan               | 9958        | Virginia                    |
| Minnesota              | 047-999-395 | Washington                  |
| Mississippi            | TN00003     | West Virginia               |
| Missouri               | 340         | Wisconsin                   |
| Montana                | CERT0086    | Wyoming                     |
|                        |             |                             |

| lebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee <sup>14</sup>     | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas⁵                      | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |
|                             |                   |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.



27213169.18

L995364

PAGE: 20 of 21

05/29/18 13:47



| SCS Engineers - KS                                                                           |                                     |                                              | Billing Info                                                                   | ormation                         | n:                | 1                       | T                | 1.55             | Analysis / Container / Preservative Chain of Custody Page / of |       |              |         |                                            |                                     | ody Page L of L                                                            |                                 |
|----------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-------------------|-------------------------|------------------|------------------|----------------------------------------------------------------|-------|--------------|---------|--------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|---------------------------------|
| 7311 West 130th Street, Ste. 100<br>Overland Park, KS 66213                                  |                                     | 7311 W                                       | Accounts Payable<br>311 West 130th Street, Ste. 100<br>Overland Park, KS 66213 |                                  |                   |                         | 4                | 51               |                                                                |       |              |         | 1                                          |                                     | ESC                                                                        |                                 |
| Report to:<br>Jason Franks                                                                   |                                     |                                              | jay.martin                                                                     | n@kcpl.c                         | Pscsengir<br>com; | neers.com;              |                  | es               |                                                                |       | 1            |         |                                            |                                     | 12065 Lebanon I                                                            | <u>। स्वयंग्र</u><br>वाद्यंश्वव |
| Project<br>Description: KCP&L Sibley Gene                                                    | erating Statio                      | n                                            | 11-41-4-                                                                       | City/S                           | State             | ibley, MO               | Annan            | -NoPr            |                                                                |       |              |         |                                            |                                     | Mount Juliet, TN<br>Phone: 615-758-<br>Phone: 800-767-<br>Fax: 615-758-58: | Sasa<br>Sasa                    |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                     | Client Project (<br>27213169.1      |                                              |                                                                                | Lab Project #<br>AQUAOPKS-SIBLEY |                   | 1                       | 125mlHDPE-NoPres | 250mlHDPE-HNO3   |                                                                |       |              |         |                                            | L# 19                               | 195364                                                                     |                                 |
| Collected by (print):<br>Whit Martin                                                         | Site/Facility ID                    |                                              |                                                                                | P.O. #                           |                   |                         |                  |                  | HDPE                                                           | oPres |              |         |                                            |                                     | Tal                                                                        | C235                            |
| Collected by (signature):<br>What Martin                                                     | Same Da                             | Rush?     (Lab MUST Be Notified)     Quote # |                                                                                | sults Needed                     | _                 | d, F, SO4)              |                  | 250mIHDPE-NoPres |                                                                |       |              |         | Template: <b>T1</b><br>Prelogin: <b>P6</b> | T136014                             |                                                                            |                                 |
| Immediately Packed on Ice N Y X                                                              | Two Day 10 Day (Rad Only) Three Day |                                              |                                                                                |                                  | St                | 1 and the second second | Nc.<br>of        | Anions (Cld,     | - 6010                                                         | S0m   |              |         |                                            |                                     | TSR: 206 - Jef<br>PB:                                                      | f Carr                          |
| Sample ID                                                                                    | Comp/Grab                           | Matrix *                                     | Depth                                                                          |                                  | Date              | Time                    | Cntrs            | nion             | Ca                                                             | S     | 22           |         |                                            |                                     | Shipped Via:                                                               |                                 |
| MW-504                                                                                       | Grab                                | GW                                           | Line S                                                                         | 5/1                              | 7/18              | 1400                    | 3                | X                | × ×                                                            | X TD  |              |         |                                            | =                                   | Remarks                                                                    | Sample # (Jab only)             |
| MW-505                                                                                       | Grab                                | GW                                           | 146.50                                                                         |                                  | 7/18              | 1015                    | 3                | X                | X                                                              | X     |              |         |                                            |                                     |                                                                            | -21                             |
| MW-506                                                                                       | Grab                                | GW                                           |                                                                                |                                  | 7/18              | 1005                    | 3                | X                | X                                                              | X     |              |         |                                            | and the second                      |                                                                            | -02                             |
| MW-510                                                                                       | Grab                                | GW                                           | 201.50                                                                         | 5/1-                             | -Areforde Meren   | 1350                    | 3                | X                | X                                                              | X     |              |         |                                            |                                     |                                                                            | -03                             |
| MW-512                                                                                       | Grab                                | GW                                           |                                                                                | 5/1                              | 7/18              | 1255                    | 3                | X                | x                                                              | x     |              | •       |                                            | -                                   | -                                                                          | -04                             |
| MW-601                                                                                       | Grab                                | GW                                           |                                                                                | 5/1-                             | 7/18              | 1125                    | 3                | x                | X                                                              | X     |              | 11.5    |                                            |                                     |                                                                            | -05                             |
| DUPLICATE 2                                                                                  | Grab                                | GW                                           | 1.45                                                                           | Gli                              | 7/18              | 1125                    | 3                | x                | x                                                              | X     |              |         |                                            |                                     |                                                                            | -04                             |
| 601 MS2                                                                                      | Grab                                | GW                                           |                                                                                | 5/1                              | 7/18              | 1135                    | 3                | x                | x                                                              | X     |              |         |                                            |                                     |                                                                            | 507                             |
| 601 MSD 2                                                                                    | Grab                                | GW                                           |                                                                                | 5/1                              | 7/18              | 1140                    | 3                | X                | x                                                              | X     |              |         |                                            |                                     |                                                                            |                                 |
| Matrix:<br>S - Soil AIR - Air F - Filter<br>SW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:                            |                                              |                                                                                |                                  |                   |                         |                  |                  |                                                                |       | рн           | Tem     | p                                          | COC Seal<br>COC Signe               | mple Receipt C<br>Present/Intact<br>d/Accurate:                            |                                 |
| W - Drinking Water<br>07 - Other                                                             | Samples returns                     | ned via:<br>dExCouri                         | ler                                                                            | -                                | Tr                | racking # 72            | 215              | 452              | 07                                                             | 51,4  | Flow_        | Othe    | r                                          | Bottles a<br>Correct h<br>Sufficier | trive intact:<br>ottles used:<br>t volume sent:<br>If Applicat             |                                 |
| Relinquished by : (Signature)                                                                |                                     | Date:<br>5/18/11                             | 18                                                                             | me:<br>1130                      | 1                 | efeived by: (Signatu    |                  | tas              | đ                                                              | 4     | rip Blank R  |         | HCL / MeoH                                 | VOA Zero<br>Preservat               | Headspace:<br>ion Correct/Ch                                               | V 87                            |
| Relinquished by : (Signature)                                                                | 14.3                                | Date:                                        | Tir                                                                            | me:                              | Re                | eceived by: (Signatu    | ire)             | U                | ev.                                                            | 115   | emp:<br>5,1% | °C Bott | I SReceived:                               | If preservat                        | ion required by Lo                                                         | gin: Date/Time                  |
| Relinquished by : (Signature)                                                                |                                     | Date:                                        | Tir                                                                            | me:                              | Re                | terved of lab by A      |                  | re) f            | 41                                                             | 1.0   |              | S D     | RYS                                        | Hold:                               |                                                                            | Condition<br>NCF LOK            |

\*

### ATTACHMENT 1-2 June 2018 Sampling Event Laboratory Report



# ANALYTICAL REPORT

### **SCS Engineers - KS**

| Sample Delivery Group: | L1005344                       |
|------------------------|--------------------------------|
| Samples Received:      | 06/28/2018                     |
| Project Number:        | 27213169.18                    |
| Description:           | KCP&LSibley Generating Station |

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

### Entire Report Reviewed By:

Jason Romer Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

### TABLE OF CONTENTS

| *               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |
| °Sc             |  |

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 6  |
| Sr: Sample Results                         | 7  |
| MW-510 L1005344-01                         | 7  |
| MW-512 L1005344-02                         | 8  |
| MW-601 L1005344-03                         | 9  |
| MW-504 L1005344-04                         | 10 |
| DUPLICATE 1 L1005344-05                    | 11 |
| MW-506 L1005344-06                         | 12 |
| MW-801 L1005344-07                         | 13 |
| DUPLICATE 3 L1005344-08                    | 14 |
| MW-505 L1005344-09                         | 15 |
| MW-802 L1005344-10                         | 16 |
| DUPLICATE 2 L1005344-11                    | 17 |
| MW-804 L1005344-12                         | 18 |
| DUPLICATE 5 L1005344-13                    | 19 |
| MW-701 L1005344-14                         | 20 |
| MW-702 L1005344-15                         | 21 |
| MW-805 L1005344-16                         | 22 |
| DUPLICATE 4 L1005344-17                    | 23 |
| Qc: Quality Control Summary                | 24 |
| Gravimetric Analysis by Method 2540 C-2011 | 24 |
| Wet Chemistry by Method 9056A              | 25 |
| Metals (ICP) by Method 6010B               | 29 |
| GI: Glossary of Terms                      | 30 |
| Al: Accreditations & Locations             | 31 |
| Sc: Sample Chain of Custody                | 32 |
|                                            |    |

SDG: L1005344 DATE/TIME: 07/10/18 16:03

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                                                | SAMPLE SU              | JININA   | ONE LAB. NATIONWIL               |                                       |                                      |
|----------------------------------------------------------------|------------------------|----------|----------------------------------|---------------------------------------|--------------------------------------|
| MW-510 L1005344-01 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 13:50 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A                                  | WG1133124              | 1        | 07/04/18 06:19                   | 07/04/18 06:19                        | MCG                                  |
| MW-512 L1005344-02 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 13:25 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A                                  | WG1135360              | 1        | 07/09/18 16:15                   | 07/09/18 16:15                        | DR                                   |
| MW-601 L1005344-03 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 12:55 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A<br>Wet Chemistry by Method 9056A | WG1133124<br>WG1135360 | 1        | 07/04/18 06:55<br>07/09/18 16:30 | 07/04/18 06:55<br>07/09/18 16:30      | MCG<br>DR                            |
| MW-504 L1005344-04 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 11:05 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A<br>Wet Chemistry by Method 9056A | WG1133124<br>WG1135360 | 1<br>1   | 07/04/18 07:14<br>07/09/18 17:16 | 07/04/18 07:14<br>07/09/18 17:16      | MCG<br>DR                            |
| DUPLICATE1 L1005344-05 GW                                      |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 11:05 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A<br>Wet Chemistry by Method 9056A | WG1133124<br>WG1135360 | 1<br>1   | 07/04/18 09:03<br>07/09/18 18:18 | 07/04/18 09:03<br>07/09/18 18:18      | MCG<br>DR                            |
| MW-506 L1005344-06 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 12:05 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A                                  | WG1133124              | 1        | 07/04/18 09:21                   | 07/04/18 09:21                        | MCG                                  |
| MW-801 L1005344-07 GW                                          |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 12:01 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A                                  | WG1133125              | 5        | 07/03/18 20:51                   | 07/03/18 20:51                        | DR                                   |
| DUPLICATE 3 L1005344-08 GW                                     |                        |          | Collected by<br>Jason Franks     | Collected date/time<br>06/27/18 00:00 | Received date/time<br>06/28/18 08:45 |
| Method                                                         | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A                                  | WG1133125              | 1        | 07/03/18 21:05                   | 07/03/18 21:05                        | DR                                   |

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 27213169.18
 L1005344
 07/10/18 16:03
 3 of 34

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                                                                                                                             | SAMFLE SU          |               |                                                                                                                                          |                                                                                                                                                    |                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| MW-505 L1005344-09 GW                                                                                                       |                    |               | Collected by<br>Jason Franks                                                                                                             | Collected date/time<br>06/27/18 11:35                                                                                                              | Received date/time<br>06/28/18 08:45                                                         |
| Method                                                                                                                      | Batch              | Dilution      | Preparation                                                                                                                              | Analysis                                                                                                                                           | Analyst                                                                                      |
|                                                                                                                             |                    |               | date/time                                                                                                                                | date/time                                                                                                                                          |                                                                                              |
| Metals (ICP) by Method 6010B                                                                                                | WG1131931          | 1             | 06/29/18 15:19                                                                                                                           | 06/30/18 11:27                                                                                                                                     | TRB                                                                                          |
|                                                                                                                             |                    |               | Collected by                                                                                                                             | Collected date/time                                                                                                                                | Received date/tim                                                                            |
| MW-802 L1005344-10 GW                                                                                                       |                    |               | Jason Franks                                                                                                                             | 06/27/18 11:30                                                                                                                                     | 06/28/18 08:45                                                                               |
| Method                                                                                                                      | Batch              | Dilution      | Preparation<br>date/time                                                                                                                 | Analysis<br>date/time                                                                                                                              | Analyst                                                                                      |
| Metals (ICP) by Method 6010B                                                                                                | WG1131931          | 1             | 06/29/18 15:19                                                                                                                           | 06/30/18 09:10                                                                                                                                     | TRB                                                                                          |
|                                                                                                                             |                    |               | Collected by                                                                                                                             | Collected date/time                                                                                                                                | Received date/tim                                                                            |
| DUPLICATE 2 L1005344-11 GW                                                                                                  |                    |               | Jason Franks                                                                                                                             | 06/27/18 00:00                                                                                                                                     | 06/28/18 08:45                                                                               |
| Method                                                                                                                      | Batch              | Dilution      | Preparation                                                                                                                              | Analysis                                                                                                                                           | Analyst                                                                                      |
|                                                                                                                             |                    |               | date/time                                                                                                                                | date/time                                                                                                                                          |                                                                                              |
| Metals (ICP) by Method 6010B                                                                                                | WG1131931          | 1             | 06/29/18 15:19                                                                                                                           | 06/30/18 11:30                                                                                                                                     | TRB                                                                                          |
|                                                                                                                             |                    |               | Collected by                                                                                                                             | Collected date/time                                                                                                                                | Received date/tim                                                                            |
| MW-804 L1005344-12 GW                                                                                                       |                    |               | Jason Franks                                                                                                                             | 06/27/18 12:55                                                                                                                                     | 06/28/18 08:45                                                                               |
| Method                                                                                                                      | Batch              | Dilution      | Preparation                                                                                                                              | Analysis                                                                                                                                           | Analyst                                                                                      |
|                                                                                                                             |                    |               | date/time                                                                                                                                | date/time                                                                                                                                          |                                                                                              |
| Metals (ICP) by Method 6010B                                                                                                | WG1131931          | 1             | 06/29/18 15:19                                                                                                                           | 06/30/18 09:23                                                                                                                                     | TRB                                                                                          |
|                                                                                                                             |                    |               | Collected by                                                                                                                             | Collected date/time                                                                                                                                | Received date/time                                                                           |
| DUPLICATE 5 L1005344-13 GW                                                                                                  |                    |               | Jason Franks                                                                                                                             | 06/27/18 00:00                                                                                                                                     | 06/28/18 08:45                                                                               |
| Method                                                                                                                      | Batch              | Dilution      | Preparation                                                                                                                              | Analysis                                                                                                                                           | Analyst                                                                                      |
|                                                                                                                             |                    |               | date/time                                                                                                                                | date/time                                                                                                                                          |                                                                                              |
| Metals (ICP) by Method 6010B                                                                                                | WG1131931          | 1             | 06/29/18 15:19                                                                                                                           | 06/30/18 12:31                                                                                                                                     | TRB                                                                                          |
|                                                                                                                             |                    |               | Collected by                                                                                                                             | Collected date/time                                                                                                                                | Received date/time                                                                           |
| MW-701 L1005344-14 GW                                                                                                       |                    |               |                                                                                                                                          |                                                                                                                                                    |                                                                                              |
|                                                                                                                             |                    |               | Jason Franks                                                                                                                             | 06/27/18 10:05                                                                                                                                     | 06/28/18 08:45                                                                               |
| Method                                                                                                                      | Batch              | Dilution      | Preparation                                                                                                                              | Analysis                                                                                                                                           | 06/28/18 08:45<br>Analyst                                                                    |
|                                                                                                                             |                    |               | Preparation<br>date/time                                                                                                                 | Analysis<br>date/time                                                                                                                              | Analyst                                                                                      |
| Method<br>Gravimetric Analysis by Method 2540 C-2011                                                                        | Batch<br>WG1132955 | Dilution<br>1 | Preparation                                                                                                                              | Analysis                                                                                                                                           |                                                                                              |
|                                                                                                                             |                    |               | Preparation<br>date/time                                                                                                                 | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time                                                                                     | Analyst<br>MCG<br>Received date/tim                                                          |
| Gravimetric Analysis by Method 2540 C-2011                                                                                  |                    |               | Preparation<br>date/time<br>07/04/18 09:51                                                                                               | Analysis<br>date/time<br>07/04/18 12:10                                                                                                            | Analyst<br>MCG                                                                               |
|                                                                                                                             |                    |               | Preparation<br>date/time<br>07/04/18 09:51<br>Collected by<br>Jason Franks<br>Preparation                                                | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time<br>06/27/18 10:50<br>Analysis                                                       | Analyst<br>MCG<br>Received date/tim                                                          |
| Gravimetric Analysis by Method 2540 C-2011<br>MW-702 L1005344-15 GW                                                         | WG1132955          | 1             | Preparation<br>date/time<br>07/04/18 09:51<br>Collected by<br>Jason Franks                                                               | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time<br>06/27/18 10:50                                                                   | Analyst<br>MCG<br>Received date/time<br>06/28/18 08:45                                       |
| Gravimetric Analysis by Method 2540 C-2011<br>MW-702 L1005344-15 GW<br>Method                                               | WG1132955<br>Batch | 1<br>Dilution | Preparation<br>date/time<br>07/04/18 09:51<br>Collected by<br>Jason Franks<br>Preparation<br>date/time<br>07/04/18 09:51                 | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time<br>06/27/18 10:50<br>Analysis<br>date/time<br>07/04/18 12:10                        | Analyst<br>MCG<br>Received date/tim<br>06/28/18 08:45<br>Analyst<br>MCG                      |
| Gravimetric Analysis by Method 2540 C-2011<br>MW-702 L1005344-15 GW<br>Method<br>Gravimetric Analysis by Method 2540 C-2011 | WG1132955<br>Batch | 1<br>Dilution | Preparation<br>date/time<br>07/04/18 09:51<br>Collected by<br>Jason Franks<br>Preparation<br>date/time                                   | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time<br>06/27/18 10:50<br>Analysis<br>date/time                                          | Analyst<br>MCG<br>Received date/tim<br>06/28/18 08:45<br>Analyst<br>MCG                      |
| Gravimetric Analysis by Method 2540 C-2011<br>MW-702 L1005344-15 GW<br>Method                                               | WG1132955<br>Batch | 1<br>Dilution | Preparation<br>date/time<br>07/04/18 09:51<br>Collected by<br>Jason Franks<br>Preparation<br>date/time<br>07/04/18 09:51<br>Collected by | Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time<br>06/27/18 10:50<br>Analysis<br>date/time<br>07/04/18 12:10<br>Collected date/time | Analyst<br>MCG<br>Received date/tim<br>06/28/18 08:45<br>Analyst<br>MCG<br>Received date/tim |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 4 of 34

### SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| DUPLICATE 4 L1005344-17 GW                 |           |          | Collected by<br>Jason Franks | Collected date/time<br>06/27/18 00:00 | Received date/time<br>06/28/18 08:45 | <sup>1</sup> Cp |
|--------------------------------------------|-----------|----------|------------------------------|---------------------------------------|--------------------------------------|-----------------|
| Method                                     | Batch     | Dilution | Preparation                  | Analysis                              | Analyst                              |                 |
|                                            |           |          | date/time                    | date/time                             |                                      | $^{2}$ TC       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1132955 | 1        | 07/04/18 09:51               | 07/04/18 12:10                        | MCG                                  |                 |

| ³Ss             |
|-----------------|
| <sup>4</sup> Cn |
| ⁵Sr             |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
| <sup>9</sup> Sc |

\*

ACCOUNT: SCS Engineers - KS PROJECT: 27213169.18

SDG: L1005344

**PAGE**: 5 of 34

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Technical Service Representative



SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 6 of 34

\*

### Wet Chemistry by Method 9056A

| ver offention y by method bobby t |        |           |      |          |                  |           | Cn | L  |   |
|-----------------------------------|--------|-----------|------|----------|------------------|-----------|----|----|---|
|                                   | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |    | Cp | l |
| Analyte                           | ug/l   |           | ug/l |          | date / time      |           |    | 2  | i |
| Fluoride                          | 282    |           | 100  | 1        | 07/04/2018 06:19 | WG1133124 |    | Tc |   |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |

### SAMPLE RESULTS - 02 L1005344

¥

Ss

Cn

Qc

GI

Â

Sc

### Wet Chemistry by Method 9056A

|         | , , |        |           |      |          |                  |           | Cn  |
|---------|-----|--------|-----------|------|----------|------------------|-----------|-----|
|         | F   | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte | ι   | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Sulfate | 3   | 30300  |           | 5000 | 1        | 07/09/2018 16:15 | WG1135360 | ⁻Tc |

\*

Ср

Τс

Ss

Cn

Qc

GI

ΆI

Sc

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |  |
|----------|--------|-----------|------|----------|------------------|------------------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  |  |
| Chloride | 2820   |           | 1000 | 1        | 07/04/2018 06:55 | <u>WG1133124</u> |  |
| Sulfate  | 10300  |           | 5000 | 1        | 07/09/2018 16:30 | <u>WG1135360</u> |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

SDG: L1005344 DATE/TIME: 07/10/18 16:03

#### SAMPLE RESULTS - 04 L1005344

¥

Ср

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            | <br>Ср |
|----------|--------|-----------|------|----------|------------------|------------------|--------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  | 2      |
| Fluoride | 135    |           | 100  | 1        | 07/04/2018 07:14 | <u>WG1133124</u> | Tc     |
| Sulfate  | 31800  |           | 5000 | 1        | 07/09/2018 17:16 | <u>WG1135360</u> |        |

| <sup>3</sup> Ss |  |
|-----------------|--|
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |
| °Sc             |  |
|                 |  |
|                 |  |

### SAMPLE RESULTS - 05 L1005344

¥

Ср

Cn

Qc

GI

Â

Sc

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>Ср |
|----------|--------|-----------|------|----------|------------------|-----------|--------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2      |
| Fluoride | 121    |           | 100  | 1        | 07/04/2018 09:03 | WG1133124 | Tc     |
| Sulfate  | 31900  |           | 5000 | 1        | 07/09/2018 18:18 | WG1135360 |        |
|          |        |           |      |          |                  |           | ³Ss    |

### SAMPLE RESULTS - 06 L1005344

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|          | , , |        |           |      |          |                  |           | Cn  |
|----------|-----|--------|-----------|------|----------|------------------|-----------|-----|
|          |     | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte  |     | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Chloride |     | 5800   |           | 1000 | 1        | 07/04/2018 09:21 | WG1133124 | ⁻Tc |

SDG: L1005344

DATE/TIME: 07/10/18 16:03

\*

Ss

Cn

Qc

GI

Â

Sc

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | 'Ср |
|----------|--------|-----------|------|----------|------------------|-----------|-----|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Chloride | 109000 |           | 5000 | 5        | 07/03/2018 20:51 | WG1133125 | Tc  |

\*

### Wet Chemistry by Method 9056A

|          | , , |        |           |      |          |                  |           | 1'C |
|----------|-----|--------|-----------|------|----------|------------------|-----------|-----|
|          |     | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |     |
| Analyte  |     | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Chloride |     | 6070   |           | 1000 | 1        | 07/03/2018 21:05 | WG1133125 | T   |

| <sup>2</sup> Tc |
|-----------------|
| <sup>3</sup> Ss |
| <sup>4</sup> Cn |
| ⁵Sr             |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
| <sup>9</sup> Sc |

SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 14 of 34

### Collected date/time: 06/27/18 11:35

### SAMPLE RESULTS - 09 L1005344



|         |        |           |      |          |                  |           | <br>Г. |
|---------|--------|-----------|------|----------|------------------|-----------|--------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |        |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2      |
| Calcium | 25800  |           | 1000 | 1        | 06/30/2018 11:27 | WG1131931 | -      |





### Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |                  | <br>11 |
|---------|--------|-----------|------|----------|------------------|------------------|--------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            | Γ.     |
| Analyte | ug/l   |           | ug/l |          | date / time      |                  | 2      |
| Calcium | 65500  |           | 1000 | 1        | 06/30/2018 09:10 | <u>WG1131931</u> | -      |

| <sup>2</sup> Tc |
|-----------------|
| <sup>3</sup> Ss |
| <sup>4</sup> Cn |
| ⁵Sr             |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
|                 |

DATE/TIME: 07/10/18 16:03



Tc

|     |      |        |           |      |          |                  |           | Ľ. |
|-----|------|--------|-----------|------|----------|------------------|-----------|----|
|     |      | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |    |
| Ana | lyte | ug/l   |           | ug/l |          | date / time      |           | 2  |
| Cal | cium | 66200  |           | 1000 | 1        | 06/30/2018 11:30 | WG1131931 | Ĩ  |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| <sup>9</sup> Sc |



Ср

Тс

### Metals (ICP) by Method 6010B

|    |       |        |           |      |          | 1'               |           |   |
|----|-------|--------|-----------|------|----------|------------------|-----------|---|
|    |       | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |   |
| An | alyte | ug/l   |           | ug/l |          | date / time      |           | 2 |
| Во | ron   | 7060   |           | 200  | 1        | 06/30/2018 09:23 | WG1131931 |   |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |

SDG: L1005344



Τс

|        |   |        |           |      |          |                  |           | 117 |
|--------|---|--------|-----------|------|----------|------------------|-----------|-----|
|        |   | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | [   |
| Analyt | e | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Boron  |   | 7580   |           | 200  | 1        | 06/30/2018 12:31 | WG1131931 | -   |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| ⁴Cn             |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>°</sup> Al |
|                 |
| °Sc             |



Тс

### Gravimetric Analysis by Method 2540 C-2011

|                  | , , |        |           |       |          |                  |           | <br>Ľ |
|------------------|-----|--------|-----------|-------|----------|------------------|-----------|-------|
|                  |     | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |       |
| Analyte          |     | ug/l   |           | ug/l  |          | date / time      |           | 5     |
| Dissolved Solids |     | 297000 |           | 10000 | 1        | 07/04/2018 12:10 | WG1132955 |       |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |



Тс

### Gravimetric Analysis by Method 2540 C-2011

|                  | <u> </u> |        |           |       |          |                  |           | 11 |
|------------------|----------|--------|-----------|-------|----------|------------------|-----------|----|
|                  |          | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |    |
| Analyte          |          | ug/l   |           | ug/l  |          | date / time      |           | 2  |
| Dissolved Solids |          | 297000 |           | 10000 | 1        | 07/04/2018 12:10 | WG1132955 | -  |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| ⁴Cn             |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> AI |
|                 |
| °Sc             |



Τс

### Gravimetric Analysis by Method 2540 C-2011

|                  | <u> </u> |        |           |       |          |                  |           | 1.1 |
|------------------|----------|--------|-----------|-------|----------|------------------|-----------|-----|
|                  |          | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | `   |
| Analyte          |          | ug/l   |           | ug/l  |          | date / time      |           | 2   |
| Dissolved Solids |          | 349000 |           | 10000 | 1        | 07/04/2018 12:10 | WG1132955 |     |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> AI |
|                 |
| °Sc             |

SDG: L1005344

## SAMPLE RESULTS - 17



Тс

#### Gravimetric Analysis by Method 2540 C-2011

|                  | , , |        |           |       |          |                  |           | Ľ |
|------------------|-----|--------|-----------|-------|----------|------------------|-----------|---|
|                  | F   | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |   |
| Analyte          | L   | ıg/l   |           | ug/l  |          | date / time      |           | 2 |
| Dissolved Solids | 2   | 294000 |           | 10000 | 1        | 07/04/2018 12:10 | WG1132955 | - |

| <sup>3</sup> Ss |
|-----------------|
| <sup>4</sup> Cn |
| ⁵Sr             |
| <sup>6</sup> Qc |
| <sup>7</sup> Gl |
| <sup>8</sup> Al |
|                 |
| °Sc             |

Gravimetric Analysis by Method 2540 C-2011

#### QUALITY CONTROL SUMMARY L1005344-14,15,16,17

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

#### Method Blank (MB)

| (MB) R3323687-1 07/ | (MB) R3323687-1 07/04/18 12:10 |              |        |        |  |  |  |
|---------------------|--------------------------------|--------------|--------|--------|--|--|--|
|                     | MB Result                      | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte             | ug/l                           |              | ug/l   | ug/l   |  |  |  |
| Dissolved Solids    | U                              |              | 2820   | 10000  |  |  |  |

#### L1005172-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1005172-01 07/04 | 4/18 12:10 • (DUP) | R3323687-4   | 07/04/18 12 | 2:10    |               |                   |
|------------------------|--------------------|--------------|-------------|---------|---------------|-------------------|
|                        | Original Resul     | t DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | ug/l               | ug/l         |             | %       |               | %                 |
| Dissolved Solids       | 163000             | 158000       | 1           | 3.12    |               | 5                 |

#### L1005704-04 Original Sample (OS) • Duplicate (DUP)

| L1005704-04 Original Sample (OS) • Duplicate (DUP) |                    |               |            |         |               |                   |  |                 |
|----------------------------------------------------|--------------------|---------------|------------|---------|---------------|-------------------|--|-----------------|
| (OS) L1005704-04 07/0                              | 04/18 12:10 • (DUF | P) R3323687-5 | 5 07/04/18 | 12:10   |               |                   |  |                 |
|                                                    | Original Resul     | t DUP Result  | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | <sup>8</sup> Al |
| Analyte                                            | ug/l               | ug/l          |            | %       |               | %                 |  |                 |
| Dissolved Solids                                   | 296000             | 295000        | 1          | 0.338   |               | 5                 |  | <sup>9</sup> Sc |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3323687-2 07/04/ | 18 12:10 • (LCSL<br>Spike Amount |         | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
|-------------------------|----------------------------------|---------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|
| Analyte                 | ug/l                             | ug/l    | ug/l        | %        | %         | %           |               |                | %    | %          |
| Dissolved Solids        | 8800000                          | 8390000 | 7990000     | 95.3     | 90.8      | 85.0-115    |               |                | 4.88 | 5          |

DATE/TIME: 07/10/18 16:03

PAGE: 24 of 34

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| (MB) R3323295-1 | 07/03/18 19:25 |              |        |        |  |
|-----------------|----------------|--------------|--------|--------|--|
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |  |
| Analyte         | ug/l           |              | ug/l   | ug/l   |  |
| Chloride        | U              |              | 51.9   | 1000   |  |
| Fluoride        | 11.2           | J            | 9.90   | 100    |  |
|                 |                |              |        |        |  |

#### L1005331-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1005331-02 07/04/ | 18 00:34 • (DUP | ) R3323295-4 | 07/04/18 | 01:28   |               |                   |
|-------------------------|-----------------|--------------|----------|---------|---------------|-------------------|
|                         | Original Result | DUP Result   | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l            | ug/l         |          | %       |               | %                 |
| Chloride                | 7350            | 7180         | 1        | 2.32    |               | 15                |
| Fluoride                | 320             | 363          | 1        | 12.5    |               | 15                |

#### L1005344-04 Original Sample (OS) • Duplicate (DUP)

|                        | 5                  | <b>X Z</b>   |          | · · ·   |               |                   |
|------------------------|--------------------|--------------|----------|---------|---------------|-------------------|
| (OS) L1005344-04 07/04 | 4/18 07:14 • (DUP) | ) R3323295-9 | 07/04/18 | 07:32   |               |                   |
|                        | Original Result    | DUP Result   | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | ug/l               | ug/l         |          | %       |               | %                 |
| Chloride               | ND                 | 217          | 1        | 0.000   |               | 15                |
| Fluoride               | 135                | 140          | 1        | 3.72    |               | 15                |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3323295-2 07/03/18 19:43 • (LCSD) R3323295-3 07/03/18 20:01 |              |            |             |          |           |             |               |                |        |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|--------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD    | RPD Limits |
| Analyte                                                            | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %      | %          |
| Chloride                                                           | 40000        | 38500      | 38500       | 96.2     | 96.3      | 80.0-120    |               |                | 0.0733 | 15         |
| Fluoride                                                           | 8000         | 7860       | 7850        | 98.2     | 98.2      | 80.0-120    |               |                | 0.0636 | 15         |

#### L1005331-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005331-02 07/04/1 | 8 00:34 • (MS) | R3323295-5 (    | 07/04/18 01:47 | • (MSD) R33232 | 295-6 07/04/1 | 8 02:05  |          |             |              |               |      |            |
|--------------------------|----------------|-----------------|----------------|----------------|---------------|----------|----------|-------------|--------------|---------------|------|------------|
|                          | Spike Amount   | Original Result | MS Result      | MSD Result     | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                  | ug/l           | ug/l            | ug/l           | ug/l           | %             | %        |          | %           |              |               | %    | %          |
| Chloride                 | 50000          | 7350            | 61800          | 59800          | 109           | 105      | 1        | 80.0-120    |              |               | 3.15 | 15         |
| Fluoride                 | 5000           | 320             | 5400           | 5580           | 102           | 105      | 1        | 80.0-120    |              |               | 3.13 | 15         |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03

PAGE: 25 of 34 Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

### L1005335-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005335-05 07/04 | 1/18 03:54 • (MS | R3323295-7 (    | 07/04/18 05:06 | 6 • (MSD) R332 | 3295-8 07/04 | /18 05:25 |          |             |              |               |      |            |
|------------------------|------------------|-----------------|----------------|----------------|--------------|-----------|----------|-------------|--------------|---------------|------|------------|
|                        | Spike Amount     | Original Result | MS Result      | MSD Result     | MS Rec.      | MSD Rec.  | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                | ug/l             | ug/l            | ug/l           | ug/l           | %            | %         |          | %           |              |               | %    | %          |
| Fluoride               | 5000             | 1330            | 6520           | 7080           | 104          | 115       | 1        | 80.0-120    |              |               | 8.29 | 15         |

#### L1005344-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-04 07/04/ | 18 07:14 • (MS) | R3323295-10     | 07/04/18 07:50 | • (MSD) R3323 | 3295-11 07/04 | /18 08:44 |          |             |              |               |      |            |
|-------------------------|-----------------|-----------------|----------------|---------------|---------------|-----------|----------|-------------|--------------|---------------|------|------------|
|                         | Spike Amount    | Original Result | MS Result      | MSD Result    | MS Rec.       | MSD Rec.  | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                 | ug/l            | ug/l            | ug/l           | ug/l          | %             | %         |          | %           |              |               | %    | %          |
| Chloride                | 50000           | ND              | 54500          | 52400         | 108           | 104       | 1        | 80.0-120    |              |               | 3.91 | 15         |
| Fluoride                | 5000            | 135             | 5160           | 5310          | 101           | 104       | 1        | 80.0-120    |              |               | 2.83 | 15         |

#### L1005344-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-06 07/04/ | 18 09:21 • (MS) | R3323295-12     | 07/04/18 09:39 | 9 • (MSD) R332 | 3295-13 07/04 | 1/18 09:57 |          |             |              |               |      |            |
|-------------------------|-----------------|-----------------|----------------|----------------|---------------|------------|----------|-------------|--------------|---------------|------|------------|
|                         | Spike Amount    | Original Result | MS Result      | MSD Result     | MS Rec.       | MSD Rec.   | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                 | ug/l            | ug/l            | ug/l           | ug/l           | %             | %          |          | %           |              |               | %    | %          |
| Chloride                | 50000           | 5800            | 59800          | 59100          | 108           | 107        | 1        | 80.0-120    |              |               | 1.18 | 15         |
| Fluoride                | 5000            | 318             | 5210           | 5510           | 97.9          | 104        | 1        | 80.0-120    |              |               | 5.50 | 15         |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 26 of 34

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

#### Method Blank (MB)

| (MB) R3323293-1 C | 07/03/18 12:05 |              |        |        |
|-------------------|----------------|--------------|--------|--------|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l           |              | ug/l   | ug/l   |
| Chloride          | U              |              | 51.9   | 1000   |

#### L1005344-08 Original Sample (OS) • Duplicate (DUP)

| (OS) L1005344-08 07/03 | 3/18 21:05 • (DUF | P) R3323293-4 | 1 07/03/18 | 21:21   |               |                   |
|------------------------|-------------------|---------------|------------|---------|---------------|-------------------|
|                        | Original Result   | DUP Result    | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | ug/l              | ug/l          |            | %       |               | %                 |
| Chloride               | 6070              | 6060          | 1          | 0.211   |               | 15                |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3323293-2 07/ | 03/18 12:21 • (LCS | D) R3323293- | -3 07/03/18 12:3 | 36       |           |             |               |                    |            |    |
|----------------------|--------------------|--------------|------------------|----------|-----------|-------------|---------------|--------------------|------------|----|
|                      | Spike Amount       | LCS Result   | LCSD Result      | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier RPD | RPD Limits | 8  |
| Analyte              | ug/l               | ug/l         | ug/l             | %        | %         | %           |               | %                  | %          | A  |
| Chloride             | 40000              | 38300        | 38200            | 95.7     | 95.5      | 80.0-120    |               | 0.181              | 15         | Q  |
|                      |                    |              |                  |          |           |             |               |                    |            | Sc |

#### L1005344-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-08 07/03 | /18 21:05 • (MS) | R3323293-5 (    | 07/03/18 21:36 | • (MSD) R33232 | 293-6 07/03/18 | 8 21:52  |          |             |              |               |     |            |
|------------------------|------------------|-----------------|----------------|----------------|----------------|----------|----------|-------------|--------------|---------------|-----|------------|
|                        | Spike Amount     | Original Result | MS Result      | MSD Result     | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD | RPD Limits |
| Analyte                | ug/l             | ug/l            | ug/l           | ug/l           | %              | %        |          | %           |              |               | %   | %          |
|                        |                  |                 | -              | •              |                |          |          |             |              |               |     |            |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 27 of 34

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

## Method Blank (MB)

| (MB) R3324204-1 0 | 7/09/18 12:23 |              |        |        |
|-------------------|---------------|--------------|--------|--------|
|                   | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte           | ug/l          |              | ug/l   | ug/l   |
| Sulfate           | U             |              | 77.4   | 5000   |

#### L1005344-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1005344-04 07/09 | /18 17:16 • (DUP) | R3324204-4 | 07/09/18 | 17:32   |               |                   |
|------------------------|-------------------|------------|----------|---------|---------------|-------------------|
|                        | Original Result   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | ug/l              | ug/l       |          | %       |               | %                 |
| Sulfate                | 31800             | 31900      | 1        | 0.119   |               | 15                |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3324204-9 07/ | /09/18 22:18 • (LCS | SD) R3324204 | l-3 07/09/18 12 | :54      |           |             |               |                |       |            |     |
|----------------------|---------------------|--------------|-----------------|----------|-----------|-------------|---------------|----------------|-------|------------|-----|
|                      | Spike Amount        | LCS Result   | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits | 8   |
| Analyte              | ug/l                | ug/l         | ug/l            | %        | %         | %           |               |                | %     | %          | AI  |
| Sulfate              | 40000               | 39100        | 38900           | 97.8     | 97.3      | 80.0-120    |               |                | 0.522 | 15         | °Sc |

#### L1005344-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-04 07/09/ | /18 17:16 • (MS) R | 3324204-5 0     | 7/09/18 17:47 • | (MSD) R332420 | 07/09/18 | 18:03      |          |             |              |               |     |            |
|-------------------------|--------------------|-----------------|-----------------|---------------|----------|------------|----------|-------------|--------------|---------------|-----|------------|
|                         | Spike Amount       | Original Result | MS Result       | MSD Result    | MS Rec.  | MSD Rec.   | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD | RPD Limits |
| Analyte                 | ua/l               | ua/l            | ua/l            | ua/l          | %        | %          |          | %           |              |               | %   | %          |
| ,                       | - 3                | ÷-9,·           | - 9,            | - 5.          |          | <i>,</i> 0 |          | 70          |              |               | ,0  | 70         |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03 PAGE: 28 of 34

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1005344-09,10,11,12,13

Тс

Sc

#### Method Blank (MB)

| MB) R3322172-1 0 | 6/30/18 09:01 |              |        |        |
|------------------|---------------|--------------|--------|--------|
|                  | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte          | ug/l          |              | ug/l   | ug/l   |
| Boron            | U             |              | 12.6   | 200    |
| Calcium          | U             |              | 46.3   | 1000   |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3322172-2 06/30/18 09:04 • (LCSD) R3322172-3 06/30/18 09:07 |              |            |             |          |           |             |               |                |       |            |  |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
| Analyte                                                            | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |  |
| Boron                                                              | 1000         | 985        | 982         | 98.5     | 98.2      | 80.0-120    |               |                | 0.320 | 20         |  |
| Calcium                                                            | 10000        | 10000      | 9950        | 100      | 99.5      | 80.0-120    |               |                | 0.751 | 20         |  |

### L1005344-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-10 06/30/18 | 8 09:10 • (MS) F | 3322172-5 06    | 6/30/18 09:17 • | (MSD) R332217 | 72-6 06/30/18 | 09:20    |          |             |              |               |        |            | 8 |
|---------------------------|------------------|-----------------|-----------------|---------------|---------------|----------|----------|-------------|--------------|---------------|--------|------------|---|
|                           | Spike Amount     | Original Result | MS Result       | MSD Result    | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits | L |
| Analyte                   | ug/l             | ug/l            | ug/l            | ug/l          | %             | %        |          | %           |              |               | %      | %          | g |
| Boron                     | 1000             | ND              | 1050            | 1050          | 95.3          | 95.7     | 1        | 75.0-125    |              |               | 0.350  | 20         |   |
| Calcium                   | 10000            | 65500           | 74100           | 74200         | 85.8          | 86.4     | 1        | 75.0-125    |              |               | 0.0873 | 20         |   |

### L1005344-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1005344-12 06/30/18 | 8 09:23 • (MS) | R3322172-7 00   | 6/30/18 09:26 | • (MSD) R3322 | 172-8 06/30/1 | 8 09:29  |          |             |              |               |       |            |
|---------------------------|----------------|-----------------|---------------|---------------|---------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount   | Original Result | MS Result     | MSD Result    | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l           | ug/l            | ug/l          | ug/l          | %             | %        |          | %           |              |               | %     | %          |
| Boron                     | 1000           | 7060            | 7860          | 7940          | 80.4          | 87.8     | 1        | 75.0-125    |              |               | 0.945 | 20         |
| Calcium                   | 10000          | 153000          | 160000        | 161000        | 71.5          | 77.6     | 1        | 75.0-125    | V            |               | 0.376 | 20         |

SDG: L1005344

DATE/TIME: 07/10/18 16:03

PAGE: 29 of 34

## GLOSSARY OF TERMS

## \*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                                  |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro<br>sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                      |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the rest reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                                |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of th samples from the time of collection until delivery to the laboratory for analysis.                                                                           |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section free ach sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                         |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                         |

| Qualifier [ | Description                                                                         |
|-------------|-------------------------------------------------------------------------------------|
| J T         | The identification of the analyte is acceptable; the reported value is an estimate. |
| V T         | The sample concentration is too high to evaluate accurate spike recoveries.         |

PROJECT: 27213169.18

SDG: L1005344 DATE/TIME: 07/10/18 16:03

PAGE: 30 of 34

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebraska               |
|------------------------|-------------|------------------------|
| Alaska                 | 17-026      | Nevada                 |
| Arizona                | AZ0612      | New Hamps              |
| Arkansas               | 88-0469     | New Jersey-            |
| California             | 2932        | New Mexico             |
| Colorado               | TN00003     | New York               |
| Connecticut            | PH-0197     | North Caroli           |
| Florida                | E87487      | North Caroli           |
| Georgia                | NELAP       | North Caroli           |
| Georgia <sup>1</sup>   | 923         | North Dakot            |
| Idaho                  | TN00003     | Ohio-VAP               |
| Illinois               | 200008      | Oklahoma               |
| Indiana                | C-TN-01     | Oregon                 |
| lowa                   | 364         | Pennsylvani            |
| Kansas                 | E-10277     | Rhode Island           |
| Kentucky <sup>16</sup> | 90010       | South Caroli           |
| Kentucky <sup>2</sup>  | 16          | South Dakot            |
| Louisiana              | AI30792     | Tennessee <sup>1</sup> |
| Louisiana 1            | LA180010    | Texas                  |
| Maine                  | TN0002      | Texas ⁵                |
| Maryland               | 324         | Utah                   |
| Massachusetts          | M-TN003     | Vermont                |
| Michigan               | 9958        | Virginia               |
| Minnesota              | 047-999-395 | Washington             |
| Mississippi            | TN00003     | West Virgini           |
| Missouri               | 340         | Wisconsin              |
| Montana                | CERT0086    | Wyoming                |
|                        |             |                        |

| Nebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee <sup>14</sup>     | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas⁵                      | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |

#### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|-------------------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 | DOD                | 1461.01       |
| Canada                        | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto                    | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213169.18

L1005344

PAGE: 31 of 34

07/10/18 16:03

Τс Ss Cn Sr Qc Gl AI Sc

|                                                                                 |                                                    |                                            | Billing Info      | ormation:                                |                  |                     |                  | -                                                                                                               | -              |                           | Analysis         | / Contai                                     | ner / Pr         | eservat                | ive              |                                 | Chain of Custody                                                                | Page of                                                                                  |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|-------------------|------------------------------------------|------------------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------------|----------------------------------------------|------------------|------------------------|------------------|---------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| SCS Engineers - KS<br>7311 West 130th Street, Ste. :<br>Overland Park, KS 66213 | 100                                                |                                            |                   |                                          | h Street         | t, Ste. 100<br>3    | Pre:<br>Chk      | The second se |                |                           |                  |                                              |                  |                        |                  |                                 | - XI                                                                            | ISC                                                                                      |  |  |
| eport to:<br>ason Franks                                                        | Email To: jfranks@scsengin<br>jay.martin@kcpl.com; |                                            |                   |                                          |                  | 1000100030          |                  |                                                                                                                 |                |                           |                  |                                              |                  |                        |                  |                                 | 12065 Lebanon Rd<br>Mount Juliet, TN 37                                         |                                                                                          |  |  |
| roject<br>Description: KCP&L Sibley Generation                                  | ating Statio                                       | n                                          | ter ald ald       | City/Sta<br>Collect                      | ate              |                     | <u>d</u>         | 1                                                                                                               | 03             |                           | res              |                                              | es               |                        |                  |                                 | Phone: 615-758-585<br>Phone: 800-767-585<br>Fax: 615-758-5859                   | 8 25 C 20 C                                                                              |  |  |
| hone: 913-681-0030<br>ax: 913-681-0012                                          | Client Project<br>27213169.                        | Project #                                  |                   |                                          | ject #<br>OPKS-S | IBLEY               |                  | 250mlHDPE-HNO3                                                                                                  | 250mlHDPE-HNO3 | Pres                      | 125mlHDPE-NoPres | Pres                                         | 125miHDPE-NoPres |                        |                  |                                 | L# 100 53                                                                       | 44<br>005                                                                                |  |  |
| JASON K-FRANK                                                                   | Site/Facility II                                   | D#                                         | 1                 | P.O. #                                   |                  | S. See              |                  | MIHDP                                                                                                           | OmiHC          | DPE-No                    | MIHD             | DE-NO                                        | miHDPI           | NoPres                 | NoPres           |                                 | Acctnum: AQU                                                                    | JAOPKS                                                                                   |  |  |
| Collected by (signature):                                                       | Rush? (I<br>Same D<br>Next Da<br>Two Da<br>Three D | t Day 5 Day (Rad Only) Date Results Needed |                   | Rad Only) Date Results Needed (Rad Only) |                  | Date Results Needed |                  |                                                                                                                 | um - 6010 25   | Chlaride 125mlHDPE-NoPres | S04              | ide 125mIHDPE-NoPres                         | 504              | 125mlHDPE-NoPres       | 250mlHDPE-NoPres |                                 | Template: <b>T11</b><br>Prelogin: <b>P65</b><br>TSR: <b>206</b> - Jeff (<br>PB: | 9505                                                                                     |  |  |
| Sample ID                                                                       | Comp/Grab                                          | Matrix *                                   | Depth             |                                          |                  |                     | Cntr             | Boron                                                                                                           | Calciu         | chlar                     | Chloride,        | Fluori                                       | Fluoride,        | S04 1                  | TDS 2            |                                 | Shipped Via:<br>Bemarks                                                         | Sample # (lab only)                                                                      |  |  |
| MW-510                                                                          | GRAG                                               | GW                                         | -                 | 6/2                                      | 7/18             | 1350                | 1                |                                                                                                                 |                |                           |                  | X                                            | LL.              | <u>vs</u>              | -                |                                 |                                                                                 | -01                                                                                      |  |  |
| WW-512                                                                          | 1                                                  | GW                                         | -                 | 1                                        | 1                | 1325                | 1                |                                                                                                                 |                |                           |                  |                                              |                  | x                      |                  | 1000                            |                                                                                 | S                                                                                        |  |  |
| MW-601                                                                          |                                                    | GW                                         | -                 | 1.5                                      |                  | 1255                | 1                |                                                                                                                 |                |                           | x                |                                              |                  |                        | 1.5              |                                 |                                                                                 | -57                                                                                      |  |  |
| viw-504                                                                         | 12.23                                              | GW                                         | T                 |                                          | -                | 1105                | 1                | 13.77                                                                                                           | 1              | 199                       | Lat              | 12                                           | x                |                        | 1                | 10.10                           |                                                                                 | -64                                                                                      |  |  |
| OUPLICATE 1                                                                     | 4. 2                                               | GW                                         | 1                 |                                          | 1                | 1105                | 1                |                                                                                                                 | 1              |                           |                  |                                              | x                |                        |                  |                                 |                                                                                 | -                                                                                        |  |  |
| NU 504 MS/MSD                                                                   |                                                    | GW                                         | -                 | 1.1                                      |                  | 1105                | 1                |                                                                                                                 |                |                           | 1                |                                              | x                | iles.                  | 1                |                                 | -                                                                               |                                                                                          |  |  |
| MW-506                                                                          | -                                                  | GW                                         | 100               | 11                                       | 1                | 105                 | 1                | 1230                                                                                                            | 1.6            | x                         | 1                |                                              |                  |                        | 1                | 18:01                           | 181 181                                                                         | -04                                                                                      |  |  |
| MW-801                                                                          | 19 19 19 J                                         | GW                                         | -                 |                                          |                  | 1201                | 1                |                                                                                                                 | 1.8            | x                         | 1320             | 2.84                                         | 17.6             |                        | -                | 1.50.20                         |                                                                                 | 2                                                                                        |  |  |
| DUPLICATE 3                                                                     | JI                                                 | GW                                         | 1                 | 11                                       |                  | -1                  | 1                |                                                                                                                 | 1.1.4          | x                         |                  | 1.55                                         |                  | 1.53                   |                  | 1                               |                                                                                 | 28                                                                                       |  |  |
| 506 MS/MSD                                                                      | V                                                  | GW                                         | 1                 | V                                        |                  | 1205                | 1                |                                                                                                                 |                | x                         |                  |                                              |                  |                        | 1                |                                 | 1                                                                               | 20                                                                                       |  |  |
| Louis Areas                                                                     | Remarks:<br>Samples retur                          | and size                                   |                   |                                          |                  |                     |                  |                                                                                                                 |                |                           | pH<br>Flow       |                                              | _ Tem            |                        |                  | COC Seal<br>COC Sign<br>Bottles | ample Receipt Ch                                                                | mple Receipt Checklist<br>Present/Intact: NP Y _N<br>ed/Accurate:<br>arrive intact: Y _N |  |  |
| or - Other                                                                      | UPSFedExCourier Tracking # 43                      |                                            |                   |                                          |                  | 100                 | 1                | 60                                                                                                              | 13;            | and the second second     | 672              |                                              |                  | 1                      | 2                | Sufficient VOA Zero             | nt volume sent:<br>If Applicab<br>Headspace:                                    | _¥/_N                                                                                    |  |  |
| Grk. Lal                                                                        | ~                                                  | 6/27/                                      | 18                | 8 1532 Received by: (Sjenature           |                  |                     | Le               | 3                                                                                                               | N              | 1                         | Trip Bla         | nk Recei                                     |                  | HCL/M<br>TBR           | Иеон             | Preserva                        | tion Correct/Che                                                                | :cked:N                                                                                  |  |  |
| Relinquished by : (Signatuke)                                                   | 1                                                  |                                            |                   |                                          |                  |                     |                  | Temp: °C Bottles Received:                                                                                      |                |                           |                  | If preservation required by Login: Date/Time |                  |                        |                  |                                 |                                                                                 |                                                                                          |  |  |
| Relinquished by : (Signature) Date: Time:                                       |                                                    | Rec                                        | eived for lab by: | (Signa                                   | ture)            | ,                   | CARE Time: Hold: |                                                                                                                 |                | / Tim                     | 84               | 5                                            |                  | Condition:<br>NCF / OK |                  |                                 |                                                                                 |                                                                                          |  |  |

.

٠.

S. 15 183

|                                                                                                                                      |                                                        |                                                                      | Billing Info                    | rmation            | 1:                   |                               | T                                        |                |                                  | 1         | Analysis /                              | / Contai                  | ner / Pro    | servati                                      | ve                                                        |                                                                                                                         | Chain of Custody                                                | Page Lof            |                                                                                   |     |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|--------------------|----------------------|-------------------------------|------------------------------------------|----------------|----------------------------------|-----------|-----------------------------------------|---------------------------|--------------|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|-----|
| CS Engineers - KS<br>311 West 130th Street, Ste. 1<br>Overland Park, KS 66213                                                        | .00                                                    | Accounts Payable<br>7311 West 130th Street<br>Overland Park, KS 6621 |                                 |                    |                      | STORE PROPERTY AND ADDRESS OF | Pres<br>Chk                              | 2              | d.                               |           |                                         |                           |              |                                              |                                                           |                                                                                                                         | <u>S</u> E                                                      | SC                  |                                                                                   |     |
| eport to:<br>ason Franks                                                                                                             | Email To: jfranks@scseng<br>jay.martin@kcpi.com;       |                                                                      |                                 |                    |                      |                               |                                          |                |                                  |           |                                         |                           |              |                                              | 1                                                         |                                                                                                                         | 12065 Lebanon Rd<br>Mount Juliet, TN 371<br>Phone: 615-758-5858 |                     |                                                                                   |     |
| roject<br>escription: KCP&L Sibley Genera                                                                                            | ating Station                                          |                                                                      | The still and a                 | City/S<br>Colle    | State                | BLEY. A                       | S                                        |                | 103                              |           | res                                     |                           | res          |                                              |                                                           |                                                                                                                         | Phone: 800-767-5855<br>Fax: 615-758-5859                        | 100 P               |                                                                                   |     |
| hone: 913-681-0030<br>ax: 913-681-0012                                                                                               | Client Project<br>27213169.1                           |                                                                      |                                 | 100000             | roject #<br>JAOPKS-S | SIBLEY                        | ~                                        | 250mlHDPE-HNO3 | 250mlHDPE-HNO3                   | oPres     | 25miHDPE-NoPres<br>S04 125miHDPE-NoPres | oPres                     | PE-NoP       | s                                            | L# 1005344<br>Table#                                      |                                                                                                                         | 344                                                             |                     |                                                                                   |     |
| JASON R. FRANKS                                                                                                                      | Site/Facility ID                                       | #                                                                    |                                 | P.O. /             |                      | 1.1.20                        |                                          | IDHIM          | 50mlH                            | DPE-N     | SmIHD                                   | DPE-N                     | SmiHD        | NoPre                                        | NoPre                                                     |                                                                                                                         | Acctnum: AQU                                                    |                     |                                                                                   |     |
| mmediately<br>Packed on Ice N_Y                                                                                                      | Rush? (L<br>Same Da<br>Next Day<br>Two Day<br>Three Da | 5 Day<br>5 Day                                                       |                                 | Quot               | Date Results Needed  |                               | Quote #<br>Date Results Needed<br>Std of |                |                                  | - 6010    | um - 6010 2                             | Chloride 125mlHDPE-NoPres | ride, SO4 12 | Fluoride 125mIHDPE-NoPres                    | de, SO4 125mlHDPE-NoPres                                  | 125mlHDPE-NoPres                                                                                                        | 250mlHDPE-NoPres                                                |                     | Template: <b>T117</b><br>Prelogin: <b>P659</b><br>TSR: <b>206</b> - Jeff C<br>PB: | 505 |
| Sample ID                                                                                                                            | Comp/Grab                                              | Matrix *                                                             | Depth                           | T                  | Date Time            |                               |                                          | Boron          | Calciu                           | hlor      | Chlor                                   | luori                     | Fluoride,    | S04 1                                        | TDS 2                                                     |                                                                                                                         | Shipped Via:<br>Remarks                                         | Sample # (lab only) |                                                                                   |     |
| MW-505                                                                                                                               | GRAG                                                   | GW                                                                   | -                               | 6                  | 127/18               | 1135                          | 1                                        |                | x                                | 0         | 0                                       | u.                        | iii.         | S                                            | -                                                         |                                                                                                                         | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                        | -09                 |                                                                                   |     |
| MW-802                                                                                                                               |                                                        | GW                                                                   | -                               | 1                  | . /                  | 1130                          | 1                                        | 124            | x                                |           |                                         | 1916                      |              |                                              |                                                           |                                                                                                                         | 1.12                                                            | -ω                  |                                                                                   |     |
| DUPLICATE 2                                                                                                                          |                                                        | GW                                                                   | 1                               |                    | 1                    | -                             | 1                                        | 1              | x                                |           |                                         |                           | 1.0          |                                              | 1.4                                                       |                                                                                                                         | 1                                                               | -4                  |                                                                                   |     |
| NW-802 MS/MSD                                                                                                                        |                                                        | GW                                                                   | 1                               | 1                  | 1                    | 1135                          | 1                                        |                | X                                |           |                                         |                           | 1            |                                              |                                                           |                                                                                                                         |                                                                 |                     |                                                                                   |     |
| MW-804                                                                                                                               | 5                                                      | GW                                                                   | -                               |                    |                      | 1255                          | 1                                        | x              |                                  |           |                                         | 1                         |              | 1.78                                         |                                                           |                                                                                                                         |                                                                 | -12                 |                                                                                   |     |
| DUPLICATE 5                                                                                                                          |                                                        | GW                                                                   | -                               |                    |                      | -                             | 1                                        | x              |                                  |           |                                         |                           |              |                                              |                                                           |                                                                                                                         | 1.5                                                             | -13                 |                                                                                   |     |
| 1804 MS/MSD                                                                                                                          |                                                        | GW                                                                   | -                               |                    |                      | 1300                          | 1                                        | x              |                                  |           |                                         |                           |              |                                              |                                                           |                                                                                                                         | 1                                                               |                     |                                                                                   |     |
| MW-701                                                                                                                               | Sall Re                                                | GW                                                                   | -                               |                    | -                    | 1005                          | 1                                        |                |                                  |           |                                         |                           |              |                                              | x                                                         |                                                                                                                         | 1.2.9                                                           | -14                 |                                                                                   |     |
| MW-702                                                                                                                               | 1000                                                   | GW                                                                   | -                               |                    |                      | 1050                          | 1                                        | 12             |                                  |           |                                         |                           |              |                                              | x                                                         |                                                                                                                         |                                                                 | 75                  |                                                                                   |     |
| MW-805                                                                                                                               | V                                                      | GW                                                                   | 1                               |                    | V                    | 1335                          | 1                                        | 100            |                                  |           |                                         |                           |              | 1                                            | x                                                         |                                                                                                                         | 4 1 1                                                           | -14                 |                                                                                   |     |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water<br>OT - Other | Remarks:<br>Samples retur                              | ned via:<br>dEx Coi                                                  | urier                           | 447                | T                    | 1                             | a93                                      | 235            | 362                              | pH<br>Flo |                                         | _ Ten                     |              |                                              | COC Seal<br>COC Sign<br>Bottles<br>Correct I<br>Sufficien | ample Receipt Ch<br>Present/Intact<br>ed/Accurate:<br>arrive intact:<br>bottles used:<br>nt volume sent:<br>If Applicab |                                                                 |                     |                                                                                   |     |
| Relinquiched by: (Signature)                                                                                                         | - la                                                   | Date:                                                                | 1/27/19/532 Received by: (Signi |                    |                      |                               | aturer                                   | 1.0            | el                               | y         |                                         | ank Rec                   |              | HCL/                                         | MeoH                                                      | Preserva                                                                                                                | VOA Zero Headspace:<br>Preservation Correct/Checked: ZY _N      |                     |                                                                                   |     |
| Reinquished by : (Signature)                                                                                                         |                                                        | Date:                                                                | Time: Received by: (Signature   |                    |                      | ature)                        |                                          | 2              | Temp: °C Bottles Received: If pr |           |                                         |                           | If preserva  | If preservation required by Login: Date/Time |                                                           |                                                                                                                         |                                                                 |                     |                                                                                   |     |
| Relinquished by : (Signature) Date: Time:                                                                                            |                                                        |                                                                      | R                               | eceived for lab by |                      | gnature) Date:                |                                          |                |                                  |           | The The                                 | me:<br>84                 | 5            | Hold: Condition:<br>NCF / OK                 |                                                           |                                                                                                                         |                                                                 |                     |                                                                                   |     |

|                                                                               |                                 | diam'r             | Tailling Infor                                                                                                                                 | mation:                          |                  | 1      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Ar               | nalysis /            | Billing Information: Analysis / Container / Preservative |                         |                      |                  |                                |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------------------|----------------------------------------------------------|-------------------------|----------------------|------------------|--------------------------------|--------------------------------------------------------------------------|---------------------|--|----------------------|--|--|----------------------|--|--|----------------------|--|--|----------|--|----|--|--|--|--|--|--|--|
| CS Engineers - KS<br>311 West 130th Street, Ste. 1<br>Overland Park, KS 66213 | 100                             |                    | Accounts Payable<br>7311 West 130th Street, Ste. 100<br>Overland Park, KS 66213<br>Email To: jfranks@scsengineers.com;<br>jay.martin@kcpl.com; |                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                      |                                                          |                         |                      |                  |                                | <u>Q</u> E                                                               | SC                  |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| eport to:<br>ason Franks                                                      |                                 |                    |                                                                                                                                                |                                  |                  |        | jay.martin@kcpl.com;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                  | jay.martin@kcpl.com; |                                                          |                         | jay.martin@kcpl.com; |                  |                                | jay.martin@kcpl.com;                                                     |                     |  | jay.martin@kcpl.com; |  |  | jay.martin@kcpl.com; |  |  | jay.martin@kcpl.com; |  |  | ers.com; |  | n; |  |  |  |  |  |  |  |
| roject<br>Description: KCP&L Sibley Generating Station                        |                                 |                    | City/State<br>Collected: Sib                                                                                                                   | ley, MO                          | 1                | 03     | 1NO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | oPres            |                      | oPres                                                    |                         |                      |                  | L# (005                        | Last of the last                                                         |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Phone: 913-681-0030<br>ax: 913-681-0012                                       | Client Project #<br>27213169.1  |                    |                                                                                                                                                | Lab Project #<br>AQUAOPKS-SIBLEY |                  |        | PE-HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DPE-           | loPres           | DPE-N                | loPres                                                   | DPE-N                   | es                   | s                |                                | Table #                                                                  |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Collected by (print):<br>Whit Martin                                          | Site/Facility ID                | #                  | 1.00                                                                                                                                           | P.O. #                           |                  |        | 250miHDPE-HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250mlHDPE-HNO3 | 125mIHDPE-NoPres | 125mlHDPE-NoPres     | DPE-N                                                    | 125mlHDPE-NoPres        | 125mlHDPE-NoPres     | 250m1HDPE-NoPres |                                | Acctnum: AQUAOPKS<br>Template:T117427                                    |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Collected by (signature):                                                     | Rush? (La<br>Same Day           |                    |                                                                                                                                                |                                  | 24               | 10 250 | 6010 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Smith          | S04 12           | 125mlHDPE-NoPres     | S04 12                                                   | HDPE                    | HDPE                 | 4.1              | Prelogin: P659505              |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| mmediately                                                                    | Next Day<br>Two Day<br>Three Da | 5 Da               | Day (Rad Only)<br>O Day (Rad Only)<br>Std                                                                                                      |                                  |                  | No     | n - 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                  | de                   | de                                                       | ide,                    | 125ml                | 250m             |                                | PB:<br>Shipped Via:                                                      |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Packed on Ice N Y A                                                           | Comp/Grab                       | Matrix *           | Depth                                                                                                                                          | Depth Date Time                  |                  | Cnt    | Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calcium        | Chloride         | Chlor                | Fluor                                                    | Fluo                    | \$04                 | TDS              |                                | Remarks                                                                  | Sample # (lab only) |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| DUPLICATE 4                                                                   | Grab                            | GW                 |                                                                                                                                                | 6/27/18                          | -                | 1      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  | 2.1                  |                                                          |                         |                      | X                |                                | ·                                                                        | -017                |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| 102 MS/MSD                                                                    | Grab                            | GW                 |                                                                                                                                                | 6/27/18                          | 1055             | 1      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |                  | -                    |                                                          | 2                       |                      | X                |                                |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|                                                                               |                                 | -                  | -                                                                                                                                              |                                  |                  | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  |                      |                                                          |                         |                      |                  |                                |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|                                                                               | 5                               | 1.59               | 1203                                                                                                                                           |                                  |                  |        | 1 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                  | 1                    |                                                          | 1                       |                      | -                |                                | 12                                                                       |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|                                                                               | 1                               | 1.0                |                                                                                                                                                | 3.300                            |                  | +      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |                  |                      |                                                          | -                       |                      | -                |                                | 15 15                                                                    |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|                                                                               | -                               |                    | -                                                                                                                                              | 1                                |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                      |                                                          |                         |                      |                  |                                |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
|                                                                               |                                 |                    |                                                                                                                                                |                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |                  | -                    |                                                          |                         |                      |                  |                                |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| 1                                                                             | 1                               | 1                  |                                                                                                                                                |                                  | 1                | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                      |                                                          |                         | 1000                 |                  | 5                              | ample Receipt C                                                          | hecklist            |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay  | Remarks:                        | 15                 |                                                                                                                                                |                                  |                  |        | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                  | 2                    | H                                                        |                         | mp                   |                  | COC Sign<br>Bottles<br>Correct | Present/Intact<br>med/Accurate:<br>arrive intact:<br>bottles used:       | 145                 |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| WW - WasteWater<br>DW - Drinking Water<br>OT - Other                          | Samples retu<br>UPSF            | rned via:<br>edExC | Courier Tracking # 9                                                                                                                           |                                  |                  |        | Contraction of the local distance of the loc | 933            | 867              |                      | Blank Re                                                 | ceived:                 | Yes                  |                  | A CONTRACTOR OF A CONTRACTOR   | int volume sent:<br><u>If Applical</u><br>Headspace:<br>ation Correct/CF | le                  |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Relinquished by : (Signature)<br>Wate Marta                                   | 6/27/18 1532                    |                    |                                                                                                                                                | eceived by: (Sign                | 2                | I.     | Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11             |                  |                      |                                                          | HCL<br>TBR<br>Bottles R | 7 MeoH               | - A. P           | ation required by Lo           |                                                                          |                     |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Relinquished by : (Signature)                                                 | 200                             | Date:              |                                                                                                                                                | Time: R                          | eceived by: (Sig | natur  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  | 3;                   | 7 4                                                      | 2                       | 2                    | 2                |                                |                                                                          | Condition:          |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |
| Relinquished by : (Signature)                                                 | 1.1.1                           | Date:              |                                                                                                                                                | Time: F                          | eceived for lab  | by: (S | ignature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0              | 1                | Date                 | 128                                                      | 3/18                    | Time:                | 43               | Hold:                          |                                                                          | NCF / OF            |  |                      |  |  |                      |  |  |                      |  |  |          |  |    |  |  |  |  |  |  |  |

Jared Morrison December 16, 2022

## ATTACHMENT 1-3 August 2018 Sampling Event Laboratory Report



# ANALYTICAL REPORT

August 16, 2018

### **SCS Engineers - KS**

| Sample Delivery Group: | L1016255                        |
|------------------------|---------------------------------|
| Samples Received:      | 08/09/2018                      |
| Project Number:        | 27213169.18                     |
| Description:           | KCP&L Sibley Generating Station |

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

## TABLE OF CONTENTS

| ₩               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| <sup>5</sup> Sr |  |
| <sup>6</sup> Qc |  |

GI

A

Sc

| Cp: Cover Page                 | 1  |
|--------------------------------|----|
| Tc: Table of Contents          | 2  |
| Ss: Sample Summary             | 3  |
| Cn: Case Narrative             | 4  |
| Sr: Sample Results             | 5  |
| MW-504 L1016255-01             | 5  |
| MW-512 L1016255-02             | 6  |
| DUPLICATE 1 L1016255-03        | 7  |
| MW-801 L1016255-04             | 8  |
| DUPLICATE 2 L1016255-05        | 9  |
| MW-804 L1016255-06             | 10 |
| DUPLICATE 3 L1016255-07        | 11 |
| Qc: Quality Control Summary    | 12 |
| Wet Chemistry by Method 9056A  | 12 |
| Metals (ICP) by Method 6010B   | 15 |
| GI: Glossary of Terms          | 16 |
| Al: Accreditations & Locations | 17 |
| Sc: Sample Chain of Custody    | 18 |
|                                |    |

SDG: L1016255 DATE/TIME: 08/16/18 13:55

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

|                               | SAMFLE SU |          | <b>T</b> I                  | OIV                                   | L LAD. NATION                        |
|-------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------------------|
| MW-504 L1016255-01 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 11:20 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1150933 | 1        | 08/11/18 13:35              | 08/11/18 13:35                        | DR                                   |
| MW-512 L1016255-02 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 12:00 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1150933 | 1        | 08/11/18 14:52              | 08/11/18 14:52                        | DR                                   |
| DUPLICATE1 L1016255-03 GW     |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 00:00 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1150933 | 1        | 08/11/18 15:08              | 08/11/18 15:08                        | DR                                   |
| MW-801 L1016255-04 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 12:40 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1151269 | 5        | 08/13/18 21:59              | 08/13/18 21:59                        | ELN                                  |
| DUPLICATE 2 L1016255-05 GW    |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 00:00 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A | WG1150933 | 5        | 08/11/18 16:10              | 08/11/18 16:10                        | DR                                   |
| MW-804 L1016255-06 GW         |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 13:10 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Metals (ICP) by Method 6010B  | WG1149499 | 1        | 08/11/18 08:58              | 08/14/18 16:59                        | ST                                   |
| DUPLICATE 3 L1016255-07 GW    |           |          | Collected by<br>Whit Martin | Collected date/time<br>08/08/18 00:00 | Received date/time<br>08/09/18 08:45 |
| Method                        | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Metals (ICP) by Method 6010B  | WG1149499 | 1        | 08/11/18 08:58              | 08/14/18 18:11                        | ST                                   |

PROJECT: 27213169.18

SDG: L1016255 DATE/TIME: 08/16/18 13:55

### CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1016255 DATE/TIME: 08/16/18 13:55 PAGE: 4 of 18

## SAMPLE RESULTS - 01

\*

#### Wet Chemistry by Method 9056A

|         |        |           |      |          |                  |           | 1' 0 |
|---------|--------|-----------|------|----------|------------------|-----------|------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |      |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2    |
| Sulfate | 32300  |           | 5000 | 1        | 08/11/2018 13:35 | WG1150933 | T    |

|   | <sup>2</sup> Tc |
|---|-----------------|
|   | ³Ss             |
|   | <sup>4</sup> Cn |
|   | ⁵Sr             |
|   | <sup>6</sup> Qc |
|   | <sup>7</sup> Gl |
|   | <sup>8</sup> Al |
| 1 | 9               |

Sc

SDG: L1016255

#### SAMPLE RESULTS - 02 L1016255

¥

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>'Ср |
|---------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2       |
| Sulfate | 30900  |           | 5000 | 1        | 08/11/2018 14:52 | WG1150933 | Tc      |

SDG: L1016255

DATE/TIME: 08/16/18 13:55

## SAMPLE RESULTS - 03

\*

Τс

Ss

Cn

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|         |        |           |      |          |                  |           | 1.0 |
|---------|--------|-----------|------|----------|------------------|-----------|-----|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |     |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Sulfate | 31400  |           | 5000 | 1        | 08/11/2018 15:08 | WG1150933 | T   |

#### SAMPLE RESULTS - 04 L1016255

¥

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | 'Ср |
|----------|--------|-----------|------|----------|------------------|-----------|-----|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | 2   |
| Chloride | 106000 |           | 5000 | 5        | 08/13/2018 21:59 | WG1151269 | Tc  |



Ss

Cn

Qc

GI

Â

Sc

## SAMPLE RESULTS - 05



#### Wet Chemistry by Method 9056A

|          |        |           |      |          |                  |                  | 1'0 |
|----------|--------|-----------|------|----------|------------------|------------------|-----|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |     |
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  | 2   |
| Chloride | 108000 |           | 5000 | 5        | 08/11/2018 16:10 | <u>WG1150933</u> | 1   |

| <sup>2</sup> Tc |
|-----------------|
|                 |
| ³Ss             |
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| °Sc             |

SDG: L1016255

## SAMPLE RESULTS - 06



Ср

Тс

#### Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           |  | 1' |
|---------|--------|-----------|------|----------|------------------|-----------|--|----|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |    |
| Analyte | ug/l   |           | ug/l |          | date / time      |           |  | 2  |
| Boron   | 7000   |           | 200  | 1        | 08/14/2018 16:59 | WG1149499 |  | T  |



PROJECT: 27213169.18

SDG: L1016255 DATE/TIME: 08/16/18 13:55 PAGE: 10 of 18

#### SAMPLE RESULTS - 07 L1016255



#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | — Cp |
|---------|--------|-----------|------|----------|------------------|-----------|------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2    |
| Boron   | 7110   |           | 200  | 1        | 08/14/2018 18:11 | WG1149499 | ⁻Tc  |



ACCOUNT: SCS Engineers - KS

PROJECT: 27213169.18

SDG: L1016255

DATE/TIME: 08/16/18 13:55 PAGE: 11 of 18

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

⁴Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| Method Bidi     | ik (ivid)      |              |        |        |                 |
|-----------------|----------------|--------------|--------|--------|-----------------|
| (MB) R3332885-1 | 08/11/18 08:45 |              |        |        |                 |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte         | ug/l           |              | ug/l   | ug/l   | Tc              |
| Chloride        | 60.5           | J            | 51.9   | 1000   |                 |
| Sulfate         | U              |              | 77.4   | 5000   | <sup>3</sup> Ss |
|                 |                |              |        |        |                 |

#### L1016155-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1016155-01 08/11/1 | 8 13:04 • (DUP) F | 3332885-4 0 | 8/11/18 13:2 | 20      |               |                   |
|--------------------------|-------------------|-------------|--------------|---------|---------------|-------------------|
|                          | Original Result   | DUP Result  | Dilution     | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | ug/l              | ug/l        |              | %       |               | %                 |
| Chloride                 | 13700             | 13800       | 1            | 0.412   |               | 15                |

#### L1016342-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1016342-01 08 | /11/18 16:25 • (DUP) R | 3332885-9 ( | 08/11/18 16: | 40      |               |              |  |
|---------------------|------------------------|-------------|--------------|---------|---------------|--------------|--|
|                     | Original Result        | DUP Result  | Dilution     | DUP RPD | DUP Qualifier | P RPD<br>its |  |
| Analyte             | ug/l                   | ug/l        |              | %       |               |              |  |
| Chloride            | 13100                  | 13100       | 1            | 0.287   |               |              |  |
| Sulfate             | 28900                  | 28800       | 1            | 0.192   |               |              |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3332885-2 08/11/1 | (LCS) R3332885-2 08/11/18 09:13 • (LCSD) R3332885-3 08/11/18 09:28 |            |             |          |           |             |               |                |       |            |  |  |  |  |
|--------------------------|--------------------------------------------------------------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|--|--|--|
|                          | Spike Amount                                                       | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |  |  |  |
| Analyte                  | ug/l                                                               | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |  |  |  |  |
| Chloride                 | 40000                                                              | 39100      | 39000       | 97.7     | 97.6      | 80.0-120    |               |                | 0.110 | 15         |  |  |  |  |
| Sulfate                  | 40000                                                              | 39600      | 39400       | 99.1     | 98.6      | 80.0-120    |               |                | 0.504 | 15         |  |  |  |  |

#### L1016255-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1016255-01 08/11/18 | (OS) L1016255-01 08/11/18 13:35 • (MS) R3332885-5 08/11/18 14:22 • (MSD) R3332885-6 08/11/18 14:37 |                 |           |            |         |          |          |             |              |               |       |            |  |
|---------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
|                           | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
| Analyte                   | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Chloride                  | 50000                                                                                              | ND              | 50200     | 50400      | 98.5    | 98.9     | 1        | 80.0-120    |              |               | 0.353 | 15         |  |
| Sulfate                   | 50000                                                                                              | 32300           | 79000     | 79200      | 93.4    | 93.7     | 1        | 80.0-120    |              |               | 0.222 | 15         |  |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:    |
|--------------------|-------------|----------|----------------|----------|
| SCS Engineers - KS | 27213169.18 | L1016255 | 08/16/18 13:55 | 12 of 18 |

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

#### L1016255-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1016255-04 08/11/18 | 15:23 • (MS) R3 | 3332885-7 08    | /11/18 15:39 • (M | SD) R3332885 | 5-8 08/11/18 15: | 54       |          |             |              |               |       |            |
|---------------------------|-----------------|-----------------|-------------------|--------------|------------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount    | Original Result | MS Result         | MSD Result   | MS Rec.          | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l            | ug/l            | ug/l              | ug/l         | %                | %        |          | %           |              |               | %     | %          |
| Sulfate                   | 50000           | 53300           | 99800             | 99700        | 92.9             | 92.6     | 1        | 80.0-120    |              |               | 0.112 | 15         |

SDG: L1016255 DATE/TIME: 08/16/18 13:55 PAGE: 13 of 18

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1016255-04

Тс

Ss

Cn

Sr

Qc

#### Method Blank (MB)

| (MB) R3333310-1 08 | (MB) R3333310-1 08/13/18 12:24 |              |        |        |  |  |  |  |  |
|--------------------|--------------------------------|--------------|--------|--------|--|--|--|--|--|
|                    | MB Result                      | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |
| Analyte            | ug/l                           |              | ug/l   | ug/l   |  |  |  |  |  |
| Chloride           | U                              |              | 51.9   | 1000   |  |  |  |  |  |

#### L1015843-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1015843-01 08/13/18 | (OS) L1015843-01 08/13/18 18:23 • (DUP) R3333310-4 08/13/18 18:38 |            |          |         |               |                   |  |  |  |  |  |  |  |
|---------------------------|-------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|--|
|                           | Original Result                                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |  |
| Analyte                   | ug/l                                                              | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |  |
| Chloride                  | 15300                                                             | 15300      | 1        | 0.251   |               | 15                |  |  |  |  |  |  |  |

#### L1015986-01 Original Sample (OS) • Duplicate (DUP)

| L1015986-01 Ori     | ginal Sample          | (OS) • Dup   | olicate (   | DUP)    |               |                   |
|---------------------|-----------------------|--------------|-------------|---------|---------------|-------------------|
| OS) L1015986-01 08/ | 13/18 20:11 • (DUP) F | 23333310-7 ( | 08/13/18 20 | ):57    |               |                   |
|                     | Original Result       | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte             | ug/l                  | ug/l         |             | %       |               | %                 |
| Chloride            | 9440                  | 9270         | 1           | 1.81    |               | 15                |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3333310-2 08/13/ | (LCS) R3333310-2 08/13/18 12:40 • (LCSD) R3333310-3 08/13/18 12:55 |            |             |          |           |             |               |                |       |            |  |  |  |
|-------------------------|--------------------------------------------------------------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|--|--|
|                         | Spike Amount                                                       | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |  |  |
| Analyte                 | ug/l                                                               | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |  |  |  |
| Chloride                | 40000                                                              | 38500      | 38700       | 96.1     | 96.8      | 80.0-120    |               |                | 0.670 | 15         |  |  |  |

#### L1015843-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1015843-01 08/13/18 | (OS) L1015843-01 08/13/18 18:23 • (MS) R3333310-5 08/13/18 18:54 • (MSD) R3333310-6 08/13/18 19:09 |                 |           |            |         |          |          |             |              |               |       |            |  |
|---------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
|                           | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
| Analyte                   | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Chloride                  | 50000                                                                                              | 15300           | 65200     | 65300      | 99.8    | 100      | 1        | 80.0-120    |              |               | 0.176 | 15         |  |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:    |
|--------------------|-------------|----------|----------------|----------|
| SCS Engineers - KS | 27213169.18 | L1016255 | 08/16/18 13:55 | 14 of 18 |

Metals (ICP) by Method 6010B

## QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| (MB) R3333613-1 08/14/18 16:51 |           |              |        |        |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |  |
| Boron                          | U         |              | 12.6   | 200    |  |  |  |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3333613-2 08/14/18 16:54 • (LCSD) R3333613-3 08/14/18 16:57 |              |            |             |          |           |             |               |                |      |            |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                                                            | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %    | %          |
| Boron                                                              | 1000         | 1020       | 1010        | 102      | 101       | 80.0-120    |               |                | 1.25 | 20         |

#### L1016255-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1016255-06 08/14/18 16:59 • (MS) R3333613-5 08/14/18 17:05 • (MSD) R3333613-6 08/14/18 17:07 |              |                 |           |            |         |          |          |             |              |               |        |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |
| Boron                                                                                              | 1000         | 7000            | 7840      | 7830       | 83.6    | 83.2     | 1        | 75.0-125    |              |               | 0.0467 | 20         |

SDG: L1016255 DATE/TIME: 08/16/18 13:55 PAGE: 15 of 18 Â

Sc

## GLOSSARY OF TERMS

## \*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                              |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                         |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

SDG: L1016255

## **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebras  |
|------------------------|-------------|---------|
| Alaska                 | 17-026      | Nevad   |
| Arizona                | AZ0612      | New H   |
| Arkansas               | 88-0469     | New Je  |
| California             | 2932        | New M   |
| Colorado               | TN00003     | New Y   |
| Connecticut            | PH-0197     | North   |
| Florida                | E87487      | North   |
| Georgia                | NELAP       | North   |
| Georgia <sup>1</sup>   | 923         | North I |
| Idaho                  | TN00003     | Ohio-V  |
| Illinois               | 200008      | Oklaho  |
| Indiana                | C-TN-01     | Orego   |
| lowa                   | 364         | Pennsy  |
| Kansas                 | E-10277     | Rhode   |
| Kentucky 16            | 90010       | South   |
| Kentucky <sup>2</sup>  | 16          | South   |
| Louisiana              | AI30792     | Tennes  |
| Louisiana <sup>1</sup> | LA180010    | Texas   |
| Maine                  | TN0002      | Texas   |
| Maryland               | 324         | Utah    |
| Massachusetts          | M-TN003     | Vermo   |
| Michigan               | 9958        | Virgini |
| Minnesota              | 047-999-395 | Washir  |
| Mississippi            | TN00003     | West V  |
| Missouri               | 340         | Wiscor  |
| Montana                | CERT0086    | Wyomi   |
|                        |             |         |

| lebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee <sup>14</sup>     | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas⁵                      | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |
|                             |                   |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213169.18

L1016255

PAGE: 17 of 18

08/16/18 13:55

|                                                                                                 |                             |                                                                     | Billing Information:                                                            |                                 |                     | 151        | 100      | Analysis / Container / Preservative Chain of |                  |       |                              |              |                                                                        | Chain of Custod                           | y Page of                                                   |                                    |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|---------------------|------------|----------|----------------------------------------------|------------------|-------|------------------------------|--------------|------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------|--|
| 7311 West 120th Group Circuit Circuit                                                           |                             |                                                                     | Accounts Payable<br>7311 West 130th Street, Ste. 100<br>Overland Park, KS 66213 |                                 |                     |            | 12       |                                              |                  |       |                              |              |                                                                        |                                           | Ro                                                          | Vanjstan"                          |  |
|                                                                                                 |                             | orenan                                                              | a i an, no ooz.                                                                 |                                 |                     |            |          |                                              |                  |       |                              |              |                                                                        |                                           |                                                             |                                    |  |
| Report to:<br>Jason Franks                                                                      |                             |                                                                     | jay.martin                                                                      | franks@scsengine<br>n@kcpl.com; |                     |            |          |                                              |                  |       |                              |              |                                                                        | 1                                         | 12065 Lebanon Rd<br>Mount Juliet, TN 3                      |                                    |  |
| Project<br>Description: KCP&L Sibley Gene                                                       | erating Statio              | n                                                                   | Basta da                                                                        | City/State<br>Collected: Si     | blev. M             | D          |          | 1                                            |                  |       |                              |              |                                                                        | 1012                                      | Phone: 615-758-50<br>Phone: 800-767-50<br>Fax: 615-758-5859 |                                    |  |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                        | Client Project<br>27213169. |                                                                     | -                                                                               | Lab Project #<br>AQUAOPKS-      | 1                   |            | 3        | 125mlHDPE-NoPres                             |                  |       |                              |              |                                                                        | -                                         | L# 10<br>F068                                               | 16255                              |  |
| Collected by (print):<br>Whit + Martin                                                          | Site/Facility I             | #                                                                   |                                                                                 | P.O. #                          | and de              |            | HDPE-HNO | HDPE-N                                       | 125mlHDPE-NoPres |       |                              |              |                                                                        | 5.1                                       | Acctnum: AQ                                                 | -                                  |  |
| Collected by (signature):                                                                       | Same D                      |                                                                     | Day                                                                             | Quote #                         | 1.19                |            |          | 25mlt                                        | IDPE-N           |       |                              |              |                                                                        |                                           | Template:T136014 Prelogin: P666113                          |                                    |  |
| Immediately Packed on Ice N Y X                                                                 | Two Da                      | Next Day 5 Day (Rad Only)<br>Two Day 10 Day (Rad Only)<br>Three Day |                                                                                 |                                 | Date Results Needed |            | 250ml    | CHLORIDE 1                                   | 25mlH            |       |                              |              |                                                                        |                                           | TSR: 206 - Jeff<br>PB:                                      |                                    |  |
| Sample ID                                                                                       | Comp/Grab                   | Matrix *                                                            | Depth                                                                           | Date                            | Time                | Cntrs      | oron     | HLO                                          | S04 1            |       |                              |              |                                                                        | Shipped Via:<br>Remarks Sample # (lab onl |                                                             |                                    |  |
| MW-504                                                                                          | Grab                        | GW                                                                  | 1                                                                               | 8/8/18                          | 1120                | 1          | 8        | 0                                            | X                |       |                              | -            |                                                                        |                                           | Remarks                                                     | 1                                  |  |
| MW-512                                                                                          | Grab                        | GW                                                                  | 1                                                                               | Poropio                         | 1200                | 1          |          |                                              | X                |       |                              | -            |                                                                        |                                           |                                                             | -01                                |  |
| DUPLICATE /                                                                                     | Grab                        | GW                                                                  |                                                                                 |                                 | -                   | 1          |          | 1                                            | x                |       |                              | -            | -                                                                      |                                           |                                                             | 62                                 |  |
| 504 MS/MSD#1                                                                                    | Grab                        | GW                                                                  | 1                                                                               | 1 23                            | 1125                | 1          |          | ata :                                        | X                |       |                              |              |                                                                        | -                                         | Concession of the second                                    | 03                                 |  |
| MW-801                                                                                          | Grab                        | GW                                                                  | 1.000                                                                           |                                 | 1240                | 1          |          | x                                            |                  |       |                              |              |                                                                        | -                                         |                                                             | 04                                 |  |
| DUPLICATE 2                                                                                     | Grab                        | GW                                                                  |                                                                                 | 1000                            |                     | 1          |          | x                                            |                  |       |                              |              |                                                                        | -                                         |                                                             | 04                                 |  |
| BOI MS/MSD                                                                                      | Grab                        | GW                                                                  | 1                                                                               | 1.000                           | 1245                | 1          |          | x                                            |                  |       |                              |              |                                                                        | -                                         | 1000                                                        | and the second second              |  |
| MW-804                                                                                          | Grab                        | GW                                                                  | 1                                                                               |                                 | 1310                | 1          | x        | 17                                           |                  |       | 100                          |              |                                                                        |                                           |                                                             | 04                                 |  |
| DUPLICATE 3                                                                                     | Grab                        | GW                                                                  |                                                                                 | 1. 1. 1. 1. 1.                  |                     | 1          | x        | -                                            |                  |       |                              |              |                                                                        |                                           | 1000                                                        | 0%0                                |  |
| 804 MS/MSD                                                                                      | Grab                        | GW                                                                  |                                                                                 | 1                               | 1315                | 1          | x        |                                              |                  | 1 13  |                              |              |                                                                        |                                           | 100                                                         | 07                                 |  |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bloassay<br>WW - WasteWater | Remarks:                    |                                                                     |                                                                                 |                                 |                     |            | 6        | INC                                          | F                | рН    | Temp                         |              | COC Si                                                                 | al Pi<br>gned/                            | le Receipt C<br>esent/Intact<br>Accurate:                   | hecklist                           |  |
| DW - Drinking Water<br>OT - Other                                                               | Samples Netur               | ned via:<br>dEx Cou                                                 | rier                                                                            | Tra                             | cking# 45           | 10 1       | 051      | 3                                            | 233              | Flow  | Other                        |              | Correct bottles used:                                                  |                                           |                                                             | Y N                                |  |
| Whit Marta 8                                                                                    |                             | B/8/                                                                | 118 Time: Received by: (Signature)                                              |                                 |                     |            | 10       | 1                                            |                  |       | eceived: Yes /<br>HCL<br>TBR | No<br>/ MeoH | VOA Zero Headspace:<br>Preservation Correct/Checked: ZY<br>With MR/IAR |                                           |                                                             | ecked: $Z^{Y} \stackrel{N}{=}^{N}$ |  |
| Relinquished by : (Signature)                                                                   |                             | Date:                                                               | T                                                                               | -                               | elved by: (Signa    |            | 4        | Temp: °C Bottles Received:                   |                  |       |                              | eceived:     | If preservation required by Login: Date/Time                           |                                           |                                                             |                                    |  |
| Relinquished by : (Signature)                                                                   |                             | Date:                                                               | Т                                                                               | ime: Red                        | eived for lab by    | : (Signati | ure)     |                                              |                  | Date: | Time:                        | HS           | Hold:                                                                  |                                           |                                                             | Condition:<br>NCF / OK             |  |

## ATTACHMENT 1-4 November 2018 Sampling Event Laboratory Report



# ANALYTICAL REPORT

December 03, 2018

### **SCS Engineers - KS**

| Sample Delivery Group: | L1045463                        |
|------------------------|---------------------------------|
| Samples Received:      | 11/17/2018                      |
| Project Number:        | 27213169.18                     |
| Description:           | KCP&L Sibley Generating Station |

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approach of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

## TABLE OF CONTENTS

| *               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |

Sc

| Cp: Cover Page                             | 1  |  |  |  |  |  |
|--------------------------------------------|----|--|--|--|--|--|
| Tc: Table of Contents                      |    |  |  |  |  |  |
| Ss: Sample Summary                         | 3  |  |  |  |  |  |
| Cn: Case Narrative                         | 5  |  |  |  |  |  |
| Sr: Sample Results                         | 6  |  |  |  |  |  |
| MW-504 L1045463-01                         | 6  |  |  |  |  |  |
| MW-505 L1045463-02                         | 7  |  |  |  |  |  |
| MW-506 L1045463-03                         | 8  |  |  |  |  |  |
| MW-510 L1045463-04                         | 9  |  |  |  |  |  |
| MW-512 L1045463-05                         | 10 |  |  |  |  |  |
| MW-601 L1045463-06                         | 11 |  |  |  |  |  |
| DUPLICATE L1045463-07                      | 12 |  |  |  |  |  |
| Qc: Quality Control Summary                | 13 |  |  |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | 13 |  |  |  |  |  |
| Wet Chemistry by Method 9056A              | 15 |  |  |  |  |  |
| Metals (ICP) by Method 6010B               | 19 |  |  |  |  |  |
| GI: Glossary of Terms                      | 21 |  |  |  |  |  |
| Al: Accreditations & Locations             |    |  |  |  |  |  |
| Sc: Sample Chain of Custody                |    |  |  |  |  |  |
|                                            |    |  |  |  |  |  |

SDG: L1045463

DATE/TIME: 12/03/18 13:49 PAGE: 2 of 23

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

| SAWFLE SUWIWART                                                             |           |          |                             |                                       |                                      |  |  |
|-----------------------------------------------------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------------------|--|--|
| MW-504 L1045463-01 GW                                                       |           |          | Collected by<br>G. Penaflor | Collected date/time<br>11/15/18 11:05 | Received date/time<br>11/17/18 08:45 |  |  |
| Method                                                                      | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                              |  |  |
|                                                                             |           |          | date/time                   | date/time                             |                                      |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1199018 | 1        | 11/20/18 14:08              | 11/20/18 14:36                        | AJS                                  |  |  |
| Wet Chemistry by Method 9056A                                               | WG1199283 | 1        | 11/23/18 22:26              | 11/23/18 22:26                        | MAJ                                  |  |  |
| Metals (ICP) by Method 6010B                                                | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 22:54                        | ST                                   |  |  |
|                                                                             |           |          | Collected by                | Collected date/time                   | Received date/time                   |  |  |
| MW-505 L1045463-02 GW                                                       |           |          | G. Penaflor                 | 11/15/18 10:20                        | 11/17/18 08:45                       |  |  |
| Method                                                                      | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                              |  |  |
|                                                                             |           |          | date/time                   | date/time                             |                                      |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1199018 | 1        | 11/20/18 14:08              | 11/20/18 14:36                        | AJS                                  |  |  |
| Net Chemistry by Method 9056A                                               | WG1199283 | 1        | 11/23/18 22:42              | 11/23/18 22:42                        | MAJ                                  |  |  |
| Metals (ICP) by Method 6010B                                                | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 22:57                        | ST                                   |  |  |
|                                                                             |           |          | Collected by                | Collected date/time                   | Received date/time                   |  |  |
| MW-506 L1045463-03 GW                                                       |           |          | G. Penaflor                 | 11/15/18 11:55                        | 11/17/18 08:45                       |  |  |
| Vethod                                                                      | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                              |  |  |
|                                                                             |           |          | date/time                   | date/time                             |                                      |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1199018 | 1        | 11/20/18 14:08              | 11/20/18 14:36                        | AJS                                  |  |  |
| Net Chemistry by Method 9056A                                               | WG1199286 | 1        | 11/21/18 18:22              | 11/21/18 18:22                        | NJM                                  |  |  |
| Metals (ICP) by Method 6010B                                                | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 23:05                        | ST                                   |  |  |
|                                                                             |           |          | Collected by                | Collected date/time                   | Received date/time                   |  |  |
| MW-510 L1045463-04 GW                                                       |           |          | G. Penaflor                 | 11/15/18 11:50                        | 11/17/18 08:45                       |  |  |
| Method                                                                      | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1199018 | 1        | 11/20/18 14:08              | 11/20/18 14:36                        | AJS                                  |  |  |
| Net Chemistry by Method 9056A                                               | WG1199286 | 1        | 11/21/18 18:33              | 11/21/18 18:33                        | NJM                                  |  |  |
| Metals (ICP) by Method 6010B                                                | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 23:08                        | ST                                   |  |  |
|                                                                             |           |          | Collected by                | Collected date/time                   | Received date/tim                    |  |  |
| MW-512 L1045463-05 GW                                                       |           |          | G. Penaflor                 | 11/15/18 14:00                        | 11/17/18 08:45                       |  |  |
| Nethod                                                                      | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1199020 | 1        | 11/21/18 11:15              | 11/21/18 11:47                        | JD                                   |  |  |
| Net Chemistry by Method 9056A                                               | WG1199286 | 1        | 11/21/18 18:44              | 11/21/18 18:44                        | NJM                                  |  |  |
| Metals (ICP) by Method 6010B                                                | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 23:11                        | ST                                   |  |  |
|                                                                             |           |          | Collected by                | Collected date/time                   | Received date/time                   |  |  |
| MW-601 L1045463-06 GW                                                       |           |          | G. Penaflor                 | 11/15/18 13:50                        | 11/17/18 08:45                       |  |  |
| Method                                                                      | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |  |  |
|                                                                             | WG1199018 | 1        | 11/20/18 14:08              | 11/20/18 14:36                        | JD                                   |  |  |
| Gravimetric Analysis by Method 2540 C-2011                                  |           |          |                             |                                       |                                      |  |  |
| Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A | WG1199286 | 1        | 11/21/18 18:55              | 11/21/18 18:55                        | NJM                                  |  |  |

ACCOUNT: SCS Engineers - KS PROJECT: 27213169.18

SDG: L1045463 DATE/TIME: 12/03/18 13:49 PAGE: 3 of 23

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

| DUPLICATE L1045463-07 GW                   |           |          | Collected by<br>G. Penaflor | Collected date/time<br>11/15/18 15:35 | Received date/time<br>11/17/18 08:45 |
|--------------------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------------------|
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1199020 | 1        | 11/21/18 11:15              | 11/21/18 11:47                        | JD                                   |
| Wet Chemistry by Method 9056A              | WG1199286 | 1        | 11/21/18 20:00              | 11/21/18 20:00                        | NJM                                  |
| Metals (ICP) by Method 6010B               | WG1199219 | 1        | 11/21/18 13:25              | 11/21/18 23:13                        | ST                                   |



\*

Ср

SDG: L1045463 DATE/TIME: 12/03/18 13:49

## CASE NARRATIVE

\*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

#### **Project Narrative**

This report has been revised. The metals and TDS results for samples MW-601 (L1045463-06) and MW-804 (L1045462-08) have been switched as a result of the MS and MSD containers for these samples being mislabeled in login.

ACCOUNT: SCS Engineers - KS PROJECT: 27213169.18

SDG: L1045463 DATE/TIME: 12/03/18 13:49

#### SAMPLE RESULTS - 01 L1045463

¥

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

| Cravinicane / analy | sis by method 2 | 010020    |       |          |                  |           | 1 Cm            |
|---------------------|-----------------|-----------|-------|----------|------------------|-----------|-----------------|
|                     | Result          | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср              |
| Analyte             | ug/l            |           | ug/l  |          | date / time      |           | 2               |
| Dissolved Solids    | 211000          |           | 10000 | 1        | 11/20/2018 14:36 | WG1199018 | Tc              |
| Wet Chemistry by    | Method 9056A    | A         |       |          |                  |           | <sup>3</sup> Ss |
|                     | Result          | Qualifier | RDL   | Dilution | Analysis         | Batch     |                 |
| Analyte             | ug/l            |           | ug/l  |          | date / time      |           | <sup>4</sup> Cn |
| Chloride            | ND              |           | 1000  | 1        | 11/23/2018 22.26 | WG1199283 |                 |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/15/18 11:05

|          |        |           |      |          |                  |           | 55              |
|----------|--------|-----------|------|----------|------------------|-----------|-----------------|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride | ND     |           | 1000 | 1        | 11/23/2018 22:26 | WG1199283 | CII             |
| Fluoride | 208    |           | 100  | 1        | 11/23/2018 22:26 | WG1199283 | 5               |
| Sulfate  | 33900  |           | 5000 | 1        | 11/23/2018 22:26 | WG1199283 | ँSr             |
|          |        |           |      |          |                  |           |                 |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 22:54 | WG1199219 |
| Calcium | 45000  |           | 1000 | 1        | 11/21/2018 22:54 | WG1199219 |

#### SAMPLE RESULTS - 02 L1045463

¥

Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |       |          |                  |                  |  | $^{1}$ Cn |
|------------------|--------|-----------|-------|----------|------------------|------------------|--|-----------|
|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            |  | Ср        |
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  |  | 2         |
| Dissolved Solids | 167000 |           | 10000 | 1        | 11/20/2018 14:36 | <u>WG1199018</u> |  | Tc        |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |  |                 |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|--|-----------------|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |                 |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           |  | $^{4}$ Cn       |
| Chloride                      | ND     |           | 1000 | 1        | 11/23/2018 22:42 | WG1199283 |  | CII             |
| Fluoride                      | 212    |           | 100  | 1        | 11/23/2018 22:42 | WG1199283 |  | 5               |
| Sulfate                       | 14600  |           | 5000 | 1        | 11/23/2018 22:42 | WG1199283 |  | <sup>°</sup> Sr |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 22:57 | WG1199219 |
| Calcium | 30800  |           | 1000 | 1        | 11/21/2018 22:57 | WG1199219 |

#### SAMPLE RESULTS - 03 L1045463

\*

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | Ср |
|------------------|--------|-----------|-------|----------|------------------|------------------|----|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2  |
| Dissolved Solids | 426000 |           | 10000 | 1        | 11/20/2018 14:36 | <u>WG1199018</u> | Tc |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |      |          |                  |                  |   |  |
|-------------------------------|--------|-----------|------|----------|------------------|------------------|---|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            | L |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |                  | 4 |  |
| Chloride                      | 6690   |           | 1000 | 1        | 11/21/2018 18:22 | <u>WG1199286</u> |   |  |
| Fluoride                      | 199    |           | 100  | 1        | 11/21/2018 18:22 | <u>WG1199286</u> | 5 |  |
| Sulfate                       | 70800  |           | 5000 | 1        | 11/21/2018 18:22 | WG1199286        | Č |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 23:05 | WG1199219 |
| Calcium | 93400  |           | 1000 | 1        | 11/21/2018 23:05 | WG1199219 |

#### SAMPLE RESULTS - 04 L1045463

¥

Ss

Cn

Qc

Gl

Â

Sc

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | Ср |
|------------------|--------|-----------|-------|----------|------------------|-----------|----|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           | 2  |
| Dissolved Solids | 478000 |           | 10000 | 1        | 11/20/2018 14:36 | WG1199018 | Tc |

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            |  |
|----------|--------|-----------|------|----------|------------------|------------------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  |  |
| Chloride | 3150   |           | 1000 | 1        | 11/21/2018 18:33 | <u>WG1199286</u> |  |
| Fluoride | 204    |           | 100  | 1        | 11/21/2018 18:33 | <u>WG1199286</u> |  |
| Sulfate  | 17500  |           | 5000 | 1        | 11/21/2018 18:33 | WG1199286        |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 23:08 | WG1199219 |
| Calcium | 120000 |           | 1000 | 1        | 11/21/2018 23:08 | WG1199219 |

#### SAMPLE RESULTS - 05 L1045463

¥

Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            | Ср |
|------------------|--------|-----------|-------|----------|------------------|------------------|----|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  | 2  |
| Dissolved Solids | 452000 |           | 10000 | 1        | 11/21/2018 11:47 | <u>WG1199020</u> | Tc |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/15/18 14:00

| Wet Chemistry I | by Method 9056A | A         |      |          |                  |                  | <sup>3</sup> Ss |
|-----------------|-----------------|-----------|------|----------|------------------|------------------|-----------------|
|                 | Result          | Qualifier | RDL  | Dilution | Analysis         | Batch            |                 |
| Analyte         | ug/l            |           | ug/l |          | date / time      |                  | <sup>4</sup> Cn |
| Chloride        | 3890            |           | 1000 | 1        | 11/21/2018 18:44 | WG1199286        | CII             |
| Fluoride        | 192             |           | 100  | 1        | 11/21/2018 18:44 | <u>WG1199286</u> | 5               |
| Sulfate         | 51400           |           | 5000 | 1        | 11/21/2018 18:44 | WG1199286        | <sup>°</sup> Sr |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 23:11 | WG1199219 |
| Calcium | 110000 |           | 1000 | 1        | 11/21/2018 23:11 | WG1199219 |

#### SAMPLE RESULTS - 06 L1045463

¥

Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

| eravine ine / mary |                |           |       |          |                  |           | 1 | Cr  |
|--------------------|----------------|-----------|-------|----------|------------------|-----------|---|-----|
|                    | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |   | Ср  |
| Analyte            | ug/l           |           | ug/l  |          | date / time      |           |   |     |
| Dissolved Solids   | 397000         |           | 10000 | 1        | 11/20/2018 14:36 | WG1199018 | 2 | Tc  |
| Wet Chemistry by   | / Method 90564 | 4         |       |          |                  |           | З | Ss  |
|                    | Result         | Qualifier | RDL   | Dilution | Analysis         | Batch     |   |     |
| Analyte            | ug/l           |           | ug/l  |          | date / time      |           | 4 | ⁴Cr |
| Chloride           | 3350           |           | 1000  | 1        | 11/21/2018 18:55 | WG1199286 |   |     |
| Eluorido           | 15.9           | D1        | 100   | 1        | 11/21/2018 18.55 | WC1100286 |   |     |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/15/18 13:50

|          | •      |           |      |          |                  |           | 1 3 1           |
|----------|--------|-----------|------|----------|------------------|-----------|-----------------|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride | 3350   |           | 1000 | 1        | 11/21/2018 18:55 | WG1199286 | CII             |
| Fluoride | 158    | <u>P1</u> | 100  | 1        | 11/21/2018 18:55 | WG1199286 | 5               |
| Sulfate  | 13300  |           | 5000 | 1        | 11/21/2018 18:55 | WG1199286 | Sr              |
|          |        |           |      |          |                  |           |                 |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 20:40 | WG1199229 |
| Calcium | 105000 |           | 1000 | 1        | 11/21/2018 20:40 | WG1199229 |

#### SAMPLE RESULTS - 07 L1045463



Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier RDL | Dilution | Analysis         | Batch     |   | Ct |
|------------------|--------|---------------|----------|------------------|-----------|---|----|
| Analyte          | ug/l   | ug/l          |          | date / time      |           |   | ,  |
| Dissolved Solids | 390000 | 10000         | ) 1      | 11/21/2018 11:47 | WG1199020 | 2 | Тс |

#### Wet Chemistry by Method 9056A

|                  | Result         | Qualifier      | RDL         | Dilution           | Analysis                | Batch              |  |
|------------------|----------------|----------------|-------------|--------------------|-------------------------|--------------------|--|
| Analyte          | ug/l           |                | ug/l        |                    | date / time             |                    |  |
| Dissolved Solids | 390000         |                | 10000       | 1                  | 11/21/2018 11:47        | WG1199020          |  |
| Not Chomistry by | ( Mothod OOEE/ |                |             |                    |                         |                    |  |
| Wet Chemistry by | / Method 90564 |                | RDI         | Dilution           | Analysis                | Batch              |  |
| Analyte          | Result         | A<br>Qualifier | RDL<br>ug/l | Dilution           | Analysis<br>date / time | Batch              |  |
|                  | Result         |                |             | Dilution<br>1      |                         | Batch<br>WG1199286 |  |
| Analyte          | Result<br>ug/l |                | ug/l        | Dilution<br>1<br>1 | date / time             |                    |  |

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/21/2018 23:13 | WG1199219 |
| Calcium | 102000 |           | 1000 | 1        | 11/21/2018 23:13 | WG1199219 |

## WG1199018

Gravimetric Analysis by Method 2540 C-2011

# QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3362742-1 11/2 | 20/18 14:36 |              |        |        |
|----------------------|-------------|--------------|--------|--------|
|                      | MB Result   | MB Qualifier | MB MDL | MB RDL |
| Analyte              | ug/l        |              | ug/l   | ug/l   |
| Dissolved Solids     | U           |              | 2820   | 10000  |

#### L1045462-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045462-06 11/20/1 | 8 14:36 • (DUP) | R3362742-3 | 11/20/18 14 | :36     |               |                   |
|--------------------------|-----------------|------------|-------------|---------|---------------|-------------------|
|                          | Original Result | DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | ug/l            | ug/l       |             | %       |               | %                 |
| Dissolved Solids         | 412000          | 421000     | 1           | 2.16    |               | 5                 |

### Laboratory Control Sample (LCS)

| (LCS) R3362742-2 11/2 | /20/18 14:36 |            |          |             |               |
|-----------------------|--------------|------------|----------|-------------|---------------|
|                       | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte               | ug/l         | ug/l       | %        | %           |               |
| Dissolved Solids      | 8800000      | 8330000    | 94.7     | 85.0-115    |               |

PROJECT: 27213169.18

SDG: L1045463 DATE/TIME: 12/03/18 13:49 PAGE: 13 of 23

## WG1199020

Gravimetric Analysis by Method 2540 C-2011

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3362743-4 11/2 | 21/18 11:47 |              |        |        |
|----------------------|-------------|--------------|--------|--------|
|                      | MB Result   | MB Qualifier | MB MDL | MB RDL |
| Analyte              | ug/l        |              | ug/l   | ug/l   |
| Dissolved Solids     | U           |              | 2820   | 10000  |

#### L1045463-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045463-05 11/21/ | '18 11:47 • (DUP) R | 3362743-3 1 | 1/21/18 11:47 | 7       |               |                   |
|-------------------------|---------------------|-------------|---------------|---------|---------------|-------------------|
|                         | Original Result     | DUP Result  | Dilution      | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l                | ug/l        |               | %       |               | %                 |
| Dissolved Solids        | 452000              | 453000      | 1             | 0.221   |               | 5                 |

## Laboratory Control Sample (LCS)

| (LCS) R3362743-2 11, | 1/21/18 11:47 |            |          |             |               |
|----------------------|---------------|------------|----------|-------------|---------------|
|                      | Spike Amount  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte              | ug/l          | ug/l       | %        | %           |               |
| Dissolved Solids     | 8800000       | 8610000    | 97.8     | 85.0-115    |               |

DATE/TIME: 12/03/18 13:49

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

Ср

Sr

Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3363048-1 | 11/23/18 10:04 |
|-----------------|----------------|
|                 |                |

| Analyte  | ug/l | ug/l | ug/l |  |
|----------|------|------|------|--|
|          |      | - 37 | ug/l |  |
| Chloride | U    | 51.9 | 1000 |  |
| Fluoride | U    | 9.90 | 100  |  |
| Sulfate  | U    | 77.4 | 5000 |  |

#### L1045445-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045445-03 11/23/ | 18 15:30 • (DUP) | R3363048-3 | 11/23/18 15 | :45     |               |                   |
|-------------------------|------------------|------------|-------------|---------|---------------|-------------------|
|                         | Original Result  | DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l             | ug/l       |             | %       |               | %                 |
| Chloride                | 6800             | 6790       | 1           | 0.128   |               | 15                |
| Fluoride                | 156              | 157        | 1           | 0.447   |               | 15                |
| Sulfate                 | 14600            | 14600      | 1           | 0.392   |               | 15                |

## L1045462-08 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045462-08 11/23/18 | OS) L1045462-08 11/23/18 20:38 • (DUP) R3363048-6 11/23/18 20:54 |            |          |         |               |                   |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|
|                           | Original Result                                                  | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |
| Analyte                   | ug/l                                                             | ug/l       |          | %       |               | %                 |  |  |  |  |  |
| Chloride                  | 3900                                                             | 3820       | 1        | 2.09    |               | 15                |  |  |  |  |  |
| Fluoride                  | 260                                                              | 255        | 1        | 1.79    |               | 15                |  |  |  |  |  |
| Sulfate                   | 25800                                                            | 25800      | 1        | 0.276   |               | 15                |  |  |  |  |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3363048-2 11/23 | /18 10:19    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | ug/l         | ug/l       | %        | %           |               |
| Chloride               | 40000        | 39800      | 99.4     | 80.0-120    |               |
| Fluoride               | 8000         | 8110       | 101      | 80.0-120    |               |
| Sulfate                | 40000        | 40800      | 102      | 80.0-120    |               |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213169.18

DATE/TIME: 12/03/18 13:49

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

## L1045445-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1045445-03 11/23/18 | 8 15:30 • (MS) R | 3363048-4 11/2  | 23/18 16:01 • (N | ISD) R3363048 | 3-5 11/23/18 16: | 16       |          |             |              |               |       |            |
|---------------------------|------------------|-----------------|------------------|---------------|------------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount     | Original Result | MS Result        | MSD Result    | MS Rec.          | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l             | ug/l            | ug/l             | ug/l          | %                | %        |          | %           |              |               | %     | %          |
| Chloride                  | 50000            | 6800            | 56800            | 56300         | 99.9             | 98.9     | 1        | 80.0-120    |              |               | 0.905 | 15         |
| Fluoride                  | 5000             | 156             | 5310             | 5260          | 103              | 102      | 1        | 80.0-120    |              |               | 0.952 | 15         |
| Sulfate                   | 50000            | 14600           | 63900            | 63300         | 98.7             | 97.5     | 1        | 80.0-120    |              |               | 0.934 | 15         |

#### L1045462-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1045462-08 11/23/ | /18 20:38 • (MS) I | R3363048-7 11,  | /23/18 21:09 • | (MSD) R33630 | 48-8 11/23/18 | 21:25    |          |             |              |               |      |            |
|-------------------------|--------------------|-----------------|----------------|--------------|---------------|----------|----------|-------------|--------------|---------------|------|------------|
|                         | Spike Amount       | Original Result | MS Result      | MSD Result   | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                 | ug/l               | ug/l            | ug/l           | ug/l         | %             | %        |          | %           |              |               | %    | %          |
| Chloride                | 50000              | 3900            | 52600          | 54100        | 97.4          | 100      | 1        | 80.0-120    |              |               | 2.78 | 15         |
| Fluoride                | 5000               | 260             | 4870           | 5390         | 92.2          | 103      | 1        | 80.0-120    |              |               | 10.1 | 15         |
| Sulfate                 | 50000              | 25800           | 72200          | 73500        | 92.7          | 95.3     | 1        | 80.0-120    |              |               | 1.77 | 15         |

DATE/TIME: 12/03/18 13:49

## WG1199286

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1045463-03,04,05,06,07

| (MB) R3362567-1 | 11/21/18 17:37 |
|-----------------|----------------|
|                 |                |

| (1010) 1(3502507-1-11/2 | 1/10 17.57 |              |        |        |                 |
|-------------------------|------------|--------------|--------|--------|-----------------|
|                         | MB Result  | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                 | ug/l       |              | ug/l   | ug/l   | Tc              |
| Chloride                | U          |              | 51.9   | 1000   |                 |
| Fluoride                | U          |              | 9.90   | 100    | <sup>3</sup> Ss |
| Sulfate                 | U          |              | 77.4   | 5000   | <u> </u>        |

#### L1045463-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045463-06 11/21/ | '18 18:55 • (DUP) I | R3362567-4 | 11/21/18 19: | 06      |               |                   |
|-------------------------|---------------------|------------|--------------|---------|---------------|-------------------|
|                         | Original Result     | DUP Result | Dilution     | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l                | ug/l       |              | %       |               | %                 |
| Chloride                | 3350                | 3350       | 1            | 0.0119  |               | 15                |
| Fluoride                | 158                 | 234        | 1            | 38.9    | <u>P1</u>     | 15                |
| Sulfate                 | 13300               | 13300      | 1            | 0.387   |               | 15                |

## L1045479-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1045479-06 11/21/18 | 21:05 • (DUP) F | R3362567-7 1 | 1/21/18 21:1 | 6       |               |                   |
|---------------------------|-----------------|--------------|--------------|---------|---------------|-------------------|
|                           | Original Result | DUP Result   | Dilution     | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | ug/l            | ug/l         |              | %       |               | %                 |
| Chloride                  | ND              | 510          | 1            | 0.000   |               | 15                |
| Fluoride                  | 222             | 322          | 1            | 36.7    | <u>P1</u>     | 15                |
| Sulfate                   | 25400           | 25800        | 1            | 1.65    |               | 15                |

#### Laboratory Control Sample (LCS)

| (LCS) R3362567-3 11/21/ | 18 18:09     |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | ug/l         | ug/l       | %        | %           |               |
| Chloride                | 40000        | 39700      | 99.3     | 80.0-120    |               |
| Fluoride                | 8000         | 8110       | 101      | 80.0-120    |               |
| Sulfate                 | 40000        | 40100      | 100      | 80.0-120    |               |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213169.18

DATE/TIME: 12/03/18 13:49



Ср

<sup>4</sup>Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

## L1045463-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1045463-06 11/21/ | 18 18:55 • (MS) R | 3362567-5 11/2  | 21/18 19:17 • (N | 1SD) R3362567 | -6 11/21/18 19: | 27       |          |             |              |               |       |            |
|-------------------------|-------------------|-----------------|------------------|---------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                         | Spike Amount      | Original Result | MS Result        | MSD Result    | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l              | ug/l            | ug/l             | ug/l          | %               | %        |          | %           |              |               | %     | %          |
| Chloride                | 50000             | 3350            | 52300            | 53300         | 97.9            | 99.9     | 1        | 80.0-120    |              |               | 1.89  | 15         |
| Fluoride                | 5000              | 158             | 4920             | 5170          | 95.3            | 100      | 1        | 80.0-120    |              |               | 4.94  | 15         |
| Sulfate                 | 50000             | 13300           | 62000            | 62400         | 97.3            | 98.1     | 1        | 80.0-120    |              |               | 0.711 | 15         |

### L1045479-06 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1045479-06 11/21/18 | 8 21:05 • (MS) R3 | 3362567-8 11/2  | 21/18 21:27 |         |          |             |              |
|---------------------------|-------------------|-----------------|-------------|---------|----------|-------------|--------------|
|                           | Spike Amount      | Original Result | MS Result   | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                   | ug/l              | ug/l            | ug/l        | %       |          | %           |              |
| Chloride                  | 50000             | ND              | 50000       | 98.8    | 1        | 80.0-120    |              |
| Fluoride                  | 5000              | 222             | 5100        | 97.6    | 1        | 80.0-120    |              |
| Sulfate                   | 50000             | 25400           | 74200       | 97.7    | 1        | 80.0-120    |              |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

DATE/TIME: 12/03/18 13:49

Sc

## WG1199219

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1045463-01,02,03,04,05,07

⁺Cn

Sr

Qc

GI

#### Method Blank (MB)

| Method Bidi    | ik (IVID)        |              |        |        |  |
|----------------|------------------|--------------|--------|--------|--|
| (MB) R3362279- | 6 11/22/18 00:49 |              |        |        |  |
|                | MB Result        | MB Qualifier | MB MDL | MB RDL |  |
| Analyte        | ug/l             |              | ug/l   | ug/l   |  |
| Boron          | U                |              | 12.6   | 200    |  |
| Calcium        | 61.4             | J            | 46.3   | 1000   |  |
|                |                  |              |        |        |  |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3362279-1 11/21/18 | 22:02 • (LCSD | ) R3362279-2 | 11/21/18 22:05 |          |           |             |               |                |       |            |
|---------------------------|---------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                           | Spike Amount  | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l          | ug/l         | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                     | 1000          | 946          | 976            | 94.6     | 97.6      | 80.0-120    |               |                | 3.14  | 20         |
| Calcium                   | 10000         | 9840         | 9880           | 98.4     | 98.8      | 80.0-120    |               |                | 0.404 | 20         |

#### L1045462-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1045462-08 11/21/18 | 8 22:07 • (MS) R | 3362279-10 11   | /21/18 22:13 • ( | (MSD) R336227 | 79-11 11/21/18 22 | 2:15     |          |             |                    |                    |       |            | <sup>8</sup> Al |
|---------------------------|------------------|-----------------|------------------|---------------|-------------------|----------|----------|-------------|--------------------|--------------------|-------|------------|-----------------|
|                           | Spike Amount     | Original Result | MS Result        | MSD Result    | MS Rec.           | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD   | RPD Limits |                 |
| Analyte                   | ug/l             | ug/l            | ug/l             | ug/l          | %                 | %        |          | %           |                    |                    | %     | %          | 9               |
| Boron                     | 1000             | 8070            | 8790             | 8820          | 72.0              | 75.2     | 1        | 75.0-125    | $\underline{\vee}$ |                    | 0.364 | 20         | Sc              |
| Calcium                   | 10000            | 155000          | 160000           | 160000        | 50.6              | 53.5     | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.180 | 20         |                 |

DATE/TIME: 12/03/18 13:49

PAGE: 19 of 23

## WG1199229

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Method Blank (MB)

| Method Bidi     | ik (IVID)      |              |        |        |
|-----------------|----------------|--------------|--------|--------|
| (MB) R3362229-1 | 11/21/18 20:32 |              |        |        |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte         | ug/l           |              | ug/l   | ug/l   |
| Boron           | U              |              | 12.6   | 200    |
| Calcium         | 57.4           | J            | 46.3   | 1000   |
|                 |                |              |        |        |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3362229-2 11/21/18 | 3 20:35 • (LCSE | D) R3362229-3 | 11/21/18 20:37 |          |           |             |               |                |       |            |
|---------------------------|-----------------|---------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                           | Spike Amount    | LCS Result    | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l            | ug/l          | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                     | 1000            | 982           | 960            | 98.2     | 96.0      | 80.0-120    |               |                | 2.29  | 20         |
| Calcium                   | 10000           | 9770          | 9750           | 97.7     | 97.5      | 80.0-120    |               |                | 0.267 | 20         |

#### L1045463-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1045463-06 11/21/18 | 8 20:40 • (MS) F | 23362229-10 1   | 1/21/18 20:45 | • (MSD) R33622 | 229-11 11/21/18 | 20:47    |          |             |              |               |       |            | <sup>8</sup> Al |
|---------------------------|------------------|-----------------|---------------|----------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|-----------------|
|                           | Spike Amount     | Original Result | MS Result     | MSD Result     | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |                 |
| Analyte                   | ug/l             | ug/l            | ug/l          | ug/l           | %               | %        |          | %           |              |               | %     | %          | 9               |
| Boron                     | 1000             | ND              | 1130          | 1110           | 99.9            | 98.2     | 1        | 75.0-125    |              |               | 1.51  | 20         | SC              |
| Calcium                   | 10000            | 105000          | 113000        | 113000         | 85.4            | 87.9     | 1        | 75.0-125    |              |               | 0.219 | 20         |                 |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213169.18

SDG: L1045463 DATE/TIME: 12/03/18 13:49

PAGE: 20 of 23

## GLOSSARY OF TERMS

# \*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>reported.                                                                                                                                                                                                                                                                                                                                                                                              |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resul<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                             |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description                                                                               |
|-----------|-------------------------------------------------------------------------------------------|
| J         | The identification of the analyte is acceptable; the reported value is an estimate.       |
| P1        | RPD value not applicable for sample concentrations less than 5 times the reporting limit. |
| V         | The sample concentration is too high to evaluate accurate spike recoveries.               |

PROJECT: 27213169.18

SDG: L1045463 DATE/TIME: 12/03/18 13:49

PAGE: 21 of 23

# **ACCREDITATIONS & LOCATIONS**

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                | 40660       | Nebra  |
|------------------------|-------------|--------|
| Alaska                 | 17-026      | Neva   |
| Arizona                | AZ0612      | New    |
| Arkansas               | 88-0469     | New    |
| California             | 2932        | New    |
| Colorado               | TN00003     | New    |
| Connecticut            | PH-0197     | North  |
| Florida                | E87487      | North  |
| Georgia                | NELAP       | North  |
| Georgia <sup>1</sup>   | 923         | North  |
| Idaho                  | TN00003     | Ohio-  |
| Illinois               | 200008      | Oklał  |
| Indiana                | C-TN-01     | Oreg   |
| lowa                   | 364         | Penn   |
| Kansas                 | E-10277     | Rhod   |
| Kentucky <sup>16</sup> | 90010       | South  |
| Kentucky <sup>2</sup>  | 16          | South  |
| Louisiana              | AI30792     | Tenn   |
| Louisiana <sup>1</sup> | LA180010    | Texas  |
| Maine                  | TN0002      | Texas  |
| Maryland               | 324         | Utah   |
| Massachusetts          | M-TN003     | Verm   |
| Michigan               | 9958        | Virgir |
| Minnesota              | 047-999-395 | Wash   |
| Mississippi            | TN00003     | West   |
| Missouri               | 340         | Wisco  |
| Montana                | CERT0086    | Wyon   |
|                        |             |        |

| Nebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee 1 4               | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas ⁵                     | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |
|                             |                   |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 | AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------|--------------------|---------------|
| A2LA – ISO 17025 5 | 1461.02 | DOD                | 1461.01       |
| Canada             | 1461.01 | USDA               | P330-15-00234 |
| EPA-Crypto         | TN00003 |                    |               |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213169.18

L1045463

12/03/18 13:49

| SCS Engineers - KS                                                                   |                             |                           | Billing Inf                | ormation:                                 | and senter a            | T     | 1             | -              | -                 | Analysi | c/Contain  | ner / Preserva                 |                        |                  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------|-----------------------------|---------------------------|----------------------------|-------------------------------------------|-------------------------|-------|---------------|----------------|-------------------|---------|------------|--------------------------------|------------------------|------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8575 W. 110th Street<br>Overland Park, KS 66210                                      |                             |                           | 8575 W                     | ts Payable<br>110th Stre<br>nd Park, KS 6 | et<br>66210             | Pri   |               | e              | 2                 |         | s/ Contain | her / Preserva                 | live                   |                  | Chain of Cu                                                        | stody Page Lof<br>7<br>NGANG(SIG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Report to:<br>ason Franks                                                            |                             | 8. S. S.                  | jay.martin                 | jfranks@scsenj<br>n@kcpl.com;             |                         |       | es            |                |                   |         |            |                                |                        |                  | 1<br>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Project<br>Description: KCP&L Sibley Gen                                             | erating Statio              | n                         | 1                          | City/State<br>Collected:                  | and bob bod min         |       | -NoPr         |                |                   | 1       |            |                                |                        |                  | 12065 Lebanor<br>Mount Juliet, 1<br>Phone: 615-75<br>Phone: 800-76 | N 37122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hone: 913-681-0030<br>ax: 913-681-0012                                               | Client Project<br>27213169. |                           | 1.0022                     | Lab Project #                             |                         |       | 25mlHDPE-NoPr | HNO3           |                   |         |            |                                |                        |                  | Fax: 615-758-5                                                     | 545463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ollected by (print):<br>S-PENATOR                                                    | Site/Facility I             | D#                        |                            | P.O. #                                    |                         | -     | 1 000         | HDPE-          | Pres              |         |            |                                |                        |                  | H                                                                  | 1106 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ollected by (signature)                                                              | Same D                      |                           | lay                        | Quote #                                   |                         |       | F, 504)       | 250m1HDPE-HNO3 | DPE-NC            |         |            | 215                            |                        |                  | Acctnum: A                                                         | and the second sec |
|                                                                                      | Two Day<br>Two Day          | /10 Da                    | (Rad Only)<br>y (Rad Only) | Date R/<br>ラブ                             | esults Needed           | No.   | Anions (Cld,  | 6010           | 250mlHDPE-NoPres  |         |            |                                |                        |                  | Prelogin: P6<br>TSR: 206 - Jet                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample ID                                                                            | Comp/Grab                   | Matrix *                  | Depth                      | Date                                      | Time                    | Cntrs | Inions        | , Ca -         | <b>TDS 25</b>     |         |            |                                |                        |                  | PB:<br>Shipped Via:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IW-504                                                                               | Conto                       | GW                        | 6                          | 11/15                                     | 1105                    | 3     | X             | x x            | The Street Street |         | -          |                                |                        | 1                | Remarks                                                            | Sample # (lab only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IW-505                                                                               |                             | GW                        |                            | 11/10                                     | 1020                    | 3     | x             | -              | X                 |         |            |                                |                        |                  |                                                                    | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W-506                                                                                |                             | GW                        | 1                          |                                           | 1155                    | 3     |               | X              | X                 | -       |            |                                |                        | 1                | -                                                                  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W-510                                                                                |                             | GW                        | 19.90                      | 1.2                                       | 1150                    | 12.1  | X             | X              | X                 |         |            | 1                              |                        |                  | - 1.7                                                              | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W-512                                                                                |                             | GW                        |                            |                                           | 1400                    | 3     | X             | X              | X                 | 1       |            |                                |                        |                  |                                                                    | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W-601                                                                                |                             | GW                        |                            | 1                                         | 1350                    | 3     | X             | X              | X                 | _       |            |                                |                        |                  |                                                                    | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JPLICATE                                                                             |                             | GW                        |                            | 11115                                     | 1535                    | 3     | X             | X              | X                 | _       |            |                                |                        |                  | 1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| eb/ MS                                                                               |                             | GW                        |                            | 11/15                                     |                         | 3     | X             | X              | X                 | _       |            |                                |                        |                  | 1                                                                  | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ell MSD                                                                              |                             | GW                        |                            |                                           | 1540                    | 3     | X             | X              | X                 |         |            |                                |                        |                  |                                                                    | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                               | V                           | 100                       |                            | 11/15                                     | 1545                    | 3     | X             | X              | X                 |         | 1          |                                |                        |                  | and the second                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| latrix:<br>Soil AIR - Air F - Filter<br>- Groundwater B - Bioassay<br>V - WasteWater | Remarks:                    | 1                         |                            |                                           |                         |       |               |                |                   | pH _    | Te         | mp                             |                        | aned/2           | e Receipt Che<br>sent/Intact:<br>sccurate:                         | ecklist<br>NP_Y_N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Orinking Water     Other                                                             | Samples returne             | ed via:<br>ExCourie       | - SWF                      | t Tr                                      | acking #                | -     | 1             | 1              |                   | Flow    | Ot         | her                            | Correc                 | t bott<br>ient v | ve intact:<br>les used:<br>olume sent:                             | UNN<br>NNN<br>NNN<br>NNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| inquished by : (Senature)                                                            | lle                         | Date:<br>11/1/0/<br>Date: | 118 1.<br>Tim              | 547                                       | ceived by: (Signatur    | ful   | d             | 2              |                   | 1.4     | -          | Yes / NeO<br>HCL / MeoH<br>TBR | VOA Ze<br>Preser<br>RA | ro Heavation     | depace:<br>Correct/Chec<br>REEN: <0.5                              | $\frac{1}{N} = \frac{1}{N} = \frac{1}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| inquished by : (Signature)                                                           |                             | Date:                     | Tim                        | e: Re                                     | ceived for lab by: (Sig | natur | 2)            | 186            | 1.253             |         | 5.2 37     | ttles Received:<br>27<br>ne:   | If preser              | vation n         | equired by Login                                                   | : Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Jared Morrison December 16, 2022

# ATTACHMENT 2 Statistical Analyses

Jared Morrison December 16, 2022

# ATTACHMENT 2-1

# Fall 2017 Semiannual Detection Monitoring Statistical Analyses

#### **MEMORANDUM**

January 31, 2018

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 KCP&L Greater Missouri Operations Company

#### From: SCS Engineers



#### RE: Revision to January 15, 2018 Memorandum Determination of Statistically Significant Increases - CCR Landfill

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification By A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a statistically significant increase over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

The completed statistical evaluation identified Appendix III constituent, chloride, above its prediction limit in monitoring wells MW-505 and MW-601, respectively. The prediction limit for chloride in upgradient monitoring well MW-505 is 1.19 mg/L. The detection monitoring sample was reported at 3.13 mg/L. The first verification re-sample was collected on November 16, 2017 with a result of 1.59 mg/L. The second verification re-sample was collected on December 28, 2017 with a result of 2.12 mg/L. The prediction limit for chloride in monitoring well MW-601 is 3.58 mg/L. The detection monitoring sample was reported at 6.1 mg/L. The first verification re-sample was collected on November 16, 2017 with a result of 3.87 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for chloride from monitoring wells MW-505 and MW-601 exceed their prediction limits and are confirmed statistically significant increases (SSIs) over background.

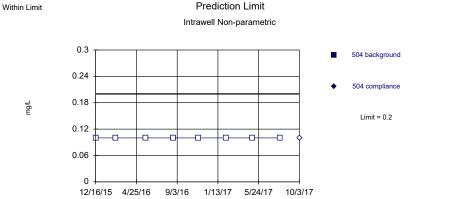
Attached to this memorandum are the following backup information:

#### Attachment 1: Sanitas<sup>™</sup> Output:

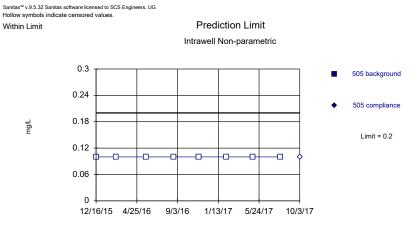
Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample result for quality control (if applicable), and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill January 31, 2018 Page 2 of 2

Attachment 2: Sanitas<sup>™</sup> Configuration Settings: Screen shots of the applicable Sanitas<sup>™</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions                                                                                                                                                                                                                                                                                                                             |
|--------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | 1/22/2018        | Cover letter          | Revision table added. No changes to text regarding statistical<br>analyses. Attachment 1 description was revised to match the revisions<br>made in the attachment.                                                                                                                                                                               |
| 1                  | 1/22/2018        | 1                     | Sanitas <sup>™</sup> Output was revised to report boron in mg/L instead of ug/L.<br>Some samples previously identified as verification re-samples are now<br>more appropriately identified as "extra samples". These samples were<br>taken as part of the quality control process, and were not required as<br>part of verification re-sampling. |
| 2                  | 1/31/2018        | Cover letter          | Addition to Revision table. No changes to text regarding statistical analyses. Attachment 1 was revised.                                                                                                                                                                                                                                         |
| 2                  | 1/31/2018        | 1                     | Sanitas <sup>™</sup> Output was revised. The 12/15/2015 calcium concentration for MW-512 was corrected from 101 mg/L to 98.1 mg/L. The duplicate quality control result was initially reported instead of the original sample result.                                                                                                            |
|                    |                  |                       |                                                                                                                                                                                                                                                                                                                                                  |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill January 31, 2018


## ATTACHMENT 1

Sanitas<sup>™</sup> Output

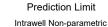
Sanitas  $^{\mbox{\tiny W}}$  v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

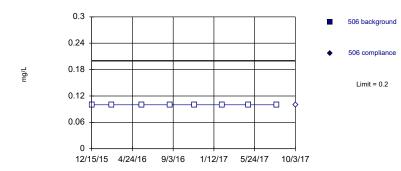


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.00118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

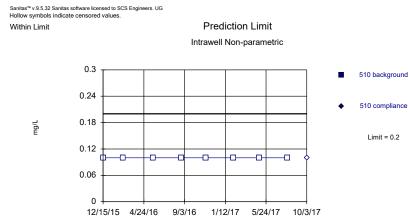


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 1/31/2018 10:55 AM View: LF III


Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley


Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit





Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

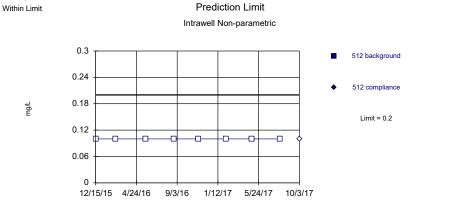
Constituent: Boron Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Boron Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

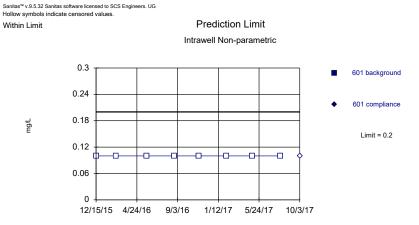
|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 10/3/2017  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 10/3/2017  |      | <0.2 |
|            |      |      |

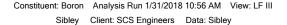

Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/4/2017   | <0.2 |      |
| 10/3/2017  |      | <0.2 |
|            |      |      |


Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
|            |      |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
|            |      |      |
| 11/10/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 0/1/2017   | ~0.Z |      |
| 10/3/2017  |      | <0.2 |
|            |      |      |
|            |      |      |

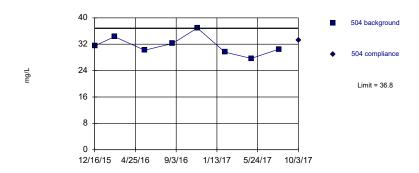
Sanitas  $^{\mbox{\tiny W}}$  v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.




Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.00118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley



Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=31.6, Std. Dev.=2.88, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=24.6, Std. Dev.=1.92, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.977, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

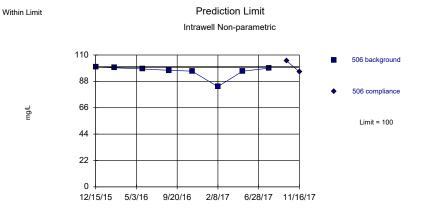
Constituent: Calcium Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 512         | 512  |
|------------|-------------|------|
| 12/15/2015 | <0.2        |      |
| 2/18/2016  | <0.2        |      |
| 2/10/2010  | <b>~0.2</b> |      |
| 5/25/2016  | <0.2        |      |
| 8/23/2016  | <0.2        |      |
| 11/11/2016 | <0.2        |      |
|            |             |      |
| 2/8/2017   | <0.2        |      |
| 5/3/2017   | <0.2        |      |
| 8/1/2017   | <0.2        |      |
| 10/3/2017  |             | <0.2 |
| 10/0/2017  |             | -0.2 |
|            |             |      |

Constituent: Boron (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/26/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 10/3/2017  |      | <0.2 |
|            |      |      |


Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | 31.5 |      |
| 2/18/2016  | 34.3 |      |
| 5/25/2016  | 30.2 |      |
| 8/23/2016  | 32.2 |      |
| 11/11/2016 | 36.9 |      |
| 2/8/2017   | 29.6 |      |
| 5/4/2017   | 27.7 |      |
| 8/1/2017   | 30.5 |      |
| 10/3/2017  |      | 33.2 |
|            |      |      |

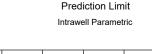
Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505  | 505  |              |
|------------|------|------|--------------|
| 12/16/2015 | 28   |      |              |
|            |      |      |              |
| 2/18/2016  | 25.4 |      |              |
| 5/25/2016  | 24.6 |      |              |
| 8/23/2016  | 25.7 |      |              |
|            |      |      |              |
| 11/11/2016 | 21.6 |      |              |
| 2/8/2017   | 23.5 |      |              |
| 5/4/2017   | 23.2 |      |              |
| 8/1/2017   | 25.1 |      |              |
|            | 23.1 |      |              |
| 10/3/2017  |      | 26.6 |              |
| 11/16/2017 |      | 26   | extra sample |
|            |      |      |              |
|            |      |      |              |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Calcium Analysis Run 1/31/2018 10:56 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

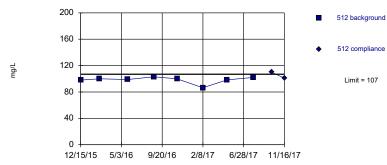
Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG



mg/L






Background Data Summary (based on x^5 transformation): Mean=2.3e10, Std. Dev=5.1e9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.756, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary (based on square transformation): Mean=9696, Std. Dev.=964, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=101, Std. Dev.=6.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.762, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

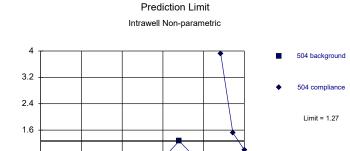
Constituent: Calcium Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

| 506     506       12/15/2015     100       2/18/2016     99.3       5/25/2016     98.3       8/23/2016     97.2       11/11/2016     96.5       2/8/2017     83.6       5/4/2017     96.4       8/4/2017     99       10/3/2017     105 |            | 500  | 500 |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----|----------------------------|
| 2/18/2016     99.3       5/25/2016     98.3       8/23/2016     97.2       11/11/2016     96.5       2/8/2017     83.6       5/4/2017     96.4       8/4/2017     99       10/3/2017     105                                            |            | 500  | 506 |                            |
| 5/25/201698.38/23/201697.211/11/201696.52/8/201783.65/4/201796.48/4/20179910/3/2017105                                                                                                                                                  | 12/15/2015 | 100  |     |                            |
| 8/23/2016       97.2         11/11/2016       96.5         2/8/2017       83.6         5/4/2017       96.4         8/4/2017       99         10/3/2017       105                                                                        | 2/18/2016  | 99.3 |     |                            |
| 11/11/2016     96.5       2/8/2017     83.6       5/4/2017     96.4       8/4/2017     99       10/3/2017     105                                                                                                                       | 5/25/2016  | 98.3 |     |                            |
| 2/8/2017 83.6<br>5/4/2017 96.4<br>8/4/2017 99<br>10/3/2017 105                                                                                                                                                                          | 8/23/2016  | 97.2 |     |                            |
| 5/4/2017 96.4<br>8/4/2017 99<br>10/3/2017 105                                                                                                                                                                                           | 11/11/2016 | 96.5 |     |                            |
| 8/4/2017 99<br>10/3/2017 105                                                                                                                                                                                                            | 2/8/2017   | 83.6 |     |                            |
| 10/3/2017 105                                                                                                                                                                                                                           | 5/4/2017   | 96.4 |     |                            |
|                                                                                                                                                                                                                                         | 8/4/2017   | 99   |     |                            |
| 11/16/2017 OG 1et verification to co                                                                                                                                                                                                    | 10/3/2017  |      | 105 |                            |
| 11/10/2017 90 Ist vernication re-sa                                                                                                                                                                                                     | 11/16/2017 |      | 96  | 1st verification re-sample |
|                                                                                                                                                                                                                                         |            |      |     |                            |

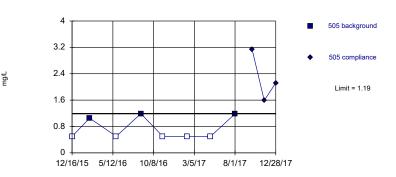
Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510 | 510 |                            |
|------------|-----|-----|----------------------------|
| 12/15/2015 | 122 |     |                            |
| 2/18/2016  | 121 |     |                            |
| 5/25/2016  | 119 |     |                            |
| 8/23/2016  | 122 |     |                            |
| 11/10/2016 | 119 |     |                            |
| 2/8/2017   | 103 |     |                            |
| 5/3/2017   | 116 |     |                            |
| 8/1/2017   | 120 |     |                            |
| 10/3/2017  |     | 130 |                            |
| 11/16/2017 |     | 119 | 1st verification re-sample |
| 11/16/2017 |     | 119 | 1st verification           |


Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 512  | 512 |                            |
|------------|------|-----|----------------------------|
| 12/15/2015 | 98.1 |     |                            |
| 2/18/2016  | 100  |     |                            |
| 5/25/2016  | 98.9 |     |                            |
| 8/23/2016  | 103  |     |                            |
| 11/11/2016 | 100  |     |                            |
| 2/8/2017   | 86.4 |     |                            |
| 5/3/2017   | 98.4 |     |                            |
| 8/1/2017   | 102  |     |                            |
| 10/3/2017  |      | 110 |                            |
| 11/16/2017 |      | 101 | 1st verification re-sample |
|            |      |     |                            |

Constituent: Calcium (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III


|            | 601  | 601 |              |
|------------|------|-----|--------------|
| 12/15/2015 | 107  |     |              |
| 2/18/2016  | 105  |     |              |
| 5/26/2016  | 103  |     |              |
| 8/23/2016  | 102  |     |              |
| 11/11/2016 | 105  |     |              |
| 2/8/2017   | 87.5 |     |              |
| 5/3/2017   | 100  |     |              |
| 8/1/2017   | 102  |     |              |
| 10/3/2017  |      | 111 |              |
| 11/16/2017 |      | 101 | extra sample |
| 11/10/2017 |      | 101 | exua sample  |

Sanitas<sup>w</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit





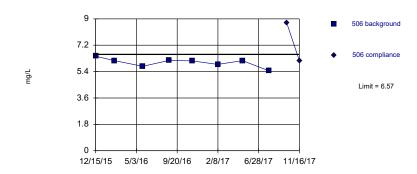
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized. Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Exceeds Limit



**Prediction Limit** 

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

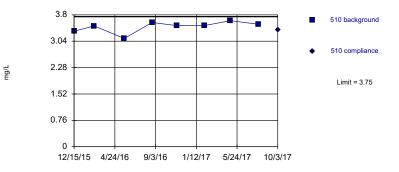

Constituent: Chloride Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Chloride Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

ng/L

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=6.02, Std. Dev.=0.307, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.918, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



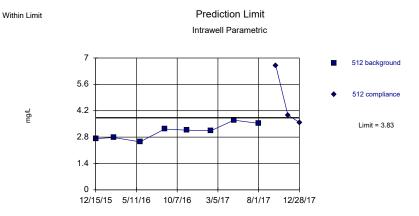
Background Data Summary: Mean=3.46, Std. Dev.=0.162, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.86, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 504  | 504  |                            |
|------------|------|------|----------------------------|
| 12/16/2015 | <1   |      |                            |
| 2/18/2016  | <1   |      |                            |
| 5/25/2016  | <1   |      |                            |
| 8/23/2016  | <1   |      |                            |
| 11/11/2016 | <1   |      |                            |
| 2/8/2017   | <1   |      |                            |
| 5/4/2017   | 1.27 |      |                            |
| 8/1/2017   | <1   |      |                            |
| 10/3/2017  |      | 3.91 |                            |
| 11/16/2017 |      | 1.52 | 1st verification re-sample |
| 12/28/2017 |      | 1    | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505  | 505  |                            |
|------------|------|------|----------------------------|
| 12/16/2015 | <1   |      |                            |
| 2/18/2016  | 1.05 |      |                            |
| 5/25/2016  | <1   |      |                            |
| 8/23/2016  | 1.19 |      |                            |
| 11/11/2016 | <1   |      |                            |
| 2/8/2017   | <1   |      |                            |
| 5/4/2017   | <1   |      |                            |
| 8/1/2017   | 1.18 |      |                            |
| 10/3/2017  |      | 3.13 |                            |
| 11/16/2017 |      | 1.59 | 1st verification re-sample |
| 12/28/2017 |      | 2.12 | 2nd verification re-sample |
|            |      |      |                            |

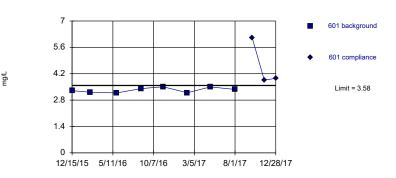

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506  | 506  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 6.45 |      |                            |
| 2/18/2016  | 6.15 |      |                            |
| 5/25/2016  | 5.76 |      |                            |
| 8/23/2016  | 6.16 |      |                            |
| 11/11/2016 | 6.13 |      |                            |
| 2/8/2017   | 5.89 |      |                            |
| 5/4/2017   | 6.15 |      |                            |
| 8/4/2017   | 5.45 |      |                            |
| 10/3/2017  |      | 8.74 |                            |
| 11/16/2017 |      | 6.15 | 1st verification re-sample |
|            |      |      |                            |

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 10/15/0015 | 0.00 |      |
| 12/15/2015 | 3.33 |      |
| 2/18/2016  | 3.48 |      |
|            |      |      |
| 5/25/2016  | 3.12 |      |
| 8/23/2016  | 3.58 |      |
| 012312010  | 3.08 |      |
| 11/10/2016 | 3.49 |      |
| 2/8/2017   | 3.49 |      |
|            |      |      |
| 5/3/2017   | 3.63 |      |
| 8/1/2017   | 3.53 |      |
| 0/1/2017   | 3.03 |      |
| 10/3/2017  |      | 3.36 |
|            |      |      |
|            |      |      |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=3.1, Std. Dev.=0.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.954, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.



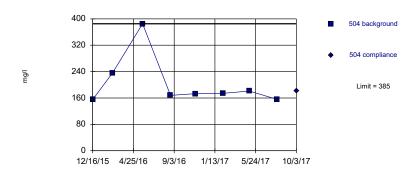


Intrawell Parametric



Background Data Summary: Mean=3.34, Std. Dev.=0.133, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.903, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 1/31/2018 10:56 AM View: LF III

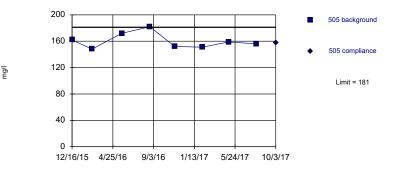

Sibley Client: SCS Engineers Data: Sibley

Constituent: Chloride Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



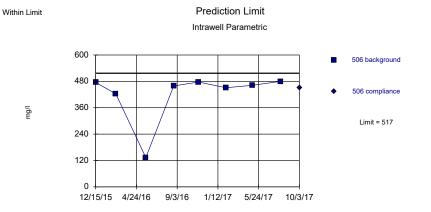
Background Data Summary: Mean=160, Std. Dev.=11.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.905, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 512  | 512  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 2.72 |      |                            |
| 2/18/2016  | 2.78 |      |                            |
| 5/25/2016  | 2.55 |      |                            |
| 8/23/2016  | 3.23 |      |                            |
| 11/11/2016 | 3.17 |      |                            |
| 2/8/2017   | 3.14 |      |                            |
| 5/3/2017   | 3.7  |      |                            |
| 8/1/2017   | 3.53 |      |                            |
| 10/3/2017  |      | 6.59 |                            |
| 11/16/2017 |      | 3.97 | 1st verification re-sample |
| 12/28/2017 |      | 3.58 | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Chloride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601  | 601  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 3.3  |      |                            |
| 2/18/2016  | 3.22 |      |                            |
| 5/26/2016  | 3.18 |      |                            |
| 8/23/2016  | 3.41 |      |                            |
| 11/11/2016 | 3.51 |      |                            |
| 2/8/2017   | 3.19 |      |                            |
| 5/3/2017   | 3.5  |      |                            |
| 8/1/2017   | 3.37 |      |                            |
| 10/3/2017  |      | 6.1  |                            |
| 11/16/2017 |      | 3.87 | 1st verification re-sample |
| 12/28/2017 |      | 3.95 | 2nd verification re-sample |
|            |      |      |                            |

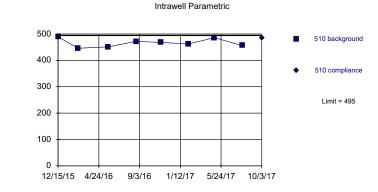

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 504 | 504 |
|------------|-----|-----|
| 12/16/2015 | 155 |     |
| 2/18/2016  | 236 |     |
| 5/25/2016  | 385 |     |
| 8/23/2016  | 168 |     |
| 11/11/2016 | 173 |     |
| 2/8/2017   | 174 |     |
| 5/4/2017   | 181 |     |
| 8/1/2017   | 156 |     |
| 10/3/2017  |     | 181 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505 | 505 |
|------------|-----|-----|
| 12/16/2015 | 162 |     |
| 2/18/2016  | 148 |     |
| 5/25/2016  | 172 |     |
| 8/23/2016  | 182 |     |
| 11/11/2016 | 152 |     |
| 2/8/2017   | 151 |     |
| 5/4/2017   | 159 |     |
| 8/1/2017   | 156 |     |
| 10/3/2017  |     | 158 |
|            |     |     |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary (based on x'4 transformation): Mean=4.0e10, Std. Dev=1.7e10, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.752, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

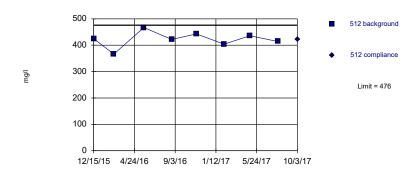
Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG



l/gr



Prediction Limit

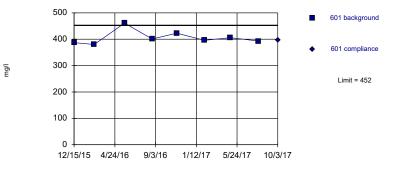

Background Data Summary: Mean=466, Std. Dev.=15.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.946, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Dissolved Solids Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=422, Std. Dev.=29.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



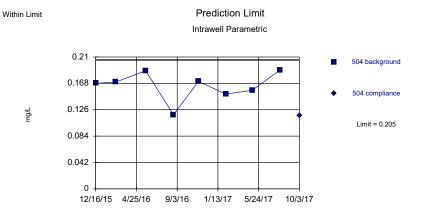
Background Data Summary: Mean=406, Std. Dev.=25.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.853, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506 | 506 |
|------------|-----|-----|
| 12/15/2015 | 475 |     |
| 2/18/2016  | 423 |     |
| 5/25/2016  | 133 |     |
| 8/23/2016  | 459 |     |
| 11/11/2016 | 477 |     |
| 2/8/2017   | 451 |     |
| 5/4/2017   | 462 |     |
| 8/4/2017   | 480 |     |
| 10/3/2017  |     | 450 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510 | 510 |
|------------|-----|-----|
|            | 010 | 510 |
| 12/15/2015 | 489 |     |
| 12/10/2010 | 400 |     |
| 2/18/2016  | 446 |     |
|            |     |     |
| 5/25/2016  | 451 |     |
|            |     |     |
| 8/23/2016  | 472 |     |
| 11/10/2016 | 468 |     |
| 11/10/2010 | 400 |     |
| 2/8/2017   | 462 |     |
|            |     |     |
| 5/3/2017   | 486 |     |
|            |     |     |
| 8/1/2017   | 456 |     |
| 10/0/0017  |     | 405 |
| 10/3/2017  |     | 485 |
|            |     |     |
|            |     |     |

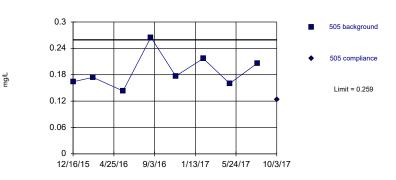

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            |     | =   |
|------------|-----|-----|
|            | 512 | 512 |
| 12/15/2015 | 425 |     |
| 0/10/0010  | 000 |     |
| 2/18/2016  | 366 |     |
| 5/25/2016  | 467 |     |
| 8/23/2016  | 422 |     |
| 11/11/2016 | 443 |     |
|            |     |     |
| 2/8/2017   | 404 |     |
| 5/3/2017   | 436 |     |
| 8/1/2017   | 414 |     |
| 10/3/2017  |     | 423 |
| 10/3/2017  |     | 425 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601 | 601 |
|------------|-----|-----|
| 12/15/2015 | 387 |     |
| 2/18/2016  | 380 |     |
| 5/26/2016  | 461 |     |
| 8/23/2016  | 401 |     |
| 11/11/2016 | 423 |     |
| 2/8/2017   | 396 |     |
| 5/3/2017   | 406 |     |
| 8/1/2017   | 393 |     |
| 10/3/2017  |     | 397 |
|            |     |     |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=0.164, Std. Dev.=0.0228, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.901, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

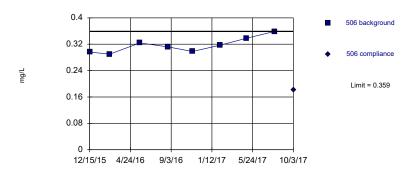
Within Limit

Prediction Limit



Background Data Summary: Mean=0.188, Std. Dev.=0.0393, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.914, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 1/31/2018 10:56 AM View: LF III

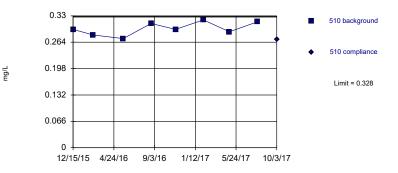

Sibley Client: SCS Engineers Data: Sibley

Constituent: Fluoride Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=0.317, Std. Dev.=0.0233, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.941, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



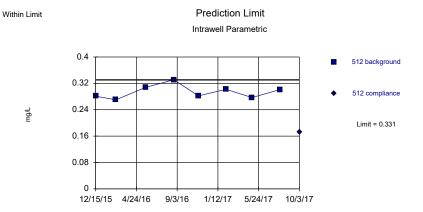
Background Data Summary: Mean=0.298, Std. Dev=0.0165, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.955, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 504   | 504   |
|------------|-------|-------|
| 12/16/2015 | 0.168 |       |
| 2/18/2016  | 0.17  |       |
| 5/25/2016  | 0.188 |       |
| 8/23/2016  | 0.118 |       |
| 11/11/2016 | 0.171 |       |
| 2/8/2017   | 0.151 |       |
| 5/4/2017   | 0.157 |       |
| 8/1/2017   | 0.189 |       |
| 10/3/2017  |       | 0.117 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505   | 505   |
|------------|-------|-------|
| 12/16/2015 | 0.164 |       |
| 2/18/2016  | 0.174 |       |
| 5/25/2016  | 0.143 |       |
| 8/23/2016  | 0.265 |       |
| 11/11/2016 | 0.177 |       |
| 2/8/2017   | 0.217 |       |
| 5/4/2017   | 0.16  |       |
| 8/1/2017   | 0.206 |       |
| 10/3/2017  |       | 0.124 |
|            |       |       |

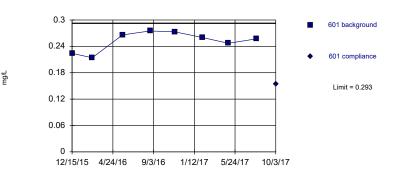

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506   | 506   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.29  |       |
| 5/25/2016  | 0.324 |       |
| 8/23/2016  | 0.312 |       |
| 11/11/2016 | 0.298 |       |
| 2/8/2017   | 0.317 |       |
| 5/4/2017   | 0.338 |       |
| 8/4/2017   | 0.359 |       |
| 10/3/2017  |       | 0.182 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510   | 510   |
|------------|-------|-------|
| 12/15/2015 | 0.296 |       |
| 2/18/2016  | 0.282 |       |
| 5/25/2016  | 0.273 |       |
| 8/23/2016  | 0.311 |       |
| 11/10/2016 | 0.296 |       |
| 2/8/2017   | 0.32  |       |
| 5/3/2017   | 0.29  |       |
| 8/1/2017   | 0.315 |       |
| 10/3/2017  |       | 0.271 |
|            |       |       |

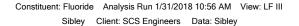
Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=0.294, Std. Dev.=0.0202, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.927, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

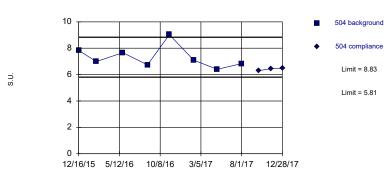



Prediction Limit



Background Data Summary: Mean=0.252, Std. Dev.=0.0224, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.891, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 1/31/2018 10:56 AM View: LF III

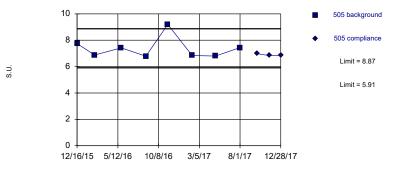

Sibley Client: SCS Engineers Data: Sibley



Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.32, Std. Dev.=0.835, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



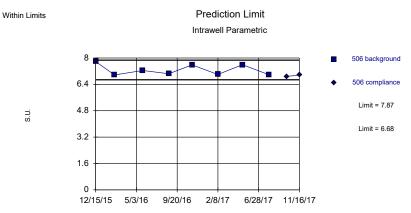
Background Data Summary: Mean=7.39, Std. Dev.=0.817, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.765, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

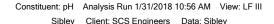
|            | 512   | 5     |
|------------|-------|-------|
| 12/15/2015 | 0.281 |       |
| 2/18/2016  | 0.27  |       |
| 5/25/2016  | 0.308 |       |
| 8/23/2016  | 0.331 |       |
| 11/11/2016 | 0.282 |       |
| 2/8/2017   | 0.302 |       |
| 5/3/2017   | 0.277 |       |
| 8/1/2017   | 0.301 |       |
| 10/3/2017  |       | 0.172 |
|            |       |       |

Constituent: Fluoride (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601   | 601   |
|------------|-------|-------|
| 12/15/2015 | 0.224 |       |
| 2/18/2016  | 0.214 |       |
| 5/26/2016  | 0.266 |       |
| 8/23/2016  | 0.275 |       |
| 11/11/2016 | 0.273 |       |
| 2/8/2017   | 0.26  |       |
| 5/3/2017   | 0.247 |       |
| 8/1/2017   | 0.257 |       |
| 10/3/2017  |       | 0.154 |
|            |       |       |


Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

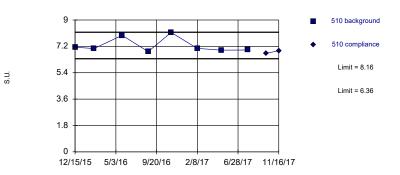
|            | 504  | 504  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.83 |      |              |
| 2/18/2016  | 6.99 |      |              |
| 5/25/2016  | 7.66 |      |              |
| 8/23/2016  | 6.74 |      |              |
| 11/11/2016 | 9.03 |      |              |
| 2/8/2017   | 7.09 |      |              |
| 5/4/2017   | 6.4  |      |              |
| 8/1/2017   | 6.83 |      |              |
| 10/3/2017  |      | 6.3  |              |
| 11/16/2017 |      | 6.45 | extra sample |
| 12/28/2017 |      | 6.47 | extra sample |
|            |      |      |              |


Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505  | 505  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.74 |      |              |
| 2/18/2016  | 6.88 |      |              |
| 5/25/2016  | 7.42 |      |              |
| 8/23/2016  | 6.79 |      |              |
| 11/11/2016 | 9.2  |      |              |
| 2/8/2017   | 6.84 |      |              |
| 5/4/2017   | 6.8  |      |              |
| 8/1/2017   | 7.44 |      |              |
| 10/3/2017  |      | 6.98 |              |
| 11/16/2017 |      | 6.84 | extra sample |
| 12/28/2017 |      | 6.85 | extra sample |
|            |      |      |              |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=7.27, Std. Dev.=0.329, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.833, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

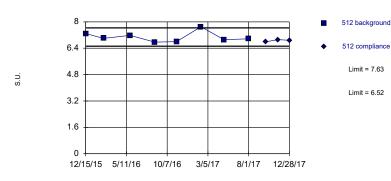






Prediction Limit



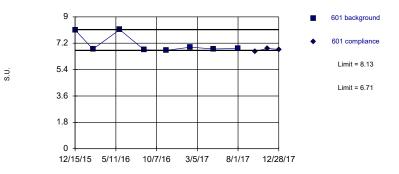

Background Data Summary: Mean=7.26, Std. Dev.=0.499, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.754, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.08, Std. Dev.=0.306, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.89, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.0236. Individual comparison alpha = 0.0118 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

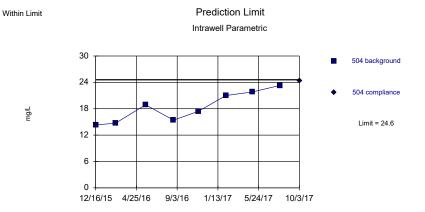
Constituent: pH Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: pH Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506  | 506  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.78 |      |              |
| 2/18/2016  | 6.97 |      |              |
| 5/25/2016  | 7.24 |      |              |
| 8/23/2016  | 7.04 |      |              |
| 11/11/2016 | 7.58 |      |              |
| 2/8/2017   | 7    |      |              |
| 5/4/2017   | 7.59 |      |              |
| 8/4/2017   | 6.98 |      |              |
| 10/3/2017  |      | 6.88 |              |
| 11/16/2017 |      | 6.96 | extra sample |

Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | F10  | 510  |              |
|------------|------|------|--------------|
|            | 510  | 510  |              |
| 12/15/2015 | 7.14 |      |              |
| 2/18/2016  | 7.05 |      |              |
| 5/25/2016  | 7.95 |      |              |
| 8/23/2016  | 6.84 |      |              |
| 11/10/2016 | 8.15 |      |              |
| 2/8/2017   | 7.06 |      |              |
| 5/3/2017   | 6.94 |      |              |
| 8/1/2017   | 6.95 |      |              |
| 10/3/2017  |      | 6.72 |              |
| 11/16/2017 |      |      |              |
| 11/10/2017 |      | 6.9  | extra sample |


Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

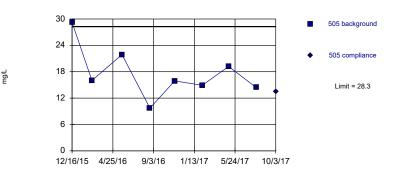
|            | 512  | 512  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.29 |      |              |
| 2/18/2016  | 7    |      |              |
| 5/25/2016  | 7.18 |      |              |
| 8/23/2016  | 6.77 |      |              |
| 11/11/2016 | 6.8  |      |              |
| 2/8/2017   | 7.7  |      |              |
| 5/3/2017   | 6.92 |      |              |
| 8/1/2017   | 6.97 |      |              |
| 10/3/2017  |      | 6.79 |              |
| 11/16/2017 |      | 6.92 | extra sample |
| 12/28/2017 |      | 6.88 | extra sample |
|            |      |      |              |

Constituent: pH (S.U.) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601  | 601  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 8.11 |      |                            |
| 2/18/2016  | 6.8  |      |                            |
| 5/26/2016  | 8.13 |      |                            |
| 8/23/2016  | 6.75 |      |                            |
| 11/11/2016 | 6.71 |      |                            |
| 2/8/2017   | 6.93 |      |                            |
| 5/4/2017   | 6.81 |      |                            |
| 8/1/2017   | 6.84 |      |                            |
| 10/3/2017  |      | 6.65 |                            |
| 11/16/2017 |      | 6.84 | 1st Verification re-sample |
| 12/28/2017 |      | 6.78 | extra sample               |
|            |      |      |                            |

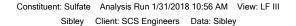
Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=18.4, Std. Dev.=3.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.923, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

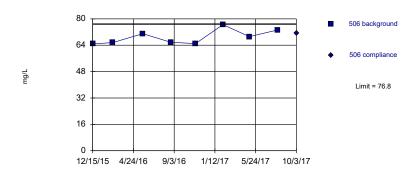



Prediction Limit





Background Data Summary: Mean=17.7, Std. Dev.=5.86, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

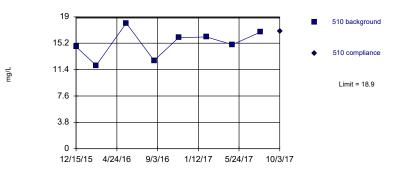

Constituent: Sulfate Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley



Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=68.9, Std. Dev.=4.38, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.876, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



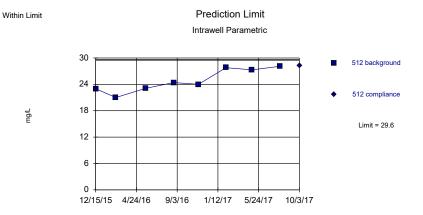
Background Data Summary: Mean=15.2, Std. Dev.=2.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | 14.3 |      |
| 2/18/2016  | 14.7 |      |
| 5/25/2016  | 18.9 |      |
| 8/23/2016  | 15.4 |      |
| 11/11/2016 | 17.4 |      |
| 2/8/2017   | 21   |      |
| 5/4/2017   | 21.8 |      |
| 8/1/2017   | 23.3 |      |
| 10/3/2017  |      | 24.3 |
|            |      |      |

Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 505  | 50   |
|------------|------|------|
| 12/16/2015 | 29.2 |      |
|            |      |      |
| 2/18/2016  | 16   |      |
| 5/25/2016  | 21.9 |      |
| 8/23/2016  | 9.73 |      |
| 11/11/2016 | 15.9 |      |
| 2/8/2017   | 14.9 |      |
| 5/4/2017   | 19.2 |      |
|            |      |      |
| 8/1/2017   | 14.4 |      |
| 10/3/2017  |      | 13.4 |
|            |      |      |


Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | 64.8 |      |
| 2/18/2016  | 65.6 |      |
| 5/25/2016  | 71   |      |
| 8/23/2016  | 65.8 |      |
| 11/11/2016 | 65   |      |
| 2/8/2017   | 76.5 |      |
| 5/4/2017   | 69.2 |      |
| 8/4/2017   | 73.3 |      |
| 10/3/2017  |      | 71.3 |
|            |      |      |

Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | 14.7 |      |
| 2/18/2016  | 12   |      |
| 5/25/2016  | 18.1 |      |
| 8/23/2016  | 12.7 |      |
| 11/10/2016 | 16   |      |
| 2/8/2017   | 16.1 |      |
| 5/3/2017   | 15   |      |
| 8/1/2017   | 16.8 |      |
| 10/3/2017  |      | 16.9 |
|            |      |      |

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=24.8, Std. Dev.=2.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.909, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 1/31/2018 10:56 AM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 1/31/2018 10:56 AM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 512  | 512  |
|------------|------|------|
| 12/15/2015 | 23   |      |
| 12/15/2015 | 23   |      |
| 2/18/2016  | 21   |      |
| 5/25/2016  | 23.1 |      |
| 5/25/2010  | 23.1 |      |
| 8/23/2016  | 24.4 |      |
| 11/11/2016 | 24   |      |
|            |      |      |
| 2/8/2017   | 27.8 |      |
| 5/3/2017   | 27.3 |      |
|            |      |      |
| 8/1/2017   | 28.1 |      |
| 10/3/2017  |      | 28.2 |
|            |      |      |
|            |      |      |

Constituent: Sulfate (mg/L) Analysis Run 1/31/2018 10:59 AM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | 15.5 |      |
| 2/18/2016  | 8.87 |      |
| 5/26/2016  | 8.85 |      |
| 8/23/2016  | 9.11 |      |
| 11/11/2016 | 16.1 |      |
| 2/8/2017   | 10.5 |      |
| 5/3/2017   | 8.71 |      |
| 8/1/2017   | 9.33 |      |
| 10/3/2017  |      | 9.76 |
|            |      |      |

Sibley Client: SCS Engineers Data: Sibley Printed 1/31/2018, 10:59 AM

|                         |      |                   | Obley      | Client. 000 Engineers D | ,       |             |             | , 10.03 AM |           |              |                       |
|-------------------------|------|-------------------|------------|-------------------------|---------|-------------|-------------|------------|-----------|--------------|-----------------------|
| <u>Constituent</u>      | Well | <u>Upper Lim.</u> | Lower Lim. | Date                    | Observ. | <u>Sig.</u> | <u>Bg N</u> |            | Transform | <u>Alpha</u> | <u>Method</u>         |
| Boron (mg/L)            | 504  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 505  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 506  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 510  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 512  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 601  | 0.2               | n/a        | 10/3/2017               | 0.1ND   | No          | 8           | 100        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | 504  | 36.8              | n/a        | 10/3/2017               | 33.2    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 505  | 28.1              | n/a        | 11/16/2017              | 26      | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 506  | 100               | n/a        | 11/16/2017              | 96      | No          | 8           | 0          | n/a       | 0.00591      | NP Intra (normality)  |
| Calcium (mg/L)          | 510  | 126               | n/a        | 11/16/2017              | 119     | No          | 8           | 0          | x^5       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 512  | 107               | n/a        | 11/16/2017              | 101     | No          | 8           | 0          | x^2       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 601  | 112               | n/a        | 11/16/2017              | 101     | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 504  | 1.27              | n/a        | 12/28/2017              | 1       | No          | 8           | 87.5       | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 505  | 1.19              | n/a        | 12/28/2017              | 2.12    | Yes         | 8           | 62.5       | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 506  | 6.57              | n/a        | 11/16/2017              | 6.15    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 510  | 3.75              | n/a        | 10/3/2017               | 3.36    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 512  | 3.83              | n/a        | 12/28/2017              | 3.58    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 601  | 3.58              | n/a        | 12/28/2017              | 3.95    | Yes         | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 504  | 385               | n/a        | 10/3/2017               | 181     | No          | 8           | 0          | n/a       | 0.00591      | NP Intra (normality)  |
| Dissolved Solids (mg/l) | 505  | 181               | n/a        | 10/3/2017               | 158     | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506  | 517               | n/a        | 10/3/2017               | 450     | No          | 8           | 0          | x^4       | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 510  | 495               | n/a        | 10/3/2017               | 485     | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 512  | 476               | n/a        | 10/3/2017               | 423     | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601  | 452               | n/a        | 10/3/2017               | 397     | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 504  | 0.205             | n/a        | 10/3/2017               | 0.117   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 505  | 0.259             | n/a        | 10/3/2017               | 0.124   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 506  | 0.359             | n/a        | 10/3/2017               | 0.182   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 510  | 0.328             | n/a        | 10/3/2017               | 0.271   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 512  | 0.331             | n/a        | 10/3/2017               | 0.172   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 601  | 0.293             | n/a        | 10/3/2017               | 0.154   | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 504  | 8.83              | 5.81       | 12/28/2017              | 6.47    | No          | 8           | 0          | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 505  | 8.87              | 5.91       | 12/28/2017              | 6.85    | No          | 8           | 0          | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 506  | 7.87              | 6.68       | 11/16/2017              | 6.96    | No          | 8           | 0          | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 510  | 8.16              | 6.36       | 11/16/2017              | 6.9     | No          | 8           | 0          | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 512  | 7.63              | 6.52       | 12/28/2017              | 6.88    | No          | 8           | 0          | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 601  | 8.13              | 6.71       | 12/28/2017              | 6.78    | No          | 8           | 0          | n/a       | 0.0118       | NP Intra (normality)  |
| Sulfate (mg/L)          | 504  | 24.6              | n/a        | 10/3/2017               | 24.3    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 505  | 28.3              | n/a        | 10/3/2017               | 13.4    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 506  | 76.8              | n/a        | 10/3/2017               | 71.3    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 510  | 18.9              | n/a        | 10/3/2017               | 16.9    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 512  | 29.6              | n/a        | 10/3/2017               | 28.2    | No          | 8           | 0          | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 601  | 16.1              | n/a        | 10/3/2017               | 9.76    | No          | 8           | 0          | n/a       | 0.00591      | NP Intra (normality)  |
|                         |      |                   |            |                         |         |             |             |            |           |              |                       |

Sibley Generating Station Determination of Statistically Significant Increases CCR Landfill January 31, 2018

#### ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Options |                   |         |             |                |                                      |              |       |          |             |  |
|---------|-------------------|---------|-------------|----------------|--------------------------------------|--------------|-------|----------|-------------|--|
| Data    | Output Trer       | nd Test | Control Cht | Prediction Lim | Tolerance Lim                        | Conf/Tol Int | ANOVA | Welchs   | Other Tests |  |
| Exclu   | de data flags: [  | i       |             |                | Observations wi<br>characters will b |              |       | owing    |             |  |
| Data    | Reading Options   | 3       |             |                |                                      |              |       |          |             |  |
| • I     | ndividual Observa | ations  |             |                |                                      |              |       |          |             |  |
| 0       | Mean of Each:     |         | O Month     |                |                                      |              |       |          |             |  |
| 0       | Median of Each:   |         | Seasor      | n              |                                      |              |       |          |             |  |
| Setup   | Detect / Trace H  |         |             |                |                                      |              |       |          |             |  |
|         | OK Cano           | cel     | Save Settin | gs As Load     | Saved Settings                       | . Defaults   | Edit  | INI File |             |  |

# Options

| Data Output Trend Test Control Cht Prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Black and White Output</li> <li>Four Plots Per Page</li> <li>Always Combine Data Pages</li> <li>Include Tick Marks on Data Page</li> <li>Use Constituent Name for Graph Title</li> <li>Draw Border Around Text Reports and Data Pages</li> <li>Enlarge/Reduce Fonts (Graphs): 100%</li> <li>Enlarge/Reduce Fonts (Data/Text Reports): 100%</li> <li>Wide Margins (on reports without explicit setting)</li> <li>Use CAS# (Not Const. Name)</li> <li>Truncate File Names to 20 Characters</li> <li>Include Limit Lines when found in Database</li> <li>Show Deselected Data on Time Series Lighter </li> <li>Show Deselected Data on all Data Pages Lighter</li> </ul> | <ul> <li>Prompt to Overwrite/Append Summary Tables</li> <li>Round Limits to 2 Sig. Digits (when not set in data file)</li> <li>User-Set Scale</li> <li>Indicate Background Data</li> <li>Show Exact Dates</li> <li>Thick Plot Lines</li> <li>Zoom Factor: 200% </li> <li>Output Decimal Precision</li> <li>Less Precision</li> <li>Normal Precision</li> <li>More Precision</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Store Print Jobs in Multiple Constituent Mode Store All Print Jobs                                                                                                                                                                                                                                                                                                                     |
| Printer: Adobe PDF OK Cancel Save Settings As L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oad Saved Settings Defaults Edit INI File                                                                                                                                                                                                                                                                                                                                              |

| ata Output Trend Test Control Cht Prediction Lim                                                                                                                                                    | Tolerance Lim Conf/Tol Int ANOVA Welchs Other Test                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ Test for Normality using Shapiro-Wilk/Francia ✓ ✓ Use Non-Parametric Test when Non-Detects Percent >                                                                                              | at Alpha = 0.01 <ul> <li>Matural Log or No Transformation</li> <li>Never Transform</li> </ul>                                                                                                                                     |
| Ise Aitchison's Adjustment v when Non-Detects Percent >                                                                                                                                             | 15         O Use Specific Transformation:           Natural Log         V                                                                                                                                                         |
| _ Optional Further Refinement: Use Attchison's v<br>_ Use Poisson Prediction Limit when Non-Detects Percent >                                                                                       | When NDs % > 50     Use Best W Statistic       90     Plot Transformed Values                                                                                                                                                     |
| <ul> <li>If Seasonality Is Detected</li> <li>If Seasonality Is Detected Or Insufficient to Test</li> <li>Always (When Sufficient Data)</li> <li>Never</li> <li>Always Use Non-Parametric</li> </ul> | <ul> <li>Stop if Background Trend Detected at Alpha = 0.05</li> <li>Plot Background Data</li> <li>Override Standard Deviation:</li> <li>Override DF:</li> <li>Override Kappa:</li> </ul>                                          |
| Facility\alphaStatistical Evaluations per Year:2Constituents Analyzed:7Downgradient (Compliance) Wells:4                                                                                            | <ul> <li>Automatically Remove Background Outliers</li> <li>2-Tailed Test Mode</li> <li>✓ Show Deselected Data Lighter ✓</li> </ul>                                                                                                |
| Sampling Plan<br>Comparing Individual Observations<br>1 of 1 0 1 of 2 1 of 3 0 1 of 4<br>2 of 4 ("Modified California")                                                                             | Non-Parametric Limit = Highest Background Value<br>Non-Parametric Limit when 100% Non-Detects:<br>Highest/Second Highest Background Value<br>Most Recent PQL if available, or MDL<br>Most Recent Background Value (subst. method) |

| tions  |                            |                 |                 |                |                |                  |              |             |                |
|--------|----------------------------|-----------------|-----------------|----------------|----------------|------------------|--------------|-------------|----------------|
| Data   | Output                     | Trend Test      | Control Cht     | Prediction Lim | Tolerance Lim  | Conf/Tol Int     | ANOVA        | Welchs      | Other Tests    |
| Rank   | Von Neum                   | ann, Wilcoxon   | Rank Sum /      | Mann-Whitney-  |                |                  |              |             |                |
|        | Use Modifie                | d Alpha         |                 | 🗌 2-Tail       | ed Test Mode   |                  |              |             |                |
| Outlie | er Tests —                 |                 |                 |                |                |                  |              |             |                |
| O      | EPA 1989 O                 | utlier Screenin | ig (fixed alpha | of 0.05)       |                |                  |              |             |                |
|        | Dixon's at α=              | = 0.05 ~ or     | ifn.> 22 . √    | Rosner's at α= | 0.01 V 🔽 l     | Jse EPA Scree    | ning to esta | blish Suspe | ected Outliers |
| 0      | Tukey's Out                | lier Screening, | with IQR Mult   | tiplier = 3.0  | Use Ladd       | ler of Powers to | o achieve B  | est W Stat  |                |
|        | -                          |                 |                 |                | Alpha = 0.1    |                  |              |             |                |
|        | _                          | mality using S  | опаріго-учік/т  | -rancia 🗸 at   | Alpria = 0.1   | ~                |              |             |                |
|        | Stop if N                  |                 | an Tana S Mar   | Nessel         |                |                  |              |             |                |
|        |                            | e with Paramet  |                 |                |                | I                | <b>-</b>     |             |                |
|        | O Tukeys                   | if Non-Normal   | , with IQR Mu   | ltiplier = 3.0 | Use Lado       | der of Powers t  | o achieve b  | est vv Stat |                |
|        | No Outlier If              | Less Than       | 3.0 Times I     | Median         |                |                  |              |             |                |
|        | Apply Rules                | found in Ohio   | Guidance Do     | cument 0715    |                |                  |              |             |                |
|        | Combine Ba                 | ckground Wel    | ls on the Outli | er Report      |                |                  |              |             |                |
| Piper  | , Stiff Diagra             | am              |                 |                |                |                  |              |             |                |
|        | Combine We                 | ells            |                 |                | $\sim$         | Label Constit    | uents        |             |                |
|        | Combine Da                 | tes             |                 |                | $\checkmark$   | Label Axes       |              |             |                |
| 0      | Use Def <mark>aul</mark> t | Constituent Na  | ames            |                | $\checkmark$   | Note Cation-     | Anion Balan  | ce (Piper o | nly)           |
| 0      | Use Constitu               | uent Definition | File Edit       |                |                |                  |              |             |                |
|        |                            |                 |                 |                |                |                  |              |             |                |
|        | OK                         | Cancel          | Save Settin     | gs As Load     | Saved Settings | . Defaults       | Edit         | INI File    | 3              |

## ATTACHMENT 2-2

Spring 2018 Semiannual Detection Monitoring Statistical Analyses

#### MEMORANDUM

September 12, 2018

To: Sibley Generating Station 33200 E Johnson Road Sibley, Missouri 64088 KCP&L Greater Missouri Operations Company

From: SCS Engineers



#### RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2018 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Sibley Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 17, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 15, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on June 27, 2018 and August 8, 2018.

The completed statistical evaluation identified Appendix III constituent, sulfate, above its respective prediction limit in monitoring wells MW-504 and MW-512.

The prediction limit for sulfate in upgradient monitoring well MW-504 is 24.6 mg/L. The detection monitoring sample was reported at 32.8 mg/L. The first verification re-sample was collected on June 27, 2018 with a result of 31.8 mg/L. The second verification re-sample was collected on August 8, 2018 with a result of 32.3 mg/L.

The prediction limit for sulfate in monitoring well MW-512 is 29.6 mg/L. The detection monitoring sample was reported at 29.6 mg/L. The first verification re-sample was collected on June 27, 2018 with a result of 30.3 mg/L. The second verification re-sample was collected on August 8, 2018 with a result of 30.9 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring wells MW-504 and MW-512 exceed their respective prediction limits and are confirmed statistically significant increases (SSIs) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified two SSIs above the background prediction limits for sulfate in upgradient monitor well MW-504 and downgradient monitor well MW-512.

Sibley Generating Station Determination of Statistically Significant Increases (May 2018 Event) CCR Landfill September 12, 2018 Page 2 of 2

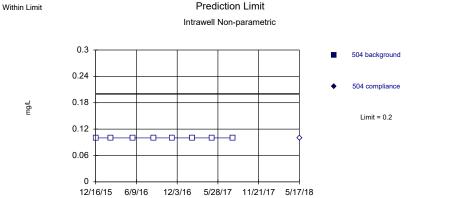
Attached to this memorandum are the following backup information:

Attachment 1: Sanitas<sup>™</sup> Output:

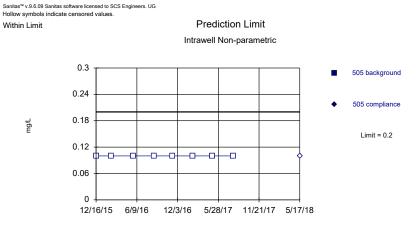
Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas<sup>™</sup> Configuration Settings:

Screen shots of the applicable Sanitas<sup>TM</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

Sibley Generating Station Determination of Statistically Significant Increases (May 2018 Event) CCR Landfill September 12, 2018


#### ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas  $^{\rm tw}$  v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

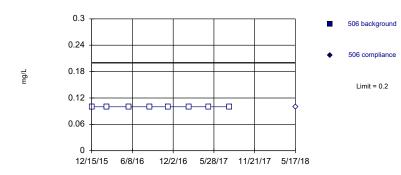


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.00118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III


Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley


Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

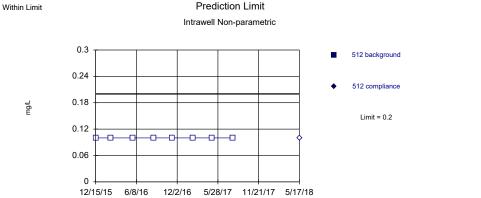
Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

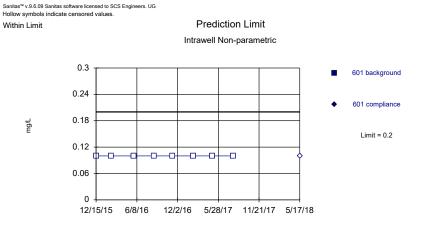
|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |


Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/4/2017   | <0.2 |      |
| 8/4/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |


Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/10/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |

Sanitas  $^{\rm tw}$  v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.00118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley Constituent: Boron Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=31.6, Std. Dev.=2.88, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188. Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=24.6, Std. Dev.=1.92, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.977, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

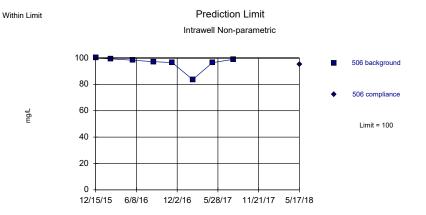
Constituent: Calcium Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 512  | 512  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/25/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |

Constituent: Boron (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 601  | 601  |
|------------|------|------|
| 12/15/2015 | <0.2 |      |
| 2/18/2016  | <0.2 |      |
| 5/26/2016  | <0.2 |      |
| 8/23/2016  | <0.2 |      |
| 11/11/2016 | <0.2 |      |
| 2/8/2017   | <0.2 |      |
| 5/3/2017   | <0.2 |      |
| 8/1/2017   | <0.2 |      |
| 5/17/2018  |      | <0.2 |
|            |      |      |


Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | 31.5 |      |
| 2/18/2016  | 34.3 |      |
| 5/25/2016  | 30.2 |      |
| 8/23/2016  | 32.2 |      |
| 11/11/2016 | 36.9 |      |
| 2/8/2017   | 29.6 |      |
| 5/4/2017   | 27.7 |      |
| 8/1/2017   | 30.5 |      |
| 5/17/2018  |      | 33.3 |
|            |      |      |

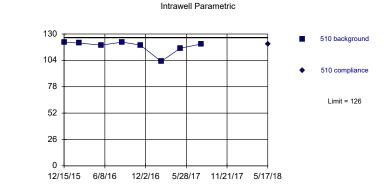
Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505  | 505  |                            |  |  |
|------------|------|------|----------------------------|--|--|
| 12/16/2015 | 28   |      |                            |  |  |
| 2/18/2016  | 25.4 |      |                            |  |  |
| 5/25/2016  | 24.6 |      |                            |  |  |
| 8/23/2016  | 25.7 |      |                            |  |  |
| 11/11/2016 | 21.6 |      |                            |  |  |
| 2/8/2017   | 23.5 |      |                            |  |  |
| 5/4/2017   | 23.2 |      |                            |  |  |
| 8/1/2017   | 25.1 |      |                            |  |  |
| 5/17/2018  |      | 28.2 |                            |  |  |
| 6/27/2018  |      | 25.8 | 1st verification re-sample |  |  |
|            |      |      |                            |  |  |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Calcium Analysis Run 8/17/2018 2:37 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

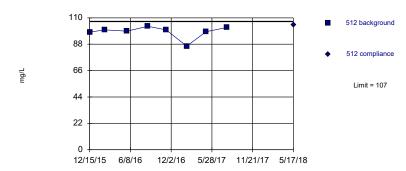
Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

mg/L



Prediction Limit

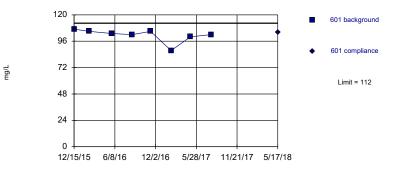

Background Data Summary (based on x^5 transformation): Mean=2.3e10, Std. Dev =5.1e9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.756, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary (based on square transformation): Mean=9696, Std. Dev.=964, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=101, Std. Dev.=6.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.762, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

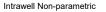
Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

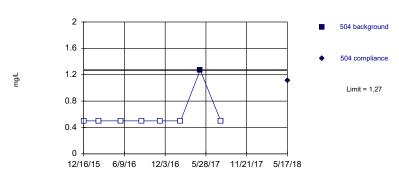
|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | 100  |      |
| 2/18/2016  | 99.3 |      |
| 5/25/2016  | 98.3 |      |
| 8/23/2016  | 97.2 |      |
| 11/11/2016 | 96.5 |      |
| 2/8/2017   | 83.6 |      |
| 5/4/2017   | 96.4 |      |
| 8/4/2017   | 99   |      |
| 5/17/2018  |      | 94.9 |
|            |      |      |

Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 510 | 510 |
|------------|-----|-----|
| 12/15/2015 | 122 |     |
| 2/18/2016  | 121 |     |
| 5/25/2016  | 119 |     |
| 8/23/2016  | 122 |     |
| 11/10/2016 | 119 |     |
| 2/8/2017   | 103 |     |
| 5/3/2017   | 116 |     |
| 8/1/2017   | 120 |     |
| 5/17/2018  |     | 120 |
|            |     |     |

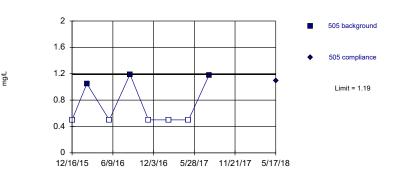
Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III


|            | 512  | 512 |
|------------|------|-----|
|            |      |     |
| 12/15/2015 | 98.1 |     |
| 2/18/2016  | 100  |     |
| 2/10/2010  | 100  |     |
| 5/25/2016  | 98.9 |     |
| 0/22/2016  | 102  |     |
| 8/23/2016  | 103  |     |
| 11/11/2016 | 100  |     |
| 2/8/2017   | 86.4 |     |
|            |      |     |
| 5/3/2017   | 98.4 |     |
| 8/1/2017   | 102  |     |
| 0/1/2017   | 102  |     |
| 5/17/2018  |      | 104 |
|            |      |     |
|            |      |     |


Constituent: Calcium (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 601  | 601 |
|------------|------|-----|
| 12/15/2015 | 107  |     |
| 2/18/2016  | 105  |     |
| 5/26/2016  | 103  |     |
| 8/23/2016  | 102  |     |
| 11/11/2016 | 105  |     |
| 2/8/2017   | 87.5 |     |
| 5/3/2017   | 100  |     |
| 8/1/2017   | 102  |     |
| 5/17/2018  |      | 104 |
|            |      |     |

Sanitas<sup>w</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit


#### Prediction Limit





Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



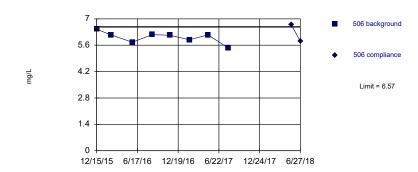


Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 8/17/2018 2:37 PM View: LF III

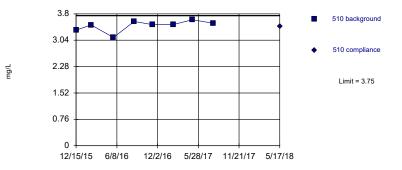

Sibley Client: SCS Engineers Data: Sibley

Constituent: Chloride Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=6.02, Std. Dev.=0.307, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.918, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



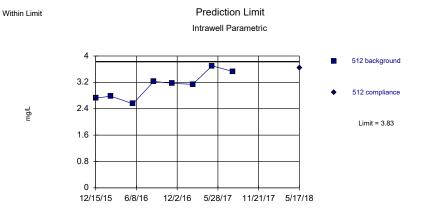
Background Data Summary: Mean=3.46, Std. Dev.=0.162, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.86, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504  | 504  |
|------------|------|------|
| 12/16/2015 | <1   |      |
| 2/18/2016  | <1   |      |
| 5/25/2016  | <1   |      |
| 8/23/2016  | <1   |      |
| 11/11/2016 | <1   |      |
| 2/8/2017   | <1   |      |
| 5/4/2017   | 1.27 |      |
| 8/1/2017   | <1   |      |
| 5/17/2018  |      | 1.11 |
|            |      |      |

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505  | 505  |
|------------|------|------|
|            |      | 505  |
| 12/16/2015 | <1   |      |
| 2/18/2016  | 1.05 |      |
| 5/25/2016  | <1   |      |
| 8/23/2016  | 1.19 |      |
| 11/11/2016 | <1   |      |
| 2/8/2017   | <1   |      |
| 5/4/2017   | <1   |      |
| 8/1/2017   | 1.18 |      |
| 5/17/2018  |      | 1.09 |
|            |      |      |

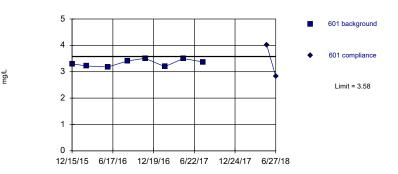

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 506  | 506     |                        |
|------------|------|---------|------------------------|
| 12/15/2015 | 6.45 |         |                        |
| 2/18/2016  | 6.15 |         |                        |
| 5/25/2016  | 5.76 |         |                        |
| 8/23/2016  | 6.16 |         |                        |
| 11/11/2016 | 6.13 |         |                        |
| 2/8/2017   | 5.89 |         |                        |
| 5/4/2017   | 6.15 |         |                        |
| 8/4/2017   | 5.45 |         |                        |
| 5/17/2018  |      | 6.69    |                        |
| 6/27/2018  |      | 5.8 1st | verification re-sample |
| 0/2//2010  |      | 5.0 151 | vernication            |

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 510   | 510  |
|------------|-------|------|
| 12/15/2015 | 3.33  |      |
| 12/13/2013 | 5.55  |      |
| 2/18/2016  | 3.48  |      |
| 5/25/2016  | 3.12  |      |
| 8/22/2016  | 2 5 9 |      |
| 8/23/2016  | 3.58  |      |
| 11/10/2016 | 3.49  |      |
| 2/8/2017   | 3.49  |      |
| 5/3/2017   | 3.63  |      |
|            |       |      |
| 8/1/2017   | 3.53  |      |
| 5/17/2018  |       | 3.44 |
|            |       |      |
|            |       |      |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=3.1, Std. Dev.=0.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.954, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

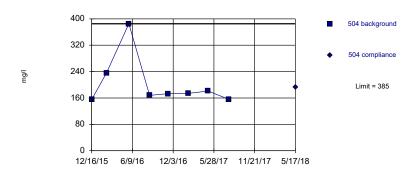
Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=3.34, Std. Dev.=0.133, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.903, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 8/17/2018 2:37 PM View: LF III


Siblev Client: SCS Engineers Data: Siblev

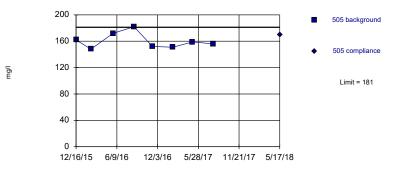
Constituent: Chloride Analysis Run 8/17/2018 2:37 PM View: LF III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=160, Std. Dev.=11.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.905, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

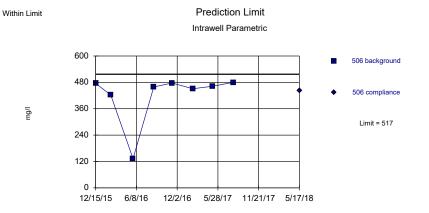
> Constituent: Dissolved Solids Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|                 | 512  | 512  |
|-----------------|------|------|
|                 |      |      |
| 12/15/2015      | 2.72 |      |
| 2/18/2016       | 2.78 |      |
|                 |      |      |
| 5/25/2016       | 2.55 |      |
| 8/23/2016       | 3.23 |      |
|                 |      |      |
| 11/11/2016      | 3.17 |      |
| 2/8/2017        | 3.14 |      |
| E /2/0017       | 0.7  |      |
| 5/3/2017        | 3.7  |      |
| 8/1/2017        | 3.53 |      |
| E 14 7 10 0 4 0 |      | 0.04 |
| 5/17/2018       |      | 3.64 |
|                 |      |      |
|                 |      |      |

Constituent: Chloride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            |      | 601  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 3.3  |      |                            |
| 2/18/2016  | 3.22 |      |                            |
| 5/26/2016  | 3.18 |      |                            |
| 8/23/2016  | 3.41 |      |                            |
| 11/11/2016 | 3.51 |      |                            |
| 2/8/2017   | 3.19 |      |                            |
| 5/3/2017   | 3.5  |      |                            |
| 8/1/2017   | 3.37 |      |                            |
| 5/17/2018  |      | 4.02 |                            |
| 6/27/2018  |      | 2.82 | 1st verification re-sample |

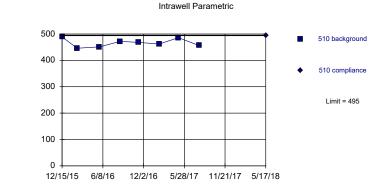

Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504 | 504 |
|------------|-----|-----|
|            |     | 004 |
| 12/16/2015 | 155 |     |
| 2/18/2016  | 236 |     |
| 5/25/2016  | 385 |     |
| 8/23/2016  | 168 |     |
| 11/11/2016 | 173 |     |
| 2/8/2017   | 174 |     |
| 5/4/2017   | 181 |     |
| 8/1/2017   | 156 |     |
| 5/17/2018  |     | 193 |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505 | 505 |
|------------|-----|-----|
| 12/16/2015 | 162 |     |
| 2/18/2016  | 148 |     |
| 5/25/2016  | 172 |     |
| 8/23/2016  | 182 |     |
| 11/11/2016 | 152 |     |
| 2/8/2017   | 151 |     |
| 5/4/2017   | 159 |     |
| 8/1/2017   | 156 |     |
| 5/17/2018  |     | 170 |
|            |     |     |

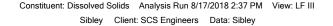
Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG




Background Data Summary (based on x<sup>4</sup>4 transformation): Mean=4.0e10, Std. Dev=1.7e10, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk@alpha = 0.01, calculated = 0.752, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG

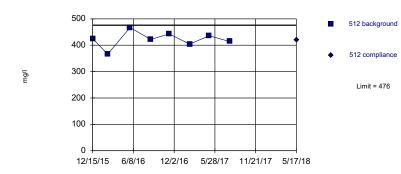



l/gr



Prediction Limit

Background Data Summary: Mean=466, Std. Dev.=15.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.946, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

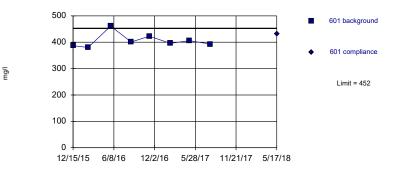

Constituent: Dissolved Solids Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley



Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit




Background Data Summary: Mean=422, Std. Dev.=29.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=406, Std. Dev.=25.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.853, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

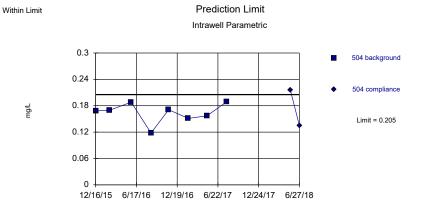
Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 506 | 506 |
|------------|-----|-----|
| 12/15/2015 | 475 |     |
| 2/18/2016  | 423 |     |
| 5/25/2016  | 133 |     |
| 8/23/2016  | 459 |     |
| 11/11/2016 | 477 |     |
| 2/8/2017   | 451 |     |
| 5/4/2017   | 462 |     |
| 8/4/2017   | 480 |     |
| 5/17/2018  |     | 442 |
|            |     |     |

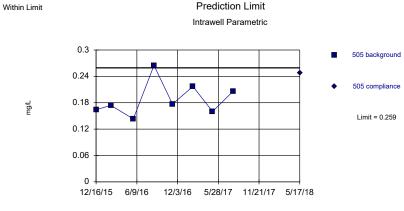
Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 510 | 510 |
|------------|-----|-----|
| 10/15/0015 | 400 |     |
| 12/15/2015 | 489 |     |
| 2/18/2016  | 446 |     |
|            |     |     |
| 5/25/2016  | 451 |     |
| 8/23/2016  | 472 |     |
|            |     |     |
| 11/10/2016 | 468 |     |
| 2/8/2017   | 462 |     |
|            |     |     |
| 5/3/2017   | 486 |     |
| 8/1/2017   | 456 |     |
|            |     |     |
| 5/17/2018  |     | 494 |
|            |     |     |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III


|            | 512 | 512 |
|------------|-----|-----|
| 12/15/2015 | 425 |     |
| 12/10/2010 | 420 |     |
| 2/18/2016  | 366 |     |
| 5/25/2016  | 467 |     |
| 0/00/0010  | 400 |     |
| 8/23/2016  | 422 |     |
| 11/11/2016 | 443 |     |
| 2/8/2017   | 404 |     |
| 5/3/2017   | 436 |     |
|            |     |     |
| 8/1/2017   | 414 |     |
| 5/17/2018  |     | 419 |
|            |     |     |
|            |     |     |

Constituent: Dissolved Solids (mg/l) Analysis Run 8/17/2018 2:41 PM View: LF III


|            | 601 | 601 |
|------------|-----|-----|
| 12/15/2015 | 387 |     |
| 2/18/2016  | 380 |     |
| 5/26/2016  | 461 |     |
| 8/23/2016  | 401 |     |
| 11/11/2016 | 423 |     |
| 2/8/2017   | 396 |     |
| 5/3/2017   | 406 |     |
| 8/1/2017   | 393 |     |
| 5/17/2018  |     | 431 |
|            |     |     |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



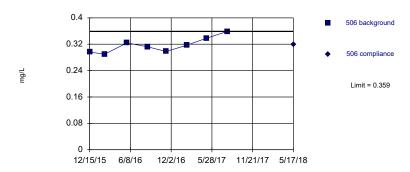


Background Data Summary: Mean=0.164, Std. Dev.=0.0228, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.901, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.



Background Data Summary: Mean=0.188, Std. Dev.=0.0393, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.914, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 8/17/2018 2:37 PM View: LF III

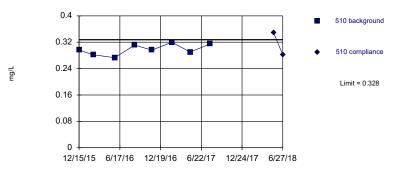

Sibley Client: SCS Engineers Data: Sibley

Constituent: Fluoride Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=0.317, Std. Dev.=0.0233, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.941, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=0.298, Std. Dev=0.0165, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.955, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504   | 504   |                            |
|------------|-------|-------|----------------------------|
| 12/16/2015 | 0.168 |       |                            |
| 2/18/2016  | 0.17  |       |                            |
| 5/25/2016  | 0.188 |       |                            |
| 8/23/2016  | 0.118 |       |                            |
| 11/11/2016 | 0.171 |       |                            |
| 2/8/2017   | 0.151 |       |                            |
| 5/4/2017   | 0.157 |       |                            |
| 8/1/2017   | 0.189 |       |                            |
| 5/17/2018  |       | 0.216 |                            |
| 6/27/2018  |       | 0.135 | 1st verification re-sample |
|            |       |       |                            |

Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505   | 505   |
|------------|-------|-------|
| 12/16/2015 | 0.164 |       |
| 2/18/2016  | 0.174 |       |
| 5/25/2016  | 0.143 |       |
| 8/23/2016  | 0.265 |       |
| 11/11/2016 | 0.177 |       |
| 2/8/2017   | 0.217 |       |
| 5/4/2017   | 0.16  |       |
| 8/1/2017   | 0.206 |       |
| 5/17/2018  |       | 0.247 |
|            |       |       |

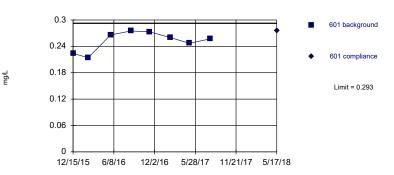
Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 506   | 506  |
|------------|-------|------|
| 12/15/2015 | 0.296 |      |
| 2/18/2016  | 0.29  |      |
| 5/25/2016  | 0.324 |      |
| 8/23/2016  | 0.312 |      |
| 11/11/2016 | 0.298 |      |
| 2/8/2017   | 0.317 |      |
| 5/4/2017   | 0.338 |      |
| 8/4/2017   | 0.359 |      |
| 5/17/2018  |       | 0.32 |
|            |       |      |

Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 510   | 510   |                            |
|------------|-------|-------|----------------------------|
| 12/15/2015 | 0.296 |       |                            |
| 2/18/2016  | 0.282 |       |                            |
| 5/25/2016  | 0.273 |       |                            |
| 8/23/2016  | 0.311 |       |                            |
| 11/10/2016 | 0.296 |       |                            |
| 2/8/2017   | 0.32  |       |                            |
| 5/3/2017   | 0.29  |       |                            |
| 8/1/2017   | 0.315 |       |                            |
| 5/17/2018  |       | 0.348 |                            |
| 6/27/2018  |       | 0.282 | 1st verification re-sample |
| 6/27/2018  |       |       | 0.282                      |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=0.294, Std. Dev.=0.0202, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.927, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG

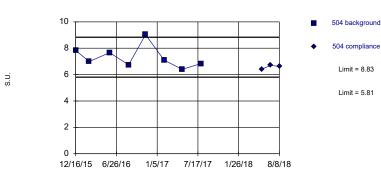
Within Limit

Prediction Limit



Background Data Summary: Mean=0.252, Std. Dev.=0.0224, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.891, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 8/17/2018 2:37 PM View: LF III

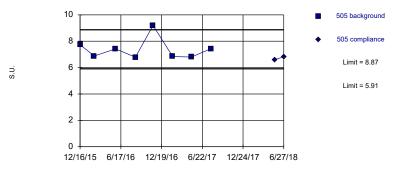

Sibley Client: SCS Engineers Data: Sibley

Constituent: Fluoride Analysis Run 8/17/2018 2:37 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.32, Std. Dev.=0.835, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.892, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas<sup>™</sup> v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



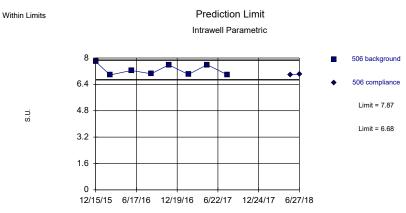
Background Data Summary: Mean=7.39, Std. Dev.=0.817, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.765, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

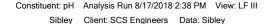
|            | 512   | 512   |
|------------|-------|-------|
|            |       | 512   |
| 12/15/2015 | 0.281 |       |
| 2/18/2016  | 0.27  |       |
| 5/25/2016  | 0.308 |       |
| 8/23/2016  | 0.331 |       |
| 11/11/2016 | 0.282 |       |
| 2/8/2017   | 0.302 |       |
| 5/3/2017   | 0.277 |       |
| 8/1/2017   | 0.301 |       |
| 5/17/2018  |       | 0.328 |
|            |       | 5.020 |

Constituent: Fluoride (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 601   | 601   |
|------------|-------|-------|
| 12/15/2015 | 0.224 |       |
| 2/18/2016  | 0.214 |       |
| 5/26/2016  | 0.266 |       |
| 8/23/2016  | 0.275 |       |
| 11/11/2016 | 0.273 |       |
| 2/8/2017   | 0.26  |       |
| 5/3/2017   | 0.247 |       |
| 8/1/2017   | 0.257 |       |
| 5/17/2018  |       | 0.275 |
|            |       |       |


Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504  | 504  |              |
|------------|------|------|--------------|
| 12/16/2015 | 7.83 |      |              |
| 2/18/2016  | 6.99 |      |              |
| 5/25/2016  | 7.66 |      |              |
| 8/23/2016  | 6.74 |      |              |
| 11/11/2016 | 9.03 |      |              |
| 2/8/2017   | 7.09 |      |              |
| 5/4/2017   | 6.4  |      |              |
| 8/1/2017   | 6.83 |      |              |
| 5/17/2018  |      | 6.41 |              |
| 6/27/2018  |      | 6.7  | extra sample |
| 8/8/2018   |      | 6.62 | extra sample |
|            |      |      |              |

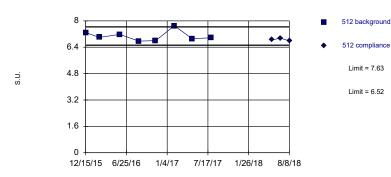

Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505  | 505  |              |
|------------|------|------|--------------|
|            |      | 505  |              |
| 12/16/2015 | 7.74 |      |              |
| 2/18/2016  | 6.88 |      |              |
| 5/25/2016  | 7.42 |      |              |
| 8/23/2016  | 6.79 |      |              |
| 11/11/2016 | 9.2  |      |              |
| 2/8/2017   | 6.84 |      |              |
|            |      |      |              |
| 5/4/2017   | 6.8  |      |              |
| 8/1/2017   | 7.44 |      |              |
| 5/17/2018  |      | 6.6  |              |
| 6/27/2018  |      | 6.82 | extra sample |
|            |      |      |              |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=7.27, Std. Dev.=0.329, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.833, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

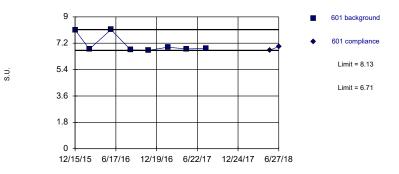



Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=7.08, Std. Dev.=0.306, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.89, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Non-parametric

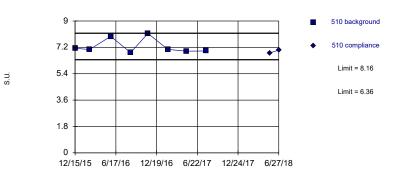


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.0236. Individual comparison alpha = 0.0118 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 8/17/2018 2:38 PM View: LF III

Background Data Summary: Mean=7.26, Std. Dev.=0.499, n=8. Insufficient data to test for seasonality: data were not

deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.754, critical = 0.749. Kappa = 1.81


Constituent: pH Analysis Run 8/17/2018 2:38 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: pH Analysis Run 8/17/2018 2:38 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



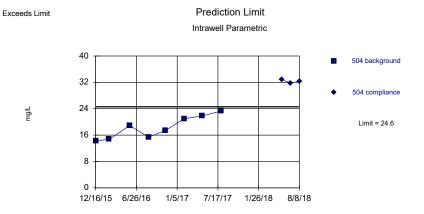
(c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|                | .78<br>.97<br>24 |              |
|----------------|------------------|--------------|
|                |                  |              |
| 5/25/2016 7.2  | 24               |              |
|                | .27              |              |
| 8/23/2016 7.0  | .04              |              |
| 11/11/2016 7.5 | .58              |              |
| 2/8/2017 7     |                  |              |
| 5/4/2017 7.5   | .59              |              |
| 8/4/2017 6.9   | .98              |              |
| 5/17/2018      | 6.97             |              |
| 6/27/2018      | 7.02             | extra sample |

Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|            |      | =    |               |
|------------|------|------|---------------|
|            | 510  | 510  |               |
| 12/15/2015 | 7.14 |      |               |
| 2/18/2016  | 7.05 |      |               |
| 5/25/2016  | 7.95 |      |               |
| 8/23/2016  | 6.84 |      |               |
| 11/10/2016 | 8.15 |      |               |
|            |      |      |               |
| 2/8/2017   | 7.06 |      |               |
| 5/3/2017   | 6.94 |      |               |
| 8/1/2017   | 6.95 |      |               |
| 5/17/2018  |      | 6.82 |               |
| 6/27/2018  |      | 7.01 | extra sammple |
|            |      |      |               |

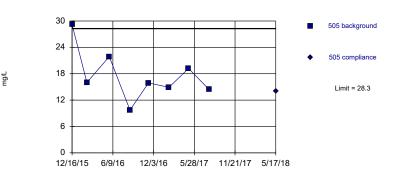

Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 512  | 512  |              |
|------------|------|------|--------------|
| 12/15/2015 | 7.29 |      |              |
| 2/18/2016  | 7    |      |              |
| 5/25/2016  | 7.18 |      |              |
| 8/23/2016  | 6.77 |      |              |
| 11/11/2016 | 6.8  |      |              |
| 2/8/2017   | 7.7  |      |              |
| 5/3/2017   | 6.92 |      |              |
| 8/1/2017   | 6.97 |      |              |
| 5/17/2018  |      | 6.85 |              |
| 6/27/2018  |      | 6.95 | extra sample |
| 8/8/2018   |      | 6.78 | extra sample |
|            |      |      |              |

Constituent: pH (S.U.) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 601  | 601       |            |
|------------|------|-----------|------------|
| 12/15/2015 | 8.11 |           |            |
| 2/18/2016  | 6.8  |           |            |
| 5/26/2016  | 8.13 |           |            |
| 8/23/2016  | 6.75 |           |            |
| 11/11/2016 | 6.71 |           |            |
| 2/8/2017   | 6.93 |           |            |
| 5/4/2017   | 6.81 |           |            |
| 8/1/2017   | 6.84 |           |            |
| 5/17/2018  |      | 6.72      |            |
| 6/27/2018  |      | 6.98 extr | tra sample |
|            |      |           |            |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=18.4, Std. Dev.=3.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.923, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

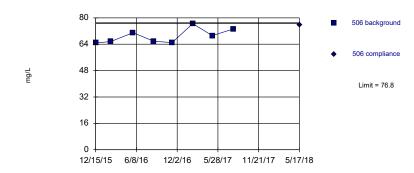
Within Limit

Prediction Limit



Background Data Summary: Mean=17.7, Std. Dev.=5.86, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 8/17/2018 2:38 PM View: LF III

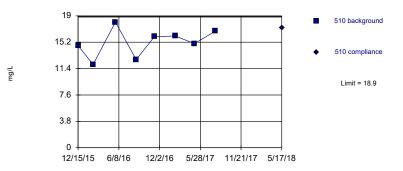

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 8/17/2018 2:38 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric




Background Data Summary: Mean=68.9, Std. Dev.=4.38, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.876, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=15.2, Std. Dev.=2.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 504  | 504  |                            |
|------------|------|------|----------------------------|
|            |      | 504  |                            |
| 12/16/2015 | 14.3 |      |                            |
| 2/18/2016  | 14.7 |      |                            |
| 5/25/2016  | 18.9 |      |                            |
| 8/23/2016  | 15.4 |      |                            |
| 11/11/2016 | 17.4 |      |                            |
| 2/8/2017   | 21   |      |                            |
| 5/4/2017   | 21.8 |      |                            |
| 8/1/2017   | 23.3 |      |                            |
| 5/17/2018  |      | 32.8 |                            |
| 6/27/2018  |      | 31.8 | 1st verification re-sample |
| 8/8/2018   |      | 32.3 | 2nd verification re-sample |
|            |      |      |                            |

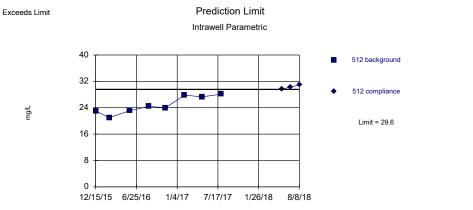
Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 505  | 505 |
|------------|------|-----|
| 12/16/2015 | 29.2 |     |
| 2/18/2016  | 16   |     |
| 5/25/2016  | 21.9 |     |
| 8/23/2016  | 9.73 |     |
| 11/11/2016 | 15.9 |     |
| 2/8/2017   | 14.9 |     |
| 5/4/2017   | 19.2 |     |
| 8/1/2017   | 14.4 |     |
| 5/17/2018  |      | 14  |
|            |      |     |

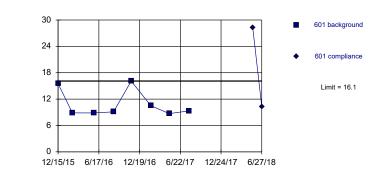
Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 506  | 506  |
|------------|------|------|
| 12/15/2015 | 64.8 |      |
|            |      |      |
| 2/18/2016  | 65.6 |      |
| 5/25/2016  | 71   |      |
| 8/23/2016  | 65.8 |      |
| 11/11/2016 | 65   |      |
| 2/8/2017   | 76.5 |      |
| 5/4/2017   | 69.2 |      |
| 8/4/2017   | 73.3 |      |
|            | 73.3 |      |
| 5/17/2018  |      | 75.7 |
|            |      |      |

Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III


|            | 510  | 510  |
|------------|------|------|
| 12/15/2015 | 14.7 |      |
|            |      |      |
| 2/18/2016  | 12   |      |
| 5/25/2016  | 18.1 |      |
| 8/23/2016  | 12.7 |      |
| 0/23/2010  | 12.7 |      |
| 11/10/2016 | 16   |      |
| 2/8/2017   | 16.1 |      |
| 5/3/2017   | 15   |      |
|            |      |      |
| 8/1/2017   | 16.8 |      |
| 5/17/2018  |      | 17.3 |
|            |      |      |
|            |      |      |

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG




Within Limit

mg/L



Background Data Summary: Mean=24.8, Std. Dev.=2.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.909, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.



Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Sulfate Analysis Run 8/17/2018 2:38 PM View: LF III

Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate Analysis Run 8/17/2018 2:38 PM View: LF III Sibley Client: SCS Engineers Data: Sibley

Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 512  | 512  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 23   |      |                            |
| 2/18/2016  | 21   |      |                            |
| 5/25/2016  | 23.1 |      |                            |
| 8/23/2016  | 24.4 |      |                            |
| 11/11/2016 | 24   |      |                            |
| 2/8/2017   | 27.8 |      |                            |
| 5/3/2017   | 27.3 |      |                            |
| 8/1/2017   | 28.1 |      |                            |
| 5/17/2018  |      | 29.6 |                            |
| 6/27/2018  |      | 30.3 | 1st verification re-sample |
| 8/8/2018   |      | 30.9 | 2nd verification re-sample |
|            |      |      |                            |

Constituent: Sulfate (mg/L) Analysis Run 8/17/2018 2:41 PM View: LF III

|            | 601  | 601  |                            |
|------------|------|------|----------------------------|
| 12/15/2015 | 15.5 |      |                            |
| 2/18/2016  | 8.87 |      |                            |
| 5/26/2016  | 8.85 |      |                            |
| 8/23/2016  | 9.11 |      |                            |
| 11/11/2016 | 16.1 |      |                            |
| 2/8/2017   | 10.5 |      |                            |
| 5/3/2017   | 8.71 |      |                            |
| 8/1/2017   | 9.33 |      |                            |
| 5/17/2018  |      | 28.3 |                            |
| 6/27/2018  |      | 10.3 | 1st verification re-sample |
|            |      |      |                            |

Sibley Client: SCS Engineers Data: Sibley Printed 8/17/2018, 2:41 PM

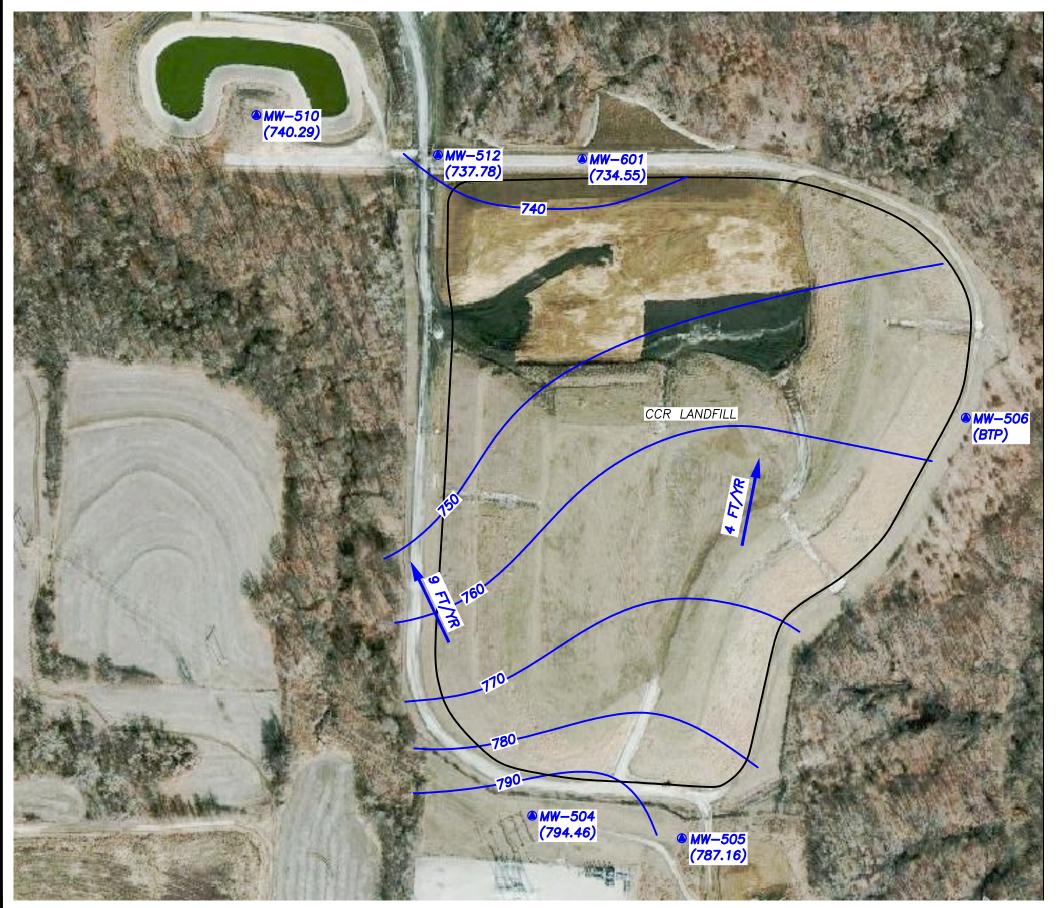
|                         |      |                   | Cloicy     | _           |         |             |   | 5, 2.411 W  |           |              |                       |
|-------------------------|------|-------------------|------------|-------------|---------|-------------|---|-------------|-----------|--------------|-----------------------|
| <u>Constituent</u>      | Well | <u>Upper Lim.</u> | Lower Lim. | <u>Date</u> | Observ. | <u>Sig.</u> | - | <u>%NDs</u> | Transform | <u>Alpha</u> | Method                |
| Boron (mg/L)            | 504  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 505  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 506  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 510  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 512  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | 601  | 0.2               | n/a        | 5/17/2018   | 0.1ND   | No          | 8 | 100         | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | 504  | 36.8              | n/a        | 5/17/2018   | 33.3    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 505  | 28.1              | n/a        | 6/27/2018   | 25.8    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 506  | 100               | n/a        | 5/17/2018   | 94.9    | No          | 8 | 0           | n/a       | 0.00591      | NP Intra (normality)  |
| Calcium (mg/L)          | 510  | 126               | n/a        | 5/17/2018   | 120     | No          | 8 | 0           | x^5       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 512  | 107               | n/a        | 5/17/2018   | 104     | No          | 8 | 0           | x^2       | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/L)          | 601  | 112               | n/a        | 5/17/2018   | 104     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 504  | 1.27              | n/a        | 5/17/2018   | 1.11    | No          | 8 | 87.5        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 505  | 1.19              | n/a        | 5/17/2018   | 1.09    | No          | 8 | 62.5        | n/a       | 0.00591      | NP Intra (NDs) 1 of 3 |
| Chloride (mg/L)         | 506  | 6.57              | n/a        | 6/27/2018   | 5.8     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 510  | 3.75              | n/a        | 5/17/2018   | 3.44    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 512  | 3.83              | n/a        | 5/17/2018   | 3.64    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/L)         | 601  | 3.58              | n/a        | 6/27/2018   | 2.82    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 504  | 385               | n/a        | 5/17/2018   | 193     | No          | 8 | 0           | n/a       | 0.00591      | NP Intra (normality)  |
| Dissolved Solids (mg/l) | 505  | 181               | n/a        | 5/17/2018   | 170     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506  | 517               | n/a        | 5/17/2018   | 442     | No          | 8 | 0           | x^4       | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 510  | 495               | n/a        | 5/17/2018   | 494     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 512  | 476               | n/a        | 5/17/2018   | 419     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601  | 452               | n/a        | 5/17/2018   | 431     | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 504  | 0.205             | n/a        | 6/27/2018   | 0.135   | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 505  | 0.259             | n/a        | 5/17/2018   | 0.247   | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 506  | 0.359             | n/a        | 5/17/2018   | 0.32    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 510  | 0.328             | n/a        | 6/27/2018   | 0.282   | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 512  | 0.331             | n/a        | 5/17/2018   | 0.328   | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/L)         | 601  | 0.293             | n/a        | 5/17/2018   | 0.275   | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 504  | 8.83              | 5.81       | 8/8/2018    | 6.62    | No          | 8 | 0           | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 505  | 8.87              | 5.91       | 6/27/2018   | 6.82    | No          | 8 | 0           | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 506  | 7.87              | 6.68       | 6/27/2018   | 7.02    | No          | 8 | 0           | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 510  | 8.16              | 6.36       | 6/27/2018   | 7.01    | No          | 8 | 0           | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 512  | 7.63              | 6.52       | 8/8/2018    | 6.78    | No          | 8 | 0           | No        | 0.00094      | Param Intra 1 of 3    |
| pH (S.U.)               | 601  | 8.13              | 6.71       | 6/27/2018   | 6.98    | No          | 8 | 0           | n/a       | 0.0118       | NP Intra (normality)  |
| Sulfate (mg/L)          | 504  | 24.6              | n/a        | 8/8/2018    | 32.3    | Yes         | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 505  | 28.3              | n/a        | 5/17/2018   | 14      | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 506  | 76.8              | n/a        | 5/17/2018   | 75.7    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 510  | 18.9              | n/a        | 5/17/2018   | 17.3    | No          | 8 | 0           | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 512  | 29.6              | n/a        | 8/8/2018    | 30.9    | Yes         | 8 | ů<br>O      | No        | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/L)          | 601  | 16.1              | n/a        | 6/27/2018   | 10.3    | No          | 8 | 0           | n/a       | 0.00591      | NP Intra (normality)  |
|                         |      | 10.1              | 176        | 0,2172010   | 10.0    |             | 0 | 0           |           | 0.00001      | maa (normanty)        |

Sibley Generating Station Determination of Statistically Significant Increases (May 2018 Event) CCR Landfill September 12, 2018

#### ATTACHMENT 2

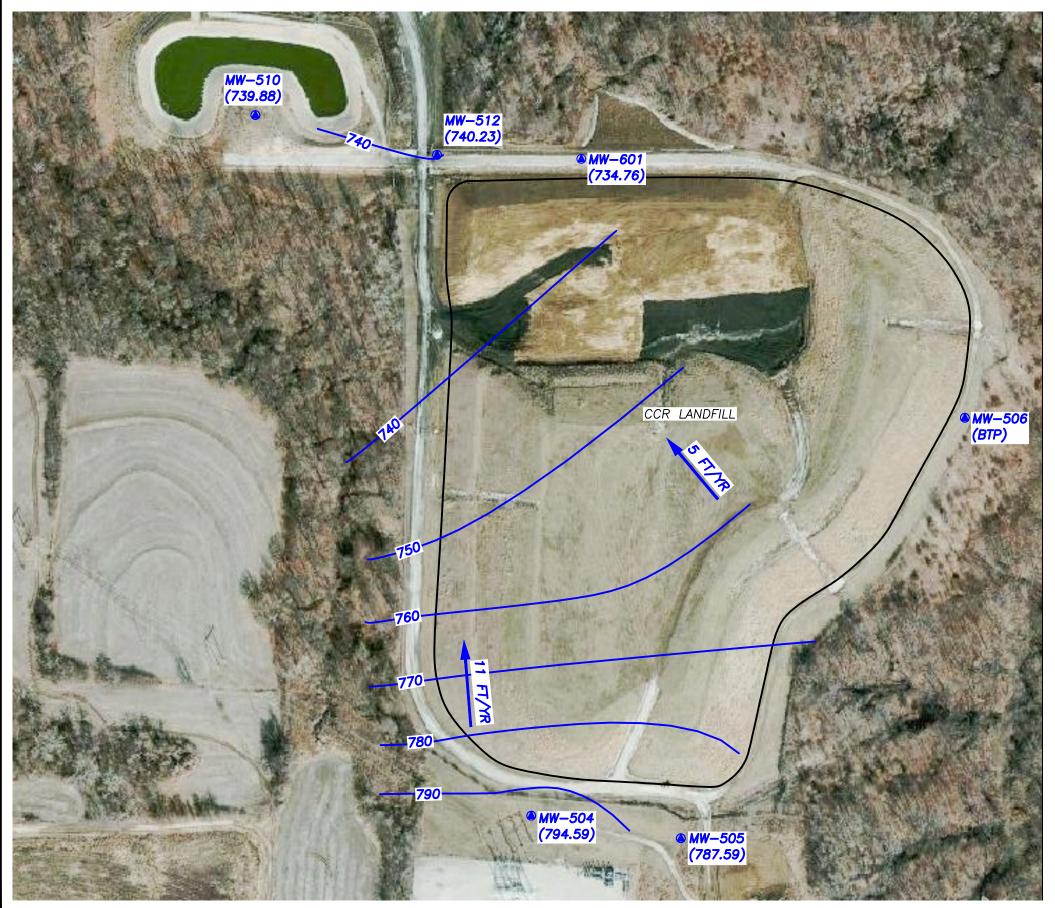
Sanitas<sup>™</sup> Configuration Settings

| Data                                                                                   | Output       | Trend Test                    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|----------------------------------------------------------------------------------------|--------------|-------------------------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
| Exclude data flags: i Data Reading Options Individual Observations Mean of Each: Month |              |                               |             |                |               |              |       |        |             |
| Data                                                                                   | Reading O    | ptions                        |             |                |               |              |       |        |             |
| 🔘 In                                                                                   | ndividual Ob | oservations                   |             |                |               |              |       |        |             |
| $\bigcirc$ M                                                                           | lean of Eac  | :h:                           | O Month     |                |               |              |       |        |             |
| $\bigcirc$ M                                                                           | ledian of Ea | ach:                          | Seasor      | n              |               |              |       |        |             |
| Setup                                                                                  | Seasons      | ace Handling.<br>Process Resa |             |                |               |              |       |        |             |


| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output                                                                                                                               | Trend Test                                                                                                                                                                                                       | Control Cht                                                                                    | Prediction Lim      | Tolerance Lim                                                                                                                                                   | Conf/Tol Int                                                     | ANOVA         | Welchs    | Other Tests       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|-----------|-------------------|
| <ul> <li>Fou</li> <li>Fou</li></ul> | Include Tick<br>Use Constit<br>aw Border A<br>arge/Reduc<br>de Margins<br>e CAS# (No<br>incate File N<br>lude Limit Li<br>ow Deselec | Page<br>abine Data Pa<br>k Marks on D<br>uent Name for<br>round Text R<br>ce Fonts (Gran<br>ce Fonts (Data<br>(on reports with<br>t Const. Name<br>Names to 20<br>nes when fou<br>ted Data on 1<br>ted Data on a | ata Page<br>r Graph Title<br>eports and Da<br>ohs):<br>a/Text Report<br>thout explicit s<br>e) | s): 100%<br>etting) | <ul> <li>□ Rou</li> <li>□ Use</li> <li>□ Indi</li> <li>□ Sho</li> <li>□ Thic</li> <li>Zoo</li> <li>Output</li> <li>● Les</li> <li>○ No</li> <li>○ Mo</li> </ul> | Decimal Precisi<br>ss Precision<br>mal Precision<br>re Precision | 2 Sig. Digits | (when not | set in data file) |
| Printer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adobe PD                                                                                                                             | F                                                                                                                                                                                                                |                                                                                                | ⊻ s                 | tore Print Jobs in                                                                                                                                              | muluple consu                                                    | LUERIL MODE   | Store /   | V Printers        |
| rinter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000010                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                |                     |                                                                                                                                                                 |                                                                  |               |           | Thinkers          |

| Data                                                                                                                                           | Output                                                     | Trend Test                                        | Control Cht                                      | Prediction Lim   | Tolerance Lim                                                                      | Conf/Tol Int                                           | ANOVA                                                                 | Welchs                                              | Other Tests |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|-------------|
| _                                                                                                                                              | t for Norma<br>Non-Paran                                   |                                                   | apiro-Wilk/Fra<br>nen Non-Dete                   |                  | at Alpha = 0.01                                                                    | ✓ 0<br>0<br>0                                          | nsformation<br>Use Ladder<br>Natural Log<br>Never Tran<br>Use Specifi | g or No Tran<br>Isform                              |             |
| Use Ait                                                                                                                                        | chison's Ad                                                | ljustment $ \sim $                                | when Non-De                                      | etects Percent > | 15                                                                                 | 0                                                      | Use Specin                                                            | Natura                                              |             |
| Opti                                                                                                                                           | onal Furthe                                                | r Refinement:                                     | Use Aitchise                                     | on's 🗸 w         | hen NDs % >                                                                        | 50                                                     | Use Best W                                                            |                                                     |             |
| Use                                                                                                                                            | Poisson Pr                                                 | ediction Limit                                    | when Non-De                                      | etects Percent > | 90                                                                                 |                                                        | Plot Transfo                                                          | ormed Value                                         | es          |
| <ul> <li>If</li> <li>If</li> <li>A</li> <li>A</li> <li>Facility</li> <li>Statistic</li> <li>Constri</li> <li>Downsi</li> <li>Sampli</li> </ul> | Seasonality<br>Seasonality<br>Iways (Whe<br>Iways Use<br>/ | en Sufficient E<br>Non-Parametr<br>tions per Year | Or Insufficient<br>Data) ()<br>ic<br>r:<br>ells: | to Test<br>Never | Plot Ba<br>Override St<br>Override D<br>Automa<br>2-Tailec<br>Show D<br>Non-Parame | Background Tr<br>ckground Data<br>andard Deviati<br>F: | a<br>ion:<br>Override Ka<br>Backgroun<br>a Lighter<br>Highest Bac     | ppa:<br>nd Outliers<br><br>kground Va<br>i-Detects: |             |
|                                                                                                                                                | of 1 C                                                     | ) 1 of 2 (<br>ified California                    | 1 of 3                                           | 0 1 of 4         | Most R                                                                             | t/Second High<br>ecent PQL if a<br>ecent Backgro       | vailable, or                                                          | MDL                                                 | nod)        |

| Data     | Output         | Trend Test      | Control Cht      | Prediction Lim | Tolerance Lim | Conf/Tol Int     | ANOVA        | Welchs      | Other Tests    |
|----------|----------------|-----------------|------------------|----------------|---------------|------------------|--------------|-------------|----------------|
| - Rank \ | Von Neuma      | ann, Wilcoxon   | n Rank Sum /     | Mann-Whitney - |               |                  |              |             |                |
| Us       | se Modified    | Alpha           |                  | 2-Tail         | ed Test Mode  |                  |              |             |                |
|          | _              |                 |                  |                |               |                  |              |             |                |
| Outlier  |                |                 |                  |                |               |                  |              |             |                |
| () EF    | PA 1989 O      | utlier Screenin | ng (fixed alpha  | of 0.05)       |               |                  |              |             |                |
| 🔘 Di     | xon's at α=    | = 0.05 ~ or     | ∵ifn.> 22 ∨      | Rosner's at α= | 0.01 🗸 🔽 l    | Jse EPA Scree    | ning to esta | blish Suspe | ected Outliers |
| O Tu     | ukey's Outli   | ier Screening,  | with IQR Mult    | tiplier = 3.0  | Use Lado      | ler of Powers to | o achieve B  | est W Stat  |                |
| 🗹 Te     | est For Non    | mality using \$ | Shapiro-Wilk/F   | Francia 🗸 at / | Alpha = 0.1   | $\sim$           |              |             |                |
| ۲        | ) Stop if N    | lon-Normal      |                  |                |               |                  |              |             |                |
| C        | ) Continue     | with Paramet    | tric Test if Nor | n-Normal       |               |                  |              |             |                |
| C        | ) Tukey'si     | if Non-Normal   | , with IQR Mu    | tiplier = 3.0  | ) Use Lad     | der of Powers t  | o achieve E  | Best W Stat |                |
| ⊠ No     | o Outlier If I | Less Than       | 3.0 Times        | Median         |               |                  |              |             |                |
| Ap       | oply Rules f   | found in Ohio   | Guidance Do      | cument 0715    |               |                  |              |             |                |
|          | ombine Bac     | ckground Wel    | lls on the Outli | er Report      |               |                  |              |             |                |
| Piper, S | Stiff Diagra   | m               |                  |                |               |                  |              |             |                |
|          | ombine We      | lls             |                  |                | $\checkmark$  | ] Label Constit  | uents        |             |                |
|          | ombine Dat     | es              |                  |                | $\checkmark$  | Label Axes       |              |             |                |
| 🔘 Us     | se Default (   | Constituent N   | ames             |                | $\checkmark$  | Note Cation-/    | Anion Balan  | ce (Piper o | nly)           |
| O Us     | se Constitu    | ent Definition  | File Edit        |                |               |                  |              |             |                |
|          |                |                 |                  |                |               |                  |              |             |                |


Jared Morrison December 16, 2022

# ATTACHMENT 3 Groundwater Potentiometric Surface Maps



200 SCALE

| DATE     |                                                |                                                                                                                                                                                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV.     |                                                |                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | Y 2018)                                        | g and                                                                                                                                                                                                                                                  | ENDUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| неет пле | POTENTIOMETRIC SURFACE MAP (MA<br>CCR LANDFILL | ROJECT TITLE<br>2018 GROUNDWATER MONITORIN                                                                                                                                                                                                             | CORRECTIVE ACTION REPORT ADDENDUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CLIENT   | EVERGY MISSOURI WEST, INC.                     |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 7311 W. 130th St. Ste. 100                     | D-0020 FAX. (313) 001-0                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                | SCS ENGINEERS<br>Tati W. 130h St. See. 100<br>Tati W. 130h St. See. 100<br>Tati W. 130h St. See. 100<br>Tati W. 130h St. See. 100<br>EVERGY MISSOURI WEST, INC.<br>EVERGY MISSOURI WEST, INC.<br>POTENTIOMETRIC SURFACE MAP (MAY 2018)<br>CCR LANDFILL | SCS ENGINEERS     CLENT     CLENT     CLENT     CLENT     CLENT     REV       731 W. 130h St. Sto. 100<br>Orefland Park, Kanssa 66213<br>PH. (913) 681-0012     CLENT     POTENTIONETRIC SURFACE MAP (MAY 2018)     REV       731 W. 130h St. Sto. 100<br>Orefland Park, Kanssa 66213<br>PH. (913) 681-0012     FECT TILE     POTENTIONETRIC SURFACE MAP (MAY 2018)     REV       71 W. 130h St. Sto. 100<br>PROJECT TILE     CCR LANDFILL     PROJECT TILE     PROJECT TILE       71 W. 130h St. 100<br>PROJECT TILE     PROJECT TILE     PROJECT TILE     PROJECT TILE       71 W. 100 WATER MONITORING AND     2018 GROUNDWATER MONITORING AND     PLONITORING AND |



200 SCALE

| NOTES:<br>1. HORIZ<br>URS F<br>KCP&<br>JANUA<br>2. GOOG<br>3. BOUN<br>LOCAT<br>4. WATEF | (REPRESI<br>GROUNDW<br>WELLS (G<br>CCR LANL<br>GROUNDW<br>AND FLOW<br>BELOW TO<br>DELOW TO<br>DELOW TO<br>DELOW TO<br>DELOW TO<br>DELE EARTH<br>DARY AND<br>TIONS SHO | ENTATIVE<br>WATER MO<br>SROUNDWA<br>DFILL UNI<br>WATER FLC<br>W RATE (<br>OP OF PL<br>VERTICAL<br>CONSTR<br>GENERATIN<br>530511.00<br>AERIAL II<br>MONITOR<br>WN ARE A | DATUM:<br>UCTION,<br>NG STATION,<br>0001, DATED<br>MAGE. MARCH<br>RING WELL<br>APPROXIMATE.<br>ENTS COMPLET | )<br>TEM<br>V)<br>2015. | CLENT CLENT SHEET TILE REV. DATE | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-0030 FAX. (913) 661-0012 SIBLEY GENERATING STATION SIBLEY, MISSOURI         | CHK. BY      |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|
| )<br>                                                                                   | 0                                                                                                                                                                     | 5                                                                                                                                                                      | 200                                                                                                         | 400<br>FEET             | CAD<br>18-NO                     | Diversion of the state of the s | PH. (913) 661-0030 FAX. (913) 661-0<br>PROJ. NO.<br>22213167.17 DMM. 811. TGW | CHK. BY: IDD |