## 2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

# CCR LANDFILL MONTROSE GENERATING STATION CLINTON, MISSOURI

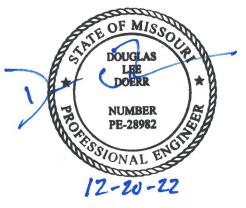
Presented To:

Evergy Metro, Inc. (f/k/a Kansas City Power & Light Co.)

#### SCS ENGINEERS

27213168.19 | January 2020, Revised January 20, 2022 8575 W 110<sup>th</sup> Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

#### **CERTIFICATIONS**


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



Douglas L. Doerr, P.E.

SCS Engineers

#### 2019 Groundwater Monitoring and Corrective Action Report

| Revision<br>Number | Revision<br>Date  | Revision Section | Summary of Revisions |
|--------------------|-------------------|------------------|----------------------|
| 0                  | January 2020      | NA               | Original Report.     |
| 1                  | December 20, 2022 | Addendum 1       | Added Addendum 1     |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |

#### Table of Contents

| Sect | ion   |         | Pa                                                                                       | ge |
|------|-------|---------|------------------------------------------------------------------------------------------|----|
| CERT | IFICA | TIONS   |                                                                                          | i  |
| 1    |       |         | ON                                                                                       |    |
| 2    | § 25  | 7.90(e) | ANNUAL REPORT REQUIREMENTS                                                               | 1  |
|      | 2.1   | § 257.  | .90(e)(1) Site Map                                                                       | 1  |
|      | 2.2   | § 257.  | .90(e)(2) Monitoring System Changes                                                      | 1  |
|      | 2.3   | § 257.  | .90(e)(3) Summary of Sampling Events                                                     | 2  |
|      | 2.4   | § 257.  | .90(e)(4) Monitoring Transition Narrative                                                | 2  |
|      | 2.5   | § 257.  | .90(e)(5) Other Requirements                                                             | 2  |
|      |       | 2.5.1   | § 257.90(e) Program Status                                                               | 2  |
|      |       | 2.5.2   | § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency              | 3  |
|      |       | 2.5.3   | § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration                       | 3  |
|      |       | 2.5.4   | § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequen               | ,  |
|      |       | 2.5.5   | § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards |    |
|      |       | 2.5.6   | § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration                  | 4  |
|      |       | 2.5.7   | § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures      | 5  |
| 3    | GENI  | ERAL CO | DMMENTS                                                                                  | 5  |

#### **Appendices**

#### **Appendix A** Figures

Figure 1: Site Map

#### Appendix B Tables

- Table 1: Appendix III Detection Monitoring Results
- Table 2: Detection Monitoring Field Measurements

#### **Appendix C** Alternative Source Demonstrations

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (June 2019).
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2019).

Addendum 1 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

#### 1 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared for Evergy Metro, Inc. (f/k/a Kansas City Power & Light Company) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station.

#### 2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

#### 2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

#### 2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2019.

#### 2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2019). Samples collected in 2019 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include Fall 2018 semiannual detection monitoring event verification data taken in 2019; Spring 2019 semiannual detection monitoring data; and the initial Fall 2019 semiannual detection monitoring data.

#### 2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2019. Only detection monitoring was conducted in 2019.

#### 2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

#### 2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2018 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2018 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2018 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2018 semiannual detection monitoring sampling and analysis event,

- e. completion of the Spring 2019 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method.
- f. completion of the statistical evaluation of the Spring 2019 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2019 semiannual detection monitoring sampling and analysis event, and
- h. initiation of the Fall 2019 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2020).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2019 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2020 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2020 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

## 2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

### 2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as **Appendix C**:

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (June 2019).
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2019).

### 2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

### 2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

### 2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

### 2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

#### 3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Montrose Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the Montrose Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

#### APPENDIX A

#### **FIGURES**

Figure 1: Site Map

ODECT TITE 2019 GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

EVERGY METRO, INC MONTROSE GENERATING STATION MONTROSE, MISSOURI

1/07/20

#### **APPENDIX B**

#### **TABLES**

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1
CCR Landfill
Appendix III Detection Monitoring Results
Evergy Montrose Generating Station

|                |                |                 | Appendix III Constituents |                    |                    |              |                   |                                        |  |
|----------------|----------------|-----------------|---------------------------|--------------------|--------------------|--------------|-------------------|----------------------------------------|--|
| Well<br>Number | Sample<br>Date | Boron<br>(mg/L) | Calcium<br>(mg/L)         | Chloride<br>(mg/L) | Fluoride<br>(mg/L) | pH<br>(S.U.) | Sulfate<br>(mg/L) | Total<br>Dissolved<br>Solids<br>(mg/L) |  |
| MW-506         | 5/21/2019      | <0.200          | 357                       | 76.0               | 0.108              | 5.49         | 2130              | 2460                                   |  |
| MW-506         | 11/5/2019      | <0.200          | 341                       | 74.5               | <0.100             | 5.44         | 1760              | 2280                                   |  |
| MW-601         | 5/21/2019      | < 0.200         | 472                       | 55.5               | 0.487              | 5.34         | 3230              | 4410                                   |  |
| MW-601         | 7/15/2019      |                 |                           | *56.5              |                    | **5.96       |                   |                                        |  |
| MW-601         | 8/19/2019      |                 | -                         | *54.5              |                    | **5.41       |                   |                                        |  |
| MW-601         | 11/5/2019      | <0.200          | 457                       | 52.8               | 0.402              | 5.20         | 2950              | 3880                                   |  |
| MW-602         | 1/10/2019      |                 |                           |                    |                    | **5.90       |                   | *1870                                  |  |
| MW-602         | 5/21/2019      | 4.48            | 342                       | 4.11               | 0.132              | 5.77         | 1260              | 1870                                   |  |
| MW-602         | 11/5/2019      | 4.16            | 325                       | 3.69               | 0.140              | 6.00         | 1110              | 1880                                   |  |
| MW-603         | 5/21/2019      | 7.35            | 429                       | 8.24               | 0.365              | 4.32         | 2480              | 2990                                   |  |
| MW-603         | 7/15/2019      | *6.49           |                           | *8.75              |                    | **5.13       |                   |                                        |  |
| MW-603         | 8/19/2019      |                 |                           | *6.54              |                    | **4.46       |                   |                                        |  |
| MW-603         | 11/5/2019      | 5.96            | 410                       | 6.66               | 0.436              | 4.56         | 2010              | 2530                                   |  |
| MW-604         | 5/21/2019      | 4.86            | 476                       | 15.5               | 0.519              | 5.82         | 2090              | 3270                                   |  |
| MW-604         | 7/15/2019      | 4               | 1                         | ł                  |                    | **6.20       |                   | *2680                                  |  |
| MW-604         | 11/5/2019      | 4.30            | 407                       | 12.5               | 0.428              | 5.89         | 1650              | 2340                                   |  |
| MW-605         | 1/10/2019      |                 |                           | *50.9              |                    | **5.79       |                   |                                        |  |
| MW-605         | 3/13/2019      | -               | -                         | *52.4              |                    | **5.73       |                   |                                        |  |
| MW-605         | 5/21/2019      | 1.65            | 416                       | 55.4               | 0.222              | 5.64         | 1970              | 2810                                   |  |
| MW-605         | 7/15/2019      |                 |                           | *57.8              |                    | **5.85       |                   |                                        |  |
| MW-605         | 8/19/2019      |                 |                           | *57.9              |                    | **5.42       |                   |                                        |  |
| MW-605         | 11/5/2019      | 1.50            | 399                       | 59.1               | 0.195              | 5.59         | 1730              | 2380                                   |  |

<sup>\*</sup> Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

<sup>\*\*</sup>Extra Sample for Quality Control Validation or per Standard Sampling Procedure

Table 2
CCR Landfill
Detection Monitoring Field Measurements
Evergy Montrose Generating Station

| Well<br>Number | Sample<br>Date | pH<br>(S.U.) | Specific<br>Conductivity<br>(µS) | Temperature (°C) | Turbidity<br>(NTU) | ORP<br>(mV) | DO<br>(mg/L) | Water Level<br>(ft btoc) | Groundwater<br>Elevation<br>(ft NGVD) |
|----------------|----------------|--------------|----------------------------------|------------------|--------------------|-------------|--------------|--------------------------|---------------------------------------|
| MW-506         | 5/21/2019      | 5.49         | 3230                             | 11.15            | 9.5                | 131         | 0.68         | 3.02                     | 758.55                                |
| MW-506         | 11/5/2019      | 5.44         | 3050                             | 16.59            | 23.3               | 179         | 0.79         | 3.21                     | 758.36                                |
| MW-601         | 5/21/2019      | 5.34         | 4960                             | 11.62            | 21.0               | 93          | 0.00         | 8.49                     | 756.62                                |
| MW-601         | 7/15/2019      | **5.96       | 4780                             | 15.54            | 23.6               | 154         | 6.63         | 8.78                     | 756.33                                |
| MW-601         | 8/19/2019      | **5.41       | 4510                             | 19.20            | 21.5               | 239         | 0.12         | 9.96                     | 755.15                                |
| MW-601         | 11/5/2019      | 5.20         | 4700                             | 16.65            | 18.5               | 167         | 0.55         | 9.40                     | 755.71                                |
| MW-602         | 1/10/2019      | **5.90       | 2350                             | 13.60            | 6.8                | -59         | 7.41         | 3.98                     | 751.88                                |
| MW-602         | 5/21/2019      | 5.77         | 2230                             | 14.30            | 9.9                | 25          | 5.85         | 3.81                     | 752.05                                |
| MW-602         | 11/5/2019      | 6.00         | 2060                             | 15.48            | 0.0                | 85          | 1.01         | 3.70                     | 752.16                                |
| MW-603         | 5/21/2019      | 4.32         | 3580                             | 14.51            | 5.4                | 181         | 0.00         | 11.55                    | 752.09                                |
| MW-603         | 7/15/2019      | **5.13       | 3290                             | 16.50            | 0.0                | 151         | 1.23         | 12.55                    | 751.09                                |
| MW-603         | 8/19/2019      | **4.46       | 3080                             | 20.85            | 0.0                | 389         | 0.00         | 12.37                    | 751.27                                |
| MW-603         | 11/5/2019      | 4.56         | 3200                             | 15.31            | 0.0                | 137         | 0.89         | 11.32                    | 752.32                                |
| MW-604         | 5/21/2019      | 5.82         | 3300                             | 14.23            | 0.0                | 214         | 0.71         | 11.38                    | 752.01                                |
| MW-604         | 7/15/2019      | **6.20       | 2770                             | 16.05            | 0.0                | 133         | 0.97         | 12.65                    | 750.74                                |
| MW-604         | 11/5/2019      | 5.89         | 2820                             | 15.36            | 0.0                | 114         | 0.73         | 11.33                    | 752.06                                |
| MW-605         | 1/10/2019      | **5.79       | 3140                             | 14.40            | 0.0                | 425         | 0.00         | 12.07                    | 752.04                                |
| MW-605         | 3/13/2019      | **5.73       | 3370                             | 15.68            | 0.0                | 258         | 0.46         | 12.91                    | 751.20                                |
| MW-605         | 5/21/2019      | 5.64         | 3210                             | 13.83            | 0.0                | 216         | 1.55         | 12.15                    | 751.96                                |
| MW-605         | 7/15/2019      | **5.85       | 3110                             | 16.91            | 0.0                | 129         | 0.96         | 12.60                    | 751.51                                |
| MW-605         | 8/19/2019      | **5.42       | 2920                             | 19.49            | 0.0                | 237         | 0.00         | 12.51                    | 751.60                                |
| MW-605         | 11/5/2019      | 5.59         | 3020                             | 16.32            | 0.0                | 118         | 0.76         | 11.64                    | 752.47                                |

<sup>\*</sup> Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

 $\mu S$  - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

 $<sup>\</sup>hbox{**Extra Sample for Quality Control Validation or per Standard Sampling Procedure}\\$ 

#### APPENDIX C

#### ALTERNATIVE SOURCE DEMONSTRATIONS

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (June 2019)
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2019)

| C.1 | CCR Landfill Groundwater Monitoring Alternative Source<br>Demonstration Report November 2018 Groundwater Monitoring<br>Event, CCR Landfill, Montrose Generating Station (June 2019) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                     |
|     |                                                                                                                                                                                     |
|     |                                                                                                                                                                                     |
|     |                                                                                                                                                                                     |
|     |                                                                                                                                                                                     |

## CCR LANDFILL GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2018 GROUNDWATER MONITORING EVENT

## CCR LANDFILL MONTROSE GENERATING STATION CLINTON, MISSOURI

Presented To:

**Kansas City Power & Light Company** 

Presented By:

SCS ENGINEERS

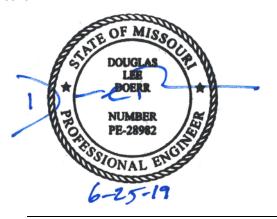
8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

June 2019

File No. 27213168.18

#### **CERTIFICATIONS**


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E.

SCS Engineers

#### **Table of Contents**

| Se  | ction                            | Page |  |  |  |
|-----|----------------------------------|------|--|--|--|
| CEF | RTIFICATIONS                     | i    |  |  |  |
| 1   | Regulatory Framework             | 1    |  |  |  |
| 2   | Statistical Results              | 1    |  |  |  |
| 3   | Alternative Source Demonstration |      |  |  |  |
|     | 3.1 Box and Whiskers Plots       | 2    |  |  |  |
|     | 3.2 Piper Diagram Plots          | 2    |  |  |  |
|     | 3.3 Time Series Plots            | 3    |  |  |  |
| 4   | Conclusion                       | 3    |  |  |  |
| 5   | General Comments                 | 3    |  |  |  |

#### Appendices

Appendix A Box and Whiskers Plots

Appendix B Piper Diagram

Appendix C Time Series Plots



#### 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

#### 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 19, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on December 31, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was an SSI over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 10, 2019 and March 13, 2019.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit. The prediction limit for chloride in monitoring well MW-605 is 50.32 mg/L. The detection monitoring sample was reported at 51.7 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 50.9 mg/L. The second verification re-sample was collected on March 13, 2019 with a result of 52.4 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for chloride from monitoring well MW-605 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for chloride in monitoring well MW-605.



#### 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the Montrose Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

An SSI was identified in well MW-605 for chloride. Therefore, box and whiskers plots for chloride in MW-605 and the two upgradient wells MW-506 and MW-601 were prepared to allow comparison of the chloride concentrations between wells. The comparison between wells indicates the chloride concentrations in well MW-605 are within or below the range of chloride in upgradient wells. This demonstrates that a source other than the CCR Landfill caused the SSI in chloride over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

#### 3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-605 and landfill leachate is provided in **Appendix B** and indicates the groundwater from this well does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for chloride or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.



#### 3.3 TIME SERIES PLOTS

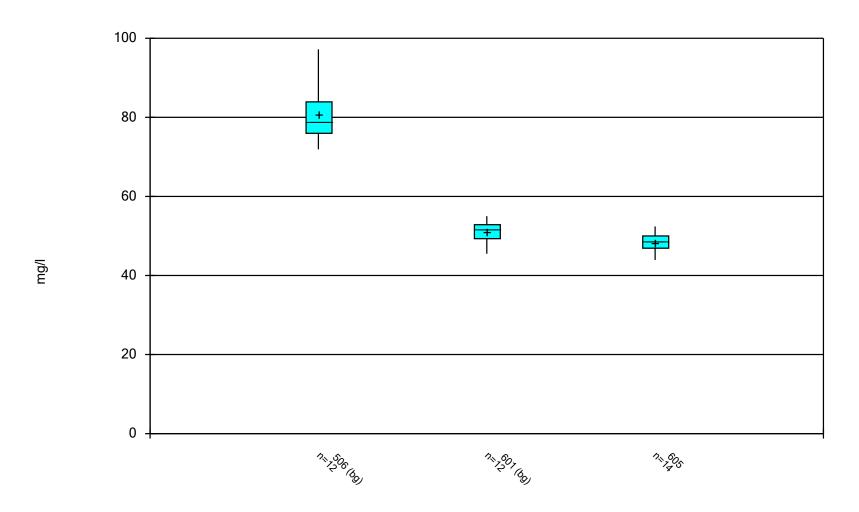
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for the chloride concentrations in MW-605 were plotted along with the chloride concentrations for upgradient wells MW-506 and MW-601. The plots indicate the chloride concentrations in MW-605 are below the concentrations in MW-506 and are typically below or very near the concentrations in MW-601. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

#### 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

#### 5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the Montrose Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represent that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

#### Appendix A

**Box and Whiskers Plots** 

Box & Whiskers Plot



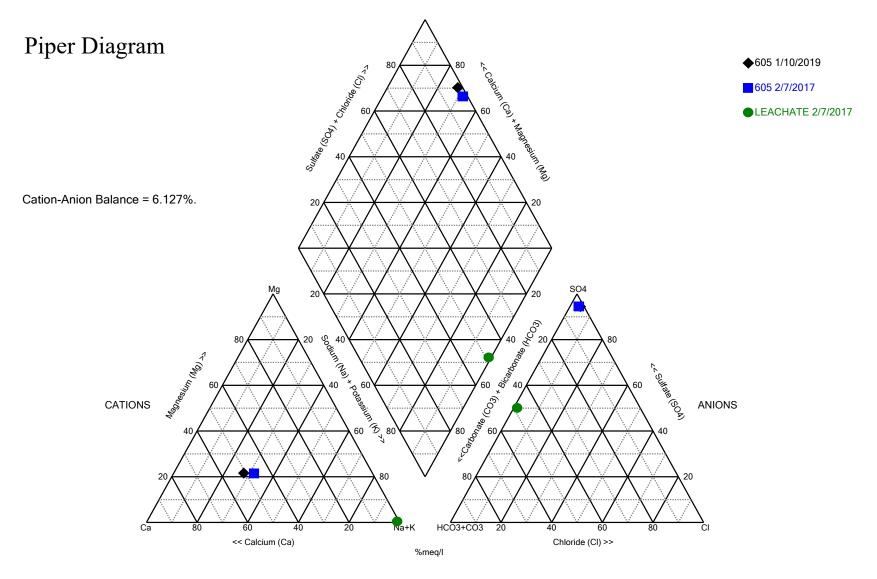
Constituent: Chloride Analysis Run 4/10/2019 5:54 PM View: CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

#### **Box & Whiskers Plot**

Constituent: Chloride (mg/l) Analysis Run 4/10/2019 5:54 PM View: CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


|            | 506 (bg) | 601 (bg) | 605   |
|------------|----------|----------|-------|
| 12/16/2015 | 92.4     | 52.5     |       |
| 12/17/2015 |          |          | 43.9  |
| 2/16/2016  | 97.2     | 53       | 45.7  |
| 5/23/2016  | 84.7     | 50.6     | 47.3  |
| 8/22/2016  | 77.5     | 45.5     | 46.5  |
| 11/7/2016  |          |          | 48.2  |
| 11/8/2016  | 73.1     | 47.5     |       |
| 2/7/2017   | 79       | 49       | 48    |
| 5/1/2017   | 79.2     |          |       |
| 5/2/2017   |          | 51.1     | 48.7  |
| 7/31/2017  | 71.9     | 52.7     | 49.1  |
| 10/2/2017  | 74.4     | 52.4     | 48.7  |
| 11/15/2017 | 77.7     | 54.2     | 48.8  |
| 5/14/2018  | 79       | 55       | 47.8  |
| 11/19/2018 | 83.1     | 49.6     | 51.7  |
| 1/10/2019  |          |          | 50.9  |
| 3/13/2019  |          |          | 52.4  |
| Median     | 79       | 51.75    | 48.45 |
| LowerQ.    | 75.95    | 49.3     | 46.9  |
| UpperQ.    | 83.9     | 52.85    | 50    |
| Min        | 71.9     | 45.5     | 43.9  |
| Max        | 97.2     | 55       | 52.4  |
| Mean       | 80.77    | 51.09    | 48.41 |
|            |          |          |       |
|            |          |          |       |

#### Box & Whiskers Plot

|                    | Montrose Generating Stat | ion UWL ( | Client: SCS Engin | eers Data: Mont | rose Printed 4/10 | 0/2019, 5:54 PM |      |      |      |
|--------------------|--------------------------|-----------|-------------------|-----------------|-------------------|-----------------|------|------|------|
| <u>Constituent</u> | Well                     | <u>N</u>  | <u>Mean</u>       | Std. Dev.       | Std. Err.         | <u>Median</u>   | Min. | Max. | %NDs |
| Chloride (mg/l)    | 506 (bg)                 | 12        | 80.77             | 7.586           | 2.19              | 79              | 71.9 | 97.2 | 0    |
| Chloride (mg/l)    | 601 (bg)                 | 12        | 51.09             | 2.794           | 0.8066            | 51.75           | 45.5 | 55   | 0    |
| Chloride (mg/l)    | 605                      | 14        | 48.41             | 2.268           | 0.6062            | 48.45           | 43.9 | 52.4 | 0    |

Appendix B

**Piper Diagram** 

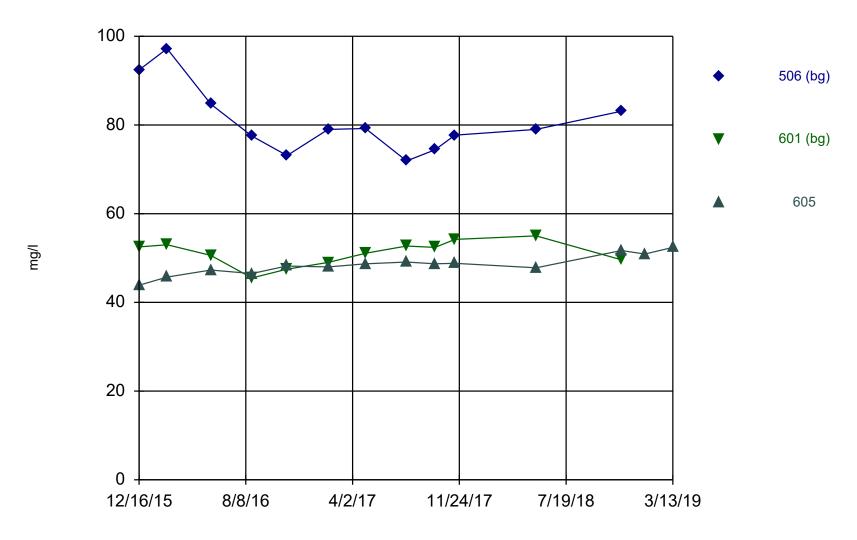


Analysis Run 4/11/2019 9:50 AM View: Piper Dates

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

#### Piper Diagram

Analysis Run 4/11/2019 9:51 AM View: Piper Dates


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

| Totals (ppm)       | Na   | K    | Ca   | Mg  | Cl   | SO4  | HCO3 | CO3 |
|--------------------|------|------|------|-----|------|------|------|-----|
| 605 2/7/2017       | 284  | 2.71 | 367  | 101 | 48   | 2050 | 48.1 | 10  |
| 605 1/10/2019      | 264  | 2.79 | 421  | 107 | 50.9 | 1870 | 42   | 10  |
| T.FACHATE 2/7/2017 | 1050 | 23 9 | 5 47 | 0.5 | 16.3 | 1360 | 1.0  | 840 |

#### Appendix C

**Time Series Plots** 

#### Time Series



Constituent: Chloride Analysis Run 4/10/2019 5:53 PM View: CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

#### **Time Series**

Constituent: Chloride (mg/l) Analysis Run 4/10/2019 5:54 PM View: CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

|            | 506 (bg) | 601 (bg) | 605  |
|------------|----------|----------|------|
| 12/16/2015 | 92.4     | 52.5     |      |
| 12/17/2015 |          |          | 43.9 |
| 2/16/2016  | 97.2     | 53       | 45.7 |
| 5/23/2016  | 84.7     | 50.6     | 47.3 |
| 8/22/2016  | 77.5     | 45.5     | 46.5 |
| 11/7/2016  |          |          | 48.2 |
| 11/8/2016  | 73.1     | 47.5     |      |
| 2/7/2017   | 79       | 49       | 48   |
| 5/1/2017   | 79.2     |          |      |
| 5/2/2017   |          | 51.1     | 48.7 |
| 7/31/2017  | 71.9     | 52.7     | 49.1 |
| 10/2/2017  | 74.4     | 52.4     | 48.7 |
| 11/15/2017 | 77.7     | 54.2     | 48.8 |
| 5/14/2018  | 79       | 55       | 47.8 |
| 11/19/2018 | 83.1     | 49.6     | 51.7 |
| 1/10/2019  |          |          | 50.9 |
| 3/13/2019  |          |          | 52.4 |

| C.2 | CCR Landfill Groundwater Monitoring Alternative Source<br>Demonstration Report May 2019 Groundwater Monitoring<br>Event, CCR Landfill, Montrose Generating Station (December<br>2019) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                       |
|     |                                                                                                                                                                                       |
|     |                                                                                                                                                                                       |
|     |                                                                                                                                                                                       |

## CCR LANDFILL GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2019 GROUNDWATER MONITORING EVENT

## CCR LANDFILL MONTROSE GENERATING STATION CLINTON, MISSOURI

Presented To:

**Evergy Metro, Inc.** 

Presented By:

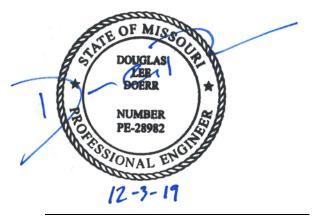
SCS ENGINEERS

8575 West 110th Street, Suite 100 Overland Park, Kansas 66210

December 2019

File No. 27213168.18

#### **CERTIFICATIONS**


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

**SCS Engineers** 

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E.

**SCS** Engineers

#### **Table of Contents**

| Se                    | ection                           | Page |  |  |  |  |
|-----------------------|----------------------------------|------|--|--|--|--|
| CER                   | RTIFICATIONS                     | i    |  |  |  |  |
| 1                     | Regulatory Framework             | 1    |  |  |  |  |
| 2 Statistical Results |                                  |      |  |  |  |  |
| 3                     | Alternative Source Demonstration | 2    |  |  |  |  |
|                       | 3.1 Box and Whiskers Plots       | 2    |  |  |  |  |
|                       | 3.2 Piper Diagram Plots          | 2    |  |  |  |  |
|                       | 3.3 Time Series Plots            | 3    |  |  |  |  |
| 4                     | Conclusion                       | 3    |  |  |  |  |
| 5                     | General Comments                 | 3    |  |  |  |  |

#### Appendices

Appendix A Box and Whiskers Plots

Appendix B Piper Diagram

Appendix C Time Series Plots

### 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

### 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 21, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on July 3, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 15, 2019 and August 19, 2019.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit in monitoring well MW-605.

| Constituent/Monitoring Well | *UPL  | Observation<br>May 21, 2019 | 1st Verification<br>July 15, 2019 | 2nd Verification<br>August 19, 2019 |  |
|-----------------------------|-------|-----------------------------|-----------------------------------|-------------------------------------|--|
| Chloride                    |       |                             |                                   |                                     |  |
| 605                         | 50.32 | 55.4                        | 57.8                              | 57.9                                |  |

<sup>\*</sup>UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for chloride in monitoring well MW-605.

### 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the Montrose Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

An SSI was identified in well MW-605 for chloride. Therefore, box and whiskers plots for chloride in MW-605 and the two upgradient wells MW-506 and MW-601 were prepared to allow comparison of the chloride concentrations between wells. The comparison between wells indicates the chloride concentrations in well MW-605 are within or below the range of chloride in upgradient wells. This demonstrates that a source other than the CCR Landfill caused the SSI in chloride over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

#### 3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-605 and landfill leachate is provided in **Appendix B** and indicates the groundwater from this well does not exhibit the same geochemical characteristics as the leachate. The

groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

#### 3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

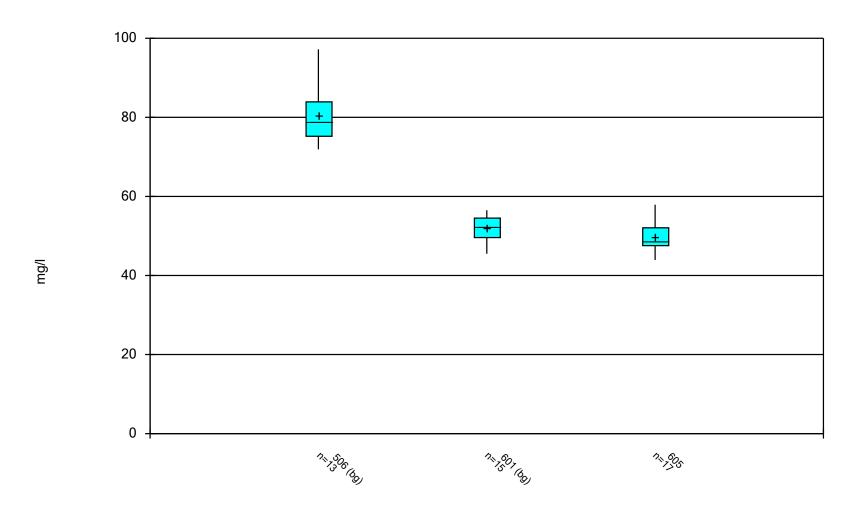
Time series plots for the chloride concentrations in MW-605 were plotted along with the chloride concentrations for upgradient wells MW-506 and MW-601. The plots indicate the chloride concentrations in MW-605 are below the concentrations in MW-506 and are typically below or very near the concentrations in MW-601. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

### 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

### 5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the Montrose Generating Station. No warranties, express or implied, are intended or made.


The signatures of the certifying registered geologist and professional engineer on this document represent that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data,

and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

### Appendix A

**Box and Whiskers Plots** 

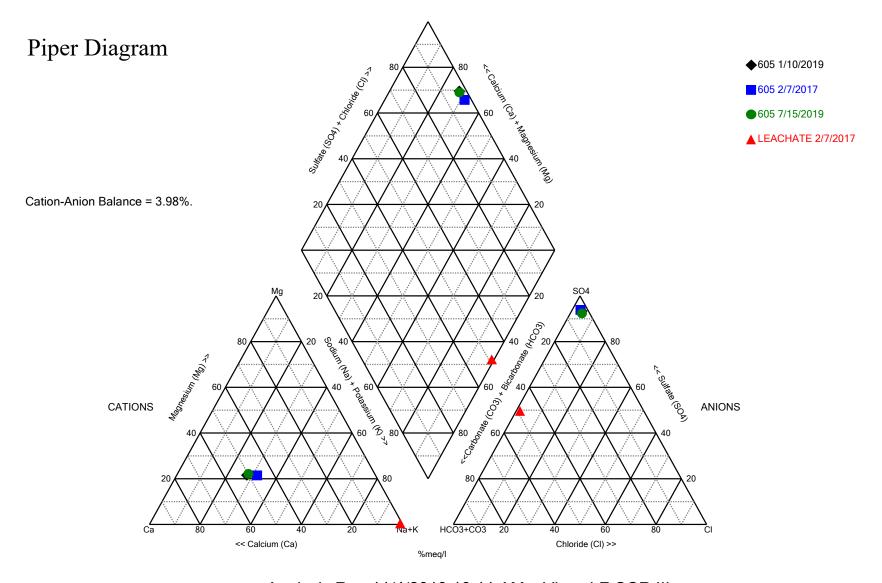
Box & Whiskers Plot



Constituent: Chloride Analysis Run 11/4/2019 10:06 AM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

### **Box & Whiskers Plot**

Constituent: Chloride (mg/l) Analysis Run 11/4/2019 10:07 AM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


|            | 506 (bg) | 601 (bg) | 605   |
|------------|----------|----------|-------|
| 12/16/2015 | 92.4     | 52.5     |       |
| 12/17/2015 |          |          | 43.9  |
| 2/16/2016  | 97.2     | 53       | 45.7  |
| 5/23/2016  | 84.7     | 50.6     | 47.3  |
| 8/22/2016  | 77.5     | 45.5     | 46.5  |
| 11/7/2016  |          |          | 48.2  |
| 11/8/2016  | 73.1     | 47.5     |       |
| 2/7/2017   | 79       | 49       | 48    |
| 5/1/2017   | 79.2     |          |       |
| 5/2/2017   |          | 51.1     | 48.7  |
| 7/31/2017  | 71.9     | 52.7     | 49.1  |
| 10/2/2017  | 74.4     | 52.4     | 48.7  |
| 11/15/2017 | 77.7     | 54.2     | 48.8  |
| 5/14/2018  | 79       | 55       | 47.8  |
| 11/19/2018 | 83.1     | 49.6     | 51.7  |
| 1/10/2019  |          |          | 50.9  |
| 3/13/2019  |          |          | 52.4  |
| 5/21/2019  | 76       | 55.5     | 55.4  |
| 7/15/2019  |          | 56.5     | 57.8  |
| 8/19/2019  |          | 54.5     | 57.9  |
| Median     | 79       | 52.5     | 48.7  |
| LowerQ.    | 75.2     | 49.6     | 47.55 |
| UpperQ.    | 83.9     | 54.5     | 52.05 |
| Min        | 71.9     | 45.5     | 43.9  |
| Max        | 97.2     | 56.5     | 57.9  |
| Mean       | 80.4     | 51.97    | 49.93 |
|            |          |          |       |

### Box & Whiskers Plot

|                    | Montrose Generating Stati | on UWL   | Client: SCS Engine | eers Data: Monti | rose Printed 11/4 | I/2019, 10:07 AM | 1    |      |      |
|--------------------|---------------------------|----------|--------------------|------------------|-------------------|------------------|------|------|------|
| <u>Constituent</u> | <u>Well</u>               | <u>N</u> | <u>Mean</u>        | Std. Dev.        | Std. Err.         | <u>Median</u>    | Min. | Max. | %NDs |
| Chloride (mg/l)    | 506 (bg)                  | 13       | 80.4               | 7.382            | 2.047             | 79               | 71.9 | 97.2 | 0    |
| Chloride (mg/l)    | 601 (bg)                  | 15       | 51.97              | 3.1              | 0.8003            | 52.5             | 45.5 | 56.5 | 0    |
| Chloride (mg/l)    | 605                       | 17       | 49.93              | 3.99             | 0.9677            | 48.7             | 43.9 | 57.9 | 0    |

Appendix B

Piper Diagram

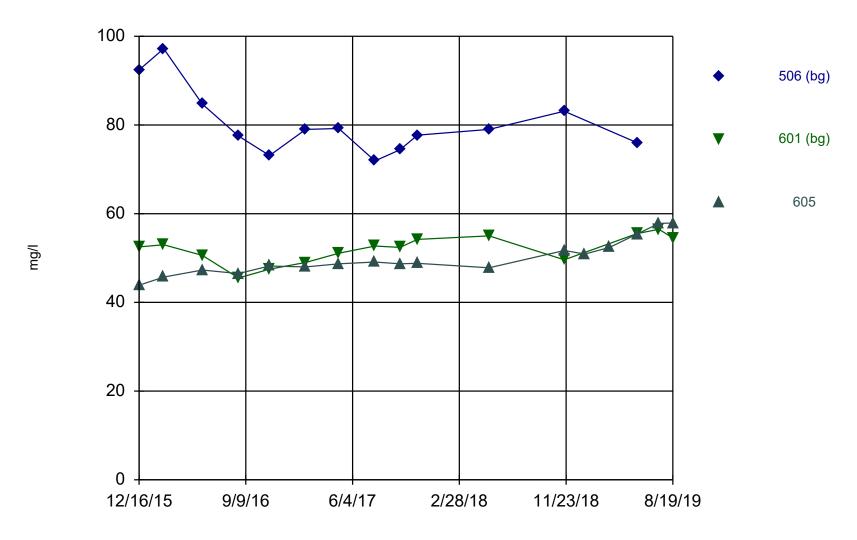


Analysis Run 11/4/2019 10:11 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

### Piper Diagram

Analysis Run 11/4/2019 10:12 AM View: LF CCR III


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

| Totals (ppm)      | Na   | K    | Ca   | Mg  | Cl   | SO4  | HCO3 | CO3 |
|-------------------|------|------|------|-----|------|------|------|-----|
| 605 2/7/2017      | 284  | 2.71 | 367  | 101 | 48   | 2050 | 48.1 | 20  |
| 605 1/10/2019     | 264  | 2.79 | 421  | 107 | 50.9 | 1870 | 42   | 20  |
| 605 7/15/2019     | 261  | 2.73 | 407  | 108 | 57.8 | 1640 | 41.6 | 20  |
| LEACHATE 2/7/2017 | 1050 | 23.9 | 5.47 | 1   | 16.3 | 1360 | 20   | 840 |

### Appendix C

**Time Series Plots** 

### Time Series



Constituent: Chloride Analysis Run 11/4/2019 10:04 AM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

### **Time Series**

Constituent: Chloride (mg/l) Analysis Run 11/4/2019 10:05 AM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

|            | 506 (bg) | 601 (bg) | 605  |
|------------|----------|----------|------|
| 12/16/2015 | 92.4     | 52.5     |      |
| 12/17/2015 |          |          | 43.9 |
| 2/16/2016  | 97.2     | 53       | 45.7 |
| 5/23/2016  | 84.7     | 50.6     | 47.3 |
| 8/22/2016  | 77.5     | 45.5     | 46.5 |
| 11/7/2016  |          |          | 48.2 |
| 11/8/2016  | 73.1     | 47.5     |      |
| 2/7/2017   | 79       | 49       | 48   |
| 5/1/2017   | 79.2     |          |      |
| 5/2/2017   |          | 51.1     | 48.7 |
| 7/31/2017  | 71.9     | 52.7     | 49.1 |
| 10/2/2017  | 74.4     | 52.4     | 48.7 |
| 11/15/2017 | 77.7     | 54.2     | 48.8 |
| 5/14/2018  | 79       | 55       | 47.8 |
| 11/19/2018 | 83.1     | 49.6     | 51.7 |
| 1/10/2019  |          |          | 50.9 |
| 3/13/2019  |          |          | 52.4 |
| 5/21/2019  | 76       | 55.5     | 55.4 |
| 7/15/2019  |          | 56.5     | 57.8 |
| 8/19/2019  |          | 54.5     | 57.9 |
|            |          |          |      |
|            |          |          |      |

### ADDENDUM 1

| 2019 Annual Groundwater | Monitoring and | Corrective Action | on Report |
|-------------------------|----------------|-------------------|-----------|
|                         | Addendum 1     |                   |           |

2-20-2

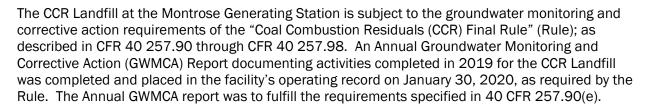
### SCS ENGINEERS

December 20, 2022 File No. 27213168.19

To: Evergy Metro, Inc.

Jared Morrison - Director, Water and Waste Programs

From: SCS Engineers


Douglas L. Doerr, P.E. John R. Rockhold, P.G.

Subject: 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

Evergy Metro, Inc.

CCR Landfill

Montrose Generating Station - Clinton, Missouri



This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:



- January 2019 First verification sampling for the Fall 2018 detection monitoring event.
- March 2019 Second verification sampling for the Fall 2018 detection monitoring event.
- o May 2019 Spring 2019 semiannual detection monitoring sampling event.
- July 2019 First verification sampling for the Spring 2019 detection monitoring sampling event.
- August 2019 Second verification sampling for the Spring 2019 detection monitoring sampling event.
- November 2019 Fall 2019 semiannual detection monitoring sampling event.

#### Attachment 2 - Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2019 included the following:

- o Fall 2018 semiannual detection monitoring statistical analyses.
- Spring 2019 semiannual detection monitoring statistical analyses.

#### • Attachment 3 - Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o May 2019 Spring 2019 semiannual detection monitoring sampling event.
- o November 2019 Fall 2019 semiannual detection monitoring sampling event.

# ATTACHMENT 1 Laboratory Analytical Reports

# ATTACHMENT 1-1 January 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

January 21, 2019

### **SCS Engineers - KS**

Sample Delivery Group:

L1060634

Samples Received:

01/12/2019

Project Number:

27213168.18

Description:

KCPL - Montrose Generating Station

Wubb law

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

21



| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-602 L1060634-01                         | 6  |
| DUPLCATE 1 L1060634-02                     | 7  |
| MW-605 L1060634-03                         | 8  |
| MW-705 L1060634-04                         | 9  |
| DUPLICATE 2 L1060634-05                    | 10 |
| MW-702 L1060634-06                         | 11 |
| DUPLICATE 3 L1060634-07                    | 12 |
| MW-703 L1060634-08                         | 13 |
| DUPLICATE 4 L1060634-09                    | 14 |
| Qc: Quality Control Summary                | 15 |
| Gravimetric Analysis by Method 2540 C-2011 | 15 |
| Wet Chemistry by Method 9056A              | 16 |
| Metals (ICP) by Method 6010B               | 18 |
| GI: Glossary of Terms                      | 19 |
| Al: Accreditations & Locations             | 20 |

Sc: Sample Chain of Custody



















### SAMPLE SUMMARY

| DNE | LAB. | NATIONWIDE. |
|-----|------|-------------|

|                                            |           |          | Collected by                | Collected date/time                   | Received date/time                   |
|--------------------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------------------|
| MW-602 L1060634-01 GW                      |           |          | Whit Martin                 | 01/10/19 11:50                        | 01/12/19 08:30                       |
| Method                                     | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1223839 | 1        | 01/16/19 10:48              | 01/16/19 11:47                        | AJS                                  |
|                                            |           |          | Collected by                | Collected date/time                   | Received date/time                   |
| DUPLCATE 1 L1060634-02 GW                  |           |          | Whit Martin                 | 01/10/19 11:50                        | 01/12/19 08:30                       |
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                              |
| Gravimetric Analysis by Method 2540 C-2011 | WG1223839 | 1        | 01/16/19 10:48              | 01/16/19 11:47                        | AJS                                  |
| MW-605 L1060634-03 GW                      |           |          | Collected by<br>Whit Martin | Collected date/time<br>01/10/19 12:45 | Received date/time 01/12/19 08:30    |
| Method                                     | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A              | WG1223919 | 1        | 01/18/19 00:02              | 01/18/19 00:02                        | ELN                                  |
| MW-705 L1060634-04 GW                      |           |          | Collected by<br>Whit Martin | Collected date/time 01/10/19 15:10    | Received date/time<br>01/12/19 08:30 |
| Method                                     | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A              | WG1223919 | 1        | 01/18/19 00:18              | 01/18/19 00:18                        | ELN                                  |
| DUPLICATE 2 L1060634-05 GW                 |           |          | Collected by<br>Whit Martin | Collected date/time 01/10/19 15:10    | Received date/time<br>01/12/19 08:30 |
| Method                                     | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time                 | Analyst                              |
| Wet Chemistry by Method 9056A              | WG1223919 | 1        | 01/18/19 01:20              | 01/18/19 01:20                        | ELN                                  |
| MW-702 L1060634-06 GW                      |           |          | Collected by<br>Whit Martin | Collected date/time 01/10/19 13:30    | Received date/time<br>01/12/19 08:30 |
| Method                                     | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time                 | Analyst                              |
| Metals (ICP) by Method 6010B               | WG1223291 | 1        | 01/14/19 18:41              | 01/15/19 11:08                        | TRB                                  |
| DUPLICATE 3 L1060634-07 GW                 |           |          | Collected by<br>Whit Martin | Collected date/time<br>01/10/19 13:30 | Received date/time<br>01/12/19 08:30 |
| Method                                     | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                              |
|                                            |           |          |                             |                                       | *                                    |



















Metals (ICP) by Method 6010B

Wet Chemistry by Method 9056A

Method

MW-703 L1060634-08 GW

WG1223291

Batch

WG1224700

date/time

1

Dilution

20

01/14/19 18:41

Collected by

Whit Martin

Preparation

01/18/19 17:04

date/time

date/time

01/15/19 11:47

01/10/19 14:25

Analysis

date/time

01/18/19 17:04

Collected date/time

TRB

Received date/time

Analyst

ELN

01/12/19 08:30



|                               |           |          | Collected by   | Collected date/time | Received date/time |
|-------------------------------|-----------|----------|----------------|---------------------|--------------------|
| DUPLICATE 4 L1060634-09 GW    |           |          | Whit Martin    | 01/10/19 14:25      | 01/12/19 08:30     |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst            |
|                               |           |          | date/time      | date/time           |                    |
| Wet Chemistry by Method 9056A | WG1224700 | 20       | 01/18/19 17:14 | 01/18/19 17:14      | ELN                |



















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

<u>ср</u>

















Jeff Carr

Wubb law

MW-602

### SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 11:50

L1060634

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1870000 |           | 25000 | 1        | 01/16/2019 11:47 | WG1223839 |



















**DUPLCATE 1** 

### SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 11:50

L1060634

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1950000 |           | 25000 | 1        | 01/16/2019 11:47 | WG1223839 |



















MW-605

# SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 12:45

Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 50900  |           | 1000 | 1        | 01/18/2019 00:02 | WG1223919 |



















MW-705

### SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

L1060634

### Wet Chemistry by Method 9056A

Collected date/time: 01/10/19 15:10

|          | Result | Qualifier RDL | Dilution | Analysis         | <u>Batch</u> |  |
|----------|--------|---------------|----------|------------------|--------------|--|
| Analyte  | ug/l   | ug/l          |          | date / time      |              |  |
| Chloride | 13400  | 1000          | 1        | 01/18/2019 00:18 | WG1223919    |  |



















DUPLICATE 2

## SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

\*

Wet Chemistry by Method 9056A

Collected date/time: 01/10/19 15:10

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 13500  |           | 1000 | 1        | 01/18/2019 01:20 | WG1223919 |



















MW-702

# SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 13:30

### Metals (ICP) by Method 6010B

|         | Result | Qualifier RDL | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|---------------|----------|------------------|--------------|
| Analyte | ug/l   | ug/l          |          | date / time      |              |
| Boron   | ND     | 200           | 1        | 01/15/2019 11:08 | WG1223291    |



















DUPLICATE 3

# SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

\*

Metals (ICP) by Method 6010B

Collected date/time: 01/10/19 13:30

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |  |
| Boron   | ND     |           | 200  | 1        | 01/15/2019 11:47 | WG1223291 |  |



















MW-703

### SAMPLE RESULTS - 08 L1060634

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 14:25

### Wet Chemistry by Method 9056A

|         | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|---------|--------|-----------|--------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l   |          | date / time      |           |
| Sulfate | 962000 |           | 100000 | 20       | 01/18/2019 17:04 | WG1224700 |



















DUPLICATE 4

### SAMPLE RESULTS - 09 L1060634

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

Collected date/time: 01/10/19 14:25

|         | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|--------|----------|------------------|-----------|--|
| Analyte | ug/l   |           | ug/l   |          | date / time      |           |  |
| Sulfate | 939000 |           | 100000 | 20       | 01/18/2019 17:14 | WG1224700 |  |



















### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1060634-01,02

### Method Blank (MB)

(MB) R3376566-1 01/16/19 11:47 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Dissolved Solids U 2820 10000







### L1060411-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1060411-04 01/16/19 11:47 • (DUP) R3376566-3 01/16/19 11:47

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 369000          | 364000     | 1        | 1.36    |               | 5                 |









(LCS) R3376566-2 01/16/19 11:47

| (200) 1.007 0000 2 0 11.07. | Spike Amount | LCS Result | LCS Rec. | Rec. Limits |
|-----------------------------|--------------|------------|----------|-------------|
| Analyte                     | ug/l         | ug/l       | %        | %           |
| Dissolved Solids            | 8800000      | 8660000    | 98.4     | 85.0-115    |







#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1060634-03,04,05

### Method Blank (MB)

| (MB) R3376793-1 01/17/19 16:54 |           |              |        |        |  |  |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |  |  |  |
| Chloride                       | U         |              | 51.9   | 1000   |  |  |  |  |  |  |





### L1060411-06 Original Sample (OS) • Duplicate (DUP)

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 56000           | 56000      | 1        | 0.131   |               | 15                |





### L1060634-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1060634-04 01/18/19 00:18 • (DUP) R3376793-5 01/18/19 00:33

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 13400           | 13500      | 1        | 0.273   |               | 15                |





### Laboratory Control Sample (LCS)

(LCS) R3376793-2 01/17/19 17:10

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | ug/l         | ug/l       | %        | %           |               |
| Chloride | 40000        | 38600      | 96.5     | 80.0-120    |               |

### L1060411-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1060411-06 01/17/19 18:23 • (MS) R3376793-4 01/17/19 18:54

| , ,      | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
|----------|--------------|-----------------|-----------|---------|----------|-------------|--------------|
| Analyte  | ug/l         | ug/l            | ug/l      | %       |          | %           |              |
| Chloride | 50000        | 56000           | 103000    | 95.1    | 1        | 80.0-120    | Ē            |

### L1060634-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS | L1060634-04 | 01/18/19 00:18 • | (MS | R3376793-6 | 01/18/19 00:49 • | (MSD | R3376793-7 | 01/18/19 01:04 |
|-----|-------------|------------------|-----|------------|------------------|------|------------|----------------|
|     |             |                  |     |            |                  |      |            |                |

| , ,      | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride | 50000        | 13400           | 63900     | 64000      | 101     | 101      | 1        | 80.0-120    |              |               | 0.143 | 15         |

### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1060634-08,09

#### Method Blank (MB)

| (MB) R3377160-1 01/18/ | /19 15:30 |              |        |        |
|------------------------|-----------|--------------|--------|--------|
|                        | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                | ug/l      |              | ug/l   | ug/l   |
| Sulfate                | - II      |              | 77 4   | 5000   |







<sup>†</sup>Cn



| (OS) L1060639-05 01/18/19 18:20 • (DUP) R3377160-7 01/18/19 18:31 | (OS) L1060639-05 | 01/18/19 18:20 • | (DUP) R3377160-7 | 01/18/19 18:31 |
|-------------------------------------------------------------------|------------------|------------------|------------------|----------------|
|-------------------------------------------------------------------|------------------|------------------|------------------|----------------|

|         | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte | ug/l            | ug/l       |          | %       |               | %                 |
| Sulfate | 42200           | 42400      | 1        | 0.437   |               | 15                |







| (OS) L1060642-08 01/18/19 | Original Result |       |   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------------------------|-----------------|-------|---|---------|---------------|-------------------|
| Analyte                   | ug/l            | ug/l  |   | %       |               | %                 |
| Sulfate                   | 31900           | 32000 | 1 | 0.396   |               | 15                |







| (LCS) R3377160-2 | 01/18/19 15:41 |
|------------------|----------------|
|------------------|----------------|

|         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|---------|--------------|------------|----------|-------------|---------------|
| Analyte | ug/l         | ug/l       | %        | %           |               |
| Sulfate | 40000        | 38200      | 95.6     | 80.0-120    |               |



### L1060634-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1060634-08 01/18/19 16:31 • (MS) R3377160-3 01/18/19 16:42 • (MSD) R3377160-4 01/18/19 16:53

| , ,     | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Sulfate | 50000        | 878000          | 900000    | 911000     | 43.6    | 65.4     | 1        | 80.0-120    | EV           | <u>E V</u>    | 1.20 | 15         |

### L1060639-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1060639-04 01/18/19 17:25 • (MS) R3377160-5 01/ | )1/18/19 1/:36 • (MSL | )) R3377160-6 | 01/18/19 18:09 |
|-------------------------------------------------------|-----------------------|---------------|----------------|
|-------------------------------------------------------|-----------------------|---------------|----------------|

|         | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Sulfate | 50000        | 43300           | 88100     | 88000      | 89.5    | 89.3     | 1        | 80.0-120    |              |               | 0.103 | 15         |

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1060634-06,07

### Method Blank (MB)

| (MB) R3375870-1 01/15/19 | 9 11:01   |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |
| Boron                    | U         |              | 12.6   | 200    |







## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R33/58/0-2 01/15/1 | 19 11:03 • (LCSD | ) R33/58/0-3 | 01/15/19 11:06 |          |           |             |               |                |      |            |
|--------------------------|------------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                          | Spike Amount     | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                  | ug/l             | ug/l         | ug/l           | %        | %         | %           |               |                | %    | %          |
| Boron                    | 1000             | 975          | 956            | 97.5     | 95.6      | 80.0-120    |               |                | 2.02 | 20         |







(OS) L1060634-06 01/15/19 11:08 • (MS) R3375870-5 01/15/19 11:14 • (MSD) R3375870-6 01/15/19 11:16

| (,      | Spike Amount | Original Result |      | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
|---------|--------------|-----------------|------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
| Analyte | ug/l         | ug/l            | ug/l | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Boron   | 1000         | ND              | 1170 | 1180       | 97.6    | 98.1     | 1        | 75.0-125    |              |               | 0.439 | 20         |  |









# Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier Description |
|-----------------------|
|-----------------------|

| Е | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|
| V | The sample concentration is too high to evaluate accurate spike recoveries.                                                                 |

















# **ACCREDITATIONS & LOCATIONS**





### State Accreditations

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| lowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |
|                        |             |

| Nebraska                    | NE-OS-15-05       |
|-----------------------------|-------------------|
| Nevada                      | TN-03-2002-34     |
| New Hampshire               | 2975              |
| New Jersey-NELAP            | TN002             |
| New Mexico <sup>1</sup>     | n/a               |
| New York                    | 11742             |
| North Carolina              | Env375            |
| North Carolina <sup>1</sup> | DW21704           |
| North Carolina <sup>3</sup> | 41                |
| North Dakota                | R-140             |
| Ohio-VAP                    | CL0069            |
| Oklahoma                    | 9915              |
| Oregon                      | TN200002          |
| Pennsylvania                | 68-02979          |
| Rhode Island                | LAO00356          |
| South Carolina              | 84004             |
| South Dakota                | n/a               |
| Tennessee 1 4               | 2006              |
| Texas                       | T 104704245-17-14 |
| Texas <sup>5</sup>          | LAB0152           |
| Utah                        | TN00003           |
| Vermont                     | VT2006            |
| Virginia                    | 460132            |
| Washington                  | C847              |
| West Virginia               | 233               |
| Wisconsin                   | 9980939910        |
| Wyoming                     | A2LA              |
|                             |                   |

### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 |
|-------------------------------|---------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 |
| Canada                        | 1461.01 |
| EPA-Crypto                    | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

DATE/TIME:

01/21/19 12:13

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

| SCS Engineers - KS                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Billing Information: |                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       |                | _                  | Analysis / C              | ontainer /       | Preservative |                        |         | Chain of Custody                           | Page of                                                                     |                        |                               |                                                            |                          |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------|---------------------------|------------------|--------------|------------------------|---------|--------------------------------------------|-----------------------------------------------------------------------------|------------------------|-------------------------------|------------------------------------------------------------|--------------------------|
| 8575 W. 110th Street Overland Park, KS 66210  Report to: Er                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 8575 W                             | ts Payable<br>1. 110th Stre<br>nd Park, KS ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pres<br>Chik            |                |                    |                           |                  |              |                        |         |                                            | P.S.                                                                        |                        |                               |                                                            |                          |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | jay.martir                         | jfranks@scsen<br>n@kcpl.com;                 | gineers.com;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                |                    |                           |                  |              |                        |         |                                            | 12065 Lebanon Rd<br>Mount Juliet, TN 32                                     |                        |                               |                                                            |                          |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | I tomatide and                     | City/State<br>Collected:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                    |                           |                  |              |                        |         |                                            | Phone: 615-758-585<br>Phone: 800-767-585<br>Fax: 615-758-5859               |                        |                               |                                                            |                          |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                      | Client Project # 27213168.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                    | Lab Project # AQUAOPKS-MONTROSE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 250mHDPE-HN03  | NoPres             | Pres                      |                  |              |                        |         | LH L10                                     | 260634                                                                      |                        |                               |                                                            |                          |
| Collected by (print):                                                                         | Site/Facility IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )#                   |                                    | P.O.#                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | HDP            | w                  | E-No                      | oPres            |              |                        |         |                                            |                                                                             |                        |                               |                                                            |                          |
| Collected by (signature):  What Mark  Immediately Packed on ice N y _X                        | What Mark Same Day Five Day So Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day 10 Day O Two Day 10 Day (Rad O Two Day |                      | Day (Rad Only) Date Results Needed |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                     | - 6010         | CHLORIDE 125mlHDP  | TE 125mlHDPE-NoPres       | 250mlHDPE-NoPres |              |                        |         |                                            | Acctnum: AQU<br>Template: T14<br>Prelogin: P68!<br>TSR: 206 - Jeff (<br>PB: | 4749<br>9187           |                               |                                                            |                          |
| Sample ID                                                                                     | Comp/Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Matrix *             | Depth                              | Date                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cntrs                   | Boron          | 101                | SULFATE                   | TDS 2            |              |                        | RE      | 1                                          | Shipped Via:                                                                |                        |                               |                                                            |                          |
| MW-602                                                                                        | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   |                                    | 1/10/10                                      | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.                      | B              | Ü                  | 22                        |                  |              |                        |         | -                                          | Remarks                                                                     | Sample # (lab only)    |                               |                                                            |                          |
| DUPLICATE 1                                                                                   | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   |                                    | 1/10/19                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       |                |                    |                           | X                |              |                        |         |                                            |                                                                             | -01                    |                               |                                                            |                          |
| MW-602 MS/MSD                                                                                 | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   |                                    | 1/10/1                                       | 9 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       |                |                    |                           | X                |              |                        |         |                                            | 265                                                                         | -02                    |                               |                                                            |                          |
| MW-605                                                                                        | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   |                                    | 1/10/19                                      | STATE OF THE RESIDENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       |                | v                  |                           | X                |              |                        |         |                                            |                                                                             | -01                    |                               |                                                            |                          |
| MW-705                                                                                        | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | 1                                  | 1/10/10                                      | 1270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                       |                | X                  |                           |                  |              |                        |         |                                            |                                                                             | - 03                   |                               |                                                            |                          |
| DUPLICATE 2                                                                                   | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | -                                  | 1/10/10                                      | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                       |                | X                  |                           |                  |              |                        | (30)    | -                                          |                                                                             | - 05                   |                               |                                                            |                          |
| MW-709MS/MSD                                                                                  | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | AS.                                | 1.1.1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                     |                | X                  |                           |                  |              |                        |         |                                            |                                                                             | -05                    |                               |                                                            |                          |
| MW-702                                                                                        | Grah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | - AL                               | 1/10/19                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                       | v              | Х                  |                           |                  |              |                        |         |                                            |                                                                             | -04                    |                               |                                                            |                          |
| DUPLICATE 3                                                                                   | Grah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | P.                                 | 1/10/19                                      | The state of the s | 1                       | X              | -                  |                           |                  |              |                        |         | -                                          |                                                                             | -66                    |                               |                                                            |                          |
| MW-702 MS/MSD                                                                                 | Grah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                   | 4                                  | 11111                                        | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                       | X              |                    |                           |                  |              |                        | PAE     | SCR                                        | EEN: <0.5                                                                   |                        |                               |                                                            |                          |
| Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                    | Remarks:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |                    | Į,                        |                  |              |                        | pH _    | Ter                                        | . E                                                                         | Bott)                  | Seal Pr<br>Signed/<br>Les arr | le Receipt Ch<br>esent/Intact:<br>Accurate:<br>ive intact: | ccklist<br>NP Y N<br>Y N |
| Samples returned via:  OT - Other                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er                   |                                    | Tracking#                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | 65             | S                  | 86°                       | 211              | ier          | Corre                  | ect bot | tles used:<br>volume sent:<br>If Applicabl | ZY N                                                                        |                        |                               |                                                            |                          |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes /(No)<br>HCL / MeoH | VOA 2<br>Prese | dero He<br>ervatio | adspace:<br>n Correct/Che | y N              |              |                        |         |                                            |                                                                             |                        |                               |                                                            |                          |
| Relinquished by : (Signature)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date:                | Ti                                 |                                              | Received by: (Signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iture)                  |                | 1                  |                           | Temp:            |              | TBR<br>ttles Received: | If pres | ervation                                   | required by Logi                                                            | in: Date/Time          |                               |                                                            |                          |
| Relinquished by : (Signature) Date:                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONT.                | Ti                                 | me:                                          | Received for lab by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : (Signati              | ure)           |                    |                           | Date:<br>0 / 12  |              | me:<br>8:30            |         |                                            |                                                                             | Condition:<br>NCF / OK |                               |                                                            |                          |

|                                                                                                  |                        |                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis / Container / Preservative |           |               |                  |                  |                  | Chain of Custody Page of |            |                              |                                                                   |                                                              |                                          |                |  |
|--------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|---------------|------------------|------------------|------------------|--------------------------|------------|------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|----------------|--|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                            | 8575 W.                | s Payable<br>110th Street<br>d Park, KS 662                   | 10   | Pres<br>Chk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |           |               |                  |                  |                  |                          |            |                              | 12065 Lebanon Rd<br>Mount Juliet, TN 37122<br>Phone: 615-758-5858 |                                                              |                                          |                |  |
| Report to:<br>Jason Franks                                                                       |                        |                                                               |      | franks@scsengine<br>@kcpl.com;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ers.com;                            |           |               |                  |                  |                  |                          |            |                              |                                                                   |                                                              |                                          |                |  |
| Project Description: KCPL - Montrose Ge                                                          | enerating Sta          | tion                                                          |      | City/State<br>Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |           | 33            |                  |                  |                  |                          |            |                              |                                                                   | -                                                            | Phone: 800-767-5851<br>Fax: 615-758-5859 | 首題動            |  |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                                         | 27213168.1             |                                                               |      | Lab Project # AQUAOPKS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MONTROSE                            |           | 250mHDPE-HN03 | 125mlHDPE-NoPres | oPres            | 8                |                          |            |                              |                                                                   |                                                              | L# 2 (0                                  | 60634          |  |
| Collected by (print): Whit Martin                                                                | Site/Facility ID       | #                                                             | V.   | P.O. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |           | mIHDI         | HDPE-            | 125mlHDPE-NoPres | 250mlHDPE-NoPres |                          |            |                              |                                                                   |                                                              | Acctnum: AQUAOPKS                        |                |  |
| Collected by (signature):                                                                        | Rush? (Lab MUST B      |                                                               | ay   | Quote #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Color es                            |           | 10 250        | 125ml            | 25mlH            | HDPE-            |                          |            |                              |                                                                   |                                                              | Prelogin: P689                           | 9187           |  |
| Immediately Packed on Ice NY                                                                     | Two Day                | Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndard                               | No.<br>of | n - 6010      | CHLORIDE         | ATE 1.           | 250ml            |                          |            |                              |                                                                   |                                                              | TSR: 206 - Jeff C                        | arr            |  |
| Sample ID                                                                                        | Comp/Grab              |                                                               |      | Cntrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boron                               | CHLO      | SULFATE       | TDS              |                  | - 12             |                          |            |                              | Shipped Via:<br>Remarks                                           | Sample # (lab only)                                          |                                          |                |  |
| MW-703                                                                                           | Grab                   | GW                                                            |      | 1/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1429                                | 1         |               |                  | Х                |                  |                          |            |                              |                                                                   |                                                              |                                          | -08            |  |
| DUPLICATE 4                                                                                      | Grab                   | GW                                                            |      | 1/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1425                                | 1         |               | 133              | X                |                  |                          |            |                              |                                                                   |                                                              |                                          | -09            |  |
| MW-703 MS/MSD                                                                                    | Grab                   | GW                                                            |      | 1/10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1430                                | 1         |               |                  | Х                |                  |                          |            |                              |                                                                   | _                                                            |                                          | -08            |  |
| Lân                                                                                              |                        | 26                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/50                                |           |               |                  |                  | FE               |                          |            |                              |                                                                   |                                                              |                                          |                |  |
|                                                                                                  |                        |                                                               | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | II.       |               |                  |                  |                  |                          |            |                              |                                                                   |                                                              | -                                        | Projectory.    |  |
|                                                                                                  |                        |                                                               | - 6  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 14        |               |                  |                  |                  |                          |            | 1 5                          |                                                                   |                                                              | -                                        |                |  |
|                                                                                                  |                        |                                                               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |           |               |                  |                  |                  |                          |            | 740                          | SCRI                                                              | EN:                                                          | 0.5 (i)                                  |                |  |
| * Matrix: Remarks:  SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater |                        |                                                               |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |           |               | pH _             |                  | emp              | _                        | Bottl      | eal Pr<br>Signed/<br>Les arr | ple Receipt Chresent/Intact<br>/Accurate:<br>rive intact:         | necklist<br>:MNPYN<br>XN                                     |                                          |                |  |
| DW - Drinking Water<br>OT - Other                                                                | Samples retur<br>UPSFe | ned via:<br>dEx Cou                                           | rier |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | racking # 14 S                      | 10        | [(            | SS               | )                | 868              |                          |            |                              | Suffi                                                             | cient                                                        | volume sent:<br>If Applicab              | _Y _N          |  |
| Relinquished by : (Signature)                                                                    | (Signature) Date:      |                                                               |      | 1320 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ecolved by: (Sign                   | ature)    |               | 1                |                  | Trip Blank       | Received                 | HCL7       | MeoH                         |                                                                   | VOA Zero Headspace:Y _N<br>Preservation Correct/Checked:Y _N |                                          |                |  |
| Relinquished by : (Signature)                                                                    |                        | Date:                                                         |      | and the second s | eceived by: (Sign                   | ature)    |               | 37               | 14,020           | Temp:<br>1.0-\=0 | and the same             | Battles Re | ceived:                      | If pres                                                           | servatio                                                     | n required by Lop                        | gin: Date/Time |  |
| Relinquished by : (Signature)                                                                    |                        | Date:                                                         |      | Time: R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eceived for lab b                   | y: (Signa | ture)         |                  |                  | Date:            |                          | Time:      | 136                          | Hold:                                                             | Hold: Condition: NCF / OK                                    |                                          |                |  |

# ATTACHMENT 1-2 March 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT March 21, 2019

# **SCS Engineers - KS**

Sample Delivery Group:

L1078837

Samples Received:

03/14/2019

Project Number:

27213168.18

Description:

KCPL - Montrose Generating Station

Wubb law

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.



| Cp: Cover Page                 | 1  |
|--------------------------------|----|
| Tc: Table of Contents          | 2  |
| Ss: Sample Summary             | 3  |
| Cn: Case Narrative             | 4  |
| Sr: Sample Results             | 5  |
| MW-605 L1078837-01             | 5  |
| DUPLICATE 1 L1078837-02        | 6  |
| Qc: Quality Control Summary    | 7  |
| Wet Chemistry by Method 9056A  | 7  |
| GI: Glossary of Terms          | 8  |
| Al: Accreditations & Locations | 9  |
| Sc: Sample Chain of Custody    | 10 |





















PAGE:

2 of 10



| M/M 605 11079927 01 C/M       |           |          | Collected by<br>Whit Martin | Collected date/time 03/13/19 11:00 | Received da: 03/14/19 09:3 |                |
|-------------------------------|-----------|----------|-----------------------------|------------------------------------|----------------------------|----------------|
| MW-605 L1078837-01 GW Method  | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time              | Analyst                    | Location       |
| Wet Chemistry by Method 9056A | WG1252509 | 1        | 03/20/19 18:45              | 03/20/19 18:45                     | ELN                        | Mt. Juliet, TN |
| DUPLICATE 1 L1078837-02 GW    |           |          | Collected by<br>Whit Martin | Collected date/time 03/13/19 11:00 | Received da 03/14/19 09:3  |                |
| Method                        | Batch     | Dilution | Preparation date/time       | Analysis<br>date/time              | Analyst                    | Location       |
| Wet Chemistry by Method 9056A | WG1252509 | 1        | 03/20/19 20:14              | 03/20/19 20:14                     | ELN                        | Mt. Juliet, TN |



















- •

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ср

<sup>2</sup>Tc















Jeff Carr Project Manager

Wubb law

MW-605

# SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 03/13/19 11:00

Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 52400  |           | 1000 | 1        | 03/20/2019 18:45 | WG1252509 |



















**DUPLICATE 1** 

# SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

\*

Wet Chemistry by Method 9056A

Collected date/time: 03/13/19 11:00

|          | Result | Qualifier RDL | Dilution | Analysis         | Batch     |  |
|----------|--------|---------------|----------|------------------|-----------|--|
| Analyte  | ug/l   | ug/l          |          | date / time      |           |  |
| Chloride | 53100  | 1000          | 1        | 03/20/2019 20:14 | WG1252509 |  |



















# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1078837-01,02

### Method Blank (MB)

| (MB) R3393631-1 03/20 | /19 15:17 |              |        |        |
|-----------------------|-----------|--------------|--------|--------|
|                       | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte               | ug/l      |              | ug/l   | ug/l   |
| Chloride              | П         |              | 51.9   | 1000   |







## L1078837-01 Original Sample (OS) • Duplicate (DUP)

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 52400           | 53200      | 1        | 1.43    |               | 15                |



<sup>†</sup>Cn



# Laboratory Control Sample (LCS)

| (LCS) R3393631-2 | 03/20/19 | 15:32 |
|------------------|----------|-------|
|------------------|----------|-------|

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | ug/l         | ug/l       | %        | %           |               |
| Chloride | 40000        | 39600      | 99 1     | 80 0-120    |               |







|          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride | 50000        | 52400           | 103000    | 103000     | 102     | 101      | 1        | 80.0-120    | <u>E</u>     | <u>E</u>      | 0.264 | 15         |

## L1078975-03 Original Sample (OS) • Matrix Spike (MS)

#### (OS) I 1078975-03 03/21/19 00:13 • (MS) R3393631-7 03/21/19 00:43

| (O3) E1076973-03 O3/21/19 O0:13 • (IVIS) R3393031-7 O3/21/19 O0:43 |              |                 |           |         |          |             |              |
|--------------------------------------------------------------------|--------------|-----------------|-----------|---------|----------|-------------|--------------|
|                                                                    | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                                                            | ug/l         | ug/l            | ug/l      | %       |          | %           |              |
| Chloride                                                           | 50000        | 37300           | 87300     | 99.9    | 1        | 80.0-120    |              |

# **GLOSSARY OF TERMS**

#### ONE LAB. NATIONWIDE.

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

#### Qualifier Description

The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial Ε

calibration (ICAL).



















# **ACCREDITATIONS & LOCATIONS**





### State Accreditations

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| Iowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | 90010       |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana <sup>1</sup>  | LA180010    |
| Maine                   | TN0002      |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |  |
|--------------------|---------|--|
| A2LA - ISO 17025 5 | 1461.02 |  |
| Canada             | 1461.01 |  |
| EPA-Crypto         | TN00003 |  |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

DATE/TIME:

03/21/19 13:41

PAGE:

9 of 10

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

| Billing                                                                      |                             | Billing Info                        | ng Information:               |                          |                                 |                 |           | Α              | nalysis / Cont | tainer / Prese | ervative                              |            |               | Chain of Custody          | Page of                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|------------------------------------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------|--------------------------|---------------------------------|-----------------|-----------|----------------|----------------|----------------|---------------------------------------|------------|---------------|---------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| 8575 W.                                                                      |                             | Pres Chk Pres Chk Pres Chk Pres Chk |                               |                          |                                 |                 |           |                |                |                |                                       |            |               | 0                         | ter for Testing & Innovation                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|                                                                              |                             |                                     |                               |                          |                                 |                 |           |                | 650            |                |                                       |            | National Carl | er ior resum a minovacion |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
| Report to: Email To: jfranks@s jay.martin@kcpl.co                            |                             |                                     |                               |                          |                                 |                 |           |                |                |                |                                       | ¥-         |               |                           | 12065 Lebanon Rd<br>Mount Juliet, TN 371<br>Phone: 615-758-5858 | 384944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |  |
| Project<br>Description: <b>KCPL - Montrose Ge</b>                            | enerating Stat              | tion                                |                               | City/State<br>Collected: |                                 |                 |           |                |                |                |                                       |            |               |                           | -                                                               | Phone: 800-767-5859<br>Fax: 615-758-5859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 回定為語                   |  |
| Phone: <b>913-681-0030</b><br>Fax: <b>913-681-0012</b>                       | Client Project # 27213168.1 |                                     |                               | Lab Project # AQUAOPK    | Lab Project # AQUAOPKS-MONTROSE |                 |           | SmiHDPE-NoPres |                |                |                                       |            |               |                           |                                                                 | l061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1078937                |  |
| Collected by (print): Whit Martin                                            | Site/Facility ID            | #                                   | P.O. #                        |                          | P.O.#                           |                 |           | IHDPE          |                |                |                                       |            |               |                           |                                                                 | Acctnum: AQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |
| Collected by (signature): What Martin                                        | Same Da                     |                                     | Day                           | Quote #                  | 4                               |                 |           | 175m           | 4              |                |                                       |            |               |                           |                                                                 | Prelogin: P698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3276                   |  |
| Immediately Packed on Ice N Y _X                                             | Next Day Two Day Three Da   | 10 D                                | y (Rad Only)<br>ay (Rad Only) |                          | Sta                             | s Needed        | No.<br>of | CHIORIDE       |                |                |                                       |            |               |                           |                                                                 | PB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | all                    |  |
| Sample ID                                                                    | Comp/Grab                   | Matrix *                            | Depth                         | Date                     |                                 | Time            | Cntrs     | 1 1 1          |                |                |                                       |            |               |                           |                                                                 | Shipped Via:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample # (lab only)    |  |
| MW-605                                                                       | Grab                        | GW                                  |                               | 3/13/19                  | 7                               | 1100            | 1         | )              | (              |                |                                       |            |               |                           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                    |  |
| DUPLICATE 1                                                                  | Grab                        | GW                                  |                               | 3/13/1                   | 9                               | 1100            | 1         | )              | (              |                |                                       |            |               |                           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -02                    |  |
| MW-605 MS/MSD                                                                | Grab                        | GW                                  |                               | 3/13/1                   | 9                               | 1105            | 1         | )              | (              |                |                                       |            |               |                           |                                                                 | AND SERVICE AND SE | -01                    |  |
|                                                                              |                             |                                     |                               |                          |                                 |                 |           |                |                |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25, 72, 84 |               |                           |                                                                 | and on the Artest of the Artest of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |  |
|                                                                              | 1                           |                                     | 3 7 m 4                       |                          | 4                               |                 |           |                |                |                |                                       |            |               |                           |                                                                 | 24<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |  |
|                                                                              |                             |                                     |                               |                          |                                 |                 |           |                |                |                |                                       |            |               |                           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|                                                                              |                             |                                     | 5 Carro 7545                  | n i di dia manggi        | 100                             |                 |           |                |                |                |                                       |            |               |                           |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks:                    |                                     |                               |                          |                                 |                 |           |                |                |                | pH                                    | Temp       |               | COC S<br>Bottl            | Seal Prosigned,<br>les arr                                      | ole Receipt Chresent/Intact<br>/Accurate:<br>rive intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MP Y N                 |  |
| WW - WasteWater DW - Drinking Water OT - Other                               | Samples retu                | rned via:<br>edEx Co                | ourier                        |                          | Trac                            | cking #         |           | FlowOur        |                |                |                                       |            | Sufficie      |                           | icient<br>Zero H                                                | bottles used:Y _N nt volume sent:X _N If Applicable Headspace:Y _N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |
| Relinquished by : (Signature)                                                |                             | Date: 3/13                          | 3/19                          | Time: 1503 <             | 1                               | eived by: (Sign |           |                |                |                | Trip Blank R                          |            | HCL / MeoH    | Ju                        | /Am s                                                           | CHEEN: <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCAA                   |  |
| Relinquished by : (Signature)                                                | .53                         | Date:                               |                               | Time:                    | Rec                             | ejved by: (Sig  | nature)   |                |                |                | Temp: 1.9 - 0                         | °C Bott    | les Received: | If pre                    | servatio                                                        | on required by Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gin: Date/Time         |  |
| Relinquished by : (Signature)                                                |                             | Date:                               |                               | Time:                    | Total Control of the Control    | eived for lab l |           | nature         | e)             |                | Date: 3/14                            | Tim        | 1:30          | Hold:                     |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condition:<br>NCF / OK |  |

# ATTACHMENT 1-3 May 2019 Sampling Event Laboratory Report



# ANALYTICAL REPORT

June 03, 2019

# **SCS Engineers - KS**

Project Number:

Sample Delivery Group: L1102016

Samples Received: 05/23/2019

Description: KCPL - Montrose Generating Station

27213168.19

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

<sup>1</sup>Cp

<sup>2</sup>Tc















Entire Report Reviewed By:

Health relate only is the items lested or calibrated and are reported as remoted upons. This test apport shall not be reproduced, except in full, without written approval of the indocatory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures; 963802, 063,005, and 060,304.



| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-601 L1102016-01                         | 6  |
| MW-602 L1102016-02                         | 7  |
| MW-603 L1102016-03                         | 8  |
| MW-604 L1102016-04                         | 9  |
| MW-605 L1102016-05                         | 10 |
| MW-701 L1102016-06                         | 11 |
| MW-702 L1102016-07                         | 12 |
| MW-703 L1102016-08                         | 13 |
| MW-704 L1102016-09                         | 14 |
| MW-705 L1102016-10                         | 15 |
| MW-706 L1102016-11                         | 16 |
| DUPLICATE 2 L1102016-12                    | 17 |
| Qc: Quality Control Summary                | 18 |
| Gravimetric Analysis by Method 2540 C-2011 | 18 |
| Wet Chemistry by Method 9056A              | 20 |
| Metals (ICP) by Method 6010B               | 22 |
| GI: Glossary of Terms                      | 23 |
| Al: Accreditations & Locations             | 24 |



















Sc: Sample Chain of Custody

25

# SAMPLE SUMMARY

Collected by

| ONE  | $I \land D$ | NATIC | V = V = V = V = V = V = V = V = V = V = |
|------|-------------|-------|-----------------------------------------|
| OINE | LAD.        | NATIC | リNVVIL                                  |

Collected date/time Received date/time

| MW-601 L1102016-01 GW                      |           |          | Jason R Franks | 05/21/19 12:25 | 05/23/19 08: | 00             |
|--------------------------------------------|-----------|----------|----------------|----------------|--------------|----------------|
| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst      | Location       |
|                                            |           |          | date/time      | date/time      |              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287261 | 1        | 05/28/19 19:21 | 05/28/19 19:50 | MMF          | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 11:32 | 06/01/19 11:32 | ST           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 100      | 06/01/19 11:45 | 06/01/19 11:45 | ST           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 18:07 | CCE          | Mt. Juliet, TN |
|                                            |           |          |                |                |              |                |

|                    |    | Collected by   | Collected date/time | Received date/time |
|--------------------|----|----------------|---------------------|--------------------|
| MW-602 L1102016-02 | GW | Jason R Franks | 05/21/19 12:25      | 05/23/19 08:00     |

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287261 | 1        | 05/28/19 19:21 | 05/28/19 19:50 | MMF     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 12:00 | 06/01/19 12:00 | ST      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 50       | 06/01/19 12:14 | 06/01/19 12:14 | ST      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 18:10 | CCE     | Mt. Juliet, TN |

#### Collected by Collected date/time Received date/time Jason R Franks 05/21/19 14:00 05/23/19 08:00 MW-603 L1102016-03 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |  |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|--|
|                                            |           |          | date/time      | date/time      |         |                |  |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287262 | 1        | 05/28/19 18:11 | 05/28/19 18:33 | MMF     | Mt. Juliet, TN |  |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 12:29 | 06/01/19 12:29 | ST      | Mt. Juliet, TN |  |
| Wet Chemistry by Method 9056A              | WG1287708 | 100      | 06/01/19 13:47 | 06/01/19 13:47 | ST      | Mt. Juliet, TN |  |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 17:56 | CCE     | Mt. Juliet, TN |  |
|                                            |           |          |                |                |         |                |  |

#### Collected by Collected date/time Received date/time Jason R Franks 05/21/19 13:20 05/23/19 08:00 MW-604 L1102016-04 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287262 | 1        | 05/28/19 18:11 | 05/28/19 18:33 | MMF     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 14:02 | 06/01/19 14:02 | ST      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 100      | 06/01/19 14:16 | 06/01/19 14:16 | ST      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 18:13 | CCE     | Mt. Juliet, TN |

#### Collected by Collected date/time Received date/time Jason R Franks 05/21/19 12:35 05/23/19 08:00 MW-605 L1102016-05 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287262 | 1        | 05/28/19 18:11 | 05/28/19 18:33 | MMF     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 14:30 | 06/01/19 14:30 | ST      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 100      | 06/01/19 14:45 | 06/01/19 14:45 | ST      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 18:21 | CCE     | Mt. Juliet, TN |

#### Collected by Collected date/time Received date/time Jason R Franks 05/21/19 15:00 05/23/19 08:00 MW-701 L1102016-06 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287262 | 1        | 05/28/19 18:11 | 05/28/19 18:33 | MMF     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 1        | 06/01/19 14:59 | 06/01/19 14:59 | ST      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287708 | 100      | 06/01/19 15:14 | 06/01/19 15:14 | ST      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286048 | 1        | 05/29/19 07:39 | 05/31/19 18:24 | CCE     | Mt. Juliet, TN |





















| Ba  | itch Dilutio | n Preparation                  | Analysis                           | Analyst                          | Location |  |
|-----|--------------|--------------------------------|------------------------------------|----------------------------------|----------|--|
|     |              | Collected by<br>Jason R Franks | Collected date/time 05/21/19 15:35 | Received date/<br>05/23/19 08:00 |          |  |
| SAM | PLE SUM      | ONE LAI                        | B. NATIONWIDI                      | Ξ.                               |          |  |



















|                                                                                                                                                                                                                                      |                                              |                     | Collected by                                                                                                     | Collected date/time                                                                                                  | Received da                                         |                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| MW-702 L1102016-07 GW                                                                                                                                                                                                                |                                              |                     | Jason R Franks                                                                                                   | 05/21/19 15:35                                                                                                       | 05/23/19 08:                                        | :00                                                           |
| Method                                                                                                                                                                                                                               | Batch                                        | Dilution            | Preparation<br>date/time                                                                                         | Analysis<br>date/time                                                                                                | Analyst                                             | Location                                                      |
| Gravimetric Analysis by Method 2540 C-2011                                                                                                                                                                                           | WG1287262                                    | 1                   | 05/28/19 18:11                                                                                                   | 05/28/19 18:33                                                                                                       | MMF                                                 | Mt. Juliet, TI                                                |
| Wet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 1                   | 06/01/19 15:28                                                                                                   | 06/01/19 15:28                                                                                                       | ST                                                  | Mt. Juliet, TI                                                |
| Wet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 50                  | 06/01/19 15:42                                                                                                   | 06/01/19 15:42                                                                                                       | ST                                                  | Mt. Juliet, TI                                                |
| Metals (ICP) by Method 6010B                                                                                                                                                                                                         | WG1286048                                    | 1                   | 05/29/19 07:39                                                                                                   | 05/31/19 18:27                                                                                                       | CCE                                                 | Mt. Juliet, T                                                 |
| MW-703 L1102016-08 GW                                                                                                                                                                                                                |                                              |                     | Collected by<br>Jason R Franks                                                                                   | Collected date/time<br>05/21/19 12:00                                                                                | Received da 05/23/19 08:                            |                                                               |
| Method                                                                                                                                                                                                                               | Batch                                        | Dilution            | Preparation                                                                                                      | Analysis                                                                                                             | Analyst                                             | Location                                                      |
|                                                                                                                                                                                                                                      |                                              |                     | date/time                                                                                                        | date/time                                                                                                            |                                                     |                                                               |
| Gravimetric Analysis by Method 2540 C-2011                                                                                                                                                                                           | WG1287262                                    | 1                   | 05/28/19 18:11                                                                                                   | 05/28/19 18:33                                                                                                       | MMF                                                 | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 1                   | 06/01/19 15:57                                                                                                   | 06/01/19 15:57                                                                                                       | ST                                                  | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 20                  | 06/01/19 16:40                                                                                                   | 06/01/19 16:40                                                                                                       | ST                                                  | Mt. Juliet, TI                                                |
| Metals (ICP) by Method 6010B                                                                                                                                                                                                         | WG1286048                                    | 1                   | 05/29/19 07:39                                                                                                   | 05/31/19 18:29                                                                                                       | CCE                                                 | Mt. Juliet, TI                                                |
|                                                                                                                                                                                                                                      |                                              |                     | Collected by Jason R Franks                                                                                      | Collected date/time<br>05/21/19 15:50                                                                                | Received da 05/23/19 08:                            |                                                               |
| MW-704 L1102016-09 GW                                                                                                                                                                                                                |                                              |                     | Jason K Franks                                                                                                   | 03/21/13 13:30                                                                                                       | 03/23/13 00.                                        | .00                                                           |
| Method                                                                                                                                                                                                                               | Batch                                        | Dilution            | Preparation<br>date/time                                                                                         | Analysis<br>date/time                                                                                                | Analyst                                             | Location                                                      |
| Gravimetric Analysis by Method 2540 C-2011                                                                                                                                                                                           | WG1287262                                    | 1                   | 05/28/19 18:11                                                                                                   | 05/28/19 18:33                                                                                                       | MMF                                                 | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287202<br>WG1287708                       |                     | 06/01/19 16:55                                                                                                   | 06/01/19 16:55                                                                                                       | ST                                                  | Mt. Juliet, T                                                 |
|                                                                                                                                                                                                                                      |                                              | 1                   |                                                                                                                  |                                                                                                                      |                                                     |                                                               |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 20                  | 06/01/19 17:09                                                                                                   | 06/01/19 17:09                                                                                                       | ST                                                  | Mt. Juliet, TI                                                |
| Metals (ICP) by Method 6010B                                                                                                                                                                                                         | WG1286048                                    | 1                   | 05/29/19 07:39                                                                                                   | 05/31/19 18:32                                                                                                       | CCE                                                 | Mt. Juliet, T                                                 |
| MW-705 L1102016-10 GW                                                                                                                                                                                                                |                                              |                     | Collected by<br>Jason R Franks                                                                                   | Collected date/time 05/21/19 16:15                                                                                   | Received da 05/23/19 08:                            |                                                               |
| Method                                                                                                                                                                                                                               | Batch                                        | Dilution            | Preparation                                                                                                      | Analysis                                                                                                             | Analyst                                             | Location                                                      |
|                                                                                                                                                                                                                                      |                                              |                     | date/time                                                                                                        | date/time                                                                                                            |                                                     |                                                               |
| iravimetric Analysis by Method 2540 C-2011                                                                                                                                                                                           | WG1287262                                    | 1                   | 05/28/19 18:11                                                                                                   | 05/28/19 18:33                                                                                                       | MMF                                                 | Mt. Juliet, T                                                 |
| /et Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 1                   | 06/01/19 17:23                                                                                                   | 06/01/19 17:23                                                                                                       | ST                                                  | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 10                  | 06/01/19 17:52                                                                                                   | 06/01/19 17:52                                                                                                       | ST                                                  | Mt. Juliet, T                                                 |
| detals (ICP) by Method 6010B                                                                                                                                                                                                         | WG1286048                                    | 1                   | 05/29/19 07:39                                                                                                   | 05/31/19 18:35                                                                                                       | CCE                                                 | Mt. Juliet, Ti                                                |
|                                                                                                                                                                                                                                      |                                              |                     | Collected by                                                                                                     | Collected date/time                                                                                                  | Received da                                         | te/time                                                       |
| MW-706 L1102016-11 GW                                                                                                                                                                                                                |                                              |                     | Jason R Franks                                                                                                   | 05/21/19 16:10                                                                                                       | 05/23/19 08:                                        |                                                               |
| Method                                                                                                                                                                                                                               | Batch                                        | Dilution            | Preparation                                                                                                      | Analysis                                                                                                             | Analyst                                             | Location                                                      |
| Gravimetric Analysis by Method 2540 C-2011                                                                                                                                                                                           | WG1287262                                    | 1                   | date/time                                                                                                        | date/time                                                                                                            | NANAE                                               | M+ Inlint T                                                   |
| navimenic Analysis by Method 7540 C-7011                                                                                                                                                                                             |                                              | 1                   | 05/28/19 18:11                                                                                                   | 05/28/19 18:33                                                                                                       | MMF<br>ST                                           | Mt. Juliet, T                                                 |
|                                                                                                                                                                                                                                      |                                              | 4                   | 06/01/10 10:21                                                                                                   |                                                                                                                      | N 1                                                 | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A                                                                                                                                                                                                        | WG1287708                                    | 1                   | 06/01/19 18:21                                                                                                   | 06/01/19 18:21                                                                                                       |                                                     |                                                               |
| Vet Chemistry by Method 9056A<br>Vet Chemistry by Method 9056A                                                                                                                                                                       | WG1287708<br>WG1287708                       | 20                  | 06/01/19 18:35                                                                                                   | 06/01/19 18:35                                                                                                       | ST                                                  | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A<br>Vet Chemistry by Method 9056A                                                                                                                                                                       | WG1287708                                    |                     |                                                                                                                  |                                                                                                                      |                                                     | Mt. Juliet, T                                                 |
| Vet Chemistry by Method 9056A<br>Vet Chemistry by Method 9056A                                                                                                                                                                       | WG1287708<br>WG1287708                       | 20                  | 06/01/19 18:35<br>05/29/19 07:39<br>Collected by                                                                 | 06/01/19 18:35<br>05/31/19 18:37<br>Collected date/time                                                              | ST<br>CCE                                           | Mt. Juliet, T<br>Mt. Juliet, T<br>te/time                     |
| Vet Chemistry by Method 9056A<br>Vet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B                                                                                                                                       | WG1287708<br>WG1287708                       | 20                  | 06/01/19 18:35<br>05/29/19 07:39                                                                                 | 06/01/19 18:35<br>05/31/19 18:37                                                                                     | ST<br>CCE                                           | Mt. Juliet, T<br>Mt. Juliet, T<br>te/time                     |
| Vet Chemistry by Method 9056A Vet Chemistry by Method 9056A Vet Chemistry by Method 6010B  OUPLICATE 2 L1102016-12 GW                                                                                                                | WG1287708<br>WG1287708                       | 20                  | 06/01/19 18:35<br>05/29/19 07:39<br>Collected by                                                                 | 06/01/19 18:35<br>05/31/19 18:37<br>Collected date/time                                                              | ST<br>CCE                                           | Mt. Juliet, T<br>Mt. Juliet, T<br>te/time                     |
| Vet Chemistry by Method 9056A Vet Chemistry by Method 9056A Metals (ICP) by Method 6010B  DUPLICATE 2 L1102016-12 GW  Method                                                                                                         | WG1287708<br>WG1287708<br>WG1286048          | 20<br>1             | 06/01/19 18:35<br>05/29/19 07:39<br>Collected by<br>Jason R Franks<br>Preparation                                | 06/01/19 18:35<br>05/31/19 18:37<br>Collected date/time<br>05/21/19 14:00<br>Analysis                                | ST<br>CCE<br>Received da<br>05/23/19 08:            | Mt. Juliet, T<br>Mt. Juliet, T<br>te/time<br>100<br>Location  |
| Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B  DUPLICATE 2 L1102016-12 GW  Method  Gravimetric Analysis by Method 2540 C-2011                               | WG1287708<br>WG1287708<br>WG1286048<br>Batch | 20<br>1<br>Dilution | 06/01/19 18:35<br>05/29/19 07:39<br>Collected by<br>Jason R Franks<br>Preparation<br>date/time                   | 06/01/19 18:35<br>05/31/19 18:37<br>Collected date/time<br>05/21/19 14:00<br>Analysis<br>date/time                   | ST<br>CCE<br>Received da<br>05/23/19 08:            | Mt. Juliet, Tl<br>Mt. Juliet, Tl<br>te/time                   |
| Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B  DUPLICATE 2 L1102016-12 GW  Method  Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A | WG1287708<br>WG1287708<br>WG1286048<br>Batch | 20<br>1<br>Dilution | 06/01/19 18:35<br>05/29/19 07:39<br>Collected by<br>Jason R Franks<br>Preparation<br>date/time<br>05/28/19 18:11 | 06/01/19 18:35<br>05/31/19 18:37<br>Collected date/time<br>05/21/19 14:00<br>Analysis<br>date/time<br>05/28/19 18:33 | ST<br>CCE<br>Received da<br>05/23/19 08:<br>Analyst | Mt. Juliet, T Mt. Juliet, T te/time 00 Location Mt. Juliet, T |

1

<sup>2</sup>Tc















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 12:25

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 4410000 |           | 50000 | 1        | 05/28/2019 19:50 | WG1287261 |

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch            |
|----------|---------|-----------|--------|----------|------------------|------------------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |                  |
| Chloride | 55500   |           | 1000   | 1        | 06/01/2019 11:32 | WG1287708        |
| Fluoride | 487     |           | 100    | 1        | 06/01/2019 11:32 | WG1287708        |
| Sulfate  | 3230000 |           | 500000 | 100      | 06/01/2019 11:45 | <u>WG1287708</u> |



|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 05/31/2019 18:07 | WG1286048    |
| Calcium | 472000 |           | 1000 | 1        | 05/31/2019 18:07 | WG1286048    |











ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 12:25

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1870000 |           | 25000 | 1        | 05/28/2019 19:50 | WG1287261 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 4110    |           | 1000   | 1        | 06/01/2019 12:00 | WG1287708 |
| Fluoride | 132     |           | 100    | 1        | 06/01/2019 12:00 | WG1287708 |
| Sulfate  | 1260000 |           | 250000 | 50       | 06/01/2019 12:14 | WG1287708 |



|         | Result | Qualifier RDL | Dilution | Analysis         | Batch     |
|---------|--------|---------------|----------|------------------|-----------|
| Analyte | ug/l   | ug/l          |          | date / time      |           |
| Boron   | 4480   | 200           | 1        | 05/31/2019 18:10 | WG1286048 |
| Calcium | 342000 | 1000          | 1        | 05/31/2019 18:10 | WG1286048 |











ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 14:00

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2990000 | <u>J3</u> | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 8240    |           | 1000   | 1        | 06/01/2019 12:29 | WG1287708 |
| Fluoride | 365     |           | 100    | 1        | 06/01/2019 12:29 | WG1287708 |
| Sulfate  | 2480000 |           | 500000 | 100      | 06/01/2019 13:47 | WG1287708 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      | <del>_</del> |
| Boron   | 7350   | <u>O1</u> | 200  | 1        | 05/31/2019 17:56 | WG1286048    |
| Calcium | 429000 | O1 V      | 1000 | 1        | 05/31/2019 17:56 | WG1286048    |



СQс







ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 13:20

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 3270000 |           | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 15500   |           | 1000   | 1        | 06/01/2019 14:02 | WG1287708 |
| Fluoride | 519     |           | 100    | 1        | 06/01/2019 14:02 | WG1287708 |
| Sulfate  | 2090000 |           | 500000 | 100      | 06/01/2019 14:16 | WG1287708 |



|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 4860   |           | 200  | 1        | 05/31/2019 18:13 | WG1286048 |
| Calcium | 476000 |           | 1000 | 1        | 05/31/2019 18:13 | WG1286048 |











ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 12:35

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2810000 |           | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc



|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 55400   |           | 1000   | 1        | 06/01/2019 14:30 | WG1287708 |
| Fluoride | 222     |           | 100    | 1        | 06/01/2019 14:30 | WG1287708 |
| Sulfate  | 1970000 |           | 500000 | 100      | 06/01/2019 14:45 | WG1287708 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 1650   |           | 200  | 1        | 05/31/2019 18:21 | WG1286048 |
| Calcium | 416000 |           | 1000 | 1        | 05/31/2019 18:21 | WG1286048 |



СQс







ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 15:00

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2930000 |           | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | <u>Batch</u> |
|----------|---------|-----------|--------|----------|------------------|--------------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |              |
| Chloride | 355000  |           | 100000 | 100      | 06/01/2019 15:14 | WG1287708    |
| Fluoride | 1170    |           | 100    | 1        | 06/01/2019 14:59 | WG1287708    |
| Sulfate  | 2080000 |           | 500000 | 100      | 06/01/2019 15:14 | WG1287708    |



# Metals (ICP) by Method 6010B

|         | Result | Qualifier RDL | Dilution | Analysis         | Batch     |
|---------|--------|---------------|----------|------------------|-----------|
| Analyte | ug/l   | ug/l          |          | date / time      |           |
| Boron   | ND     | 200           | 1        | 05/31/2019 18:24 | WG1286048 |
| Calcium | 402000 | 1000          | 1        | 05/31/2019 18:24 | WG1286048 |



Cn



СQс





ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 15:35

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 3010000 |           | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 271000  |           | 50000  | 50       | 06/01/2019 15:42 | WG1287708 |
| Fluoride | 243     |           | 100    | 1        | 06/01/2019 15:28 | WG1287708 |
| Sulfate  | 1510000 |           | 250000 | 50       | 06/01/2019 15:42 | WG1287708 |



³Ss

# Cn









|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/31/2019 18:27 | WG1286048 |
| Calcium | 450000 |           | 1000 | 1        | 05/31/2019 18:27 | WG1286048 |

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 12:00

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1410000 |           | 20000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL    | Dilution | Analysis         | Batch            |
|----------|--------|-----------|--------|----------|------------------|------------------|
| Analyte  | ug/l   |           | ug/l   |          | date / time      |                  |
| Chloride | 16500  |           | 1000   | 1        | 06/01/2019 15:57 | WG1287708        |
| Fluoride | 157    |           | 100    | 1        | 06/01/2019 15:57 | WG1287708        |
| Sulfate  | 988000 |           | 100000 | 20       | 06/01/2019 16:40 | <u>WG1287708</u> |



Ss

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 05/31/2019 18:29 | WG1286048    |
| Calcium | 226000 |           | 1000 | 1        | 05/31/2019 18:29 | WG1286048    |











ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 15:50

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1120000 |           | 20000 | 1        | 05/28/2019 18:33 | WG1287262 |

# Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|--------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l   |          | date / time      |           |
| Chloride | 4170   |           | 1000   | 1        | 06/01/2019 16:55 | WG1287708 |
| Fluoride | 204    |           | 100    | 1        | 06/01/2019 16:55 | WG1287708 |
| Sulfate  | 786000 |           | 100000 | 20       | 06/01/2019 17:09 | WG1287708 |



Ss

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 05/31/2019 18:32 | WG1286048    |
| Calcium | 159000 |           | 1000 | 1        | 05/31/2019 18:32 | WG1286048    |











ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 16:15

L1102016

# Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1210000 |           | 20000 | 1        | 05/28/2019 18:33 | WG1287262 |



# Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|----------|--------|-----------|-------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l  |          | date / time      |           |
| Chloride | 13300  |           | 1000  | 1        | 06/01/2019 17:23 | WG1287708 |
| Fluoride | 202    |           | 100   | 1        | 06/01/2019 17:23 | WG1287708 |
| Sulfate  | 741000 |           | 50000 | 10       | 06/01/2019 17:52 | WG1287708 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|---------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |  |
| Boron   | ND     |           | 200  | 1        | 05/31/2019 18:35 | WG1286048 |  |
| Calcium | 162000 |           | 1000 | 1        | 05/31/2019 18:35 | WG1286048 |  |





СQс





ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 16:10

L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1770000 |           | 25000 | 1        | 05/28/2019 18:33 | WG1287262 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 31500   |           | 1000   | 1        | 06/01/2019 18:21 | WG1287708 |
| Fluoride | 135     |           | 100    | 1        | 06/01/2019 18:21 | WG1287708 |
| Sulfate  | 1280000 |           | 100000 | 20       | 06/01/2019 18:35 | WG1287708 |



Cn

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | 282    |           | 200  | 1        | 05/31/2019 18:37 | WG1286048    |
| Calcium | 278000 |           | 1000 | 1        | 05/31/2019 18:37 | WG1286048    |









ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 14:00

#### L1102016

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 3920000 |           | 50000 | 1        | 05/28/2019 18:33 | WG1287262 |



|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 8230    |           | 1000   | 1        | 06/01/2019 18:50 | WG1287708 |
| Fluoride | 378     |           | 100    | 1        | 06/01/2019 18:50 | WG1287708 |
| Sulfate  | 2460000 |           | 500000 | 100      | 06/01/2019 19:33 | WG1287708 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | 7230   |           | 200  | 1        | 05/31/2019 18:40 | WG1286048    |
| Calcium | 430000 |           | 1000 | 1        | 05/31/2019 18:40 | WG1286048    |



СQс







17 of 26

# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1102016-01,02

## Method Blank (MB)

| (MB) R3416327-1 05/28 | /19 19:50 |              |        |        |
|-----------------------|-----------|--------------|--------|--------|
|                       | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte               | ug/l      |              | ug/l   | ug/l   |
| Dissolved Solids      | U         |              | 2820   | 10000  |





Ss

# L1099549-23 Original Sample (OS) • Duplicate (DUP)

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 480000          | 520000     | 1        | 8.00    | J3            | 5                 |





# Laboratory Control Sample (LCS)

#### (LCS) R3416327-2 05/28/19 19:50

| (LCS) NS+10327-2 03/20 | 5/15 15.50   |           |          |             |               |
|------------------------|--------------|-----------|----------|-------------|---------------|
|                        | Spike Amount | LCS Resul | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | ug/l         | ug/l      | %        | %           |               |
| Dissolved Solids       | 8800000      | 8720000   | 99.1     | 85.0-115    |               |





# QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1102016-03,04,05,06,07,08,09,10,11,12

## Method Blank (MB)

| (MB) R3416367-1 05/28/19 | 9 18:33   |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |
| Dissolved Solids         | U         |              | 2820   | 10000  |







## L1102016-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1102016-03 05/28/19 18:33 • (DUP) R3416367-3 05/28/19 18:33

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 2990000         | 3260000    | 1        | 8.81    | J3            | 5                 |









(I CS) P3/16367-2 05/28/19 18:33

| (LC3) K3410307-2 03/20/ |         | 7 2 00,20, | nount LCS Result | LCS Rec. | Rec. Limits |
|-------------------------|---------|------------|------------------|----------|-------------|
| Analyte                 | ug/l    |            | ug/l             | %        | %           |
| Dissolved Solids        | 8800000 |            |                  | 97.2     | 85.0-115    |







ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1102016-01,02,03,04,05,06,07,08,09,10,11,12

#### Method Blank (MB)

| (MB) R3416973-1 06/01/19 08:27 |           |              |        |        |  |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |  |  |
| Chloride                       | U         |              | 51.9   | 1000   |  |  |  |  |  |
| Fluoride                       | U         |              | 9.90   | 100    |  |  |  |  |  |
| Sulfate                        | U         |              | 77.4   | 5000   |  |  |  |  |  |

## Ср





#### L1102016-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1102016-10 06/01/19 17:23 • (DUP) R3416973-5 06/01/19 17:38

| (03) 11102010-10 00/01/19 | (03) [1102010-10 00/01/13 17.23 • (001) [13 17.36 |            |          |         |               |                   |  |  |  |  |  |  |
|---------------------------|---------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|
|                           | Original Result                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |
| Analyte                   | ug/l                                              | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |
| Chloride                  | 13300                                             | 13300      | 1        | 0.0654  |               | 15                |  |  |  |  |  |  |
| Fluoride                  | 202                                               | 206        | 1        | 2.35    |               | 15                |  |  |  |  |  |  |







#### L1102016-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1102016-10 06/01/19 17:52 • (DUP) R3416973-6 06/01/19 18:07

| (03) E1102010-10 00/01/13 17.32 (001) 103410373-0 00/01/13 10.07 |                 |            |          |         |               |                   |  |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |
| Sulfate                                                          | 741000          | 742000     | 10       | 0.0191  |               | 15                |  |  |  |  |





#### L1102021-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1102021-01 06/01/19 23:38 • (DUP) R3416973-7 06/01/19 23:53

| (03) 21102021 01 00/01/13 23:30 - (201) 104/03/37 7 00/01/13 23:33 |                 |            |          |         |               |                   |  |  |  |
|--------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|
|                                                                    | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                                                            | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |
| Chloride                                                           | ND              | 350        | 1        | 0.000   |               | 15                |  |  |  |
| Fluoride                                                           | 201             | 187        | 1        | 6.96    |               | 15                |  |  |  |
| Sulfate                                                            | ND              | 0.000      | 1        | 0.000   |               | 15                |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3416973-2 06/01/ | CS) R3416973-2 06/01/19 08:41 |            |          |             |               |  |  |  |  |  |  |
|-------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|--|
|                         | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |
| Analyte                 | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |  |  |
| Chloride                | 40000                         | 40300      | 101      | 80.0-120    |               |  |  |  |  |  |  |
| Fluoride                | 8000                          | 8200       | 103      | 80.0-120    |               |  |  |  |  |  |  |
| Sulfate                 | 40000                         | 40900      | 102      | 80.0-120    |               |  |  |  |  |  |  |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1102016-01,02,03,04,05,06,07,08,09,10,11,12

#### L1102016-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1102016-03 06/01/19 12:29 • (MS) R3416973-3 06/01/19 12:43 • (MSD) R3416973-4 06/01/19 13:04

| . ,      | , ,          |                 | ,         | ,          |         |          |          |             |              |               |        |            |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|
|          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |
| Chloride | 50000        | 8240            | 60500     | 60600      | 105     | 105      | 1        | 80.0-120    |              |               | 0.0705 | 15         |
| Fluoride | 5000         | 365             | 5300      | 5280       | 98.7    | 98.2     | 1        | 80.0-120    |              |               | 0.444  | 15         |
| Sulfate  | 50000        | 2190000         | 2120000   | 2130000    | 0.000   | 0.000    | 1        | 80.0-120    | ΕV           | ΕV            | 0.186  | 15         |







#### L1102021-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1102021-01 06/01/19 23:38 • (MS) R3416973-8 06/02/19 00:07 • (MSD) R3416973-9 06/02/19 00:21

| (03) E1102021-01 00101/13 23.30 \ (M3) K3+10373-0 00102/13 00.07 \ (M3D) K3+10373-3 00102/13 00.21 |              |                 |           |            |         |          |          |             |              |               |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride                                                                                           | 50000        | ND              | 52400     | 52600      | 104     | 104      | 1        | 80.0-120    |              |               | 0.373 | 15         |
| Fluoride                                                                                           | 5000         | 201             | 5420      | 5450       | 104     | 105      | 1        | 80.0-120    |              |               | 0.576 | 15         |
| Sulfate                                                                                            | 50000        | ND              | 51200     | 51500      | 102     | 103      | 1        | 80.0-120    |              |               | 0.593 | 15         |













ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1102016-01,02,03,04,05,06,07,08,09,10,11,12

#### Method Blank (MB)

Calcium

| (MB) R3417058-1 05/31/19 17:48 |           |              |        |        |  |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |  |  |
| Boron                          | U         |              | 12.6   | 200    |  |  |  |  |  |
| Calcium                        | U         |              | 46.3   | 1000   |  |  |  |  |  |





#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R341/058-2 05/31/1 | 9 17:51 • (LCSD) | R341/058-3 | 05/31/19 17:53 |          |           |             |               |                |       |            |
|--------------------------|------------------|------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                          | Spike Amount     | LCS Result | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                  | ug/l             | ug/l       | ug/l           | %        | %         | %           |               |                | %     | %          |
| Boron                    | 1000             | 1010       | 1010           | 101      | 101       | 80.0-120    |               |                | 0.119 | 20         |

80.0-120

0.589

20





#### L1102016-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10100

101

101



10100





| (OS) L1102016-03 05/31/1 | 9 17:56 · (MS) R | 341/058-5 05/   | /31/19 18:01 • (I | VISD) R341/058 | 3-6 05/31/19 1 | 8:04     |          |             |              |               |       |            |
|--------------------------|------------------|-----------------|-------------------|----------------|----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                          | Spike Amount     | Original Result | MS Result         | MSD Result     | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                  | ug/l             | ug/l            | ug/l              | ug/l           | %              | %        |          | %           |              |               | %     | %          |
| Boron                    | 1000             | 7350            | 8200              | 8120           | 84.6           | 77.0     | 1        | 75.0-125    |              |               | 0.941 | 20         |
| Calcium                  | 10000            | 429000          | 430000            | 428000         | 12.6           | 0.000    | 1        | 75.0-125    | V            | V             | 0.304 | 20         |

10000

### **GLOSSARY OF TERMS**





The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                   |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                              |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description |
|-----------|-------------|

| Е  | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| J3 | The associated batch QC was outside the established quality control range for precision.                                                        |
| O1 | The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference. |
| V  | The sample concentration is too high to evaluate accurate spike recoveries.                                                                     |



















#### **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| lowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |
|                        |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |
|--------------------|---------|
| A2LA - ISO 17025 5 | 1461.02 |
| Canada             | 1461.01 |
| EPA-Crypto         | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















| SCS Engineers - KS                                                                     |                                                                       |                        | Billing Int                                                         | ormation:                                             |                     |                    |                          |                     |                 | Analysis / C      | ontainer / Pre     | eservative |                                            | Chain of Custo                                                                                           | ody Page of                                                       |  |                                                                           |              |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|-------------------------------------------------------|---------------------|--------------------|--------------------------|---------------------|-----------------|-------------------|--------------------|------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|---------------------------------------------------------------------------|--------------|
| 8575 W. 110th Street<br>Overland Park, KS 66210                                        |                                                                       |                        | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                                                       |                     | Pre:<br>Chk        | - CONTROL OF THE         | 2                   |                 |                   | Jun -              |            |                                            | Nations                                                                                                  | il Centar for Testing & Innovati                                  |  |                                                                           |              |
| Report to:<br>Jason Franks                                                             |                                                                       |                        |                                                                     | jfranks@scsengir<br>n@kcpl.com;                       | neers.com;          |                    | sə.                      |                     |                 |                   |                    |            |                                            | 12065 Lebanon I                                                                                          |                                                                   |  |                                                                           |              |
| Project Description: KCPL - Montrose Ge                                                | 1:                                                                    |                        |                                                                     | roject escription: KCPL - Montrose Generating Station |                     |                    | City/State<br>Collected: | MONTO DEL           |                 | -NoPr             |                    |            |                                            |                                                                                                          | 7                                                                 |  | Mount Juliet, TN<br>Phone: 615-758-<br>Phone: 800-767-<br>Fax: 615-758-58 | 5858<br>5859 |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                               | Client Project <b>27213168.</b>                                       |                        |                                                                     | Lab Project # AQUAOPKS-MONTROSE                       |                     |                    | 125mlHDPE-N              | HN03                |                 |                   |                    |            |                                            |                                                                                                          | 2016                                                              |  |                                                                           |              |
| Collected by (print):  JASON R. FRANKS                                                 | Site/Facility IC                                                      | )#                     |                                                                     | P.O.#                                                 |                     |                    |                          | HDPE-               | oPres           |                   |                    |            |                                            | F12                                                                                                      |                                                                   |  |                                                                           |              |
| Collected by (signature):                                                              | Rush? (Lab MUST Be Notified) Same DayFive DayNext Day5 Day (Rad Only) |                        | Day                                                                 | Quote #  Date Results Needed                          |                     |                    | cld, F, SO4)             | 6010 250mlHDPE-HNO3 | 50mlHDPE-NoPres |                   |                    |            |                                            | Acctnum: ACT Template: T1  Prelogin: P7  TSR: 206 - Jef                                                  | 35966<br>09140                                                    |  |                                                                           |              |
| Packed on Ice N Y Sample ID                                                            | Three Da                                                              |                        | Depth                                                               | Date                                                  | Time                | No.<br>of<br>Cntrs | Anions (Cld,             | Ca -                | DS 250r         |                   |                    |            |                                            | PB:<br>Shipped Via:                                                                                      |                                                                   |  |                                                                           |              |
| MW-601                                                                                 | GRAS                                                                  | GW                     |                                                                     | 1/1/                                                  | 100-                |                    |                          | 8                   | -               |                   |                    |            |                                            | Remarks                                                                                                  | Sample # (lab only)                                               |  |                                                                           |              |
| MW-602                                                                                 | Ciuris                                                                | GW                     |                                                                     | 5/21/19                                               |                     | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -01                                                               |  |                                                                           |              |
| MW-603                                                                                 | 1                                                                     | GW                     |                                                                     | 1 1                                                   | 1225                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -02                                                               |  |                                                                           |              |
| MW-604                                                                                 |                                                                       | GW                     | =                                                                   |                                                       | 1400                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -03                                                               |  |                                                                           |              |
| MW-605                                                                                 |                                                                       | GW                     | -                                                                   |                                                       | 1320                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -04                                                               |  |                                                                           |              |
| MW-701                                                                                 |                                                                       | GW                     | -                                                                   |                                                       | 246                 | 3                  | X                        | X                   | X               | The Turk          |                    |            |                                            | #                                                                                                        | -05                                                               |  |                                                                           |              |
| MW-702                                                                                 |                                                                       | GW                     | -                                                                   |                                                       | 1500                | 3                  | X                        | X                   | X               |                   |                    | 100        |                                            | - 120 m                                                                                                  | -06                                                               |  |                                                                           |              |
| MW-703                                                                                 | 277                                                                   | GW                     |                                                                     |                                                       | 1535                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -07                                                               |  |                                                                           |              |
| MW-704                                                                                 |                                                                       | GW                     | -                                                                   |                                                       | 1200                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -08                                                               |  |                                                                           |              |
| MW-705                                                                                 | 4                                                                     | GW                     |                                                                     |                                                       | 1550                | 3                  | X                        | X                   | X               |                   |                    |            |                                            |                                                                                                          | -09                                                               |  |                                                                           |              |
| * Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater | Remarks:  Samples return  UPS Fed                                     | ed via:                | 211                                                                 |                                                       | 1615                | 3                  | X                        | X                   | X               | pH                | Temp               |            | COC Seal<br>COC Sign<br>Bottles<br>Correct | ample Receipt C<br>Present/Intact:<br>ed/Accurate:<br>arrive intact:<br>bottles used:<br>nt volume sent: | : _NP _Y _N _Y _N _Y _N _Y _N |  |                                                                           |              |
| Relinquished by : (Signature) Relinquished by : (Signature)                            | mle                                                                   | Date: 5/22, Date: 5/22 | 19                                                                  | me: Re<br>1130<br>me: Re                              | ceived by: (Signati |                    |                          | 1.22                |                 | Trip Blank R      | TE                 | CL / MeoH  | VOA Zero<br>Preserva                       | If Applicate Headspace: tion Correct/Ch                                                                  | oleYN<br>ecked:YN                                                 |  |                                                                           |              |
| Relinquished by : (Signature)                                                          |                                                                       | Date:                  | //5  <br> Ti                                                        | Time: Received for lab by: (Si                        |                     |                    |                          |                     | -               | 1.7° 1<br>5/23/10 | 18 c<br>10 7 Time: | 59         | Hold:                                      |                                                                                                          | Condition:<br>NCF / OK                                            |  |                                                                           |              |

| CCC C                                                                        |                                  |               | Billing Inf                                                         | formation:                          | T                      | 1       |         |                | Analysis / (     | Container / P | recentative   |                  |                                      | land sales | 9                                                                                               |                        |                                                        |  |
|------------------------------------------------------------------------------|----------------------------------|---------------|---------------------------------------------------------------------|-------------------------------------|------------------------|---------|---------|----------------|------------------|---------------|---------------|------------------|--------------------------------------|------------|-------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------|--|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210        |                                  |               | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                                     |                        |         | S       | 12             | 7                | a di di       | Sittaillei 77 | reservative      |                                      |            | Chain of Custo                                                                                  | ody Page of            |                                                        |  |
| Report to:<br>Jason Franks                                                   |                                  |               | Email To:                                                           | Email To: jfranks@scsengineers.com; |                        |         | es      |                |                  |               |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
| Project Description: KCPL - Montrose Ge                                      |                                  |               |                                                                     | City/State Collected:               |                        |         | NoPr    |                |                  |               |               |                  |                                      |            | 12065 Lebanon R<br>Mount Juliet, TN<br>Phone: 615-758-5<br>Phone: 800-767-5<br>Fax: 615-758-585 | 37122<br>5858<br>5859  |                                                        |  |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                     | Client Project <b>27213168</b> . |               |                                                                     | Lab Project #                       | 11/0NTROSE YU          |         |         | HN03           |                  |               | j9 -          |                  |                                      |            | L#    (                                                                                         | 02016                  |                                                        |  |
| Collected by (print): TASON R. FRANK                                         | Site/Facility II                 | ) #           |                                                                     | P.O.#                               |                        | Y.      |         | HDPE-          | oPres            |               |               |                  |                                      |            | Table #                                                                                         |                        |                                                        |  |
| Collected by (signature):                                                    | Same D                           | ab MUST Be    | Day                                                                 | Quote #                             |                        |         | F, SO4) | 250mIHDPE-HNO3 | 250mlHDPE-NoPres |               |               | A Company        |                                      |            | Acctnum: AQUAOPKS Template: T135966                                                             |                        |                                                        |  |
| Infimediately Packed on Ice N Y                                              |                                  |               | wo Day 10 Day (Rad Only)                                            |                                     | Date Results Needed No |         | y)      |                | Anions (Cld,     | - 6010        | 50mlH         |                  |                                      |            |                                                                                                 |                        | Prelogin: <b>P7(</b> TSR: <b>206</b> - <b>Jeff</b> PB: |  |
| Sample ID                                                                    | Comp/Grab                        | Matrix *      | Depth                                                               | Date                                |                        |         | Inion   | B, Ca          | TDS 2            |               |               |                  |                                      |            | Shipped Via:                                                                                    |                        |                                                        |  |
| MW-706                                                                       | GRAS                             | GW            | -                                                                   | Elzilia                             | 1610                   | 3       | X       | X              | X                |               |               |                  |                                      |            | Remarks                                                                                         | Sample # (lab only)    |                                                        |  |
| (003 MS/MSD                                                                  |                                  | GW            | -                                                                   | rhile                               | 1400                   | 3       | X       | X              | X                |               |               |                  |                                      |            |                                                                                                 | -1                     |                                                        |  |
| MSD                                                                          | 1                                | G₩            | -                                                                   | 3/0/1                               | 7,00                   | 3,      | X       | ×              | ×                |               |               |                  |                                      |            |                                                                                                 | -03                    |                                                        |  |
| DUPLICATE                                                                    |                                  | GW            | -                                                                   | 5/2/19                              | 1400                   | 3       | Х       | Х              | X                |               |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
|                                                                              |                                  |               | 1.                                                                  | 7 7                                 |                        |         |         |                |                  |               |               |                  |                                      |            |                                                                                                 | -12                    |                                                        |  |
|                                                                              |                                  |               |                                                                     |                                     | 0. 75                  |         |         |                |                  |               |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
|                                                                              |                                  |               |                                                                     | 4                                   |                        |         |         |                |                  | Part of       | 100           |                  |                                      |            |                                                                                                 |                        |                                                        |  |
|                                                                              |                                  |               |                                                                     |                                     |                        |         |         |                |                  |               |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
|                                                                              | 1                                |               |                                                                     |                                     |                        |         |         |                |                  | 7             |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
|                                                                              |                                  |               |                                                                     |                                     |                        |         |         |                |                  |               |               |                  |                                      |            |                                                                                                 |                        |                                                        |  |
| SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater | Remarks: Samples returnUPSFed    | ed via:       | SM                                                                  | <b>.</b>                            |                        |         |         |                |                  | pH<br>Flow    | Temp Other    |                  | COC Se<br>COC Si<br>Bottle<br>Correc | gned/i     | le Receipt Ch<br>esent/Intact:<br>Accurate:<br>ive intact:<br>tles used:                        | ecklist NP Y N         |                                                        |  |
| Relinquished by : (Signature)  Relinquished by : (Signature)                 |                                  | Date: Cour    | 1,9                                                                 | me: Rece                            | king #                 |         |         |                |                  | Trip Blank Re | F<br>T        | ICL / MeoH<br>BR | Suffic<br>VOA Ze:                    | ient v     | volume sent:  If Applicabl adspace: n Correct/Che                                               | V 17                   |                                                        |  |
| Relinquished by : (Signature)                                                |                                  | 5/22<br>Date: | 115 1                                                               | 760                                 | ived by: (Signatu      | 04      | _       | 1.2            |                  | Temp: 0 +     | °C Bottle     | Received:        | If preser                            | vation     | required by Logi                                                                                | in: Date/Time          |                                                        |  |
|                                                                              |                                  |               |                                                                     |                                     | ived for lab by: ( Pa  | Signatu |         |                |                  | Date: 5/23/19 | PAZ Time:     | 20               | Hold:                                |            |                                                                                                 | Condition:<br>NCF / QK |                                                        |  |



## ANALYTICAL REPORT

May 31, 2019





Ss



'Sr









### **SCS Engineers - KS**

Sample Delivery Group: L1102009 Samples Received: 05/23/2019

27213168.18 Project Number:

Description: KCPL - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer





| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-506 L1102009-01                         | 5  |
| DUPLICATE L1102009-02                      | 6  |
| Qc: Quality Control Summary                | 7  |
| Gravimetric Analysis by Method 2540 C-2011 | 7  |
| Wet Chemistry by Method 9056A              | 8  |
| Metals (ICP) by Method 6010B               | 10 |
| GI: Glossary of Terms                      | 11 |
| Al: Accreditations & Locations             | 12 |
| Sc: Sample Chain of Custody                | 13 |



















PAGE:

2 of 13



| MW-506 L1102009-01 GW                      |             |          | Collected by<br>Jason R. Frank | Collected date/time 05/21/19 13:00 | Received da<br>05/23/19 08: |                |
|--------------------------------------------|-------------|----------|--------------------------------|------------------------------------|-----------------------------|----------------|
| Method                                     | Batch       | Dilution | Preparation                    | Analysis                           | Analyst                     | Location       |
|                                            |             |          | date/time                      | date/time                          |                             |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287261   | 1        | 05/28/19 19:21                 | 05/28/19 19:50                     | MMF                         | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287703   | 1        | 05/30/19 18:04                 | 05/30/19 18:04                     | MCG                         | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287703   | 50       | 05/30/19 18:37                 | 05/30/19 18:37                     | MCG                         | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1286047   | 1        | 05/24/19 10:04                 | 05/25/19 00:05                     | TRB                         | Mt. Juliet, TN |
|                                            |             |          | Collected by                   | Collected date/time                | Received da                 | te/time        |
| DUPLICATE L1102009-02 GW                   |             |          | Jason R. Frank                 | 05/21/19 13:00                     | 05/23/19 08:                | 00             |
| Method                                     | Batch       | Dilution | Preparation                    | Analysis                           | Analyst                     | Location       |
|                                            |             |          | date/time                      | date/time                          |                             |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1287261   | 1        | 05/28/19 19:21                 | 05/28/19 19:50                     | MMF                         | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1287703   | 1        | 05/30/19 18:48                 | 05/30/19 18:48                     | MCG                         | Mt. Juliet, TN |
| Mat Chamistry by Mathad OOFCA              | 11101007700 | Ε0       | 05/20/40 10:50                 | 05/20/40 40.50                     | MCC                         | MA Lulina TNI  |
| Wet Chemistry by Method 9056A              | WG1287703   | 50       | 05/30/19 18:59                 | 05/30/19 18:59                     | MCG                         | Mt. Juliet, TN |



















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been

knowingly withheld that would affect the quality of the data.

Ss













Jason Romer Project Manager

### SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 13:00

L1102009

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2460000 |           | 50000 | 1        | 05/28/2019 19:50 | WG1287261 |

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 76000   |           | 1000   | 1        | 05/30/2019 18:04 | WG1287703 |
| Fluoride | 108     |           | 100    | 1        | 05/30/2019 18:04 | WG1287703 |
| Sulfate  | 2130000 |           | 250000 | 50       | 05/30/2019 18:37 | WG1287703 |





### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 05/25/2019 00:05 | WG1286047 |
| Calcium | 357000 |           | 1000 | 1        | 05/25/2019 00:05 | WG1286047 |





Gl



### SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/19 13:00

L1102009

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result Qualifier |  | RDL   | Dilution | Analysis         | Batch     |
|------------------|------------------|--|-------|----------|------------------|-----------|
| Analyte          | ug/l             |  | ug/l  |          | date / time      |           |
| Dissolved Solids | 2920000          |  | 50000 | 1        | 05/28/2019 19:50 | WG1287261 |

## <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 77400   |           | 1000   | 1        | 05/30/2019 18:48 | WG1287703 |
| Fluoride | 116     |           | 100    | 1        | 05/30/2019 18:48 | WG1287703 |
| Sulfate  | 1790000 |           | 250000 | 50       | 05/30/2019 18:59 | WG1287703 |



Cn

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 05/24/2019 22:53 | WG1286047    |
| Calcium | 359000 | V         | 1000 | 1        | 05/24/2019 22:53 | WG1286047    |











ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1102009-01,02

#### Method Blank (MB)

| (MB) R3416327-1 05/28/19 | 19:50     |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |
| Dissolved Solids         | U         |              | 2820   | 10000  |









(OS) L1099549-23 05/28/19 19:50 • (DUP) R3416327-3 05/28/19 19:50

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 480000          | 520000     | 1        | 8.00    | J3            | 5                 |









(LCS) R3416327-2 05/28/19 19:50

| , ,              | Spike Amount LCS Res | Result LCS Rec. | Rec. Limits |
|------------------|----------------------|-----------------|-------------|
| Analyte          | ug/l ug/l            | %               | %           |
| Dissolved Solids | 8800000 872000       | 0000 99.1       | 85.0-115    |





PAGE:

7 of 13

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1102009-01,02

#### Method Blank (MB)

| (MB) R3416506-1 05/30 | /19 12:44 |              |        |        |
|-----------------------|-----------|--------------|--------|--------|
|                       | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte               | ug/l      |              | ug/l   | ug/l   |
| Chloride              | U         |              | 51.9   | 1000   |
| Fluoride              | U         |              | 9.90   | 100    |
| Sulfate               | U         |              | 77.4   | 5000   |







#### L1101801-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1101801-03 05/30/19 14:16 • (DUP) R3416506-3 05/30/19 14:27

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 39300           | 39200      | 1        | 0.249   |               | 15                |
| Fluoride | 638             | 642        | 1        | 0.641   |               | 15                |
| Sulfate  | 32600           | 32800      | 1        | 0.864   |               | 15                |









### L1101857-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1101857-05 05/30/19 17:42 • (DUP) R3416506-5 05/30/19 17:53

| (03) [1101837-03 03/30/1 | 3 17.42 • (DOF) | K3410300-3 | 03/30/13 1 | 7.55    |               |                   |
|--------------------------|-----------------|------------|------------|---------|---------------|-------------------|
|                          | Original Result | DUP Result | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | ug/l            | ug/l       |            | %       |               | %                 |
| Chloride                 | 1810            | 1790       | 1          | 1.05    |               | 15                |
| Fluoride                 | ND              | 72.7       | 1          | 1.64    | <u>J</u>      | 15                |
| Sulfate                  | ND              | 1730       | 1          | 3.77    | J             | 15                |

## <sup>9</sup>Sc

#### Laboratory Control Sample (LCS)

(LCS) R3416506-2 05/30/19 12:54

| (LCS) R3416506-2 05/30 | _CS) R3410500-2 |            |          |             |               |  |  |  |  |  |  |  |
|------------------------|-----------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                        | Spike Amount    | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                | ug/l            | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Chloride               | 40000           | 40800      | 102      | 80.0-120    |               |  |  |  |  |  |  |  |
| Fluoride               | 8000            | 8710       | 109      | 80.0-120    |               |  |  |  |  |  |  |  |
| Sulfate                | 40000           | 41400      | 103      | 80.0-120    |               |  |  |  |  |  |  |  |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1102009-01,02

#### L1101801-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1101801-03 05/30/19 14:16 • (MS) R3416506-4 05/30/19 14:37

| (03) [1101001 03 03/30/1 | 3 14.10 · (IVIS) 133 | J-10000 + 00/   | 30/13 17.37 |         |          |             | (00) E1101001 03 03/30/13 14.10 - (1110) 103/00 4 03/30/13 14.37 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------|----------------------|-----------------|-------------|---------|----------|-------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|                          | Spike Amount         | Original Result | MS Result   | MS Rec. | Dilution | Rec. Limits | MS Qualifier                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Analyte                  | ug/l                 | ug/l            | ug/l        | %       |          | %           |                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chloride                 | 50000                | 39300           | 88800       | 98.9    | 1        | 80.0-120    |                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fluoride                 | 5000                 | 638             | 5460        | 96.5    | 1        | 80.0-120    |                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sulfate                  | 50000                | 32600           | 84000       | 103     | 1        | 80 0-120    |                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |









#### L1102009-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSUL1102009-01\_05/30/19 18:04 - /MSD P3/16506-6\_05/30/19 18:15 - /MSD) P3/16506-7\_05/30/19 18:26

| (O3) L1102009-01 03/30 | 0/19 16.04 • (IVIS) | K3410300-0 0    | 3/30/19 10.13 | (INIOD) KO4100 | 00-7 03/30/1 | 9 10.20  |          |             |              |               |      |            |
|------------------------|---------------------|-----------------|---------------|----------------|--------------|----------|----------|-------------|--------------|---------------|------|------------|
|                        | Spike Amount        | Original Result | MS Result     | MSD Result     | MS Rec.      | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                | ug/l                | ug/l            | ug/l          | ug/l           | %            | %        |          | %           |              |               | %    | %          |
| Chloride               | 50000               | 76000           | 124000        | 127000         | 95.9         | 101      | 1        | 80.0-120    | E            | <u>E</u>      | 2.09 | 15         |
| Fluoride               | 5000                | 108             | 4840          | 5010           | 94.7         | 98.1     | 1        | 80.0-120    |              |               | 3.47 | 15         |
| Sulfate                | 50000               | 1600000         | 1610000       | 1630000        | 36.0         | 74.0     | 1        | 80.0-120    | ΕV           | ΕV            | 1.17 | 15         |















ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1102009-01,02

#### Method Blank (MB)

|         | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |
|---------|-----------|--------------|--------|--------|--|--|--|
| Analyte | ug/l      |              | ug/l   | ug/l   |  |  |  |
| Boron   | U         |              | 12.6   | 200    |  |  |  |
| Calcium | H         |              | 16.3   | 1000   |  |  |  |







#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3414885-2 05/24/19 22:48 • (LCSD) R3414885-3 05/24/19 22:51 |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

| ( 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, | Spike Amount | •    |      | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|-------------------------------------------|--------------|------|------|----------|-----------|-------------|---------------|----------------|-------|------------|
| Analyte                                   | ug/l         | ug/l | ug/l | %        | %         | %           |               |                | %     | %          |
| Boron                                     | 1000         | 949  | 974  | 94.9     | 97.4      | 80.0-120    |               |                | 2.53  | 20         |
| Calcium                                   | 10000        | 9860 | 9910 | 98.6     | 99.1      | 80.0-120    |               |                | 0.494 | 20         |







#### L1102009-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1102009 02 05/24/19 22:53 - (MS) P3414885 5 05/24/19 22:59 - (MSD) P3414885 6 05/24/19 23:02

| (OS) L1102009-02 05/24/19 | JS) L1102009-02 05/24/19 22:53 • (MS) R3414885-5 05/24/19 22:59 • (MSD) R3414885-6 05/24/19 23:02 |                 |           |            |         |          |          |             |              |               |       |            |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|--|
|                           | Spike Amount                                                                                      | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |  |
| Analyte                   | ug/l                                                                                              | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |  |
| Boron                     | 1000                                                                                              | ND              | 1040      | 1070       | 95.1    | 98.0     | 1        | 75.0-125    |              |               | 2.72  | 20         |  |  |
| Calcium                   | 10000                                                                                             | 359000          | 358000    | 360000     | 0.000   | 7 21     | 1        | 75 O-125    | \/           | \/            | 0.532 | 20         |  |  |





### **GLOSSARY OF TERMS**

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

#### Abbreviations and Definitions

| Appleviations and               | a Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description |
|-----------|-------------|
|-----------|-------------|

| E  | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| J  | The identification of the analyte is acceptable; the reported value is an estimate.                                                         |
| J3 | The associated batch QC was outside the established quality control range for precision.                                                    |
| V  | The sample concentration is too high to evaluate accurate spike recoveries.                                                                 |









Ss













PAGE:

11 of 13

#### **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| Iowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |
|--------------------|---------|
| A2LA - ISO 17025 5 | 1461.02 |
| Canada             | 1461.01 |
| EPA-Crypto         | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















|                                                                                           |                                                                                                                                                               |                                 | Billing Information:                                                                                                    |                              |                    |                  | Analysis / Container / Preservative |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         | al Artista                                   | Chain of Custody Page of                                                  |                                                             |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|--|
| SCS Engineers - KS  8575 W. 110th Street Overland Park, KS 66210  Report to: Jason Franks |                                                                                                                                                               |                                 | Accounts Payable 8575 W. 110th Street Overland Park, KS 66210  Email To: jfranks@scsengineers.com; jay.martin@kcpl.com; |                              |                    |                  |                                     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1                                                |                                              | National Ce                                                               | inter for Testing & Innov                                   |  |
|                                                                                           |                                                                                                                                                               |                                 |                                                                                                                         |                              |                    |                  | res                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  | Han a series of the series of |                                                                                         |                                              |                                                                           | 12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 |  |
| Project Description: KCPL - Montrose Generating Station                                   |                                                                                                                                                               |                                 | City/State Collected: MONTROSE                                                                                          |                              |                    |                  | E-NoF                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              | Phone: 800-767-585<br>Fax: 615-758-5859                                   | Phone: 800-767-5859<br>Fax: 615-758-5859                    |  |
| Phone: 913-681-0030   Client Project # 27213168.19                                        |                                                                                                                                                               | Lab Project # AQUAOPKS-MONTROSE |                                                                                                                         |                              |                    | 125mIHDPE-NoPres | 250mlHDPE-HNO3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              | F119                                                                      |                                                             |  |
| TASON R. Ferrus                                                                           | Site/Facility ID                                                                                                                                              | )#                              |                                                                                                                         | P.O. #                       |                    |                  | 504) 12                             | mIHDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E-NoPres   | Market 2           |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           | Acctnum: AQUAOPKS                                           |  |
| Collected by (signature):                                                                 | Rush?         (Lab MUST Be Notified)          Same Day         Five Day          Next Day         5 Day (Rad Only)          Two Day         10 Day (Rad Only) |                                 |                                                                                                                         | Quote #  Date Results Needed |                    |                  | Anions (Cld, F, SC                  | 6010 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250mlHDPE- |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              | Template: <b>T13</b> Prelogin: <b>P70</b> TSR: <b>206</b> - <b>Jeff</b> ( | 9142                                                        |  |
| Packed on Ice NY                                                                          | Three Day                                                                                                                                                     |                                 | T                                                                                                                       | T                            |                    | of               | suc                                 | Ca - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              | PB:<br>Shipped Via:                                                       |                                                             |  |
| Sample ID                                                                                 | Comp/Grab                                                                                                                                                     | Matrix *                        | Depth                                                                                                                   | Date                         | Time               | Cntrs            | Anic                                | В, С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TDS        |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              | Remarks                                                                   | Sample # (lab on                                            |  |
| MW-506                                                                                    | GRAG                                                                                                                                                          | GW                              | -                                                                                                                       | 5/4/                         | 19 1300            | 3                | X                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           | -01                                                         |  |
| MW-506 MS/MSD                                                                             | 1                                                                                                                                                             | GW                              | -                                                                                                                       | i                            | 1310               | 3                | X                                   | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           | -01                                                         |  |
| DUPLICATE                                                                                 | 1                                                                                                                                                             | GW                              | -                                                                                                                       | 1                            | 1300               | 3                | Х                                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X          |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           | -02                                                         |  |
|                                                                                           |                                                                                                                                                               |                                 |                                                                                                                         |                              |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - A 1                                                                                   |                                              | 70 PRO 62                                                                 |                                                             |  |
|                                                                                           |                                                                                                                                                               |                                 |                                                                                                                         |                              |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           |                                                             |  |
|                                                                                           |                                                                                                                                                               |                                 |                                                                                                                         |                              |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           |                                                             |  |
|                                                                                           |                                                                                                                                                               |                                 |                                                                                                                         | 777                          |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           |                                                             |  |
|                                                                                           | i i                                                                                                                                                           |                                 |                                                                                                                         |                              |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           |                                                             |  |
| Matrix: SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater      | Remarks:                                                                                                                                                      |                                 |                                                                                                                         |                              |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH Temp    |                    |  | Sample Receipt Checklist  COC Seal Present/Intact: NP Y N  COC Signed/Accurate: Y N  Bottles arrive intact: Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                              |                                                                           |                                                             |  |
| DW - Drinking Water OT - Other                                                            | Samples returned via:UPSFedExCourier                                                                                                                          |                                 |                                                                                                                         | 1 Tracking #                 |                    |                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Flow Other         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correct bottles used: Sufficient volume sent:  If Applicable  VOA Zero Headspace:  Y. N |                                              |                                                                           |                                                             |  |
| Relinguished by: (Signature)  Date:  Relinquished by: (Signature)  Date:  5/2:            |                                                                                                                                                               | Date:   5/22                    | /19                                                                                                                     | rime:<br>1130                | Received by: (Sign | nature)          |                                     | A STATE OF THE STA |            | Trip Blanl         |  | TBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L/MeoH                                                                                  | Preservation Correct/Checked:                |                                                                           |                                                             |  |
|                                                                                           |                                                                                                                                                               | Date: /                         | 119                                                                                                                     | 1760                         | Received by: (Sign | nature)          | 0.2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received:                                                                               | If preservation required by Login: Date/Time |                                                                           |                                                             |  |
| Relinquished by : (Signature)                                                             |                                                                                                                                                               | Date:                           | 1                                                                                                                       | Γime:                        | Received for lab b |                  | pature)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Date: 5/23/19 0800 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hold:                                                                                   |                                              | Condition:                                                                |                                                             |  |

# ATTACHMENT 1-4 July 2019 Sampling Event Laboratory Report



## ANALYTICAL REPORT

July 24, 2019

Sample Delivery Group: L1118897

**SCS Engineers - KS** 

Samples Received: 07/16/2019

Project Number: 27213168.18

Description: KCPL - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Entire Report Reviewed By:

Jeff Carr

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Price Analytical National is performed per guidance provided in laboratory standard operating procedures EM-SOP-MT IL-0067 and EN-SOP-MT IL-00

















19



| Cp: Cover Page                             | 1  |  |  |  |  |  |  |
|--------------------------------------------|----|--|--|--|--|--|--|
| Tc: Table of Contents                      | 2  |  |  |  |  |  |  |
| Ss: Sample Summary                         | 3  |  |  |  |  |  |  |
| Cn: Case Narrative                         | 4  |  |  |  |  |  |  |
| Sr: Sample Results                         | 5  |  |  |  |  |  |  |
| MW-601 L1118897-01                         | 5  |  |  |  |  |  |  |
| MW-603 L1118897-02                         | 6  |  |  |  |  |  |  |
| MW-604 L1118897-03                         | 7  |  |  |  |  |  |  |
| DUPLCATE 1 L1118897-04                     | 8  |  |  |  |  |  |  |
| MW-605 L1118897-05                         | 9  |  |  |  |  |  |  |
| MW-706 L1118897-06                         | 10 |  |  |  |  |  |  |
| DUPLICATE 2 L1118897-07                    | 11 |  |  |  |  |  |  |
| Qc: Quality Control Summary                | 12 |  |  |  |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | 12 |  |  |  |  |  |  |
| Wet Chemistry by Method 9056A              | 13 |  |  |  |  |  |  |
| Metals (ICP) by Method 6010B               | 16 |  |  |  |  |  |  |
| GI: Glossary of Terms                      |    |  |  |  |  |  |  |
| Al: Accreditations & Locations             |    |  |  |  |  |  |  |
|                                            |    |  |  |  |  |  |  |

Sc: Sample Chain of Custody





















#### SAMPLE SUMMARY

| ONE | $I \land R$ | NIAT | $M = M \cap M$ | וחו/ |
|-----|-------------|------|----------------|------|
|     |             |      |                |      |

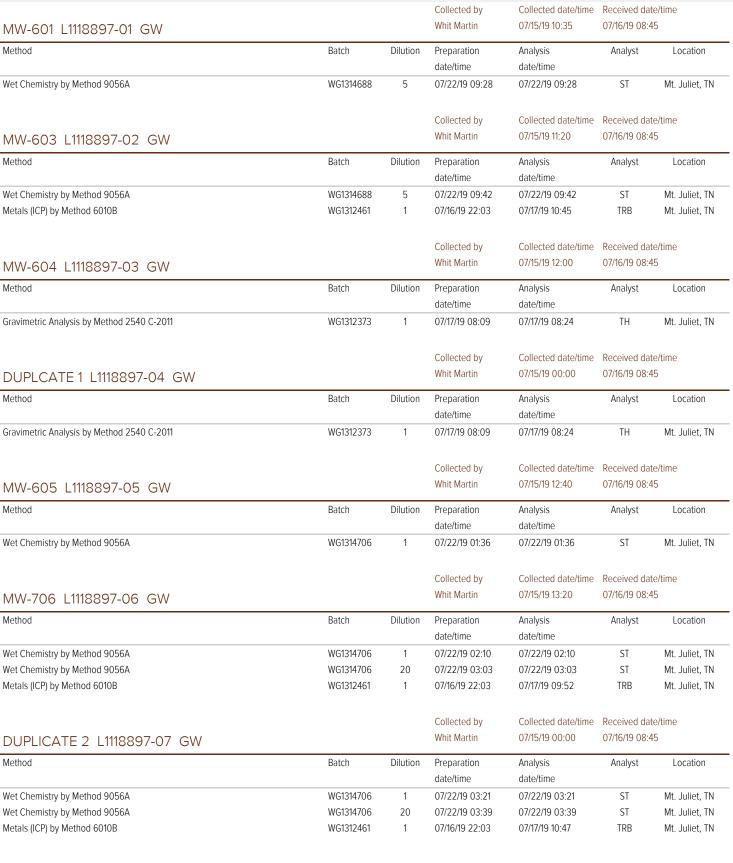
|   |       |          | Collected by<br>Whit Martin | Collected date/time<br>07/15/19 10:35 | Received date/tir<br>07/16/19 08:45 | me       | 1 |
|---|-------|----------|-----------------------------|---------------------------------------|-------------------------------------|----------|---|
| [ | Batch | Dilution | Preparation                 | Analysis                              | Analyst                             | Location | L |






















. 🐙

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ср

















Project Manager

Jeff Carr

Wubb law

MW-601

#### SAMPLE RESULTS - 01 L1118897

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

Collected date/time: 07/15/19 10:35

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |  |
| Chloride | 56500  |           | 5000 | 5        | 07/22/2019 09:28 | WG1314688 |  |



















Analyte

Boron

#### SAMPLE RESULTS - 02 L1118897

ONE LAB. NATIONWIDE.

Collected date/time: 07/15/19 11:20

ug/l

6490

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |  |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|--|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           |  |  |  |
| Chloride                      | 8750   |           | 5000 | 5        | 07/22/2019 09:42 | WG1314688 |  |  |  |

ug/l

200







date / time

07/17/2019 10:45

WG1312461



Ss















MW-604

### SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 07/15/19 12:00

L1118897

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |  |
|------------------|---------|-----------|-------|----------|------------------|-----------|--|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |  |
| Dissolved Solids | 2680000 |           | 50000 | 1        | 07/17/2019 08:24 | WG1312373 |  |



















**DUPLCATE 1** 

### SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 07/15/19 00:00

L1118897

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2660000 |           | 50000 | 1        | 07/17/2019 08:24 | WG1312373 |



















MW-605

### SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 07/15/19 12:40

L1118897

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |  |
| Chloride | 57800  |           | 1000 | 1        | 07/22/2019 01:36 | WG1314706 |  |













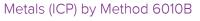






### SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.


Collected date/time: 07/15/19 13:20

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 29900   |           | 1000   | 1        | 07/22/2019 02:10 | WG1314706 |
| Sulfate  | 1150000 |           | 100000 | 20       | 07/22/2019 03:03 | WG1314706 |







|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 234    |           | 200  | 1        | 07/17/2019 09:52 | WG1312461 |















## SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

S - U/

### Wet Chemistry by Method 9056A

Collected date/time: 07/15/19 00:00

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 29900   |           | 1000   | 1        | 07/22/2019 03:21 | WG1314706 |
| Sulfate  | 1160000 |           | 100000 | 20       | 07/22/2019 03:39 | WG1314706 |

## Ср





#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 245    |           | 200  | 1        | 07/17/2019 10:47 | WG1312461 |













ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1118897-03,04

#### Method Blank (MB)

(MB) R3432060-1 07/17/19 08:24 MB Result MB MDL MB RDL MB Qualifier Analyte ug/l ug/l ug/l Dissolved Solids 11000 2820 10000









(OS) L1118897-04 07/17/19 08:24 • (DUP) R3432060-3 07/17/19 08:24

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 2660000         | 2640000    | 1        | 0.756   |               | 5                 |

# <sup>†</sup>Cn







(LCS) R3432060-2 07/17/19 08:24





ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118897-01,02

#### Method Blank (MB)

| (MB) R3432969-1 07/21/19 | 21:20     |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |
| Chloride                 | U         |              | 51.9   | 1000   |





## Ss

#### L1118662-01 Original Sample (OS) • Duplicate (DUP)

|     | (00) | 1 1110000 01 | 07/22/10 00:21   | /DI ID | ND24220C0 2  | 07/22/10 00:25 |
|-----|------|--------------|------------------|--------|--------------|----------------|
| - 1 | (US) | L1118662-U1  | 07/22/19 00:21 • | (DUP   | ) R3432969-3 | 07/22/19 00:35 |

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 56200           | 56100      | 1        | 0.264   |               | 15                |



<sup>†</sup>Cn



#### L1118867-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1118867-01 07/22/19 06:49 • (DUP) R3432969-5 07/22/19 07:04

| ,        | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 17700           | 17800      | 1        | 0.716   |               | 15                |





#### Laboratory Control Sample (LCS)

| (LCS) R3432969-2 | 07/21/19 21:34 |
|------------------|----------------|
|------------------|----------------|

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | ug/l         | ug/l       | %        | %           |               |
| Chloride | 40000        | 39800      | 99.6     | 80.0-120    |               |

### Sc

#### L1118662-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1118662-01 07/22/19 00:21 • (MS) R3432969-4 07/22/19 00:49

|          | Spike Amount | Original Result | t MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
|----------|--------------|-----------------|-------------|---------|----------|-------------|--------------|
| Analyte  | ug/l         | ug/l            | ug/l        | %       |          | %           |              |
| Chloride | 50000        | 56200           | 105000      | 97.0    | 1        | 80.0-120    | Е            |

## L1118896-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1118896-07 07/22/19 08:45 • (MS) R3432969-6 07/22/19 08:59 • (MSD) R3432969-7 07/22/19 09:14  Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits  Analyte ug/l ug/l ug/l wg/l % % % |              |                 |           |            |         |          |          |             |              |               |       |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                                                                                                                                                                                          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                                                                                                                                                                                                  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride                                                                                                                                                                                                                                                                 | 50000        | 70900           | 118000    | 119000     | 94.6    | 96.4     | 1        | 80.0-120    | E            | E             | 0.722 | 15         |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118897-05,06,07

#### Method Blank (MB)

| (MB) R3432978-1 07/21/1 | 9 22:01   |              |               |        |
|-------------------------|-----------|--------------|---------------|--------|
|                         | MB Result | MB Qualifier | MB MDL        | MB RDL |
| Analyte                 | ug/l      |              | ug/l          | ug/l   |
| Chloride                | U         |              | 51.9          | 1000   |
| Sulfato                 | 11        |              | 77 <i>/</i> l | 5000   |







#### L1118897-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1118897-05 07/22/19 01:36 • (DUP) R3432978-3 07/22/19 01:53

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 57800           | 57500      | 1        | 0.448   |               | 15                |
| Sulfate  | ND              | 0.000      | 1        | 0.000   |               | 15                |











(OS) L1119208-01 07/22/19 08:38 • (DUP) R3432978-6 07/22/19 08:56

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 5850            | 5780       | 1        | 1.21    |               | 15                |
| Sulfate  | 23100           | 24300      | 1        | 4.98    |               | 15                |







#### Laboratory Control Sample (LCS)

(I CS) P3/132978-2 07/21/19 22:19

| (LC3) R3432976-2 07/21/19 22.19 |              |            |          |             |               |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |
| Chloride                        | 40000        | 40000      | 100      | 80.0-120    |               |  |
| Sulfate                         | 40000        | 39000      | 97.4     | 80.0-120    |               |  |

#### L1118897-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1118897 06 07/22/19 02:10 - (MS) P3/32978 4 07/22/19 02:28 - (MSD) P3/32978 5 07/22/19 02:46

| (OS) ET10037-00 07/22/13 02:10 • (NS) K3432376-4 07/22/13 02:20 • (NSD) K3432376-3 07/22/13 02:40 |              |                 |           |            |         |          |          |             |              |               |       |            |
|---------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                   | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride                                                                                          | 50000        | 29900           | 80600     | 81000      | 101     | 102      | 1        | 80.0-120    |              |               | 0.524 | 15         |
| Sulfate                                                                                           | 50000        | 1130000         | 1110000   | 1110000    | 0.000   | 0.000    | 1        | 80.0-120    | EV           | EV            | 0.276 | 15         |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118897-05,06,07

#### L1119208-01 Original Sample (OS) • Matrix Spike (MS)

| (OC) 1 1110 2 0 0 0 1 | 07/22/40 00:20 | <ul> <li>(MS) R3432978-7</li> </ul> | 07/22/10 00:12 |
|-----------------------|----------------|-------------------------------------|----------------|
| 105111119708-01       | U/////// U8:38 | • IIVINI R 3437978-7                | 07/77/19 0913  |

|          | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
|----------|--------------|-----------------|-----------|---------|----------|-------------|--------------|
| Analyte  | ug/l         | ug/l            | ug/l      | %       |          | %           |              |
| Chloride | 50000        | 5850            | 55600     | 99.4    | 1        | 80.0-120    |              |
| Sulfate  | 50000        | 23100           | 70900     | 95.6    | 1        | 80.0-120    |              |

















#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1118897-02,06,07

#### Method Blank (MB)

| (MB) R3431497-1 07/17/1 | 9 09:44   |              |        |        |
|-------------------------|-----------|--------------|--------|--------|
|                         | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                 | ug/l      |              | ug/l   | ug/l   |
| Boron                   | U         |              | 12.6   | 200    |



<sup>2</sup>Tc





| (LCS) R3431497-2 | 07/17/19 09:47 • (LC | CSD) R3431497-3 | 07/17/19 09:49 |          |
|------------------|----------------------|-----------------|----------------|----------|
|                  | Spike Amou           | unt LCS Result  | LCSD Result    | LCS Rec. |

| Analyte | ug/l | ug/l | ug/l | %   | %   | %        | %     |  |
|---------|------|------|------|-----|-----|----------|-------|--|
| Boron   | 1000 | 1000 | 1010 | 100 | 101 | 80.0-120 | 0.339 |  |

LCSD Rec.







GI



(OS) L1118897-06 07/17/19 09:52 • (MS) R3431497-5 07/17/19 09:57 • (MSD) R3431497-6 07/17/19 09:59

| ,       | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |  |
| Boron   | 1000         | 234             | 1270      | 1250       | 104     | 102      | 1        | 75 0-125    |              |               | 2 03 | 20         |  |

Rec. Limits

LCS Qualifier

LCSD Qualifier RPD

RPD Limits % 20







#### **GLOSSARY OF TERMS**





The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| Abbic viations and              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description |
|-----------|-------------|
|           |             |

| Е  | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| \/ | The sample concentration is too high to evaluate accurate spike recoveries                                                                  |

















#### **ACCREDITATIONS & LOCATIONS**





#### State Accreditations

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| Iowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | 90010       |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana <sup>1</sup>  | LA180010    |
| Maine                   | TN0002      |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |
|                         |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina 1            | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 |
|-------------------------------|---------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 |
| Canada                        | 1461.01 |
| EPA-Crypto                    | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















| Billing Information:                                                                                           |                                 |                                 | H                                                                   | Analysis / Container / Preservative |                                               |                    |                                                                                                       |                 |                         |                  |            | Chain of Custody                                                                                      | Page of        |                  |                                                                                                                    |              |                                                               |                      |  |  |  |  |                                                             |  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|-----------------|-------------------------|------------------|------------|-------------------------------------------------------------------------------------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------|----------------------|--|--|--|--|-------------------------------------------------------------|--|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                                          |                                 |                                 | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                                     | W. 110th Street                               |                    |                                                                                                       |                 |                         |                  |            |                                                                                                       |                |                  |                                                                                                                    | Netional Cer | nter for Testing & Innovation                                 |                      |  |  |  |  |                                                             |  |
| Report to:<br>Jason Franks                                                                                     |                                 |                                 | jay.martin                                                          | franks@sc<br>@kcpl.cor              | 100 Par 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ers.com;           |                                                                                                       |                 |                         |                  |            |                                                                                                       |                |                  |                                                                                                                    |              | 12065 Lebanon Rd<br>Mount Juliet, TN 371                      |                      |  |  |  |  |                                                             |  |
| Project Description: KCPL - Montrose G                                                                         | enerating Sta                   | tion                            | 1:                                                                  | City/Sta<br>Collecte                | te                                            | ntrose. M          | 21                                                                                                    | G 3             |                         | res              |            |                                                                                                       |                |                  |                                                                                                                    |              | Phone: 615-758-585<br>Phone: 800-767-585<br>Fax: 615-758-5859 |                      |  |  |  |  |                                                             |  |
| Phone: <b>913-681-0030</b><br>Fax: <b>913-681-0012</b>                                                         | Client Project <b>27213168.</b> |                                 |                                                                     | Lab Proj<br>AQUA                    | ect#                                          | MONTROSE           |                                                                                                       | 250mIHDPE-HNO3  | oPres                   | 125mlHDPE-NoPres | s          |                                                                                                       |                |                  |                                                                                                                    |              | L# L  <br>J172                                                | 18897                |  |  |  |  |                                                             |  |
| Collected by (print): Whit Martin                                                                              | Site/Facility IC                | )#                              |                                                                     | P.O. #                              | *                                             |                    |                                                                                                       | MIHDI           | MIHDPE-No<br>4 125mIHDF |                  |            |                                                                                                       |                |                  | Acctnum: AQUAOPKS                                                                                                  |              |                                                               |                      |  |  |  |  |                                                             |  |
| Collected by (signature):  Immediately Packed on Ice N Y X                                                     |                                 | y 10 Da                         |                                                                     | Quote #  Date Results Needed  Std   |                                               | Date Res           |                                                                                                       | ad Only) Date R |                         | d Only) Date R   |            |                                                                                                       |                | - 6010           | e 125                                                                                                              | 504          | 250mlHDPE-NoPr                                                | Suminure             |  |  |  |  | Template:T144749 Prelogin: P719349 TSR: 206 - Jeff Carr PB: |  |
| Sample ID                                                                                                      | Comp/Grab                       | Matrix *                        | Depth                                                               | Da                                  | ate                                           | Time               | Cntrs                                                                                                 | Boron           | Chlorid                 | Chloride,        | TDS        |                                                                                                       | 36             |                  |                                                                                                                    |              | Shipped Via:                                                  | Sample # (lab only)  |  |  |  |  |                                                             |  |
| MW-601                                                                                                         | Grab                            | GW                              |                                                                     | 7/19                                | /19                                           | 1035               | 1                                                                                                     | - B             | X                       | 0                |            |                                                                                                       |                |                  | - <del></del> - <del>-</del> - <del>-</del> - <del>-</del> -                                                       |              |                                                               | -01                  |  |  |  |  |                                                             |  |
| MW-603                                                                                                         | Grab                            | GW                              |                                                                     | 7/19                                | 5/19                                          | 1120               | 2                                                                                                     | Х               | Х                       |                  |            |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 02                   |  |  |  |  |                                                             |  |
| MW-604                                                                                                         | Grah                            | GW                              |                                                                     | 7/19                                | 119                                           | 1200               | 1                                                                                                     |                 | 7.5                     |                  | X          |                                                                                                       | <u> </u>       |                  |                                                                                                                    |              | # # 1 mm m m m m m m m m m m m m m m m m                      | 03                   |  |  |  |  |                                                             |  |
| DUPLICATE 1                                                                                                    | Grab                            | GW                              |                                                                     | 7/19                                | 119                                           |                    | 1                                                                                                     |                 | 4                       |                  | X          |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 04                   |  |  |  |  |                                                             |  |
| MW-605                                                                                                         | Grab                            | GW                              |                                                                     | 7/10                                | 5/19                                          | 1240               | 1                                                                                                     |                 | Х                       |                  |            |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 05                   |  |  |  |  |                                                             |  |
| MW-706                                                                                                         | Grab                            | GW                              |                                                                     | 7/19                                | /19                                           | 1320               | 2                                                                                                     | X               |                         | X                |            |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 06                   |  |  |  |  |                                                             |  |
| MW-706 MS / MSD                                                                                                | Grah                            | GW                              |                                                                     | 7/19                                | 119                                           | 1325               | 2                                                                                                     | X               |                         | Х                |            | 7-                                                                                                    |                |                  |                                                                                                                    |              |                                                               | 06                   |  |  |  |  |                                                             |  |
| DUPLICATE 2                                                                                                    | Grah                            | GW                              |                                                                     | 7/19                                | 5/19                                          | _ `                | 2                                                                                                     | X               |                         | X                |            |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 07                   |  |  |  |  |                                                             |  |
| MW-604 MS/MSD                                                                                                  | Grab                            | GW                              |                                                                     | 7/15                                | 119                                           | 1205               | 1                                                                                                     | 3.              |                         |                  | X          |                                                                                                       |                |                  |                                                                                                                    |              |                                                               | 03                   |  |  |  |  |                                                             |  |
| * Matrix:  SS - Soil AIR - Air F - Filter  GW - Groundwater B - Bioassay  WW - WasteWater  DW - Drinking Water | Remarks:                        | Remarks:  Samples returned via: |                                                                     |                                     |                                               |                    | pH         Temp         COC Seal           COC Sign         Bottles           Correct         Correct |                 |                         |                  | gned/i     | ample Receipt Checklist Present/Intact: NP Y N led/Accurate: N N arrive intact: N N bottles used: N N |                |                  |                                                                                                                    |              |                                                               |                      |  |  |  |  |                                                             |  |
| OT - Other Samples returned via:  UPS FedExCourier  Relinquished by : (Signature)  Date:                       |                                 |                                 | Tracking # 4794  Received by: (Signature)                           |                                     |                                               | 11                 | 883                                                                                                   | 8839 24         |                         |                  | Received:  | HCL/                                                                                                  |                | VOA Ze<br>Preser | Sufficient volume sent:  If Applicable  YOA Zero Headspace:  Preservation Correct/Checked:  RAD SCREEN: <0.5 mR/hr |              |                                                               |                      |  |  |  |  |                                                             |  |
| Relinquished by : (Signature)                                                                                  | rel                             | Date:                           | 119                                                                 | Time: /800                          |                                               | ceived by: (Signa  | ature)                                                                                                | He              | W.                      |                  | Temp: #1   | 101 C                                                                                                 | TBR ottles Rec | eived:           | If preser                                                                                                          | rvation      | required by Lo                                                | gin: Date/Time       |  |  |  |  |                                                             |  |
| Relinquished by : (Signature)                                                                                  |                                 | Date:                           |                                                                     | Time:                               | -                                             | eceived for lab by | CSigna                                                                                                | ature)          |                         |                  | Date: 7/16 |                                                                                                       | ime:<br>0845   |                  | Hold:                                                                                                              |              |                                                               | Condition:<br>NCF OK |  |  |  |  |                                                             |  |

# ATTACHMENT 1-5 August 2019 Sampling Event Laboratory Report



### ANALYTICAL REPORT

August 28, 2019

#### SCS Engineers - KS

Sample Delivery Group: L1131383

Samples Received: 08/21/2019

Project Number: 27213168.18

Description: KCPL - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by PAIC.

Analytical National is performed per guidance provided in laboratory standed operating procedures ENV-SOPATIL-1067 and ENV-SOPATIL-1068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

<sup>2</sup>T -

















| Cp: Cover Page                 | 1  |
|--------------------------------|----|
| Tc: Table of Contents          | 2  |
| Ss: Sample Summary             | 3  |
| Cn: Case Narrative             | 4  |
| Sr: Sample Results             | 5  |
| MW-601 L1131383-01             | 5  |
| MW-603 L1131383-02             | 6  |
| MW-605 L1131383-03             | 7  |
| DUPLICATE L1131383-04          | 8  |
| Qc: Quality Control Summary    | 9  |
| Wet Chemistry by Method 9056A  | 9  |
| GI: Glossary of Terms          | 11 |
| Al: Accreditations & Locations | 12 |
| Sc: Sample Chain of Custody    | 13 |























|                               |           |          | Collected by   | Collected date/time | Received da  | ite/time       |
|-------------------------------|-----------|----------|----------------|---------------------|--------------|----------------|
| MW-601 L1131383-01 GW         |           |          | Whit Martin    | 08/19/19 12:20      | 08/21/19 08: | 45             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1332945 | 1        | 08/22/19 17:21 | 08/22/19 17:21      | ST           | Mt. Juliet, TN |
|                               |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| MW-603 L1131383-02 GW         |           |          | Whit Martin    | 08/19/19 13:00      | 08/21/19 08: | 45             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1332945 | 1        | 08/22/19 17:38 | 08/22/19 17:38      | ST           | Mt. Juliet, TN |
|                               |           |          | Collected by   | Collected date/time | Received da  | ite/time       |
| MW-605 L1131383-03 GW         |           |          | Whit Martin    | 08/19/19 13:30      | 08/21/19 08: | 45             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1332945 | 1        | 08/22/19 17:54 | 08/22/19 17:54      | ST           | Mt. Juliet, TN |
|                               |           |          | Collected by   | Collected date/time | Received da  | ite/time       |
| DUPLICATE L1131383-04 GW      |           |          | Whit Martin    | 08/19/19 13:30      | 08/21/19 08: | 45             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1332945 | 1        | 08/22/19 18:43 | 08/22/19 18:43      | ST           | Mt. Juliet, TN |



















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.















Jason Romer Project Manager MW-601

### SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

¥

Collected date/time: 08/19/19 12:20

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 54500  |           | 1000 | 1        | 08/22/2019 17:21 | WG1332945 |



















ONE LAB. NATIONWIDE.

Collected date/time: 08/19/19 13:00

L1131383

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |  |
| Chloride | 6540   |           | 1000 | 1        | 08/22/2019 17:38 | WG1332945 |  |



















MW-605

### SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 08/19/19 13:30

Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |  |
| Chloride | 57900  |           | 1000 | 1        | 08/22/2019 17:54 | WG1332945 |  |



















**DUPLICATE** 

## SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

\*

Wet Chemistry by Method 9056A

Collected date/time: 08/19/19 13:30

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 57900  |           | 1000 | 1        | 08/22/2019 18:43 | WG1332945 |



















#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1131383-01,02,03,04

#### Method Blank (MB)

Chloride

| (MB) R3443434-1 08/22/19 | 9 08:27   |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |





#### L1131208-01 Original Sample (OS) • Duplicate (DUP)

U

(OS) L1131208-01 08/22/19 11:20 • (DUP) R3443434-3 08/22/19 11:37

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | 4780            | 4890       | 1        | 2.36    |               | 15                |

51.9

1000







#### L1131383-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1131383-04 08/22/19 18:43 • (DLIP) R3443434-10 08/22/19 19:00

| (03) [1131303-04 00/22/13 | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte                   | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride                  | 57900           | 57800      | 1        | 0.213   |               | 15                |





#### Laboratory Control Sample (LCS)

(LCS) R3443434-2 08/22/19 08:44

| , ,      | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | ug/l         | ug/l       | %        | %           |               |
| Chloride | 40000        | 39100      | 97.8     | 80.0-120    |               |

#### L1131379-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1131379-02 08/22/19 14:21 • (MS) R3443434-4 08/22/19 14:37 • (MSD) R3443434-5 08/22/19 14:54

| • | •        | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| A | Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| ( | Chloride | 50000        | 1270            | 51600     | 51000      | 101     | 99.5     | 1        | 80.0-120    |              |               | 1.11 | 15         |

#### L1131379-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1131379-04 08/22/19 15:26 • (MS) R3443434-6 08/2 | /22/19 15:43 • (MSD | ) R3443434-7 | 08/22/19 15:59 |
|--------------------------------------------------------|---------------------|--------------|----------------|
|--------------------------------------------------------|---------------------|--------------|----------------|

|          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride | 50000        | 28700           | 78700     | 79000      | 100     | 101      | 1        | 80.0-120    |              |               | 0.353 | 15         |

#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1131383-01,02,03,04

#### L1131383-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1131383-03 08/22/19 17:54 • (MS) R3443434-8 08/22/19 18:11 • (MSD) R3443434-9 08/22/19 18:27

|          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chloride | 50000        | 57900           | 106000    | 106000     | 96.7    | 96 9     | 1        | 80 0-120    | F            | F             | 0.108 | 15         |



















PAGE: 10 of 13

#### **GLOSSARY OF TERMS**

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| Appreviations and               | d Delimitoris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

#### Qualifier Description

Е

The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

















PAGE:

11 of 13

#### **ACCREDITATIONS & LOCATIONS**





#### State Accreditations

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| lowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |
|                        |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina 1            | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |
|--------------------|---------|
| A2LA - ISO 17025 5 | 1461.02 |
| Canada             | 1461.01 |
| EPA-Crypto         | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















PAGE:

12 of 13

|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | Billing Info          | ormation:                         |                      |             |                  |                                       | Analy     | rsis / Co                                                                                                                                       | ntainer / P          | reservat       | ive    |        |                  | Chain of Custody                                               | Page of                   |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-----------------------------------|----------------------|-------------|------------------|---------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|--------|--------|------------------|----------------------------------------------------------------|---------------------------|
| SCS Engineers - KS                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 8575 W                | ts Payable<br>. 110th Street      |                      | Pres<br>Chk |                  |                                       |           |                                                                                                                                                 |                      |                |        |        |                  | 0                                                              |                           |
| 3575 VV. 110th Street<br>Overla and Park, KS 66210                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | Overlan               | d Park, KS 6621                   | 10                   |             |                  |                                       |           |                                                                                                                                                 | 48                   |                |        |        |                  | National Co                                                    | nter for Testing & Innova |
| Report to:<br>lason Franks                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | jay.martin            | ifranks@scsengined<br>n@kcpl.com; |                      |             |                  |                                       | 450       |                                                                                                                                                 |                      |                |        |        |                  | 12065 Lebanon Rd<br>Mount Juliet, TN 37:<br>Phone: 615-758-585 |                           |
| Project<br>Description: KCPL - Montrose G                                                       | enerating St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | City/State<br>Collected:                           |                       |                                   | Please Ci<br>PT MT C | rcle:       |                  |                                       |           |                                                                                                                                                 |                      |                |        |        |                  | Phone: 800-767-585<br>Fax: 615-758-5859                        |                           |
| Phone: <b>913-681-0030</b><br>Fax: <b>913-681-0012</b>                                          | 27213168.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                       | Lab Project # AQUAOPKS-I          | MONTROSE             |             | oPres            |                                       |           |                                                                                                                                                 |                      |                |        |        |                  | D058                                                           | 3/383                     |
| Collected by (print):  Whit Martin  Collected by (signature):                                   | Site/Facility II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D#                                                 |                       | P.O.#                             |                      |             | DPE-No           |                                       |           |                                                                                                                                                 |                      | bis.           |        |        |                  | Acctnum: AQL                                                   |                           |
| Collected by (signature):  Albaharata  Immediately                                              | Same D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab MUST Be<br>Day Five<br>Day 5 Day<br>Day 10 Day | Day<br>y (Rad Only)   | the second second second          | lts Needed           |             | 125mlHDPE-NoPres |                                       |           |                                                                                                                                                 |                      |                |        |        |                  | Prelogin: P724<br>PM: 206 - Jeff C                             | 4506                      |
| Packed on Ice N Y                                                                               | Three D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Day                                                | ay (Kau Only)         | Sta                               |                      | No.<br>of   | Chloride         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |                                                                                                                                                 |                      |                |        |        |                  | PB:<br>Shipped Via:                                            |                           |
| Sample ID                                                                                       | Comp/Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix *                                           | Depth                 | Date                              | Time                 | Cntrs       | Chlo             |                                       | 0.1       |                                                                                                                                                 |                      |                |        |        |                  | Remarks                                                        | Sample # (lab only        |
| MW-601                                                                                          | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                 |                       | 8/19/19                           | 1220                 | 1           | X                |                                       |           |                                                                                                                                                 |                      |                |        |        |                  |                                                                | -1                        |
| MW-603                                                                                          | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                 | A                     | 8/19/19                           | 1300                 | 1           | X                |                                       |           |                                                                                                                                                 |                      |                |        |        |                  |                                                                | -2                        |
| MW-605                                                                                          | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                 |                       | 8/19/19                           | 1330                 | 1           | Х                |                                       |           |                                                                                                                                                 |                      |                |        |        |                  |                                                                | -3                        |
| DUPLICATE                                                                                       | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                 |                       | 8/19/19                           | 1330                 | 1           | X                |                                       |           |                                                                                                                                                 | 1000                 |                |        |        |                  |                                                                | 1-4                       |
| 605 MS / MSD                                                                                    | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                 |                       | 8/19/19                           | 1330                 | 1           | Х                |                                       |           |                                                                                                                                                 |                      |                |        |        |                  | a Compression and the                                          |                           |
|                                                                                                 | - m principal de la company de |                                                    | -                     |                                   |                      |             |                  |                                       |           |                                                                                                                                                 |                      |                |        |        |                  |                                                                |                           |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                       |                                   |                      |             |                  |                                       | j = 1     |                                                                                                                                                 |                      |                |        |        |                  | , 25 t                                                         |                           |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                       |                                   |                      |             |                  |                                       |           |                                                                                                                                                 |                      |                | -      |        | 100              | B c ii                                                         |                           |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                       |                                   |                      |             |                  |                                       |           |                                                                                                                                                 |                      | 14-            |        | 5      |                  |                                                                |                           |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                       |                                   |                      |             |                  |                                       |           |                                                                                                                                                 |                      |                |        |        |                  |                                                                | A.                        |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | pH Temp<br>Flow Other |                                   |                      |             |                  |                                       |           | Sample Receipt Checklist  COC Seal Present/Intact: NP Y COC Signed/Accurate:  Bottles arrive intact: NA COT |                      |                |        |        |                  |                                                                |                           |
| DW - Drinking Water OT - Other                                                                  | Samples retur<br>UPS Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | edExCou                                            | rier                  |                                   | cking# 4             | 79          | 4                | 88                                    | 39        | annotation to the same                                                                                                                          | THE RESIDENCE PARTY. |                |        | Suff:  | icient<br>Zero H | volume sent:  If Applicab eadspace:                            | ole Y                     |
| Relinquished by: (Signature)                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: 8 -2                                         | 0.9                   | 1420                              | ceived by: (Sign     | ~ ls        | La               | el                                    | Trip      | Blank R                                                                                                                                         | eceived:             | HCL / N<br>TBR | ЛеоН   |        |                  | on Correct/Ch<br><0.5 mR/hr;                                   | ecked: Y                  |
| Relinquished by : (Signature)                                                                   | hentel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date:                                              | 20-19                 | 1830                              | ceived by: (Sign     |             |                  |                                       | Tem<br>3. | np:                                                                                                                                             | °C 8                 | ottles Rec     | eived: | If pre | servatio         | on required by Lo                                              | gin: Date/Time            |
| Reling (Sheet by : (Signature)                                                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                              | )   1                 | Fime: Rec                         | ceived for lab b     | y: (Signat  | ure)             | 111                                   | Date      | e:<br>'/                                                                                                                                        |                      | me:<br>45      |        | Hold:  |                  |                                                                | Condition:                |

# ATTACHMENT 1-6 November 2019 Sampling Event Laboratory Report



## ANALYTICAL REPORT

November 14, 2019

### **SCS Engineers - KS**

Sample Delivery Group: L1158415

Samples Received: 11/07/2019

Project Number: 27213168.18

Description: KCPL - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Entire Report Reviewed By:

Jeff Carr



<u>Ср</u>















24



| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 5  |
| Sr: Sample Results                         | 6  |
| MW-601 L1158415-01                         | 6  |
| MW-602 L1158415-02                         | 7  |
| MW-603 L1158415-03                         | 8  |
| MW-604 L1158415-04                         | 9  |
| MW-605 L1158415-05                         | 10 |
| MW-701 L1158415-06                         | 11 |
| MW-702 L1158415-07                         | 12 |
| MW-703 L1158415-08                         | 13 |
| MW-704 L1158415-09                         | 14 |
| MW-705 L1158415-10                         | 15 |
| MW-706 L1158415-11                         | 16 |
| DUPLICATE L1158415-12                      | 17 |
| Qc: Quality Control Summary                | 18 |
| Gravimetric Analysis by Method 2540 C-2011 | 18 |
| Wet Chemistry by Method 9056A              | 19 |
| Metals (ICP) by Method 6010B               | 21 |
| GI: Glossary of Terms                      | 22 |
| Al: Accreditations & Locations             | 23 |

Sc: Sample Chain of Custody



















#### SAMPLE SUMM

| /ARY | ONE LAB. NATIONWI |
|------|-------------------|
|      |                   |

| MW-601 L1158415-01 GW                      |            |          | Collected by<br>G. Penaflor | Collected date/time<br>11/05/19 11:15 | Received da<br>11/07/19 08:3 |                |
|--------------------------------------------|------------|----------|-----------------------------|---------------------------------------|------------------------------|----------------|
| Method                                     | Batch      | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
| Method                                     | Daten      | Dilution | date/time                   | date/time                             | Analyst                      | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173  | 1        | 11/10/19 12:32              | 11/10/19 13:23                        | TH                           | Mt. Juliet, TI |
| Wet Chemistry by Method 9056A              | WG1378385  | 1        | 11/11/19 12:36              | 11/11/19 12:36                        | ELN                          | Mt. Juliet, Ti |
| Wet Chemistry by Method 9056A              | WG1378385  | 100      | 11/11/19 12:52              | 11/11/19 12:52                        | ELN                          | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1379525  | 1        | 11/13/19 19:53              | 11/14/19 04:52                        | TRB                          | Mt. Juliet, Ti |
|                                            |            |          | Collected by                | Collected date/time                   | Received da                  | te/time        |
| MW-602 L1158415-02 GW                      |            |          | G. Penaflor                 | 11/05/19 13:00                        | 11/07/19 08:3                |                |
|                                            |            |          |                             |                                       |                              |                |
| Method                                     | Batch      | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
|                                            |            |          | date/time                   | date/time                             |                              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173  | 1        | 11/10/19 12:32              | 11/10/19 13:23                        | TH                           | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378385  | 1        | 11/11/19 13:08              | 11/11/19 13:08                        | ELN                          | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378385  | 50       | 11/11/19 13:56              | 11/11/19 13:56                        | ELN                          | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1379525  | 1        | 11/13/19 19:53              | 11/14/19 04:55                        | TRB                          | Mt. Juliet, T  |
|                                            |            |          | Collected by                | Collected date/time                   | Received da                  | to/timo        |
|                                            |            |          | G. Penaflor                 | 11/05/19 13:40                        | 11/07/19 08:3                |                |
| MW-603 L1158415-03 GW                      |            |          | G. Penanor                  | 11/05/19 13:40                        | 11/07/19 08:3                | 30             |
| Method                                     | Batch      | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
|                                            |            |          | date/time                   | date/time                             |                              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173  | 1        | 11/10/19 12:32              | 11/10/19 13:23                        | TH                           | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378385  | 1        | 11/11/19 14:11              | 11/11/19 14:11                        | ELN                          | Mt. Juliet, Ti |
| Wet Chemistry by Method 9056A              | WG1378385  | 50       | 11/11/19 14:59              | 11/11/19 14:59                        | ELN                          | Mt. Juliet, TI |
| Metals (ICP) by Method 6010B               | WG1379525  | 1        | 11/13/19 19:53              | 11/14/19 04:58                        | TRB                          | Mt. Juliet, TI |
|                                            |            |          |                             |                                       |                              |                |
|                                            |            |          | Collected by                | Collected date/time                   |                              |                |
| MW-604 L1158415-04 GW                      |            |          | G. Penaflor                 | 11/05/19 14:10                        | 11/07/19 08:3                | 30             |
| Method                                     | Batch      | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
|                                            |            |          | date/time                   | date/time                             |                              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173  | 1        | 11/10/19 12:32              | 11/10/19 13:23                        | TH                           | Mt. Juliet, Ti |
| Wet Chemistry by Method 9056A              | WG1378385  | 1        | 11/11/19 15:15              | 11/11/19 15:15                        | ELN                          | Mt. Juliet, TI |
| Wet Chemistry by Method 9056A              | WG1378385  | 50       | 11/11/19 15:31              | 11/11/19 15:31                        | ELN                          | Mt. Juliet, T  |
| Metals (ICP) by Method 6010B               | WG1379525  | 1        | 11/13/19 19:53              | 11/14/19 05:00                        | TRB                          | Mt. Juliet, T  |
| ( . , -,                                   | 0.0.70020  | •        |                             |                                       | .,,,,                        | 50             |
|                                            |            |          | Collected by                | Collected date/time                   | Received da                  | te/time        |
| MW-605 L1158415-05 GW                      |            |          | G. Penaflor                 | 11/05/19 14:40                        | 11/07/19 08:3                | 80             |
| Method                                     | Batch      | Dilution | Preparation                 | Analysis                              | Analyst                      | Location       |
|                                            |            |          | date/time                   | date/time                             |                              |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173  | 1        | 11/10/19 12:32              | 11/10/19 13:23                        | TH                           | Mt. Juliet, T  |
| Wet Chemistry by Method 9056A              | WG1378385  | 1        | 11/11/19 15:46              | 11/11/19 15:46                        | ELN                          | Mt. Juliet, T  |
| W. C. C. L. M. H. LOOFCA                   | 1404070005 |          | 44/44/40 40 00              | 44/44/40 40 00                        | E                            |                |



















Wet Chemistry by Method 9056A

MW-701 L1158415-06 GW

Gravimetric Analysis by Method 2540 C-2011

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Metals (ICP) by Method 6010B

Method

WG1378385

WG1379525

Batch

WG1378173

WG1378385

WG1378385

WG1379525

50

1

Dilution

1

1

50

1

11/11/19 16:02

11/13/19 19:53

Collected by

G. Penaflor

Preparation

11/10/19 12:32

11/11/19 16:18

11/11/19 16:34

11/13/19 19:53

date/time

11/11/19 16:02

11/14/19 05:03

11/05/19 14:10

Analysis

date/time

11/10/19 13:23

11/11/19 16:18

11/11/19 16:34

11/14/19 05:06

ELN

TRB

11/07/19 08:30

Analyst

TH

ELN

ELN

TRB

Collected date/time Received date/time

Mt. Juliet, TN

Mt. Juliet, TN

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

#### SAMPLE SUMMARY

| ONE | LAR | NATI | ONV | NID |
|-----|-----|------|-----|-----|
|     |     |      |     |     |

Collected date/time Received date/time

Collected date/time Received date/time

Collected date/time Received date/time

Collected date/time Received date/time

11/07/19 08:30

11/07/19 08:30

11/07/19 08:30

11/07/19 08:30

11/05/19 15:35

11/05/19 13:50

11/05/19 14:35

11/05/19 14:40

| MW-702 L1158415-07 GW                      | Collected by<br>G. Penaflor | Collected date/time<br>11/05/19 14:40 | Received date/time<br>11/07/19 08:30 |                       |               |                |
|--------------------------------------------|-----------------------------|---------------------------------------|--------------------------------------|-----------------------|---------------|----------------|
| Method                                     | Batch                       | Dilution                              | Preparation date/time                | Analysis<br>date/time | Analyst       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173                   | 1                                     | 11/10/19 12:32                       | 11/10/19 13:23        | TH            | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385                   | 1                                     | 11/11/19 16:50                       | 11/11/19 16:50        | ELN           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385                   | 50                                    | 11/11/19 17:06                       | 11/11/19 17:06        | ELN           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1379525                   | 1                                     | 11/13/19 19:53                       | 11/14/19 05:09        | TRB           | Mt. Juliet, TN |
|                                            |                             |                                       | Collected by                         | Collected date/time   | Received da   | te/time        |
| MW-703 L1158415-08 GW                      |                             |                                       | G. Penaflor                          | 11/05/19 15:20        | 11/07/19 08:3 | 0              |
| Method                                     | Batch                       | Dilution                              | Preparation date/time                | Analysis<br>date/time | Analyst       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173                   | 1                                     | 11/10/19 12:32                       | 11/10/19 13:23        | TH            | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385                   | 1                                     | 11/11/19 17:22                       | 11/11/19 17:22        | ELN           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385                   | 50                                    | 11/11/19 18:10                       | 11/11/19 18:10        | ELN           | Mt. Juliet, TN |
|                                            | WG1379525                   |                                       | 11/13/19 19:53                       |                       | TRB           |                |



| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173 | 1        | 11/10/19 12:32 | 11/10/19 13:23 | TH      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 1        | 11/11/19 18:26 | 11/11/19 18:26 | ELN     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 50       | 11/11/19 18:41 | 11/11/19 18:41 | ELN     | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1379525 | 1        | 11/13/19 19:53 | 11/14/19 05:14 | TRB     | Mt. Juliet, TN |

Collected by

G. Penaflor

Collected by

Collected by

Collected by

G. Penaflor

G. Penaflor

G. Penaflor

#### MW-705 L1158415-10 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173 | 1        | 11/10/19 12:32 | 11/10/19 13:23 | TH      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 1        | 11/11/19 18:57 | 11/11/19 18:57 | ELN     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 20       | 11/11/19 19:29 | 11/11/19 19:29 | ELN     | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1379525 | 1        | 11/13/19 19:53 | 11/14/19 05:17 | TRB     | Mt. Juliet, TN |

#### MW-706 L1158415-11 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173 | 1        | 11/10/19 12:32 | 11/10/19 13:23 | TH      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 1        | 11/11/19 20:01 | 11/11/19 20:01 | ELN     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 50       | 11/11/19 21:21 | 11/11/19 21:21 | ELN     | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1379525 | 1        | 11/13/19 19:53 | 11/14/19 04:28 | TRB     | Mt. Juliet, TN |
|                                            |           |          |                |                |         |                |

#### DUPLICATE L1158415-12 GW

| Method                                     | Batch     | Dilution | Preparation    | Analysis       | Analyst | Location       |
|--------------------------------------------|-----------|----------|----------------|----------------|---------|----------------|
|                                            |           |          | date/time      | date/time      |         |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1378173 | 1        | 11/10/19 12:32 | 11/10/19 13:23 | TH      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 1        | 11/11/19 21:36 | 11/11/19 21:36 | ELN     | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1378385 | 50       | 11/11/19 21:52 | 11/11/19 21:52 | ELN     | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1379525 | 1        | 11/13/19 19:53 | 11/14/19 05:25 | TRB     | Mt. Juliet, TN |



































All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 11:15

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 3880000 | <u>J3</u> | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 52800   |           | 1000   | 1        | 11/11/2019 12:36 | WG1378385 |
| Fluoride | 402     |           | 100    | 1        | 11/11/2019 12:36 | WG1378385 |
| Sulfate  | 2950000 |           | 500000 | 100      | 11/11/2019 12:52 | WG1378385 |



Cn

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier RDL | Dilution | Analysis         | Batch     |
|---------|--------|---------------|----------|------------------|-----------|
| Analyte | ug/l   | ug/l          | 2        | date / time      | <u> </u>  |
| Boron   | ND     | 200           | 1        | 11/14/2019 04:52 | WG1379525 |
| Calcium | 457000 | 1000          | 1        | 11/14/2019 04:52 | WG1379525 |





СQс







ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 13:00

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1880000 |           | 20000 | 1        | 11/10/2019 13:23 | WG1378173 |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 3690    |           | 1000   | 1        | 11/11/2019 13:08 | WG1378385 |
| Fluoride | 140     |           | 100    | 1        | 11/11/2019 13:08 | WG1378385 |
| Sulfate  | 1110000 |           | 250000 | 50       | 11/11/2019 13:56 | WG1378385 |



#### Metals (ICP) by Method 6010B

|         | Result | Qualifier RDL | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|---------------|----------|------------------|--------------|
| Analyte | ug/l   | ug/l          |          | date / time      |              |
| Boron   | 4160   | 200           | 1        | 11/14/2019 04:55 | WG1379525    |
| Calcium | 325000 | 1000          | 1        | 11/14/2019 04:55 | WG1379525    |



Cn









ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 13:40

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2530000 |           | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 6660    |           | 1000   | 1        | 11/11/2019 14:11 | WG1378385 |
| Fluoride | 436     |           | 100    | 1        | 11/11/2019 14:11 | WG1378385 |
| Sulfate  | 2010000 |           | 250000 | 50       | 11/11/2019 14:59 | WG1378385 |



|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | 5960   |           | 200  | 1        | 11/14/2019 04:58 | WG1379525    |
| Calcium | 410000 |           | 1000 | 1        | 11/14/2019 04:58 | WG1379525    |









ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:10

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2340000 |           | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 12500   |           | 1000   | 1        | 11/11/2019 15:15 | WG1378385 |
| Fluoride | 428     |           | 100    | 1        | 11/11/2019 15:15 | WG1378385 |
| Sulfate  | 1650000 |           | 250000 | 50       | 11/11/2019 15:31 | WG1378385 |



#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 4300   |           | 200  | 1        | 11/14/2019 05:00 | WG1379525 |
| Calcium | 407000 |           | 1000 | 1        | 11/14/2019 05:00 | WG1379525 |



СQс







ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:40

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2380000 |           | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 59100   |           | 1000   | 1        | 11/11/2019 15:46 | WG1378385 |
| Fluoride | 195     |           | 100    | 1        | 11/11/2019 15:46 | WG1378385 |
| Sulfate  | 1730000 |           | 250000 | 50       | 11/11/2019 16:02 | WG1378385 |



#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | 1500   |           | 200  | 1        | 11/14/2019 05:03 | WG1379525 |
| Calcium | 399000 |           | 1000 | 1        | 11/14/2019 05:03 | WG1379525 |









10 of 25

ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:10

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2700000 |           | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |

## <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch            |
|----------|---------|-----------|--------|----------|------------------|------------------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |                  |
| Chloride | 319000  |           | 50000  | 50       | 11/11/2019 16:34 | WG1378385        |
| Fluoride | 926     |           | 100    | 1        | 11/11/2019 16:18 | WG1378385        |
| Sulfate  | 1650000 |           | 250000 | 50       | 11/11/2019 16:34 | <u>WG1378385</u> |



|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 05:06 | WG1379525    |
| Calcium | 366000 |           | 1000 | 1        | 11/14/2019 05:06 | WG1379525    |











ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:40

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2350000 |           | 50000 | 1        | 11/10/2019 13:23 | WG1378173 |





|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 269000  |           | 50000  | 50       | 11/11/2019 17:06 | WG1378385 |
| Fluoride | 227     |           | 100    | 1        | 11/11/2019 16:50 | WG1378385 |
| Sulfate  | 1330000 |           | 250000 | 50       | 11/11/2019 17:06 | WG1378385 |



Cn

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 05:09 | WG1379525    |
| Calcium | 425000 |           | 1000 | 1        | 11/14/2019 05:09 | WG1379525    |











ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 15:20

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch            |
|------------------|---------|-----------|-------|----------|------------------|------------------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |                  |
| Dissolved Solids | 1460000 |           | 20000 | 1        | 11/10/2019 13:23 | <u>WG1378173</u> |

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|--------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l   |          | date / time      |           |
| Chloride | 20000  |           | 1000   | 1        | 11/11/2019 17:22 | WG1378385 |
| Fluoride | 158    |           | 100    | 1        | 11/11/2019 17:22 | WG1378385 |
| Sulfate  | 925000 |           | 250000 | 50       | 11/11/2019 18:10 | WG1378385 |



Ss

# Cn









|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 05:12 | WG1379525 |
| Calcium | 238000 |           | 1000 | 1        | 11/14/2019 05:12 | WG1379525 |

ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 15:35

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1110000 |           | 20000 | 1        | 11/10/2019 13:23 | WG1378173 |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|--------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l   |          | date / time      |           |
| Chloride | 3470   |           | 1000   | 1        | 11/11/2019 18:26 | WG1378385 |
| Fluoride | 138    |           | 100    | 1        | 11/11/2019 18:26 | WG1378385 |
| Sulfate  | 644000 |           | 250000 | 50       | 11/11/2019 18:41 | WG1378385 |



Cn

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 05:14 | WG1379525 |
| Calcium | 156000 |           | 1000 | 1        | 11/14/2019 05:14 | WG1379525 |



СQс







ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 13:50

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch            |
|------------------|--------|-----------|-------|----------|------------------|------------------|
| Analyte          | ug/l   |           | ug/l  |          | date / time      |                  |
| Dissolved Solids | 843000 |           | 13300 | 1        | 11/10/2019 13:23 | <u>WG1378173</u> |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|--------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l   |          | date / time      |           |
| Chloride | 13000  |           | 1000   | 1        | 11/11/2019 18:57 | WG1378385 |
| Fluoride | 185    |           | 100    | 1        | 11/11/2019 18:57 | WG1378385 |
| Sulfate  | 489000 |           | 100000 | 20       | 11/11/2019 19:29 | WG1378385 |



Ss

Cn

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 05:17 | WG1379525 |
| Calcium | 108000 |           | 1000 | 1        | 11/14/2019 05:17 | WG1379525 |











ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:35

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1800000 |           | 25000 | 1        | 11/10/2019 13:23 | WG1378173 |

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch            |
|----------|---------|-----------|--------|----------|------------------|------------------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |                  |
| Chloride | 28800   |           | 1000   | 1        | 11/11/2019 20:01 | WG1378385        |
| Fluoride | 186     |           | 100    | 1        | 11/11/2019 20:01 | WG1378385        |
| Sulfate  | 1040000 |           | 250000 | 50       | 11/11/2019 21:21 | <u>WG1378385</u> |





### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 04:28 | WG1379525 |
| Calcium | 287000 | $\vee$    | 1000 | 1        | 11/14/2019 04:28 | WG1379525 |



Gl





ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 14:40

L1158415

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 1740000 |           | 25000 | 1        | 11/10/2019 13:23 | WG1378173 |

# <sup>2</sup>Tc

#### Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 28800   |           | 1000   | 1        | 11/11/2019 21:36 | WG1378385 |
| Fluoride | 184     |           | 100    | 1        | 11/11/2019 21:36 | WG1378385 |
| Sulfate  | 1050000 |           | 250000 | 50       | 11/11/2019 21:52 | WG1378385 |



#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | 200    |           | 200  | 1        | 11/14/2019 05:25 | WG1379525    |
| Calcium | 282000 |           | 1000 | 1        | 11/14/2019 05:25 | WG1379525    |



Cn









ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

ug/l

L1158415-01,02,03,04,05,06,07,08,09,10,11,12

### Method Blank (MB)

Analyte

Dissolved Solids

| (MB) R34/0627-1 | 11/10/19 13:23 |              |
|-----------------|----------------|--------------|
|                 | MB Result      | MB Qualifier |

MB MDL MB RDL

ug/l

10000



Ss

<sup>†</sup>Cn

# L1158415-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1158415-01 11/10/19 13:23 • (DUP) R3470627-3 11/10/19 13:23

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 3880000         | 4270000    | 1        | 9.70    | J3            | 5                 |

ug/l

2820

# L1158421-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1158421-03 11/10/19 13:23 • (DUP) R3470627-4 11/10/19 13:23

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 2680000         | 2910000    | 1        | 8.23    | <u>J3</u>     | 5                 |



Sc

## Laboratory Control Sample (LCS)

(LCS) R3470627-2 11/10/19 13:23

|                  | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------|--------------|------------|----------|-------------|---------------|
| Analyte          | ug/l         | ug/l       | %        | %           |               |
| Dissolved Solids | 8800000      | 8410000    | 95.6     | 85 0-115    |               |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1158415-01,02,03,04,05,06,07,08,09,10,11,12

### Method Blank (MB)

| (MB) R3470854-1 11/11/ | 19 11:01  |              |        |        |
|------------------------|-----------|--------------|--------|--------|
|                        | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                | ug/l      |              | ug/l   | ug/l   |
| Chloride               | U         |              | 51.9   | 1000   |
| Fluoride               | U         |              | 9.90   | 100    |
| Sulfate                | П         |              | 77 4   | 5000   |





# L1158388-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1158388-09 11/11/19 11:48 • (DUP) R3470854-3 11/11/19 12:04

| . ,      | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride | ND              | 0.000      | 1        | 0.000   |               | 15                |
| Fluoride | ND              | 0.000      | 1        | 0.000   |               | 15                |
| Sulfate  | ND              | 0.000      | 1        | 0.000   |               | 15                |





# L1158415-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1158415-10 11/11/19 18:57 • (DUP) R3470854-5 11/11/19 19:13

| (00) 2.1100 1.10 1.0 1.11 1.11 1.0 | Original Result |       |   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------------------------|-----------------|-------|---|---------|---------------|-------------------|
| Analyte                            | ug/l            | ug/l  |   | %       |               | %                 |
| Chloride                           | 13000           | 13000 | 1 | 0.293   |               | 15                |
| Fluoride                           | 185             | 183   | 1 | 1.09    |               | 15                |

# Sc

# L1158415-10 Original Sample (OS) • Duplicate (DUP)

(OS) | 1158/15-10 11/11/19 19:29 . (DLIP) P3/17085/1-6 11/11/19 19://5

| (03) [1130413-10 11/11/13 1 | 19.29 • (DOF) K3 | 4/0054-0 11/ | 11/13 13.43 |         |               |                   |
|-----------------------------|------------------|--------------|-------------|---------|---------------|-------------------|
|                             | Original Result  | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                     | ug/l             | ug/l         |             | %       |               | %                 |
| Sulfate                     | 489000           | 488000       | 20          | 0.194   |               | 15                |

# Laboratory Control Sample (LCS)

| (LCS) R3470854-2 11/11/19 | CS) R3470854-2 11/11/19 11:17 |            |          |             |               |  |  |  |  |  |
|---------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                           | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                   | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |  |
| Chloride                  | 40000                         | 38400      | 96.0     | 80.0-120    |               |  |  |  |  |  |
| Fluoride                  | 8000                          | 7980       | 99.7     | 80.0-120    |               |  |  |  |  |  |
| Sulfate                   | 40000                         | 38700      | 96.7     | 80.0-120    |               |  |  |  |  |  |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1158415-01,02,03,04,05,06,07,08,09,10,11,12

# L1158388-09 Original Sample (OS) • Matrix Spike (MS)

(OS) L1158388-09 11/11/19 11:48 • (MS) R3470854-4 11/11/19 12:20

| (03) 11100000 03 11/11/13 | 11.40 - (1415) 1154 | 70054 4 11/11/1 | 5 12.20   |         |          |             |              |
|---------------------------|---------------------|-----------------|-----------|---------|----------|-------------|--------------|
|                           | Spike Amount        | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                   | ug/l                | ug/l            | ug/l      | %       |          | %           |              |
| Chloride                  | 50000               | ND              | 48600     | 97.2    | 1        | 80.0-120    |              |
| Fluoride                  | 5000                | ND              | 4870      | 97.4    | 1        | 80.0-120    |              |
| Sulfate                   | 50000               | ND              | 49000     | 98.1    | 1        | 80.0-120    |              |





# L1158415-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (03) [1130+13-11 11/11/13 | 03/21130413-11 11/11/13 20:01 (1/13) (034/0034-7 11/11/13 20:17 (1/13) (034/0034-0 11/11/13 20:33 |                 |           |            |         |          |          |             |              |               |        |            |  |
|---------------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|--|
|                           | Spike Amount                                                                                      | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |  |
| Analyte                   | ug/l                                                                                              | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |  |
| Chloride                  | 50000                                                                                             | 28800           | 78000     | 78000      | 98.4    | 98.5     | 1        | 80.0-120    |              |               | 0.0328 | 15         |  |
| Fluoride                  | 5000                                                                                              | 186             | 4880      | 5020       | 93.8    | 96.6     | 1        | 80.0-120    |              |               | 2.86   | 15         |  |
| Sulfate                   | 50000                                                                                             | 1120000         | 1140000   | 1140000    | 47.2    | 47.8     | 1        | 80.0-120    | ΕV           | ΕV            | 0.0265 | 15         |  |















ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

#### L1158415-01,02,03,04,05,06,07,08,09,10,11,12

#### Method Blank (MB)

Calcium

10000

(MB) R3471789-1 11/14/19 04:20 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 12.6 200 U 46.3 1000 Calcium







#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3471789-2 11/14/19 04:23 • (LCSD) R3471789-3 11/14/19 04:25 Spike Amount LCS Result LCS Rec. LCSD Rec. LCSD Qualifier RPD **RPD Limits** LCSD Result Rec. Limits LCS Qualifier % % % % Analyte ug/l ug/l ug/l 965 Boron 1000 940 94.0 96.5 80.0-120 2.59 20 10000 9670 96.7 0.497 20 Calcium 9620 96.2 80.0-120



Cn





# <sup>7</sup>Gl



291000

292000

36.5

287000

(OS) L1158415-11 11/14/19 04:28 • (MS) R3471789-5 11/14/19 04:33 • (MSD) R3471789-6 11/14/19 04:36 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD **RPD Limits** % % % % Analyte ug/l ug/l ug/l ug/l ND Boron 1000 1160 1170 98.3 99.2 1 75.0-125 0.776 20

44.7

75.0-125

0.280

20





# **GLOSSARY OF TERMS**



Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| , 10.0.10 V.10.1.10 G.1.10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| E         | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
| J3        | The associated batch QC was outside the established quality control range for precision.                                                    |
| V         | The sample concentration is too high to evaluate accurate spike recoveries.                                                                 |



















# **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| lowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |
|                        |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 |
|-------------------------------|---------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 |
| Canada                        | 1461.01 |
| EPA-Crypto                    | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















|                                                                                        |                  |                                     |                   | Billing Infor                 | mation:                           |      | And the second second second second |           |              |                | Ar         | nalvsis / Cont | ainer / Pr                        | eservativ | e      |                  | C                                    | hain of Custody                                                       | Page of                |
|----------------------------------------------------------------------------------------|------------------|-------------------------------------|-------------------|-------------------------------|-----------------------------------|------|-------------------------------------|-----------|--------------|----------------|------------|----------------|-----------------------------------|-----------|--------|------------------|--------------------------------------|-----------------------------------------------------------------------|------------------------|
| SCS Engineers - KS                                                                     | Accounts Payable |                                     |                   |                               |                                   |      | Pres<br>Chk                         | <i>y</i>  |              |                |            |                |                                   |           |        |                  | National Cor                         | ter for Testing & Innovation                                          |                        |
| 8575 W. 110th Street<br>Overland Park, KS 66210                                        |                  |                                     |                   |                               |                                   |      |                                     |           |              |                |            |                |                                   |           |        |                  | nese<br>n                            |                                                                       |                        |
| Report to:<br>Jason Franks                                                             |                  |                                     |                   | Email To: jf                  |                                   |      | eers.com;                           |           | Pres         |                |            |                |                                   |           |        |                  | N P                                  | 2065 Lebanon Rd<br>Mount Juliet, TN 371<br>Phone: 615-758-585         | · 159129               |
| Project EVERCY Description: KCPL - Montrose Ge                                         | neratin          | ng St Co                            | ty/State          | Montro                        | 50,1                              | 10   | Please Circl                        |           | E-No         | 3              |            |                |                                   |           |        |                  | F                                    | Phone: 800-767-585<br>Fax: 615-758-5859                               | 4414                   |
| Phone: 913-681-0030<br>Fax: 913-681-0012                                               | Client P         | roject #<br>8168.18                 | 2                 |                               | AQUA                              |      | -MONTROSE                           |           | SmIHDPE-NoPr | 250m1HDPE-HNO: | SS         |                |                                   |           |        |                  | +                                    | SDG# // B1                                                            | 62                     |
| Collected by (print):  G. Pougflor                                                     | Site/Fa          | cility ID #                         |                   |                               | P.O. #                            |      |                                     |           | 504) 12      | MIHDP          | E-NoPres   |                |                                   |           |        |                  |                                      | Acctnum: AQL                                                          |                        |
| Collected by (signature):                                                              |                  | Same Day Next Day Two Day Three Day | 5 Day             |                               | Quote #  Date Results Needed  Std |      |                                     | No.       | (Cld, F,     | - 6010 250r    | 250mIHDPE- |                |                                   |           |        |                  | F                                    | Prelogin: P73<br>PM: 206 - Jeff (                                     | 5915                   |
| Packed on Ice N Y X Sample ID                                                          |                  |                                     | Matrix *          | Depth                         | I                                 | Date | Time                                | Cntrs     | Anions       | B, Ca          | TDS 2      |                |                                   |           |        |                  |                                      | Shipped Via: Remarks                                                  | Sample # (lab only)    |
| MW-601                                                                                 | GR               | AB                                  | GW                |                               | li/                               | 5/19 | 1111.5                              | 3         | X            | X              | X          |                |                                   |           |        |                  |                                      |                                                                       | -01                    |
| MW-602                                                                                 |                  |                                     | GW                | -                             |                                   | 1    | 1300                                | 3         | X            | Х              | X          |                |                                   |           |        |                  |                                      | a Araba M                                                             | -02                    |
| MW-603                                                                                 |                  |                                     | GW                |                               | A STA                             |      | 1340                                | 3         | X            | X              | X          | 7.4            |                                   |           |        |                  |                                      |                                                                       | -03                    |
| MW-604                                                                                 |                  |                                     | GW                | ع ا                           |                                   |      | 1410                                | 3         | X            | X              | X          |                | 4                                 |           | 7 7 12 |                  |                                      |                                                                       | -04                    |
| MW-605                                                                                 |                  |                                     | GW                | -                             |                                   |      | 1440                                | 7 3       | X            | X              | X          |                |                                   |           | 1      |                  |                                      |                                                                       | -05                    |
| MW-701                                                                                 |                  |                                     | GW                |                               |                                   |      | 1410                                | 3         | X            | X              | X          |                |                                   |           |        |                  |                                      |                                                                       | -06                    |
| MW-702                                                                                 |                  |                                     | GW                | -                             |                                   | 1    | 1440                                | 3         | X            | X              | X          |                |                                   |           |        |                  |                                      | MALE TO A SECOND                                                      | -07                    |
| MW-703                                                                                 |                  | 620                                 | GW                | -                             |                                   |      | 1520                                | 3         | X            | X              | X          |                |                                   |           |        |                  |                                      |                                                                       | -06                    |
| MW-704                                                                                 |                  |                                     | GW                | -                             |                                   |      | 1535                                | 3         | X            | X              | X          |                |                                   |           |        |                  |                                      |                                                                       | -09                    |
| MW-705                                                                                 | 1                |                                     | GW                | 1 -                           |                                   | W    | 1350                                | ) 3       | X            | X              | X          |                | -21                               |           |        |                  |                                      |                                                                       |                        |
| * Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater | Rema             | arks:                               |                   |                               |                                   |      |                                     |           |              |                |            | pH<br>Flow _   |                                   | emp       |        | COC Si<br>Bottle | eal Pr<br>igned/<br>es arr<br>ct bot | le Receipt ( esent/Intac Accurate: ive intact: tles used: volume sent | t: NP _Y _N            |
| DW - Drinking Water<br>OT - Other                                                      |                  | oles return                         | dEx Co            | x _ Courier Persited by /Sign |                                   |      |                                     |           |              |                | 9- 45-20   | Trip Blank     | Received:                         | Yes / N   | lo     | VOA Ze           | ero He                               | If Applica<br>eadspace:<br>on Correct/C<br><0.5 mR/hr:                | ble<br>hecked:YN       |
| Relinquished by : (Signature) Relinquished by : (Signature)                            | nlee             |                                     | 11/4/9   1122   1 |                               |                                   |      |                                     |           | ~            |                |            | Temp: 13       | '∕~°C                             |           | МеоН   |                  |                                      |                                                                       | ogin: Date/Time        |
| Relinquished by : (Signature)                                                          | and the second   |                                     | Date:             | .119                          | Time:                             | 20   | Received for lab b                  | oy: (Sign | nature       |                |            | Date:          | CONTRACTOR OF THE PERSON NAMED IN | Time:     | 3)     | Hold:            |                                      | gar<br>Karajar <u>a</u>                                               | Condition:<br>NCF / OK |

|                                                                                                 |                             |                          | Billing Info  | rmation:                     |                                        | T                |                |         | Ar            | nalysis /  | Contair                    | ner / Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ervative                                                                                                               |      | 1                         | Chain of Custody                                              | Page of                      |  |  |                              |      |
|-------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|---------------|------------------------------|----------------------------------------|------------------|----------------|---------|---------------|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------------------------|---------------------------------------------------------------|------------------------------|--|--|------------------------------|------|
| CS Engineers - KS                                                                               |                             |                          |               |                              |                                        | Pres<br>Chk      |                | 3       |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           | 0                                                             |                              |  |  |                              |      |
| 575 W. 110th Street<br>Overland Park, KS 66210                                                  |                             |                          | Overland      | d Park, KS 66                | 210                                    |                  |                |         |               | 75         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      | 74                        | National Ce                                                   | nter for Testing & Innovatio |  |  |                              |      |
| eport to:<br>ason Franks                                                                        |                             |                          |               | franks@scsengi<br>@kcpl.com; | neers.com;                             |                  | Pres           |         |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      | 3 -<br>3 -                | 12065 Lebanon Rd<br>Mount Juliet, TN 37<br>Phone: 615-758-585 | · 1594294                    |  |  |                              |      |
| roject EVGL54<br>escription: KCPL - Montrose Ge                                                 |                             | City/State<br>Collected: | MONTA         | OSE, MI                      | Please Circ                            | le:              | 125mlHDPE-NoPr | 3       |               |            | 12.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           | Phone: 800-767-585<br>Fax: 615-758-5859                       | 回数数数                         |  |  |                              |      |
| none: 913-681-0030<br>px: 913-681-0012                                                          | Client Project # 27213168.1 | 1                        |               | Lab Project # AQUAOPK        | Lab Project # AQUAOPKS-MONTROSE        |                  |                |         | S             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           | SDG # // 1 Table #                                            | 56415                        |  |  |                              |      |
| G. Pengtion                                                                                     | Site/Facility ID            | #                        | 7,47          | P.O. #                       |                                        | 504) 125         | 250mIHDPE-HNO  | NoPre   |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      | Acctnum: AQI Template:T13 |                                                               |                              |  |  |                              |      |
| collected by (signature):                                                                       |                             | Rush? (Lab MUST Be No.   |               | Same Day Five [              |                                        | Same Day Five Da |                | Quote # | esults Needed |            |                            | 0 250n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250mIHDPE-NoPres                                                                                                       |      |                           |                                                               |                              |  |  | Prelogin: P73 PM: 206 - Jeff | 6915 |
| mmediately Packed on Ice N Y X                                                                  | Two Day                     | 10 D                     | ay (Rad Only) | 51                           |                                        | No. of           | ons (Cld,      | a-6010  |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           | PB:<br>Shipped Via:                                           |                              |  |  |                              |      |
| Sample ID                                                                                       | Comp/Grab                   | Matrix *                 | Depth         | Date                         | Time                                   | Cntr             | Anions         | B, Ca   | TDS           | Turker.    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           | Remarks                                                       | Sample # (lab only)          |  |  |                              |      |
| MW-706                                                                                          | GRAB                        | GW                       | 1 -           | 11/5/19                      | 1435                                   | 3                | X              | X       | X             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           |                                                               | -1                           |  |  |                              |      |
| 706 MS                                                                                          |                             | GW                       | _             | 1                            | 1445                                   | 3                |                | X       | X             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                                                                                                     |      |                           |                                                               |                              |  |  |                              |      |
| 706 MSD                                                                                         |                             | GW                       |               |                              | 1450                                   | 3                | X              | X       | X             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           |                                                               | 1                            |  |  |                              |      |
| DUPLICATE                                                                                       | V                           | GW                       |               | V                            | 1440                                   | 3                | X              | X       | X             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           |                                                               | -12                          |  |  |                              |      |
|                                                                                                 | Taligness of the sales      | and the second           |               | 127                          | Carlotte Control of Management Control |                  | -              |         |               | ment toxus |                            | The Control of the Co |                                                                                                                        |      |                           |                                                               |                              |  |  |                              |      |
|                                                                                                 | Propher Control             |                          |               |                              |                                        |                  |                |         | -             |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           |                                                               |                              |  |  |                              |      |
|                                                                                                 |                             |                          |               |                              |                                        |                  |                |         |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      |                           |                                                               |                              |  |  |                              |      |
|                                                                                                 | Remarks:                    |                          | 11 (2.00 %)   |                              |                                        |                  |                |         |               |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |      | Com                       | ale Pessint (                                                 | Phocklist                    |  |  |                              |      |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater |                             |                          |               |                              |                                        | pl<br>Flo        |                | Temp    |               | COC        | Seal P<br>Signed<br>les ar | /Accurate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t: NP Y                                                                                                                |      |                           |                                                               |                              |  |  |                              |      |
| DW - Drinking Water OT - Other                                                                  | Samples return              | rned via:<br>edEx Co     | urier         |                              | Tracking #                             |                  |                |         |               |            |                            | Suff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Correct bottles used:  Sufficient volume sent:  If Applicable  VOA Zero Headspace:  Preservation Correct/Checked:  Y N |      |                           |                                                               |                              |  |  |                              |      |
| Relinquished by : (Signature)                                                                   | lu                          | Date: 11/0               | 0/19          | Time:<br>1122 <              | Received by: (Sign                     | ature)           |                |         |               | Trip Bl    | lank Rec                   | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCL / MeoH<br>TBR                                                                                                      | RAD  | Screen                    | 1 <0.5 mR/hr:                                                 |                              |  |  |                              |      |
| Refinquished by : (Signature)                                                                   |                             | Date:                    | 19            | Time:                        | Received by: (Sign                     |                  |                |         |               | Temp:      | -3=0                       | 7,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | les Received                                                                                                           |      | 1422                      | on required by L                                              | ogin: Date/Time              |  |  |                              |      |
| Relinquished by : (Signature)                                                                   |                             | Date:                    |               | Time:                        | Received for lab b                     | y: (Sign         | nature)        |         |               | Date:      | 17                         | Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 183                                                                                                                    | Hold |                           |                                                               | Condition:<br>NCF / OK       |  |  |                              |      |



# ANALYTICAL REPORT

November 14, 2019

# **SCS Engineers - KS**

Samples Received:

Sample Delivery Group: L1158426

Project Number: 27213168.18

Description: KCPL - Montrose Generating Station

11/07/2019

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Ср

















Entire Report Reviewed By:

He suits relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written appropal of the inhoratory. Where application, simpling controlled by Prace Annual Produced and the State of the Control of th



| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-506 L1158426-01                         | 5  |
| DUPLICATE L1158426-02                      | 6  |
| Qc: Quality Control Summary                | 7  |
| Gravimetric Analysis by Method 2540 C-2011 | 7  |
| Wet Chemistry by Method 9056A              | 8  |
| Metals (ICP) by Method 6010B               | 10 |
| GI: Glossary of Terms                      | 11 |
| Al: Accreditations & Locations             | 12 |
| Sc: Sample Chain of Custody                | 13 |























|                                            |           |          | Collected by   | Collected date/time | ne Received date/time |                |  |  |  |
|--------------------------------------------|-----------|----------|----------------|---------------------|-----------------------|----------------|--|--|--|
| MW-506 L1158426-01 GW                      |           |          | G. Penaflor    | 11/05/19 11:55      | 11/07/19 08:3         | 30             |  |  |  |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst               | Location       |  |  |  |
|                                            |           |          | date/time      | date/time           |                       |                |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | WG1377901 | 1        | 11/10/19 12:51 | 11/10/19 14:16      | TH                    | Mt. Juliet, TN |  |  |  |
| Net Chemistry by Method 9056A              | WG1378488 | 1        | 11/11/19 16:07 | 11/11/19 16:07      | ELN                   | Mt. Juliet, TN |  |  |  |
| Wet Chemistry by Method 9056A              | WG1378488 | 50       | 11/11/19 17:19 | 11/11/19 17:19      | ELN                   | Mt. Juliet, TN |  |  |  |
| Metals (ICP) by Method 6010B               | WG1379526 | 1        | 11/13/19 10:36 | 11/14/19 10:32      | TRB                   | Mt. Juliet, TN |  |  |  |
|                                            |           |          | Collected by   | Collected date/time | Received da           | te/time        |  |  |  |
| DUPLICATE L1158426-02 GW                   |           |          | G. Penaflor    | 11/05/19 12:00      | 11/07/19 08:3         | 30             |  |  |  |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst               | Location       |  |  |  |
|                                            |           |          | date/time      | date/time           |                       |                |  |  |  |
| Gravimetric Analysis by Method 2540 C-2011 | WG1377901 | 1        | 11/10/19 12:51 | 11/10/19 14:16      | TH                    | Mt. Juliet, TN |  |  |  |
| Vet Chemistry by Method 9056A              | WG1378488 | 1        | 11/11/19 17:33 | 11/11/19 17:33      | ELN                   | Mt. Juliet, TN |  |  |  |
| Vet Chemistry by Method 9056A              | WG1378488 | 50       | 11/11/19 17:48 | 11/11/19 17:48      | ELN                   | Mt. Juliet, TN |  |  |  |
| Metals (ICP) by Method 6010B               | WG1379526 | 1        | 11/13/19 10:36 | 11/14/19 11:32      | TRB                   | Mt. Juliet, TN |  |  |  |
|                                            |           |          |                |                     |                       |                |  |  |  |



















SCS Engineers - KS

<sup>1</sup> Cp

















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

# SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 11:55

L1158426

# Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2280000 | <u>J3</u> | 50000 | 1        | 11/10/2019 14:16 | WG1377901 |

# <sup>2</sup>Tc

# Wet Chemistry by Method 9056A

|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 74500   |           | 1000   | 1        | 11/11/2019 16:07 | WG1378488 |
| Fluoride | ND      |           | 100    | 1        | 11/11/2019 16:07 | WG1378488 |
| Sulfate  | 1760000 |           | 250000 | 50       | 11/11/2019 17:19 | WG1378488 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 10:32 | WG1379526 |
| Calcium | 341000 | 01 V      | 1000 | 1        | 11/14/2019 10:32 | WG1379526 |









# SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/05/19 12:00

L1158426

# Gravimetric Analysis by Method 2540 C-2011

|                  | Result  | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|------------------|---------|-----------|-------|----------|------------------|-----------|
| Analyte          | ug/l    |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 2190000 |           | 50000 | 1        | 11/10/2019 14:16 | WG1377901 |

# <sup>2</sup>Tc



|          | Result  | Qualifier | RDL    | Dilution | Analysis         | Batch     |
|----------|---------|-----------|--------|----------|------------------|-----------|
| Analyte  | ug/l    |           | ug/l   |          | date / time      |           |
| Chloride | 74600   |           | 1000   | 1        | 11/11/2019 17:33 | WG1378488 |
| Fluoride | 101     |           | 100    | 1        | 11/11/2019 17:33 | WG1378488 |
| Sulfate  | 1740000 |           | 250000 | 50       | 11/11/2019 17:48 | WG1378488 |



Cn

# Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|---------|--------|-----------|------|----------|------------------|--------------|
| Analyte | ug/l   |           | ug/l |          | date / time      |              |
| Boron   | ND     |           | 200  | 1        | 11/14/2019 11:32 | WG1379526    |
| Calcium | 343000 |           | 1000 | 1        | 11/14/2019 11:32 | WG1379526    |









ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1158426-01,02

# Method Blank (MB)

(MB) R3470723-1 11/10/19 14:16 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Dissolved Solids U 2820 10000









(OS) L1158426-01 11/10/19 14:16 • (DUP) R3470723-3 11/10/19 14:16

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 2280000         | 2630000    | 1        | 14.1    | J3            | 5                 |









(OS) L1158718-12 11/10/19 14:16 • (DUP) R3470723-4 11/10/19 14:16

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Dissolved Solids | 2000000         | 2150000    | 1        | 7.48    | J3            | 5                 |







# Laboratory Control Sample (LCS)

(LCS) R3470723-2 11/10/19 14:16

|                  | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------|--------------|------------|----------|-------------|---------------|
| Analyte          | ug/l         | ug/l       | %        | %           |               |
| Dissolved Solids | 8800000      | 8200000    | 93.2     | 85.0-115    |               |

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1158426-01,02

### Method Blank (MB)

Chloride

Fluoride Sulfate

| (MB) R3470914-1 11/11/19 1 | 11/11/19 13:35 |              |        |  |  |  |  |  |  |
|----------------------------|----------------|--------------|--------|--|--|--|--|--|--|
|                            | MB Result      | MB Qualifier | MB MDL |  |  |  |  |  |  |
| Analyte                    | ug/l           |              | ug/l   |  |  |  |  |  |  |

U

U











(OS) L1159341-03 11/11/19 19:57 • (DUP) R3470914-6 11/11/19 20:12

| (00) 211000 11 00 11/11/10 11 | 0.07 (20.7.10   | .,         |          |         |               |                   |
|-------------------------------|-----------------|------------|----------|---------|---------------|-------------------|
|                               | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                       | ug/l            | ug/l       |          | %       |               | %                 |
| Chloride                      | 1600000         | 1600000    | 1        | 0.00434 | <u>E</u>      | 15                |
| Fluoride                      | 226             | 216        | 1        | 4.12    |               | 15                |
| Sulfate                       | 6650            | 6690       | 1        | 0.667   |               | 15                |

LCS Qualifier

# <sup>5</sup>Sr







### Laboratory Control Sample (LCS)

(LCS) R3470914-2 11/11/19 13:50

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits |
|----------|--------------|------------|----------|-------------|
| Analyte  | ug/l         | ug/l       | %        | %           |
| Chloride | 40000        | 39100      | 97.8     | 80.0-120    |
| Fluoride | 8000         | 7990       | 99.9     | 80.0-120    |
| Sulfate  | 40000        | 40100      | 100      | 80 0-120    |

# 9



# L1158426-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MB RDL

ug/l

1000

100

5000

51.9

9.90

77.4

(OS) L1158426-01 11/11/19 16:07 • (MS) R3470914-3 11/11/19 16:21 • (MSD) R3470914-4 11/11/19 17:04

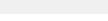
| (US) L1156426-U1 11/11/ | 19 10.07 • (IVIS) R32 | 1/11/11         | 9 10.21 • (IVISL | ) K34/U914-4 | 11/11/19 17.04 |          |          |             |              |               |       |            |
|-------------------------|-----------------------|-----------------|------------------|--------------|----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                         | Spike Amount          | Original Result | MS Result        | MSD Result   | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                 | ug/l                  | ug/l            | ug/l             | ug/l         | %              | %        |          | %           |              |               | %     | %          |
| Chloride                | 50000                 | 74500           | 120000           | 121000       | 91.7           | 92.6     | 1        | 80.0-120    | <u>E</u>     | <u>E</u>      | 0.372 | 15         |
| Fluoride                | 5000                  | ND              | 4950             | 5020         | 97.1           | 98.6     | 1        | 80.0-120    |              |               | 1.52  | 15         |
| Sulfate                 | 50000                 | 1660000         | 1640000          | 1650000      | 0.000          | 0.000    | 1        | 80.0-120    | ΕV           | ΕV            | 0.787 | 15         |

# L1159341-05 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1159341-05  11/11/19 20:41 • (MS) R3470914-7  11/11/19 20: | (OS) L | L1159341-05 | 11/11/19 20:41 • | (MS) R3470914-7 | 11/11/19 20:55 |
|------------------------------------------------------------------|--------|-------------|------------------|-----------------|----------------|
|------------------------------------------------------------------|--------|-------------|------------------|-----------------|----------------|

| (03) [1139341-03 11/11/19 2 | ` ,          |                 |           | MC D.   | Dilenter | De a Lincia | MC Olifi |
|-----------------------------|--------------|-----------------|-----------|---------|----------|-------------|----------|
|                             | Spike Amount | Original Result | M2 Kesult | MS Rec. | Dilution | Rec. Limits | MS Qual  |
| Analyte                     | ug/l         | ug/l            | ug/l      | %       |          | %           |          |
| Chloride                    | 50000        | 373000          | 400000    | 54.3    | 1        | 80.0-120    | EV       |
| Fluoride                    | 5000         | 547             | 5090      | 90.9    | 1        | 80.0-120    |          |

ONE LAB. NATIONWIDE.


Wet Chemistry by Method 9056A

L1158426-01,02

# L1159341-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1159341-05 11/11/19 20:41 • (MS) R3470914-7 11/11/19 20:55

|         | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
|---------|--------------|-----------------|-----------|---------|----------|-------------|--------------|
| Analyte | ug/l         | ug/l            | ug/l      | %       |          | %           |              |
| Sulfate | 50000        | 24800           | 72600     | 95.5    | 1        | 80.0-120    |              |



















ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1158426-01,02

### Method Blank (MB)

| (MB) R3471999-1 11/14/19 10:24 |           |              |        |        |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |  |  |
| Boron                          | U         |              | 12.6   | 200    |  |  |  |
| Calcium                        | U         |              | 46.3   | 1000   |  |  |  |







# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R34/1999-2 11/14/19 | 10:27 • (LCSD) | R34/1999-3 11 | /14/19 10:29 |          |           |             |               |                |       |            |
|---------------------------|----------------|---------------|--------------|----------|-----------|-------------|---------------|----------------|-------|------------|
|                           | Spike Amount   | LCS Result    | LCSD Result  | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l           | ug/l          | ug/l         | %        | %         | %           |               |                | %     | %          |
| Boron                     | 1000           | 941           | 939          | 94.1     | 93.9      | 80.0-120    |               |                | 0.161 | 20         |
| Calcium                   | 10000          | 9620          | 9580         | 96.2     | 95.8      | 80 0-120    |               |                | 0.424 | 20         |









PAGE:

10 of 13

# L1158426-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1158426-01 11/14/19 1 | 10:32 • (MS) R34 | 471999-5 11/14/ | /19 10:38 • (MS | D) R3471999-6 | 11/14/19 10:41 |          |          |             |              |               |        |            |
|-----------------------------|------------------|-----------------|-----------------|---------------|----------------|----------|----------|-------------|--------------|---------------|--------|------------|
|                             | Spike Amount     | Original Result | MS Result       | MSD Result    | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                     | ug/l             | ug/l            | ug/l            | ug/l          | %              | %        |          | %           |              |               | %      | %          |
| Boron                       | 1000             | ND              | 1040            | 1040          | 94.3           | 94.3     | 1        | 75.0-125    |              |               | 0.0321 | 20         |
| Calcium                     | 10000            | 341000          | 344000          | 345000        | 34.4           | 41.9     | 1        | 75.0-125    | V            | V             | 0.218  | 20         |







# **GLOSSARY OF TERMS**



The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description                                                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| E         | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).     |
| J3        | The associated batch QC was outside the established quality control range for precision.                                                        |
| O1        | The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference. |
| V         | The sample concentration is too high to evaluate accurate spike recoveries                                                                      |



















# **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

| Alabama                | 40660       |
|------------------------|-------------|
| Alaska                 | 17-026      |
| Arizona                | AZ0612      |
| Arkansas               | 88-0469     |
| California             | 2932        |
| Colorado               | TN00003     |
| Connecticut            | PH-0197     |
| Florida                | E87487      |
| Georgia                | NELAP       |
| Georgia <sup>1</sup>   | 923         |
| Idaho                  | TN00003     |
| Illinois               | 200008      |
| Indiana                | C-TN-01     |
| Iowa                   | 364         |
| Kansas                 | E-10277     |
| Kentucky 16            | 90010       |
| Kentucky <sup>2</sup>  | 16          |
| Louisiana              | Al30792     |
| Louisiana <sup>1</sup> | LA180010    |
| Maine                  | TN0002      |
| Maryland               | 324         |
| Massachusetts          | M-TN003     |
| Michigan               | 9958        |
| Minnesota              | 047-999-395 |
| Mississippi            | TN00003     |
| Missouri               | 340         |
| Montana                | CERT0086    |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina 1            | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |  |
|--------------------|---------|--|
| A2LA - ISO 17025 5 | 1461.02 |  |
| Canada             | 1461.01 |  |
| EPA-Crypto         | TN00003 |  |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















|                                                                        |                                  |                                                               | Billing Info                   | rmation:                        |                           | T                | 1                        |       | A     | nalvsis / Co                                       | ontaine                                                             | er / Pres                                                   | ervative              |                                |                              | Chain of Custody                                                            | Page of                |
|------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------|---------------------------------|---------------------------|------------------|--------------------------|-------|-------|----------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------------------------------|------------------------------|-----------------------------------------------------------------------------|------------------------|
| SCS Engineers - KS  8575 W. 110th Street                               |                                  | Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 |                                |                                 |                           |                  |                          |       |       |                                                    |                                                                     |                                                             | National Co           | inter for Testing & Innovation |                              |                                                                             |                        |
| erland Park, KS 66210                                                  |                                  |                                                               |                                |                                 |                           |                  |                          |       |       |                                                    |                                                                     |                                                             |                       |                                |                              | 12065 Lebanon Rd                                                            | missem.                |
| ort to:                                                                |                                  | 7.5                                                           | 1                              | franks@scsengine<br>@kcpl.com;  |                           | -1               | DPres                    | 18    |       |                                                    |                                                                     |                                                             |                       | 1                              |                              | Mount Juliet, TN 37<br>Phone: 615-758-585<br>Phone: 800-767-585             | 8 48 20 CPG            |
| oject EVERGY<br>Scription: KCPL - Montrose Ge                          | nerating St                      | City/State<br>Collected:                                      | MONTR                          | EOSE, MC                        | Please Circ               |                  | PE-N                     | V     |       |                                                    |                                                                     |                                                             |                       |                                |                              | Fax: 615-758-5859                                                           | 5(24)                  |
| one: 913-681-0030<br>x: 913-681-0012                                   | Client Project # 27213168.1      | 7                                                             |                                | Lab Project # AQUAOPKS-MONTROSE |                           | 125mlHDPE-NoPres | E-HNO3                   | S     |       |                                                    |                                                                     |                                                             |                       | B163                           |                              |                                                                             |                        |
| G- Pena Fjor                                                           | enat for the se                  | NoPre                                                         |                                |                                 |                           |                  | Acctnum: AC              |       |       |                                                    |                                                                     |                                                             |                       |                                |                              |                                                                             |                        |
| ollected by (signature):                                               |                                  | IDPE-                                                         |                                |                                 |                           |                  | Prelogin: <b>P736911</b> |       |       |                                                    |                                                                     |                                                             |                       |                                |                              |                                                                             |                        |
| Immediately Packed on Ice N Y X                                        | Next Day Two Day Three Da        | 10 0                                                          | y (Rad Only)<br>Day (Rad Only) |                                 | Date Results Needed No. 9 | - 6010<br>50mlH  |                          |       |       |                                                    | PM: 206 - Jeff Carr PB: Shipped Via:                                |                                                             |                       |                                |                              |                                                                             |                        |
| Sample ID                                                              | Comp/Grab                        | Matrix *                                                      | Depth                          | Date                            | Time                      | Cnti             | Anions                   | B, Ca | TDS 2 |                                                    |                                                                     |                                                             |                       |                                | ب ماده                       | Remarks                                                                     | Sample # (lab only)    |
| MW-506                                                                 | GRAB                             | GW                                                            |                                | 11/5/19                         | 1155                      | 3                |                          | X     | X     |                                                    |                                                                     |                                                             |                       |                                |                              |                                                                             | -G                     |
| MW-506 MS/MSD                                                          | 1                                | GW                                                            |                                |                                 | 1205                      | 3                | X                        | X     | X     |                                                    |                                                                     | ja 1                                                        |                       |                                |                              |                                                                             |                        |
| DUPLICATE                                                              | 1                                | GW                                                            |                                | 14                              | 1200                      | 3                | X                        | X     | X     |                                                    |                                                                     |                                                             |                       |                                | 22/2                         |                                                                             | -0)                    |
|                                                                        |                                  | 1                                                             |                                |                                 |                           |                  |                          |       |       |                                                    |                                                                     |                                                             |                       |                                |                              | Line Continue in process continue                                           |                        |
|                                                                        |                                  | Observation of                                                |                                | e samene                        | The second                |                  |                          |       |       |                                                    |                                                                     |                                                             |                       |                                | 23.07                        |                                                                             |                        |
|                                                                        |                                  | F 17 18 380                                                   |                                | A Section 1                     |                           |                  |                          |       |       |                                                    |                                                                     | 197 A                                                       |                       |                                |                              | and the second                                                              |                        |
|                                                                        | 24.5                             |                                                               |                                |                                 |                           |                  |                          |       |       |                                                    | Y .                                                                 |                                                             |                       |                                |                              |                                                                             |                        |
| 1 2 2 2 2 3 1 1 2 7 m                                                  |                                  |                                                               |                                |                                 |                           |                  |                          |       |       | 172.4                                              |                                                                     | 79.3                                                        |                       |                                |                              |                                                                             |                        |
| * Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay | Remarks:                         |                                                               |                                |                                 |                           |                  |                          |       |       | pH _<br>Flow_                                      |                                                                     | Tem                                                         | rammin application of | COC                            | Seal Property Signed, les ar | ole Receipt (<br>resent/Intact<br>/Accurate:<br>rive intact:<br>ttles used: | checklist              |
| ww - WasteWater Dw - Drinking Water OT - Other                         | Samples returned via: Tracking # |                                                               |                                |                                 |                           | SW               |                          |       | A-    |                                                    | Sufficient volume sent: Y N  If Applicable  VOA Zero Headspace: Y N |                                                             |                       |                                |                              |                                                                             |                        |
| Relinquished by : (Signature)                                          | 1_                               | Date:                                                         | 1./19                          | Time: 1/22 4                    | Received by: (Sign        | nature)          | ure)                     |       |       | Trip Blank Received: Yes / No<br>HCL / MeoH<br>TBR |                                                                     | Preservation Correct/Checked: Y N<br>RAD Screen <0.5 mR/hr: |                       |                                |                              |                                                                             |                        |
| Relinquished by: (Signature)                                           |                                  | Date:                                                         | 119                            | Time: 15/00                     | Received by: (Sign        | nature)          |                          |       |       | Temp: 43                                           |                                                                     |                                                             | tles Received:        | If pre                         | eservatio                    | on required by Lo                                                           | ogin: Date/Time        |
| Relinquished by : (Signature)                                          |                                  | Date:                                                         | 119                            | Time:                           | Received for lab          | by: (Sig         | nature)                  |       |       | Date:                                              | 7                                                                   | Tim                                                         | ne:                   | Hold                           |                              |                                                                             | Condition:<br>NCF / OK |

# ATTACHMENT 2 Statistical Analyses

# **ATTACHMENT 2-1**

Fall 2018 Semiannual Detection Monitoring Statistical Analyses

#### **MEMORANDUM**

March 29, 2019 Revised June 3, 2019

To: Montrose Generating Station

400 SW Highway P Clinton, MO 64735

**Kansas City Power & Light Company** 

From: SCS Engineers



Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 19, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on December 31, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 10, 2019 and March 13, 2019.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit. The prediction limit for chloride in monitoring well MW-605 is 50.32 mg/L. The detection monitoring sample was reported at 51.7 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 50.9 mg/L. The second verification re-sample was collected on March 13, 2019 with a result of 52.4 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring well MW-605 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for chloride in monitoring well MW-605.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas<sup>™</sup> Output:

Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result,



Montrose Generating Station
Determination of Statistically Significant Increases
CCR Landfill
March 29, 2019
Revised June 3, 2019
Page 2 of 2

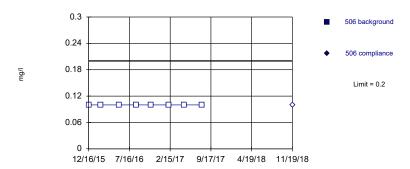
1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

# Attachment 2: Sanitas $^{\text{TM}}$ Configuration Settings:

Screen shots of the applicable Sanitas<sup>TM</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions                                                               |
|--------------------|------------------|-----------------------|------------------------------------------------------------------------------------|
| 1                  | 06/3/19          | Text in<br>Memorandum | Corrected the parameter "calcium" in the last paragraph of page one to "chloride". |
|                    |                  |                       |                                                                                    |
|                    |                  |                       |                                                                                    |
|                    |                  |                       |                                                                                    |
|                    |                  |                       |                                                                                    |
|                    |                  |                       |                                                                                    |

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill March 29, 2019 Revised June 3, 2019


# ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

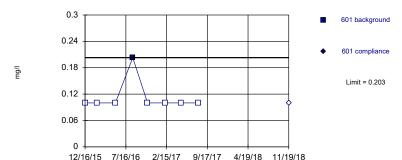
Within Limit

**Prediction Limit** Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

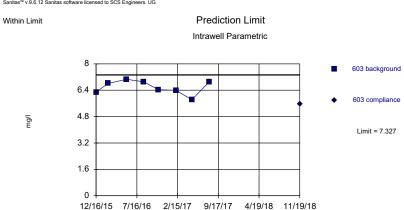
> Constituent: Boron Analysis Run 3/27/2019 11:19 AM View: LF CCR III


Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

**Prediction Limit** Within Limit Intrawell Parametric 602 background 4.32 602 compliance 3.24 Limit = 5.31 2.16 1.08 12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18

Background Data Summary: Mean=4.794, Std. Dev.=0.2855, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9261, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG


**Prediction Limit** Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/27/2019 11:19 AM View: LF CCR III

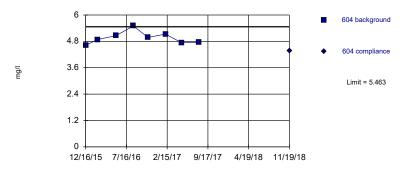
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=6.576, Std. Dev.=0.415, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9214, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506  |  |
|------------|------|------|--|
| 12/16/2015 | <0.2 |      |  |
| 2/16/2016  | <0.2 |      |  |
| 5/23/2016  | <0.2 |      |  |
| 8/22/2016  | <0.2 |      |  |
| 11/8/2016  | <0.2 |      |  |
| 2/7/2017   | <0.2 |      |  |
| 5/1/2017   | <0.2 |      |  |
| 7/31/2017  | <0.2 |      |  |
| 11/19/2018 |      | <0.2 |  |

|            | 601   | 601  |
|------------|-------|------|
| 12/16/2015 | <0.2  |      |
| 2/16/2016  | <0.2  |      |
| 5/23/2016  | <0.2  |      |
| 8/22/2016  | 0.203 |      |
| 11/8/2016  | <0.2  |      |
| 2/7/2017   | <0.2  |      |
| 5/2/2017   | <0.2  |      |
| 7/31/2017  | <0.2  |      |
| 11/19/2018 |       | <0.2 |

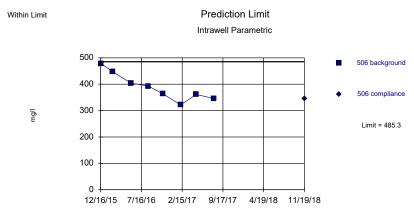

|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 5.08 |      |
| 2/16/2016  | 5.04 |      |
| 5/23/2016  | 5.17 |      |
| 8/22/2016  | 4.62 |      |
| 11/7/2016  | 4.84 |      |
| 2/7/2017   | 4.62 |      |
| 5/2/2017   | 4.35 |      |
| 7/31/2017  | 4.63 |      |
| 11/19/2018 |      | 4.32 |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 6.28 |      |
| 2/16/2016  | 6.81 |      |
| 5/23/2016  | 7.06 |      |
| 8/22/2016  | 6.91 |      |
| 11/7/2016  | 6.43 |      |
| 2/7/2017   | 6.39 |      |
| 5/2/2017   | 5.83 |      |
| 7/31/2017  | 6.9  |      |
| 11/19/2018 |      | 5.56 |

oalitas V.S.U. 12 Galitas soltware ilcensed to GGG Engineers. O

Within Limit

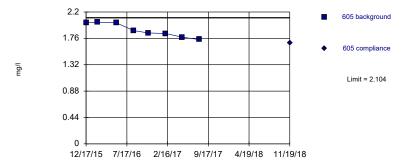





Background Data Summary: Mean=4.958, Std. Dev.=0.2791, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

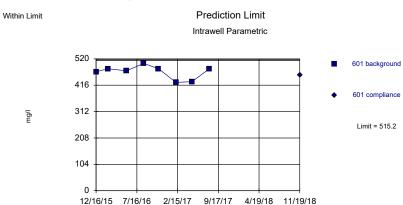

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=389.5, Std. Dev.=52.94, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9493, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=1.896, Std. Dev.=0.1145, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8853, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 3/27/2019 11:19 AM View: LF CCR III

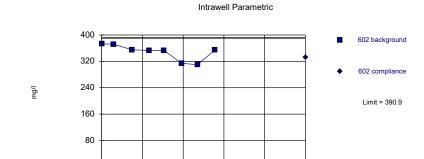
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=467.9, Std. Dev =26.16, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8556, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 4.62 |      |
| 2/16/2016  | 4.88 |      |
| 5/23/2016  | 5.06 |      |
| 8/22/2016  | 5.5  |      |
| 11/7/2016  | 4.98 |      |
| 2/7/2017   | 5.13 |      |
| 5/2/2017   | 4.74 |      |
| 7/31/2017  | 4.75 |      |
| 11/19/2018 |      | 4.36 |


|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 | 2.02 |      |
| 2/16/2016  | 2.03 |      |
| 5/23/2016  | 2.02 |      |
| 8/22/2016  | 1.89 |      |
| 11/7/2016  | 1.85 |      |
| 2/7/2017   | 1.84 |      |
| 5/2/2017   | 1.78 |      |
| 7/31/2017  | 1.74 |      |
| 11/19/2018 |      | 1.68 |

|            | 506 | 506 |
|------------|-----|-----|
| 12/16/2015 | 479 |     |
| 2/16/2016  | 448 |     |
| 5/23/2016  | 404 |     |
| 8/22/2016  | 393 |     |
| 11/8/2016  | 363 |     |
| 2/7/2017   | 322 |     |
| 5/1/2017   | 361 |     |
| 7/31/2017  | 346 |     |
| 11/19/2018 |     | 346 |

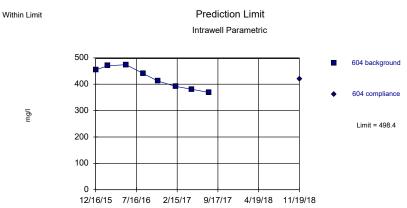
|            | 601 | 601 |
|------------|-----|-----|
| 12/16/2015 | 469 |     |
| 2/16/2016  | 481 |     |
| 5/23/2016  | 473 |     |
| 8/22/2016  | 502 |     |
| 11/8/2016  | 481 |     |
| 2/7/2017   | 427 |     |
| 5/2/2017   | 430 |     |
| 7/31/2017  | 480 |     |
| 11/19/2018 |     | 456 |

Within Limit

to SCS Engineers. UG
Sanitas\*\*v.9.6.12 Sanitas software licensed to SCS Engineers. UG



12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18


**Prediction Limit** 

Background Data Summary: Mean=348, Std. Dev.=23.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha= 0.01, calculated = 0.8221, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

## Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=424, Std. Dev.=41.08, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Intrawell Parametric

460

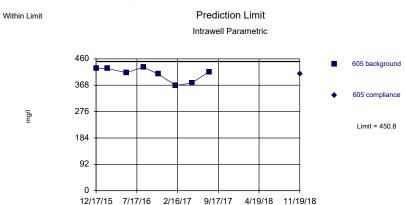
460

603 background

603 compliance

Limit = 459.8

**Prediction Limit** 


Background Data Summary: Mean=431, Std. Dev =15.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8323, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

## Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit



Background Data Summary: Mean=407.6, Std. Dev.=23.86, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8546, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|   |            | 602 | 602 |
|---|------------|-----|-----|
| • | 12/16/2015 | 373 |     |
| 2 | 2/16/2016  | 372 |     |
| Ę | 5/23/2016  | 355 |     |
| 8 | 3/22/2016  | 353 |     |
| • | 11/7/2016  | 353 |     |
| 2 | 2/7/2017   | 314 |     |
| Ę | 5/2/2017   | 310 |     |
| 7 | 7/31/2017  | 354 |     |
|   | 11/19/2018 |     | 332 |

|            | 603 | 603 |
|------------|-----|-----|
| 12/16/2015 | 444 |     |
| 2/16/2016  | 445 |     |
| 5/23/2016  | 429 |     |
| 8/22/2016  | 445 |     |
| 11/7/2016  | 437 |     |
| 2/7/2017   | 409 |     |
| 5/2/2017   | 405 |     |
| 7/31/2017  | 434 |     |
| 11/19/2018 |     | 423 |

|            | 604 | 604 |
|------------|-----|-----|
| 12/16/2015 | 454 |     |
| 2/16/2016  | 470 |     |
| 5/23/2016  | 474 |     |
| 8/22/2016  | 440 |     |
| 11/7/2016  | 412 |     |
| 2/7/2017   | 392 |     |
| 5/2/2017   | 381 |     |
| 7/31/2017  | 369 |     |
| 11/19/2018 |     | 420 |

|            | 605 | 605 |
|------------|-----|-----|
| 12/17/2015 | 427 |     |
| 2/16/2016  | 426 |     |
| 5/23/2016  | 412 |     |
| 8/22/2016  | 431 |     |
| 11/7/2016  | 407 |     |
| 2/7/2017   | 367 |     |
| 5/2/2017   | 376 |     |
| 7/31/2017  | 415 |     |
| 11/19/2018 |     | 407 |

Within Limit Prediction Limit



Intrawell Parametric

Background Data Summary: Mean=81.88, Std. Dev.=8.982, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9113, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18

Constituent: Chloride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

4.8

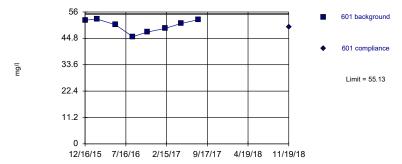
4.8

602 background

602 compliance

Limit = 4.777

1.92


0.96

0.12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18

Background Data Summary: Mean=4.395, Std. Dev.=0.2111, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9535, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG





Background Data Summary: Mean=50.24, Std. Dev.=2.703, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9998, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

603 background

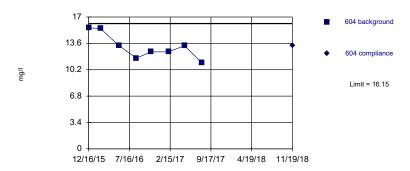
603 compliance

Limit = 8.088

Background Data Summary: Mean=7.655, Std. Dev.=0.239, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9121, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 92.4 |      |
| 2/16/2016  | 97.2 |      |
| 5/23/2016  | 84.7 |      |
| 8/22/2016  | 77.5 |      |
| 11/8/2016  | 73.1 |      |
| 2/7/2017   | 79   |      |
| 5/1/2017   | 79.2 |      |
| 7/31/2017  | 71.9 |      |
| 11/19/2018 |      | 83.1 |

|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 52.5 |      |
| 2/16/2016  | 53   |      |
| 5/23/2016  | 50.6 |      |
| 8/22/2016  | 45.5 |      |
| 11/8/2016  | 47.5 |      |
| 2/7/2017   | 49   |      |
| 5/2/2017   | 51.1 |      |
| 7/31/2017  | 52.7 |      |
| 11/19/2018 |      | 49.6 |
|            |      |      |

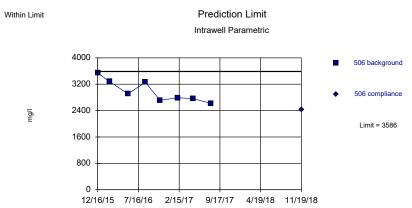

|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 4.48 |      |
| 2/16/2016  | 4.38 |      |
| 5/23/2016  | 4.29 |      |
| 8/22/2016  | 4.65 |      |
| 11/7/2016  | 4.35 |      |
| 2/7/2017   | 4.04 |      |
| 5/2/2017   | 4.69 |      |
| 7/31/2017  | 4.28 |      |
| 11/19/2018 |      | 3.97 |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 7.33 |      |
| 2/16/2016  | 7.65 |      |
| 5/23/2016  | 7.64 |      |
| 8/22/2016  | 7.9  |      |
| 11/7/2016  | 7.67 |      |
| 2/7/2017   | 7.35 |      |
| 5/2/2017   | 7.67 |      |
| 7/31/2017  | 8.03 |      |
| 11/19/2018 |      | 6.76 |
|            |      |      |

•

Within Limit






Background Data Summary: Mean=13.19, Std. Dev.=1.635, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9029, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

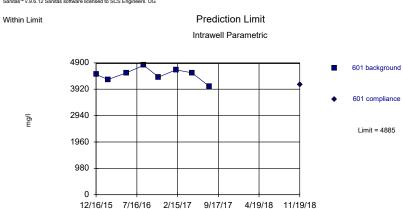
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2984, Std. Dev.=332.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=47.18, Std. Dev.=1.738, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9293, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

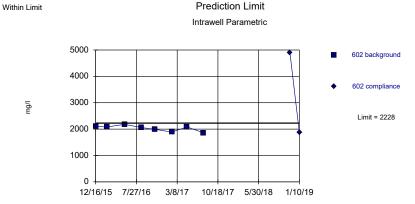
Constituent: Chloride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=4458, Std. Dev =236.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

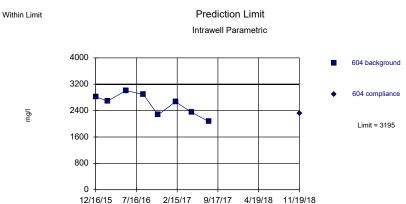

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 15.6 |      |
| 2/16/2016  | 15.5 |      |
| 5/23/2016  | 13.3 |      |
| 8/22/2016  | 11.7 |      |
| 11/7/2016  | 12.5 |      |
| 2/7/2017   | 12.5 |      |
| 5/2/2017   | 13.3 |      |
| 7/31/2017  | 11.1 |      |
| 11/19/2018 |      | 13.3 |
|            |      |      |

|            | 605  | 605  |                            |  |  |  |
|------------|------|------|----------------------------|--|--|--|
| 12/17/2015 | 43.9 |      |                            |  |  |  |
| 2/16/2016  | 45.7 |      |                            |  |  |  |
| 5/23/2016  | 47.3 |      |                            |  |  |  |
| 8/22/2016  | 46.5 |      |                            |  |  |  |
| 11/7/2016  | 48.2 |      |                            |  |  |  |
| 2/7/2017   | 48   |      |                            |  |  |  |
| 5/2/2017   | 48.7 |      |                            |  |  |  |
| 7/31/2017  | 49.1 |      |                            |  |  |  |
| 11/19/2018 |      | 51.7 |                            |  |  |  |
| 1/10/2019  |      | 50.9 | 1st verification re-sample |  |  |  |
| 3/13/2019  |      | 52.4 | 2nd verification re-sample |  |  |  |
|            |      |      |                            |  |  |  |

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 3540 |      |
| 2/16/2016  | 3280 |      |
| 5/23/2016  | 2910 |      |
| 8/22/2016  | 3260 |      |
| 11/8/2016  | 2710 |      |
| 2/7/2017   | 2790 |      |
| 5/1/2017   | 2760 |      |
| 7/31/2017  | 2620 |      |
| 11/19/2018 |      | 2430 |

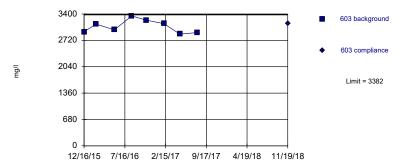
|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 4470 |      |
| 2/16/2016  | 4280 |      |
| 5/23/2016  | 4530 |      |
| 8/22/2016  | 4810 |      |
| 11/8/2016  | 4370 |      |
| 2/7/2017   | 4640 |      |
| 5/2/2017   | 4530 |      |
| 7/31/2017  | 4030 |      |
| 11/19/2018 |      | 4100 |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG




Background Data Summary: Mean=2030, Std. Dev.=109.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9195, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/27/2019 11:19 AM View: LF CCR III

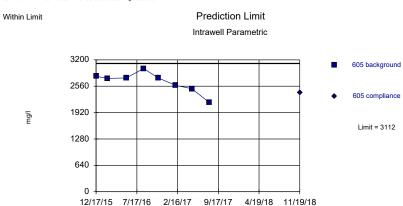

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

## Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2596, Std. Dev.=330.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9393, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=3076, Std. Dev.=169.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

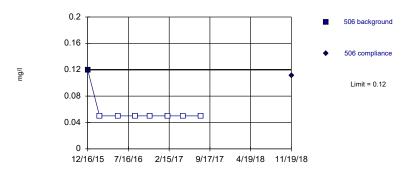
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2664, Std. Dev.=247.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 602  | 602  |                            |
|------------|------|------|----------------------------|
| 12/16/2015 | 2100 |      |                            |
| 2/16/2016  | 2080 |      |                            |
| 5/23/2016  | 2180 |      |                            |
| 8/22/2016  | 2060 |      |                            |
| 11/7/2016  | 1990 |      |                            |
| 2/7/2017   | 1890 |      |                            |
| 5/2/2017   | 2080 |      |                            |
| 7/31/2017  | 1860 |      |                            |
| 11/19/2018 |      | 4900 |                            |
| 1/10/2019  |      | 1870 | 1st verification re-sample |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 2940 |      |
| 2/16/2016  | 3140 |      |
| 5/23/2016  | 2990 |      |
| 8/22/2016  | 3350 |      |
| 11/7/2016  | 3240 |      |
| 2/7/2017   | 3150 |      |
| 5/2/2017   | 2880 |      |
| 7/31/2017  | 2920 |      |
| 11/19/2018 |      | 3160 |


|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 2820 |      |
| 2/16/2016  | 2690 |      |
| 5/23/2016  | 3010 |      |
| 8/22/2016  | 2890 |      |
| 11/7/2016  | 2270 |      |
| 2/7/2017   | 2670 |      |
| 5/2/2017   | 2350 |      |
| 7/31/2017  | 2070 |      |
| 11/19/2018 |      | 2320 |

|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 | 2800 |      |
| 2/16/2016  | 2750 |      |
| 5/23/2016  | 2760 |      |
| 8/22/2016  | 2990 |      |
| 11/7/2016  | 2760 |      |
| 2/7/2017   | 2580 |      |
| 5/2/2017   | 2500 |      |
| 7/31/2017  | 2170 |      |
| 11/19/2018 |      | 2410 |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

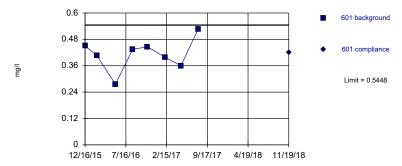
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

0.2
0.16
0.12
0.08
0.08
0.04
Limit = 0.1849

12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18


Background Data Summary (after Aitchison's Adjustment): Mean=0.0625, Std. Dev.=0.0676, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7877, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.4123, Std. Dev.=0.07322, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilki @alpha = 0.01, calculated = 0.9578, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

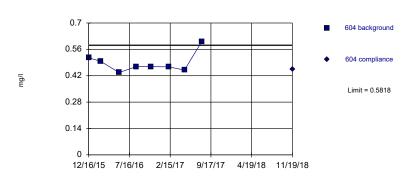
Constituent: Fluoride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.5066, Std. Dev\_=0.0944, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9541, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506   |
|------------|------|-------|
| 12/16/2015 | 0.12 |       |
| 2/16/2016  | <0.1 |       |
| 5/23/2016  | <0.1 |       |
| 8/22/2016  | <0.1 |       |
| 11/8/2016  | <0.1 |       |
| 2/7/2017   | <0.1 |       |
| 5/1/2017   | <0.1 |       |
| 7/31/2017  | <0.1 |       |
| 11/19/2018 |      | 0.111 |


|            | 601   | 601  |
|------------|-------|------|
| 12/16/2015 | 0.45  |      |
| 2/16/2016  | 0.406 |      |
| 5/23/2016  | 0.276 |      |
| 8/22/2016  | 0.435 |      |
| 11/8/2016  | 0.446 |      |
| 2/7/2017   | 0.399 |      |
| 5/2/2017   | 0.36  |      |
| 7/31/2017  | 0.526 |      |
| 11/19/2018 |       | 0.42 |

|            | 602   | 602  |
|------------|-------|------|
| 12/16/2015 | 0.148 |      |
| 2/16/2016  | <0.1  |      |
| 5/23/2016  | <0.1  |      |
| 8/22/2016  | 0.114 |      |
| 11/7/2016  | <0.1  |      |
| 2/7/2017   | <0.1  |      |
| 5/2/2017   | 0.122 |      |
| 7/31/2017  | 0.116 |      |
| 11/19/2018 |       | <0.1 |

|            | 603   | 603   |
|------------|-------|-------|
| 12/16/2015 | 0.673 |       |
| 2/16/2016  | 0.552 |       |
| 5/23/2016  | 0.523 |       |
| 8/22/2016  | 0.431 |       |
| 11/7/2016  | 0.442 |       |
| 2/7/2017   | 0.459 |       |
| 5/2/2017   | 0.585 |       |
| 7/31/2017  | 0.388 |       |
| 11/19/2018 |       | 0.645 |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



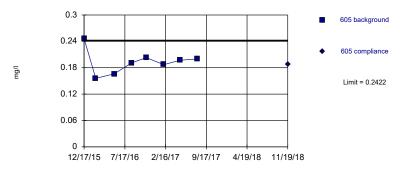
Background Data Summary: Mean=0.4879, Std. Dev=0.05191, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8289, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits


Prediction Limit
Intrawell Non-parametric

506 background

506 compliance
Limit = 9.26
Limit = 5.11

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.02358. Individual comparison alpha = 0.01182 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=0.1933, Std. Dev.=0.02702, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Mormality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9254, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188.

Constituent: Fluoride Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

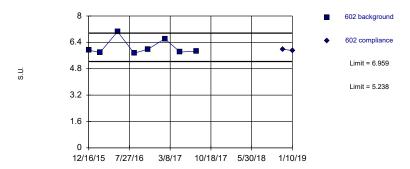
5.8

601 background
601 compliance
Limit = 5.763
2.32
1.16
0
12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18

Background Data Summary: Mean=5.429, Std. Dev.=0.1846, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9556, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604   | 604   |
|------------|-------|-------|
| 12/16/2015 | 0.515 |       |
| 2/16/2016  | 0.497 |       |
| 5/23/2016  | 0.437 |       |
| 8/22/2016  | 0.468 |       |
| 11/7/2016  | 0.468 |       |
| 2/7/2017   | 0.467 |       |
| 5/2/2017   | 0.45  |       |
| 7/31/2017  | 0.601 |       |
| 11/19/2018 |       | 0.453 |

|            | 605   | 605   |
|------------|-------|-------|
| 12/17/2015 | 0.246 |       |
| 2/16/2016  | 0.156 |       |
| 5/23/2016  | 0.166 |       |
| 8/22/2016  | 0.191 |       |
| 11/7/2016  | 0.203 |       |
| 2/7/2017   | 0.187 |       |
| 5/2/2017   | 0.197 |       |
| 7/31/2017  | 0.2   |       |
| 11/19/2018 |       | 0.187 |


|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 5.11 |      |
| 2/16/2016  | 5.56 |      |
| 5/23/2016  | 5.47 |      |
| 8/22/2016  | 5.57 |      |
| 11/8/2016  | 6.04 |      |
| 2/7/2017   | 9.26 |      |
| 5/1/2017   | 5.51 |      |
| 7/31/2017  | 5.51 |      |
| 11/19/2018 |      | 5.55 |

|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 5.12 |      |
| 2/16/2016  | 5.73 |      |
| 5/23/2016  | 5.58 |      |
| 8/22/2016  | 5.44 |      |
| 11/8/2016  | 5.26 |      |
| 2/7/2017   | 5.41 |      |
| 5/2/2017   | 5.45 |      |
| 7/31/2017  | 5.44 |      |
| 11/19/2018 |      | 5.48 |

•

Within Limits





Background Data Summary: Mean=6.099, Std. Dev.=0.4755, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7552, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

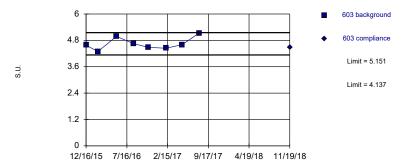
Constituent: pH Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric


604 background
604 compliance
Limit = 6.337
Limit = 5.401

12/16/15 7/16/16 2/15/17 9/17/17 4/19/18 11/19/18

Background Data Summary: Mean=5.869, Std. Dev.=0.2585, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9645, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=4.644, Std. Dev.=0.28, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9182, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

12/17/15 8/9/16

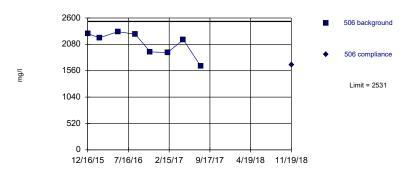
Within Limits

Prediction Limit
Intrawell Parametric

6.2
4.96
605 background
605 compliance
Limit = 5.998
Limit = 5.162

Background Data Summary: Mean=5.58, Std. Dev.=0.2309, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7625, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

4/2/17 11/25/17 7/19/18 3/13/19


|            | 602  | 602  |              |
|------------|------|------|--------------|
| 12/16/2015 | 5.93 |      |              |
| 2/16/2016  | 5.78 |      |              |
| 5/23/2016  | 7.05 |      |              |
| 8/22/2016  | 5.74 |      |              |
| 11/7/2016  | 5.99 |      |              |
| 2/7/2017   | 6.62 |      |              |
| 5/2/2017   | 5.81 |      |              |
| 7/31/2017  | 5.87 |      |              |
| 11/19/2018 |      | 5.98 |              |
| 1/10/2019  |      | 5.9  | extra sample |
|            |      |      |              |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 4.58 |      |
| 2/16/2016  | 4.29 |      |
| 5/23/2016  | 4.98 |      |
| 8/22/2016  | 4.65 |      |
| 11/7/2016  | 4.48 |      |
| 2/7/2017   | 4.44 |      |
| 5/2/2017   | 4.6  |      |
| 7/31/2017  | 5.13 |      |
| 11/19/2018 |      | 4.48 |

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 5.79 |      |
| 2/16/2016  | 5.51 |      |
| 5/23/2016  | 6.3  |      |
| 8/22/2016  | 5.67 |      |
| 11/7/2016  | 6.04 |      |
| 2/7/2017   | 6.1  |      |
| 5/2/2017   | 5.72 |      |
| 7/31/2017  | 5.82 |      |
| 11/19/2018 |      | 5.75 |

|            | 605  | 605  |              |  |  |
|------------|------|------|--------------|--|--|
| 12/17/2015 | 5.57 |      |              |  |  |
| 2/16/2016  | 5.34 |      |              |  |  |
| 5/23/2016  | 6.11 |      |              |  |  |
| 8/22/2016  | 5.42 |      |              |  |  |
| 11/7/2016  | 5.49 |      |              |  |  |
| 2/7/2017   | 5.58 |      |              |  |  |
| 5/2/2017   | 5.58 |      |              |  |  |
| 7/31/2017  | 5.55 |      |              |  |  |
| 11/19/2018 |      | 5.5  |              |  |  |
| 1/10/2019  |      | 5.79 | extra sample |  |  |
| 3/13/2019  |      | 5.73 | extra sample |  |  |

Within Limit Prediction Limit
Intrawell Parametric

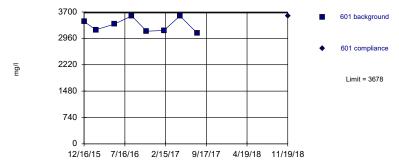


Background Data Summary: Mean=2098, Std. Dev.=239.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.871, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

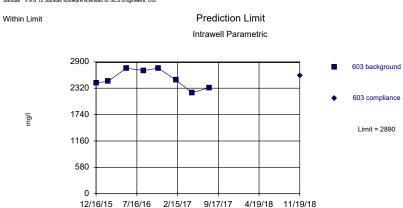

Within Limit Prediction Limit Intrawell Parametric

1600
1280
602 background
602 compliance
Limit = 1596

Background Data Summary: Mean=1370, Std. Dev.=124.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=3328, Std. Dev.=193.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8736, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/27/2019 11:19 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2524, Std. Dev =202.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 2290 |      |
| 2/16/2016  | 2210 |      |
| 5/23/2016  | 2330 |      |
| 8/22/2016  | 2280 |      |
| 11/8/2016  | 1930 |      |
| 2/7/2017   | 1920 |      |
| 5/1/2017   | 2170 |      |
| 7/31/2017  | 1650 |      |
| 11/19/2018 |      | 1680 |


|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 3430 |      |
| 2/16/2016  | 3200 |      |
| 5/23/2016  | 3360 |      |
| 8/22/2016  | 3590 |      |
| 11/8/2016  | 3160 |      |
| 2/7/2017   | 3180 |      |
| 5/2/2017   | 3590 |      |
| 7/31/2017  | 3110 |      |
| 11/19/2018 |      | 3590 |

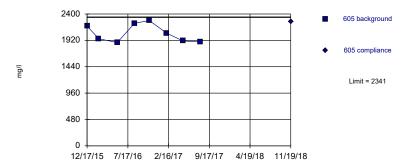
|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 1540 |      |
| 2/16/2016  | 1410 |      |
| 5/23/2016  | 1490 |      |
| 8/22/2016  | 1320 |      |
| 11/7/2016  | 1370 |      |
| 2/7/2017   | 1430 |      |
| 5/2/2017   | 1190 |      |
| 7/31/2017  | 1210 |      |
| 11/19/2018 |      | 1430 |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 2440 |      |
| 2/16/2016  | 2470 |      |
| 5/23/2016  | 2760 |      |
| 8/22/2016  | 2710 |      |
| 11/7/2016  | 2760 |      |
| 2/7/2017   | 2500 |      |
| 5/2/2017   | 2220 |      |
| 7/31/2017  | 2330 |      |
| 11/19/2018 |      | 2590 |

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric




Background Data Summary: Mean=1935, Std. Dev.=258.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9413, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 3/27/2019 11:20 AM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=2046, Std. Dev.=163.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 2060 |      |
| 2/16/2016  | 2080 |      |
| 5/23/2016  | 1990 |      |
| 8/22/2016  | 2290 |      |
| 11/7/2016  | 2070 |      |
| 2/7/2017   | 1810 |      |
| 5/2/2017   | 1710 |      |
| 7/31/2017  | 1470 |      |
| 11/19/2018 |      | 2110 |

|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 | 2180 |      |
| 2/16/2016  | 1950 |      |
| 5/23/2016  | 1880 |      |
| 8/22/2016  | 2230 |      |
| 11/7/2016  | 2280 |      |
| 2/7/2017   | 2050 |      |
| 5/2/2017   | 1910 |      |
| 7/31/2017  | 1890 |      |
| 11/19/2018 |      | 2260 |

|                         |             | Montrose G | enerating Stat | ion UWL     | Client: SCS Engin | eers Data: | Montro | se Pr | inted 3/27/2 | 019, 11:23 AM |              |                       |
|-------------------------|-------------|------------|----------------|-------------|-------------------|------------|--------|-------|--------------|---------------|--------------|-----------------------|
| <u>Constituent</u>      | <u>Well</u> | Upper Lim. | Lower Lim.     | <u>Date</u> |                   | Observ.    | Sig.   | Bg N  | %NDs         | Transform     | <u>Alpha</u> | Method                |
| Boron (mg/l)            | 506         | 0.2        | n/a            | 11/19/20    | 18                | 0.1ND      | No     | 8     | 100          | n/a           | 0.005912     | NP Intra (NDs) 1 of 3 |
| Boron (mg/l)            | 601         | 0.203      | n/a            | 11/19/20    | 18                | 0.1ND      | No     | 8     | 87.5         | n/a           | 0.005912     | NP Intra (NDs) 1 of 3 |
| Boron (mg/l)            | 602         | 5.31       | n/a            | 11/19/20    | 18                | 4.32       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 603         | 7.327      | n/a            | 11/19/20    | 18                | 5.56       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 604         | 5.463      | n/a            | 11/19/20    | 18                | 4.36       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 605         | 2.104      | n/a            | 11/19/20    | 18                | 1.68       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 506         | 485.3      | n/a            | 11/19/20    | 18                | 346        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 601         | 515.2      | n/a            | 11/19/20    | 18                | 456        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 602         | 390.9      | n/a            | 11/19/20    | 18                | 332        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 603         | 459.8      | n/a            | 11/19/20    | 18                | 423        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 604         | 498.4      | n/a            | 11/19/20    | 18                | 420        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 605         | 450.8      | n/a            | 11/19/20    | 18                | 407        | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 506         | 98.13      | n/a            | 11/19/20    | 18                | 83.1       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 601         | 55.13      | n/a            | 11/19/20    | 18                | 49.6       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 602         | 4.777      | n/a            | 11/19/20    | 18                | 3.97       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 603         | 8.088      | n/a            | 11/19/20    | 18                | 6.76       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 604         | 16.15      | n/a            | 11/19/20    | 18                | 13.3       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 605         | 50.32      | n/a            | 3/13/2019   | 9                 | 52.4       | Yes    | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506         | 3586       | n/a            | 11/19/20    | 18                | 2430       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601         | 4885       | n/a            | 11/19/20    | 18                | 4100       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 602         | 2228       | n/a            | 1/10/2019   | 9                 | 1870       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 603         | 3382       | n/a            | 11/19/20    | 18                | 3160       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 604         | 3195       | n/a            | 11/19/201   | 18                | 2320       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 605         | 3112       | n/a            | 11/19/20    | 18                | 2410       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 506         | 0.12       | n/a            | 11/19/20    | 18                | 0.111      | No     | 8     | 87.5         | n/a           | 0.005912     | NP Intra (NDs) 1 of 3 |
| Fluoride (mg/l)         | 601         | 0.5448     | n/a            | 11/19/20    | 18                | 0.42       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 602         | 0.1849     | n/a            | 11/19/20    | 18                | 0.05ND     | No     | 8     | 50           | No            | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 603         | 0.6775     | n/a            | 11/19/20    | 18                | 0.645      | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 604         | 0.5818     | n/a            | 11/19/20    | 18                | 0.453      | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 605         | 0.2422     | n/a            | 11/19/20    | 18                | 0.187      | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 506         | 9.26       | 5.11           | 11/19/20    | 18                | 5.55       | No     | 8     | 0            | n/a           | 0.01182      | NP Intra (normality)  |
| pH (S.U.)               | 601         | 5.763      | 5.095          | 11/19/20    | 18                | 5.48       | No     | 8     | 0            | No            | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 602         | 6.959      | 5.238          | 1/10/2019   |                   | 5.9        | No     | 8     | 0            | No            | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 603         | 5.151      | 4.137          | 11/19/20    |                   | 4.48       | No     | 8     | 0            | No            | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 604         | 6.337      | 5.401          | 11/19/20    |                   | 5.75       | No     | 8     | 0            | No            | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 605         | 5.998      | 5.162          | 3/13/2019   |                   | 5.73       | No     | 8     | 0            | No            | 0.000        | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 506         | 2531       | n/a            | 11/19/201   |                   | 1680       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 601         | 3678       | n/a            | 11/19/20    |                   | 3590       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 602         | 1596       | n/a            | 11/19/20    |                   | 1430       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 603         | 2890       | n/a            | 11/19/20    |                   | 2590       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 604         | 2402       | n/a            | 11/19/20    |                   | 2110       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 605         | 2341       | n/a            | 11/19/201   | 18                | 2260       | No     | 8     | 0            | No            | 0.00188      | Param Intra 1 of 3    |

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill March 29, 2019 Revised June 3, 2019

#### ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Data         | Output       | Trend Test    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|--------------|--------------|---------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
| Fuelud       | l- d-t- fl   |               |             |                |               |              |       |        |             |
| Exclud       | le data flag | S             |             |                |               |              |       |        |             |
| Data         | Reading O    | ptions        |             |                |               |              |       |        |             |
| ● In         | dividual Ob  | servations    |             |                |               |              |       |        |             |
| $\bigcirc$ M | lean of Eac  | :h:           | O Month     |                |               |              |       |        |             |
| $\bigcirc$ M | ledian of E  | ach:          | ○ Seasor    | n              |               |              |       |        |             |
| Non-l        | Detect / Tr  | ace Handling. |             |                |               |              |       |        |             |
|              |              | _             |             |                |               |              |       |        |             |
| Setup        | Seasons      |               |             |                |               |              |       |        |             |
| Aut          | omatically l | Process Resa  | mples       |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |

| Black and White Output                               | ✓ Prompt to Overwrite/Append Summary Tables                |
|------------------------------------------------------|------------------------------------------------------------|
| ✓ Four Plots Per Page                                | Round Limits to 2 Sig. Digits (when not set in data file)  |
| Always Combine Data Pages                            | User-Set Scale                                             |
| ✓ Include Tick Marks on Data Page                    | ✓ Indicate Background Data                                 |
| Use Constituent Name for Graph Title                 | Show Exact Dates                                           |
| ☑ Draw Border Around Text Reports and Data Pages     | ☐ Thick Plot Lines                                         |
| ✓ Enlarge/Reduce Fonts (Graphs): 100%                | 7                                                          |
| ☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%     | Zoom Factor: 200% V                                        |
| ✓ Wide Margins (on reports without explicit setting) | Output Decimal Precision                                   |
| Use CAS# (Not Const. Name)                           | C Less Precision                                           |
| Truncate File Names to 20 Characters                 | Normal Precision                                           |
|                                                      | More Precision                                             |
| Include Limit Lines when found in Database           |                                                            |
| Show Deselected Data on Time Series Lighter V        |                                                            |
| ✓ Show Deselected Data on all Data Pages Light ∨     |                                                            |
| Setup Symbols and Colors                             |                                                            |
|                                                      |                                                            |
| ✓ Store Pri                                          | int Jobs in Multiple Constituent Mode Store All Print Jobs |
|                                                      |                                                            |
| Printer: Adobe PDF                                   | ∨ Printers                                                 |
|                                                      |                                                            |

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

| Data Output Tren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd Test   Control Cht | Prediction Lim   | Tolerance Lim   | Conf/Tol Int                                                           | ANOVA                       | Welchs               | Other Tests |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------|------------------------------------------------------------------------|-----------------------------|----------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                 |                                                                        | nsformation -<br>Use Ladder | of Powers            |             |
| ✓ Test for Normality u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sing Shapiro-Wilk/Fra | ancia v          | at Alpha = 0.01 |                                                                        | Natural Log                 |                      | sfomation   |
| ✓ Use Non-Parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test when Non-Dete    | cts Percent > 5  | 50              | 0                                                                      | Never Tran                  | sform                |             |
| Use Aitchison's Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent ∨ when Non-D      | etects Percent > | 15              | 0                                                                      | Use Specifi                 | c Transfom<br>Natura |             |
| Optional Further Refir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nement: Use Aitchis   | on's v           | hen NDs % >     | 50                                                                     | Use Best W                  | / Statistic          |             |
| Use Poisson Prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on Limit when Non-D   | etects Percent > | 90              |                                                                        | Plot Transfo                | omed Value           | es          |
| Deseasonalize (Intra- and InterWell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                  |                 |                                                                        |                             |                      |             |
| Constituents Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 7                |                 | d Test Mode<br>Deselected Dat                                          | a Lighter                   | ~                    |             |
| Downgradient (Complia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nce) weils.           | 4                | Non-Param       | etric Limit =                                                          | Highest Back                | kground Va           | ilue V      |
| Sampling Plan Comparing Individua 1 of 1 1 1 of 1 of 2 of 4 ("Modified Comparing Individual C |                       | ✓ 1 of 4         | Highes  Most R  | etric Limit wher<br>t/Second High<br>lecent PQL if a<br>lecent Backgro | est Backgro<br>vailable, or | ound Value<br>MDL    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                 |                                                                        |                             |                      |             |

| Data | Output                                                                                                                                                                                                                                                                                                                                                                                          | Trend Test | Control Cht | Prediction Lim | Tolerance Lim   | Conf/Tol Int                                    | ANOVA | Welchs       | Other Tests |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------------|-----------------|-------------------------------------------------|-------|--------------|-------------|--|
| _    | Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney  Use Modified Alpha  2-Tailed Test Mode                                                                                                                                                                                                                                                                                                      |            |             |                |                 |                                                 |       |              |             |  |
| O E  | Outlier Tests  Outlier Screening (fixed alpha of 0.05)  Dixon's at $\alpha = 0.05 \lor \text{or if n} > 22 \lor \text{Rosner's at } \alpha = 0.01 \lor \text{Use EPA Screening to establish Suspected Outliers}$                                                                                                                                                                                |            |             |                |                 |                                                 |       |              |             |  |
| ✓ 1  | <ul> <li>Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat</li> <li>✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1 ✓</li> <li>⑥ Stop if Non-Normal</li> <li>○ Continue with Parametric Test if Non-Normal</li> <li>○ Tukey's if Non-Normal, with IQR Multiplier = 3.0 ✓ Use Ladder of Powers to achieve Best W Stat</li> </ul> |            |             |                |                 |                                                 |       |              |             |  |
| A    | ✓ No Outlier If Less Than 3.0 Times Median  Apply Rules found in Ohio Guidance Document 0715  Combine Background Wells on the Outlier Report                                                                                                                                                                                                                                                    |            |             |                |                 |                                                 |       |              |             |  |
| □ c  |                                                                                                                                                                                                                                                                                                                                                                                                 | ells       |             |                | \(\frac{1}{2}\) | Label Constitution   Label Axes   Note Cation-/ |       | ice (Piper o | nly)        |  |

#### **ATTACHMENT 2-2**

Spring 2019 Semiannual Detection Monitoring Statistical Analyses

#### **MEMORANDUM**

**September 30, 2019** 

To: Montrose Generating Station

400 SW Highway P Clinton, MO 64735

**Kansas City Power & Light Company** 

From: SCS Engineers



Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 21, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on July 3, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 15, 2019 and August 19, 2019.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit in monitoring well MW-605.

| Constituent/Monitoring Well | *UPL  | Observation<br>May 21, 2019 | 1st Verification<br>July 15, 2019 | 2nd Verification<br>August 19, 2019 |  |
|-----------------------------|-------|-----------------------------|-----------------------------------|-------------------------------------|--|
| Chloride                    |       |                             |                                   |                                     |  |
| 605                         | 50.32 | 55.4                        | 57.8                              | 57.9                                |  |

\*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for chloride in monitoring well MW-605.

Attached to this memorandum are the following backup information:

#### Attachment 1: Sanitas™ Output:

Statistical evaluation output from Sanitas<sup>TM</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1<sup>st</sup> verification re-sample result (when applicable), 2<sup>nd</sup> verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling



Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 30, 2019 Page 2 of 2

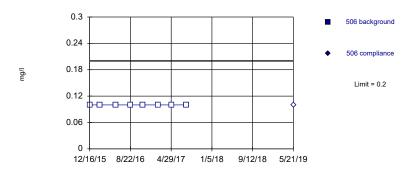
procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

#### Attachment 2: Sanitas™ Configuration Settings:

Screen shots of the applicable Sanitas<sup>TM</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 30, 2019


#### ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

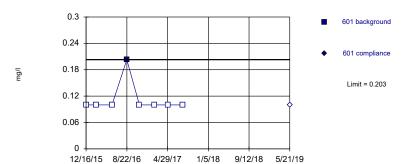
Within Limit

**Prediction Limit** Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

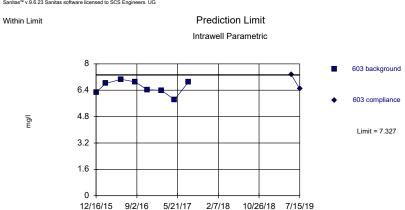
> Constituent: Boron Analysis Run 9/23/2019 3:02 PM View: LF CCR III


Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

**Prediction Limit** Within Limit Intrawell Parametric 602 background 4.32 602 compliance 3.24 Limit = 5.31 2.16 1.08 12/16/15 8/22/16 4/29/17 1/5/18 9/12/18 5/21/19

Background Data Summary: Mean=4.794, Std. Dev.=0.2855, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9261, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG


**Prediction Limit** Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

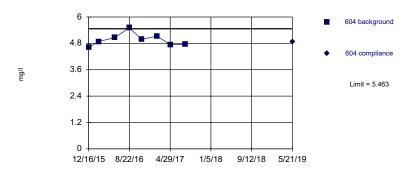
> Constituent: Boron Analysis Run 9/23/2019 3:02 PM View: LF CCR III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=6.576, Std. Dev.=0.415, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9214, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | <0.2 |      |
| 2/16/2016  | <0.2 |      |
| 5/23/2016  | <0.2 |      |
| 8/22/2016  | <0.2 |      |
| 11/8/2016  | <0.2 |      |
| 2/7/2017   | <0.2 |      |
| 5/1/2017   | <0.2 |      |
| 7/31/2017  | <0.2 |      |
| 5/21/2019  |      | <0.2 |
|            |      |      |

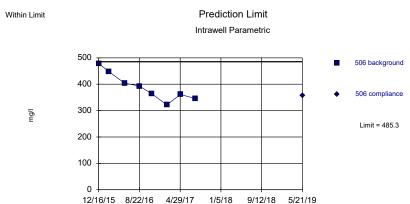

|            | 601   | 601  |
|------------|-------|------|
| 12/16/2015 | <0.2  |      |
| 2/16/2016  | <0.2  |      |
| 5/23/2016  | <0.2  |      |
| 8/22/2016  | 0.203 |      |
| 11/8/2016  | <0.2  |      |
| 2/7/2017   | <0.2  |      |
| 5/2/2017   | <0.2  |      |
| 7/31/2017  | <0.2  |      |
| 5/21/2019  |       | <0.2 |

|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 5.08 |      |
| 2/16/2016  | 5.04 |      |
| 5/23/2016  | 5.17 |      |
| 8/22/2016  | 4.62 |      |
| 11/7/2016  | 4.84 |      |
| 2/7/2017   | 4.62 |      |
| 5/2/2017   | 4.35 |      |
| 7/31/2017  | 4.63 |      |
| 5/21/2019  |      | 4.48 |

|            | 603  | 603  |                         |
|------------|------|------|-------------------------|
| 12/16/2015 | 6.28 |      |                         |
| 2/16/2016  | 6.81 |      |                         |
| 5/23/2016  | 7.06 |      |                         |
| 8/22/2016  | 6.91 |      |                         |
| 11/7/2016  | 6.43 |      |                         |
| 2/7/2017   | 6.39 |      |                         |
| 5/2/2017   | 5.83 |      |                         |
| 7/31/2017  | 6.9  |      |                         |
| 5/21/2019  |      | 7.35 |                         |
| 7/15/2019  |      | 6.49 | 1st verification sample |
|            |      |      |                         |

------

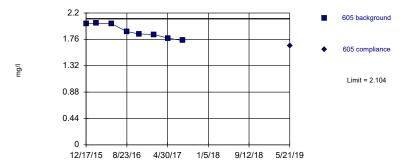





Background Data Summary: Mean=4.958, Std. Dev.=0.2791, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 9/23/2019 3:02 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

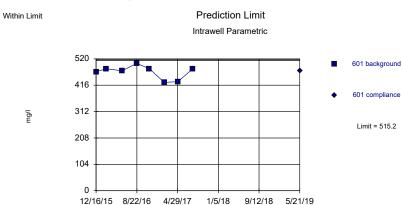

#### Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=389.5, Std. Dev.=52.94, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9493, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=1.896, Std. Dev.=0.1145, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8853, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 9/23/2019 3:02 PM View: LF CCR III

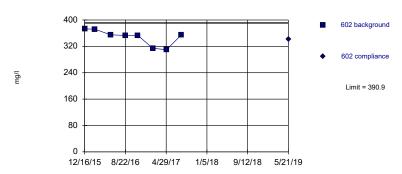
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

#### Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=467.9, Std. Dev.=26.16, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8556, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 4.62 |      |
| 2/16/2016  | 4.88 |      |
| 5/23/2016  | 5.06 |      |
| 8/22/2016  | 5.5  |      |
| 11/7/2016  | 4.98 |      |
| 2/7/2017   | 5.13 |      |
| 5/2/2017   | 4.74 |      |
| 7/31/2017  | 4.75 |      |
| 5/21/2019  |      | 4.86 |

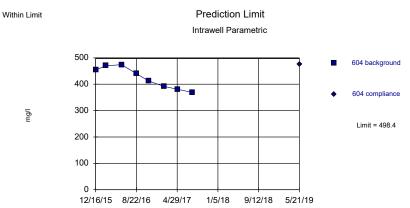

|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 | 2.02 |      |
| 2/16/2016  | 2.03 |      |
| 5/23/2016  | 2.02 |      |
| 8/22/2016  | 1.89 |      |
| 11/7/2016  | 1.85 |      |
| 2/7/2017   | 1.84 |      |
| 5/2/2017   | 1.78 |      |
| 7/31/2017  | 1.74 |      |
| 5/21/2019  |      | 1.65 |

|            | 506 | 506 |
|------------|-----|-----|
| 12/16/2015 | 479 |     |
| 2/16/2016  | 448 |     |
| 5/23/2016  | 404 |     |
| 8/22/2016  | 393 |     |
| 11/8/2016  | 363 |     |
| 2/7/2017   | 322 |     |
| 5/1/2017   | 361 |     |
| 7/31/2017  | 346 |     |
| 5/21/2019  |     | 357 |

|            | 601 | 601 |
|------------|-----|-----|
| 12/16/2015 | 469 |     |
| 2/16/2016  | 481 |     |
| 5/23/2016  | 473 |     |
| 8/22/2016  | 502 |     |
| 11/8/2016  | 481 |     |
| 2/7/2017   | 427 |     |
| 5/2/2017   | 430 |     |
| 7/31/2017  | 480 |     |
| 5/21/2019  |     | 472 |

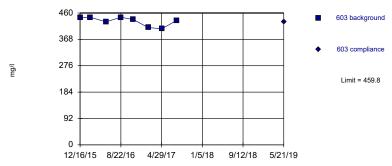
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=348, Std. Dev.=23.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha= 0.01, calculated = 0.8221, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/23/2019 3:03 PM View: LF CCR III

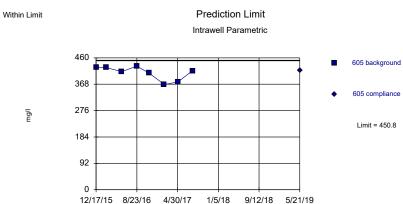

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=424, Std. Dev.=41.08, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit Intrawell Parametric




Background Data Summary: Mean=431, Std. Dev =15.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8323, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

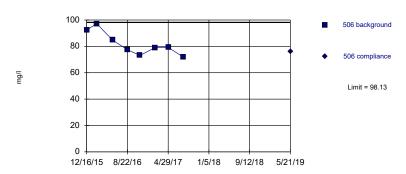
Constituent: Calcium Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=407.6, Std. Dev.=23.86, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8546, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


|            | 602 | 602 |
|------------|-----|-----|
| 12/16/2015 | 373 |     |
| 2/16/2016  | 372 |     |
| 5/23/2016  | 355 |     |
| 8/22/2016  | 353 |     |
| 11/7/2016  | 353 |     |
| 2/7/2017   | 314 |     |
| 5/2/2017   | 310 |     |
| 7/31/2017  | 354 |     |
| 5/21/2019  |     | 342 |

|            | 603 | 603 |
|------------|-----|-----|
| 12/16/2015 | 444 |     |
| 2/16/2016  | 445 |     |
| 5/23/2016  | 429 |     |
| 8/22/2016  | 445 |     |
| 11/7/2016  | 437 |     |
| 2/7/2017   | 409 |     |
| 5/2/2017   | 405 |     |
| 7/31/2017  | 434 |     |
| 5/21/2019  |     | 429 |

|            | 604 | 604 |
|------------|-----|-----|
| 12/16/2015 | 454 |     |
| 2/16/2016  | 470 |     |
| 5/23/2016  | 474 |     |
| 8/22/2016  | 440 |     |
| 11/7/2016  | 412 |     |
| 2/7/2017   | 392 |     |
| 5/2/2017   | 381 |     |
| 7/31/2017  | 369 |     |
| 5/21/2019  |     | 476 |

|            | 605 | 60  |
|------------|-----|-----|
| 12/17/2015 | 427 | 000 |
|            |     |     |
| 2/16/2016  | 426 |     |
| 5/23/2016  | 412 |     |
| 8/22/2016  | 431 |     |
| 11/7/2016  | 407 |     |
| 2/7/2017   | 367 |     |
| 5/2/2017   | 376 |     |
| 7/31/2017  | 415 |     |
| 5/21/2019  |     | 416 |
|            |     |     |

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=81.88, Std. Dev.=8.982, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9113, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit
Intrawell Parametric

4.8

602 background

602 compliance

Limit = 4.777

12/16/15 8/22/16 4/29/17 1/5/18 9/12/18 5/21/19

Background Data Summary: Mean=4.395, Std. Dev.=0.2111, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9535, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=50.24, Std. Dev.=2.703, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.998, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

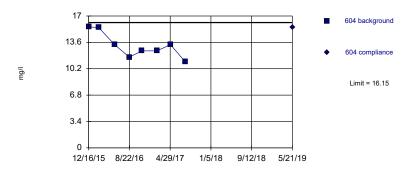
Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=7.655, Std. Dev.=0.239, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9121, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506 |
|------------|------|-----|
| 12/16/2015 | 92.4 |     |
| 2/16/2016  | 97.2 |     |
| 5/23/2016  | 84.7 |     |
| 8/22/2016  | 77.5 |     |
| 11/8/2016  | 73.1 |     |
| 2/7/2017   | 79   |     |
| 5/1/2017   | 79.2 |     |
| 7/31/2017  | 71.9 |     |
| 5/21/2019  |      | 76  |

|            | 601  | 601  |                         |
|------------|------|------|-------------------------|
| 12/16/2015 | 52.5 |      |                         |
| 2/16/2016  | 53   |      |                         |
| 5/23/2016  | 50.6 |      |                         |
| 8/22/2016  | 45.5 |      |                         |
| 11/8/2016  | 47.5 |      |                         |
| 2/7/2017   | 49   |      |                         |
| 5/2/2017   | 51.1 |      |                         |
| 7/31/2017  | 52.7 |      |                         |
| 5/21/2019  |      | 55.5 |                         |
| 7/15/2019  |      | 56.5 | 1st verification sample |
| 8/19/2019  |      | 54.5 | 2nd verification sample |

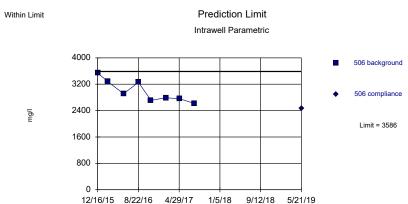

|       |        | 602  | 602  |
|-------|--------|------|------|
| 12/16 | 6/2015 | 4.48 |      |
| 2/16/ | 2016   | 4.38 |      |
| 5/23/ | 2016   | 4.29 |      |
| 8/22/ | 2016   | 4.65 |      |
| 11/7/ | 2016   | 4.35 |      |
| 2/7/2 | 017    | 4.04 |      |
| 5/2/2 | 017    | 4.69 |      |
| 7/31/ | 2017   | 4.28 |      |
| 5/21/ | 2019   |      | 4.11 |

|            | 603  | 603  |                         |
|------------|------|------|-------------------------|
| 12/16/2015 | 7.33 |      |                         |
| 2/16/2016  | 7.65 |      |                         |
| 5/23/2016  | 7.64 |      |                         |
| 8/22/2016  | 7.9  |      |                         |
| 11/7/2016  | 7.67 |      |                         |
| 2/7/2017   | 7.35 |      |                         |
| 5/2/2017   | 7.67 |      |                         |
| 7/31/2017  | 8.03 |      |                         |
| 5/21/2019  |      | 8.24 |                         |
| 7/15/2019  |      | 8.75 | 1st verification sample |
| 8/19/2019  |      | 6.54 | 2nd verification sample |

Odnikas V.S.U.23 Odnikas sukwale licensed to GCO Engineers. (

Within Limit

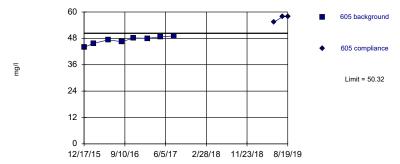





Background Data Summary: Mean=13.19, Std. Dev.=1.635, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9029, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

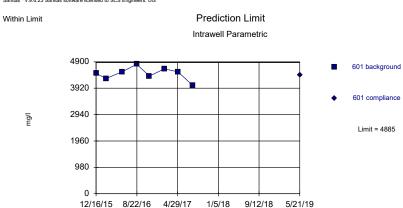

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2984, Std. Dev.=332.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=47.18, Std. Dev.=1.738, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9293, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

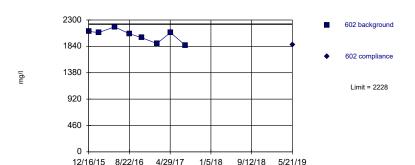
Constituent: Chloride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=4458, Std. Dev =236.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 15.6 |      |
| 2/16/2016  | 15.5 |      |
| 5/23/2016  | 13.3 |      |
| 8/22/2016  | 11.7 |      |
| 11/7/2016  | 12.5 |      |
| 2/7/2017   | 12.5 |      |
| 5/2/2017   | 13.3 |      |
| 7/31/2017  | 11.1 |      |
| 5/21/2019  |      | 15.5 |

|            | 605  | 605  |                         |
|------------|------|------|-------------------------|
| 12/17/2015 | 43.9 |      |                         |
| 2/16/2016  | 45.7 |      |                         |
| 5/23/2016  | 47.3 |      |                         |
| 8/22/2016  | 46.5 |      |                         |
| 11/7/2016  | 48.2 |      |                         |
| 2/7/2017   | 48   |      |                         |
| 5/2/2017   | 48.7 |      |                         |
| 7/31/2017  | 49.1 |      |                         |
| 5/21/2019  |      | 55.4 |                         |
| 7/15/2019  |      | 57.8 | 1st verification sample |
| 8/19/2019  |      | 57.9 | 2nd verification sample |

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 3540 |      |
| 2/16/2016  | 3280 |      |
| 5/23/2016  | 2910 |      |
| 8/22/2016  | 3260 |      |
| 11/8/2016  | 2710 |      |
| 2/7/2017   | 2790 |      |
| 5/1/2017   | 2760 |      |
| 7/31/2017  | 2620 |      |
| 5/21/2019  |      | 2460 |

|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 4470 |      |
| 2/16/2016  | 4280 |      |
| 5/23/2016  | 4530 |      |
| 8/22/2016  | 4810 |      |
| 11/8/2016  | 4370 |      |
| 2/7/2017   | 4640 |      |
| 5/2/2017   | 4530 |      |
| 7/31/2017  | 4030 |      |
| 5/21/2019  |      | 4410 |
|            |      |      |

Within Limit Prediction Limit



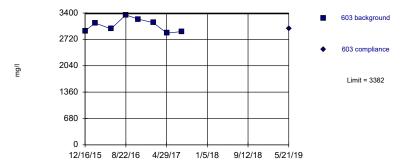
Intrawell Parametric

Background Data Summary: Mean=2030, Std. Dev.=109.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9195, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit Intrawell Parametric

4000
3200
4000
604 background
604 compliance
Limit = 3195

Background Data Summary: Mean=2596, Std. Dev.=330.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9393, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=3076, Std. Dev.=169.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

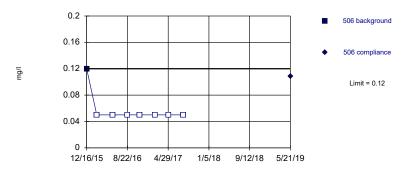
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 605 background 605 compliance 1920 605 compliance Limit = 3112

Background Data Summary: Mean=2664, Std. Dev.=247.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 2100 |      |
| 2/16/2016  | 2080 |      |
| 5/23/2016  | 2180 |      |
| 8/22/2016  | 2060 |      |
| 11/7/2016  | 1990 |      |
| 2/7/2017   | 1890 |      |
| 5/2/2017   | 2080 |      |
| 7/31/2017  | 1860 |      |
| 5/21/2019  |      | 1870 |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 2940 |      |
| 2/16/2016  | 3140 |      |
| 5/23/2016  | 2990 |      |
| 8/22/2016  | 3350 |      |
| 11/7/2016  | 3240 |      |
| 2/7/2017   | 3150 |      |
| 5/2/2017   | 2880 |      |
| 7/31/2017  | 2920 |      |
| 5/21/2019  |      | 2990 |


|            | 604  | 604  |                         |
|------------|------|------|-------------------------|
| 12/16/2015 | 2820 |      |                         |
| 2/16/2016  | 2690 |      |                         |
| 5/23/2016  | 3010 |      |                         |
| 8/22/2016  | 2890 |      |                         |
| 11/7/2016  | 2270 |      |                         |
| 2/7/2017   | 2670 |      |                         |
| 5/2/2017   | 2350 |      |                         |
| 7/31/2017  | 2070 |      |                         |
| 5/21/2019  |      | 3270 |                         |
| 7/15/2019  |      | 2680 | 1st verification sample |
|            |      |      |                         |

|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 |      | 000  |
| 12/17/2015 | 2800 |      |
| 2/16/2016  | 2750 |      |
| 5/23/2016  | 2760 |      |
| 8/22/2016  | 2990 |      |
| 11/7/2016  | 2760 |      |
| 2/7/2017   | 2580 |      |
| 5/2/2017   | 2500 |      |
| 7/31/2017  | 2170 |      |
| 5/21/2019  |      | 2810 |
| 3/2 1/2019 |      | 2010 |

Hollow symbols indicate censored values.

Within Limit



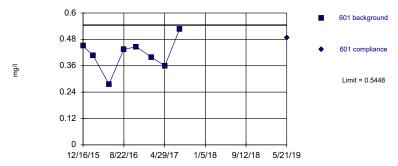


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Fluoride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

**Prediction Limit** Within Limit Intrawell Parametric 0.2 602 background 0.16 602 compliance 0.12 Limit = 0.1849 0.08  $\dot{\Box}$ 0.04


12/16/15 8/22/16 4/29/17 1/5/18

Background Data Summary (after Aitchison's Adjustment): Mean=0.0625, Std. Dev.=0.0676, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7877, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

9/12/18 5/21/19

Constituent: Fluoride Analysis Run 9/23/2019 3:03 PM View: LF CCR III  Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

**Prediction Limit** Within Limit Intrawell Parametric



Background Data Summary: Mean=0.4123, Std. Dev.=0.07322, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9578, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

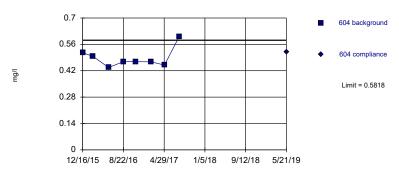
> Constituent: Fluoride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

**Prediction Limit** Within Limit Intrawell Parametric 0.7 603 background 0.56 603 compliance 0.42 πg/l Limit = 0.6775 0.28 0.14 12/16/15 8/22/16 4/29/17 1/5/18 9/12/18 5/21/19

Background Data Summary: Mean=0.5066, Std. Dev.=0.0944, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9541, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506   |
|------------|------|-------|
| 12/16/2015 | 0.12 |       |
| 2/16/2016  | <0.1 |       |
| 5/23/2016  | <0.1 |       |
| 8/22/2016  | <0.1 |       |
| 11/8/2016  | <0.1 |       |
| 2/7/2017   | <0.1 |       |
| 5/1/2017   | <0.1 |       |
| 7/31/2017  | <0.1 |       |
| 5/21/2019  |      | 0.108 |


|            | 601   | 601   |
|------------|-------|-------|
| 12/16/2015 | 0.45  |       |
| 2/16/2016  | 0.406 |       |
| 5/23/2016  | 0.276 |       |
| 8/22/2016  | 0.435 |       |
| 11/8/2016  | 0.446 |       |
| 2/7/2017   | 0.399 |       |
| 5/2/2017   | 0.36  |       |
| 7/31/2017  | 0.526 |       |
| 5/21/2019  |       | 0.487 |

|            | 602   | 602   |
|------------|-------|-------|
| 12/16/2015 | 0.148 |       |
| 2/16/2016  | <0.1  |       |
| 5/23/2016  | <0.1  |       |
| 8/22/2016  | 0.114 |       |
| 11/7/2016  | <0.1  |       |
| 2/7/2017   | <0.1  |       |
| 5/2/2017   | 0.122 |       |
| 7/31/2017  | 0.116 |       |
| 5/21/2019  |       | 0.132 |

|            | 603   | 603   |
|------------|-------|-------|
| 12/16/2015 | 0.673 |       |
| 2/16/2016  | 0.552 |       |
| 5/23/2016  | 0.523 |       |
| 8/22/2016  | 0.431 |       |
| 11/7/2016  | 0.442 |       |
| 2/7/2017   | 0.459 |       |
| 5/2/2017   | 0.585 |       |
| 7/31/2017  | 0.388 |       |
| 5/21/2019  |       | 0.365 |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG





Background Data Summary: Mean=0.4879, Std. Dev.=0.05191, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8289, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Non-parametric

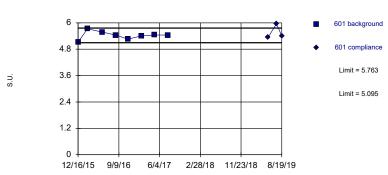
506 background

◆ 506 compliance
Limit = 9.26
Limit = 5.11

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.02358. Individual comparison alpha = 0.01182 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.






Background Data Summary: Mean=0.1933, Std. Dev.=0.02702, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilki @alpha = 0.01, calculated = 0.9254, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=5.429, Std. Dev.=0.1846, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.10, calculated = 0.9556, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604   | 604   |
|------------|-------|-------|
| 12/16/2015 | 0.515 |       |
| 2/16/2016  | 0.497 |       |
| 5/23/2016  | 0.437 |       |
| 8/22/2016  | 0.468 |       |
| 11/7/2016  | 0.468 |       |
| 2/7/2017   | 0.467 |       |
| 5/2/2017   | 0.45  |       |
| 7/31/2017  | 0.601 |       |
| 5/21/2019  |       | 0.519 |

|            | 605   | 605   |
|------------|-------|-------|
| 12/17/2015 | 0.246 |       |
| 2/16/2016  | 0.156 |       |
| 5/23/2016  | 0.166 |       |
| 8/22/2016  | 0.191 |       |
| 11/7/2016  | 0.203 |       |
| 2/7/2017   | 0.187 |       |
| 5/2/2017   | 0.197 |       |
| 7/31/2017  | 0.2   |       |
| 5/21/2019  |       | 0.222 |


|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 5.11 |      |
| 2/16/2016  | 5.56 |      |
| 5/23/2016  | 5.47 |      |
| 8/22/2016  | 5.57 |      |
| 11/8/2016  | 6.04 |      |
| 2/7/2017   | 9.26 |      |
| 5/1/2017   | 5.51 |      |
| 7/31/2017  | 5.51 |      |
| 5/21/2019  |      | 5.49 |

|            | 601  | 601  |              |
|------------|------|------|--------------|
| 12/16/2015 | 5.12 |      |              |
| 2/16/2016  | 5.73 |      |              |
| 5/23/2016  | 5.58 |      |              |
| 8/22/2016  | 5.44 |      |              |
| 11/8/2016  | 5.26 |      |              |
| 2/7/2017   | 5.41 |      |              |
| 5/2/2017   | 5.45 |      |              |
| 7/31/2017  | 5.44 |      |              |
| 5/21/2019  |      | 5.34 |              |
| 7/15/2019  |      | 5.96 | extra sample |
| 8/19/2019  |      | 5.41 | extra sample |
|            |      |      |              |

Saintas V.S.U.23 Saintas soltware ilcensed to 3C3 Engineers. C

Within Limits





Background Data Summary: Mean=6.099, Std. Dev.=0.4755, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7552, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=5.869, Std. Dev.=0.2585, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9645, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=4.644, Std. Dev.=0.28, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9182, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

12/17/15 9/10/16

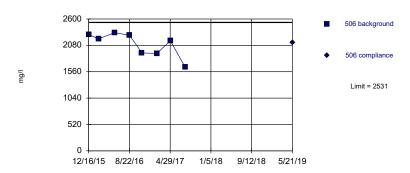
Within Limits

Prediction Limit
Intrawell Parametric

6.2
4.96
605 background
605 compliance
Limit = 5.998
Limit = 5.162

Background Data Summary: Mean=5.58, Std. Dev.=0.2309, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7625, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

6/5/17 2/28/18 11/23/18 8/19/19


|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 5.93 |      |
| 2/16/2016  | 5.78 |      |
| 5/23/2016  | 7.05 |      |
| 8/22/2016  | 5.74 |      |
| 11/7/2016  | 5.99 |      |
| 2/7/2017   | 6.62 |      |
| 5/2/2017   | 5.81 |      |
| 7/31/2017  | 5.87 |      |
| 5/21/2019  |      | 5.77 |

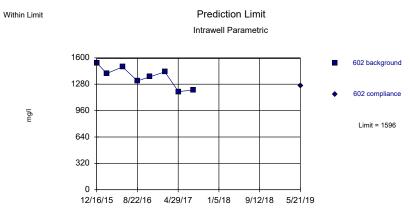
|            | 603  | 603  |              |
|------------|------|------|--------------|
| 12/16/2015 | 4.58 |      |              |
| 2/16/2016  | 4.29 |      |              |
| 5/23/2016  | 4.98 |      |              |
| 8/22/2016  | 4.65 |      |              |
| 11/7/2016  | 4.48 |      |              |
| 2/7/2017   | 4.44 |      |              |
| 5/2/2017   | 4.6  |      |              |
| 7/31/2017  | 5.13 |      |              |
| 5/21/2019  |      | 4.32 |              |
| 7/15/2019  |      | 5.13 | extra sample |
| 8/19/2019  |      | 4.46 | extra sample |

|            | 604  | 604  |              |
|------------|------|------|--------------|
| 12/16/2015 | 5.79 |      |              |
| 2/16/2016  | 5.51 |      |              |
| 5/23/2016  | 6.3  |      |              |
| 8/22/2016  | 5.67 |      |              |
| 11/7/2016  | 6.04 |      |              |
| 2/7/2017   | 6.1  |      |              |
| 5/2/2017   | 5.72 |      |              |
| 7/31/2017  | 5.82 |      |              |
| 5/21/2019  |      | 5.82 |              |
| 7/15/2019  |      | 6.2  | extra sample |
|            |      |      |              |

|            | 605  | 605  |              |
|------------|------|------|--------------|
| 12/17/2015 | 5.57 |      |              |
| 2/16/2016  | 5.34 |      |              |
| 5/23/2016  | 6.11 |      |              |
| 8/22/2016  | 5.42 |      |              |
| 11/7/2016  | 5.49 |      |              |
| 2/7/2017   | 5.58 |      |              |
| 5/2/2017   | 5.58 |      |              |
| 7/31/2017  | 5.55 |      |              |
| 5/21/2019  |      | 5.64 |              |
| 7/15/2019  |      | 5.85 | extra sample |
| 8/19/2019  |      | 5.42 | extra sample |

Within Limit Prediction Limit

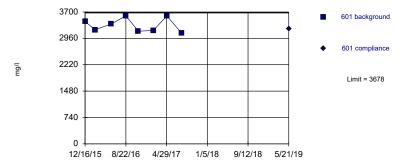



Intrawell Parametric

Background Data Summary: Mean=2098, Std. Dev.=239.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.871, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

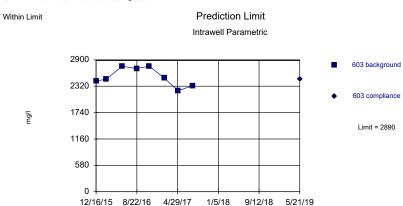

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=1370, Std. Dev.=124.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG






Background Data Summary: Mean=3328, Std. Dev.=193.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8736, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/23/2019 3:03 PM View: LF CCR III

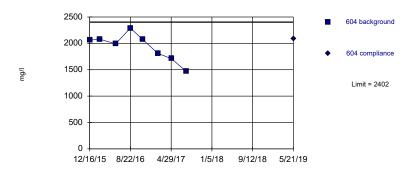
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=2524, Std. Dev=202.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 506  | 506  |
|------------|------|------|
| 12/16/2015 | 2290 |      |
| 2/16/2016  | 2210 |      |
| 5/23/2016  | 2330 |      |
| 8/22/2016  | 2280 |      |
| 11/8/2016  | 1930 |      |
| 2/7/2017   | 1920 |      |
| 5/1/2017   | 2170 |      |
| 7/31/2017  | 1650 |      |
| 5/21/2019  |      | 2130 |


|            | 601  | 601  |
|------------|------|------|
| 12/16/2015 | 3430 |      |
| 2/16/2016  | 3200 |      |
| 5/23/2016  | 3360 |      |
| 8/22/2016  | 3590 |      |
| 11/8/2016  | 3160 |      |
| 2/7/2017   | 3180 |      |
| 5/2/2017   | 3590 |      |
| 7/31/2017  | 3110 |      |
| 5/21/2019  |      | 3230 |

|            | 602  | 602  |
|------------|------|------|
| 12/16/2015 | 1540 |      |
| 2/16/2016  | 1410 |      |
| 5/23/2016  | 1490 |      |
| 8/22/2016  | 1320 |      |
| 11/7/2016  | 1370 |      |
| 2/7/2017   | 1430 |      |
| 5/2/2017   | 1190 |      |
| 7/31/2017  | 1210 |      |
| 5/21/2019  |      | 1260 |

|            | 603  | 603  |
|------------|------|------|
| 12/16/2015 | 2440 |      |
| 2/16/2016  | 2470 |      |
| 5/23/2016  | 2760 |      |
| 8/22/2016  | 2710 |      |
| 11/7/2016  | 2760 |      |
| 2/7/2017   | 2500 |      |
| 5/2/2017   | 2220 |      |
| 7/31/2017  | 2330 |      |
| 5/21/2019  |      | 2480 |

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=1935, Std. Dev.=258.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9413, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/23/2019 3:03 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG





Background Data Summary: Mean=2046, Std. Dev.=163.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8694, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

|            | 604  | 604  |
|------------|------|------|
| 12/16/2015 | 2060 |      |
| 2/16/2016  | 2080 |      |
| 5/23/2016  | 1990 |      |
| 8/22/2016  | 2290 |      |
| 11/7/2016  | 2070 |      |
| 2/7/2017   | 1810 |      |
| 5/2/2017   | 1710 |      |
| 7/31/2017  | 1470 |      |
| 5/21/2019  |      | 2090 |

|            | 605  | 605  |
|------------|------|------|
| 12/17/2015 | 2180 |      |
| 2/16/2016  | 1950 |      |
| 5/23/2016  | 1880 |      |
| 8/22/2016  | 2230 |      |
| 11/7/2016  | 2280 |      |
| 2/7/2017   | 2050 |      |
| 5/2/2017   | 1910 |      |
| 7/31/2017  | 1890 |      |
| 5/21/2019  |      | 1970 |

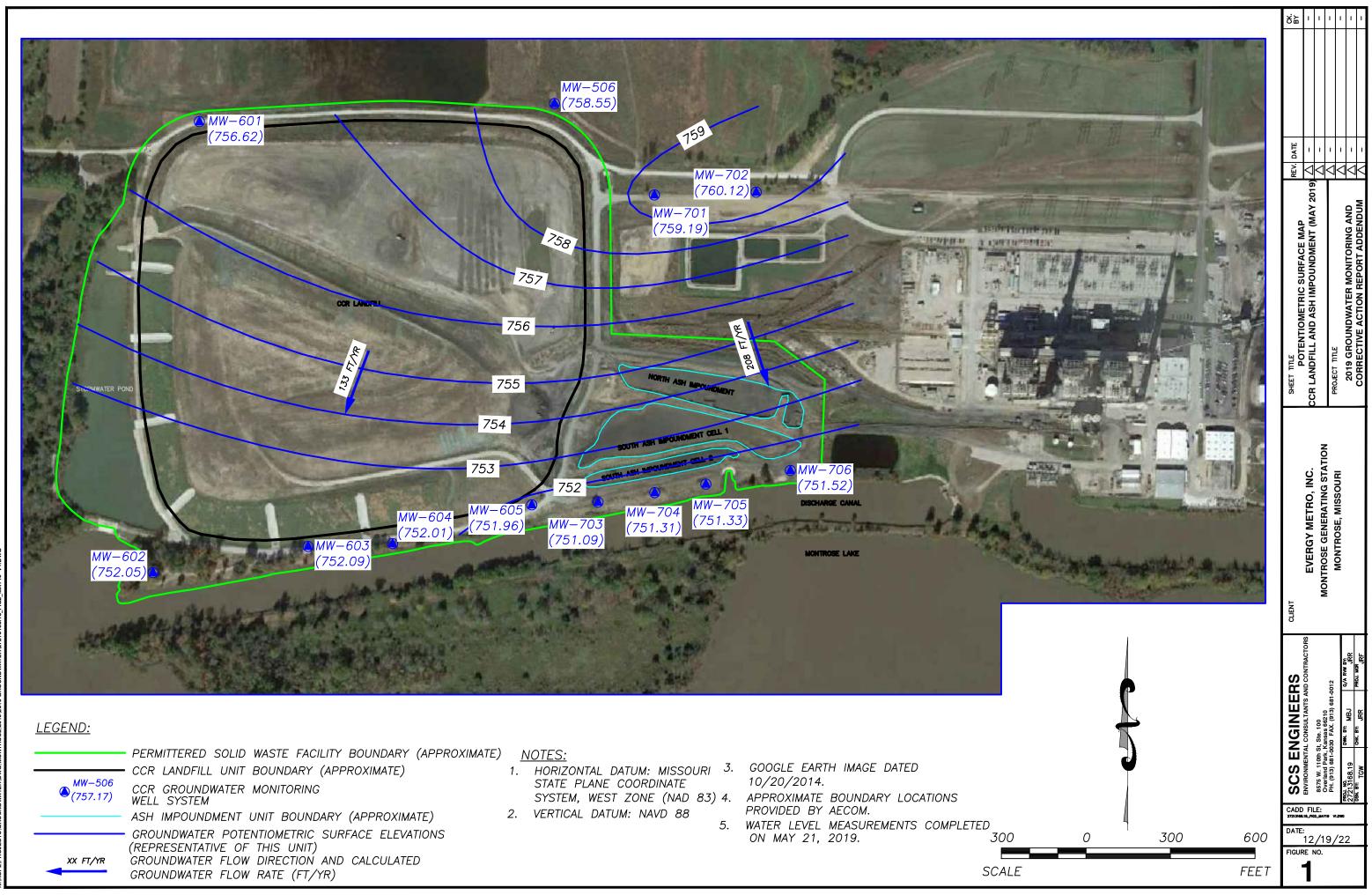
|                         |             | Montrose   | Generating Sta | ition UWL   | Client: SCS Engi | neers D | ata: Mont | ose F | rinted 9/23 | /2019, 3:05 PM |              |                       |
|-------------------------|-------------|------------|----------------|-------------|------------------|---------|-----------|-------|-------------|----------------|--------------|-----------------------|
| <u>Constituent</u>      | <u>Well</u> | Upper Lim. | Lower Lim.     | <u>Date</u> |                  | Observ. | Sig.      | Bg N  | %NDs        | Transform      | <u>Alpha</u> | Method                |
| Boron (mg/l)            | 506         | 0.2        | n/a            | 5/21/2019   | )                | 0.1ND   | No        | 8     | 100         | n/a            | 0.005912     | NP Intra (NDs) 1 of 3 |
| Boron (mg/l)            | 601         | 0.203      | n/a            | 5/21/2019   | )                | 0.1ND   | No        | 8     | 87.5        | n/a            | 0.005912     | NP Intra (NDs) 1 of 3 |
| Boron (mg/l)            | 602         | 5.31       | n/a            | 5/21/2019   | )                | 4.48    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 603         | 7.327      | n/a            | 7/15/2019   | )                | 6.49    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 604         | 5.463      | n/a            | 5/21/2019   | )                | 4.86    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Boron (mg/l)            | 605         | 2.104      | n/a            | 5/21/2019   | )                | 1.65    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 506         | 485.3      | n/a            | 5/21/2019   | )                | 357     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 601         | 515.2      | n/a            | 5/21/2019   | )                | 472     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 602         | 390.9      | n/a            | 5/21/2019   | )                | 342     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 603         | 459.8      | n/a            | 5/21/2019   | )                | 429     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 604         | 498.4      | n/a            | 5/21/2019   | )                | 476     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Calcium (mg/l)          | 605         | 450.8      | n/a            | 5/21/2019   | )                | 416     | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 506         | 98.13      | n/a            | 5/21/2019   | )                | 76      | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 601         | 55.13      | n/a            | 8/19/2019   | )                | 54.5    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 602         | 4.777      | n/a            | 5/21/2019   | )                | 4.11    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 603         | 8.088      | n/a            | 8/19/2019   | )                | 6.54    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 604         | 16.15      | n/a            | 5/21/2019   | )                | 15.5    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Chloride (mg/l)         | 605         | 50.32      | n/a            | 8/19/2019   | )                | 57.9    | Yes       | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 506         | 3586       | n/a            | 5/21/2019   | )                | 2460    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 601         | 4885       | n/a            | 5/21/2019   | )                | 4410    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 602         | 2228       | n/a            | 5/21/2019   | )                | 1870    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 603         | 3382       | n/a            | 5/21/2019   | )                | 2990    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 604         | 3195       | n/a            | 7/15/2019   | )                | 2680    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | 605         | 3112       | n/a            | 5/21/2019   | )                | 2810    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 506         | 0.12       | n/a            | 5/21/2019   | )                | 0.108   | No        | 8     | 87.5        | n/a            | 0.005912     | NP Intra (NDs) 1 of 3 |
| Fluoride (mg/l)         | 601         | 0.5448     | n/a            | 5/21/2019   | )                | 0.487   | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 602         | 0.1849     | n/a            | 5/21/2019   | )                | 0.132   | No        | 8     | 50          | No             | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 603         | 0.6775     | n/a            | 5/21/2019   | )                | 0.365   | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 604         | 0.5818     | n/a            | 5/21/2019   | )                | 0.519   | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Fluoride (mg/l)         | 605         | 0.2422     | n/a            | 5/21/2019   | )                | 0.222   | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| pH (S.U.)               | 506         | 9.26       | 5.11           | 5/21/2019   | )                | 5.49    | No        | 8     | 0           | n/a            | 0.01182      | NP Intra (normality)  |
| pH (S.U.)               | 601         | 5.763      | 5.095          | 8/19/2019   | )                | 5.41    | No        | 8     | 0           | No             | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 602         | 6.959      | 5.238          | 5/21/2019   | )                | 5.77    | No        | 8     | 0           | No             | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 603         | 5.151      | 4.137          | 8/19/2019   | )                | 4.46    | No        | 8     | 0           | No             | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 604         | 6.337      | 5.401          | 7/15/2019   | )                | 6.2     | No        | 8     | 0           | No             | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | 605         | 5.998      | 5.162          | 8/19/2019   | )                | 5.42    | No        | 8     | 0           | No             | 0.000        | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 506         | 2531       | n/a            | 5/21/2019   | )                | 2130    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 601         | 3678       | n/a            | 5/21/2019   | )                | 3230    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 602         | 1596       | n/a            | 5/21/2019   | )                | 1260    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 603         | 2890       | n/a            | 5/21/2019   | )                | 2480    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 604         | 2402       | n/a            | 5/21/2019   | )                | 2090    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |
| Sulfate (mg/l)          | 605         | 2341       | n/a            | 5/21/2019   | )                | 1970    | No        | 8     | 0           | No             | 0.00188      | Param Intra 1 of 3    |

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 30, 2019

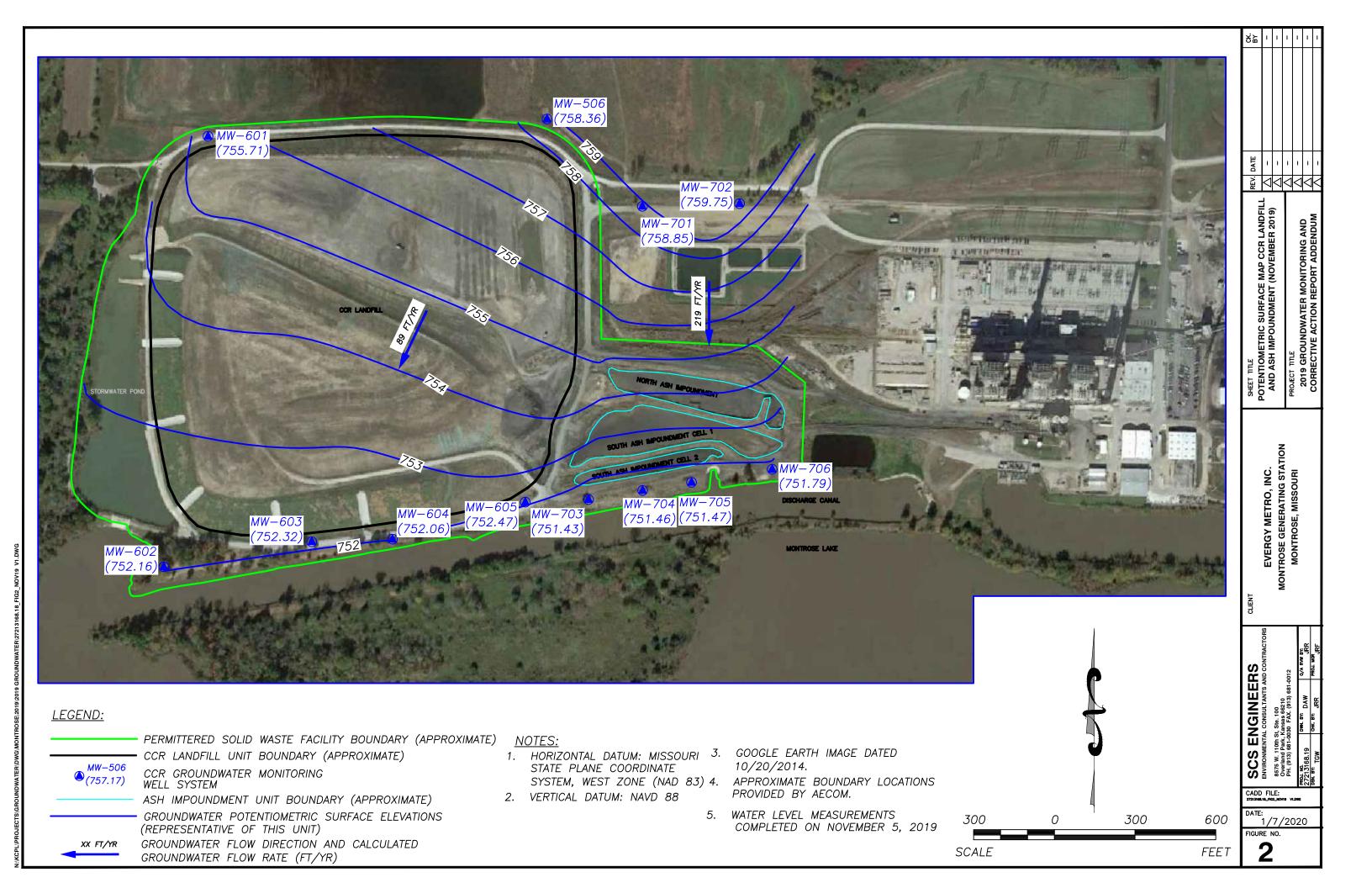
#### ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Data         | Output       | Trend Test    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|--------------|--------------|---------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
|              |              |               |             |                |               |              |       |        |             |
| Exclud       | le data flag | s: i          |             |                |               |              |       |        |             |
| Data         | Reading O    | ptions        |             |                |               |              |       |        |             |
| ● In         | idividual Ob | servations    |             |                |               |              |       |        |             |
| $\bigcirc$ M | lean of Eac  | :h:           | O Month     |                |               |              |       |        |             |
| O M          | ledian of Ea | ach:          | Seasor      | 1              |               |              |       |        |             |
| Non          | Datast / Te  | ace Handling. |             |                |               |              |       |        |             |
|              |              | _             | •••         |                |               |              |       |        |             |
| Setup        | Seasons      |               |             |                |               |              |       |        |             |
| Aut          | omatically F | Process Resar | mples       |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |
|              |              |               |             |                |               |              |       |        |             |


| Black and White Output                                                                                                                                                                                                                                                                                                                                                               | ✓ Prompt to Overwrite/Append Summary Tables                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| ✓ Four Plots Per Page                                                                                                                                                                                                                                                                                                                                                                | Round Limits to 2 Sig. Digits (when not set in data file)                                  |
| Always Combine Data Pages                                                                                                                                                                                                                                                                                                                                                            | User-Set Scale                                                                             |
| ✓ Include Tick Marks on Data Page                                                                                                                                                                                                                                                                                                                                                    | ✓ Indicate Background Data                                                                 |
| Use Constituent Name for Graph Title                                                                                                                                                                                                                                                                                                                                                 | Show Exact Dates                                                                           |
| ☐ Draw Border Around Text Reports and Data Pages                                                                                                                                                                                                                                                                                                                                     | ☐ Thick Plot Lines                                                                         |
| <ul> <li>✓ Enlarge/Reduce Fonts (Graphs): 100%</li> <li>✓ Enlarge/Reduce Fonts (Data/Text Reports): 100%</li> <li>✓ Wide Margins (on reports without explicit setting)</li> <li>☐ Use CAS# (Not Const. Name)</li> <li>☐ Truncate File Names to 20 Characters</li> <li>☐ Include Limit Lines when found in Database</li> <li>✓ Show Deselected Data on Time Series Lighter</li> </ul> | Zoom Factor: 200%  Output Decimal Precision Less Precision Normal Precision More Precision |
| ✓ Show Deselected Data on all Data Pages Light ✓                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| Setup Symbols and Colors                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |
| ✓ Store Pri                                                                                                                                                                                                                                                                                                                                                                          | int Jobs in Multiple Constituent Mode Store All Print Jobs                                 |
| Printer: Adobe PDF                                                                                                                                                                                                                                                                                                                                                                   | ∨ Printers                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests


| Data Output Trend Test Control Cht Prediction Lim T                                                                                                        | olerance Lim   | Conf/Tol Int                                                                         | ANOVA                         | Welchs                         | Other Tests |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------|
|                                                                                                                                                            |                |                                                                                      | sformation<br>Use Ladder      | of Powers                      |             |
| ✓ Test for Normality using Shapiro-Wilk/Francia ✓ a                                                                                                        | t Alpha = 0.01 | <u> </u>                                                                             | Natural Log                   | or No Tran                     | sformation  |
| ☑ Use Non-Parametric Test when Non-Detects Percent > 50                                                                                                    | ]              | _                                                                                    | Never Trans                   |                                |             |
| Use Aitchison's Adjustment V when Non-Detects Percent >                                                                                                    | 15             | 0                                                                                    | Use Specifi                   | c Transfom<br>Natura           |             |
| Optional Further Refinement: Use Aitchison's whe                                                                                                           | en NDs % >     | 50                                                                                   | Use Best W                    | / Statistic                    |             |
| Use Poisson Prediction Limit when Non-Detects Percent >                                                                                                    | 90             |                                                                                      | Plot Transfo                  | med Value                      | es          |
| Deseasonalize (Intra- and InterWell)  If Seasonality Is Detected  If Seasonality Is Detected Or Insufficient to Test  Always (When Sufficient Data)  Never | ✓ Plot Ba      | her<br>Background Tr<br>ckground Data<br>andard Deviati                              | ı                             | ed at Alpha                    | a = 0.05 V  |
| Always Use Non-Parametric                                                                                                                                  | Override D     | F: (                                                                                 | Override Kap                  | рра:                           |             |
| Facility © Statistical Evaluations per Year:  Constituents Analyzed:  Downgradient (Compliance) Wells:  4                                                  | 2-Tailed       | tically Remove<br>I Test Mode<br>Deselected Data                                     | a Lighter                     | ~                              |             |
| Sampling Plan  Comparing Individual Observations  1 of 1                                                                                                   | Highes  Most R | etric Limit = [Fetric Limit when<br>t/Second High<br>ecent PQL if a<br>ecent Backgro | est Backgro<br>vailable, or l | -Detects:<br>ound Value<br>MDL |             |
|                                                                                                                                                            |                |                                                                                      |                               |                                |             |

| Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney                                                          |
|-------------------------------------------------------------------------------------------------------------|
| Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney                              |
|                                                                                                             |
| Outlier Tests                                                                                               |
| © EPA 1989 Outlier Screening (fixed alpha of 0.05)                                                          |
| Dixon's at α= 0.05 v or if n > 22 v Rosner's at α= 0.01 v Use EPA Screening to establish Suspected Outliers |
| ☐ Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use Ladder of Powers to achieve Best W Stat        |
| ✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1 ∨                                          |
| Stop if Non-Normal                                                                                          |
| O Continue with Parametric Test if Non-Normal                                                               |
| ☐ Tukey's if Non-Normal, with IQR Multiplier = 3.0                                                          |
| ✓ No Outlier If Less Than 3.0 Times Median                                                                  |
| Apply Rules found in Ohio Guidance Document 0715                                                            |
| Combine Background Wells on the Outlier Report                                                              |
| Piper, Stiff Diagram                                                                                        |
| ☐ Combine Wells ☑ Label Constituents                                                                        |
| ☐ Combine Dates ☑ Label Axes                                                                                |
| Use Default Constituent Names     Note Cation-Anion Balance (Piper only)                                    |
| Use Constituent Definition File Edit                                                                        |

# ATTACHMENT 3 Groundwater Potentiometric Surface Maps



KCBI BBO JECTSIGBOI NDWATER DWG MONTBOSE 2019/2019 GBOI NDWATER (2221316818 FIG3 MAX19 V1 DWG

