2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

NORTH AND SOUTH ASH IMPOUNDMENTS MONTROSE GENERATING STATION CLINTON, MISSOURI

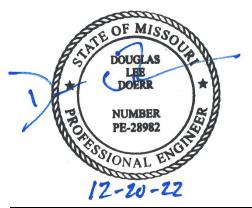
Presented To: Kansas City Power & Light Company

27213168.18 | January 2019, Revised December 20, 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the North and South Ash Impoundments at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the North and South Ash Impoundments at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

i

Douglas L. Doerr, P.E.

SCS Engineers

Revision	Revision	Revision	Summary of Revisions
Number	Date	Section	
0	January 2019	NA	Original Report.
1	December 20, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sect	ion		Pag	e
CERT	IFICAT	IONS		i
1	INTRO	DUCTIO	ON	.1
2	§ 257	7.90(e)	ANNUAL REPORT REQUIREMENTS	.1
	2.1	§ 257.9	90(e)(1) Site Map	. 1
	2.2		90(e)(2) Monitoring System Changes	
	2.3	§ 257.9	90(e)(3) Summary of Sampling Events	.2
	2.4	§ 257.9	90(e)(4) Monitoring Transition Narrative	.2
	2.5	§ 257.9	90(e)(5) Other Requirements	.2
			§ 257.90(e) Program Status	
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency	.3
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	.3
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency	y
				.3
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	.4
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	.4
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	.4
3	GENE	RAL CO	MMENTS	.4

Appendices

Appendix A Figures Figure 1: Site Map

Appendix BTablesTable 1: Appendix III Detection Monitoring ResultsTable 2: Detection Monitoring Field Measurements

Addendum 1 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the North and South Ash Impoundments at the Montrose Generating Station.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the North and South Ash Impoundments and all background (or upgradient) and downgradient monitoring wells with identification numbers for the North and South Ash Impoundments groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the North and South Ash Impoundments in 2018.

1

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2018). Samples collected in 2018 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include both the Spring 2018 semiannual detection monitoring data and the Fall 2018 semiannual detection monitoring data.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2018. Only detection monitoring was conducted in 2018.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the statistical evaluation of the initial Fall 2017 semiannual detection monitoring event per the certified statistical method,
- b. completion of the 2017 Annual Groundwater Monitoring and Corrective Action Report,
- c. completion of the Spring 2018 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- d. completion of the statistical evaluation of the Spring 2018 semiannual detection monitoring event per the certified statistical method, and
- e. initiation of the Fall 2018 semiannual detection monitoring sampling and analysis event.

2

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2019).

Semiannual Spring and Fall 2019 groundwater sampling and analysis. Completion of verification sampling and analyses and statistical evaluation of Fall 2018 and Spring 2019 detection monitoring data and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

Not applicable because no such demonstration was conducted.

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

3

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

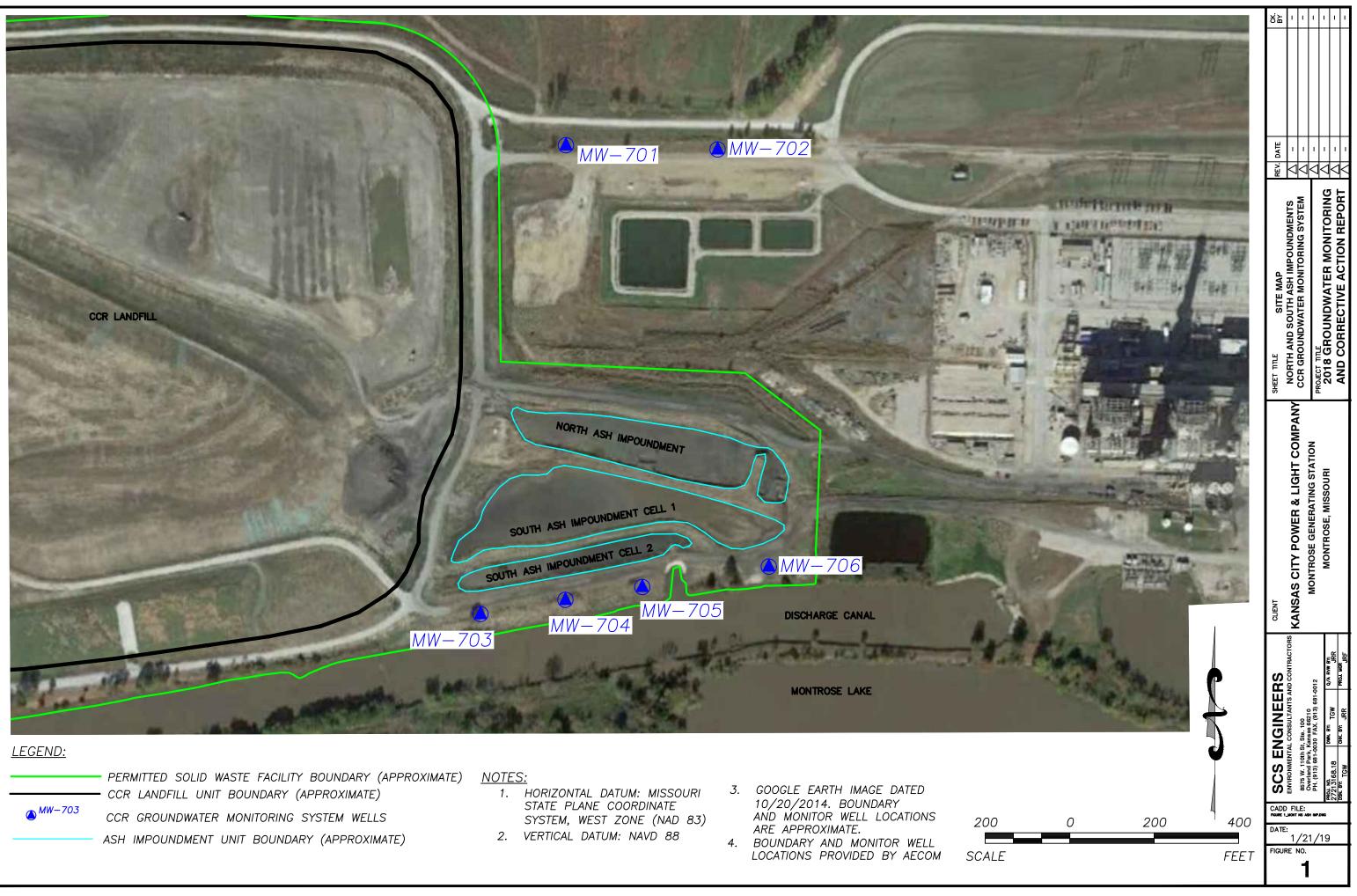
Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures for additional time to addition in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

3 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Montrose Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Kansas City Power & Light Company for specific application to the Montrose Generating Station North and South Ash Impoundments. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES

Figure 1: Site Map

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 North and South Ash Impoundments Appendix III Detection Monitoring Results KCP&L Montrose Generating Station

				Арреі	ndix III Consti	tuents		
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	рН (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-701	5/14/2018	<0.200	424	497	1.46	4.40	2770	3290
MW-701	6/26/2018				*1.33	**4.23	*1970	
MW-701	11/19/2018	<0.200	369	336	1.05	4.34	2180	2860
MW-702	5/14/2018	<0.200	416	192	0.220	6.40	1790	2260
MW-702	11/19/2018	0.211	413	153	0.184	6.37	1690	2280
MW-703	5/14/2018	<0.200	219	16.4	0.173	6.41	892	1480
MW-703	11/19/2018	<0.200	233	20.0	0.144	6.27	1160	1560
MW-704	5/14/2018	<0.200	156	3.86	0.139	6.13	726	1150
MW-704	11/19/2018	<0.200	154	4.22	0.122	6.24	880	1140
MW-705	5/14/2018	<0.200	129	13.1	0.185	6.18	594	1080
MW-705	11/19/2018	<0.200	111	14.0	0.190	6.28	536	924
MW-706	5/14/2018	0.219	273	29.7	0.165	6.16	1030	1730
MW-706	11/19/2018	0.203	278	29.5	0.200	6.49	1120	1640

* Verification sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

S.U. - Standard Units

--- Not Sampled

Table 2North and South Ash ImpoundmentsDetection Monitoring Field MeasurementsKCP&L Montrose Generating Station

Well Number	Sample Date	рН (S.U.)	Specific Conductivity (μS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-701	5/14/2018	4.40	3800	19.80	0.0	404	2.72	5.88	757.60
MW-701	6/26/2018	**4.23	3630	22.80	0.0	350	1.21	6.18	757.30
MW-701	11/19/2018	4.34	3530	16.19	3.2	402	1.20	8.15	755.33
MW-702	5/14/2018	6.40	2890	18.50	190.0	121	0.69	5.54	758.21
MW-702	11/19/2018	6.37	2880	13.51	73.2	71	0.00	8.02	755.73
MW-703	5/14/2018	6.41	1960	21.21	7.6	24	1.03	9.04	751.39
MW-703	11/19/2018	6.27	2040	14.30	9.3	-7	0.00	9.44	750.99
MW-704	5/14/2018	6.13	1440	19.27	13.6	-57	1.25	8.51	751.37
MW-704	11/19/2018	6.24	1600	16.29	5.6	-68	0.64	8.88	751.00
MW-705	5/14/2018	6.18	1280	19.73	15.8	-73	0.87	6.49	751.44
MW-705	11/19/2018	6.28	2540	13.70	19.7	-46	0.00	6.85	751.08
MW-706	5/14/2018	6.16	2000	21.16	11.7	38	0.81	7.63	751.57
MW-706	11/19/2018	6.49	2290	17.22	6.9	-61	0.38	7.84	751.36

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

ADDENDUM 1

2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

SCS ENGINEERS

December 20, 2022 File No. 27213168.18

- To: Evergy Metro, Inc. Jared Morrison – Director, Water and Waste Programs
- From: SCS Engineers Douglas L. Doerr, P.E. John R. Rockhold, P.G.

Subject: 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Metro, Inc. North and South Ash Impoundments Montrose Generating Station – Clinton, Missouri

The North and South Ash Impoundments at the Montrose Generating Station are subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2018 for the North and South Ash Impoundments was completed and placed in the facility's operating record on January 30, 2019, as required by the Rule. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

Jared Morrison December 20, 2022 Page 2

- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- June 2018 First verification sampling for the Spring 2018 detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2018 included the following:

- Fall 2017 semiannual detection monitoring statistical analyses.
- Spring 2018 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.

Jared Morrison December 20, 2022

ATTACHMENT 1

Laboratory Analytical Reports

Jared Morrison December 20, 2022

ATTACHMENT 1-1 May 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L994415 05/16/2018 27213168.18 KCPL - Montrose Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Wubb land

Jeff Carr Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Ξ.	₩	
	¹ Cp	
	² Tc	
	³ Ss	
	⁴Cn	
	⁵ Sr	
	⁶ Qc	
	⁷ Gl	
	⁸ AI	
	⁹ Sc	

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-601 L994415-01	6
MW-602 L994415-02	7
MW-603 L994415-03	8
MW-604 L994415-04	9
MW-605 L994415-05	10
MW-701 L994415-06	11
MW-702 L994415-07	12
MW-703 L994415-08	13
MW-704 L994415-09	14
MW-705 L994415-10	15
MW-706 L994415-11	16
DUPLICATE 2 L994415-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	19
Metals (ICP) by Method 6010B	25
GI: Glossary of Terms	26
Al: Accreditations & Locations	27
Sc: Sample Chain of Custody	28

SDG: L994415

DATE/TIME: 05/23/18 16:44

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

²Tc

Ss

⁴Cn

Sr

Qc

GI

Å

⁹Sc

	SAMPLE SU	JIVIIVIAI	ONE LAB. NATIONWIDE.		
MW-601 L994415-01 GW			Collected by Whit Martin	Collected date/time 05/14/18 14:20	Received date/time 05/16/18 15:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Net Chemistry by Method 9056A	WG1112550 WG1113640	1	05/19/18 20:23	05/19/18 20:23	DR
	WG1113640 WG1113640	100	05/19/18 20:23	05/19/18 20:23	DR
Vet Chemistry by Method 9056A		100	05/19/18 20.38		ST
Metals (ICP) by Method 6010B	WG1112627	I	05/19/16 15.12	05/22/18 13:55	51
			Collected by	Collected date/time	Received date/time
WW-602 L994415-02 GW			Whit Martin	05/14/18 10:55	05/16/18 15:30
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1113640	1	05/19/18 20:54	05/19/18 20:54	DR
Net Chemistry by Method 9056A	WG1113640	100	05/19/18 21:09	05/19/18 21:09	DR
Ietals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 13:57	ST
MW-603 L994415-03 GW			Collected by Whit Martin	Collected date/time 05/14/18 11:45	Received date/time 05/16/18 15:30
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1112640	1	05/19/18 21:25	05/19/18 21:25	DR
/et Chemistry by Method 9056A	WG1114103	100	05/21/18 17:39	05/21/18 17:39	DR
letals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:00	ST
	womzoz/	I	03/13/10 13.12	03/22/18 14.00	51
MW-604 L994415-04 GW			Collected by Whit Martin	Collected date/time 05/14/18 12:15	Received date/time 05/16/18 15:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1113640	1	05/19/18 22:26	05/19/18 22:26	DR
Vet Chemistry by Method 9056A	WG1114103	100	05/21/18 17:54	05/21/18 17:54	DR
Ietals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:08	ST
			Collected by	Collected date/time	Received date/time
MW-605 L994415-05 GW			Whit Martin	05/14/18 12:50	05/16/18 15:30
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
ravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
/et Chemistry by Method 9056A	WG1113640	1	05/19/18 22:57	05/19/18 22:57	DR
Vet Chemistry by Method 9056A	WG1114103	100	05/21/18 18:10	05/21/18 18:10	DR
letals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 13:44	ST
/W-701 L994415-06 GW			Collected by Whit Martin	Collected date/time 05/14/18 11:00	Received date/time 05/16/18 15:30
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	-
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1113640	1	05/20/18 00:30	05/20/18 00:30	DR
/et Chemistry by Method 9056A	WG1113640	100	05/20/18 01:16	05/20/18 01:16	DR
Vet Chemistry by Method 9056A	WG1114103	100	05/21/18 18:25	05/21/18 18:25	DR
fetals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:11	ST
			SDC:		
ACCOUNT:	PROJECT:		SDG:	DATE/TIME:	PA
SCS Engineers - KS	27213168.18		L994415	05/23/18 16:44	3 0

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

⁴Cn

Sr

Qc

GI

Â

⁹Sc

	SAMPLE SU	JMMA	ΥY	ON	IE LAB. NATIONWIL
MW-702 L994415-07 GW			Collected by Whit Martin	Collected date/time 05/14/18 11:50	Received date/time 05/16/18 15:30
N ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1113640	1	05/20/18 01:31	05/20/18 01:31	DR
Net Chemistry by Method 9056A	WG1113640	20	05/20/18 01:47	05/20/18 01:47	DR
Wet Chemistry by Method 9056A	WG1114103	100	05/21/18 18:41	05/21/18 18:41	DR
Metals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:13	ST
MW-703 L994415-08 GW			Collected by Whit Martin	Collected date/time 05/14/18 13:35	Received date/time 05/16/18 15:30
Vethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1113080	1	05/20/18 12:00	05/20/18 12:00	MAJ
Net Chemistry by Method 9056A	WG1113080	10	05/20/18 12:16	05/20/18 12:16	MAJ
Metals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:16	ST
			Collected by	Collected date/time	Received date/time
MW-704 L994415-09 GW			Whit Martin	05/14/18 14:10	05/16/18 15:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Net Chemistry by Method 9056A	WG1113080	1	05/20/18 12:31	05/20/18 12:31	MAJ
Net Chemistry by Method 9056A	WG1113080	10	05/20/18 12:46	05/20/18 12:46	MAJ
Aetals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:19	ST
WW-705 L994415-10 GW			Collected by Whit Martin	Collected date/time 05/14/18 14:45	Received date/time 05/16/18 15:30
Method	Batch	Dilution	Preparation	Applycic	Applyst
Nethod	Datch	Dilution	date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1112330 WG1113080	1	05/20/18 13:02	05/20/18 13:02	MAJ
Net Chemistry by Method 9056A	WG1113080	10	05/20/18 13:02	05/20/18 13:48	MAJ
Aetals (ICP) by Method 6010B	WG1113080	10	05/19/18 13:12	05/22/18 14:21	ST
WW-706 L994415-11 GW			Collected by Whit Martin	Collected date/time 05/14/18 16:05	Received date/time 05/16/18 15:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	-)
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Vet Chemistry by Method 9056A	WG1112030	1	05/20/18 14:03	05/20/18 14:03	MAJ
Vet Chemistry by Method 9056A	WG1114204	20	05/21/18 23:46	05/21/18 23:46	MAJ
Aetals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:24	ST
			Collected by	Collected date/time	Received date/time
DUPLICATE 2 L994415-12 GW			Whit Martin	05/14/18 00:00	05/16/18 15:30
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1112350	1	05/17/18 17:47	05/17/18 18:22	BS
Wet Chemistry by Method 9056A	WG1113080	1	05/20/18 14:34	05/20/18 14:34	MAJ
Wet Chemistry by Method 9056A	WG1113080	100	05/20/18 14:50	05/20/18 14:50	MAJ
Metals (ICP) by Method 6010B	WG1112627	1	05/19/18 13:12	05/22/18 14:27	ST
ACCOUNT:	PROJECT:		SDG:	DATE/TIME:	
	27212100.40		100441E	05/00/40 40 44	

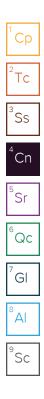
27213168.18

L994415

05/23/18 16:44

4 of 29

SCS Engineers - KS


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb an

Jeff Carr Technical Service Representative

SDG: L994415 DATE/TIME: 05/23/18 16:44 PAGE: 5 of 29

SAMPLE RESULTS - 01 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l	ug/l		date / time		-	2
Dissolved Solids	4760000	1000	0 1	05/17/2018 18:22	WG1112350		Tc

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 14:20

Wet Chemistry	by Method 9056A						[
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	55000		1000	1	05/19/2018 20:23	WG1113640	
Fluoride	483		100	1	05/19/2018 20:23	WG1113640	
Sulfate	3950000		500000	100	05/19/2018 20:38	WG1113640	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/22/2018 13:55	WG1112627
Calcium	453000		1000	1	05/22/2018 13:55	WG1112627

SAMPLE RESULTS - 02 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1970000		10000	1	05/17/2018 18:22	WG1112350	Tc

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 10:55

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1970000		10000	1	05/17/2018 18:22	WG1112350	Tc
Wet Chemistry by M	Method 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cn
Chloride	4140		1000	1	05/19/2018 20:54	<u>WG1113640</u>	
Fluoride	113		100	1	05/19/2018 20:54	<u>WG1113640</u>	5
Sulfate	1660000		500000	100	05/19/2018 21:09	<u>WG1113640</u>	⁵ Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	4390		200	1	05/22/2018 13:57	WG1112627
Calcium	340000		1000	1	05/22/2018 13:57	WG1112627

SAMPLE RESULTS - 03 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier R	DL Di	lution	Analysis	Batch	Ср
Analyte	ug/l	U	g/l		date / time		2
Dissolved Solids	3110000	10	0000 1		05/17/2018 18:22	<u>WG1112350</u>	¯Тс

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 11:45

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cr
Chloride	7160		1000	1	05/19/2018 21:25	WG1113640	
Fluoride	727		100	1	05/19/2018 21:25	WG1113640	5
Sulfate	2080000		500000	100	05/21/2018 17:39	WG1114103	Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	5940		200	1	05/22/2018 14:00	WG1112627
Calcium	426000		1000	1	05/22/2018 14:00	WG1112627

SAMPLE RESULTS - 04 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

									L
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Cp	
Analyte	ug/l		ug/l		date / time			2	i.
Dissolved Solids	2820000		10000	1	05/17/2018 18:22	<u>WG1112350</u>		Tc	

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 12:15

Dissolved Solids	2820000		10000	1	05/17/2018 18:22	WG1112350	
Wet Chemistry by I	Method 9056A	A					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	12300		1000	1	05/19/2018 22:26	WG1113640	CII
Fluoride	506		100	1	05/19/2018 22:26	WG1113640	F
							[°] Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	4350		200	1	05/22/2018 14:08	WG1112627	
Calcium	421000		1000	1	05/22/2018 14:08	WG1112627	

SAMPLE RESULTS - 05 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch		р
Analyte	ug/l	ug/l		date / time		2	_
Dissolved Solids	2550000	100	00 1	05/17/2018 18:22	<u>WG1112350</u>	ŤŢ	С

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 12:50

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time	—	4
hloride	47800		1000	1	05/19/2018 22:57	WG1113640	
Fluoride	226		100	1	05/19/2018 22:57	WG1113640	5
Sulfate	2510000		500000	100	05/21/2018 18:10	WG1114103	Ĩ

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1730		200	1	05/22/2018 13:44	WG1112627
Calcium	412000	01 V	1000	1	05/22/2018 13:44	WG1112627

SAMPLE RESULTS - 06 L994415

°Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	,						l'Cn	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp	l
Analyte	ug/l		ug/l		date / time		2	ì
Dissolved Solids	3290000		10000	1	05/17/2018 18:22	WG1112350	Tc	

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time				
Chloride	497000		100000	100	05/20/2018 01:16	<u>WG1113640</u>			
Fluoride	1460		100	1	05/20/2018 00:30	<u>WG1113640</u>			
Sulfate	2770000		500000	100	05/21/2018 18:25	WG1114103			

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/22/2018 14:11	WG1112627
Calcium	424000		1000	1	05/22/2018 14:11	WG1112627

SAMPLE RESULTS - 07 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	2260000		10000	1	05/17/2018 18:22	WG1112350	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time				
Chloride	192000		20000	20	05/20/2018 01:47	<u>WG1113640</u>			
Fluoride	220		100	1	05/20/2018 01:31	<u>WG1113640</u>			
Sulfate	1790000		500000	100	05/21/2018 18:41	WG1114103			

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/22/2018 14:13	WG1112627
Calcium	416000		1000	1	05/22/2018 14:13	WG1112627

SAMPLE RESULTS - 08 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDI	L Dilutior	Analysis	Batch	Ср
Analyte	ug/l	ug/	l	date / time		2
Dissolved Solids	1480000	100	00 1	05/17/2018 18:22	<u>WG1112350</u>	Ťc

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 13:35

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time		⁴ C
Chloride	16400		1000	1	05/20/2018 12:00	WG1113080	
Fluoride	173		100	1	05/20/2018 12:00	WG1113080	5
Sulfate	892000		50000	10	05/20/2018 12:16	WG1113080	Ϋ́S

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/22/2018 14:16	WG1112627
Calcium	219000		1000	1	05/22/2018 14:16	WG1112627

SAMPLE RESULTS - 09 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1150000		10000	1	05/17/2018 18:22	WG1112350	⁻ Tc

Wet Chemistry by Method 9056A

Collected date/time: 05/14/18 14:10

Wet Chemistry b	y Method 9056A	A				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3860		1000	1	05/20/2018 12:31	WG1113080
Fluoride	139		100	1	05/20/2018 12:31	WG1113080
Sulfate	726000		50000	10	05/20/2018 12:46	WG1113080

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	ND		200	1	05/22/2018 14:19	WG1112627	
Calcium	156000		1000	1	05/22/2018 14:19	WG1112627	

SAMPLE RESULTS - 10 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1080000		10000	1	05/17/2018 18:22	WG1112350	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			4 Cn
Chloride	13100		1000	1	05/20/2018 13:02	<u>WG1113080</u>		CII
Fluoride	185		100	1	05/20/2018 13:02	<u>WG1113080</u>		5
Sulfate	594000		50000	10	05/20/2018 13:48	WG1113080		⁵Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/22/2018 14:21	WG1112627
Calcium	129000		1000	1	05/22/2018 14:21	WG1112627

SDG: L994415

SAMPLE RESULTS - 11 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l	ug/l		date / time		2
Dissolved Solids	1730000	1000	0 1	05/17/2018 18:22	WG1112350	Tc

Wet Chemistry by Method 9056A

Wet Chemistry	by Method 9056A						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time		4
Chloride	29700		1000	1	05/20/2018 14:03	<u>WG1113080</u>	
Fluoride	165		100	1	05/20/2018 14:03	<u>WG1113080</u>	-
Sulfate	1030000		100000	20	05/21/2018 23:46	WG1114204	Ŭ

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	219		200	1	05/22/2018 14:24	WG1112627
Calcium	273000		1000	1	05/22/2018 14:24	WG1112627

SAMPLE RESULTS - 12 L994415

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	2700000		10000	1	05/17/2018 18:22	WG1112350	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			4 Cn
Chloride	48200		1000	1	05/20/2018 14:34	WG1113080		CII
Fluoride	217		100	1	05/20/2018 14:34	WG1113080		5
Sulfate	1870000		500000	100	05/20/2018 14:50	WG1113080		⁵Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	1760		200	1	05/22/2018 14:27	WG1112627	
Calcium	416000		1000	1	05/22/2018 14:27	WG1112627	

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY 1994415-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3311337-1 05/17	MB) R3311337-1 05/17/18 18:22									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Dissolved Solids	U		2820	10000						

L994415-01 Original Sample (OS) • Duplicate (DUP)

(OS) L994415-01 05/17/18	18:22 • (DUP) R	3311337-4 05	5) L994415-01 05/17/18 18:22 • (DUP) R3311337-4 05/17/18 18:22												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits									
Analyte	ug/l	ug/l		%		%									
Dissolved Solids	4760000	4550000	1	4.62		5									

L994415-02 Original Sample (OS) • Duplicate (DUP)

(OS) L994415-02 05/17/18	3 18:22 • (DUP) F	23311337-5 0	5/17/18 18:2	22			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
nalyte	ug/l	ug/l		%		%	
Dissolved Solids	1970000	1920000	1	2.31		5	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311337-2 05/17/18	18:22 • (LCSD) Spike Amount		5/1//18 18:22 LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Dissolved Solids	8800000	8610000	8750000	97.8	99.4	85.0-115			1.61	5

DATE/TIME: 05/23/18 16:44 Тс

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L994415-08,09,10,11,12

Method Blank (MB)

(MB) R3311589-1	05/19/18 12:38

(110) 105/1505-1 05/15/1	12.50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L993751-01 Original Sample (OS) • Duplicate (DUP)

(
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	19400	19500	1	0.382		15
Fluoride	558	554	1	0.720		15
Sulfate	14000	14000	1	0.152		15

L994028-02 Original Sample (OS) • Duplicate (DUP)

SCS Engineers - KS

(OS) L994028-02 05/20/1	vs) L994028-02 05/20/18 10:58 • (DUP) R3311589-7 05/20/18 11:14													
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits								
Analyte	ug/l	ug/l		%		%								
Chloride	32800	33100	1	0.827		15								
Fluoride	8010	8210	1	2.50		15								

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311589-2 05/19/18	CS) R3311589-2 05/19/18 12:54 • (LCSD) R3311589-3 05/19/18 13:09														
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits					
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%					
Chloride	40000	39200	39100	98.1	97.8	80.0-120			0.271	15					
Fluoride	8000	7970	7930	99.6	99.1	80.0-120			0.521	15					
Sulfate	40000	38900	38800	97.2	97.1	80.0-120			0.0726	15					

L993751-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L993751-01 05/2	S) L993751-01 05/20/18 08:09 • (MS) R3311589-5 05/20/18 08:40 • (MSD) R3311589-6 05/20/18 08:55														
	Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits														
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%			
Chloride	50000	19400	73400	69900	108	101	1	80.0-120			4.94	15			
Fluoride	5000	558	5420	5680	97.2	103	1	80.0-120			4.77	15			
		PRO	DJECT:		SDG:			DATE	TIME:		PAGE:				

27213168.18 L994415 05/23/18 16:44 19 of 29

²Tc ³Ss ⁴Cn Sr

Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L993751-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	(OS) L993751-01 05/20/18 08:09 • (MS) R3311589-5 05/20/18 08:40 • (MSD) R3311589-6 05/20/18 08:55													
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													RPD Limits	
	Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
	Sulfate	50000	14000	64200	64700	100	101	1	80.0-120			0.671	15	

L994028-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L994028-02 05/20/	/18 10:58 • (MS)	R3311589-8 05	5/20/18 11:29				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	32800	87000	108	1	80.0-120	
Fluoride	5000	8010	12700	93.3	1	80.0-120	E

Sc

DATE/TIME: 05/23/18 16:44 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

(MB) R3311379-1 05	5/19/18 07:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	208	J	51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L994251-01 Original Sample (OS) • Duplicate (DUP)

()	· · · ·					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4800	4760	1	0.956		15
Fluoride	ND	67.9	1	0.000		15
Sulfate	ND	3890	1	0.000		15

L994415-05 Original Sample (OS) • Duplicate (DUP)

(OS) L994415-05 05/19/18 22:57 • (DUP) R3311379-6 05/19/18 23:12						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	47800	47700	1	0.107		15
Fluoride	226	225	1	0.355		15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311379-2 05/19/18	07:46 • (LCSD) R3311379-3 (05/19/18 08:02							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	39300	39200	98.3	97.9	80.0-120			0.377	15
Fluoride	8000	7790	7770	97.4	97.1	80.0-120			0.265	15
Sulfate	40000	39100	39100	97.7	97.7	80.0-120			0.0138	15

L994251-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L994251-01 05/1	19/18 16:01 • (MS) R3	311379-5 05/19)/18 16:32						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier		
Analyte	ug/l	ug/l	ug/l	%		%			
Chloride	50000	4800	55900	102	1	80.0-120			
Fluoride	5000	ND	5280	105	1	80.0-120			
	ACCOUNT:			PF	ROJECT:		SDG:	DATE/TIME:	PAGE:

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213168.18	L994415	05/23/18 16:44	21 of 29

Qc

GI

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

L994251-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L994251-01 05/19/	18 16:01 • (MS) R3	311379-5 05/19)/18 16:32				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	ND	54700	101	1	80.0-120	

L994415-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L994415-05 05/19/18	3 22:57 • (MS) R	3311379-7 05/	19/18 23:28 • (N	/ISD) R3311379	-8 05/19/18 23	:43						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	47800	95600	95800	95.6	96.1	1	80.0-120			0.250	15
Fluoride	5000	226	4800	4840	91.6	92.3	1	80.0-120			0.742	15

SDG: L994415 DATE/TIME: 05/23/18 16:44 PAGE: 22 of 29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

(MB) R3311697-1 05	(MB) R3311697-1 05/21/18 13:17					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Sulfate	305	J	77.4	5000		

L994396-01 Original Sample (OS) • Duplicate (DUP)

(OS) L994396-01 05/21/18	3 16:53 • (DUP) F	R3311697-4 0	5/21/18 17:0)8		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	13600	13400	1	1.82		15

L994928-01 Original Sample (OS) • Duplicate (DUP)

(OS) L994928-01 05/	/21/18 19:58 • (DUP)	R3311697-6 C	05/21/18 20):13			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Sulfate	45200	45100	1	0.217		15	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311697-2 05/21/1	8 13:32 • (LCSD) R3311697-3 (05/21/18 13:48							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Sulfate	40000	40600	40500	101	101	80.0-120			0.0666	15

L994396-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L994396-01 05/21/18	(OS) L994396-01 05/21/18 16:53 • (MS) R3311697-5 05/21/18 17:24									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Sulfate	50000	13600	60900	94.6	1	80.0-120				

L994928-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L994928-01	05/21/18 19:58 • (MS) R3	3311697-7 05/2	21/18 20:29 •	(MSD) R3311697	7-8 05/21/18	20:44							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Sulfate	50000	45200	92400	92300	94.4	94.2	1	80.0-120			0.148	15	
	ACCOUNT:			PRC	JECT:			SDG:		DATE	/TIME:		PAGE:
	SCS Engineers - KS			2721	3168.18		L	994415		05/23/1	8 16:44		23 of 29

Τс

Ss

Cn

[°]Sr [°]Qc ⁷Gl

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L994415-11

Method Blank (MB)

(MB) R3311873-1 05	(MB) R3311873-1 05/21/18 14:05						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Sulfate	U		77.4	5000			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311873-2 05/21/18	14:20 • (LCSD)	R3311873-3 0	5/21/18 14:36							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Sulfate	40000	39000	38900	97.4	97.2	80.0-120			0.217	15

Τс Ss Cn Sr ິQc GI Â Sc

ACCOUNT: SCS Engineers - KS

PROJECT: 27213168.18

SDG: L994415

DATE/TIME: 05/23/18 16:44

PAGE: 24 of 29

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY 1994415-01,02,03,04,05,06,07,08,09,10,11,12

⁺Cn

Sr

Qc

GI

Method Blank (MB)

Method Diai						
(MB) R3312154-6	05/22/18 19:45					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Boron	U		12.6	200		
Calcium	U		46.3	1000		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3312154-1 05/22/18	LCS) R3312154-1 05/22/18 13:39 • (LCSD) R3312154-2 05/22/18 13:42									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	984	998	98.4	99.8	80.0-120			1.41	20
Calcium	10000	9810	9880	98.1	98.8	80.0-120			0.637	20

L994415-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L994415-05 05/22/18	8 13:44 • (MS) R	3312154-4 05/	22/18 13:49 • (I	MSD) R3312154	-5 05/22/18 13	8:52							A
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	1730	2710	2700	97.9	97.6	1	75.0-125			0.0968	20	Sc
Calcium	10000	412000	416000	415000	42.6	30.8	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.284	20	

ACCOUNT:	
SCS Engineers - I	<s< th=""></s<>

PROJECT: 27213168.18

SDG: L994415 DATE/TIME: 05/23/18 16:44 PAGE: 25 of 29

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
J	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213168.18

SDG: L994415 DATE/TIME: 05/23/18 16:44 PAGE: 26 of 29

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NEL4
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

27213168.18

L994415

PAGE: 27 of 29

05/23/18 16:44

Τс Ss Cn Sr Qc Gl AI Sc

States and the states of the		1	Billing Infe	ormation	4		ig mornauon.					Analysis / Co	ntainer / Prese	rvative	1.1943	Chain of Custor	ty Pageof
SCS Engineers - KS 311 West 130th Street, Ste. Overland Park, KS 66213	100	Accounts Payable 7311 West 130th Stre Overland Park, KS 66					th Street, Ste. 100			52							ESC
eport to: ason Franks	Nº W						rs.com;		Pres			all.		E.		12065 Lebanon Ru Mount Juliet, TN 3 Phone: 615-758-5	7122
roject escription: KCPL - Montrose Ge	PL - Montrose Generating Station			City/S Collec	tate	90	trose, MO		DE-No	m		10				Phone: 800-767-5 Fax: 615-758-585	" 首先的
hone: 913-681-0030 ax: 913-681-0012	Client Project			Lab Project # AQUAOPKS-MONTROS			IONTROSE		125mlHDPE-NoPres	ONH-							4415
collected by (print): Whit Martin	Site/Facility ID	#	dit.	P.O. #						250miHDPE-HNO	VoPres					Acctnum: AC	E081 WAOPKS
collected by (signature):	Rush? (L Same Da Next Day Two Day Three Da	5 Day 10 Da		Quot	Date F	Result	ts Needed	No. of	s (Cld, F, SO4)	a - 6010 250mlHDPE 250mlHDPE-NoPres						Template: T135966 Prelogin: P652888 TSR: 206 - Jeff Carr PB:	
Sample ID	Comp/Grab	Matrix *	Depth	12	Date		Time	Cntrs	Anions	8, Ca	TDS 2				14	Shipped Via: Bemarks	Semple # (lab onty)
MW-601	Grab	GW	-	15/	14/1	8	1420	3	X	x	X						81
MW-602	Grab	GW	-	5/1	4/11	8	1055	3	X	X	X					and a star	02
MW-603	Grab	GW	-	5/	14/18	B	1145	3	x	x	х	-	1.5				03
WW-604	Grab	GW	-	5/1	4/18	8	1215	3	x	X	х						04
MW-605	Grab	GW	-	5/1	4/18	3	1250	3	x	x	х						05
MW-701	Grab	GW	-	5/	4/18	3	1100	3	x	x	х	1.19		1	120-22		No
MW-702	Grab	GW	-	5/1	4/18	8	1150	3	x	x	x						57
MW-703	Grab	GW	-	51	14/1	8	1335	3	x	x	х	1. 18				ALC: NO	Ø
MW-704	Grab	GW	1	15/1	4/1	8	1410	3	x	x	х	1		1		C. Carlos	69
MW-705	Grab	GW	-	5/	14/1	8	1445	3	x	x	x					84 81 22	(2
* Matrix: SS - Soil AlR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:						Y AL					pH	Temp_		COC S: Bottle	Sample Receipt C cal Present/Intact igned/Accurate: es arrive intact:	heckligt
DW - Drinking Water OT - Other	Samples retur UPSFe	ned via: dExCou	rier		Tracking #						riow	Other		Suffic	ct bottles used: cient volume sent If Applical		
Jaan K Jankar 5/15/18 1335 1			1	Received by: (Signature)			WR	1	Trip Blank R	TB	L/MeoH R	Prese	VOA Zero Headspace: Preservation Correct/Checked:				
Relinquished by : (Signature)		Date:		Time:	me: Received by: (Signature)				0	10	Temp: °C Bottles R G.4 ¹⁶⁷ 4		Received: - Z	If preservation required by Login: Date/Time		igin: Date/Time	
Relinquished by : (Signature)		Date:		Time:		Rec	eived for lab by:	(Signa	ture)	810		SUB11	S I	(31)	Hold:	1.1	Condition: NCF / OK

A State of S	S. 1. 18		Oilling Inform	vation		111100	TT	16.5	6.37	Ana	lysis / Cont	ainer /	Preservative	1		Chain of Custody	Page 101												
engineers - KS	00	Billing Information: Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213				, Ste. 100 3	Pres Chk		53							<u>S</u> F	<u>SC</u>												
rland Park, KS 00215	1.1		Email To: jfr	anks@	scsenginee	irs.com;		res					12			12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	1122												
on Franks	jay.martin@kcpl.com; City/State						IOP						32		Phone: 800-767-58 Fax: 615-758-5859	159													
ect cription: KCPL - Montrose Generating Station			Collec	cted: Moy	0	125mlHDPE-NoPr	03							L #															
913-681-0030 913-681-0012	Client Project # 27213168.1			AQUAOPKS-MONTRO				HIma	PE-HN	es						Table #													
uected by (print):	Site/Facility ID	"		P.O. #			P.O. #		P.O. #		P.O. #		P.O. #		D. #						250mlHDPE-HNO3	-NoPr		1				Acctnum: AC Template:T1	35966
Mit Martin Dilected by (signature): Wood Marton	Same Day	(Lab MUST Be Notified) Quote #			O LOTTING			A STREET) Date Results Needed			eo)		Jay		Five Day			(Cld, F, SO4)	6010 250	250miHDPE-NoPres					Prelogin: P6 TSR: 206 - Je f	
Jistoha	Next Day Two Day	10 D	y (Rad Only) bay (Rad Only)		s (C	- 60	SON		-							PB:													
packed on ice NY X	Three Da		1	T	1.	Time	of Cntr	Anions	Ca -	in				1		Shipped Via: Remarks	Sample # (lab only)												
Sample ID	Comp/Grab	Matrix *	Depth	1	Date				â	10				-			11												
MW-706	Grab	GW			114/18	1605	3		X	X						The Protect	55												
1.05 MS#2	Grab	GW		5	and a start of the		3		X	X				-		100 2	05												
605 MS#2 605 MSD#2	Grab	GW		5	114/18		3	A.C. 195222	X	X						12 - 7	n												
DUPLICATE #2	Grab	GW		5	/14/18	-	3	X	X	X																			
A State of the		10 10		-					1.11					100		-													
	1 10	1	12	-		1.00								1	-														
Contraction of the second seco		0.020.0	1	-	5	a Rise	1						1																
		10.00			1.23								1.0	1566															
					11		-										n. Alternative and												
• Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:										pH . Flow		_ Temp		COC Sea COC Sig Bottles	Sample Receip al Present/Int gned/Accurate: s arrive intac t bottles used ient volume so	et:												
WW - WasteWater pW - Drinking Water or - OtherUPSFedExCou						Tracking #	Innet				Trip Blan	k Recei	eived: Yes/1	¥0	Sufficient volume sent:														
Relinquished by : (Signature) Relinquished by : (Signature)	ale	Date:	5/18	Time	35	Received by: (Si honely Received by: (S	14.	50	B		Temp:		HCL TBR *C Bottles R U	/ MeoH eccived:	If prese	rvation required	by Login: Date/Time												
Relinquished by : (Signature)		Date:	1 10	Tim	e:	Received for la	b by: (S	ignature	h	-	0.4% Date: 5/1/	112	Time:	530	Hold:		Condition												

ATTACHMENT 1-2 June 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group:	L1005335
Samples Received:	06/28/2018
Project Number:	27213168.18
Description:	KCPL - Montrose Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jason Romer Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1 2

3

4

5

5

6 7

8

9

10

11

11

14

15

16

WIDE.	
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

ACCOUNT: SCS Engineers - KS

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

MW-601 L1005335-01

MW-602 L1005335-02

MW-603 L1005335-03 MW-605 L1005335-04

MW-701 L1005335-05

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

GI: Glossary of Terms

DUPLICATE L1005335-06

Wet Chemistry by Method 9056A

PROJECT: 27213168.18

SDG: L1005335 DATE/TIME: 07/10/18 16:02

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received date/tim
MW-601 L1005335-01 GW			Whit Martin	06/26/18 11:45	06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1135360	50	07/09/18 14:58	07/09/18 14:58	DR
MW-602 L1005335-02 GW			Collected by Whit Martin	Collected date/time 06/26/18 13:10	Received date/tim 06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Net Chemistry by Method 9056A	WG1135360	50	07/09/18 15:13	07/09/18 15:13	DR
MW-603 L1005335-03 GW			Collected by Whit Martin	Collected date/time 06/26/18 13:45	Received date/tim 06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1133124	1	07/04/18 03:17	07/04/18 03:17	MCG
MW-605 L1005335-04 GW			Collected by Whit Martin	Collected date/time 06/26/18 14:15	Received date/tim 06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A	WG1135360	50	07/09/18 15:28	07/09/18 15:28	DR
MW-701 L1005335-05 GW			Collected by Whit Martin	Collected date/time 06/26/18 12:25	Received date/tim 06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1133124 WG1135360	1 50	07/04/18 03:54 07/09/18 15:44	07/04/18 03:54 07/09/18 15:44	MCG DR
DUPLICATE L1005335-06 GW			Collected by Whit Martin	Collected date/time 06/26/18 00:00	Received date/tim 06/28/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1133124 WG1135360	1 50	07/04/18 05:43 07/09/18 15:59	07/04/18 05:43 07/09/18 15:59	MCG DR

ACCOUNT: SCS Engineers - KS PROJECT: 27213168.18

SDG: L1005335 DATE/TIME: 07/10/18 16:02

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Technical Service Representative

SDG: L1005335 DATE/TIME: 07/10/18 16:02

PAGE:

4 of 16

*

Wet Chemistry by Method 9056A

	·· ·						1'0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Sulfate	3190000		250000	50	07/09/2018 14:58	WG1135360	1

SAMPLE RESULTS - 02 L1005335

¥

Ss

Cn

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	'Ср
Analyte	ug/l		ug/l		date / time		2
Sulfate	1270000		250000	50	07/09/2018 15:13	WG1135360	⁻Tc

*

Wet Chemistry by Method 9056A

,	,						 1'Cn	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch		l
Analyte	ug/l		ug/l		date / time		2	i
Fluoride	568		100	1	07/04/2018 03:17	WG1133124	⁻Tc	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ AI
°Sc

*

Wet Chemistry by Method 9056A

Wet enemistry by Metho	U 3030A						1 Cn	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср	l
Analyte	ug/l		ug/l		date / time		2	1
Sulfate	1960000		250000	50	07/09/2018 15:28	WG1135360	⁻Tc	

SDG: L1005335 DATE/TIME: 07/10/18 16:02

*

Τс

Wet Chemistry by Method 9056A

	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		
Fluoride	1330	100	1	07/04/2018 03:54	<u>WG1133124</u>	
Sulfate	1970000	250000	50	07/09/2018 15:44	<u>WG1135360</u>	

^³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

SDG: L1005335

SAMPLE RESULTS - 06 L1005335

*

Ср

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	1380		100	1	07/04/2018 05:43	WG1133124	Tc
Sulfate	1950000		250000	50	07/09/2018 15:59	<u>WG1135360</u>	

³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ AI	
⁹ Sc	

SDG: L1005335

DATE/TIME: 07/10/18 16:02 PAGE: 10 of 16

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1005335-03,05,06

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3323295-1 07	(MB) R3323295-1 07/03/18 19:25										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	ug/l		ug/l	ug/l							
Fluoride	11.2	J	9.90	100							

L1005331-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1005331-02 07/04/	OS) L1005331-02 07/04/18 00:34 • (DUP) R3323295-4 07/04/18 01:28 Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte	ug/l	ug/l		%		%							
Fluoride	320	363	1	12.5		15							

L1005344-04 Original Sample (OS) • Duplicate (DUP)

L1005344-04 (Driginal Sample	e (OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1005344-04 ()7/04/18 07:14 • (DUP) R3323295-9	9 07/04/18	07:32			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Fluoride	135	140	1	3.72		15	°Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3323295-2 07/03	(LCS) R3323295-2 07/03/18 19:43 • (LCSD) R3323295-3 07/03/18 20:01													
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits														
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%				
Fluoride	8000	7860	7850	98.2	98.2	80.0-120			0.0636	15				

L1005331-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005331-02 07/04/	OS) L1005331-02 07/04/18 00:34 • (MS) R3323295-5 07/04/18 01:47 • (MSD) R3323295-6 07/04/18 02:05													
	Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Fluoride	5000	320	5400	5580	102	105	1	80.0-120			3.13	15		

L1005335-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005335-05	07/04/18 03:54 • (MS)	R3323295-7	07/04/18 05:0	06 • (MSD) R332	23295-8 07/	04/18 05:25							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Fluoride	5000	1330	6520	7080	104	115	1	80.0-120			8.29	15	
	ACCOUNT:			PRC	JECT:			SDG:		DATE/	TIME:		PAGE:
	SCS Engineers - KS			2721	3168.18		L1	005335		07/10/18	8 16:02		11 of 16

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1005344-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	(OS) L1005344-04 07/04/1	8 07:14 • (MS) F	3323295-10	07/04/18 07:50	• (MSD) R3323	3295-11 07/04/	18 08:44						
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												RPD Limits	
	Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
	Fluoride	5000	135	5160	5310	101	104	1	80.0-120			2.83	15

L1005344-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

((OS) L1005344-06 07/04/18 09:21 • (MS) R3323295-12 07/04/18 09:39 • (MSD) R3323295-13 07/04/18 09:57												
		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Α	nalyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
F	luoride	5000	318	5210	5510	97.9	104	1	80.0-120			5.50	15

Тс

DATE/TIME: 07/10/18 16:02 PAGE: 12 of 16

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3324204-1 07/09/18 12:23										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Sulfate	U		77.4	5000						

L1005344-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1005344-04 07/09/	/18 17:16 • (DUP)	R3324204-4	07/09/18	17:32		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	31800	31900	1	0.119		15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3324204-9 07/09/18 22:18 • (LCSD) R3324204-3 07/09/18 12:54													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		8	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Sulfate	40000	39100	38900	97.8	97.3	80.0-120			0.522	15		[

L1005344-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005344-04 07/09	(OS) L1005344-04 07/09/18 17:16 • (MS) R3324204-5 07/09/18 17:47 • (MSD) R3324204-6 07/09/18 18:03												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	

DATE/TIME: 07/10/18 16:02

GI

Â

Sc

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

SDG: L1005335

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Ne
Alaska	17-026	Ne
Arizona	AZ0612	Ne
Arkansas	88-0469	Ne
California	2932	Ne
Colorado	TN00003	Ne
Connecticut	PH-0197	No
Florida	E87487	No
Georgia	NELAP	No
Georgia ¹	923	No
Idaho	TN00003	Oł
Illinois	200008	Ok
Indiana	C-TN-01	Or
lowa	364	Pe
Kansas	E-10277	Rh
Kentucky ¹⁶	90010	So
Kentucky ²	16	So
Louisiana	Al30792	Те
Louisiana ¹	LA180010	Те
Maine	TN0002	Те
Maryland	324	Ut
Massachusetts	M-TN003	Ve
Michigan	9958	Vir
Minnesota	047-999-395	Wa
Mississippi	TN00003	We
Missouri	340	Wi
Montana	CERT0086	Wy

Intervention 1000 D001 01 lew Hampshire 2975 lew Jersey–NELAP TN002 lew Mexico 1 n/a lew York 11742 looth Carolina Env375 looth Carolina 1 DW21704 lorth Carolina 3 41 lorth Carolina 3 41 lorth Dakota R-140 Dhio–VAP CL0069 bklahoma 9915 Dregon TN200002 rennsylvania 68-02979 thode Island LAO00356 outh Dakota n/a ennessee 14 2006 exas T 104704245-17-14 exas 5 LAB0152 Itah TN00003 'ermont VT2006 irignia 460132 Vashington C847 Vest Virginia 233 Visconsin 9980939910	lebraska	NE-OS-15-05
New Jersey–NELAPTN002New Mexico 1n/aNew York11742North CarolinaEnv375North Carolina 1DW21704North Carolina 341North Carolina 3KNorth Carolina 3CL0069Dhio–VAPCL0069Dklahoma9915DregonTN200002Pennsylvania68-02979Rhode IslandLA000356South Carolina84004South Dakotan/aFennessee 1.42006FexasT 104704245-17-14Fexas 5LAB0152JtahTN00003//ermontVT2006//irginia460132NashingtonC847Nest Virginia233Wisconsin9980339910	Nevada	TN-03-2002-34
New Mexico 1 n/a New York 11742 North Carolina Env375 North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Fennessee 1 4 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Hampshire	2975
New York 11742 New York 11742 North Carolina Env375 North Carolina ¹ DW21704 North Carolina ³ 41 North Carolina ³ 41 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980339910	New Jersey–NELAP	TN002
North Carolina Env375 North Carolina ¹ DW21704 North Carolina ³ 41 North Carolina ³ 41 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Mexico ¹	n/a
North Carolina 1 DW21704 North Carolina 3 41 North Dakota R-140 Dhio-VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee 1 4 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980339910	New York	11742
North Carolina ³ 41 North Dakota R-140 Dhio–VAP CL0069 Dkiana 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Carolina 84004 Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina	Env375
North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ¹	DW21704
Dhio-VAP CL0069 Doho-VAP CL0069 Doho-VAP 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980339910	North Carolina ³	41
bits Coregon Doregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Dakota	R-140
Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Ohio-VAP	CL0069
Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oklahoma	9915
Khode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oregon	TN200002
South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Pennsylvania	68-02979
South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Rhode Island	LAO00356
Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Carolina	84004
T 104704245-17-14 Texas T 104704245-17-14 Texas LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Dakota	n/a
Texas 5 LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Tennessee ¹⁴	2006
Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas	T 104704245-17-14
Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas ⁵	LAB0152
Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Utah	TN00003
Washington C847 West Virginia 233 Wisconsin 9980939910	Vermont	VT2006
West Virginia 233 Wisconsin 9980939910	Virginia	460132
Wisconsin 9980939910	Washington	C847
	West Virginia	233
Wyoming A2LA	Wisconsin	9980939910
	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213168.18

L1005335

PAGE: 15 of 16

07/10/18 16:02

			Billing Info	ling Information:						Analysis / Container / Preservative				Chain of Custor	Chain of Custody Page of	
SCS Engineers - KS 7311 West 130th Street, Ste. Overland Park, KS 66213	7311 West 130th Street, Ste. 100 Ov Overland Park, KS 66213				Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213										ESC	
Report to: Jason Franks			jay.martir	franks@scsengin n@kcpl.com;									12065 Lebanon R Moont Juliet, TN			
Project Description: KCPL - Montrose Generating Station			1	City/State Collected: Mg	0		les						Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-585	858		
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213168.			Lab Project # AQUAOPKS-			Pres	E-NoP							105,335	
Collected by (print): Whit Martin	Site/Facility ID #		P.O. #			PE-No	MIHDP	loPres					Ta A002 Acctnum: AQUAOPKS			
Collected by (signature):	e): Rush? (Lab MUST Be Notified)		Day (Rad Only)	Quote # Date Res	sults Needed		125mlHDPE-NoPres	SO4 125mlHDPE-NoPres	125mlHDPE-NoPres			1		Template: T1 Prelogin: P6 TSR: 206 - Jef	35965 59507	
Immediately Packed on Ice N Y X	Two Day 10 Day (Rad)			51	Std		Fluoride 1	125n						PB:	rcarr	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Fluo	Fluo	S04					Shipped Via: Nemarka	Sample # (lab only)	
MW-601	Grab	GW		6/26/18	1145	1		-	x							
MW-602	Grab	GW	and the	6/26/18	1310	1			x	2.4					- 91	
MW-603	Grab	GW	1	6/26/18	1 - 1	1	x	1.00							- 03	
MW-605	Grab	GW	1	6/26/18	1415	1		1	x	1.00					-00	
MW-701	Grab	GW		6/26/18	1225	1		X.		1.17.16						
DUPLICATE	Grab	GW	the second	6/26/18	-	1		x				10		1. 1. 12	- 95 - 06	
MW-70 MS/MSD	Grab	GW		6/26/18	1230	1/22		x							-06	
														2 2 11		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	a see		1.11						pH	Temp		COC Sea COC Sig	Sample Receipt C 1 Present/Intact ned/Accurate:	NP _Y _N	
OW - Drinking Water OT - Other	Samples retur UPSFe	ned vla: dExCou	rier	Tr	acking # 43	13	3	86,	Flow Other				arrive intact: bottles used: ent volume sent: If Applicat			
Relinquished by: (Signature) Date: 2010 Date: 6/27/18		18	0800	eceived by: (Sign	TA	fry	el		Trip Blank R	Т	ICL / MeoH BR		o Headspace: ation Correct/Ch	ecked: $\underline{Y} \underline{N}$		
Relinquished by : (Signature)		Date:	12	ime:	celved by: (Sign	aturie)			8	Temp: °C Bottles Béceived:				If preservation required by Login: Date/Time		
Relinquished by : (Signature) Date:		T	Time: Re	eceived for lab b	Contraction of the local division of the loc	(Signature)			Date: Time:					Condition: NCF / 00		

÷

ATTACHMENT 1-3 November 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

November 29, 2018

SCS Engineers - KS

Sample Delivery Group:	L1046769
Samples Received:	11/21/2018
Project Number:	27213168.18
Description:	KCPL - Montrose Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

-

ONE LAB. NATIONWIDE.	*
1 2	¹ Cp
	2
3	Tc
5	3
6	³ Ss
6	⁴Cn
7	СП
8	⁵Sr
9	
10	⁶ Qc
11	⁷ Gl
12	
13	⁸ Al
14	
15	⁹ Sc
16	
17	
18	
18	
21	
25	

Cp: Cover Page						
Tc: Table of Contents						
Ss: Sample Summary	3					
Cn: Case Narrative	5					
Sr: Sample Results	6					
MW-601 L1046769-01	6					
MW-602 L1046769-02	7					
MW-603 L1046769-03	8					
MW-604 L1046769-04	9					
MW-605 L1046769-05	10					
MW-701 L1046769-06	11					
MW-702 L1046769-07	12					
MW-703 L1046769-08	13					
MW-704 L1046769-09	14					
MW-705 L1046769-10	15					
MW-706 L1046769-11	16					
DUPLICATE L1046769-12	17					
Qc: Quality Control Summary	18					
Gravimetric Analysis by Method 2540 C-2011						
Wet Chemistry by Method 9056A						
Metals (ICP) by Method 6010B						
GI: Glossary of Terms						
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 2 of 29

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU	JMMAF	٦Y	ON	IE LAB. NATIONWID
MW-601 L1046769-01 GW			Collected by G. Penaflor	Collected date/time 11/19/18 11:45	Received date/time 11/21/18 07:30
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
avimetric Analysis by Method 2540 C-2011	WG1200497	1	11/26/18 16:10	11/26/18 16:36	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 00:38	11/28/18 00:38	ELN
et Chemistry by Method 9056A	WG1201630	100	11/28/18 00:54	11/28/18 00:54	ELN
etals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:20	CCE
			Collected by	Collected date/time	Received date/time
1W-602 L1046769-02 GW			G. Penaflor	11/19/18 14:30	11/21/18 07:30
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
avimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 01:09	11/28/18 01:09	ELN
et Chemistry by Method 9056A	WG1201630	50	11/28/18 01:25	11/28/18 01:25	ELN
etals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:23	CCE
			Collected by	Collected date/time	Received date/time
1W-603 L1046769-03 GW			G. Penaflor	11/19/18 14:20	11/21/18 07:30
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
ravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 01:40	11/28/18 01:40	ELN
et Chemistry by Method 9056A	WG1201630	50	11/28/18 01:56	11/28/18 01:56	ELN
etals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:26	CCE
1W-604 L1046769-04 GW			Collected by G. Penaflor	Collected date/time 11/19/18 15:00	Received date/time 11/21/18 07:30
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
ravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 02:42	11/28/18 02:42	ELN
et Chemistry by Method 9056A	WG1201630	50	11/28/18 02:57	11/28/18 02:57	ELN
etals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:29	CCE
			Collected by	Collected date/time	Received date/time
1W-605 L1046769-05 GW			G. Penaflor	11/19/18 15:05	11/21/18 07:30
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
ravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 03:13	11/28/18 03:13	ELN
et Chemistry by Method 9056A	WG1201630	50	11/28/18 03:28	11/28/18 03:28	ELN
etals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:32	CCE
			Collected by	Collected date/time	Received date/time
1W-701 L1046769-06 GW			G. Penaflor	11/19/18 13:40	11/21/18 07:30
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
ravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS
et Chemistry by Method 9056A	WG1201630	1	11/28/18 03:43	11/28/18 03:43	ELN
et Chemistry by Method 9056A	WG1201630	50	11/28/18 03:59	11/28/18 03:59	ELN
letals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:35	CCE
	PPO IECT.		SDG.	DATE/TIME:	

PROJECT:

27213168.18

SDG:

L1046769

ACCOUNT:

SCS Engineers - KS

PAGE: 3 of 29

DATE/TIME:

11/29/18 13:10

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SI	SAMPLE SUMMARY					
MW-702 L1046769-07 GW			Collected by G. Penaflor	Collected date/time 11/19/18 13:05	Received date/time 11/21/18 07:30		
lethod	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS		
Vet Chemistry by Method 9056A	WG1201630	1	11/28/18 04:14	11/28/18 04:14	ELN		
Net Chemistry by Method 9056A	WG1201630	50	11/28/18 04:30	11/28/18 04:30	ELN		
Metals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:38	CCE		
			Collected by	Collected date/time	Received date/time		
MW-703 L1046769-08 GW			G. Penaflor	11/19/18 16:10	11/21/18 07:30		
Vethod	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS		
Net Chemistry by Method 9056A	WG1201630	1	11/28/18 04:45	11/28/18 04:45	ELN		
Net Chemistry by Method 9056A	WG1201630	20	11/28/18 05:01	11/28/18 05:01	ELN		
Metals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 09:41	CCE		
			Collected by	Collected date/time	Received date/time		
MW-704 L1046769-09 GW			G. Penaflor	11/19/18 16:45	11/21/18 07:30		
Method	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS		
Net Chemistry by Method 9056A	WG1201630	1	11/28/18 05:47	11/28/18 05:47	ELN		
Net Chemistry by Method 9056A	WG1201630	20	11/28/18 06:49	11/28/18 06:49	ELN		
Metals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 08:50	CCE		
MW-705 L1046769-10 GW			Collected by G. Penaflor	Collected date/time 11/19/18 17:35	Received date/time 11/21/18 07:30		
		D:1 .:	D ::	A 1 -	A 1 .		
<i>l</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst		
Gravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS		
Net Chemistry by Method 9056A	WG1201937	1	11/28/18 00:06	11/28/18 00:06	ELN		
Net Chemistry by Method 9056A	WG1201937	10	11/28/18 00:24	11/28/18 00:24	ELN		
Aetals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 10:11	CCE		
			Colloctod by	Collected data/time	Dopoisson doto/timo		
MW-706 L1046769-11 GW			Collected by G. Penaflor	Collected date/time 11/19/18 18:00	Received date/time 11/21/18 07:30		
Method	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time	,		
Gravimetric Analysis by Method 2540 C-2011	WG1200499	1	11/26/18 17:07	11/26/18 17:30	AJS		
Vet Chemistry by Method 9056A	WG1201937	1	11/28/18 01:19	11/28/18 01:19	ELN		
Vet Chemistry by Method 9056A	WG1201937	20	11/28/18 10:24	11/28/18 10:24	ELN		
Metals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 10:14	CCE		
			Collected by	Collected date/time	Received date/time		
DUPLICATE L1046769-12 GW			G. Penaflor	11/19/18 16:45	11/21/18 07:30		
Aethod	Batch	Dilution	Preparation	Analysis	Analyst		
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1200500	1	11/26/18 13:00	11/26/18 14:00	AJS		
Net Chemistry by Method 9056A	WG1201937	1	11/28/18 01:55	11/28/18 01:55	ELN		
Net Chemistry by Method 9056A	WG1201937	10	11/28/18 02:13	11/28/18 02:13	ELN		
Metals (ICP) by Method 6010B	WG1200422	1	11/27/18 07:06	11/27/18 10:16	CCE		
			SDC:				

PROJECT:

27213168.18

ACCOUNT:

SCS Engineers - KS

PAGE: 4 of 29

DATE/TIME:

11/29/18 13:10

SDG:

L1046769

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213168.18

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 5 of 29

SAMPLE RESULTS - 01 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср	
Analyte	ug/l		ug/l		date / time		2	ī
Dissolved Solids	4100000		50000	1	11/26/2018 16:36	WG1200497	Tc	

Wet Chemistry by Method 9056A

Collected date/time: 11/19/18 11:45

	Result	Quaimer	RDL	Dilution	Alidiysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	4100000		50000	1	11/26/2018 16:36	WG1200497	۲ ۲
Wet Chemistry by	Method 9056A						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time		4
Chloride	49600		1000	1	11/28/2018 00:38	WG1201630	
Fluoride	420		100	1	11/28/2018 00:38	WG1201630	_
Tuonue	420		100		11/20/2010 00:00	1101201000	5

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 09:20	WG1200422
Calcium	456000		1000	1	11/27/2018 09:20	WG1200422

SAMPLE RESULTS - 02 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	4900000		25000	1	11/26/2018 17:30	WG1200499	Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/19/18 14:30

	Result	Quaimer	RDL	Dilution	Alidiysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	4900000		25000	1	11/26/2018 17:30	WG1200499	
Wet Chemistry by	Method 9056A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	3970		1000	1	11/28/2018 01:09	<u>WG1201630</u>	
Fluoride	ND		100	1	11/28/2018 01:09	WG1201630	
Sulfate	1430000		250000	50	11/28/2018 01:25	WG1201630	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	4320		200	1	11/27/2018 09:23	WG1200422
Calcium	332000		1000	1	11/27/2018 09:23	WG1200422

SAMPLE RESULTS - 03 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	3160000		50000	1	11/26/2018 17:30	WG1200499	Tc

Wet Chemistry by Method 9056A

	Result	Quanner	RDL	Dilution	Analysis	Daten	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	3160000		50000	1	11/26/2018 17:30	<u>WG1200499</u>	Tc
Wet Chemistry by Meth	od 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	6760		1000	1	11/28/2018 01:40	WG1201630	
	0/00		1000	-			
Fluoride	645		100	1	11/28/2018 01:40	WG1201630	⁵ Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	5560		200	1	11/27/2018 09:26	WG1200422	
Calcium	423000		1000	1	11/27/2018 09:26	WG1200422	

SAMPLE RESULTS - 04 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RI	DL Dilutio	n Analysis	Batch	Ср	
Analyte	ug/l	ug	g/I	date / time		2	ì
Dissolved Solids	2320000	50	0000 1	11/26/2018 17:30	WG1200499	Tc	

Wet Chemistry by Method 9056A

Collected date/time: 11/19/18 15:00

	Result	Quaimer	RDL	Dilution	Alidiysis	Balch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	2320000		50000	1	11/26/2018 17:30	WG1200499	<u> </u>
Wet Chemistry by M	lethod 9056A						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4
Chloride	13300		1000	1	11/28/2018 02:42	WG1201630	
Fluoride	453		100	1	11/28/2018 02:42	WG1201630	5
							<u> </u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	4360		200	1	11/27/2018 09:29	WG1200422
Calcium	420000		1000	1	11/27/2018 09:29	WG1200422

SAMPLE RESULTS - 05 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

							I C	
	Result	Qualifier	RDL	Dilution	Analysis	Batch		1
Analyte	ug/l		ug/l		date / time		2	-
Dissolved Solids	2410000		50000	1	11/26/2018 17:30	WG1200499	T	1

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	2410000		50000	1	11/26/2018 17:30	<u>WG1200499</u>	
Wet Chemistry by	(Mothod OOEGA						
wet chemistry by	Wethou 9056A						
Wet Chemistry D	Result	Qualifier	RDL	Dilution	Analysis	Batch	
			RDL ug/l	Dilution	Analysis date / time	Batch	
Analyte	Result			Dilution	•	Batch WG1201630	
Analyte Chloride Fluoride	Result ug/l		ug/l	Dilution 1 1	date / time		

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1680		200	1	11/27/2018 09:32	WG1200422
Calcium	407000		1000	1	11/27/2018 09:32	WG1200422

SAMPLE RESULTS - 06 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	<u> </u>							I'Cr
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte		ug/l		ug/l		date / time		2
Dissolved Solids		2860000		50000	1	11/26/2018 17:30	WG1200499	Tc

Wet Chemistry by Method 9056A

eravine the / thaty		0.0020					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	2860000		50000	1	11/26/2018 17:30	<u>WG1200499</u>	
Wet Chemistry by	/ Method 9056A Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l	Quanner	ug/l	Dilation	date / time	batch	
Chloride	336000		50000	50	11/28/2018 03:59	WG1201630	
Fluoride	1050		100	1	11/28/2018 03:43	WG1201630	
Sulfate	2180000		250000	50	11/28/2018 03:59	WG1201630	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 09:35	WG1200422
Calcium	369000		1000	1	11/27/2018 09:35	WG1200422

SAMPLE RESULTS - 07 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср	
Analyte	ug/l		ug/l		date / time		2	ī
Dissolved Solids	2280000		50000	1	11/26/2018 17:30	WG1200499	Tc	

Wet Chemistry by Method 9056A

Analyte ug/l date / time Dissolved Solids 2280000 50000 1 11/26/2018 17:30 WG1200499 Wet Chemistry by Method 9056A Vertice Vertice	2
Wat Chamistry by Mathad 9056A	
Wet Chemistry by Method 5050A	3
Result <u>Qualifier</u> RDL Dilution Analysis <u>Batch</u>	L
Analyte ug/l ug/l date / time	4
Chloride 153000 50000 50 11/28/2018 04:30 WG1201630	
Fluoride 184 100 1 11/28/2018 04:14 WG1201630	5
Sulfate 1690000 250000 50 11/28/2018 04:30 WG1201630	55

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Boron	211		200	1	11/27/2018 09:38	WG1200422	
Calcium	413000		1000	1	11/27/2018 09:38	WG1200422	

SAMPLE RESULTS - 08 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	-						I Cr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1560000		20000	1	11/26/2018 17:30	WG1200499	Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		i
Dissolved Solids	1560000		20000	1	11/26/2018 17:30	WG1200499	
Mot Chamiatry by							
wet Chemistry by	Method 9056A						
wet chemistry by	Result	Qualifier	RDL	Dilution	Analysis	Batch	[
			RDL ug/l	Dilution	Analysis date / time	Batch	[
Analyte	Result			Dilution 1	•	Batch WG1201630	[
Analyte Chloride Fluoride	Result ug/l		ug/l	Dilution 1 1	date / time		[

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 09:41	WG1200422
Calcium	233000		1000	1	11/27/2018 09:41	WG1200422

SAMPLE RESULTS - 09 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1140000		20000	1	11/26/2018 17:30	WG1200499	́Тс

Wet Chemistry by Method 9056A

Collected date/time: 11/19/18 16:45

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time	—	2
Chloride	4220		1000	1	11/28/2018 05:47	WG1201630	
Fluoride	122		100	1	11/28/2018 05:47	WG1201630	9
Sulfate	880000		100000	20	11/28/2018 06:49	WG1201630	Ĭ

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 08:50	WG1200422
Calcium	154000	O1	1000	1	11/27/2018 08:50	WG1200422

SAMPLE RESULTS - 10 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

							 L'Cn	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp	l
Analyte	ug/l		ug/l		date / time		2	i
Dissolved Solids	924000		13300	1	11/26/2018 17:30	WG1200499	Tc	

Wet Chemistry by Method 9056A

Analyte ug/l date / time 2 T c Dissolved Solids 924000 13300 1 11/26/2018 17:30 WG1200499 2 T c Wet Chemistry by Method 9056A Ss Batch 3 Ss 3 C c		Result	Quaimer	RDL	Dilution	Allalysis	Balch	
Dissolved Solids 924000 13300 1 11/26/2018 17:30 WG1200499 I	Analyte	ug/l		ug/l		date / time		2
Result Qualifier RDL Dilution Analysis Batch Analyte ug/l ug/l date / time date / time 4 Cn Chloride 14000 1000 1 11/28/2018 00:06 WG1201937 4 Cn Fluoride 190 100 1 11/28/2018 00:06 WG1201937 5	Dissolved Solids	924000		13300	1	11/26/2018 17:30	WG1200499	Tc
Analyte ug/l date / time 4 Ch Chloride 14000 1000 1 11/28/2018 00:06 WG1201937 4 Ch Fluoride 190 100 1 11/28/2018 00:06 WG1201937 5 Ch	Wet Chemistry by Metho	od 9056A						³ Ss
Chloride 14000 1000 1 11/28/2018 00:06 WG1201937 Chloride Fluoride 190 100 1 11/28/2018 00:06 WG1201937 5		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Chloride 14000 1000 1 11/28/2018 00:06 WG1201937 Fluoride 190 100 1 11/28/2018 00:06 WG1201937 5	Analyte	ug/l		ug/l		date / time		4 Cn
	Chloride	14000		1000	1	11/28/2018 00:06	WG1201937	CII
Sulfate 536000 50000 10 11/28/2018 00:24 WG1201937	Fluoride	190		100	1	11/28/2018 00:06	WG1201937	5
	Sulfate	536000		50000	10	11/28/2018 00:24	WG1201937	ဳSr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 10:11	WG1200422
Calcium	111000		1000	1	11/27/2018 10:11	WG1200422

SAMPLE RESULTS - 11 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1640000		25000	1	11/26/2018 17:30	WG1200499	Tc

Wet Chemistry by Method 9056A

Dissolved Solids	1010000		20000		11/20/2010 17:00	101200103	
Wet Chemistry b	by Method 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	29500		1000	1	11/28/2018 01:19	<u>WG1201937</u>	
Fluoride	200		100	1	11/28/2018 01:19	<u>WG1201937</u>	5
Sulfate	1120000		100000	20	11/28/2018 10:24	WG1201937	Sr ا

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	203		200	1	11/27/2018 10:14	WG1200422
Calcium	278000		1000	1	11/27/2018 10:14	WG1200422

SAMPLE RESULTS - 12 L1046769

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср	
Analyte	ug/l		ug/l		date / time		2	1
Dissolved Solids	1160000		20000	1	11/26/2018 14:00	WG1200500	Tc	l

Wet Chemistry by Method 9056A

	Result	Quaimer	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1160000		20000	1	11/26/2018 14:00	WG1200500	⁻ Tc
Wet Chemistry by N	Method 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	4160		1000	1	11/28/2018 01:55	WG1201937	CII
Fluoride	131		100	1	11/28/2018 01:55	WG1201937	5
Sulfate	758000		50000	10	11/28/2018 02:13	WG1201937	⁵ Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/27/2018 10:16	WG1200422
Calcium	154000		1000	1	11/27/2018 10:16	WG1200422

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3363353-1 11/2	26/18 16:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	3000	J	2820	10000

L1046668-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1046668-04 11/26/1	18 16:36 • (DUP)	R3363353-3	11/26/18 16	:36		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	288000	289000	1	0.347		5

Laboratory Control Sample (LCS)

(LCS) R3363353-2 11/2	26/18 16:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8770000	99.7	85.0-115	

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 18 of 29

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY 1046769-02,03,04,05,06,07,08,09,10,11

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3363368-1 11/2	26/18 17:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1046769-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1046769-02 11/26	OS) L1046769-02 11/26/18 17:30 • (DUP) R3363368-3 11/26/18 17:30						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	4900000	4900000	1	0.0510		5	

Laboratory Control Sample (LCS)

(LCS) R3363368-2 11/	/26/18 17:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8530000	96.9	85.0-115	

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 19 of 29

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1046769-12

ONE LAB. NATIONWIDE.

Τс

Ss

GI

Â

Sc

Method Blank (MB)

(MB) R3363349-1 11/2	26/18 14:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1046155-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1046155-01 11/26/18		, , ,	,	,		
()	Original Result		Dilution		DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	138000	142000	1	2.86		5

Laboratory Control Sample (LCS)

(LCS) R3363349-2 11/	/26/18 14:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	9070000	103	85.0-115	

SDG: L1046769 DATE/TIME: 11/29/18 13:10

PAGE: 20 of 29 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1046769-01,02,03,04,05,06,07,08,09

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3363512-1	11/27/18 15:33

Fluoride 11 9.90 100
Sulfate U 77.4 5000

L1046766-02 Original Sample (OS) • Duplicate (DUP)

(OC) 110/6766 02	11/07/10 17·/E		D2262E12 2	11/27/10 17·EQ
(OS) L1046766-02	11/2//10 17.40 •	UUF	1 K3303312-3	11/2//10 17.39

()	()					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	20900	21000	1	0.426		15
Fluoride	167	166	1	0.481		15
Sulfate	12700	12800	1	0.700		15

L1046769-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1046769-09 11/28/18	8 05:47 • (DUP)	R3363512-5 1	1/28/18 06	6:02		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4220	4230	1	0.140		15
Fluoride	122	121	1	0.412		15

L1046769-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1046769-09 11/28/18	8 06:49 • (DUP) Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	880000	847000	20	3.76		15

Laboratory Control Sample (LCS)

(LCS) R3363512-2 11/2	7/18 15:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	38700	96.7	80.0-120	
Fluoride	8000	7830	97.9	80.0-120	
Sulfate	40000	39100	97.8	80.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213168.18	L1046769	11/29/18 13:10	21 of 29

QUALITY CONTROL SUMMARY L1046769-01,02,03,04,05,06,07,08,09

Τс

Ss

Cn

Sr

Qc

GI

A

Sc

L1046766-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1046766-02 11/27/18 17:45 • (MS) R3363512-4 11/27/18 18:15							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	20900	69600	97.5	1	80.0-120	
Fluoride	5000	167	5310	103	1	80.0-120	
Sulfate	50000	12700	61400	97.4	1	80.0-120	

L1046769-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046769-09 11/28/	18 05:47 • (MS) F	R3363512-6 11/	28/18 06:18 • (MSD) R336351	2-7 11/28/18 06	6:33						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	4220	54600	54700	101	101	1	80.0-120			0.0911	15
Fluoride	5000	122	5290	5320	103	104	1	80.0-120			0.551	15
Sulfate	50000	756000	781000	772000	49.8	32.3	1	80.0-120	EV	EV	1.13	15

DATE/TIME: 11/29/18 13:10 PAGE: 22 of 29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Ср

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3363738-1	11/27/18 20:24

(
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		51.9	1000	
Fluoride	U		9.90	100	
Sulfate	U		77.4	5000	

L1047109-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1047109-01 11/28/18 06:28 • (DUP) R3363738-5 11/28/18 06:46							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	7110	7080	1	0.493		15	
Fluoride	118	133	1	12.1		15	
Sulfate	12300	12400	1	1.13		15	

L1047152-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1047152-01 11/28/18 08:53 • (DUP) R3363738-6 11/28/18 09:11						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	30800	31200	1	1.60		15
Fluoride	ND	71.4	1	59.4	<u>J P1</u>	15
Sulfate	18200	18300	1	0.470		15

Laboratory Control Sample (LCS)

(LCS) R3363738-2 11/27/1	8 20:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	98.0	80.0-120	
Fluoride	8000	7940	99.2	80.0-120	
Sulfate	40000	39400	98.5	80.0-120	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213168.18

DATE/TIME: 11/29/18 13:10 PAGE: 23 of 29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1046770-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046770-01 11/28/18	02:31 • (MS) R3	3363738-3 11/2	8/18 02:50 • (1	MSD) R336373	8-4 11/28/18 03	8:08						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	83100	130000	131000	94.5	96.6	1	80.0-120	E	E	0.814	15
Fluoride	5000	111	4930	5140	96.4	101	1	80.0-120			4.12	15
Sulfate	50000	1660000	1650000	1660000	0.000	1.70	1	80.0-120	EV	EV	0.388	15

L1047152-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1047152-01 11/28/18 08:53 • (MS) R3363738-7 11/28/18 09:29							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	30800	81100	101	1	80.0-120	
Fluoride	5000	ND	5270	105	1	80.0-120	
Sulfate	50000	18200	67100	97.9	1	80.0-120	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213168.18

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 24 of 29

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY 1046769-01.02.03.04.05.06.07.08.09.10.11.12

¹Cn

Sr

Qc

GI

0

Method Blank (MB)

Method Diam						
(MB) R3363263-1	11/27/18 08:42					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Boron	U		12.6	200		
Calcium	U		46.3	1000		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3363263-2 11/27/18	8 08:44 • (LCSE	D) R3363263-3	11/27/18 08:47	,												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits						
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%						
Boron	1000	958	967	95.8	96.7	80.0-120			0.958	20						
Calcium	10000	9510	9610	95.1	96.1	80.0-120			1.05	20						

L1046769-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1046769-09 11/27/1	8 08:50 • (MS)	R3363263-5 11	/27/18 08:55 •	(MSD) R33632	63-6 11/27/18 (08:58							Å	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits]
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9	1
Boron	1000	ND	1130	1140	98.9	99.5	1	75.0-125			0.558	20	SC	
Calcium	10000	154000	163000	163000	84.9	89.6	1	75.0-125			0.292	20		1

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213168.18

SDG: L1046769 DATE/TIME: 11/29/18 13:10 PAGE: 25 of 29

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213168.18

SDG: L1046769 DATE/TIME: 11/29/18 13:10

PAGE: 26 of 29

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	
		Neva
Arizona	AZ0612	New
Arkansas	88-0469	New
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklał
Indiana	C-TN-01	Orego
lowa	364	Penn
Kansas	E-10277	Rhod
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgir
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyon

New Jersey–NELAP	TN-03-2002-34 2975 TN002 n/a 11742
New Hampshire New Jersey-NELAP New Mexico ¹	TN002 n/a
•	n/a
Now Movico ¹	
NEW INEXICO	117/12
New York	11/74
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Dhio-VAP	CL0069
Oklahoma	9915
Dregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Fennessee ¹⁴	2006
Texas	T 104704245-17-14
Fexas ⁵	LAB0152
Jtah	TN00003
/ermont	VT2006
/irginia	460132
Nashington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213168.18

L1046769

11/29/18 13:10

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

CCC Fasians MC			Billing Inf	ormation:	16.9	1	22	1.1.1	Chain of Custo	1 .									
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W	counts Payable 75 W. 110th Street verland Park, KS 66210					12		Analysis / (Plan	dy Page of s	
Report to: lason Franks	1.2.3.2	1	Email To:	franks@scs		es								in the	12065 Lebanon R	4 (E) #3215			
Project Description: KCPL - Montrose Ge	enerating Sta	ition	<u> </u>	City/State Collected		25mlHDPE-NoPres									Mount Juliet, TN Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-585	371.22 a58 859			
hone: 913-681-0030 ax: 913-681-0012		Client Project # 27213168.18			Lab Project # AQUAOPKS-MONTROSE				HNO3								L# 104	16769	
ollected by (print): G. Penallor	Site/Facility ID		P.O. #					i ui	HDPE-NoPres							Acctnum: AC	188		
pliected by (signature)	Rush? (Lab MUST Be Notified)								250mlHDP	DPE-N							Template: T1	35966	
nmediately acked on Ice N Y X	Next Day Two Day Three Da	10 Da	(Rad Only) y (Rad Only)	Dat S	No.	Anions (Cld,	6010	50mlH						120	Prelogin: P67 TSR: 206 - Jeff PB:	and the second			
Sample ID	Comp/Grab	Matrix *	Depth	Date			Cntrs	lion	Ca.	TDS 2	1.4		-		-	1	Shipped Via:		
1W-601	COMO	GW		11191	110	1145	2		с В,	0		_	-	-			Remarks	Sample # (lab only)	
IW-602	Comp	GW		111111	10	1430	3	X	X	X		-	-	-				-01	
W-603		GW		11	-	1430	3	X	X	X		-		-		2		02	
W-604		GW	1			1500	3	X	X	X				-				04	
W-605		GW	1.1	1. 1		1505	3	X X	X	X		-		-				04	
W-701		GW	-			1340	3	x	X	X			-	-	-	1	1.6.1	05	
W-702	1. 182.	GW				1305	3	x	X X	X		-	-	-		-	1.1	C6	
W-703		GW		1	-	1610	3	x		X		-		-		-	18	87	
W-704	1	GW				11.45	3	x	X	X			_	1				08	
W-705	V	GW		V		1235	3	x	X X	X	-		-	1			1.103	09	
Soll AIR Air F - Filter - Groundwater B - Bioassay V - WasteWater	Remarks:					17001	- 1	^	^	x	рН		Temp		COC Si	gned/Ac	Receipt Ch ent/Intact: curate:	10 eckWat NP Y N X N	
V - Drinking Water - Other Inquisited by : (preneturor	Samples return UPS Fed	ed via: ExCouri Date: /			1000	ding # ived by: (Signatur	e) /	1		9 17	Flow		Other		Correct Suffici	Bottles arrive intact: Correct bottles used: Sufficient volume sent: If Applicable VOA Zero Hesdepace: Y			
Philippul that hus / Signature)			18 1	1348 Received by: (Signature)					U		Trip Blank Received: Yes / No HCL / MeoH TBR Temp: Temp: C Bottles Received:					Preservation Correct/Checked: _Y _N			
inquished by : (Signature)		Date:	Tir	ne:		ved for lab by: (Si		(a)		2	,5 3.0	AZ.	47	2		vation re	quired by Logi	n: Date/Time	
				P.X.C.S.S.	B	1. 1	gnatu				ate: 1/21/18		Time:	The	Hold:			Conditions NCF / OK	

SCS Engineers - KS Account Payable By Balling Provide Contrained / Provention Out of the second of t	SCS Engineers - KS				formation:	1.1.1	10.0	Anal	usie Le		12.2	15	14.2.9	19. F. Mary			
Jacon Franks JPy-write/Production Operation Chily/Jate Operation Stand Project 8 ALD Project 8 ALU OPERATION Operation Stand Project 8 Stand Project 8 Operation Project 8 Stand Project 8 Stand Project 8 Stand Project 9 Operation Project 8 Stand Project 8 Stand Project 8 MMV-706 Stand Project 8 MMV-706 GW Uput 9	8575 W. 110th Street			8575 W	. 110th Stree	. 110th Street Chk					22					Chain	of Custody Page 2.
Import During of the constraints During of the constr				Jay.marti	n@kcpl.com;		-	NoPrec	5								And Colored Disease for Monthly Distance
Collected by (signature) Read? (Lab MUST Be Notified) Quote # Yes Yes <td></td> <td>enerating !</td> <td>Station</td> <td>1</td> <td>City/State</td> <td>221. hol b t.m.</td> <td></td> <td>NoPre</td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td>2 Mount iu</td> <td>and that many in the second seco</td>		enerating !	Station	1	City/State	221. hol b t.m.			NoPre			1		-		2 Mount iu	and that many in the second seco
Subjected by (signature) Reads? (lab MUST Be Notified) Quote # Yes Yes <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>Iunor</td> <td>-adum</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Fax: 615-7</td> <td>0-767-5859 58-5859</td>						5	Iunor	-adum							Fax: 615-7	0-767-5859 58-5859	
Address Opposition Matrix Depth Date Time Dirts Signature Pail 704 MS GW I/19/18 18000 3 X <td< td=""><td>G. Penation,</td><td>Site/Facilit</td><td>y ID #</td><td></td><td>P.O. #</td><td>125m</td><td>HDPE-H</td><td>Prec</td><td>2</td><td></td><td></td><td></td><td colspan="4"></td></td<>	G. Penation,	Site/Facilit	y ID #		P.O. #	125m	HDPE-H	Prec	2								
Autor Consultation Matrix Depth Date Time Dirts Signature PB: MW-706 GW III/19/18 ISB00 3 X	Selfer	Sam	Day Five I Day 5 Day Day 10 Da	Day (Rad Only)	Date Res	Date Results Needed				miHDPE-Noi						Acctnum: Template: Prelogin:	T135966 9678054
Minutation Config Statute		Comp/Gra	b Matrix *	Depth	Date	Time	2240.0	nions	Ca	CN							Jeff Carr
Add MS GW Watch But H S M A M		Comp	GW	1.1.20	11/14/18	11200	13	1	-	-					1		1:
MSD GW Hold 45 3 X <t< td=""><td></td><td>1.</td><td>GW</td><td>0.25575</td><td>1 million</td><td>and the second se</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>Remarks</td><td>Sample # (lab only)</td></t<>		1.	GW	0.25575	1 million	and the second se			-	-					-	Remarks	Sample # (lab only)
DUPLICATE GW IV HS 3 X	704 MSD		GW				-		-	Constant of					-	1	11
Marine: Remarks: PH	DUPLICATE 2	V	GW		Y							-					09
ss-Soll AlR - Air F - Filter Sw. Groundwater B - Bioassay ww. Water Water Or - Other		197													-		Contraction of the second second
SS - Soll AlR - Air F - Filter GW. cjroundwater By Groundwater OW. prinking Water OU. prinking Water OU. prinking Water OT - Other UPS _ FedEx _ Courier Date: UPS _ Mathewater Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by:	and the second	1.45	-			1000						-					
SS - Soll AlR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater OW - prinking Water OT - Other UPS _ FedEx _ Courier SUA Tracking # Refinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date:	- #*	14.20	-		12	1	2								-		
SS - Soll AlR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater OW - prinking Water OT - Other UPS _ FedEx _ Courier SUA Tracking # Refinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date:			and a	1	100	1.5.22		-		_	-			2.	1.2	1940 - 17 T	
DW - Drinking Water Samples returned via:	ss - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:								-					Pare		
Refinquished by : (Signature) Date: Time: Received by: (Signature) Trip Blank Received: Yes / Bo? Refinquished by : (Signature) Date: Time: Received by: (Signature) Trip Blank Received: Yes / Bo? Refinquished by : (Signature) Date: Time: Received by: (Signature) Trip Blank Received: Yes / Bo? Refinquished by : (Signature) Date: Time: Received by: (Signature) Temp: #0.5 °C Bottles Received: Refinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date: If preservation required by Login: Date/Time Refinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date: Time: M Tams II/21/18 0.730 0.730 Condition:	DW - Drinking Water	Samples retu UPSF	rned via: edExCourie	- SUA	Trad									Bottly	igned/A	ccurate:	NP Y _N
Relinquished by : (Signature) Date: Time: Received by: (Signature) HCL/MeoH HCL/MeoH Relinquished by : (Signature) Date: Time: Received by: (Signature) Temp: #0.5 °C Bottles Received: If preservation required by Login: Date/Time Relinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Condition:	Relinquished by : (Signature) Date:		August 1010-0	e: Rece	and the second se	41		00	Trip	Blank Red	ceived:	Yes / No	Sufficient volume sent:				
Relinquished by : (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Conditione			Time		y	4	HCL / MeoH			H							
11/21/18 0730 Moid: Condition:			Time	t: Receiv	11 -1	0			Date	30 AL		42	in preserv				
	and the second second	- Safe	in all and		11	Tar	ess			111/	21/18			Hold:	94		

Jared Morrison December 20, 2022

ATTACHMENT 2 Statistical Analyses

Jared Morrison December 20, 2022

ATTACHMENT 2-1

Fall 2017 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

January 22, 2018

To: Montrose Generating Station 400 SW Highway P Clinton, MO 64735 Kansas City Power & Light Company

From: SCS Engineers

RE: Revision to January 15, 2018 Memorandum Determination of Statistically Significant Increases North and South Ash Impoundments

Statistical analysis of monitoring data from the multiunit groundwater monitoring system for the North and South Ash Impoundments at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification By A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a statistically significant increase over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

The completed statistical evaluation did not identify statistically significant increases (SSIs) above background for the Appendix III constituents.

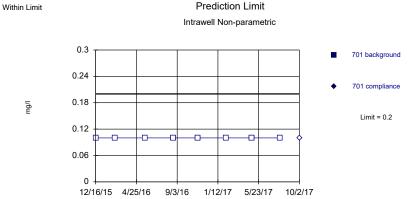
Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1st verification re-sample result (when applicable), 2nd verification re-sample result (when applicable), extra sample result for quality control (if applicable), and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


Revision Number	Revision Date	Attachment Revised	Summary of Revisions
1	1/22/2018	Cover letter	Revision table added. No changes to text regarding statistical analyses. Attachment 1 description was revised to match the revisions made in the attachment.
1	1/22/2018	1	Some samples previously identified as verification re-samples are now more appropriately identified as "extra samples". These samples were taken as part of the quality control process, and were not required as part of verification re-sampling.

Montrose Generating Station Determination of Statistically Significant Increases North and South Ash Impoundments January 22, 2018

ATTACHMENT 1

Sanitas[™] Output

Sanitas $^{\rm vv}$ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Within Limit Prediction Limit Intrawell Non-parametric

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

0.06

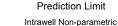
0

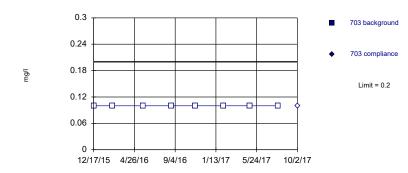
12/17/15 4/26/16

Hollow symbols indicate censored values.

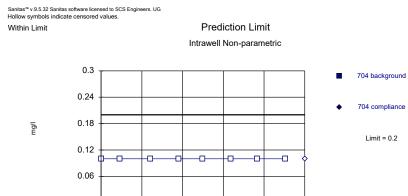
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

702 background


702 compliance


Limit = 0.2

Constituent: Boron Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

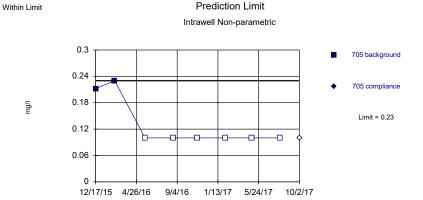
9/4/16 1/13/17 5/24/17 10/2/17

Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

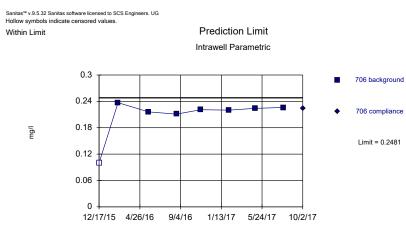
	701	701
12/16/2015	<0.2	
2/16/2016	<0.2	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/8/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
10/2/2017		<0.2

Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	<0.2	
2/16/2016	<0.2	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
10/2/2017		<0.2


Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703
12/17/2015	<0.2	
2/16/2016	<0.2	
5/23/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
10/2/2017		<0.2


Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	704	704
12/17/2015	<0.2	
2/16/2016	<0.2	
5/23/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
10/2/2017		<0.2

Sanitas $^{\mbox{\tiny W}}$ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

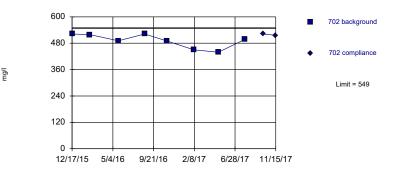
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Background Data Summary (based on x⁴ transformation): Mean=0.002159, Std. Dev.=0.0009007, n=8, 12.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7832, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Boron Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 701 background 701 compliance Limit = 566.7 240 120 12/16/15 5/4/16 9/21/16 2/8/17 6/28/17 11/15/17


Background Data Summary: Mean=458, Std. Dev.=60.08, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8899, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=491.3, Std. Dev.=31.91, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8625, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

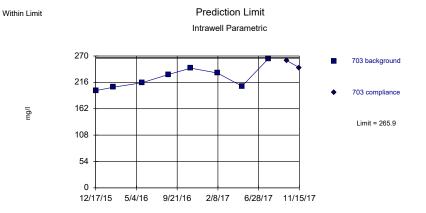
Constituent: Calcium Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705
12/17/2015	0.212	
2/16/2016	0.23	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/8/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
10/2/2017		<0.2

Constituent: Boron (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706	706
12/17/2015	<0.2	
2/16/2016	0.237	
5/24/2016	0.216	
8/22/2016	0.211	
11/8/2016	0.221	
2/7/2017	0.22	
5/2/2017	0.224	
7/31/2017	0.226	
10/2/2017		0.224


Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701	
12/16/2015	498		
2/16/2016	519		
5/24/2016	504		
8/22/2016	522		
11/8/2016	435		
2/7/2017	367		
5/2/2017	399		
7/31/2017	420		
10/2/2017		469	
11/15/2017		450 e	extra sample

Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	522	
2/16/2016	519	
5/24/2016	491	
8/22/2016	522	
11/7/2016	490	
2/7/2017	450	
5/2/2017	439	
7/31/2017	497	
10/2/2017		522
11/15/2017		516 extra samp

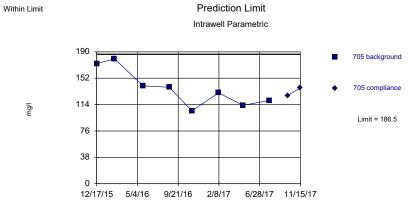
Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=225.5, Std. Dev.=22.34, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9409, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

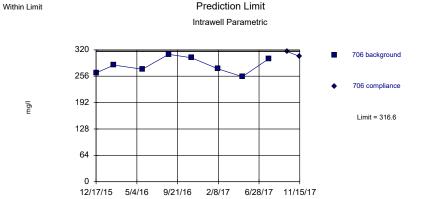
Within Limit

l/gr


Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=159.8, Std. Dev.=8.242, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9456, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Calcium Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Calcium Analysis Run 1/15/2018 10:47 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=137.8, Std. Dev.=26.95, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9222, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

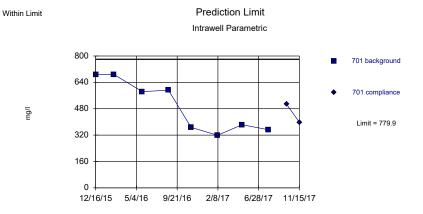
Background Data Summary: Mean=282.1, Std. Dev.=19.07, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9531, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703
12/17/2015	199	
2/16/2016	206	
5/23/2016	215	
8/22/2016	232	
11/7/2016	245	
2/7/2017	235	
5/2/2017	208	
7/31/2017	264	
10/2/2017		261
11/15/2017		246 extra sample
		2.0 0000 000000

Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	704	704
12/17/2015	157	
2/16/2016	165	
5/23/2016	156	
8/22/2016	170	
11/7/2016	164	
2/7/2017	154	
5/2/2017	145	
7/31/2017	167	
	107	
10/2/2017		173
11/15/2017		169 extra sample

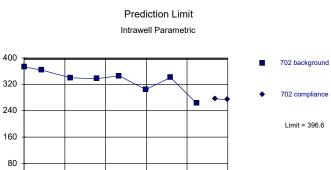

Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705
10/17/0015		,00
12/17/2015	173	
2/16/2016	180	
5/24/2016	141	
8/22/2016	139	
11/8/2016	105	
2/7/2017	131	
5/2/2017	113	
7/31/2017	120	
	120	
10/2/2017		127
11/15/2017		138 extra sample

Constituent: Calcium (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706	706	
12/17/2015	264		
2/16/2016	283		
5/24/2016	273		
8/22/2016	309		
11/8/2016	301		
2/7/2017	274		
5/2/2017	255		
7/31/2017	298		
10/2/2017		316	
11/15/2017		304 extra	sample

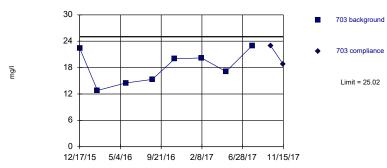
Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=496.6, Std. Dev.=156.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8398, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

0

l/gr

Background Data Summary: Mean=333.4, Std. Dev.=34.92, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8838, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

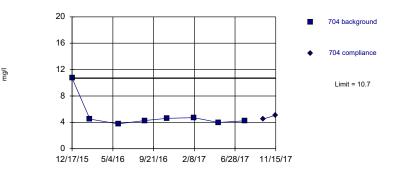

12/17/15 5/4/16 9/21/16 2/8/17 6/28/17 11/15/17

Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=18.16, Std. Dev.=3.787, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9353, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

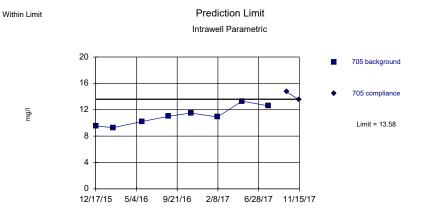
Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701
12/16/2015	687	
2/16/2016	688	
5/24/2016	584	
8/22/2016	592	
11/8/2016	367	
2/7/2017	319	
5/2/2017	383	
7/31/2017	353	
10/2/2017		507
11/15/2017		398 extra sample

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	373	
2/16/2016	363	
5/24/2016	340	
8/22/2016	337	
11/7/2016	346	
2/7/2017	304	
5/2/2017	341	
7/31/2017	263	
10/2/2017		276
11/15/2017		274 extra sample

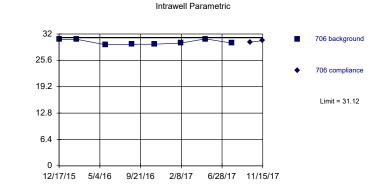

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

703	703
12/17/2015 22.4	
2/16/2016 12.8	
5/23/2016 14.5	
8/22/2016 15.3	
11/7/2016 20	
2/7/2017 20.2	
5/2/2017 17.1	
7/31/2017 23	
10/2/2017	23
11/15/2017	18.7 extra sample

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	704	704
12/17/2015	10.7	
2/16/2016	4.49	
5/23/2016	3.77	
8/22/2016	4.27	
11/7/2016	4.61	
2/7/2017	4.71	
5/2/2017	3.98	
7/31/2017	4.24	
10/2/2017		4.5
11/15/2017		5.09 extra sample

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=11.04, Std. Dev.=1.407, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

l/gr

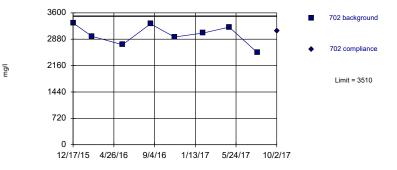
Prediction Limit

Background Data Summary: Mean=30.03, Std. Dev.=0.6042, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Chloride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 5000 701 background 4000 701 compliance 3000 ng/l Limit = 4139 2000 1000 0 12/16/15 4/25/16 9/3/16 1/12/17 5/23/17 10/2/17


Background Data Summary: Mean=3454, Std. Dev.=378.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9238, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=3004, Std. Dev.=279.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9382, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

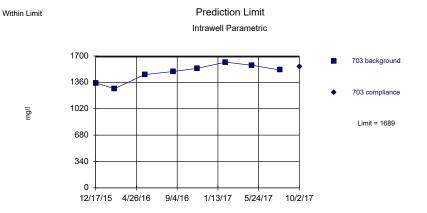
Constituent: Dissolved Solids Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705	
12/17/2015	9.51		
2/16/2016	9.3		
5/24/2016	10.2		
8/22/2016	11		
11/8/2016	11.5		
2/7/2017	10.9		
5/2/2017	13.3		
7/31/2017	12.6		
10/2/2017		14.7	
11/15/2017		13.5 1st verification	on re-sample

Constituent: Chloride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706
12/17/2015 30.7	
2/16/2016 30.7	
5/24/2016 29.4	
8/22/2016 29.5	
11/8/2016 29.5	
2/7/2017 29.8	
5/2/2017 30.8	
7/31/2017 29.8	
10/2/2017	30
11/15/2017	30.4 extra sample

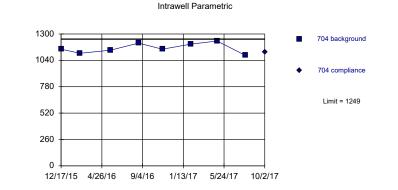

Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701
	701	701
12/16/2015	3830	
2/16/2016	3350	
5/24/2016	3770	
8/22/2016	4030	
11/8/2016	3250	
2/7/2017	3210	
5/2/2017	2920	
7/31/2017	3270	
10/2/2017		3330

Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	3320	
2/16/2016	2960	
5/24/2016	2730	
8/22/2016	3300	
11/7/2016	2940	
2/7/2017	3050	
5/2/2017	3210	
7/31/2017	2520	
10/2/2017		3110

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=1481, Std. Dev.=114.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

l/gr

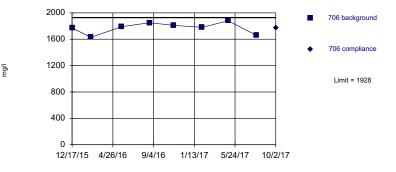
Prediction Limit

Background Data Summary: Mean=1160, Std. Dev.=49.28, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9462, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Dissolved Solids Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1056, Std. Dev.=130.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

5

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1771, Std. Dev.=86.43, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9168, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

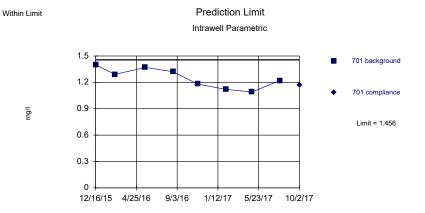
Constituent: Dissolved Solids Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703
12/17/2015	1350	
2/16/2016	1280	
5/23/2016	1460	
8/22/2016	1500	
11/7/2016	1540	
2/7/2017	1620	
5/2/2017	1580	
7/31/2017	1520	
10/2/2017		1560

Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

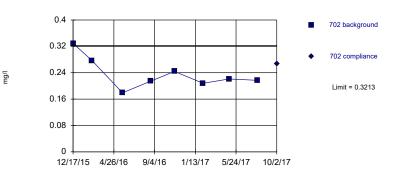
	704	704
12/17/2015	1150	
2/16/2016	1110	
5/23/2016	1140	
8/22/2016	1210	
11/7/2016	1150	
2/7/2017	1200	
5/2/2017	1230	
7/31/2017	1090	
10/2/2017		1120


Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

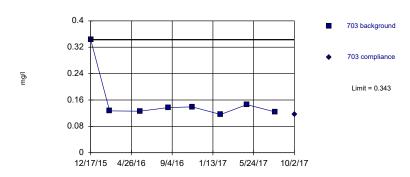
	705	705
12/17/2015	1250	
2/16/2016	1180	
5/24/2016	1090	
8/22/2016	1130	
11/8/2016	869	
2/7/2017	1030	
5/2/2017	958	
7/31/2017	937	
10/2/2017		901

Constituent: Dissolved Solids (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

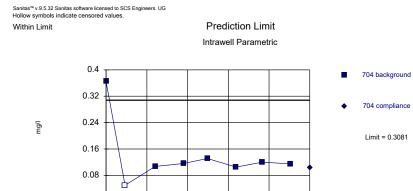
	706	706
12/17/2015	1770	
2/16/2016	1630	
5/24/2016	1790	
8/22/2016	1850	
11/8/2016	1810	
2/7/2017	1780	
5/2/2017	1880	
7/31/2017	1660	
10/2/2017		1770


Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1.249, Std. Dev.=0.1144, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9494, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Background Data Summary: Mean=0.2361, Std. Dev.=0.04705, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8995, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05123). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Fluoride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

0

12/17/15 4/26/16

Background Data Summary (based on cube root transformation): Mean=0.5006, Std. Dev.=0.09657, n=8, 12.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7706, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

9/4/16 1/13/17 5/24/17 10/2/17

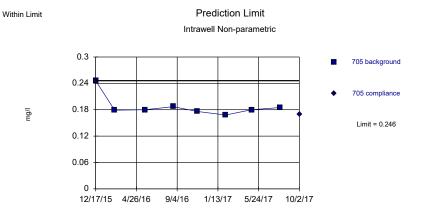
Constituent: Fluoride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701
12/16/2015	1.4	
2/16/2016	1.29	
5/24/2016	1.37	
8/22/2016	1.32	
11/8/2016	1.18	
2/7/2017	1.12	
5/2/2017	1.09	
7/31/2017	1.22	
10/2/2017		1.17

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	0.329	
2/16/2016	0.277	
5/24/2016	0.179	
8/22/2016	0.214	
11/7/2016	0.244	
2/7/2017	0.208	
5/2/2017	0.221	
7/31/2017	0.217	
10/2/2017		0.267

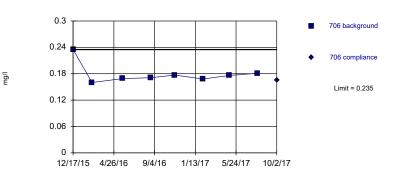

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703
12/17/2015	0.343	
2/16/2016	0.127	
5/23/2016	0.126	
8/22/2016	0.137	
11/7/2016	0.139	
2/7/2017	0.116	
5/2/2017	0.146	
7/31/2017	0.124	
10/2/2017		0.117

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	704	704
12/17/2015	0.365	
2/16/2016	<0.1	
5/23/2016	0.107	
8/22/2016	0.116	
11/7/2016	0.131	
2/7/2017	0.105	
5/2/2017	0.12	
7/31/2017	0.115	
10/2/2017		0.104

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

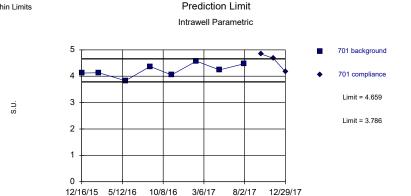

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Fluoride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

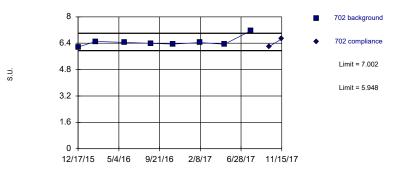


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Fluoride Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits



Background Data Summary: Mean=4.223, Std. Dev.=0.2411, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9768, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

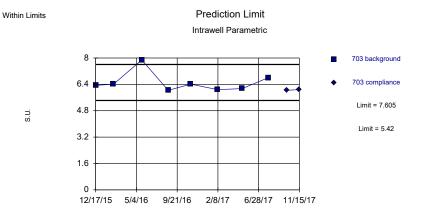
Background Data Summary: Mean=6.475, Std. Dev.=0.291, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7508, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705
12/17/2015	0.246	
2/16/2016	0.179	
5/24/2016	0.18	
8/22/2016	0.187	
11/8/2016	0.176	
2/7/2017	0.168	
5/2/2017	0.18	
7/31/2017	0.185	
10/2/2017		0.169

Constituent: Fluoride (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706	706
12/17/2015	0.235	
2/16/2016	0.16	
5/24/2016	0.169	
8/22/2016	0.171	
11/8/2016	0.177	
2/7/2017	0.168	
5/2/2017	0.176	
7/31/2017	0.181	
10/2/2017		0.165

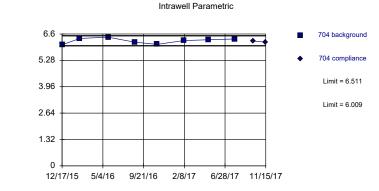

Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701	
12/16/2015	4.12		
2/16/2016	4.13		
5/24/2016	3.83		
8/22/2016	4.37		
11/8/2016	4.05		
2/7/2017	4.57		
5/2/2017	4.24		
7/31/2017	4.47		
10/2/2017		4.84	
11/15/2017		4.68	1st verification re-sample
12/29/2017		4.17	2nd verification re-sample

Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	6.17	
2/16/2016	6.51	
5/24/2016	6.45	
8/22/2016	6.39	
11/7/2016	6.35	
2/7/2017	6.44	
5/2/2017	6.34	
7/31/2017	7.15	
10/2/2017		6.19
11/15/2017		6.67 extra sample

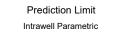
Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=6.513, Std. Dev.=0.6039, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7595, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limits

S.U.


Prediction Limit

Background Data Summary: Mean=6.26, Std. Dev.=0.1388, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9351, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: pH Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Background Data Summary: Mean=6.543, Std. Dev.=0.3411, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

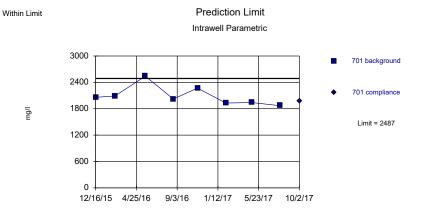
Background Data Summary: Mean=6.833, Std. Dev.=1.008, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7513, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703	
12/17/2015	6.34		
2/16/2016	6.41		
5/23/2016	7.88		
8/22/2016	6.04		
11/7/2016	6.41		
2/7/2017	6.08		
5/2/2017	6.14		
7/31/2017	6.8		
10/2/2017		6.04	
11/15/2017		6.08 extra s	sample

Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	704	704	
12/17/2015	6.06		
2/16/2016	6.38		
5/23/2016	6.44		
8/22/2016	6.19		
11/7/2016	6.08		
2/7/2017	6.27		
5/2/2017	6.31		
7/31/2017	6.35		
10/2/2017		6.25	
11/15/2017		6.19	extra sample


Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705	
12/17/2015	6.37		
2/16/2016	6.62		
5/24/2016	6.52		
8/22/2016	6.35		
11/8/2016	6.77		
2/7/2017	6.11		
5/2/2017	6.37		
7/31/2017	7.23		
10/2/2017		6.31	
11/15/2017		6.36 extra	

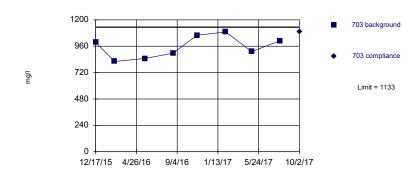
Constituent: pH (S.U.) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706	706
12/17/2015	6.06	
2/16/2016	6.32	
5/24/2016	9.13	
8/22/2016	6.56	
11/8/2016	6.82	
2/7/2017	6.33	
5/2/2017	6.16	
7/31/2017	7.28	
10/2/2017		6.19
11/15/2017		6.81 extra sample

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=2090, Std. Dev.=219.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

l/gr

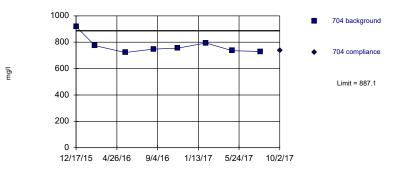

Background Data Summary: Mean=1634, Std. Dev.=111.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9645, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Sulfate Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit


Background Data Summary: Mean=954.1, Std. Dev.=99.03, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9422, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

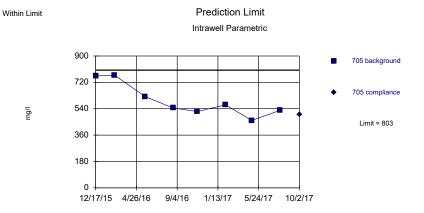
Background Data Summary: Mean=772.1, Std. Dev=63.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7539, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	701	701
12/16/2015	2060	
2/16/2016	2090	
5/24/2016	2540	
8/22/2016	2020	
11/8/2016	2270	
2/7/2017	1930	
5/2/2017	1940	
7/31/2017	1870	
10/2/2017		1970

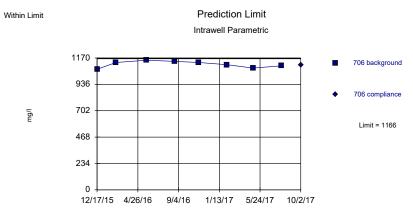
Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	702	702
12/17/2015	1830	
2/16/2016	1680	
5/24/2016	1570	
8/22/2016	1670	
11/7/2016	1710	
2/7/2017	1490	
5/2/2017	1600	
7/31/2017	1520	
10/2/2017		1750


Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	703	703
12/17/2015	996	
2/16/2016	821	
5/23/2016	848	
8/22/2016	897	
	007	
11/7/2016	1060	
2/7/2017	1090	
5/2/2017	911	
7/31/2017	1010	
10/2/2017		1090

Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III


	704	704
12/17/2015	918	
2/16/2016	774	
5/23/2016	722	
8/22/2016	748	
11/7/2016	755	
2/7/2017	794	
5/2/2017	736	
7/31/2017	730	
10/2/2017		739

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=597, Std. Dev.=113.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8709, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1114, Std. Dev.=28.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9398, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Sulfate Analysis Run 1/15/2018 10:48 AM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	705	705
12/17/2015	764	
2/16/2016	768	
5/24/2016	623	
8/22/2016	545	
11/8/2016	521	
2/7/2017	567	
5/2/2017	460	
7/31/2017	528	
10/2/2017		500

Constituent: Sulfate (mg/l) Analysis Run 1/15/2018 10:52 AM View: Ash CCR III

	706	706
12/17/2015	1070	
2/16/2016	1130	
5/24/2016	1150	
8/22/2016	1140	
11/8/2016	1130	
2/7/2017	1110	
5/2/2017	1080	
7/31/2017	1100	
10/2/2017		1110

Intrawell Prediction Limit

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Printed 1/15/2018, 10:52 AM

		Montrose (Senerating Stat	ion UWL	Client: SCS Engin	eers Data:	Montro	se Pr	inted 1/15/2	2018, 10:52 AM		
Constituent	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>		Observ.	<u>Sig.</u>	<u>Bg N</u>	%NDs	Transform	<u>Alpha</u>	<u>Method</u>
Boron (mg/l)	701	0.2	n/a	10/2/2017		0.1ND	No	8	100	n/a	0.005912	NP (NDs) 1 of 3
Boron (mg/l)	702	0.2	n/a	10/2/2017		0.1ND	No	8	100	n/a	0.005912	NP (NDs) 1 of 3
Boron (mg/l)	703	0.2	n/a	10/2/2017		0.1ND	No	8	100	n/a	0.005912	NP (NDs) 1 of 3
Boron (mg/l)	704	0.2	n/a	10/2/2017		0.1ND	No	8	100	n/a	0.005912	NP (NDs) 1 of 3
Boron (mg/l)	705	0.23	n/a	10/2/2017		0.1ND	No	8	75	n/a	0.005912	NP (NDs) 1 of 3
Boron (mg/l)	706	0.2481	n/a	10/2/2017		0.224	No	8	12.5	x^4	0.00188	Param 1 of 3
Calcium (mg/l)	701	566.7	n/a	11/15/201	7	450	No	8	0	No	0.00188	Param 1 of 3
Calcium (mg/l)	702	549	n/a	11/15/201	7	516	No	8	0	No	0.00188	Param 1 of 3
Calcium (mg/l)	703	265.9	n/a	11/15/201	7	246	No	8	0	No	0.00188	Param 1 of 3
Calcium (mg/l)	704	174.7	n/a	11/15/201	7	169	No	8	0	No	0.00188	Param 1 of 3
Calcium (mg/l)	705	186.5	n/a	11/15/201	7	138	No	8	0	No	0.00188	Param 1 of 3
Calcium (mg/l)	706	316.6	n/a	11/15/201	7	304	No	8	0	No	0.00188	Param 1 of 3
Chloride (mg/l)	701	779.9	n/a	11/15/201	7	398	No	8	0	No	0.00188	Param 1 of 3
Chloride (mg/l)	702	396.6	n/a	11/15/201	7	274	No	8	0	No	0.00188	Param 1 of 3
Chloride (mg/l)	703	25.02	n/a	11/15/201	7	18.7	No	8	0	No	0.00188	Param 1 of 3
Chloride (mg/l)	704	10.7	n/a	11/15/201	7	5.09	No	8	0	n/a	0.005912	NP (normality) 1 of 3
Chloride (mg/l)	705	13.58	n/a	11/15/201	7	13.5	No	8	0	No	0.00188	Param 1 of 3
Chloride (mg/l)	706	31.12	n/a	11/15/201	7	30.4	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	701	4139	n/a	10/2/2017		3330	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	702	3510	n/a	10/2/2017		3110	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	703	1689	n/a	10/2/2017		1560	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	704	1249	n/a	10/2/2017		1120	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	705	1292	n/a	10/2/2017		901	No	8	0	No	0.00188	Param 1 of 3
Dissolved Solids (mg/l)	706	1928	n/a	10/2/2017		1770	No	8	0	No	0.00188	Param 1 of 3
Fluoride (mg/l)	701	1.456	n/a	10/2/2017		1.17	No	8	0	No	0.00188	Param 1 of 3
Fluoride (mg/l)	702	0.3213	n/a	10/2/2017		0.267	No	8	0	No	0.00188	Param 1 of 3
Fluoride (mg/l)	703	0.343	n/a	10/2/2017		0.117	No	8	0	n/a	0.005912	NP (normality) 1 of 3
Fluoride (mg/l)	704	0.3081	n/a	10/2/2017		0.104	No	8	12.5	x^(1/3)	0.00188	Param 1 of 3
Fluoride (mg/l)	705	0.246	n/a	10/2/2017		0.169	No	8	0	n/a	0.005912	NP (normality) 1 of 3
Fluoride (mg/l)	706	0.235	n/a	10/2/2017		0.165	No	8	0	n/a	0.005912	NP (normality) 1 of 3
pH (S.U.)	701	4.659	3.786	12/29/201	7	4.17	No	8	0	No	0.000	Param 1 of 3
pH (S.U.)	702	7.002	5.948	11/15/201	7	6.67	No	8	0	No	0.000	Param 1 of 3
pH (S.U.)	703	7.605	5.42	11/15/201	7	6.08	No	8	0	No	0.000	Param 1 of 3
pH (S.U.)	704	6.511	6.009	11/15/201	7	6.19	No	8	0	No	0.000	Param 1 of 3
pH (S.U.)	705	7.16	5.925	11/15/201	7	6.36	No	8	0	No	0.000	Param 1 of 3
pH (S.U.)	706	8.658	5.007	11/15/201	7	6.81	No	8	0	No	0.000	Param 1 of 3
Sulfate (mg/l)	701	2487	n/a	10/2/2017		1970	No	8	0	No	0.00188	Param 1 of 3
Sulfate (mg/l)	702	1835	n/a	10/2/2017		1750	No	8	0	No	0.00188	Param 1 of 3
Sulfate (mg/l)	703	1133	n/a	10/2/2017		1090	No	8	0	No	0.00188	Param 1 of 3
Sulfate (mg/l)	704	887.1	n/a	10/2/2017		739	No	8	0	No	0.00188	Param 1 of 3
Sulfate (mg/l)	705	803	n/a	10/2/2017		500	No	8	0	No	0.00188	Param 1 of 3
Sulfate (mg/l)	706	1166	n/a	10/2/2017		1110	No	8	0	No	0.00188	Param 1 of 3

Montrose Generating Station Determination of Statistically Significant Increases North and South Ash Impoundments January 22, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Options										
Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests	
Exclud	e data flag	is:								
	Reading O									
	_	-								
		oservations	○ M							
	ean of Ead		O Month							
0 10	edian of E	acn:	Seaso	n						
Non-F	Detect / Tr	ace Handling								
NOTE	Jeleul / II	ace manuling								
Setup	Seasons									
	omotioolly	Process Resa	moloo							
	unialically i		impica							
	ОК	Cancel	Save Settin	gs As Load	Saved Settings	. Defaults	Edit	INI File	4	

Options Output Trend Test Control Cht Prediction Lim Other Tests Data Tolerance Lim Conf/Tol Int ANOVA Welchs Black and White Output Prompt to Overwrite/Append Summary Tables Round Limits to 2 Sig. Digits (when not set in data file) Four Plots Per Page Always Combine Data Pages... User-Set Scale Include Tick Marks on Data Page Indicate Background Data Use Constituent Name for Graph Title Show Exact Dates Draw Border Around Text Reports and Data Pages Thick Plot Lines Enlarge/Reduce Fonts (Graphs): 100% Zoom Factor: 200% Enlarge/Reduce Fonts (Data/Text Reports): 100% Output Decimal Precision Wide Margins (on reports without explicit setting) Less Precision Use CAS# (Not Const. Name) Normal Precision Truncate File Names to 20 Characters More Precision Include Limit Lines when found in Database ... Show Deselected Data on Time Series Lighter \checkmark Show Deselected Data on all Data Pages Lighter \checkmark Setup Symbols and Colors... Store Print Jobs in Multiple Constituent Mode Store All Print Jobs ... Printer: Adobe PDF Printers.... \checkmark **e** OK Save Settings As... Load Saved Settings... Defaults... Edit INI File Cancel

Options

Data Output Trend Test Control Cht Prediction Lim T	olerance Lim Conf/Tol Int ANOVA Welchs Other Tests				
Use Non-Parametric Test when Non-Detects Percent > 50 Use Aitchison's Adjustment v when Non-Detects Percent > 1 Optional Further Refinement: Use Aitchison's v whe	Transformation It Alpha = 0.01 It It Alpha = 0.01 It Alpha = 0.01 </td				
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never 	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 \vee Plot Background Data Override Standard Deviation: Override DF: Override Kappa:				
Facility α Statistical Evaluations per Year: Constituents Analyzed: 7 Downgradient (Compliance) Wells: 4 Sampling Plan Comparing Individual Observations 1 of 1 0 1 of 1 0 2 of 4 ("Modified California")	 Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter Non-Parametric Limit = Highest Background Value Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method) 				
OK Cancel Save Settings As Load Sa	ved Settings Defaults Edit INI File				

tions										
Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other 1	Tests
Rank Vo	on Neumar	nn, Wilcoxon	Rank Sum /	Mann-Whitney -						
🗌 Use	• Modified /	Alpha		🗌 2-Tail	ed Test Mode					
Outlier T	ests									
	A 1989 Out	tlier Screenin	g (fixed alpha	of 0.05)						
Dixe	on's at α=	0.05 ~ or	ifn.> <mark>22</mark> ∨	Rosner's at α=	0.01 V 🗸 l	Jse EPA Scree	ning to esta	blish Suspe	cted Ou	tliers
🔿 Tuk	ey's Outlie	r Screening,	with IQR Mult	iplier = 3.0	Use Ladd	ler of Powers to	o achieve B	est W Stat		
🗹 Tes	t For Norm	ality using S	Shapiro-Wilk/F	rancia 🗸 at i	Alpha = 0.1	~				
۲	Stop if No	n-Nomal								
0	Continue	with Paramet	ric Test if Nor	-Normal						
0	Tukey's if	Non-Normal,	, with IQR Mul	tiplier = 3.0	Use Lado	der of Powers to	o achieve B	est W Stat		
No No	Outlier If Le	ess Than 📑	3.0 Times I	Median						
🗌 Арр	ly Rules fo	ound in Ohio (Guidance Doo	cument 0715						
	nbine Back	ground Well	s on the Outlie	er Report						
Piper, St	tiff Diagram	1								
Com	Combine Wells Label Constituents									
Con	Combine Dates Label Axes									
_										
Use	Constitue	nt Definition	File Edit							
	OK (Cancel	Save Setting	gs As Load	Saved Settings	. Defaults	Edit	INI File	4	

ATTACHMENT 2-2

Spring 2018 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

September 11, 2018

To: Montrose Generating Station 400 SW Highway P Clinton, MO 64735 Kansas City Power & Light Company

From: SCS Engineers

RE: Determination of Statistically Significant Increases North and South Ash Impoundments Spring 2018 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the multiunit groundwater monitoring system for the North and South Ash Impoundments at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 14, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 12, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. One round of verification sampling was conducted for certain constituents on June 26, 2018.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation did not identify any SSIs above background.

Attached to this memorandum are the following backup information:

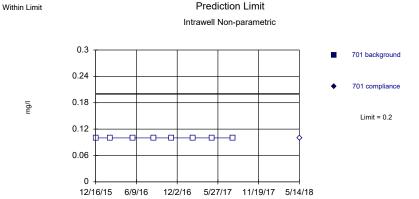
Attachment 1: Sanitas[™] Output:

Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), extra sample results for pH for wells which were re-sampled for verification, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Montrose Generating Station Determination of Statistically Significant Increases North and South Ash Impoundments September 11, 2018


Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Montrose Generating Station Determination of Statistically Significant Increases North and South Ash Impoundments September 11, 2018

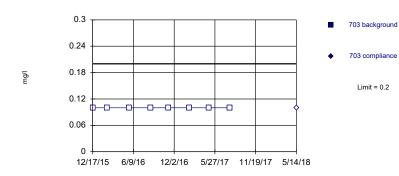
ATTACHMENT 1

Sanitas[™] Output

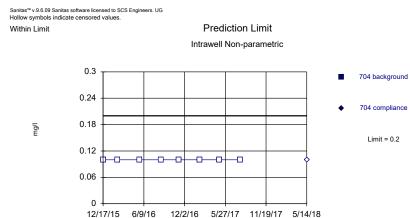
Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Prediction Limit Within Limit Intrawell Non-parametric 0.3 702 background 0.24 702 compliance 0.18 l/gr Limit = 0.20.12 -0--0 0.06 0 12/17/15 6/9/16 12/2/16 5/27/17 11/19/17 5/14/18

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas^w v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

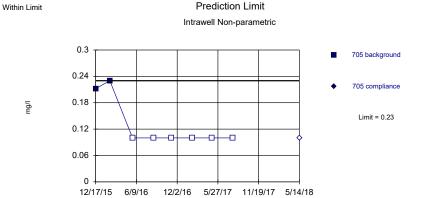
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

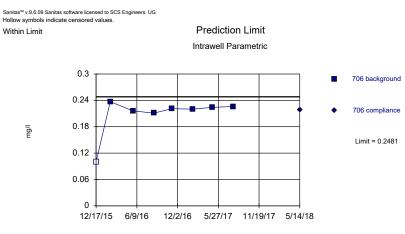
	701	701
12/16/2015	<0.2	
2/16/2016	<0.2	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/8/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
5/14/2018		<0.2

Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	702	702
12/17/2015	<0.2	
2/16/2016	<0.2	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
5/14/2018		<0.2


Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	703
12/17/2015	<0.2	
2/16/2016	<0.2	
5/23/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
5/14/2018		<0.2


Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	<0.2	
2/16/2016	<0.2	
5/23/2016	<0.2	
8/22/2016	<0.2	
11/7/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
5/14/2018		<0.2

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Background Data Summary (based on x⁴ transformation): Mean=0.002159, Std. Dev.=0.0009007, n=8, 12.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7832, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

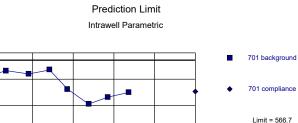
Constituent: Boron Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

600

480

360

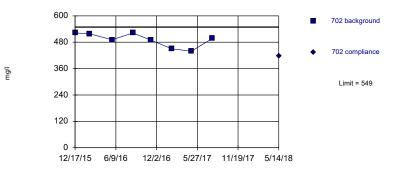

240

120

0

Within Limit

ng/l



701 compliance

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=491.3, Std. Dev.=31.91, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8625, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Background Data Summary: Mean=458, Std. Dev.=60.08, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8899, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

12/16/15 6/9/16 12/2/16 5/27/17 11/19/17 5/14/18

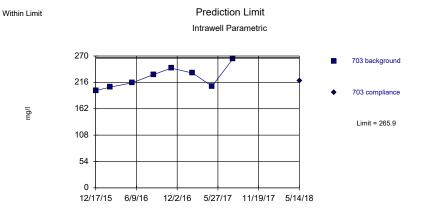
Constituent: Calcium Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	70
12/17/2015	0.212	
2/16/2016	0.23	
5/24/2016	<0.2	
8/22/2016	<0.2	
11/8/2016	<0.2	
2/7/2017	<0.2	
5/2/2017	<0.2	
7/31/2017	<0.2	
5/14/2018		<0.2

Constituent: Boron (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	<0.2	
2/16/2016	0.237	
5/24/2016	0.216	
8/22/2016	0.211	
11/8/2016	0.221	
2/7/2017	0.22	
5/2/2017	0.224	
7/31/2017	0.226	
5/14/2018		0.219

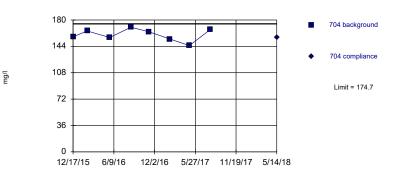

Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	701	701
12/16/2015	498	
2/16/2016	519	
5/24/2016	504	
8/22/2016	522	
11/8/2016	435	
2/7/2017	367	
5/2/2017	399	
7/31/2017	420	
5/14/2018		424

Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	702	702
12/17/2015	522	
2/16/2016	519	
5/24/2016	491	
8/22/2016	522	
11/7/2016	490	
2/7/2017	450	
5/2/2017	439	
7/31/2017	497	
5/14/2018		416

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=225.5, Std. Dev.=22.34, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9409, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit

Prediction Limit

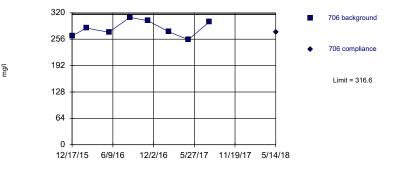
Background Data Summary: Mean=159.8, Std. Dev.=8.242, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9456, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Calcium Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=137.8, Std. Dev.=26.95, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9222, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Prediction Limit Intrawell Parametric

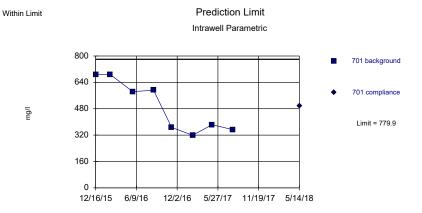
Background Data Summary: Mean=282.1, Std. Dev.=19.07, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9531, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	703
12/17/2015	199	
2/16/2016	206	
5/23/2016	215	
8/22/2016	232	
11/7/2016	245	
2/7/2017	235	
5/2/2017	208	
7/31/2017	264	
5/14/2018		219

Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

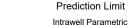
	704	704
12/17/2015	157	
2/16/2016	165	
5/23/2016	156	
8/22/2016	170	
11/7/2016	164	
2/7/2017	154	
5/2/2017	145	
7/31/2017	167	
5/14/2018		156

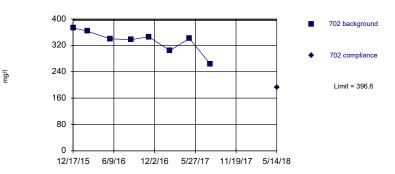

Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	173	
2/16/2016	180	
5/24/2016	141	
8/22/2016	139	
11/8/2016	105	
2/7/2017	131	
5/2/2017	113	
7/31/2017	120	
5/14/2018		129

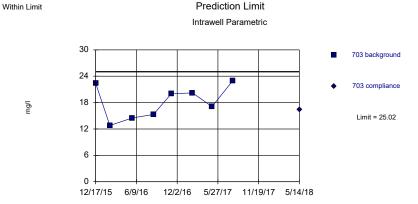
Constituent: Calcium (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	264	
2/16/2016	283	
5/24/2016	273	
8/22/2016	309	
11/8/2016	301	
2/7/2017	274	
5/2/2017	255	
7/31/2017	298	
5/14/2018		273

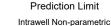

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

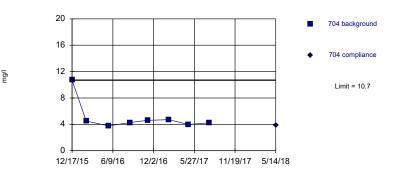


Background Data Summary: Mean=496.6, Std. Dev.=156.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8398, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.



Background Data Summary: Mean=333.4, Std. Dev.=34.92, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8838, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Chloride Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=18.16, Std. Dev.=3.787, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9353, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188. Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

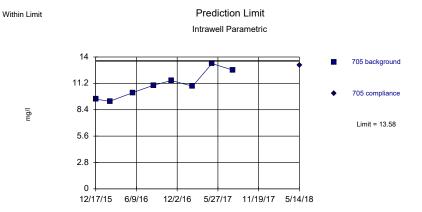
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	701	701
12/16/2015	687	
2/16/2016	688	
5/24/2016	584	
8/22/2016	592	
11/8/2016	367	
2/7/2017	319	
5/2/2017	383	
7/31/2017	353	
5/14/2018		497

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

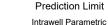
	702	702
12/17/2015	373	
2/16/2016	363	
5/24/2016	340	
8/22/2016	337	
11/7/2016	346	
2/7/2017	304	
5/2/2017	341	
7/31/2017	263	
5/14/2018		192

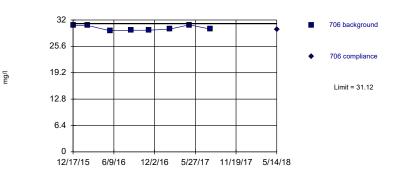

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	703
12/17/2015	22.4	
2/16/2016	12.8	
5/23/2016	14.5	
8/22/2016	15.3	
11/7/2016	20	
2/7/2017	20.2	
5/2/2017	17.1	
7/31/2017	23	
5/14/2018		16.4

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	10.7	
2/16/2016	4.49	
5/23/2016	3.77	
8/22/2016	4.27	
11/7/2016	4.61	
2/7/2017	4.71	
5/2/2017	3.98	
7/31/2017	4.24	
5/14/2018		3.86


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



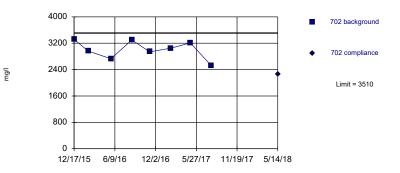
Background Data Summary: Mean=11.04, Std. Dev.=1.407, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Background Data Summary: Mean=30.03, Std. Dev.=0.6042, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Chloride Analysis Run 7/18/2018 4:27 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=3454, Std. Dev.=378.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9238, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=3004, Std. Dev.=279.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9382, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	9.51	
2/16/2016	9.3	
5/24/2016	10.2	
8/22/2016	11	
11/8/2016	11.5	
2/7/2017	10.9	
5/2/2017	13.3	
7/31/2017	12.6	
5/14/2018		13.1

Constituent: Chloride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	30.7	
2/16/2016	30.7	
5/24/2016	29.4	
8/22/2016	29.5	
11/8/2016	29.5	
2/7/2017	29.8	
5/2/2017	30.8	
7/31/2017	29.8	
5/14/2018		29.7

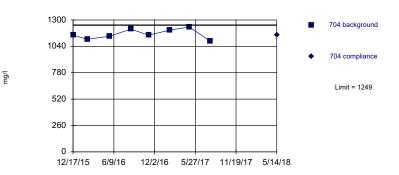
Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	701	701
12/16/2015	3830	
2/16/2016	3350	
5/24/2016	3770	
8/22/2016	4030	
11/8/2016	3250	
2/7/2017	3210	
5/2/2017	2920	
7/31/2017	3270	
5/14/2018		3290

Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	702	702
10/17/0015		,02
12/17/2015	3320	
2/16/2016	2960	
5/24/2016	2730	
8/22/2016	3300	
11/7/2016	2940	
2/7/2017	3050	
5/2/2017	3210	
7/31/2017	2520	
5/14/2018		2260

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=1481, Std. Dev.=114.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

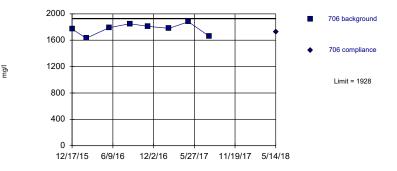
Within Limit

Prediction Limit

Background Data Summary: Mean=1160, Std. Dev.=49.28, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9462, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Dissolved Solids Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit Intrawell Parametric 705 background 705 compliance 1300 705 compliance Limit = 1292

Background Data Summary: Mean=1056, Std. Dev.=130.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9756, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

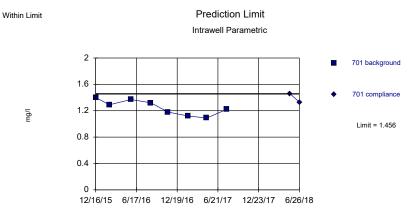
Background Data Summary: Mean=1771, Std. Dev.=86.43, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9168, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	703
12/17/2015	1350	
2/16/2016	1280	
5/23/2016	1460	
8/22/2016	1500	
11/7/2016	1540	
2/7/2017	1620	
5/2/2017	1580	
7/31/2017	1520	
5/14/2018		1480

Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	1150	
2/16/2016	1110	
5/23/2016	1140	
8/22/2016	1210	
11/7/2016	1150	
2/7/2017	1200	
5/2/2017	1230	
7/31/2017	1090	
5/14/2018		1150

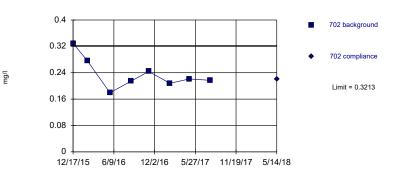

Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	1250	
2/16/2016	1180	
5/24/2016	1090	
8/22/2016	1130	
11/8/2016	869	
2/7/2017	1030	
5/2/2017	958	
7/31/2017	937	
5/14/2018		1080

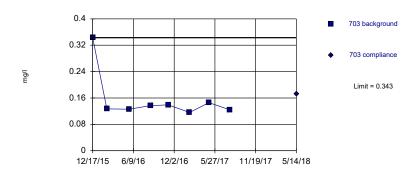
Constituent: Dissolved Solids (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	1770	
2/16/2016	1630	
5/24/2016	1790	
8/22/2016	1850	
11/8/2016	1810	
2/7/2017	1780	
5/2/2017	1880	
7/31/2017	1660	
5/14/2018		1730

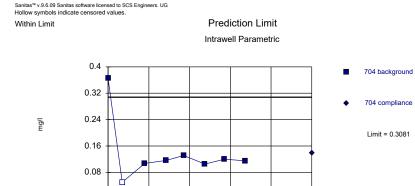
Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=1.249, Std. Dev.=0.1144, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9494, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Intrawell Parametric


Background Data Summary: Mean=0.2361, Std. Dev.=0.04705, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8995, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05123). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Fluoride Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

0

12/17/15 6/9/16

Background Data Summary (based on cube root transformation): Mean=0.5006, Std. Dev.=0.09657, n=8, 12.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7706, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

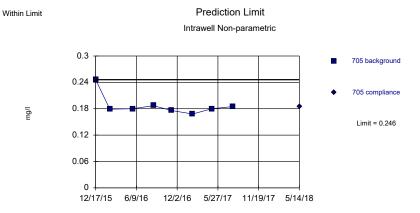
12/2/16 5/27/17 11/19/17 5/14/18

Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	701	701	
12/16/2015	1.4		
2/16/2016	1.29		
5/24/2016	1.37		
8/22/2016	1.32		
11/8/2016	1.18		
2/7/2017	1.12		
5/2/2017	1.09		
7/31/2017	1.22		
5/14/2018		1.46	
6/26/2018		1.33	1st verification re-sample

Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	702	702
12/17/2015	0.329	
2/16/2016	0.277	
5/24/2016	0.179	
8/22/2016	0.214	
11/7/2016	0.244	
2/7/2017	0.208	
5/2/2017	0.221	
7/31/2017	0.217	
5/14/2018		0.22

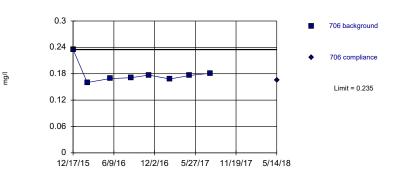

Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	7
12/17/2015	0.343	
2/16/2016	0.127	
5/23/2016	0.126	
8/22/2016	0.137	
11/7/2016	0.139	
2/7/2017	0.116	
5/2/2017	0.146	
7/31/2017	0.124	
5/14/2018		0.173

Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	0.365	
2/16/2016	<0.1	
5/23/2016	0.107	
8/22/2016	0.116	
11/7/2016	0.131	
2/7/2017	0.105	
5/2/2017	0.12	
7/31/2017	0.115	
5/14/2018		0.139

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

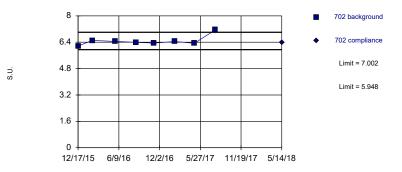
Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Prediction Limit Within Limits Intrawell Parametric 4.7 701 background ٠ 701 compliance 3.76 Limit = 4.659 2.82 S.U Limit = 3.786 1.88 0.94 0 12/16/15 6/17/16 12/19/16 6/21/17 12/23/17 6/26/18

Background Data Summary: Mean=4.223, Std. Dev.=0.2411, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9768, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.475, Std. Dev.=0.291, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7508, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	0.246	
2/16/2016	0.179	
5/24/2016	0.18	
8/22/2016	0.187	
11/8/2016	0.176	
2/7/2017	0.168	
5/2/2017	0.18	
7/31/2017	0.185	
5/14/2018		0.185

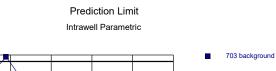
Constituent: Fluoride (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	7
12/17/2015	0.235	
2/16/2016	0.16	
5/24/2016	0.169	
8/22/2016	0.171	
11/8/2016	0.177	
2/7/2017	0.168	
5/2/2017	0.176	
7/31/2017	0.181	
5/14/2018		0.165

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

70	01 701	
12/16/2015 4.1	12	
2/16/2016 4.	13	
5/24/2016 3.8	83	
8/22/2016 4.3	37	
11/8/2016 4.0	05	
2/7/2017 4.5	57	
5/2/2017 4.2	24	
7/31/2017 4.4	47	
5/14/2018	4.4	
6/26/2018	4.23	3 extra sample

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

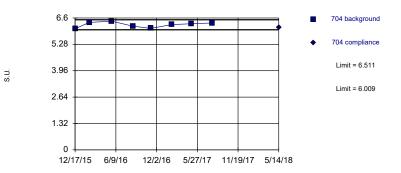

	702	702
12/17/2015	6.17	
2/16/2016	6.51	
5/24/2016	6.45	
8/22/2016	6.39	
11/7/2016	6.35	
2/7/2017	6.44	
5/2/2017	6.34	
7/31/2017	7.15	
5/14/2018		6.4

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

8

Within Limits

S.U



Background Data Summary: Mean=6.513, Std. Dev.=0.6039, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7595, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limits

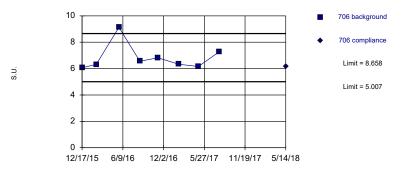
Prediction Limit

Background Data Summary: Mean=6.26, Std. Dev.=0.1388, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9351, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: pH Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits



Background Data Summary: Mean=6.543, Std. Dev.=0.3411, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.749. Kappa = 1.81 (c=7), w=4, 1 of 3, event alpha = 0.05132. Report alpha = 0.00188.

Prediction Limit Intrawell Parametric

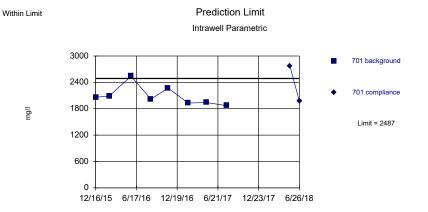
Background Data Summary: Mean=6.833, Std. Dev.=1.008, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7513, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	702	700
	703	703
12/17/2015	6.34	
2/16/2016	6.41	
5/23/2016	7.88	
8/22/2016	6.04	
11/7/2016	6.41	
2/7/2017	6.08	
5/2/2017	6.14	
7/31/2017	6.8	
5/14/2018		6.41

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	6.06	
2/16/2016	6.38	
5/23/2016	6.44	
8/22/2016	6.19	
11/7/2016	6.08	
2/7/2017	6.27	
5/2/2017	6.31	
7/31/2017	6.35	
5/14/2018		6.13

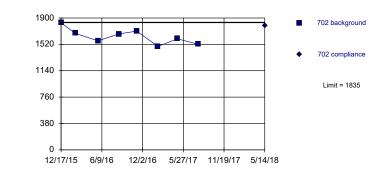

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	6.37	
2/16/2016	6.62	
5/24/2016	6.52	
8/22/2016	6.35	
11/8/2016	6.77	
2/7/2017	6.11	
5/2/2017	6.37	
7/31/2017	7.23	
5/14/2018		6.18

Constituent: pH (S.U.) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	6.06	
2/16/2016	6.32	
5/24/2016	9.13	
8/22/2016	6.56	
11/8/2016	6.82	
2/7/2017	6.33	
5/2/2017	6.16	
7/31/2017	7.28	
5/14/2018		6.16

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=2090, Std. Dev.=219.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

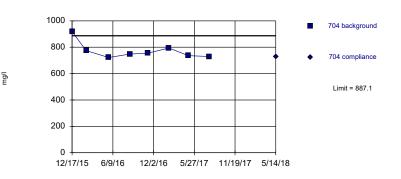
Within Limit

l/gr

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1634, Std. Dev.=111.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9645, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Sulfate Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=954.1, Std. Dev.=99.03, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9422, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188. Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=772.1, Std. Dev=63.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7539, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

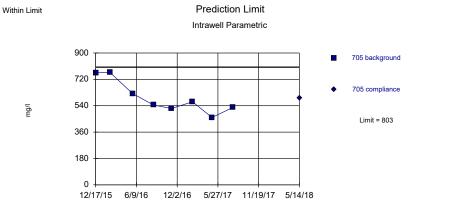
	701	701	
12/16/2015	2060		
2/16/2016	2090		
5/24/2016	2540		
8/22/2016	2020		
11/8/2016	2270		
2/7/2017	1930		
5/2/2017	1940		
7/31/2017	1870		
5/14/2018		2770	
6/26/2018		1970	1st verification re-sample

Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

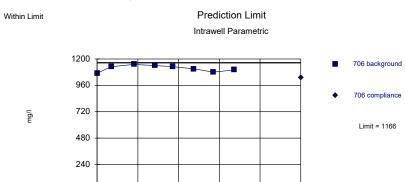
	702	702
12/17/2015	1830	
2/16/2016	1680	
5/24/2016	1570	
8/22/2016	1670	
11/7/2016	1710	
2/7/2017	1490	
5/2/2017	1600	
7/31/2017	1520	
5/14/2018		1790

Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	703	703
12/17/2015	996	
0/10/0010	001	
2/16/2016	821	
5/23/2016	848	
8/22/2016	897	
11/7/2016	1060	
2/7/2017	1090	
5/2/2017	911	
7/31/2017	1010	
5/14/2018		892
0.1.1.2010		002


Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	704	704
12/17/2015	918	
2/16/2016	774	
5/23/2016	722	
8/22/2016	748	
11/7/2016	755	
2/7/2017	794	
5/2/2017	736	
7/31/2017	730	
5/14/2018		726


Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

0

Background Data Summary: Mean=597, Std. Dev.=113.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8709, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

12/17/15 6/9/16 12/2/16 5/27/17 11/19/17 5/14/18

Background Data Summary: Mean=1114, Std. Dev.=28.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9398, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Constituent: Sulfate Analysis Run 7/18/2018 4:28 PM View: Ash CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	705	705
12/17/2015	764	
2/16/2016	768	
5/24/2016	623	
8/22/2016	545	
11/8/2016	521	
2/7/2017	567	
5/2/2017	460	
7/31/2017	528	
5/14/2018		594

Constituent: Sulfate (mg/l) Analysis Run 7/18/2018 4:29 PM View: Ash CCR III

	706	706
12/17/2015	1070	
2/16/2016	1130	
5/24/2016	1150	
8/22/2016	1140	
11/8/2016	1130	
2/7/2017	1110	
5/2/2017	1080	
7/31/2017	1100	
5/14/2018		1030

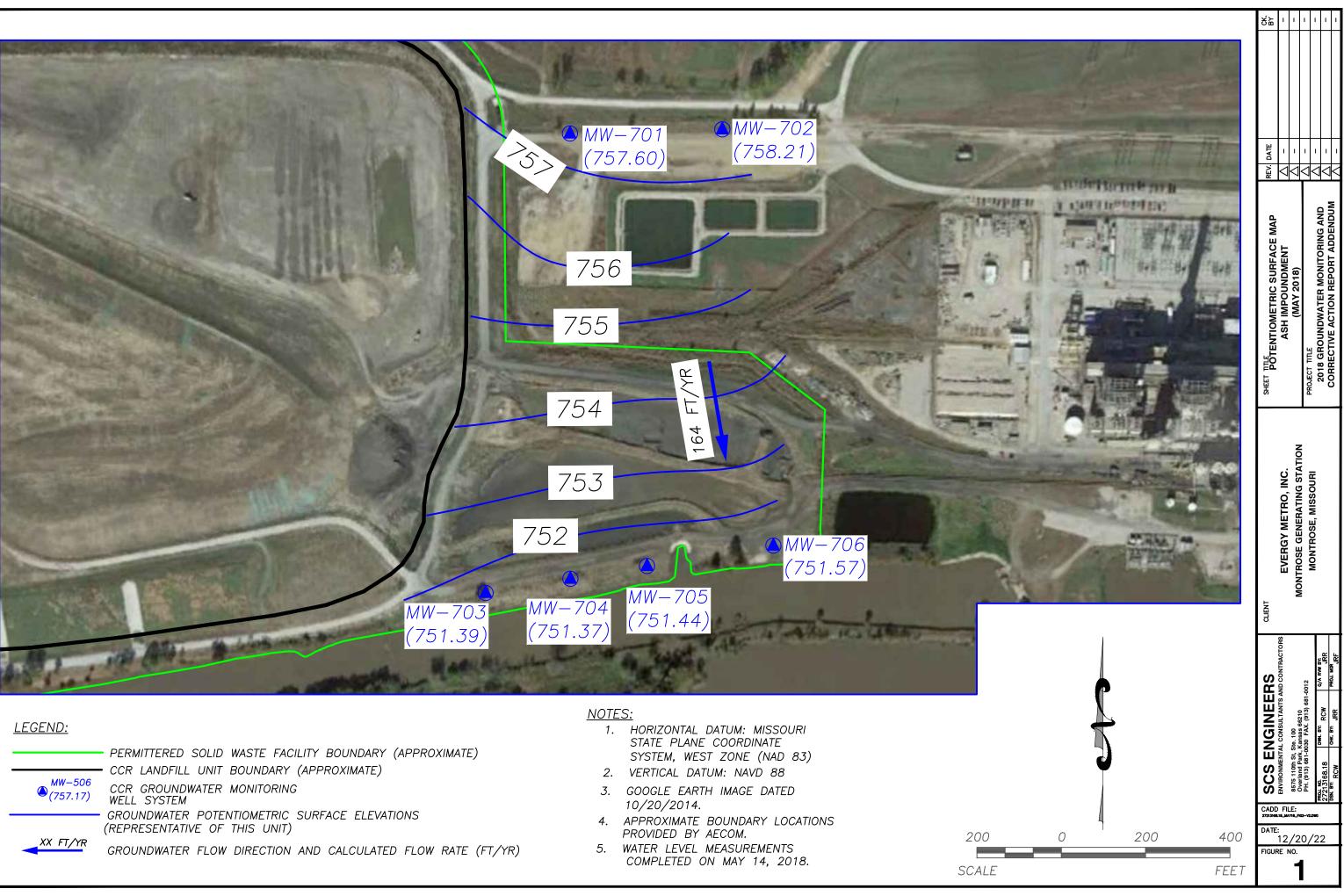
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose Printed 7/18/2018, 4:29 PM Constituent Well Upper Lim. Lower Lim. Date Sig. <u>Bg N</u> %NDs Transform Alpha Method Observ. Boron (mg/l) 701 0.2 n/a 5/14/2018 0.1ND No 8 100 n/a 0.005912 NP Intra (NDs) 1 of 3 702 0.2 5/14/2018 0.1ND No 8 100 0.005912 NP Intra (NDs) 1 of 3 Boron (mg/l) n/a n/a 703 8 Boron (mg/l) 0.2 5/14/2018 0.1ND No 100 n/a 0.005912 NP Intra (NDs) 1 of 3 n/a 704 NP Intra (NDs) 1 of 3 Boron (mg/l) 0.2 n/a 5/14/2018 0.1ND No 8 100 n/a 0.005912 705 0.23 8 75 Boron (mg/l) 5/14/2018 0.1ND No 0.005912 NP Intra (NDs) 1 of 3 n/a n/a 8 Boron (mg/l) 706 0.2481 5/14/2018 0.219 No 12.5 x^4 0.00188 Param Intra 1 of 3 n/a 701 566.7 5/14/2018 424 8 0 0.00188 Calcium (mg/l) No No Param Intra 1 of 3 n/a 702 416 8 0 Calcium (mg/l) 549 n/a 5/14/2018 No No 0.00188 Param Intra 1 of 3 Calcium (mg/l) 703 265.9 n/a 5/14/2018 219 No 8 0 No 0.00188 Param Intra 1 of 3 Calcium (mg/l) 704 174.7 n/a 5/14/2018 156 No 8 0 No 0.00188 Param Intra 1 of 3 Calcium (mg/l) 705 186.5 n/a 5/14/2018 129 No 8 0 No 0.00188 Param Intra 1 of 3 Calcium (mg/l) 706 316.6 n/a 5/14/2018 273 No 8 0 No 0.00188 Param Intra 1 of 3 Chloride (mg/l) 701 779.9 n/a 5/14/2018 497 No 8 0 No 0.00188 Param Intra 1 of 3 Chloride (mg/l) 702 396.6 n/a 5/14/2018 192 No 8 0 No 0.00188 Param Intra 1 of 3 703 Chloride (mg/l) 25.02 5/14/2018 16.4 8 0 0.00188 n/a No No Param Intra 1 of 3 Chloride (mg/l) 704 10.7 5/14/2018 3.86 No 8 0 0.005912 NP Intra (normality) ... n/a n/a 705 5/14/2018 8 0 Chloride (mg/l) 13.58 n/a 13.1 No No 0.00188 Param Intra 1 of 3 Chloride (mg/l) 706 31.12 5/14/2018 29.7 No 8 0 No 0.00188 Param Intra 1 of 3 n/a 701 8 Dissolved Solids (mg/l) 4139 n/a 5/14/2018 3290 No 0 No 0.00188 Param Intra 1 of 3 Dissolved Solids (mg/l) 702 8 0 3510 n/a 5/14/2018 2260 No No 0.00188 Param Intra 1 of 3 Dissolved Solids (mg/l) 703 1689 5/14/2018 1480 8 0 0.00188 Param Intra 1 of 3 n/a No No Dissolved Solids (mg/l) 704 1249 5/14/2018 1150 No 8 0 No 0.00188 Param Intra 1 of 3 n/a Dissolved Solids (ma/l) 705 1292 n/a 5/14/2018 1080 No 8 0 No 0.00188 Param Intra 1 of 3 Dissolved Solids (mg/l) 706 1928 n/a 5/14/2018 1730 No 8 0 No 0.00188 Param Intra 1 of 3 Fluoride (mg/l) 701 1.456 6/26/2018 1.33 8 0 0.00188 n/a No No Param Intra 1 of 3 Fluoride (mg/l) 702 0.3213 n/a 5/14/2018 0.22 No 8 0 No 0.00188 Param Intra 1 of 3 Fluoride (mg/l) 703 0.343 n/a 5/14/2018 0.173 No 8 0 n/a 0.005912 NP Intra (normality) Fluoride (mg/l) 704 0.3081 n/a 5/14/2018 0.139 No 8 12.5 x^(1/3) 0.00188 Param Intra 1 of 3 Fluoride (mg/l) 705 0.246 n/a 5/14/2018 0.185 No 8 0 n/a 0.005912 NP Intra (normality) ... 706 0.235 8 0 Fluoride (mg/l) n/a 5/14/2018 0.165 No n/a 0.005912 NP Intra (normality) ... 701 4.23 8 0 0.000... Param Intra 1 of 3 pH (S.U.) 4.659 3.786 6/26/2018 No No pH (S.U.) 702 7.002 5.948 5/14/2018 6.4 8 0 No 0.000... Param Intra 1 of 3 No 703 8 0 pH (S.U.) 7.605 5.42 5/14/2018 6.41 No No 0.000... Param Intra 1 of 3 704 6.511 6.009 5/14/2018 6.13 No 8 0 No 0.000... Param Intra 1 of 3 pH (S.U.) pH (S.U.) 705 7.16 5.925 5/14/2018 6.18 No 8 0 No 0.000... Param Intra 1 of 3 pH (S.U.) 706 8.658 5.007 5/14/2018 6.16 No 8 0 No 0.000... Param Intra 1 of 3 701 8 0 Sulfate (mg/l) 2487 n/a 6/26/2018 1970 No No 0.00188 Param Intra 1 of 3 Sulfate (mg/l) 702 1835 n/a 5/14/2018 1790 No 8 0 No 0.00188 Param Intra 1 of 3 Sulfate (mg/l) 703 1133 5/14/2018 892 8 0 0.00188 n/a No No Param Intra 1 of 3 704 8 0 Sulfate (mg/l) 887.1 5/14/2018 726 No No 0.00188 Param Intra 1 of 3 n/a 705 5/14/2018 8 Sulfate (mg/l) 803 n/a 594 No 0 No 0.00188 Param Intra 1 of 3 Sulfate (mg/l) 706 1166 5/14/2018 1030 No 8 0 No 0.00188 Param Intra 1 of 3 n/a

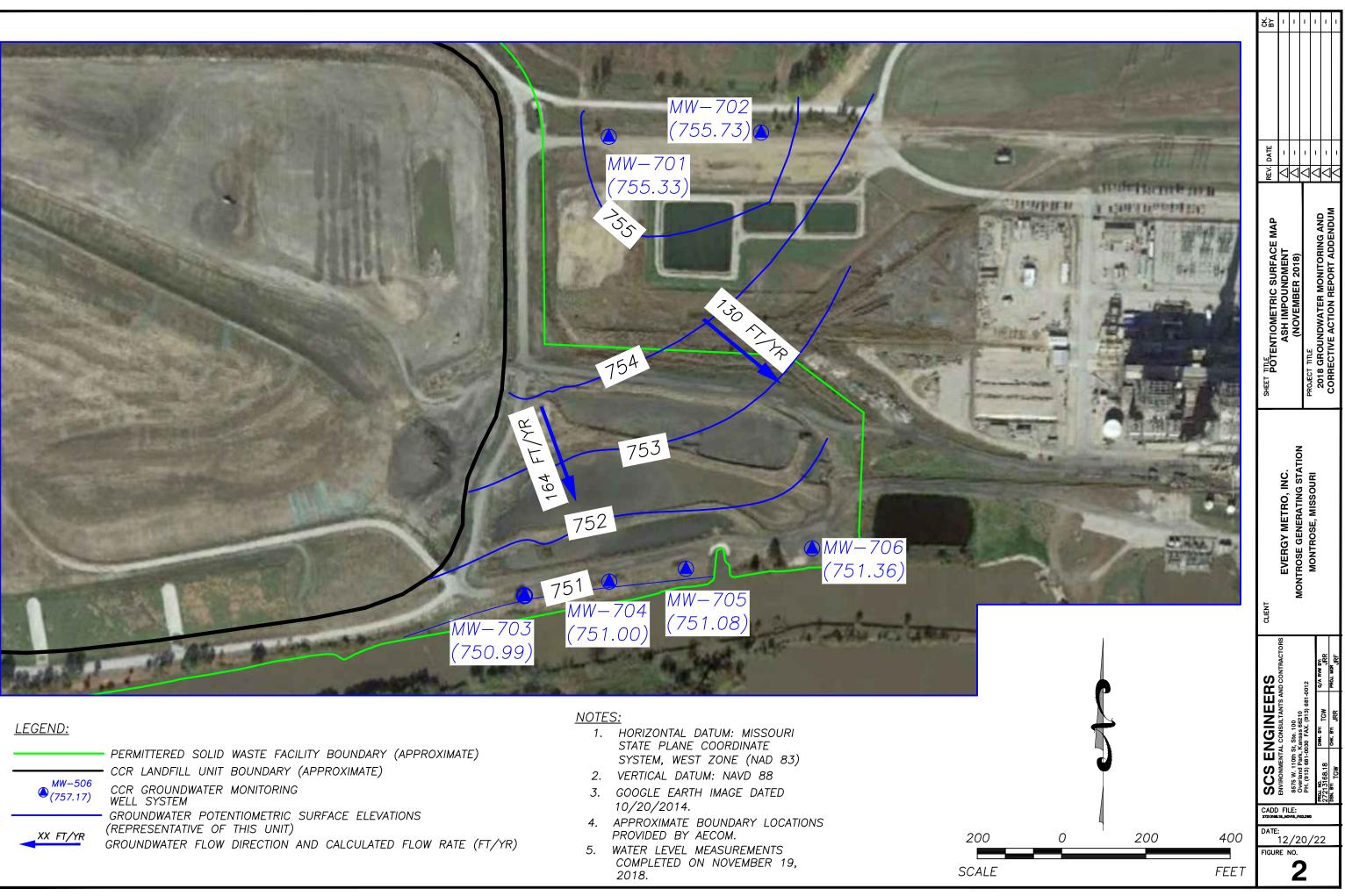
Montrose Generating Station Determination of Statistically Significant Increases North and South Ash Impoundments September 11, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s:							
Data	Reading O	ptions							
🔘 In	ndividual Ob	oservations							
\bigcirc M	lean of Eac	:h:	Month						
OM	ledian of Ea	ach:	Season	n					
Non-	Detect / Tr	ace Handling.							
Setup	Seasons								
🗌 Aut	omatically F	Process Resa	mples						


Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol In	nt ANOVA	Welchs	Other Tests
Bla Fou Fou Dra Dra Enl C Enl C Enl	ck and Whi ur Plots Per Always Con Include Ticl Use Constit aw Border A arge/Reduc arge/Reduc de Margins e CAS# (No incate File N lude Limit Li ow Deselec	te Output Page Ibine Data Pa k Marks on D uent Name fo round Text R ce Fonts (Grap ce Fonts (Grap ce Fonts (Data (on reports with t Const. Name Names to 20 ines when fou ted Data on 1 ted Data on a	iges ata Page r Graph Title eports and Da ohs): a/Text Report thout explicit s e)	ta Pages 100% s): 100% etting) se ighter V	 ✓ Pro Rou Use ✓ Indi Shot This Zou Output Les Noi 	mpt to Oven	write/Append S 2 Sig. Digits round Data ates s 200% ~ ecision	Summary Ta	ables
	Store Print Jobs in Multiple Constituent Mode Store All Print Jobs								
Printer:	Adobe PD	F							✓ Printers


Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
_	t for Norma		apiro-Wilk/Fra	~ 0	Transformation Use Ladder of Powers Natural Log or No Transformation Never Transform						
Use Ait	Use Non-Parametric Test when Non-Detects Percent > 50 Use Specific Transformation:										
● ⊮ ○ ⊮	Seasonality Seasonality	ntra- and Inter y Is Detected y Is Detected en Sufficient E	Or Insufficient	t to Test Never	☐ Stop if ☑ Plot Ba	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation:					
Facility Statist Consti Down Sampli	y α ical Evalua tuents Anal gradient (Co	ompliance) W	r: ells:	2 7 4	Automa 2-Taileo Show D Non-Paramo	Override DF: Override Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter Non-Parametric Limit = Highest Background Value Non-Parametric Limit when 100% Non-Detects:					
01	of 1 C	lividual Obsen) 1 of 2 (ified California	1 of 3	✓ 1 of 4	Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)						

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other	Tests							
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney								
Use Modified Alpha 2-Tailed Test Mode								
Outlier Tests								
C EPA 1989 Outlier Screening (fixed alpha of 0.05)								
• Dixon's at $\alpha = 0.05 \lor$ or if n > 22 \lor Rosner's at $\alpha = 0.01 \lor$ Use EPA Screening to establish Suspected Outliers								
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat								
Test For Normality using Shapiro-Wilk/Francia V at Alpha = 0.1 V								
Stop if Non-Normal								
◯ Continue with Parametric Test if Non-Normal								
◯ Tukey's if Non-Normal, with IQR Multiplier = 3.0 🗹 Use Ladder of Powers to achieve Best W Stat								
No Outlier If Less Than 3.0 Times Median								
Apply Rules found in Ohio Guidance Document 0715								
Combine Background Wells on the Outlier Report								
Piper, Stiff Diagram								
Combine Wells								
Combine Dates Label Axes								
Use Default Constituent Names Note Cation-Anion Balance (Piper only)								
O Use Constituent Definition File Edit								

Jared Morrison December 20, 2022

ATTACHMENT 3 Groundwater Potentiometric Surface Maps

