www.haleyaldrich.com



# 2019 – 2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

AREA 2 POND, AREA 3 POND, AND AREA 4 POND LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas



# **Table of Contents**

| 1. | Intro | oduction                                                           | 1 |
|----|-------|--------------------------------------------------------------------|---|
| 2. | 40 C  | FR § 257.90 Applicability                                          | 2 |
|    | 2.1   | 40 CFR § 257.90(A)                                                 | 2 |
|    | 2.2   | 40 CFR § 257.90(E) – SUMMARY                                       | 2 |
|    |       | 2.2.1 Status of the Groundwater Monitoring Program                 | 2 |
|    |       | 2.2.2 Key Actions Completed                                        | 3 |
|    |       | 2.2.3 Problems Encountered                                         | 3 |
|    |       | 2.2.4 Actions to Resolve Problems                                  | 3 |
|    |       | 2.2.5 Project Key Activities for Upcoming Year                     | 3 |
|    | 2.3   | 40 CFR § 257.90(E) – INFORMATION                                   | 4 |
|    |       | 2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network | 4 |
|    |       | 2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes            | 4 |
|    |       | 2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events           | 4 |
|    |       | 2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative      | 4 |
|    |       | 2.3.5 40 CFR § 257.90(e)(5) – Other Requirements                   | 5 |

| Revision No. | Date | Notes |
|--------------|------|-------|
|              |      |       |
|              |      |       |
|              |      |       |
|              |      |       |



Page

# List of Tables

| Table No. | Title                                                                |
|-----------|----------------------------------------------------------------------|
| I         | Summary of Analytical Results – Detection and Assessment Monitoring  |
| П         | Summary of Appendix III SSIs                                         |
| III       | Annual Assessment Groundwater Monitoring – Detected Appendix IV GWPS |

# **List of Figures**

| Figure No. | Title                                  |
|------------|----------------------------------------|
| 1          | Ash Ponds Monitoring Well Location Map |



This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Lawrence Energy Center Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, Ash Ponds) consistent with applicable sections of Code of Federal Regulations Title 40 §§ 257.90 through 257.98, and describes activities conducted from July 2019 through June 2020 and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report for the LEC Ash Ponds is, to the best of my knowledge, accurate and complete.

Signed:

**Professional Geologist** 

Print Name: Kansas License No.: Title: Company: Mark Nicholls Professional Geologist No. 881 Technical Expert 2 Haley & Aldrich, Inc.





# 1. Introduction

This 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, Ash Ponds) at the Lawrence Energy Center (LEC), operated by Evergy Kansas Central, Inc. (Evergy; f/k/a/ Westar Energy, Inc.). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (Rule) effective 19 October 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection § 257.90(e). Evergy prepared and placed in the facility's operating record a notification of intent to initiate closure of the Ash Ponds by 17 December 2015. Due to the USEPA Extension of Compliance Deadlines for Certain Inactive Surface Impoundments, Response to Partial Vacatur effective 4 October 2016, in accordance with the requirement under § 257.100(e)(1), the alternative reporting timeframes specified in § 257.100(e)(2) through (6) are applicable for the Ash Ponds.

This Annual Report documents the groundwater monitoring system for the Ash Ponds consistent with applicable sections of §§ 257.90 through 257.98, and describes activities conducted between July 2019 and June 2020 and documents compliance with the Rule. The specific requirements listed in § 257.90(e)(1) through (5) of the Rule are provided in Section 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.



# 2. 40 CFR § 257.90 Applicability

# 2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.98, except as provided in paragraph (g) of this section.

Evergy has installed and certified a multi-unit groundwater monitoring system at the LEC Ash Ponds. The Ash Ponds are subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

# 2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

# 40 CFR 257.100(e)(5)(ii)

# No later than August 1, 2019, prepare the initial groundwater monitoring and corrective action report as set forth in § 257.90(e.)

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the LEC Ash Ponds as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed from July 2019 through June 2020.

# 2.2.1 Status of the Groundwater Monitoring Program

The Ash Ponds were in the detection monitoring program through September 2019. The first annual assessment monitoring event occurred in December 2019 with laboratory analyses completed in January 2020, thus establishing an assessment monitoring program. The Ash Ponds have remained in the assessment monitoring program through June 2020.



# 2.2.2 Key Actions Completed

The 2018 – 2019 Annual Groundwater Monitoring and Corrective Action Report was completed in July 2019 for the time period through June 2019. Statistical evaluation was completed in July 2019 on analytical data from the March 2019 detection monitoring sampling event and statistically significant increases (SSI) over background concentrations were identified. An alternative source demonstration (ASD) was not successfully completed within 90 days for the March 2019 detection monitoring sampling event.

A semi-annual detection monitoring sampling event was completed in September 2019 for Appendix III constituents while the ASD was being pursued. Since the ASD was not successfully completed for the March 2019 detection monitoring sampling event, statistical evaluation was not completed on analytical data from the September 2019 detection monitoring sampling event.

The initial annual assessment monitoring sampling event was completed in December 2019, with laboratory analyses completed in January 2020, thus establishing an assessment monitoring program. This sampling event identified detected Appendix IV constituents for subsequent semi-annual sampling events in March and September 2020. Groundwater protection standards for detected Appendix IV constituents were established at that time. Semi-annual assessment monitoring sampling was completed in March 2020 for detected Appendix IV constituents identified during the December 2019 annual monitoring event. Statistical evaluation of the results from the March 2020 semi-annual assessment monitoring sampling event are due to be completed in July 2020 and will be reported in the next annual report.

# 2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, or problems with analytical analysis) were encountered at the Ash Ponds from July 2019 through June 2020.

# 2.2.4 Actions to Resolve Problems

No problems were encountered at the Ash Ponds from July 2019 through June 2020; therefore, no actions to resolve the problems were required.

#### 2.2.5 Project Key Activities for Upcoming Year

Key activities planned for July 2020 through June 2021 include the 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report, statistical analysis of assessment monitoring analytical data collected in March 2020, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.



2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report

## 2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

# 2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the LEC Ash Ponds is included in this report as Figure 1.

## 2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned from July 2019 to June 2020.

## 2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b), one independent detection monitoring sample was collected from each background and downgradient monitoring well in September 2019. Two independent assessment monitoring samples were collected from each background and downgradient well in December 2019 (Appendix IV constituents only) and March 2020. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the Ash Ponds is presented in Table I of this report.

#### 2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

Detection monitoring was conducted in accordance with § 257.94(b) through September 2019. SSIs identified during the March 2019 detection monitoring sampling event are provided in Table II. The initial annual assessment monitoring sampling event was completed in December 2019 in accordance with § 257.95(b) with laboratory results completed in January 2020, thus establishing an assessment monitoring program. Assessment monitoring samples from March 2020 were collected in accordance with § 257.95(d)(1).



# 2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

# Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed from July 2019 through June 2020.

# 2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

# 2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from EPA where EPA is the participating State Director or approval from the Participating atthe professional engineer or operator of the CCR unit must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from EPA where EPA is the permitting authority.

An ASD was not successfully completed for the March 2019 detection monitoring sampling event.



# 2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

# 2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since December 2019. One round of assessment monitoring sampling was completed between July 2019 and June 2020. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the Ash Ponds are included in Table III. The background concentrations and groundwater protection standards provided in Table III will be utilized for the statistical evaluations completed for the March 2020 semi-annual assessment monitoring sampling event.

# 2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from EPA where EPA is the permitting State Director or approval from EPA is the permitting attent to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting attent to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring ASD or certification was required prior to July 2020.



# 2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective molecular from 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated from July 2019 through June 2020; therefore, no demonstration or certification is applicable for this unit.



TABLES

# TABLE I SUMMARY OF ANALYTICAL RESULTS - DETECTION AND ASSESSMENT MONITORING EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER ASH PONDS

# ST. MARYS, KANSAS

| Location                                 |            | Upgradient               |                       |            |                       |                       |            |                        |                        |                         |                       | Downgradient |                         |                       |            |                      |                      |            |                       |                       |
|------------------------------------------|------------|--------------------------|-----------------------|------------|-----------------------|-----------------------|------------|------------------------|------------------------|-------------------------|-----------------------|--------------|-------------------------|-----------------------|------------|----------------------|----------------------|------------|-----------------------|-----------------------|
| Location                                 |            | MW-37                    |                       |            | MW-38                 |                       |            |                        | MW-39                  |                         |                       |              | MW-40                   |                       |            | MW-K                 |                      |            | MW-L                  |                       |
| Measure Point (TOC)                      |            | 833.290                  |                       |            | 832.626               |                       |            |                        | 830.615                |                         |                       |              | 831.358                 |                       |            | 842.6                |                      |            | 843.05                |                       |
| Sample Name                              | MW-37      | MW-37-120619             | MW-37-031020          | MW-38      | MW-38-120619          | MW-38-031020          | MW-39      | MW-39-120619           | DUP-120619             | MW-39-031120            | DUP-031120            | MW-40        | MW-40-120619            | MW-40-031120          | MW-K       | MW-K_120619          | MW-K-031120          | MW-L       | MW-L_120619           | MW-L-031120           |
| Sample Date                              | 9/4/2019   | 12/6/2019                | 3/10/2020             | 9/4/2019   | 12/6/2019             | 3/10/2020             | 9/4/2019   | 12/0619                | 12/0619                | 3/11/2020               | 3/11/2020             | 9/4/2019     | 12/6/2019               | 3/11/2020             | 9/5/2019   | 12/06/2019           | 03/11/2020           | 9/5/2019   | 12/06/2019            | 03/11/2020            |
| Final Lab Report Date                    | 9/16/2019  | 12/18/2019               | 3/20/2020             | 9/16/2019  | 12/18/2019            | 3/20/2020             | 9/16/2019  | 12/18/2019             | 12/18/2019             | 3/20/2020               | 3/20/2020             | 9/16/2019    | 12/18/2019              | 3/20/2020             | 9/16/2019  | 12/18/2019           | 3/20/2020            | 9/16/2019  | 12/18/2019            | 3/20/2020             |
| Final Lab Report Revision Date           | N/A        | N/A                      | 3/31/2020             | N/A        | N/A                   | 3/31/2020             | N/A        | N/A                    | N/A                    | 3/31/2020               | 3/31/2020             | N/A          | N/A                     | 3/31/2020             | N/A        | N/A                  | 3/31/2020            | N/A        | N/A                   | 3/31/2020             |
| Final Radiation Lab Report Date          | N/A        | 1/2/2020                 | 4/2/2020              | N/A        | 1/2/2020              | 4/2/2020              | N/A        | 1/2/2020               | 1/2/2020               | 4/2/2020                | 4/2/2020              | N/A          | 1/2/2020                | 4/2/2020              | N/A        | 1/2/2020             | 4/2/2020             | N/A        | 1/2/2020              | 4/2/2020              |
| Final Radiation Lab Report Revision Date | N/A        | N/A                      | N/A                   | N/A        | N/A                   | N/A                   | N/A        | N/A                    | N/A                    | N/A                     | N/A                   | N/A          | N/A                     | N/A                   | N/A        | N/A                  | N/A                  | N/A        | N/A                   | N/A                   |
| Lab Data Reviewed and Accepted           | 10/21/2019 | 1/9/2020                 | 4/18/2020             | 10/21/2019 | 1/9/2020              | 4/18/2020             | 10/21/2019 | 1/9/2020               | 1/9/2020               | 4/18/2020               | 4/18/2020             | 10/21/2019   | 1/9/2020                | 4/18/2020             | 10/21/2019 | 1/9/2020             | 4/18/2020            | 10/21/2019 | 1/9/2020              | 4/18/2020             |
| Depth to Water (ft btoc)                 | 6.55       | 9.61                     | 6.79                  | 10.65      | 14.04                 | 14.93                 | 8.84       | 11.49                  | -                      | 13.70                   | -                     | 9.38         | 11.96                   | 14.38                 | 20.76      | 24.24                | 25.12                | 23.03      | 24.24                 | 25.81                 |
| Temperature (Deg C)                      | 15.88      | 13.26                    | 8.83                  | 16.41      | 14.49                 | 10.59                 | 17.45      | 14.83                  | -                      | 10.34                   | -                     | 18.08        | 14.92                   | 11.79                 | 17.85      | 14.72                | 10.17                | 19.27      | 14.76                 | 10.38                 |
| Conductivity (µS/cm)                     | 836        | 1073                     | 929                   | 2352       | 2834                  | 2476                  | 3255       | 3009                   | -                      | 3217                    | -                     | 2958         | 2686                    | 2693                  | 5,467      | 4793                 | 4708                 | 4,396      | 3800                  | 3790                  |
| Turbidity (NTU)                          | 2.95       | 1.61                     | 5.22                  | 0.62       | 0.96                  | 0.44                  | 0.52       | 0.92                   | -                      | 0.61                    | -                     | 0.73         | 2.68                    | 0.32                  | 7.88       | 1.06                 | 0.66                 | 0.97       | 0.71                  | 0.51                  |
| Boron, Total (mg/L)                      | 1.75       | -                        | 2.0                   | 4.70       | -                     | 5.39                  | 4.46       | -                      | -                      | 5.0                     | 4.76                  | 5.45         | -                       | 4.93                  | 1.73       |                      | 1.8                  | 2.26       |                       | 2.6                   |
| Calcium, Total (mg/L)                    | 134        | -                        | 172                   | 292        | -                     | 336                   | 464        | -                      | -                      | 576                     | 577                   | 488          | -                       | 464                   | 568        |                      | 562                  | 545        |                       | 551                   |
| Chloride (mg/L)                          | 33.6       | -                        | 40.6                  | 201        | -                     | 249                   | 334        | -                      | -                      | 317                     | 351                   | 309          | -                       | 289                   | 942        |                      | 944                  | 624        |                       | 633                   |
| Fluoride (mg/L)                          | 0.35       | 0.27                     | 0.27                  | 2.0        | 5.0                   | 4.9                   | <0.20      | 2.9                    | 2.9                    | 2.2                     | 2.2                   | <0.20        | 1.6                     | 1.6                   | 3.7        | 2.9                  | 2.7                  | <0.20      | 2.0                   | 2.4                   |
| Sulfate (mg/L)                           | 287        | -                        | 319                   | 1220       | -                     | 1290                  | 1780       | -                      | -                      | 1730                    | 1720                  | 1650         | -                       | 1490                  | 2350       |                      | 2190                 | 1880       |                       | 1880                  |
| pH (su)                                  | 7.2        | -                        | 7.0                   | 7.4        | -                     | 7.6                   | 7.2        | -                      | -                      | 7.2                     | 7.3                   | 7.2          | -                       | 7.2                   | 7.2        |                      | 7.3                  | 7.1        |                       | 7.3                   |
| TDS (mg/L)                               | 775        | -                        | 853                   | 2440       | -                     | 2460                  | 3480       | -                      | -                      | 3370                    | 3450                  | 3160         | -                       | 3090                  | 5490       |                      | 5020                 | 4180       |                       | 3880                  |
| Antimony, Total (mg/L)                   | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                | -                       | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Arsenic (mg/L)                           | -          | 0.0078                   | 0.0065                | -          | 0.015                 | 0.015                 | -          | 0.014                  | 0.014                  | 0.0112                  | 0.0112                | -            | 0.015                   | 0.014                 |            | 0.076                | 0.067                |            | 0.029                 | 0.024                 |
| Barium, Total (mg/L)                     | -          | 0.061                    | 0.065                 | -          | 0.031                 | 0.0334                | -          | 0.030                  | 0.031                  | 0.0338                  | 0.0332                | -            | 0.031                   | 0.0321                |            | 0.040                | 0.043                |            | 0.037                 | 0.035                 |
| Beryllium, Total (mg/L)                  | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                | -                       | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Cadmium, Total (mg/L)                    | -          | <0.00050                 | -                     | -          | <0.00050              | -                     | -          | <0.00050               | <0.00050               | -                       | -                     | -            | <0.00050                | -                     |            | < 0.00050            |                      |            | < 0.00050             |                       |
| Chromium, Total (mg/L)                   | -          | <0.0050                  | -                     | -          | <0.0050               | -                     | -          | <0.0050                | <0.0050                | -                       | -                     | -            | <0.0050                 | -                     |            | < 0.0050             |                      |            | < 0.0050              |                       |
| Cobalt, Total (mg/L)                     | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                | -                       | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Lead, Total (mg/L)                       | -          | <0.010                   | -                     | -          | <0.010                | -                     | -          | <0.010                 | <0.010                 | -                       | -                     | -            | <0.010                  | -                     |            | < 0.010              |                      |            | < 0.010               |                       |
| Lithium, Total (mg/L)                    | -          | 0.017                    | 0.0180                | -          | 0.075                 | 0.0744                | -          | 0.045                  | 0.042                  | 0.038                   | 0.0369                | -            | 0.045                   | 0.0415                |            | 0.089                | 0.077                |            | 0.057                 | 0.057                 |
| Molybdenum, Total (mg/L)                 | -          | 0.14                     | 0.12                  | -          | 0.092                 | 0.0822                | -          | 0.19                   | 0.19                   | 0.179                   | 0.180                 | -            | 0.11                    | 0.0959                |            | 0.0096               | 0.016                |            | 0.055                 | 0.049                 |
| Selenium, Total (mg/L)                   | -          | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                | -                       | -                     | -            | <0.0010                 | -                     |            | < 0.0010             |                      |            | < 0.0010              |                       |
| Thallium, Total (mg/L)                   |            | <0.0010                  | -                     | -          | <0.0010               | -                     | -          | <0.0010                | <0.0010                | -                       | -                     | -            | <0.0010                 | -                     |            | < 0.0050             |                      |            | < 0.0050              |                       |
| Mercury, Total (mg/L)                    |            | <0.00020                 | -                     | -          | <0.00020              | -                     | -          | <0.00020               | <0.00020               | -                       | -                     | -            | <0.00020                | -                     |            | < 0.00020            |                      |            | < 0.00020             |                       |
| Fluoride (mg/L)                          | -          | 0.27                     | 0.27                  | -          | 5.0                   | 4.9                   | -          | 2.9                    | 2.9                    | 2.2                     | 2.2                   | -            | 1.6                     | 1.6                   |            | 2.9                  | 2.7                  |            | 2.0                   | 2.4                   |
| Radium-226 & 228 Combined (pCi/L)        | · ·        | 0.0414 +/- 0.563 (0.967) | 0.291 ± 0.430 (0.710) | -          | 1.84 +/- 0.756 (1.08) | 0.245 ± 0.440 (0.721) | -          | 0.760 +/- 0.619 (1.01) | 0.000 +/- 0.461 (0.943 | ) 0.484 ± 0.547 (0.860) | 0.116 ± 0.444 (0.706) | -            | 0.912 +/- 0.613 (0.929) | 0.553 ± 0.488 (0.651) |            | 0.547 ± 0.663 (1.12) | 1.21 ± 0.534 (0.642) |            | 0.482 ± 0.632 (0.980) | 0.939 ± 0.500 (0.679) |

#### Notes & Abbreviations:

The September 2019 sampling event was for Appendix III constituents only. The March 2020 sampling event included Appendix IV constituents detected in the December 2019 sampling event, and all of the Appendix III constituents.

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC). Bold value: Detection above laboratory reporting limit or MDC .

μS/cm = micro Siemens per centimeter ft btoc = feet below top of casing

Deg C = degrees Celsius

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit TDS = total dissolved solids

TOC = top of casing



## TABLE II SUMMARY OF APPENDIX III SSIS MARCH 2019 SAMPLING EVENT LAWRENCE ENERGY CENTER ASH PONDS

| Well ID | Statistical Analysis Completed | Constituent            |
|---------|--------------------------------|------------------------|
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      | Boron                  |
| MW-40   | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Calcium                |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Chloride               |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Fluoride               |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-38   | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-40   | July 2019                      | Sulfate                |
| MW-K    | July 2019                      |                        |
| MW-L    | July 2019                      |                        |
| MW-39   | July 2019                      |                        |
| MW-K    | July 2019                      | Total Dissolved Solids |
| MW-L    | July 2019                      |                        |

Notes & Abbreviations:

SSIs = statistically significant increases



# TABLE IIIANNUAL ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPSDECEMBER 2019 SAMPLING EVENTLAWRENCE ENERGY CENTERASH PONDS

| Well #             | Background Value (UTL)*          | GWPS<br>(Higher of MCL / 40 CFR § 257.95(h)(2) or<br>Upper Tolerance Limit) |
|--------------------|----------------------------------|-----------------------------------------------------------------------------|
|                    | CCR Appendix-IV Arsenic, To      | otal (mg/L)                                                                 |
| MW-37 (upgradient) | 0.00940                          |                                                                             |
| MW-38              |                                  | 0.010                                                                       |
| MW-39              |                                  | 0.010                                                                       |
| MW-40              |                                  | 0.010                                                                       |
| MW-K               |                                  | 0.010                                                                       |
| MW-L               |                                  | 0.010                                                                       |
|                    | CCR Appendix-IV Barium, To       | otal (mg/L)                                                                 |
| MW-37 (upgradient) | 0.0601                           |                                                                             |
| MW-38              |                                  | 2                                                                           |
| MW-39              |                                  | 2                                                                           |
| MW-40              |                                  | 2                                                                           |
| MW-K               |                                  | 2                                                                           |
| MW-L               |                                  | 2                                                                           |
|                    | CCR Appendix-IV Fluoride, To     | otal (mg/L)                                                                 |
| MW-37 (upgradient) | 0.455                            |                                                                             |
| MW-38              |                                  | 4.0                                                                         |
| MW-39              |                                  | 4.0                                                                         |
| MW-40              |                                  | 4.0                                                                         |
| MW-K               |                                  | 4.0                                                                         |
| MW-L               |                                  | 4.0                                                                         |
|                    | CCR Appendix-IV Lithium, To      | otal (mg/L)                                                                 |
| MW-37 (upgradient) | 0.0207                           |                                                                             |
| MW-38              |                                  | 0.040                                                                       |
| MW-39              |                                  | 0.040                                                                       |
| MW-40              |                                  | 0.040                                                                       |
| MW-K               |                                  | 0.040                                                                       |
| MW-L               |                                  | 0.040                                                                       |
|                    | CCR Appendix-IV Molybdenum       | , Total (mg/L)                                                              |
| MW-37 (upgradient) | 0.140                            |                                                                             |
| MW-38              |                                  | 0.140                                                                       |
| MW-39              |                                  | 0.140                                                                       |
| MW-40              |                                  | 0.140                                                                       |
| MW-K               |                                  | 0.140                                                                       |
| MW-L               |                                  | 0.140                                                                       |
|                    | CCR Appendix-IV Radium-226 & 228 | Combined (pCi/L)                                                            |
| MW-37 (upgradient) | 2.215                            |                                                                             |
| MW-38              |                                  | 5                                                                           |
| MW-39              |                                  | 5                                                                           |
| MW-40              |                                  | 5                                                                           |
| MW-K               |                                  | 5                                                                           |
| MW-L               |                                  | 5                                                                           |

#### Notes and Abbreviations:

\* Background value for interwell evaluation based on data collected through March 2019 CCR = coal combustion residuals GWPS = Groundwater Protection Standard MCL = maximum contaminant level mg/L = milligrams per Liter NA = Not Applicable pCi/L = picoCuries per Liter

RSL = Regional Screening Level



FIGURE



# LEGEND

 $\bullet$ 

ASH PONDS

MONITORING WELL

#### NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. AERIAL IMAGERY SOURCE: ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE, APRIL 17, 2018.

3.AREA 2 POND (INACTIVE), AREA 3 POND (INACTIVE), AND AREA 4 POND (INCTIVE) ARE COLLECTIVELY KNOWN AS THE ASH PONDS.



500

250 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

# ASH PONDS (INACTIVE) MONITORING WELL LOCATION MAP

SCALE: AS SHOWN

FIGURE 1



HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

November 2, 2022 Project No. 0204993-000

| TO:      | Evergy Kansas Central, Inc.<br>Jared Morrison – Director, Water and Waste Programs |
|----------|------------------------------------------------------------------------------------|
| FROM:    | Haley & Aldrich, Inc.                                                              |
|          | Steven F. Putrich, P.E., Principal Consultant – Engineering Principal              |
|          | Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist                      |
| SUBJECT: | 2019 – 2020 Annual Groundwater Monitoring and Corrective Action Report Addendur    |
|          | Evergy Kansas Central, Inc.                                                        |
|          | Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive)                               |
|          | Lawrence Energy Center – Lawrence, Kansas                                          |

The Evergy Kansas Central, Inc. (Evergy) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds) at the Lawrence Energy Center is subject to the groundwater monitoring and corrective action requirements described under Code of Federal Regulations Title 40 (40 CFR) §257.90 through §257.98 (Rule). An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting the activities completed from July 2019 – June 2020 for the inactive Ash Ponds was completed and placed in the facility's operating record on July 31, 2020, as required by the Rule. The Annual GWMCA Report contained the specific information listed in 40 CFR §257.90(e).

This report addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR §257.90(e), the USEPA indicated in their comments that the GWMCA Report should contain:

- Results of laboratory analysis of groundwater or other environmental media samples for the presence of constituents of Appendices III and IV to 40 CFR Part 257 (or of other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy);
- Required statistical analyses performed on those (laboratory analysis) results;
- Measured groundwater elevations; and
- Calculated groundwater flow rate and direction.

While this information is not specifically referred to in 40 CFR §257.90(e) for inclusion in the GWMCA Report, it has been routinely collected and maintained in Evergy's files and is being provided in the attachments to this addendum. The applicable laboratory analysis reports for sampling events completed from July 2019 through June 2020 are included in Attachment 1, and a discussion of the applicable statistical analyses completed from July 2019 through June 2020 are included in Attachment 1, and a discussion of the applicable statistical analyses completed from July 2019 through June 2020 are included in Attachment 1, and a discussion of the applicable statistical analyses completed from July 2019 through June 2020 are included in

Evergy Kansas Central, Inc. November 2, 2022 Page 2

Attachment 2 of this addendum. For each of the sampling events completed from July 2019 through June 2020, the measured groundwater elevations, with calculated groundwater flow rates and directions, have been included in Attachment 3.

The Attachments to this addendum are described below:

- Attachment 1 Laboratory Analytical Reports: Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the sampling events completed from July 2019 through June 2020 are provided.
- Attachment 2 Statistical Analyses: Includes a discussion of the statistical analyses utilized along with a table summarizing the statistical outputs (e.g., frequency of detection, maximum detection, variance, standard deviation, coefficient of variance, outlier tests, trends, upper and lower confidence limits, and comparison against Groundwater Protection Standards), and supporting backup for statistical analyses completed from July 2019 through June 2020 included:
  - Overview of the July 2019 statistical analysis for data obtained in the March 2019 sampling event; and
  - Explanation of statistical analysis related to the September 2019 sampling event.
- Attachment 3 Groundwater Potentiometric Maps: Includes the measured groundwater elevations at each well and the generalized groundwater flow direction and calculated flow rate. Maps for the sampling events completed in September and December 2019 and March 2020 are provided.



**ATTACHMENT 1** Laboratory Analytical Reports ATTACHMENT 1-1 September 2019 Sampling Event Laboratory Analytical Report



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

September 16, 2019

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

# RE: Project: LEC INACTIVE ASH PONDS CCR Pace Project No.: 60314116

Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on September 06, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Astantos m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company HEATH HORYNA, WESTAR ENERGY JARED MORRISON, WESTAR ENERGY Danielle Zinmaster, Haley & Aldrich





#### CERTIFICATIONS

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

#### **Kansas Certification IDs**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



#### SAMPLE SUMMARY

#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 6031

| o.: | 60314116 |  |
|-----|----------|--|
|     |          |  |

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 60314116001 | MW-40     | Water  | 09/04/19 14:59 | 09/06/19 15:20 |
| 60314116002 | MW-39     | Water  | 09/04/19 13:47 | 09/06/19 15:20 |
| 60314116003 | MW-38     | Water  | 09/04/19 16:16 | 09/06/19 15:20 |
| 60314116004 | MW-37     | Water  | 09/04/19 18:04 | 09/06/19 15:20 |
| 60314116005 | MW-K      | Water  | 09/05/19 12:55 | 09/06/19 15:20 |
| 60314116006 | MW-L      | Water  | 09/05/19 14:13 | 09/06/19 15:20 |



#### SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Lab ID      | Sample ID | Method      | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|-------------|----------|----------------------|------------|
| 60314116001 | <br>MW-40 | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116002 | MW-39     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116003 | MW-38     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |
| 60314116004 | MW-37     | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MGS, MJK | 3                    | PASI-K     |
| 60314116005 | MW-K      | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MGS, MJK | 3                    | PASI-K     |
| 60314116006 | MW-L      | EPA 200.7   | JDE      | 2                    | PASI-K     |
|             |           | SM 2540C    | BLA      | 1                    | PASI-K     |
|             |           | SM 4500-H+B | AJS2     | 1                    | PASI-K     |
|             |           | EPA 300.0   | MJK      | 3                    | PASI-K     |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Sample: MW-40                | Lab ID: 603   | 314116001     | Collected: 09/04/ | 19 14:59 | Received: 09   | 9/06/19 15:20  | Matrix: Water |      |
|------------------------------|---------------|---------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                   | Results       | Units         | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total          | Analytical Me | thod: EPA 200 | .7 Preparation Me | thod: EF | PA 200.7       |                |               |      |
| Boron, Total Recoverable     | 5450          | ug/L          | 100               | 1        | 09/10/19 16:39 | 09/11/19 10:57 | 7 7440-42-8   |      |
| Calcium, Total Recoverable   | 488000        | ug/L          | 200               | 1        | 09/10/19 16:39 | 09/11/19 10:57 | 7 7440-70-2   |      |
| 2540C Total Dissolved Solids | Analytical Me | thod: SM 2540 | C                 |          |                |                |               |      |
| Fotal Dissolved Solids       | 3160          | mg/L          | 40.0              | 1        |                | 09/10/19 13:02 | 2             |      |
| I500H+ pH, Electrometric     | Analytical Me | thod: SM 4500 | )-H+B             |          |                |                |               |      |
| oH at 25 Degrees C           | 7.2           | Std. Units    | 0.10              | 1        |                | 09/10/19 10:20 | 6             | H6   |
| 300.0 IC Anions 28 Days      | Analytical Me | thod: EPA 300 | .0                |          |                |                |               |      |
| Chloride                     | 309           | mg/L          | 100               | 100      |                | 09/11/19 19:13 | 3 16887-00-6  |      |
| Fluoride                     | <0.20         | mg/L          | 0.20              | 1        |                | 09/11/19 17:14 | 4 16984-48-8  | M1   |
| Sulfate                      | 1650          | mg/L          | 100               | 100      |                | 09/11/19 19:13 | 3 14808-79-8  |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314

| 0314116 |  |  |
|---------|--|--|

| Sample: MW-39                                          | Lab ID: 603    | 314116002    | Collected: 09/04/  | 19 13:47 | Received: 09                     | /06/19 15:20   | Matrix: Water |      |
|--------------------------------------------------------|----------------|--------------|--------------------|----------|----------------------------------|----------------|---------------|------|
| Parameters                                             | Results        | Units        | Report Limit       | DF       | Prepared                         | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met | hod: EPA 20  | 0.7 Preparation Me | thod: EP | A 200.7                          |                |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 4460<br>464000 | ug/L<br>ug/L | 100<br>200         | 1<br>1   | 09/10/19 16:39<br>09/10/19 16:39 |                |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met | -            | -0C                |          |                                  |                |               |      |
| Total Dissolved Solids                                 | 3480           | mg/L         | 66.7               | 1        |                                  | 09/10/19 13:03 | 3             |      |
| 4500H+ pH, Electrometric                               | Analytical Met | hod: SM 450  | ю-H+B              |          |                                  |                |               |      |
| pH at 25 Degrees C                                     | 7.2            | Std. Units   | 0.10               | 1        |                                  | 09/10/19 10:27 | ,             | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met | hod: EPA 30  | 0.0                |          |                                  |                |               |      |
| Chloride                                               | 334            | mg/L         | 100                | 100      |                                  | 09/11/19 20:27 | 16887-00-6    |      |
| Fluoride                                               | <0.20          | mg/L         | 0.20               | 1        |                                  | 09/11/19 19:57 | 16984-48-8    |      |
| Sulfate                                                | 1780           | mg/L         | 100                | 100      |                                  | 09/11/19 20:27 | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314

| 0011110 |  |
|---------|--|
| 0314116 |  |

| Sample: MW-38                | Lab ID: 603    | 14116003    | Collected: 09/04/  | 19 16:16 | Received: 09   | /06/19 15:20   | Matrix: Water |      |
|------------------------------|----------------|-------------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                   | Results        | Units       | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total          | Analytical Met | hod: EPA 20 | 0.7 Preparation Me | thod: EP | PA 200.7       |                |               |      |
| Boron, Total Recoverable     | 4700           | ug/L        | 100                | 1        | 09/10/19 16:39 | 09/11/19 11:02 | 7440-42-8     |      |
| Calcium, Total Recoverable   | 292000         | ug/L        | 200                | 1        | 09/10/19 16:39 | 09/11/19 11:02 | 7440-70-2     |      |
| 2540C Total Dissolved Solids | Analytical Met | hod: SM 254 | 40C                |          |                |                |               |      |
| Total Dissolved Solids       | 2440           | mg/L        | 40.0               | 1        |                | 09/10/19 13:03 | 5             |      |
| 4500H+ pH, Electrometric     | Analytical Met | hod: SM 450 | )0-H+B             |          |                |                |               |      |
| pH at 25 Degrees C           | 7.4            | Std. Units  | 0.10               | 1        |                | 09/10/19 10:29 | )             | H6   |
| 300.0 IC Anions 28 Days      | Analytical Met | hod: EPA 30 | 0.0                |          |                |                |               |      |
| Chloride                     | 201            | mg/L        | 20.0               | 20       |                | 09/11/19 20:57 | 16887-00-6    |      |
| Fluoride                     | 2.0            | mg/L        | 0.20               | 1        |                | 09/11/19 20:42 | 16984-48-8    |      |
| Sulfate                      | 1220           | mg/L        | 100                | 100      |                | 09/11/19 21:12 | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Sample: MW-37                                          | Lab ID: 603    | 314116004           | Collected: 09/04/  | 19 18:04 | Received: 09                     | /06/19 15:20 N | Aatrix: Water |      |
|--------------------------------------------------------|----------------|---------------------|--------------------|----------|----------------------------------|----------------|---------------|------|
| Parameters                                             | Results        | Units               | Report Limit       | DF       | Prepared                         | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met | hod: EPA 20         | 0.7 Preparation Me | thod: EF | PA 200.7                         |                |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 1750<br>134000 | ug/L                | 100<br>200         | 1<br>1   | 09/10/19 16:39<br>09/10/19 16:39 |                |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met | ug/L<br>bod: SM 254 |                    | I        | 09/10/19 10.39                   | 09/11/19 11.04 | 7440-70-2     |      |
| Total Dissolved Solids                                 | 775            | mg/L                | 10.0               | 1        |                                  | 09/10/19 13:03 |               |      |
| 4500H+ pH, Electrometric                               | Analytical Met | hod: SM 450         | 0-H+B              |          |                                  |                |               |      |
| pH at 25 Degrees C                                     | 7.2            | Std. Units          | 0.10               | 1        |                                  | 09/10/19 10:30 |               | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met | hod: EPA 30         | 0.0                |          |                                  |                |               |      |
| Chloride                                               | 33.6           | mg/L                | 5.0                | 5        |                                  | 09/12/19 14:07 | 16887-00-6    |      |
| Fluoride                                               | 0.35           | mg/L                | 0.20               | 1        |                                  | 09/11/19 21:56 | 16984-48-8    |      |
| Sulfate                                                | 287            | mg/L                | 20.0               | 20       |                                  | 09/11/19 22:11 | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 603147

# 60314116

| Sample: MW-K                                           | Lab ID: 603        | 14116005             | Collected: 09/05/1  | 9 12:55         | Received: 09                     | /06/19 15:20                                       | Matrix: Water |      |
|--------------------------------------------------------|--------------------|----------------------|---------------------|-----------------|----------------------------------|----------------------------------------------------|---------------|------|
| Parameters                                             | Results            | Units                | Report Limit        | DF              | Prepared                         | Analyzed                                           | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Met     | hod: EPA 20          | 0.7 Preparation Met | hod: EP         | A 200.7                          |                                                    |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 1730<br>568000     | ug/L<br>ug/L         | 100<br>200          | 1<br>1          | 09/10/19 16:39<br>09/10/19 16:39 |                                                    |               |      |
| 2540C Total Dissolved Solids                           | Analytical Met     | hod: SM 254          | OC                  |                 |                                  |                                                    |               |      |
| Total Dissolved Solids                                 | 5490               | mg/L                 | 100                 | 1               |                                  | 09/11/19 13:39                                     | 1             |      |
| 4500H+ pH, Electrometric                               | Analytical Met     | hod: SM 450          | ю-H+B               |                 |                                  |                                                    |               |      |
| pH at 25 Degrees C                                     | 7.2                | Std. Units           | 0.10                | 1               |                                  | 09/10/19 10:32                                     | 2             | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Met     | hod: EPA 30          | 0.0                 |                 |                                  |                                                    |               |      |
| Chloride<br>Fluoride<br>Sulfate                        | 942<br>3.7<br>2350 | mg/L<br>mg/L<br>mg/L | 100<br>0.20<br>200  | 100<br>1<br>200 |                                  | 09/11/19 23:11<br>09/11/19 22:41<br>09/12/19 14:55 |               |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Sample: MW-L                                           | Lab ID: 603    | 314116006    | Collected: 09/05/ | 19 14:13 | B Received: 09                   | /06/19 15:20   | Matrix: Water |      |
|--------------------------------------------------------|----------------|--------------|-------------------|----------|----------------------------------|----------------|---------------|------|
| Parameters                                             | Results        | Units        | Report Limit      | DF       | Prepared                         | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total                                    | Analytical Me  | hod: EPA 200 | .7 Preparation Me | thod: EF | PA 200.7                         |                |               |      |
| Boron, Total Recoverable<br>Calcium, Total Recoverable | 2260<br>545000 | ug/L<br>ug/L | 100<br>200        | 1<br>1   | 09/10/19 16:39<br>09/10/19 16:39 |                |               | M1   |
| 2540C Total Dissolved Solids                           | Analytical Me  | hod: SM 2540 | C                 |          |                                  |                |               |      |
| Total Dissolved Solids                                 | 4180           | mg/L         | 66.7              | 1        |                                  | 09/11/19 13:40 |               |      |
| 4500H+ pH, Electrometric                               | Analytical Me  | hod: SM 4500 | -H+B              |          |                                  |                |               |      |
| pH at 25 Degrees C                                     | 7.1            | Std. Units   | 0.10              | 1        |                                  | 09/10/19 10:33 |               | H6   |
| 300.0 IC Anions 28 Days                                | Analytical Me  | hod: EPA 300 | .0                |          |                                  |                |               |      |
| Chloride                                               | 624            | mg/L         | 100               | 100      |                                  | 09/11/19 23:55 | 16887-00-6    |      |
| Fluoride                                               | <0.20          | mg/L         | 0.20              | 1        |                                  | 09/11/19 23:25 | 16984-48-8    |      |
| Sulfate                                                | 1880           | mg/L         | 100               | 100      |                                  | 09/11/19 23:55 | 14808-79-8    |      |



| Project:<br>Pace Project No.: | LEC INAC <sup>-</sup><br>60314116 | TIVE ASH | PONDS CCR             |                |                |              |                        |                      |                |                 |          |            |      |
|-------------------------------|-----------------------------------|----------|-----------------------|----------------|----------------|--------------|------------------------|----------------------|----------------|-----------------|----------|------------|------|
| QC Batch:                     | 608466                            |          |                       | Anal           | ysis Method    | d:           | EPA 200.7              |                      |                |                 |          |            |      |
| QC Batch Method:              | EPA 200.                          | 7        |                       | Analy          | ysis Descrij   | ption:       | 200.7 Meta             | als, Total           |                |                 |          |            |      |
| Associated Lab San            | nples: 60                         | 31411600 | 1, 6031411600         | 2, 6031411     | 6003, 6031     | 4116004,     | 603141160              | 05, 603 <sup>,</sup> | 14116006       |                 |          |            |      |
| METHOD BLANK:                 | 2485612                           |          |                       |                | Matrix: W      | ater         |                        |                      |                |                 |          |            |      |
| Associated Lab San            | nples: 60                         | 31411600 | 1,6031411600          | 2, 6031411     | 6003, 6031     | 4116004,     | 603141160              | 05, 603 <sup>-</sup> | 14116006       |                 |          |            |      |
|                               |                                   |          |                       | Blai           | nk l           | Reporting    |                        |                      |                |                 |          |            |      |
| Paran                         | neter                             |          | Units                 | Res            | ult            | Limit        | Ana                    | lyzed                | Qualifie       | rs              |          |            |      |
| Boron                         |                                   |          | ug/L                  |                | <100           | 10           | 0 09/11/               | 19 10:55             |                |                 |          |            |      |
| Calcium                       |                                   |          | ug/L                  |                | <200           | 20           | 00 09/11/ <sup>,</sup> | 19 10:55             |                |                 |          |            |      |
| LABORATORY CON                | NTROL SAM                         | IPLE: 2  | 485613                | Spike          | LC             | S            | LCS                    | 0                    | % Rec          |                 |          |            |      |
| Paran                         | neter                             |          | Units                 | Conc.          | Res            | sult         | % Rec                  | I                    | Limits         | Qualifiers      |          |            |      |
| Boron                         |                                   |          | ug/L                  | 100            | 00             | 1020         | 1(                     | )2                   | 85-115         |                 | _        |            |      |
| Calcium                       |                                   |          | ug/L                  | 1000           | 00             | 10500        | 10                     | 05                   | 85-115         |                 |          |            |      |
| MATRIX SPIKE SAM              | MPLE:                             | 2        | 485614                |                |                |              |                        |                      |                |                 |          |            |      |
|                               |                                   |          |                       | 60314          | 116006         | Spike        | MS                     |                      | MS             | % Red           | <b>)</b> |            |      |
| Paran                         | neter                             |          | Units                 | Re             | esult          | Conc.        | Resul                  | t                    | % Rec          | Limits          | ;        | Qualif     | iers |
| Boron                         |                                   |          | ug/L                  |                | 2260           | 1000         |                        | 3120                 | 86             | 70              | )-130    |            |      |
| Calcium                       |                                   |          | ug/L                  |                | 545000         | 10000        | 53                     | 7000                 | -80            | 70              | )-130 M  | 1          |      |
| MATRIX SPIKE & M              | IATRIX SPI                        | KE DUPLI | CATE: 2485            | 615            |                | 248561       | 6                      |                      |                |                 |          |            |      |
|                               |                                   |          |                       | MS             | MSD            |              |                        |                      |                |                 |          |            |      |
| Parameter                     |                                   | Units    | 60314218001<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result          | MS<br>% Re           | MSD<br>c % Rec | % Rec<br>Limits | RPD      | Max<br>RPD | Qual |
| Boron                         |                                   | ug/L     | 0.37 mg/L             | 1000           | 1000           | 1370         | 1320                   | 1                    | 101 95         | 5 70-130        | 4        | 20         |      |
| Calcium                       |                                   | ug/L     | 151 mg/L              | 10000          | 10000          | 161000       | 156000                 |                      | 100 48         |                 |          | -          | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: LEC IN<br>Pace Project No.: 603141 | ACTIVE ASH PONDS CCR<br>16 |                  |             |                 |                |            |
|---------------------------------------------|----------------------------|------------------|-------------|-----------------|----------------|------------|
| QC Batch: 60825                             | 57                         | Analysis Me      | ethod:      | SM 2540C        |                |            |
| QC Batch Method: SM 25                      | 540C                       | Analysis De      | escription: | 2540C Total Dis | ssolved Solids |            |
| Associated Lab Samples:                     | 60314116001, 6031411600    | 02, 60314116003, | 60314116004 |                 |                |            |
| METHOD BLANK: 248494                        | 1                          | Matrix           | : Water     |                 |                |            |
| Associated Lab Samples:                     | 60314116001, 6031411600    | 02, 60314116003, | 60314116004 |                 |                |            |
|                                             |                            | Blank            | Reporting   |                 |                |            |
| Parameter                                   | Units                      | Result           | Limit       | Analyze         | d Quali        | fiers      |
| Total Dissolved Solids                      | mg/L                       | <5.0             | ) 5.        | 0 09/10/19 13   | 3:00           |            |
| LABORATORY CONTROL S                        | SAMPLE: 2484942            |                  |             |                 |                |            |
|                                             | JAMI LL. 2404942           | Spike            | LCS         | LCS             | % Rec          |            |
| Parameter                                   | Units                      | Conc.            | Result      | % Rec           | Limits         | Qualifiers |
| Total Dissolved Solids                      | mg/L                       | 1000             | 995         | 100             | 80-120         |            |
| SAMPLE DUPLICATE: 24                        | 84943                      |                  |             |                 |                |            |
|                                             |                            | 60314117001      | Dup         |                 | Max            |            |
| Parameter                                   | Units                      | Result           | Result      | RPD             | RPD            | Qualifiers |
| Total Dissolved Solids                      | mg/L                       | 11000            | ) 1070      | 0               | 2              | 10         |
| SAMPLE DUPLICATE: 24                        | 84944                      |                  |             |                 |                |            |
|                                             |                            | 60314116001      | Dup         |                 | Max            |            |
| Parameter                                   | Units                      | Result           | Result      | RPD             | RPD            | Qualifiers |
| Total Dissolved Solids                      | mg/L                       | 3160             | 312         | 0               | 1              | 10         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: LEC INACTIVE A<br>Pace Project No.: 60314116 | SH PONDS CCR      |             |             |               |                |            |
|-------------------------------------------------------|-------------------|-------------|-------------|---------------|----------------|------------|
| QC Batch: 608542                                      |                   | Analysis M  | ethod:      | SM 2540C      |                |            |
| QC Batch Method: SM 2540C                             |                   | Analysis De | escription: | 2540C Total D | ssolved Solids |            |
| Associated Lab Samples: 6031411                       | 6005, 60314116006 | i           |             |               |                |            |
| METHOD BLANK: 2486059                                 |                   | Matrix      | k: Water    |               |                |            |
| Associated Lab Samples: 6031411                       | 6005, 60314116006 |             |             |               |                |            |
| Descenter                                             | 11-26-            | Blank       | Reporting   | A             |                | 10         |
| Parameter                                             | Units             | Result      | Limit       | Analyze       |                | ifiers     |
| Total Dissolved Solids                                | mg/L              | <5.0        | ) 5         | .0 09/11/19 1 | 3:39           |            |
| LABORATORY CONTROL SAMPLE:                            | 2486060           |             |             |               |                |            |
|                                                       |                   | Spike       | LCS         | LCS           | % Rec          |            |
| Parameter                                             | Units             | Conc.       | Result      | % Rec         | Limits         | Qualifiers |
| Total Dissolved Solids                                | mg/L              | 1000        | 1010        | 101           | 80-120         |            |
| SAMPLE DUPLICATE: 2486061                             |                   |             |             |               |                |            |
|                                                       |                   | 60314116005 | Dup         |               | Max            |            |
| Parameter                                             | Units             | Result      | Result      | RPD           | RPD            | Qualifiers |
| Total Dissolved Solids                                | mg/L              | 5490        | 529         | 90            | 4              | 10         |
| SAMPLE DUPLICATE: 2486062                             |                   |             |             |               |                |            |
|                                                       |                   | 60313369021 | Dup         |               | Max            |            |
| Parameter                                             | Units             | Result      | Result      | RPD           | RPD            | Qualifiers |
| Total Dissolved Solids                                | mg/L              | 196         | 5 <u> </u>  |               | 0              | 10         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| QC Batch:          | 6082  | 287                         | Analysis Method:        | SM 4500-H+B                |
|--------------------|-------|-----------------------------|-------------------------|----------------------------|
| QC Batch Method:   | SM 4  | 4500-H+B                    | Analysis Description:   | 4500H+B pH                 |
| Associated Lab Sam | ples: | 60314116001, 60314116002, 6 | 0314116003, 60314116004 | , 60314116005, 60314116006 |

| pH at 25 Degrees C        | Std. Units |             | 8.5    | 2   |     | 5 H6       |
|---------------------------|------------|-------------|--------|-----|-----|------------|
| Parameter                 | Units      | Result      | Result | RPD | RPD | Qualifiers |
|                           |            | 60313981001 | Dup    |     | Max |            |
| SAMPLE DUPLICATE: 2485035 |            |             |        |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

QC Batch: 608675 QC Batch Method: EPA 300.0 Analysis Method:

Analysis Description:

EPA 300.0

300.0 IC Anions

Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

METHOD BLANK: 2486554 Matrix: Water Associated Lab Samples: 60314116001, 60314116002, 60314116003, 60314116004, 60314116005, 60314116006

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Chloride  | mg/L  | <1.0            | 1.0                | 09/11/19 12:24 |            |
| Fluoride  | mg/L  | <0.20           | 0.20               | 09/11/19 12:24 |            |
| Sulfate   | mg/L  | <1.0            | 1.0                | 09/11/19 12:24 |            |

#### LABORATORY CONTROL SAMPLE: 2486555

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Chloride  | mg/L  | 5              | 4.8           | 95           | 90-110          |            |
| Fluoride  | mg/L  | 2.5            | 2.6           | 103          | 90-110          |            |
| Sulfate   | mg/L  | 5              | 5.0           | 100          | 90-110          |            |

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2486556 |       |             |       |       | 2486557 |        |       |       |        |     |     |      |
|------------------------------------------------|-------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                                                |       |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                                                | 6     | 60314116001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                                      | Units | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                                       | mg/L  | 309         | 500   | 500   | 784     | 778    | 95    | 94    | 80-120 | 1   | 15  |      |
| Fluoride                                       | mg/L  | <0.20       | 2.5   | 2.5   | 1.3     | 1.4    | 52    | 56    | 80-120 | 8   | 15  | M1   |
| Sulfate                                        | mg/L  | 1650        | 500   | 500   | 2200    | 2150   | 110   | 100   | 80-120 | 2   | 15  | E    |

| MATRIX SPIKE SAMPLE: | 2486558 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60314117004 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Fluoride             | mg/L    | <0.20       | 2.5   | <0.20  | 0     | 80-120 | M1         |
| Sulfate              | mg/L    | 610         | 500   | 1130   | 104   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | LEC INACTIVE A | SH PONDS CCR            |                |                |              |               |             |              |                 |     |            |       |
|--------------------|----------------|-------------------------|----------------|----------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|-------|
| Pace Project No.:  | 60314116       |                         |                |                |              |               |             |              |                 |     |            |       |
| QC Batch:          | 608942         |                         | Anal           | ysis Method    | d:           | EPA 300.0     |             |              |                 |     |            |       |
| QC Batch Method:   | EPA 300.0      |                         | Anal           | ysis Descrip   | otion:       | 300.0 IC An   | ions        |              |                 |     |            |       |
| Associated Lab Sam | ples: 6031411  | 6004, 6031411600        | 5              |                |              |               |             |              |                 |     |            |       |
| METHOD BLANK:      | 2487470        |                         |                | Matrix: Wa     | ater         |               |             |              |                 |     |            |       |
| Associated Lab Sam | ples: 6031411  | 6004, 6031411600        | 5              |                |              |               |             |              |                 |     |            |       |
|                    |                |                         | Bla            | nk l           | Reporting    |               |             |              |                 |     |            |       |
| Param              | neter          | Units                   | Res            | ult            | Limit        | Analy         | /zed        | Qualifiers   | 3               |     |            |       |
| Chloride           |                | mg/L                    |                | <1.0           | 1            |               |             |              |                 |     |            |       |
| Sulfate            |                | mg/L                    |                | <1.0           | 1            | .0 09/12/19   | 9 10:12     |              |                 |     |            |       |
| LABORATORY CON     | ITROL SAMPLE:  | 2487471                 |                |                |              |               |             |              |                 |     |            |       |
|                    |                |                         | Spike          | LC             | -            | LCS           | % R         |              |                 |     |            |       |
| Param              | neter          | Units                   | Conc.          | Res            | ult          | % Rec         | Lim         | its (        | Qualifiers      | _   |            |       |
| Chloride           |                | mg/L                    |                | 5              | 4.7          | 9             |             | 90-110       |                 |     |            |       |
| Sulfate            |                | mg/L                    |                | 5              | 4.9          | 98            | 8           | 90-110       |                 |     |            |       |
| MATRIX SPIKE & M   | ATRIX SPIKE DU | PLICATE: 2487           |                |                | 2487473      | 3             |             |              |                 |     |            |       |
|                    |                | 00044440004             | MS             | MSD            |              | MOD           |             | MOD          | 0/ D            |     |            |       |
| Parameter          | Unit           | 60314116004<br>s Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual  |
| Chloride           | mg/            |                         | 25             | 25             | 61.7         | 61.4          | 112         | 111          | 80-120          | 1   |            |       |
| Sulfate            | mg/            |                         | 25             | 25             | 381          | 383           | 224         | 233          | 80-120          | 1   | -          | E,M1  |
| MATRIX SPIKE SAM   | /PI E:         | 2487474                 |                |                |              |               |             |              |                 |     |            |       |
|                    |                |                         | 60314          | 1218003        | Spike        | MS            |             | MS           | % Rec           |     |            |       |
|                    |                |                         |                |                | •            |               | _           | ( D          |                 |     | 0          | £     |
| Param              | neter          | Units                   | Re             | esult          | Conc.        | Result        | %           | 6 Rec        | Limits          |     | Quali      | tiers |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-K Pace Analytical Services - Kansas City

#### ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60314116

| Lab ID      | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|-----------------|----------|-------------------|---------------------|
| 60314116001 | MW-40     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116002 | MW-39     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116003 | MW-38     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116004 | MW-37     | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116005 | MW-K      | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116006 | MW-L      | EPA 200.7       | 608466   | EPA 200.7         | 608606              |
| 60314116001 | MW-40     | SM 2540C        | 608257   |                   |                     |
| 60314116002 | MW-39     | SM 2540C        | 608257   |                   |                     |
| 60314116003 | MW-38     | SM 2540C        | 608257   |                   |                     |
| 60314116004 | MW-37     | SM 2540C        | 608257   |                   |                     |
| 60314116005 | MW-K      | SM 2540C        | 608542   |                   |                     |
| 60314116006 | MW-L      | SM 2540C        | 608542   |                   |                     |
| 60314116001 | MW-40     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116002 | MW-39     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116003 | MW-38     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116004 | MW-37     | SM 4500-H+B     | 608287   |                   |                     |
| 60314116005 | MW-K      | SM 4500-H+B     | 608287   |                   |                     |
| 60314116006 | MW-L      | SM 4500-H+B     | 608287   |                   |                     |
| 60314116001 | MW-40     | EPA 300.0       | 608675   |                   |                     |
| 60314116002 | MW-39     | EPA 300.0       | 608675   |                   |                     |
| 60314116003 | MW-38     | EPA 300.0       | 608675   |                   |                     |
| 60314116004 | MW-37     | EPA 300.0       | 608675   |                   |                     |
| 60314116004 | MW-37     | EPA 300.0       | 608942   |                   |                     |
| 60314116005 | мพ-к      | EPA 300.0       | 608675   |                   |                     |
| 60314116005 | мพ-к      | EPA 300.0       | 608942   |                   |                     |
| 60314116006 | MW-L      | EPA 300.0       | 608675   |                   |                     |



Sample Condition Upon Receipt

# WO#:60314116

| Client Name: Wester                                                                                                                                           |                        |                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------|
| Courier: FedEx □ UPS □ VIA □ Clay □                                                                                                                           | PEX 🗆 ECI 🗆            | Pace Xroads 🗆 Client 🗋 Other 🗆                                                   |
| Tracking #: Pa                                                                                                                                                | ce Shipping Label Used | j? Yes □ No,                                                                     |
| Custody Seal on Cooler/Box Present: Yes A No 🗆                                                                                                                | Seals intact: Yes      |                                                                                  |
| Packing Material: Bubble Wrap  Bubble Bags                                                                                                                    | 🗆 🛛 Foam 🗆             | None D Other P 2pl C                                                             |
| Thermometer Used: <u>T-301</u> Type of                                                                                                                        | of Ice: Wet Blue No    | ne                                                                               |
| Cooler Temperature (°C): As-read <u>4.4, 5.</u> Corr. Fac                                                                                                     | tor 0.0 Correct        | ted $4.4$ $5.2$ Date and initials of person (19 S) examining contents: $9(7/19)$ |
| Temperature should be above freezing to 6°C                                                                                                                   |                        |                                                                                  |
| Chain of Custody present:                                                                                                                                     | ₩es □No □N/A           |                                                                                  |
| Chain of Custody relinquished:                                                                                                                                | Yes No N/A             |                                                                                  |
| Samples arrived within holding time:                                                                                                                          | Yes No N/A             |                                                                                  |
| Short Hold Time analyses (<72hr):                                                                                                                             |                        |                                                                                  |
| Rush Turn Around Time requested:                                                                                                                              | Yes Mo N/A             |                                                                                  |
| Sufficient volume:                                                                                                                                            | Yes No N/A             |                                                                                  |
| Correct containers used:                                                                                                                                      | Yes No N/A             |                                                                                  |
| Pace containers used:                                                                                                                                         | Yes No N/A             |                                                                                  |
| Containers intact:                                                                                                                                            | Yes No N/A             |                                                                                  |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                                        | Yes No                 |                                                                                  |
| Filtered volume received for dissolved tests?                                                                                                                 | □Yes □No □N/A          |                                                                                  |
| Sample labels match COC: Date / time / ID / analyses                                                                                                          | Fres No N/A            |                                                                                  |
| Samples-contain multiple phases? Matrix: W                                                                                                                    |                        |                                                                                  |
| Containers requiring pH preservation in compliance?<br>(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH. CK-DR⊃) | Fres INO IN/A          | List sample IDs. volumes, lot #'s of preservative and the date/time added.       |
| Cyanide water sample checks:<br>Lead acetate strip turns dark? (Record only)                                                                                  | □Yes □No               |                                                                                  |
| Potassium iodide test strip turns blue/purple? (Preserve)                                                                                                     | □Yes □No               |                                                                                  |
| Trip Blank present:                                                                                                                                           | □Yes □No ₽N/A          |                                                                                  |
| Headspace in VOA vials ( >6mm):                                                                                                                               | Yes No N/A             |                                                                                  |
| Samples from USDA Regulated Area: State:                                                                                                                      | 🛛 Yes 🖾 No 🖉 N/A       |                                                                                  |
| Additional labels attached to 5035A / TX1005 vials in the field                                                                                               | ? 🛛 Yes 🗆 No 🖉 N/A     |                                                                                  |
| Client Notification/ Resolution: Copy COC                                                                                                                     | to Client? Y / N       | Field Data Required? Y / N                                                       |
| Person Contacted: Date/                                                                                                                                       | Time:                  |                                                                                  |
| Comments/ Resolution:                                                                                                                                         |                        |                                                                                  |
|                                                                                                                                                               |                        |                                                                                  |
|                                                                                                                                                               |                        |                                                                                  |

Project Manager Review:

Date: \_\_\_



## CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Company:         WESTAR ENERGY           viddress:         818 Kansas Ave                                                | Required Project Information:<br>Report To: Adam Kneeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                    |                                           | nation:            |                                                                                                                                                                                                                 |                  |          |                         |                                |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------------------------|--------------------------------|-----------------------------------------------------------------|
| ddress: 818 Kansas Ave                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    | Attention:                                |                    |                                                                                                                                                                                                                 | 1                | 0        |                         |                                |                                                                 |
|                                                                                                                          | Copy To: Jared Morrison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                                    | Company Na                                | ne:                |                                                                                                                                                                                                                 | REGULATOR        | YAGENCY  | 7                       |                                |                                                                 |
| Topeka, KS 66612                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    | Address:                                  |                    |                                                                                                                                                                                                                 |                  |          | ND WATER                |                                | NKING WATER                                                     |
| mail To: brandon.l.griffin@westarenergy.com                                                                              | Purchase Order No : 10LEC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000015648                                                          |                                    | Pace Quote                                |                    |                                                                                                                                                                                                                 |                  | □ RCRA   | io mitel                | Г ОТН                          |                                                                 |
| Phone: 785-575-8135 Fax:                                                                                                 | Project Name: LEC Inactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ash Ponds CCF                                                       | 3                                  | Reference:<br>Pace Project                | Heather Wilson 913 | 3-563-1407                                                                                                                                                                                                      | Site Location    |          | E.                      |                                |                                                                 |
| Requested Due Date/TAT; 7 day                                                                                            | Project Number;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    | Manager:<br>Pace Profile #:               |                    |                                                                                                                                                                                                                 |                  | KS       |                         |                                |                                                                 |
|                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    | I                                         | 3033, 2            | Burnatud                                                                                                                                                                                                        | STATE:           |          |                         |                                |                                                                 |
|                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    | <u> </u>                                  |                    |                                                                                                                                                                                                                 | Analysis Filter  | ed (Y/N) | -1///                   |                                |                                                                 |
| Section D Valid Matrix<br>Required Client Information MATRIX                                                             | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COLLECTED                                                           |                                    |                                           | Preservatives      | T N IA                                                                                                                                                                                                          |                  |          |                         |                                |                                                                 |
| BAMPLE ID<br>(A-2, 0-9 / -)<br>Sample IDs MUST BE UNIQUE<br>1 MW-40<br>2 MW-39<br>3 MW-39<br>4 MW-37<br>5 HW-K<br>6 HW-L | WW Codes to | POSITE COM<br>ART ENT<br>TIME DATE<br>9/14/10<br>9/14/10<br>9/15/10 | MPOSITE<br>ID/GRAB UD/GRAB UD/GRAB | といいのでの10000000000000000000000000000000000 | Do<br>Iot          | J Analysis Test1           X X X X         200.7 Total Metals*           X X X         200.0.1 F, SO4           X X X         200.0.1 F, SO4           X X X         2540C TDS           X X X         4500 H+B |                  |          | Residual Chlorine (Y/N) | (0031 <sup>L</sup><br>Pace Pro | t II 6<br>ject No./ Lab I.D.<br>001<br>002<br>003<br>004<br>005 |
| 8                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    |                                           |                    |                                                                                                                                                                                                                 |                  |          | ++                      |                                |                                                                 |
| 9                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    |                                           |                    |                                                                                                                                                                                                                 |                  |          |                         |                                |                                                                 |
| 10                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    |                                           |                    |                                                                                                                                                                                                                 |                  |          |                         |                                |                                                                 |
| 11                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    |                                           |                    |                                                                                                                                                                                                                 |                  |          |                         |                                |                                                                 |
| 12                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                    |                                           |                    |                                                                                                                                                                                                                 |                  |          |                         |                                |                                                                 |
| ADDITIONAL COMMENTS                                                                                                      | RELINQUISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / AFFILIATION                                                       | DATE                               | TIME                                      | ACCEPTE            | D BY / AFFILIATION                                                                                                                                                                                              | DATE             | TIME     |                         | SAMPLE C                       | ONDITIONS                                                       |
| 00 7 Total Metals*: B, Ca                                                                                                | Misha Miller-Gilm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur/HIA                                                              | 916/A                              | 1300                                      | Vatton             | Bronfig                                                                                                                                                                                                         | <u>ce</u> 9/6/19 | 1520     | 4.4<br>5.2              | Y                              | <u>μ</u> Υ                                                      |
| Page 20 of 20                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRINT N                                                             | IE AND SIGNATUR                    | Misha                                     | Miller Kilm        | UC<br>DATE Signed                                                                                                                                                                                               | 9/6/19           |          | Temp in °C              | Received on<br>Ice (Y/N)       | Cooler (Y/N)<br>Samples Intact<br>(Y/N)                         |

ATTACHMENT 1-2 December 2019 Sampling Event Laboratory Analytical Report



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

December 18, 2019

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

RE: Project: LEC CCR Pace Project No.: 60323644

Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on December 09, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Anton m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company HEATH HORYNA, WESTAR ENERGY Andrew Hare, KCP&L and Westar, Evergy Companies Laura Hines, KCP&L & Westar, Evergy Companies Jake Humphrey, KCP&L and Westar, Evergy Companies Tabitha Hylton, KCP&L & Westar, Evergy Companies Samantha Kaney, Haley & Aldrich JARED MORRISON, KCP&L and Westar, Evergy Companies Melissa Michels, KCP&L & Westar, Evergy Companies

TNI PACCREOLES

Danielle Zinmaster, Haley & Aldrich





Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

#### CERTIFICATIONS

Project: LEC CCR Pace Project No.: 60323644

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



#### SAMPLE SUMMARY

Project: LEC CCR Pace Project No.: 60323644

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60323644001 | MW-37-120619 | Water  | 12/06/19 09:25 | 12/09/19 16:10 |
| 60323644002 | MW-38-120619 | Water  | 12/06/19 10:45 | 12/09/19 16:10 |
| 60323644003 | MW-K-120619  | Water  | 12/06/19 12:00 | 12/09/19 16:10 |
| 60323644004 | MW-L-120619  | Water  | 12/06/19 13:00 | 12/09/19 16:10 |
| 60323644005 | MW-39-120619 | Water  | 12/06/19 14:00 | 12/09/19 16:10 |
| 60323644006 | DUP-120619   | Water  | 12/06/19 14:15 | 12/09/19 16:10 |
| 60323644007 | MW-40-120619 | Water  | 12/06/19 15:40 | 12/09/19 16:10 |



## SAMPLE ANALYTE COUNT

Project: LEC CCR Pace Project No.: 60323644

| Lab ID      | Sample ID        | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|-----------|----------|----------------------|------------|
| 60323644001 | <br>MW-37-120619 | EPA 200.7 | НКС      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644002 | MW-38-120619     | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644003 | MW-K-120619      | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644004 | MW-L-120619      | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644005 | MW-39-120619     | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644006 | DUP-120619       | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |
| 60323644007 | MW-40-120619     | EPA 200.7 | HKC      | 5                    | PASI-K     |
|             |                  | EPA 200.8 | LRS      | 7                    | PASI-K     |
|             |                  | EPA 245.1 | JLH      | 1                    | PASI-K     |
|             |                  | EPA 300.0 | MJK      | 1                    | PASI-K     |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-37-120619          | Lab ID: 6032    | 23644001    | Collected: 1   | 2/06/19 | 9 09:25 | Received: 12   | /09/19 16:10 N | latrix: Water |      |
|-------------------------------|-----------------|-------------|----------------|---------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units       | Report L       | _imit   | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparatio | on Meth | nod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.061           | mg/L        | 0.             | 0050    | 1       | 12/11/19 14:00 | 12/13/19 16:37 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.             | 0010    | 1       | 12/11/19 14:00 | 12/13/19 16:37 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.             | 0050    | 1       | 12/11/19 14:00 | 12/13/19 16:37 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | (              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:37 | 7439-92-1     |      |
| Lithium                       | 0.017           | mg/L        | (              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:37 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparatio | on Meth | nod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.0078          | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.0            | 0050    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.14            | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.             | 0010    | 1       | 12/11/19 16:10 | 12/18/19 12:52 | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparatio | on Meth | nod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L        |                | 0.20    | 1       | 12/12/19 15:00 | 12/16/19 12:09 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0            |         |         |                |                |               |      |
| Fluoride                      | 0.27            | mg/L        |                | 0.20    | 1       |                | 12/12/19 21:55 | 16984-48-8    |      |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-38-120619          | Lab ID: 6032    | 23644002    | Collected: 12/0   | 6/19 10:45 | 6 Received: 12 | 2/09/19 16:10  | Matrix: Water |      |
|-------------------------------|-----------------|-------------|-------------------|------------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limi       | DF         | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparation N | lethod: EF | PA 200.7       |                |               |      |
| Barium, Total Recoverable     | 0.031           | mg/L        | 0.005             | 0 1        | 12/11/19 14:00 | 12/13/19 16:40 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.001             | 01         | 12/11/19 14:00 | 12/13/19 16:40 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.005             | 01         | 12/11/19 14:00 | 12/13/19 16:40 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.01              | 01         | 12/11/19 14:00 | 12/13/19 16:40 | 7439-92-1     |      |
| Lithium                       | 0.075           | mg/L        | 0.01              | 01         | 12/11/19 14:00 | 12/13/19 16:40 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparation N | lethod: EF | PA 200.8       |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 0 1        | 12/11/19 16:10 | 12/18/19 12:54 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.015           | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.0005            | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.092           | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 12:54 | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparation N | lethod: EF | PA 245.1       |                |               |      |
| Mercury                       | <0.20           | ug/L        | 0.2               | 01         | 12/12/19 15:00 | 12/16/19 12:11 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0               |            |                |                |               |      |
| Fluoride                      | 5.0             | mg/L        | 0.2               | 01         |                | 12/12/19 22:11 | 16984-48-8    |      |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-K-120619           | Lab ID: 6032    | 23644003   | Collected:  | 12/06/1  | 9 12:00 | Received: 12   | /09/19 16:10   | Matrix: Water |      |
|-------------------------------|-----------------|------------|-------------|----------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units      | Report      | Limit    | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 20 | 0.7 Prepara | tion Met | hod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.040           | mg/L       | (           | 0.0050   | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L       | (           | 0.0010   | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L       | (           | 0.0050   | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L       |             | 0.010    | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7439-92-1     |      |
| Lithium                       | 0.089           | mg/L       |             | 0.010    | 1       | 12/11/19 14:00 | 12/13/19 16:46 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 20 | 0.8 Prepara | tion Met | hod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L       | (           | 0.0010   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.076           | mg/L       | (           | 0.0010   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L       | 0.          | .00050   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L       | (           | 0.0010   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.0096          | mg/L       | (           | 0.0010   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L       | (           | 0.0010   | 1       | 12/11/19 16:10 | 12/18/19 13:01 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0050         | mg/L       | (           | 0.0050   | 5       | 12/11/19 16:10 | 12/18/19 13:38 | 7440-28-0     | D3   |
| 245.1 Mercury                 | Analytical Meth | od: EPA 24 | 5.1 Prepara | tion Met | hod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L       |             | 0.20     | 1       | 12/12/19 15:00 | 12/16/19 12:18 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 30 | 0.0         |          |         |                |                |               |      |
| Fluoride                      | 2.9             | mg/L       |             | 0.20     | 1       |                | 12/12/19 22:27 | 16984-48-8    |      |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-L-120619           | Lab ID: 6032    | 23644004   | Collected:    | 12/06/1 | 9 13:00 | Received: 12   | /09/19 16:10 N | Aatrix: Water |      |
|-------------------------------|-----------------|------------|---------------|---------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units      | Report I      | Limit   | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 20 | 0.7 Preparati | ion Met | hod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.037           | mg/L       | 0.            | .0050   | 1       | 12/11/19 14:00 | 12/13/19 16:49 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L       | 0.            | .0010   | 1       | 12/11/19 14:00 | 12/13/19 16:49 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L       | 0.            | .0050   | 1       | 12/11/19 14:00 | 12/13/19 16:49 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L       | (             | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:49 | 7439-92-1     |      |
| Lithium                       | 0.057           | mg/L       | (             | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:49 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 20 | 0.8 Preparati | ion Met | hod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L       | 0.            | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.029           | mg/L       | 0.            | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L       | 0.0           | 00050   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L       | 0.            | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.055           | mg/L       | 0.            | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L       | 0.            | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:03 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0050         | mg/L       | 0.            | .0050   | 5       | 12/11/19 16:10 | 12/18/19 13:40 | 7440-28-0     | D3   |
| 245.1 Mercury                 | Analytical Meth | od: EPA 24 | 5.1 Preparati | on Met  | hod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L       |               | 0.20    | 1       | 12/12/19 15:00 | 12/16/19 12:20 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 30 | 0.0           |         |         |                |                |               |      |
| Fluoride                      | 2.0             | mg/L       |               | 0.20    | 1       |                | 12/12/19 23:14 | 16984-48-8    |      |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-39-120619          | Lab ID: 6032    | 23644005    | Collected: 1   | 12/06/1 | 9 14:00 | Received: 12   | /09/19 16:10 N | Aatrix: Water |      |
|-------------------------------|-----------------|-------------|----------------|---------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units       | Report L       | Limit   | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparatio | on Metl | nod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.030           | mg/L        | 0.             | .0050   | 1       | 12/11/19 14:00 | 12/13/19 16:51 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.             | .0010   | 1       | 12/11/19 14:00 | 12/13/19 16:51 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.             | .0050   | 1       | 12/11/19 14:00 | 12/13/19 16:51 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | (              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:51 | 7439-92-1     |      |
| Lithium                       | 0.045           | mg/L        | (              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:51 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparatio | on Metl | nod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.014           | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.0            | 0050    | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.19            | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.             | .0010   | 1       | 12/11/19 16:10 | 12/18/19 13:06 | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparatio | on Metl | nod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L        |                | 0.20    | 1       | 12/12/19 15:00 | 12/16/19 12:22 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0            |         |         |                |                |               |      |
| Fluoride                      | 2.9             | mg/L        |                | 0.20    | 1       |                | 12/12/19 23:30 | 16984-48-8    |      |



## Project: LEC CCR

Pace Project No.: 60323644

| Sample: DUP-120619            | Lab ID: 6032    | 23644006    | Collected: 12/0   | 6/19 14:15 | 5 Received: 12 | 2/09/19 16:10 N | Matrix: Water |      |
|-------------------------------|-----------------|-------------|-------------------|------------|----------------|-----------------|---------------|------|
| Parameters                    | Results         | Units       | Report Limi       | DF         | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | nod: EPA 20 | 0.7 Preparation M | lethod: EF | PA 200.7       |                 |               |      |
| Barium, Total Recoverable     | 0.031           | mg/L        | 0.005             | 0 1        | 12/11/19 14:00 | 12/13/19 16:53  | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L        | 0.001             | 0 1        | 12/11/19 14:00 | 12/13/19 16:53  | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L        | 0.005             | 0 1        | 12/11/19 14:00 | 12/13/19 16:53  | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L        | 0.01              | 0 1        | 12/11/19 14:00 | 12/13/19 16:53  | 7439-92-1     |      |
| Lithium                       | 0.042           | mg/L        | 0.01              | 0 1        | 12/11/19 14:00 | 12/13/19 16:53  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | nod: EPA 20 | 0.8 Preparation N | lethod: EF | PA 200.8       |                 |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 0 1        | 12/11/19 16:10 | 12/18/19 13:08  | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.014           | mg/L        | 0.001             | 0 1        | 12/11/19 16:10 | 12/18/19 13:08  | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L        | 0.0005            | 0 1        | 12/11/19 16:10 | 12/18/19 13:08  | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L        | 0.001             | 0 1        | 12/11/19 16:10 | 12/18/19 13:08  | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.19            | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 13:08  | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 01         | 12/11/19 16:10 | 12/18/19 13:08  | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L        | 0.001             | 0 1        | 12/11/19 16:10 | 12/18/19 13:08  | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | nod: EPA 24 | 5.1 Preparation N | lethod: EF | PA 245.1       |                 |               |      |
| Mercury                       | <0.20           | ug/L        | 0.2               | 0 1        | 12/12/19 15:00 | 12/16/19 12:25  | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | nod: EPA 30 | 0.0               |            |                |                 |               |      |
| Fluoride                      | 2.9             | mg/L        | 0.2               | 0 1        |                | 12/12/19 23:46  | 16984-48-8    |      |



# Project: LEC CCR

Pace Project No.: 60323644

| Sample: MW-40-120619          | Lab ID: 6032    | 23644007   | Collected:   | 12/06/1 | 9 15:40 | Received: 12   | /09/19 16:10 N | Aatrix: Water |      |
|-------------------------------|-----------------|------------|--------------|---------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results         | Units      | Report       | Limit   | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Meth | od: EPA 20 | 0.7 Preparat | ion Met | hod: EP | A 200.7        |                |               |      |
| Barium, Total Recoverable     | 0.031           | mg/L       | 0            | 0.0050  | 1       | 12/11/19 14:00 | 12/13/19 16:55 | 7440-39-3     |      |
| Beryllium, Total Recoverable  | <0.0010         | mg/L       | 0            | 0.0010  | 1       | 12/11/19 14:00 | 12/13/19 16:55 | 7440-41-7     |      |
| Chromium, Total Recoverable   | <0.0050         | mg/L       | 0            | 0.0050  | 1       | 12/11/19 14:00 | 12/13/19 16:55 | 7440-47-3     |      |
| Lead, Total Recoverable       | <0.010          | mg/L       |              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:55 | 7439-92-1     |      |
| Lithium                       | 0.045           | mg/L       |              | 0.010   | 1       | 12/11/19 14:00 | 12/13/19 16:55 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Meth | od: EPA 20 | 0.8 Preparat | ion Met | hod: EP | A 200.8        |                |               |      |
| Antimony, Total Recoverable   | <0.0010         | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7440-36-0     |      |
| Arsenic, Total Recoverable    | 0.015           | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7440-38-2     |      |
| Cadmium, Total Recoverable    | <0.00050        | mg/L       | 0.0          | 00050   | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7440-43-9     |      |
| Cobalt, Total Recoverable     | <0.0010         | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7440-48-4     |      |
| Molybdenum, Total Recoverable | 0.11            | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7439-98-7     |      |
| Selenium, Total Recoverable   | <0.0010         | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7782-49-2     |      |
| Thallium, Total Recoverable   | <0.0010         | mg/L       | 0            | 0.0010  | 1       | 12/11/19 16:10 | 12/18/19 13:10 | 7440-28-0     |      |
| 245.1 Mercury                 | Analytical Meth | od: EPA 24 | 5.1 Preparat | ion Met | hod: EP | A 245.1        |                |               |      |
| Mercury                       | <0.20           | ug/L       |              | 0.20    | 1       | 12/12/19 15:00 | 12/16/19 12:27 | 7439-97-6     |      |
| 300.0 IC Anions 28 Days       | Analytical Meth | od: EPA 30 | 0.0          |         |         |                |                |               |      |
| Fluoride                      | 1.6             | mg/L       |              | 0.20    | 1       |                | 12/13/19 00:18 | 16984-48-8    |      |



| Project:           | LEC CCR      |                   |             |              |           |             |            |            |            |      |      |        |
|--------------------|--------------|-------------------|-------------|--------------|-----------|-------------|------------|------------|------------|------|------|--------|
| Pace Project No.:  | 60323644     |                   |             |              |           |             |            |            |            |      |      |        |
| QC Batch:          | 627969       |                   | Ana         | lysis Metho  | d:        | EPA 245.1   |            |            |            |      |      |        |
| QC Batch Method:   | EPA 245.1    |                   | Ana         | lysis Descri | ption:    | 245.1 Mercu | ıry        |            |            |      |      |        |
| Associated Lab Sar | nples: 6032  | 3644001, 60323644 | 002, 603236 | 44003, 603   | 23644004, | 6032364400  | 05, 603236 | 644006, 60 | 323644007  | ,    |      |        |
| METHOD BLANK:      | 2559568      |                   |             | Matrix: W    | ater      |             |            |            |            |      |      |        |
| Associated Lab Sar | nples: 6032  | 3644001, 60323644 | 002, 603236 | 44003, 603   | 23644004, | 6032364400  | 05, 603236 | 644006, 60 | 323644007  | ,    |      |        |
|                    |              |                   | Bla         | ank          | Reporting |             |            |            |            |      |      |        |
| Parar              | neter        | Units             | Re          | sult         | Limit     | Analy       | zed        | Qualifier  | 5          |      |      |        |
| Mercury            |              | ug/L              |             | <0.20        | 0.2       | 20 12/16/19 | 9 11:50    |            |            |      |      |        |
| LABORATORY CO      | NTROL SAMP   | LE: 2559569       |             |              |           |             |            |            |            |      |      |        |
| _                  |              |                   | Spike       |              | -         | LCS         | % R        |            |            |      |      |        |
| Parar              | neter        | Units             | Conc        | . Res        | sult      | % Rec       | Lim        | its (      | Qualifiers | _    |      |        |
| Mercury            |              | ug/L              |             | 5            | 4.7       | 95          | 5          | 85-115     |            |      |      |        |
| MATRIX SPIKE & M   | IATRIX SPIKE | DUPLICATE: 25     | 59570       |              | 255957    | 1           |            |            |            |      |      |        |
|                    |              |                   | MS          | MSD          |           |             |            |            |            |      |      |        |
| _                  |              | 60323643002       |             | Spike        | MS        | MSD         | MS         | MSD        | % Rec      |      | Max  |        |
| Paramete           | r            | Units Result      | Conc.       | Conc.        | Result    | Result      | % Rec      | % Rec      | Limits     | RPD  | RPD  | Qual   |
| Mercury            |              | ug/L <0.2         | ) 5         | 5            | 2.5       | 2.5         | 51         | 49         | 70-130     | 2    | 20   | M1     |
| MATRIX SPIKE SA    | MPLE:        | 2559572           |             |              |           |             |            |            |            |      |      |        |
|                    |              |                   | 6032        | 3644007      | Spike     | MS          |            | MS         | % Rec      |      |      |        |
| Parar              | neter        | Units             | R           | esult        | Conc.     | Result      | 9          | 6 Rec      | Limits     |      | Qual | ifiers |
| Mercury            |              | ug/L              |             | <0.20        | 5         |             | 4.8        | 96         | 70         | -130 |      |        |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch: 627594          |           |               | Anal       | ysis Methoo  | d: E        | PA 200.7    |           |             |            |      |        |      |
|---------------------------|-----------|---------------|------------|--------------|-------------|-------------|-----------|-------------|------------|------|--------|------|
| QC Batch Method: EPA 200  | ).7       |               | Anal       | ysis Descrip | otion: 2    | 00.7 Metals | s, Total  |             |            |      |        |      |
| Associated Lab Samples: 6 | 032364400 | 1, 6032364400 | 2, 6032364 | 44003, 6032  | 23644004, 6 | 032364400   | 05, 60323 | 644006, 603 | 323644007  |      |        |      |
| METHOD BLANK: 2558035     |           |               |            | Matrix: Wa   | ater        |             |           |             |            |      |        |      |
| Associated Lab Samples: 6 | 032364400 | 1, 6032364400 | 2, 6032364 | 44003, 6032  | 23644004, 6 | 032364400   | 05, 60323 | 644006, 603 | 323644007  |      |        |      |
|                           |           |               | Bla        | nk l         | Reporting   |             |           |             |            |      |        |      |
| Parameter                 |           | Units         | Res        | sult         | Limit       | Analy       | zed       | Qualifiers  | S          |      |        |      |
| Barium                    |           | mg/L          | <          | 0.0050       | 0.0050      | 12/13/19    | 9 16:11   |             |            |      |        |      |
| Beryllium                 |           | mg/L          | <          | 0.0010       | 0.0010      | 12/13/19    | 9 16:11   |             |            |      |        |      |
| Chromium                  |           | mg/L          | <          | 0.0050       | 0.0050      | 12/13/19    | 9 16:11   |             |            |      |        |      |
| Lead                      |           | mg/L          |            | <0.010       | 0.010       | 12/13/19    | 9 16:11   |             |            |      |        |      |
| Lithium                   |           | mg/L          |            | <0.010       | 0.010       | 12/13/19    | 9 16:11   |             |            |      |        |      |
| LABORATORY CONTROL SA     | MPLE: 2   | 558037        |            |              |             |             |           |             |            |      |        |      |
|                           |           |               | Spike      | LC           | s           | LCS         | % R       | ec          |            |      |        |      |
| Parameter                 |           | Units         | Conc.      |              |             | % Rec       | Lim       |             | Qualifiers |      |        |      |
| Barium                    |           | mg/L          |            | 1            | 1.0         | 101         |           | 85-115      |            | -    |        |      |
| Beryllium                 |           | mg/L          |            | 1            | 0.97        | 97          | 7         | 85-115      |            |      |        |      |
| Chromium                  |           | mg/L          |            | 1            | 1.0         | 100         | )         | 85-115      |            |      |        |      |
| Lead                      |           | mg/L          |            | 1            | 1.0         | 102         | 2         | 85-115      |            |      |        |      |
| Lithium                   |           | mg/L          |            | 1            | 0.98        | 98          | 3         | 85-115      |            |      |        |      |
| MATRIX SPIKE SAMPLE:      | 2         | 558038        |            |              |             |             |           |             |            |      |        |      |
|                           | -         |               | 60323      | 3643001      | Spike       | MS          |           | MS          | % Rec      |      |        |      |
| Parameter                 |           | Units         | Re         | esult        | Conc.       | Result      | 9         | % Rec       | Limits     |      | Qualif | iers |
| Barium                    |           | mg/L          |            | 0.077        |             |             | 1.1       | 103         | 70         | 130  |        |      |
| Beryllium                 |           | mg/L          |            | <0.0010      | 1           |             | ).99      | 99          |            | 130  |        |      |
| Chromium                  |           | mg/L          |            | < 0.0050     | 1           |             | 1.0       | 101         |            | -130 |        |      |
| Lead                      |           | mg/L          |            | <0.010       | 1           |             | ).98      | 98          | -          | -130 |        |      |
| Lithium                   |           | mg/L          |            | 0.024        | 1           |             | 1.0       | 101         |            | 130  |        |      |
| MATRIX SPIKE & MATRIX SP  | ו יוסו וח | CATE: 2558    | 030        |              | 2558040     |             |           |             |            |      |        |      |
|                           |           | UNIE. 2000    | MS         | MSD          | 2000040     |             |           |             |            |      |        |      |
|                           | 6         | 60323009001   | Spike      | Spike        | MS          | MSD         | MS        | MSD         | % Rec      |      | Max    |      |
| Parameter                 | Units     | Result        | Conc.      | Conc.        | Result      | Result      | % Rec     | % Rec       | Limits     | RPD  | RPD    | Qual |
| Barium                    | mg/L      | 340 ug/L      | 1          | 1            | 1.4         | 1.3         | 103       | 97          | 70-130     | 4    | 20     |      |
| Beryllium                 | mg/L      | ND            | 1          | 1            | 0.97        | 0.93        | 97        | 93          | 70-130     | 4    | 20     |      |
| Chromium                  | mg/L      | 5.6 ug/L      | 1          | 1            | 0.98        | 0.94        | 97        | 93          | 70-130     | 4    | 20     |      |
| Lead                      | mg/L      | ND            | 1          | 1            | 0.95        | 0.91        | 95        | 91          | 70-130     | 4    | 20     |      |
| Lithium                   |           | 192 ug/L      |            |              | 1.2         | 1.2         | 102       |             | 70-130     |      | 20     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: LEC CCR

Pace Project No.: 60323644

| QC Batch:          | 6276  | 60                          | Analysis Method:        | EPA 200.8                                |
|--------------------|-------|-----------------------------|-------------------------|------------------------------------------|
| QC Batch Method:   | EPA   | 200.8                       | Analysis Description:   | 200.8 MET                                |
| Associated Lab Sam | ples: | 60323644001, 60323644002, 6 | 0323644003, 60323644004 | 4, 60323644005, 60323644006, 60323644007 |

METHOD BLANK: 2558261

Matrix: Water

Associated Lab Samples: 60323644001, 60323644002, 60323644003, 60323644004, 60323644005, 60323644006, 60323644007

|            |       | Blank    | Reporting |                |            |
|------------|-------|----------|-----------|----------------|------------|
| Parameter  | Units | Result   | Limit     | Analyzed       | Qualifiers |
| Antimony   | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Arsenic    | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Cadmium    | mg/L  | <0.00050 | 0.00050   | 12/18/19 12:34 |            |
| Cobalt     | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Molybdenum | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Selenium   | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |
| Thallium   | mg/L  | <0.0010  | 0.0010    | 12/18/19 12:34 |            |

#### LABORATORY CONTROL SAMPLE: 2558262

| Parameter  | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|------------|-------|----------------|---------------|--------------|-----------------|------------|
| Antimony   | mg/L  | 0.04           | 0.039         | 96           | 85-115          |            |
| Arsenic    | mg/L  | 0.04           | 0.039         | 98           | 85-115          |            |
| Cadmium    | mg/L  | 0.04           | 0.039         | 97           | 85-115          |            |
| Cobalt     | mg/L  | 0.04           | 0.040         | 100          | 85-115          |            |
| Molybdenum | mg/L  | 0.04           | 0.040         | 99           | 85-115          |            |
| Selenium   | mg/L  | 0.04           | 0.039         | 96           | 85-115          |            |
| Thallium   | mg/L  | 0.04           | 0.037         | 93           | 85-115          |            |

| MATRIX SPIKE & MATRIX S | PIKE DUPL | ICATE: 2558 | 263   |       | 2558264 |        |       |       |        |     |     |      |
|-------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                         |           | 60323643002 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                | mg/L      | <0.0010     | 0.04  | 0.04  | 0.038   | 0.038  | 96    | 96    | 70-130 | 0   | 20  |      |
| Arsenic                 | mg/L      | 0.026       | 0.04  | 0.04  | 0.066   | 0.066  | 101   | 101   | 70-130 | 0   | 20  |      |
| Cadmium                 | mg/L      | <0.00050    | 0.04  | 0.04  | 0.036   | 0.035  | 89    | 88    | 70-130 | 0   | 20  |      |
| Cobalt                  | mg/L      | 0.0028      | 0.04  | 0.04  | 0.042   | 0.042  | 98    | 99    | 70-130 | 1   | 20  |      |
| Molybdenum              | mg/L      | 0.0043      | 0.04  | 0.04  | 0.048   | 0.048  | 108   | 109   | 70-130 | 1   | 20  |      |
| Selenium                | mg/L      | <0.0010     | 0.04  | 0.04  | 0.038   | 0.039  | 94    | 95    | 70-130 | 1   | 20  |      |
| Thallium                | mg/L      | <0.0010     | 0.04  | 0.04  | 0.036   | 0.036  | 90    | 90    | 70-130 | 0   | 20  |      |

| MATRIX SPIKE SAMPLE: | 2558265 |                       | 0.11           |              |             |                 |            |
|----------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Parameter            | Units   | 60323644007<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Antimony             | mg/L    | <0.0010               | 0.04           | 0.038        | 94          | 70-130          |            |
| Arsenic              | mg/L    | 0.015                 | 0.04           | 0.058        | 109         | 70-130          |            |
| Cadmium              | mg/L    | <0.00050              | 0.04           | 0.034        | 85          | 70-130          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: LEC CCR Pace Project No.: 60323644

| MATRIX SPIKE SAMPLE: | 2558265 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60323644007 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Cobalt               | mg/L    | <0.0010     | 0.04  | 0.038  | 96    | 70-130 |            |
| Molybdenum           | mg/L    | 0.11        | 0.04  | 0.16   | 119   | 70-130 |            |
| Selenium             | mg/L    | <0.0010     | 0.04  | 0.041  | 101   | 70-130 |            |
| Thallium             | mg/L    | <0.0010     | 0.04  | 0.037  | 92    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| QC Batch: 627689                                              |          |                                               | Analy                                    | sis Methoo            | d: E                                  | PA 300.0            |                    |                     |                  |          |            |     |
|---------------------------------------------------------------|----------|-----------------------------------------------|------------------------------------------|-----------------------|---------------------------------------|---------------------|--------------------|---------------------|------------------|----------|------------|-----|
| QC Batch Method: EPA 30                                       | 0.0      |                                               | Analy                                    | /sis Descrip          | otion: 3                              | 00.0 IC Ani         | ons                |                     |                  |          |            |     |
| Associated Lab Samples: 6                                     | 03236440 | 001, 6032364400                               | 2, 6032364                               | 4003, 6032            | 23644004, 6                           | 6032364400          | 5, 603236          | 44006, 603          | 323644007        | •        |            |     |
| METHOD BLANK: 2558364                                         |          |                                               |                                          | Matrix: Wa            | ater                                  |                     |                    |                     |                  |          |            |     |
| Associated Lab Samples: 6                                     | 03236440 | 001, 6032364400                               | 2, 6032364                               | 4003, 6032            | 23644004, 6                           | 6032364400          | 5, 603236          | 44006, 60           | 323644007        | ,        |            |     |
| _                                                             |          |                                               | Blar                                     |                       | Reporting                             |                     |                    |                     |                  |          |            |     |
| Parameter                                                     |          | Units                                         | Res                                      | ult                   | Limit                                 | Analy               | zed                | Qualifier           | S                |          |            |     |
| Fluoride                                                      |          | mg/L                                          |                                          | <0.20                 | 0.20                                  | ) 12/12/19          | 13:46              |                     |                  |          |            |     |
| METHOD BLANK: 2560357                                         |          |                                               |                                          | Matrix: Wa            | ater                                  |                     |                    |                     |                  |          |            |     |
| Associated Lab Samples: 6                                     | 03236440 | 001, 6032364400                               | 2, 6032364                               | 4003, 6032            | 23644004, 6                           | 6032364400          | 5, 603236          | 44006, 603          | 323644007        | ,        |            |     |
|                                                               |          |                                               | Blar                                     | nk F                  | Reporting                             |                     |                    |                     |                  |          |            |     |
| Parameter                                                     |          | Units                                         | Res                                      | ult                   | Limit                                 | Analy               | zed                | Qualifier           | S                |          |            |     |
| Fluoride                                                      |          | mg/L                                          |                                          | <0.20                 | 0.20                                  | ) 12/13/19          | 09:25              |                     |                  |          |            |     |
| LABORATORY CONTROL SA                                         | MPLE:    | 2558365                                       |                                          |                       |                                       |                     |                    |                     |                  |          |            |     |
| Parameter                                                     |          | Units                                         | Spike<br>Conc.                           | LC<br>Res             |                                       | LCS<br>% Rec        | % Re<br>Limi       |                     | Qualifiers       |          |            |     |
|                                                               | ·        |                                               |                                          |                       |                                       |                     |                    |                     | guanners         | _        |            |     |
| Fluoride                                                      |          | mg/L                                          | 2.                                       | .ə                    | 2.4                                   | 97                  | 2                  | 90-110              |                  |          |            |     |
| LABORATORY CONTROL SA                                         | MPLE:    | 2560358                                       | <b>.</b>                                 |                       |                                       |                     |                    |                     |                  |          |            |     |
|                                                               |          |                                               | Spike<br>Conc.                           | LC<br>Res             |                                       | LCS<br>% Rec        | % Re<br>Limi       |                     | Qualifiers       |          |            |     |
| Parameter                                                     |          | Units                                         | CONC.                                    |                       | an                                    |                     |                    |                     |                  |          |            |     |
|                                                               |          | Units<br>mg/L                                 | 2.                                       | 5                     | 2.4                                   | 97                  | (                  | 90-110              |                  | _        |            |     |
| Fluoride                                                      | IKE DUP  | mg/L                                          | 2.                                       | 5                     | ·                                     | 97                  |                    | 90-110              |                  |          |            |     |
| Fluoride                                                      | IKE DUP  | mg/L                                          | 2.<br>366<br>MS                          | MSD                   | 2.4<br>2558367                        |                     |                    |                     |                  |          |            |     |
| Fluoride                                                      | PIKE DUP | mg/L<br>LICATE: 2558<br>60323643001           | 2.                                       |                       | 2.4                                   | 97<br>MSD<br>Result | MS<br>% Rec        | MSD<br>% Rec        | % Rec<br>Limits  | RPD      | Max<br>RPD | Qua |
| Fluoride<br>MATRIX SPIKE & MATRIX SF                          |          | mg/L<br>LICATE: 2558<br>60323643001<br>Result | 2.<br>366<br>MS<br>Spike                 | MSD<br>Spike          | 2.4<br>2558367<br>MS                  | MSD                 | MS                 | MSD                 | Limits           | <br>RPD2 | RPD        | Qua |
| Fluoride<br>MATRIX SPIKE & MATRIX SF<br>Parameter<br>Fluoride | Units    | mg/L<br>LICATE: 2558<br>60323643001<br>Result | 366<br>MS<br>Spike<br>Conc.              | MSD<br>Spike<br>Conc. | 2.4<br>2558367<br>MS<br>Result<br>2.8 | MSD<br>Result       | MS<br>% Rec<br>110 | MSD<br>% Rec<br>112 | Limits<br>80-120 | 2        | RPD        | Qua |
| Fluoride<br>MATRIX SPIKE & MATRIX SF<br>Parameter             | Units    | mg/L<br>LICATE: 2558:<br>60323643001<br>      | 2.<br>366<br>MS<br>Spike<br>Conc.<br>2.5 | MSD<br>Spike<br>Conc. | 2.4<br>2558367<br>MS<br>Result        | MSD<br>Result       | MS<br>% Rec<br>110 | MSD<br>% Rec        | Limits           | 2        | RPD        |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### QUALIFIERS

Project: LEC CCR Pace Project No.: 60323644

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-K Pace Analytical Services - Kansas City

#### ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | LEC CCR  |
|--------------------|----------|
| Pace Project No .: | 60323644 |

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60323644001 | MW-37-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644002 | MW-38-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644003 | MW-K-120619  | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644004 | MW-L-120619  | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644005 | MW-39-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644006 | DUP-120619   | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644007 | MW-40-120619 | EPA 200.7       | 627594   | EPA 200.7         | 627722              |
| 60323644001 | MW-37-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644002 | MW-38-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644003 | MW-K-120619  | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644004 | MW-L-120619  | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644005 | MW-39-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644006 | DUP-120619   | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644007 | MW-40-120619 | EPA 200.8       | 627660   | EPA 200.8         | 627730              |
| 60323644001 | MW-37-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644002 | MW-38-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644003 | MW-K-120619  | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644004 | MW-L-120619  | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644005 | MW-39-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644006 | DUP-120619   | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644007 | MW-40-120619 | EPA 245.1       | 627969   | EPA 245.1         | 628012              |
| 60323644001 | MW-37-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644002 | MW-38-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644003 | MW-K-120619  | EPA 300.0       | 627689   |                   |                     |
| 60323644004 | MW-L-120619  | EPA 300.0       | 627689   |                   |                     |
| 60323644005 | MW-39-120619 | EPA 300.0       | 627689   |                   |                     |
| 60323644006 | DUP-120619   | EPA 300.0       | 627689   |                   |                     |
| 60323644007 | MW-40-120619 | EPA 300.0       | 627689   |                   |                     |



Sample Condition Upon Receipt

# WO#:60323644

| Client Name: WCStar Energy                                                                                                                                    |                    |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------|
|                                                                                                                                                               | EX 🗆 🛛 ECI 🗆       | Pace 🛛 Xroads 🗆 Client 🗆 Other 🗆                                           |
| Tracking #: Pace                                                                                                                                              | Shipping Label Use | d? Ýes□ Nø□                                                                |
| Custody Seal on Cooler/Box Present: Yes 🗆 No 🗹                                                                                                                | Seals intact: Yes  | Ng P                                                                       |
| Packing Material: Bubble Wrap □ Bubble Bags □                                                                                                                 | Foam 🗆             | None 🗹 Other 🗆                                                             |
|                                                                                                                                                               | ce: (Vet) Blue No  |                                                                            |
| Cooler Temperature (°C): As-read 2.1/2.8 Corr. Factor                                                                                                         | rCorrect           | ted 2.1/2.8 Date and initials of person examining contents:                |
| Temperature should be above freezing to 6°C                                                                                                                   |                    | P~12/9/19                                                                  |
| Chain of Custody present:                                                                                                                                     |                    |                                                                            |
| Chain of Custody relinquished:                                                                                                                                |                    |                                                                            |
| Samples arrived within holding time:                                                                                                                          |                    |                                                                            |
| Short Hold Time analyses (<72hr):                                                                                                                             |                    |                                                                            |
| Rush Turn Around Time requested:                                                                                                                              |                    |                                                                            |
| Sufficient volume:                                                                                                                                            |                    |                                                                            |
| Correct containers used:                                                                                                                                      |                    |                                                                            |
| Pace containers used:                                                                                                                                         |                    |                                                                            |
| Containers intact:                                                                                                                                            | Yes No N/A         |                                                                            |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                                                                        |                    |                                                                            |
| Filtered volume received for dissolved tests?                                                                                                                 |                    |                                                                            |
| Sample labels match COC: Date / time / ID / analyses                                                                                                          |                    |                                                                            |
| Samples contain multiple phases? Matrix: いて                                                                                                                   | □Yes ZNo □N/A      |                                                                            |
| Containers requiring pH preservation in compliance?<br>(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) | Yes No N/A         | List sample IDs, volumes, lot #'s of preservative and the date/time added. |
| Cyanide water sample checks:                                                                                                                                  | □Yes □No           |                                                                            |
| Lead acetate strip turns dark? (Record only)<br>Potassium iodide test strip turns blue/purple? (Preserve)                                                     | □Yes □No           |                                                                            |
| Trip Blank present:                                                                                                                                           |                    |                                                                            |
|                                                                                                                                                               |                    |                                                                            |
| Headspace in VOA vials ( >6mm):                                                                                                                               | 11                 |                                                                            |
| Samples from USDA Regulated Area: State:                                                                                                                      |                    |                                                                            |
| Additional labels attached to 5035A / TX1005 vials in the field?<br>Client Notification/ Resolution: Copy COC to 0                                            |                    | Field Date Deguined 2 V / N                                                |
| Person Contacted: Date/Tir                                                                                                                                    |                    | Field Data Required? Y / N                                                 |
| Comments/ Resolution:                                                                                                                                         | iic.               |                                                                            |
|                                                                                                                                                               |                    |                                                                            |
|                                                                                                                                                               |                    |                                                                            |
|                                                                                                                                                               |                    |                                                                            |

Project Manager Review:

Date:

Pace Analytical www.pacelabs.com

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

| Section A<br>Required Client Information:                                                                                                      | Section B<br>Required Project Information: | 0                     | Section C<br>Invoice Inform                                          | ation:                                              |                                                                                                            |                         | Page:                   |                       | of                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------|-----------------------------------------------------------|
| Company: WESTAR ENERGY                                                                                                                         | Report To: Brandon Griffin                 | - Adam Knee           | Attention:                                                           |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| Address: 818 Kansas Ave                                                                                                                        | Copy To: Jared Morrison                    | )                     | Company Nan                                                          | ne;                                                 |                                                                                                            | REGULATORY AGENC        | Y:                      | 1.2                   |                                                           |
| Topeka, KS 66612 hale yeld ri                                                                                                                  | ch.Com                                     |                       | Address:                                                             |                                                     |                                                                                                            | T NPDES T GROU          | UND WATE                | ER 🗂 I                | DRINKING WATER                                            |
| Email To: brandon:1.griffin@westarenergy.com                                                                                                   | Purchase Order No.: 10LE                   | C-0000015648          | Pace Quote<br>Reference:                                             |                                                     |                                                                                                            | L UST E RCRA            | ۸                       | F (                   | OTHER                                                     |
| Phone: 785-575-8135 Fax:                                                                                                                       | Project Name:                              |                       | Pace Project                                                         | Heather Wilson 913                                  | 3-563-1407                                                                                                 | Site Location           | in F                    |                       |                                                           |
| Requested Due Date/TAT: 7 day                                                                                                                  | Project Number                             |                       | Manager:<br>Pace Profile #:                                          | 9655, 1                                             |                                                                                                            | STATE:                  | <u>s</u>                |                       |                                                           |
| Requested Due Date / AT.                                                                                                                       |                                            |                       |                                                                      |                                                     | Requested                                                                                                  | Analysis Filtered (Y/N) | VI                      | *****                 |                                                           |
|                                                                                                                                                |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         | ///////               |                                                           |
| Section D Valid Matrix<br>Required Client Information MATRIX                                                                                   | Codes                                      | COLLECTED             |                                                                      | Preservatives                                       | T N/A                                                                                                      |                         |                         |                       |                                                           |
| DRINKING WATER<br>WATER<br>WASTE WATER<br>PRODUCT<br>SOILSOLID<br>OIL<br>WIPE<br>AIR<br>(A-Z, 0-9 / ,-)<br>Sample IDs MUST BE UNIQUE<br>TISSUE |                                            | TE TIME DATE TIME     | sample temp at collection<br># of containers<br>Unpreserved<br>H-SO4 | HNO3<br>HCI<br>NaOH<br>Na2S2O3<br>Methanol<br>Other | <b>J Analysis TestJ</b><br>200.7 Total Metals*<br>200.8 Total Metals**<br>245.1 Total Hg<br>300: CI, F SO4 | 4500 H+B<br>2540C TD    | Residual Chlorine (Y/N) | 603<br>Pace           | 23644<br>Project No./ Lab I.D.                            |
| A 1 77 120/10                                                                                                                                  | WT 12/                                     |                       | 3 K                                                                  | X                                                   | XX                                                                                                         | BPIN 2BP                | 14                      | A                     | 00                                                        |
| M.) 70 120116                                                                                                                                  | wit Iz/                                    |                       | 3 X                                                                  |                                                     | XX                                                                                                         |                         | r I I                   | HPP                   | . TV to pe                                                |
| 2 1100 505100010                                                                                                                               | wt iz/                                     | X. I                  | 3X                                                                   |                                                     | XX                                                                                                         |                         |                         |                       | DOLY 10                                                   |
| 10 1 10 00 1/4                                                                                                                                 | WT IU                                      | 2                     | 3X                                                                   |                                                     | XX                                                                                                         |                         |                         |                       | a                                                         |
| 4 11 00 00 100 011                                                                                                                             | with 12/                                   | 6 140                 | 3 X                                                                  | X                                                   | KK                                                                                                         |                         |                         |                       | 00                                                        |
|                                                                                                                                                | WT IZ                                      |                       | 3X                                                                   |                                                     | XX                                                                                                         |                         |                         |                       | ol of                                                     |
| 6 Dup- 120619                                                                                                                                  | WT 12/                                     |                       | 3 ×                                                                  | X                                                   | XK                                                                                                         | J.                      |                         |                       | o                                                         |
| 7 11 0- 10- 1000 19                                                                                                                            | 101 10                                     |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| 8                                                                                                                                              |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| 9                                                                                                                                              |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| 10                                                                                                                                             |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| 11                                                                                                                                             |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| 12 ADDITIONAL COMMENTS                                                                                                                         | RELINQUISHED                               | BY / AFFILIATION DAT  | E TIME                                                               | ACCEPTE                                             | D BY / AFFILIATION                                                                                         | DATE TIME               |                         | SAMF                  | LE CONDITIONS                                             |
| 200.7 Total Metals*: B, Ca,Ba, Be, Cr, Pb, Li                                                                                                  |                                            |                       | _                                                                    | Ching                                               | Mer                                                                                                        | 12/2/19/610             | ) 2.1                   | V                     | NV                                                        |
|                                                                                                                                                |                                            |                       |                                                                      | Jan                                                 | APL                                                                                                        | 121-11011000            |                         | X                     |                                                           |
| 200.8 Total Metals**: Sb, As, Cd, Co, Mo, Se, Tl                                                                                               |                                            |                       |                                                                      |                                                     |                                                                                                            |                         | 2:8                     |                       | NY                                                        |
| <br>ව                                                                                                                                          |                                            |                       |                                                                      |                                                     |                                                                                                            |                         |                         |                       |                                                           |
| Pa<br>20<br>20                                                                                                                                 | (H)                                        | SAMPLER NAME AND SIGN |                                                                      |                                                     |                                                                                                            |                         | in °C                   | Received on Ice (Y/N) | Custody Sealed<br>Cooler (Y/N)<br>Samples Intact<br>(Y/N) |
| 20 of                                                                                                                                          |                                            | PRINT Name of SAM     | PLER:                                                                |                                                     | DATE Signed                                                                                                |                         | Temp                    | sceiv<br>ce (Y        | cooler I<br>cooler (Y/h                                   |
| 21                                                                                                                                             |                                            | SIGNATURE of SAM      | PLER:                                                                |                                                     | (MM/DD/YY):                                                                                                |                         | F                       | ~~ ~                  | San CCus                                                  |

# Pace Container Order #569726

| Order       | By:                                                       |                           | Ship T       | Го:                                                                            |         |         | Retur       | n To:                                                                       |
|-------------|-----------------------------------------------------------|---------------------------|--------------|--------------------------------------------------------------------------------|---------|---------|-------------|-----------------------------------------------------------------------------|
| Company     | Evergy Kansas                                             | Central, Inc.             | Company      | Haley & Aldrich                                                                |         |         | Company     | Pace Analytical Kansas                                                      |
| Contact     | Kneeling, Adar                                            | n                         | Contact      | Misha Miller-Gilmor                                                            | e       |         | Contact     | Wilson, Heather                                                             |
| Email       | akneeling@ha                                              | leyaldrich.com            | Email        |                                                                                |         |         | Email       | heather.wilson@pacelabs.com                                                 |
| Address     | 400 E. Van Bu                                             | ren St                    | Address      | 11020 King St                                                                  |         |         | Address     | 9608 Loiret Blvd.                                                           |
| Address 2   | Suite 545                                                 |                           | Address 2    | Suite 450                                                                      |         |         | Address 2   |                                                                             |
| City        | Phoenix                                                   |                           | City         | Overland Park                                                                  |         |         | City        | Lenexa                                                                      |
| State       | AZ Zip                                                    | 85004                     | State        | KS Zip 662                                                                     | 10      |         | State       | KS Zip 66219                                                                |
| Phone       | (602)760-2424                                             |                           | Phone        | (913) 242-5491                                                                 |         |         | Phone       | 1(913)563-1407                                                              |
| Inf         | fo                                                        |                           |              |                                                                                |         |         |             |                                                                             |
| Project     | Name LEC CO                                               | CR- App III & IV (Lenexa) | Due Date     | 12/02/2019                                                                     | Profile | 9655, 1 |             | Quote                                                                       |
| Р           | Project Wilson,                                           | Heather                   | Return       |                                                                                | Carrier | Most E  | conomical   | Locatio KS                                                                  |
| "           | nclude Trip Blan                                          | ino -                     |              | Blank<br>X Pre-Printed<br>Pre-Printed                                          |         |         |             | Individually Wrapped<br>Grouped By Sample                                   |
|             | Irn Shipping I<br>No Shipper<br>With Shipper<br>Options — |                           |              | Misc<br>Sampling In<br>X Custody Sec<br>X Temp. Bland<br>X Coolers<br>Syringes | al      |         |             | Extra Bubble Wrap<br>Short Hold/Rush<br>DI Liter(s)<br>USDA Regulated Soils |
| <u> </u>    | Number of Blank<br>Pre-Printed                            | 1                         |              |                                                                                | 1       |         |             | -                                                                           |
| N<br>X P    | Pre-Printed                                               | Test                      | Containe     | er                                                                             | Total   | # of    | Lot #       | Notes                                                                       |
| T of Sample | Pre-Printed<br>es Matrix                                  | 1<br>Test                 | 1-1L plastic | w/HNO3                                                                         | 7       | 0       | 100719-2EIZ | Notes                                                                       |
| N<br>X P    | Pre-Printed<br>es Matrix<br>WT M<br>WT 3                  | 1<br>Test                 | 1-1L plastic | c w/HNO3<br>Inpreserved                                                        |         | 0<br>0  |             | Notes                                                                       |

| Hazard Shipping Placard In Place : NO<br>*Sample receiving hours are Mon-Fri 7:00am-6:00pm and Sat 8:00am-2:00pm unless special arrangements are made<br>with your project manager.<br>*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.<br>*Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample<br>*Payment term are net 30 days.<br>*Please include the proposal number on the chain of custody to insure proper billing. | LAB USE:<br>Ship Date : 12/02/2019<br>Prepared By: Skylar<br>Verified By: |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Sample CLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENT USE (Optional):                                                       |
| PP COC (1), PP labels w/o sample IDs<br>Lenexa return<br>Client needs to arrive on 12/3 in the morning at the latest                                                                                                                                                                                                                                                                                                                                                                                                         | Date Rec'd:<br>Received By:                                               |

0

0

Verified By:

Page 21 of 21

None

ОТ

lab

1

Page 1 of 1



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 02, 2020

Adam Kneeling Haley & Aldrich, Inc. 400 E. Van Buren St Suite 545 Phoenix, AZ 85004

## RE: Project: LEC CCR GROUNDWATER Pace Project No.: 60323761

Dear Adam Kneeling:

Enclosed are the analytical results for sample(s) received by the laboratory on December 09, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revision 1 - This report replaces the December 27, 2019 report. This project was revised on January 2, 2020 to correct the Radium Sum Calculation as per client specifications. (Greensburg, PA)

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alaton m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company HEATH HORYNA, WESTAR ENERGY Andrew Hare, KCP&L and Westar, Evergy Companies Laura Hines, KCP&L & Westar, Evergy Companies Jake Humphrey, KCP&L and Westar, Evergy Companies





## **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

#### CERTIFICATIONS

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



#### SAMPLE SUMMARY

#### Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60323761001 | MW-37_120619 | Water  | 12/06/19 09:25 | 12/09/19 17:15 |
| 60323761002 | MW-38_120619 | Water  | 12/06/19 10:45 | 12/09/19 17:15 |
| 60323761003 | MW-K_120619  | Water  | 12/06/19 12:00 | 12/09/19 17:15 |
| 60323761004 | MW-L_120619  | Water  | 12/06/19 13:00 | 12/09/19 17:15 |
| 60323761005 | MW-39_120619 | Water  | 12/06/19 14:10 | 12/09/19 17:15 |
| 60323761006 | DUP_120619   | Water  | 12/06/19 14:15 | 12/09/19 17:15 |
| 60323761007 | MW-40_120619 | Water  | 12/06/19 15:40 | 12/09/19 17:15 |



## SAMPLE ANALYTE COUNT

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Lab ID      | Sample ID        | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|--------------------------|----------|----------------------|------------|
| 60323761001 | <br>MW-37_120619 | EPA 903.1                | <br>MK1  | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761002 | MW-38_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761003 | MW-K_120619      | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761004 | MW-L_120619      | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761005 | MW-39_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761006 | DUP_120619       | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60323761007 | MW-40_120619     | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |                  | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-37_120619</b><br>PWS: | Lab ID: 60323<br>Site ID:   | 761001 Collected: 12/06/19 09:25<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-------------------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                          | EPA 903.1                   | 0.000 ± 0.370 (0.782)<br>C:NA T:84%              | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                          | EPA 904.0                   | 0.0414 ± 0.424 (0.967)<br>C:78% T:80%            | pCi/L     | 12/26/19 15:13 | 3 15262-20-1  |      |
| Total Radium                        | Total Radium<br>Calculation | 0.0414 ± 0.563 (0.967)                           | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: MW-38_120619<br>PWS: | Lab ID: 60323<br>Site ID:   | 761002 Collected: 12/06/19 10:45<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|------------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                   | EPA 903.1                   | 0.281 ± 0.399 (0.676)<br>C:NA T:92%              | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                   | EPA 904.0                   | 1.56 ± 0.642 (1.08)<br>C:79% T:76%               | pCi/L     | 12/26/19 15:19 | 9 15262-20-1  |      |
| Total Radium                 | Total Radium<br>Calculation | 1.84 ± 0.756 (1.08)                              | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: MW-K_120619<br>PWS: | Lab ID: 60323<br>Site ID:   | 761003 Collected: 12/06/19 12:00<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-----------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                  | EPA 903.1                   | 0.0680 ± 0.400 (0.816)<br>C:NA T:76%             | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                  | EPA 904.0                   | 0.479 ± 0.529 (1.12)<br>C:74% T:79%              | pCi/L     | 12/26/19 15:19 | 9 15262-20-1  |      |
| Total Radium                | Total Radium<br>Calculation | 0.547 ± 0.663 (1.12)                             | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: MW-L_120619<br>PWS: | Lab ID: 60323<br>Site ID:   | <b>761004</b> Collected: 12/06/19 13:00<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-----------------------------|-----------------------------|---------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                      | Act ± Unc (MDC) Carr Trac                               | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                  | EPA 903.1                   | -0.166 ± 0.421 (0.924)<br>C:NA T:91%                    | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                  | EPA 904.0                   | 0.482 ± 0.471 (0.980)<br>C:78% T:84%                    | pCi/L     | 12/26/19 15:19 | 9 15262-20-1  |      |
| Total Radium                | Total Radium<br>Calculation | 0.482 ± 0.632 (0.980)                                   | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-39_120619</b><br>PWS: | Lab ID: 60323<br>Site ID:   | 761005 Collected: 12/06/19 14:10<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-------------------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                          | EPA 903.1                   | 0.107 ± 0.363 (0.700)<br>C:NA T:91%              | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                          | EPA 904.0                   | 0.653 ± 0.501 (1.01)<br>C:77% T:84%              | pCi/L     | 12/26/19 15:19 | 9 15262-20-1  |      |
| Total Radium                        | Total Radium<br>Calculation | 0.760 ± 0.619 (1.01)                             | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Sample: DUP_120619<br>PWS: | Lab ID: 60323<br>Site ID:   | 761006 Collected: 12/06/19 14:15<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|----------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                 | EPA 903.1                   | -0.0492 ± 0.225 (0.530)<br>C:NA T:99%            | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                 | EPA 904.0                   | -0.108 ± 0.402 (0.943)<br>C:82% T:80%            | pCi/L     | 12/26/19 15:13 | 3 15262-20-1  |      |
| Total Radium               | Total Radium<br>Calculation | 0.000 ± 0.461 (0.943)                            | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| <b>Sample: MW-40_120619</b><br>PWS: | Lab ID: 60323<br>Site ID:   | 761007 Collected: 12/06/19 15:40<br>Sample Type: | Received: | 12/09/19 17:15 | Matrix: Water |      |
|-------------------------------------|-----------------------------|--------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed       | CAS No.       | Qual |
| Radium-226                          | EPA 903.1                   | 0.307 ± 0.401 (0.662)<br>C:NA T:79%              | pCi/L     | 12/26/19 11:45 | 5 13982-63-3  |      |
| Radium-228                          | EPA 904.0                   | 0.605 ± 0.464 (0.929)<br>C:80% T:82%             | pCi/L     | 12/26/19 15:14 | 4 15262-20-1  |      |
| Total Radium                        | Total Radium<br>Calculation | 0.912 ± 0.613 (0.929)                            | pCi/L     | 01/02/20 10:23 | 3 7440-14-4   |      |



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:          | LEC CCR GROUND    | WATER            |                          |                    |                    |            |
|-------------------|-------------------|------------------|--------------------------|--------------------|--------------------|------------|
| Pace Project No.: | 60323761          |                  |                          |                    |                    |            |
| QC Batch:         | 375684            |                  | Analysis Method:         | EPA 904.0          |                    |            |
| QC Batch Method:  | EPA 904.0         |                  | Analysis Description:    | 904.0 Radium 2     | 28                 |            |
| Associated Lab Sa | mples: 6032376100 | 1, 60323761002   | , 60323761003, 603237610 | 04, 60323761005, 6 | 60323761006, 60323 | 761007     |
| METHOD BLANK:     | 1822421           |                  | Matrix: Water            |                    |                    |            |
| Associated Lab Sa | mples: 6032376100 | 1, 60323761002   | , 60323761003, 603237610 | 04, 60323761005, 6 | 60323761006, 60323 | 761007     |
| Para              | meter             | Act ± Ur         | nc (MDC) Carr Trac       | Units              | Analyzed           | Qualifiers |
| Radium-228        | 0.                | .0624 ± 0.271 (0 | ).618) C:78% T:95%       | pCi/L              | 12/26/19 15:14     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:          | LEC CCR GROUND                 | WATER                            |                       |                      |            |
|-------------------|--------------------------------|----------------------------------|-----------------------|----------------------|------------|
| Pace Project No.: | 60323761                       |                                  |                       |                      |            |
| QC Batch:         | 375685                         | Analysis Metho                   | d: EPA 903.1          |                      |            |
| QC Batch Method:  | EPA 903.1                      | Analysis Descri                  | otion: 903.1 Radium   | -226                 |            |
| Associated Lab Sa | mples: 6032376100 <sup>4</sup> | 1, 60323761002, 60323761003, 603 | 23761004, 60323761005 | , 60323761006, 60323 | 3761007    |
| METHOD BLANK:     | 1822422                        | Matrix: W                        | ater                  |                      |            |
| Associated Lab Sa | mples: 6032376100 <sup>4</sup> | 1, 60323761002, 60323761003, 603 | 23761004, 60323761005 | , 60323761006, 60323 | 3761007    |
| Para              | meter                          | Act ± Unc (MDC) Carr Trac        | Units                 | Analyzed             | Qualifiers |
| Radium-226        | 0.0                            | 0398 ± 0.206 (0.428) C:NA T:92%  | pCi/L                 | 12/26/19 11:32       |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

#### Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-PA Pace Analytical Services - Greensburg



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC CCR GROUNDWATER

Pace Project No.: 60323761

| Lab ID      | Sample ID    | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|--------------------------|----------|-------------------|---------------------|
| 60323761001 | MW-37_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761002 | MW-38_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761003 | MW-K_120619  | EPA 903.1                | 375685   |                   |                     |
| 60323761004 | MW-L_120619  | EPA 903.1                | 375685   |                   |                     |
| 60323761005 | MW-39_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761006 | DUP_120619   | EPA 903.1                | 375685   |                   |                     |
| 60323761007 | MW-40_120619 | EPA 903.1                | 375685   |                   |                     |
| 60323761001 | MW-37_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761002 | MW-38_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761003 | MW-K_120619  | EPA 904.0                | 375684   |                   |                     |
| 60323761004 | MW-L_120619  | EPA 904.0                | 375684   |                   |                     |
| 60323761005 | MW-39_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761006 | DUP_120619   | EPA 904.0                | 375684   |                   |                     |
| 60323761007 | MW-40_120619 | EPA 904.0                | 375684   |                   |                     |
| 60323761001 | MW-37_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761002 | MW-38_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761003 | MW-K_120619  | Total Radium Calculation | 377482   |                   |                     |
| 60323761004 | MW-L_120619  | Total Radium Calculation | 377482   |                   |                     |
| 60323761005 | MW-39_120619 | Total Radium Calculation | 377482   |                   |                     |
| 60323761006 | DUP_120619   | Total Radium Calculation | 377482   |                   |                     |
| 60323761007 | MW-40_120619 | Total Radium Calculation | 377482   |                   |                     |



## CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Company:       WESTAR ENERGY       Report To: Brandon G         Address:       818 Kansas Ave       Copy To: Jared Morr         Topeka, KS 66612       Cop Lact A Lact Cont       Cont         Email To:       brandon Lgriffin Qwestarenergy.com       Purchase Order No.: 11         Phone:       785-575-8135       Fax:       Project Name:         Requested Due Date/TAT:       15 day       Project Number;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | son                           |                                   | Attention:<br>Company Name:<br>Address:<br>Pace Quote<br>Reference:<br>Pace Project Heather Wilson 913 563 1407                                  | REGULATORY AGENO              |                                                                                            |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|---------------|
| Topeka, KS 66612     Con       AK Deeling Ohale yaldrich, Con       Email To:     brandon-lgriffin@westarenergy.com       Phone:     785-575-8135   Fax: Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | son                           | )                                 | Address:<br>Pace Quote<br>Reference:                                                                                                             | NPDES T GRO                   |                                                                                            |               |
| Email To: <u>brandon.l.griffin@westarenergy.com</u> Purchase Order No.: 11<br>Phone: 785-575-8135 Fax: Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DLEC-0000015648               |                                   | Pace Quote<br>Reference:                                                                                                                         |                               |                                                                                            | <u>ننن</u>    |
| Phone: 785-575-8135 Fax: Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DLEC-0000015648               |                                   | Reference:                                                                                                                                       |                               |                                                                                            | N 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   |                                                                                                                                                  |                               |                                                                                            |               |
| Requested Due Date/TAT: 15 day Project Number;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                   | Pace Project Heather Wilson 913-563-1407<br>Manager:                                                                                             | Site Location                 |                                                                                            | //////        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   | Pace Profile # 9655, 1                                                                                                                           | STATE:                        | s                                                                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   |                                                                                                                                                  | ested Analysis Filtered (Y/N) |                                                                                            |               |
| Section D         Valid Matrix Codes         P         D           Required Client Information         MATRIX         CODE         0         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLLECTED                     |                                   | Preservatives                                                                                                                                    |                               |                                                                                            |               |
| DRINKING WATER     DW     3     0     0       WATER     WT     WT     WT     WT       WASTE WATER     WW     PRODUCT     P       SOIL/SOLID     SL     0     0       OL     OL     OL     0       OL     OL     0     0       MR     AR     U       Image: Complex of the second seco | COMPOSITE<br>START END/GRAB   | amit<br>sample temp at collection | # OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HAO3<br>HAO1<br>NaOH<br>Na2S2O3<br>Methanol<br>Other<br>Other<br>Other<br>Analysis Test <b>1</b><br>X | Total Radium                  | Pace Project No./ Lab                                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 216 925                       |                                   | $2 \times 12 \times 12 \times 10$                                                                                                                |                               | Pace Project No./ Lab                                                                      | <u></u>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46 1045                       |                                   |                                                                                                                                                  |                               |                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/6 1200                      |                                   |                                                                                                                                                  | X Abp.                        | ANN ALYN                                                                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46 1300                       |                                   |                                                                                                                                                  | * KMAU                        | teren an NY                                                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 140                        |                                   | ZXXXXX                                                                                                                                           |                               |                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/6 1415                      |                                   |                                                                                                                                                  |                               |                                                                                            | $\rightarrow$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 1540                       |                                   | 2                                                                                                                                                |                               | + IAPP. IV                                                                                 |               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                   |                                                                                                                                                  |                               | the only                                                                                   | +             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   |                                                                                                                                                  |                               |                                                                                            | $\sim$        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                   |                                                                                                                                                  |                               |                                                                                            |               |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                   |                                                                                                                                                  |                               |                                                                                            |               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                   |                                                                                                                                                  |                               | <u> </u>                                                                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ED BY / AFFILIATION           | DATE                              | TIME ACCEPTED BY / AFFILI                                                                                                                        | TION DATE TIME                | SAMPLE CONDITIONS                                                                          |               |
| ELIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rediction                     | 2/06                              | (9:00 m                                                                                                                                          | ALE 12/9/19 1715              | -NYY                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | _/~                               |                                                                                                                                                  |                               |                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   |                                                                                                                                                  |                               |                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                   |                                                                                                                                                  |                               |                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLER NAME AND              | SIGNATUR                          | El: Fredrichson                                                                                                                                  | SPI Ja                        | act () are ()                                                                              |               |
| ge 16 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRINT Name of<br>SIGNATURE of |                                   | El: Fredrich Ser                                                                                                                                 | -<br>Signed 12/06/19          | Temp in "C<br>Received on<br>Ice (Y/N)<br>Custody Sealed<br>Cooler (Y/N)<br>Samples Intact | (N/A)         |

and a set of the second second the set of a measured stand and experiences and a particular second second second

\*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

| Pittsburgh La                                  | ab Sample Condit                       | ion l            | Jpor          | ו Re                                         | ceipt                      |          |                    |          |                 |          |     |
|------------------------------------------------|----------------------------------------|------------------|---------------|----------------------------------------------|----------------------------|----------|--------------------|----------|-----------------|----------|-----|
| Pace Analytical                                | Client Name:                           |                  | / cl-         | Λ.                                           | <u> </u>                   |          | Duciant            | ш        |                 |          |     |
| /                                              | Client Name:                           | <u>W</u>         | LJC           | <u>.</u> w                                   | ¥                          |          | Project            | #        |                 |          | -   |
| Courier: Fed Ex<br>Tracking #: 1215            | UPS USPS Client                        |                  | omme          | rcial                                        | Pace (                     | Other    |                    | LIM      | Label           |          |     |
| Custody Seal on Coole                          |                                        | L n              | -<br>0        | Seals                                        | intact:                    | ves 🗆    | по                 | L        |                 |          | 4   |
| Thermometer Used                               | NA.                                    | Туре             | of Ice:       | Wet                                          | Blue (N                    | one      |                    |          |                 |          |     |
| Cooler Temperature                             | Observed Temp                          |                  | C             | Corre                                        | ection Fact                | or:      | °C Fir             | nal Tem  | ip:             | - •C     |     |
| Temp should be above free                      | zing to 6°C                            |                  |               |                                              |                            |          | T Data a           | ad hitia | ls of person (  | vomining | ٦   |
| Comments:                                      |                                        | Yes              | No            | N/A                                          | pH paper L                 | 50341    | cont               |          | <del>2110</del> | the J    | hs  |
| Chain of Custody Preser                        | it:                                    |                  |               |                                              | 1.                         |          |                    |          |                 |          | 1   |
| Chain of Custody Filled (                      | Dut:                                   |                  | ł             |                                              | 2.                         |          |                    |          |                 |          | 1   |
| Chain of Custody Reling                        | uished:                                |                  | ł             |                                              | 3.                         |          |                    |          |                 |          |     |
| Sampler Name & Signati                         | are on COC:                            | $\triangleright$ | 1             |                                              | 4.                         |          |                    |          |                 |          | 1   |
| Sample Labels match CO                         | DC:                                    | $\square$        |               |                                              | 5.                         |          |                    |          |                 |          | 1   |
| -Includes date/time/ID                         | Matrix:                                | 5                | $\mathcal{N}$ | -                                            |                            |          |                    |          |                 |          |     |
| Samples Arrived within H                       | lold Time:                             |                  | *             |                                              | 6.                         |          |                    |          |                 |          | ]   |
| Short Hold Time Analys                         | is (<72hr remaining):                  |                  |               | †                                            | 7.                         |          |                    |          |                 |          |     |
| Rush Turn Around Time                          | e Requested:                           |                  |               | ſ                                            | 8.                         |          |                    |          |                 |          | ]   |
| Sufficient Volume:                             |                                        |                  |               |                                              | 9.                         |          |                    |          |                 |          |     |
| Correct Containers Used                        |                                        | $\leq$           | <u> </u>      |                                              | 10.                        |          |                    |          |                 |          |     |
| -Pace Containers Use                           | :d:                                    |                  | ļ             |                                              |                            |          |                    |          |                 |          |     |
| Containers Intact:                             | •                                      |                  | -             |                                              | 11.                        |          |                    |          |                 |          |     |
| Orthophosphate field filte                     | red                                    | [                |               | $\leq$                                       | 12.                        |          |                    |          |                 |          |     |
| Hex Cr Aqueous sample                          | field filtered                         |                  |               |                                              | 13.                        |          |                    |          |                 |          |     |
| Organic Samples chec                           | ked for dechlorination:                |                  |               |                                              | 14.                        |          |                    |          |                 |          | _   |
| Filtered volume received                       | for Dissolved tests                    |                  | -             |                                              | 15.                        |          |                    |          |                 |          |     |
| All containers have been ch                    |                                        | $\square$        |               |                                              | 16.                        | 1.17     | _                  |          |                 |          |     |
| exceptions: VOA, colifor<br>Non-aqueous matrix | m, TOC, O&G, Phenolics, I              | Radon,           |               |                                              | F P                        | HUR      |                    |          |                 |          |     |
| All containers meet meth<br>requirements.      | od preservation                        | $\square$        | [             |                                              | Initial when<br>completed  | Miz      | Date/time of       |          |                 |          |     |
|                                                |                                        | 1.               | L             | <u>.                                    </u> | Lot # of add               |          | Thi cross A citile |          |                 |          |     |
| Headspace in VOA Vials                         | ( >6mm):                               | -                | :             |                                              | preservative<br>17.        |          |                    |          |                 |          | -   |
| Trip Blank Present:                            | · · · · · · · · · · · · · · · · · · ·  |                  | /             | F.                                           | 18.                        | <u> </u> |                    |          | -<br>-          |          | 1   |
| Trip Blank Custody Seals                       | Present                                |                  |               |                                              |                            |          |                    |          |                 |          | . , |
| Rad Samples Screened                           |                                        |                  | -             |                                              | Initial when<br>completed: | NB       | Date:              | 171      | 10/19           |          | 1   |
| Client Notification/ Reso                      | aution:                                |                  |               | L                                            | compieted.                 | V · 5    | Date.              | 101      | 1011            |          |     |
| Person-Contacted:                              |                                        |                  |               | -Date/7                                      | Fime:                      |          |                    | ntacted  | Bv <del>:</del> |          |     |
| Comments/ Resolution:                          |                                        |                  |               |                                              |                            |          | 00                 |          | - <u>, .</u>    |          | -   |
|                                                | ·····                                  |                  |               |                                              |                            |          |                    |          |                 |          | -   |
| ·····                                          | ······································ |                  |               |                                              |                            |          |                    |          |                 |          | -   |
|                                                |                                        |                  |               |                                              |                            |          |                    |          |                 |          | -   |
|                                                |                                        |                  |               |                                              |                            |          |                    |          |                 |          | -   |

## A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

## **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|                                                             |                |                  | Analyst Must Manually Enter All Fields Highlighted in                                                    | n Yellow.                                                                                                      |            |
|-------------------------------------------------------------|----------------|------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|
| www.pucelabs.com Test:                                      | Ra-226         |                  |                                                                                                          | the second s |            |
| Analyst:                                                    | MK1            |                  | Sample Matrix Spike Control Assessment                                                                   | MS/MSD 1                                                                                                       | MS/MSD 2   |
| Date:                                                       | 12/17/2019     |                  | Sample Collection Date:                                                                                  | 12/9/2019                                                                                                      | 110/1100 2 |
| Batch ID:                                                   | 51478          |                  | Sample LD.                                                                                               | 30339692001                                                                                                    |            |
| Matrix:                                                     | ĎŴ             |                  | Sample I.D.<br>Sample MS I.D.                                                                            | 30339692001MS                                                                                                  |            |
|                                                             |                |                  | Sample MSD I.D.                                                                                          |                                                                                                                |            |
| Method Blank Assessment                                     |                | 1                | Spike I.D.:                                                                                              | 19-022                                                                                                         |            |
| MB Sample ID                                                | 1822422        |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                                     | 32,115                                                                                                         |            |
| MB concentration:                                           | 0.040          |                  | Spike Volume Used in MS (mL);                                                                            | 0.20                                                                                                           |            |
| M/B Counting Uncertainty:                                   | 0.206          |                  | Spike Volume Used in MSD (mL):                                                                           |                                                                                                                |            |
| MB MDC:                                                     | 0.428          |                  | MS Aliquot (L, g, F):                                                                                    | 0.664                                                                                                          |            |
| MB Numerical Performance Indicator:                         | 0.38           |                  | MS Target Conc.(pCi/L, g, F):                                                                            | 9.676                                                                                                          |            |
| MB Status vs Numerical Indicator:                           | N/A            |                  | MSD Aliquot (L, g, F):                                                                                   |                                                                                                                |            |
| MB Status vs. MDC:                                          | Pass           | J                | MSD Target Conc. (pCi/L, g, F):                                                                          |                                                                                                                |            |
|                                                             |                |                  | MS Spike Uncertainty (calculated):                                                                       | 0.455                                                                                                          |            |
| Laboratory Control Sample Assessment                        | LCSD (Y or N)? | Ν.               | MSD Spike Uncertainty (calculated):                                                                      |                                                                                                                |            |
|                                                             | LC\$51478      | LCSD51478        | Sample Result:                                                                                           | -0.040                                                                                                         |            |
| Count Date:                                                 | 12/26/2019     |                  | Sample Result Counting Uncertainty (pCi/L, g, F):                                                        | 0.137                                                                                                          |            |
| Spike I.D.:                                                 | 19-022         |                  | Sample Matrix Spike Result:                                                                              | 12.089                                                                                                         |            |
| Spike Concentration (pCi/mL):                               | 32.114         |                  | Matrix Spike Result Counting Uncertainty (pCl/L, g, F);                                                  | 1.519                                                                                                          |            |
| Volume Used (mL):                                           | 0.10           |                  | Sample Matrix Spike Duplicate Result:                                                                    |                                                                                                                |            |
| Aliquot Volume (L, g, F):<br>Target Conc. (pCi/L, g, F):    | 0.650<br>4.944 |                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):<br>MS Numerical Performance Indicator: | 3.022                                                                                                          |            |
| Uncertainty (Calculated):                                   | 0.232          |                  | MS Numerical Performance Indicator:<br>MSD Numerical Performance Indicator:                              | 3.022                                                                                                          |            |
| Result (pCi/L, q, F):                                       | 4.190          |                  | MSD Numerical Performance Indicator:<br>MS Percent Recovery:                                             | 125.36%                                                                                                        |            |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F);                | 0.951          |                  | MSD Percent Recovery:<br>MSD Percent Recovery:                                                           | 120.00 %                                                                                                       |            |
| Numerical Performance Indicator:                            | -1.51          |                  | MS Status vs Numerical Indicator:                                                                        | N/A                                                                                                            |            |
| Percent Recovery:                                           | 84.75%         |                  | MSD Status vs Numerical Indicator:                                                                       |                                                                                                                |            |
| Status vs Numerical Indicator:                              | N/A            |                  | MS Status vs Recovery:                                                                                   | Pass                                                                                                           |            |
| Status vs Recovery:                                         | Pass           |                  | MSD Status vs Recovery:                                                                                  |                                                                                                                |            |
| Upper % Recovery Limits:                                    | 135%           |                  | MS/MSD Upper % Recovery Limits:                                                                          | 136%                                                                                                           |            |
| Lower % Recovery Limits:                                    | 73%            |                  | MS/MSD Lower % Recovery Limits:                                                                          | 71%                                                                                                            |            |
|                                                             |                |                  |                                                                                                          |                                                                                                                |            |
| Duplicate Sample Assessment                                 |                |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                    |                                                                                                                |            |
| Sample I.D.:                                                | 30339683001    | Enter Duplicate  | Sample I.D.                                                                                              |                                                                                                                |            |
|                                                             | 30339683001DUF |                  | Sample I.D.<br>Sample MS I.D.                                                                            |                                                                                                                |            |
| Sample Result (pCi/L, q, F);                                | 0.680          | other than       | Sample MSD I.D.                                                                                          |                                                                                                                |            |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 0.402          | LCS/LCSD in      | Sample Matrix Spike Result:                                                                              |                                                                                                                |            |
| Sample Duplicate Result (pCi/L, g, F):                      | 0.266          | the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                  |                                                                                                                |            |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.376          |                  | Sample Matrix Spike Duplicate Result:                                                                    |                                                                                                                |            |
| Are sample and/or duplicate results below RL?               | See Below ##   |                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):                                        |                                                                                                                |            |
| Durdingto Numerical References Indicators                   | 4 470          | 20220602004      | Duralizate Municipal Defensions testinates                                                               | ( I                                                                                                            |            |

| uplicate Sample Assessment                                  |                |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment             |
|-------------------------------------------------------------|----------------|------------------|-------------------------------------------------------------------|
| Sample I.D.:                                                | 30339683001    | Enter Duplicate  | Sample I.D.                                                       |
| Duplicate Sample I.D.                                       | 30339683001DUP | sample IDs if    | Sample MS I.D.                                                    |
| Sample Result (pCi/L, g, F):                                | 0.680          | other than       | Sample MSD I.D.                                                   |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 0.402          | LCS/LCSD in      | Sample Matrix Spike Result:                                       |
| Sample Duplicate Result (pCi/L, g, F):                      | 0.266          | the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.376          |                  | Sample Matrix Spike Duplicate Result:                             |
| Are sample and/or duplicate results below RL?               | See Below ##   |                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |
| Duplicate Numerical Performance Indicator:                  | 1.473          | 30339683001      | Duplicate Numerical Performance Indicator:                        |
| Duplicate RPD:                                              | 87.44%         | 80339683001DUP   | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:          |
| Duplicate Status vs Numerical Indicator:                    | N/A            |                  | MS/ MSD Duplicate Status vs Numerical Indicator:                  |
| Duplicate Status vs RPD:                                    | ·-Feilin       |                  | MS/ MSD Duplicate Status vs RPD:                                  |
| % RPD Limit:                                                | 32%            |                  | % RPD Limit:                                                      |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments: CREG/15 Batch must be re-prepped due to unacceptable precision.

Ch 12.24.19

Pace Analytical

12-26-19 uc

## **Quality Control Sample Performance Assessment**

#### Analyst Must Manually Enter All Fields Highlighted in Yellow.

| www.pacelabs.com Test                              | Ra-228         |                  |                                                          |                     |          |
|----------------------------------------------------|----------------|------------------|----------------------------------------------------------|---------------------|----------|
|                                                    |                |                  |                                                          |                     | MS/MSD 2 |
| Analyst                                            | VAL            |                  | Sample Matrix Spike Control Assessment                   | MS/MSD 1            | M5/M5D Z |
| Date:                                              | 12/19/2019     |                  | Sample Collection Date:                                  | 12/9/2019           |          |
| Worklist:                                          | 51477          |                  | Sample I.D.                                              | 30339692001         |          |
| Matrix:                                            | WT             |                  | Sample MS I.D.                                           | 30339692001MS       |          |
|                                                    |                | ,                | Sample MSD I.D.                                          |                     |          |
| Method Blank Assessment                            |                |                  | Spike I.D.:                                              | 1 <del>9</del> -057 |          |
| MB Sample ID                                       | 1822421        |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):     | 35,965              |          |
| MB concentration:                                  | 0.062          |                  | Spike Volume Used in MS (mL):                            | 0.20                |          |
| M/B 2 Sigma CSU:                                   | 0.271          |                  | Spike Volume Used in MSD (mL):                           |                     |          |
| MB MDC:                                            | 0.618          |                  | MS Aliquot (L, g, F):                                    | 0.802               |          |
| MB Numerical Performance Indicator:                | 0.45           |                  | MS Target Conc.(pCi/L, g, F):                            | 8.970               |          |
| MB Status vs Numerical Indicator:                  | Pass           |                  | MSD Aliquot (L, g, F):                                   |                     |          |
| MB Status vs. MDC:                                 | Pass           |                  | MSD Target Conc. (pCi/L, g, F):                          |                     |          |
|                                                    |                |                  | MS Spike Uncertainty (calculated):                       | 0.646               |          |
| Laboratory Control Sample Assessment               | LCSD (Y or N)? | N                | MSD Spike Uncertainty (calculated):                      |                     |          |
|                                                    | LCS51477       | LCSD51477        | Sample Result:                                           | -0.459              |          |
| Count Date:                                        | 12/26/2019     |                  | Sample Result 2 Sigma CSU (pCi/L, g, F):                 | 0,341               |          |
| Spike I.D.:                                        | 19-057         |                  | Sample Matrix Spike Result:                              | 8.048               |          |
| Decay Corrected Spike Concentration (pCi/mL):      | 35.767         |                  | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           | 1.688               |          |
| Volume Used (mL):                                  | 0.10           |                  | Sample Matrix Spike Duplicate Result:                    |                     |          |
| Aliquot Volume (L, g, F):                          | 0.826          |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |                     |          |
| Target Conc. (pCi/L, g, F):                        | 4.332          |                  | MS Numerical Performance Indicator:                      | -0.494              |          |
| Uncertainty (Calculated):                          | 0.312          |                  | MSD Numerical Performance Indicator:                     |                     |          |
| Result (pCi/L, g, F):                              | 3,345          |                  | MS Percent Recovery:                                     | 94.83%              |          |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):                | 0.929          |                  | MSD Percent Recovery:                                    |                     |          |
| Numerical Performance Indicator:                   | -1.97          |                  | MS Status vs Numerical Indicator:                        | Pass                |          |
| Percent Recovery:                                  | 77.22%         |                  | MSD Status vs Numerical Indicator:                       | _                   |          |
| Status vs Numerical Indicator:                     | N/A            |                  | MS Status vs Recovery:                                   | Pass                |          |
| Status vs Recovery:                                | Pass           |                  | MSD Status vs Recovery:                                  |                     |          |
| Upper % Recovery Limits:                           | 135%           |                  | MS/MSD Upper % Recovery Limits:                          | 135%                |          |
| Lower % Recovery Limits:                           | 60%            |                  | MS/MSD Lower % Recovery Limits:                          | 60%                 |          |
| Duplicate Sample Assessment                        | <u></u>        |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment    |                     |          |
|                                                    |                |                  |                                                          |                     |          |
| Sample I.D.:                                       | 30339969001    | Enter Duplicate  | Sample I.D.                                              |                     |          |
| Duplicate Sample I.D.                              | 30339969001DUP | sample IDs if    | Sample MS I.D.                                           |                     |          |
| Sample Result (pCi/L, g, F):                       | -0.101         | other than       | Sample MSD I.D.                                          |                     |          |
| Sample Result 2 Sigma CSU (pCi/L, g, F):           | 0.332          | LCS/LCSD in      | Sample Matrix Spike Result:                              |                     |          |
| Sample Duplicate Result (pCi/L, g, F):             |                | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):           |                     |          |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): | 0,366          |                  | Sample Matrix Spike Duplicate Result:                    |                     |          |
| Are sample and/or duplicate results below RL?      | See Below ##   |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |                     |          |
| Duplicate Numerical Performance Indicator:         | -1.818         | 30339969001      | Duplicate Numerical Performance Indicator:               |                     |          |
| Duplicate RPD:                                     |                | 30339969001DUP   | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: |                     |          |
| Duplicate Status vs Numerical Indicator:           | Pass           |                  | MS/ MSD Duplicate Status vs Numerical Indicator:         |                     |          |
| Duplicate Status vs RPD:                           | Fail***        |                  | MS/ MSD Duplicate Status vs RPD:                         |                     |          |
| % RPD Limit:                                       | 36%            |                  | % RPD Limit:                                             |                     |          |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Pace Analytical

ATTACHMENT 1-3 March 2020 Sampling Event Laboratory Analytical Report



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 31, 2020

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: LEC INACTIVE ASH PONDS CCR Pace Project No.: 60331435

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 11, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

Revised Report REV\_1

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Bob Beck, Evergy Andrew Hare, Evergy, Inc. Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Tabitha Hylton, KCP&L & Westar, Evergy Companies Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Melanie Satanek, Haley & Aldrich, Inc. Danielle Zinmaster, Haley & Aldrich





### CERTIFICATIONS

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



## SAMPLE SUMMARY

#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| t | No | • | 60331435 |
|---|----|---|----------|

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60331435001 | MW-37-031020 | Water  | 03/10/20 15:25 | 03/11/20 14:20 |
| 60331435002 | MW-38-031020 | Water  | 03/10/20 17:00 | 03/11/20 14:20 |
| 60331435003 | MW-K-031120  | Water  | 03/11/20 08:10 | 03/11/20 14:20 |
| 60331435004 | MW-L-031120  | Water  | 03/11/20 09:30 | 03/11/20 14:20 |
| 60331435005 | MW-39-031120 | Water  | 03/11/20 10:45 | 03/11/20 14:20 |
| 60331435006 | DUP-031120   | Water  | 03/11/20 10:55 | 03/11/20 14:20 |
| 60331435007 | MW-40-031120 | Water  | 03/11/20 12:40 | 03/11/20 14:20 |



## SAMPLE ANALYTE COUNT

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Lab ID      | Sample ID    | Method      | Analysts | Analytes<br>Reported | Laborator |
|-------------|--------------|-------------|----------|----------------------|-----------|
| 60331435001 | MW-37-031020 | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS, JWR | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, LDB | 3                    | PASI-K    |
| 0331435002  | MW-38-031020 | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |
| 0331435003  | MW-K-031120  | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |
| 0331435004  | MW-L-031120  | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |
| 0331435005  | MW-39-031120 | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |
| 0331435006  | DUP-031120   | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |
| 0331435007  | MW-40-031120 | EPA 200.7   | JDE      | 4                    | PASI-K    |
|             |              | EPA 200.8   | JGP      | 2                    | PASI-K    |
|             |              | SM 2540C    | AJS      | 1                    | PASI-K    |
|             |              | SM 4500-H+B | MGS      | 1                    | PASI-K    |
|             |              | EPA 300.0   | BLA, CNB | 3                    | PASI-K    |

PASI-K = Pace Analytical Services - Kansas City



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

Date: March 31, 2020

Amended report revised to reflect re-runs on samples MW-37-031020 and MW-39-031120 in addition to reporting in units of mg/L.



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### QC Batch: 644386

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60331435003,60331435007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2618359)
  - Calcium
- MS (Lab ID: 2618361)
  - Calcium
- MSD (Lab ID: 2618360)
  - Calcium

#### Additional Comments:



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

# Method:SM 2540CDescription:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:March 31, 2020

#### **General Information:**

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H5: Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time. • MW-37-031020 (Lab ID: 60331435001)

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Method:      | SM 4500-H+ | ·В    |
|--------------|------------|-------|
| Description: | 45000, 50  | Elect |

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:March 31, 2020

#### **General Information:**

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-031120 (Lab ID: 60331435006)
- MW-37-031020 (Lab ID: 60331435001)
- MW-38-031020 (Lab ID: 60331435002)
- MW-39-031120 (Lab ID: 60331435005)
- MW-40-031120 (Lab ID: 60331435007)
- MW-K-031120 (Lab ID: 60331435003)
- MW-L-031120 (Lab ID: 60331435004)

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

## Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:March 31, 2020

#### **General Information:**

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-37-031020          | Lab ID: 60    | 331435001     | Collected: 03/10/2   | 20 15:25 | 5 Received: 03 | 8/11/20 14:20 I | Matrix: Water |      |
|-------------------------------|---------------|---------------|----------------------|----------|----------------|-----------------|---------------|------|
| Parameters                    | Results       | Units         | Report Limit         | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Me | thod: EPA 20  | 00.7 Preparation Met | hod: EF  | PA 200.7       |                 |               |      |
|                               | Pace Analytic | al Services - | Kansas City          |          |                |                 |               |      |
| Barium, Total Recoverable     | 0.065         | mg/L          | 0.0050               | 1        | 03/24/20 10:15 | 03/25/20 15:39  | 7440-39-3     |      |
| Boron, Total Recoverable      | 2.0           | mg/L          | 0.10                 | 1        | 03/24/20 10:15 | 03/25/20 15:39  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 172           | mg/L          | 0.20                 | 1        | 03/24/20 10:15 | 03/25/20 15:39  | 7440-70-2     |      |
| Lithium                       | 0.018         | mg/L          | 0.010                | 1        | 03/24/20 10:15 | 03/25/20 15:39  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Me | thod: EPA 20  | 0.8 Preparation Met  | hod: EF  | PA 200.8       |                 |               |      |
|                               | Pace Analytic |               |                      |          |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.0065        | mg/L          | 0.0010               | 1        | 03/18/20 09:38 | 03/19/20 15:07  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.12          | mg/L          | 0.0010               | 1        | 03/18/20 09:38 | 03/19/20 15:07  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Me | thod: SM 25   | 40C                  |          |                |                 |               |      |
|                               | Pace Analytic |               |                      |          |                |                 |               |      |
| Total Dissolved Solids        | 873           | mg/L          | 10.0                 | 1        |                | 03/12/20 14:44  | Ļ             |      |
| Total Dissolved Solids        | 853           | mg/L          | 10.0                 | 1        |                | 03/23/20 15:55  | i             | H5   |
| 4500H+ pH, Electrometric      | Analytical Me | thod: SM 45   | 00-H+B               |          |                |                 |               |      |
| •                             | Pace Analytic | al Services - | Kansas City          |          |                |                 |               |      |
| pH at 25 Degrees C            | 7.0           | Std. Units    | s 0.10               | 1        |                | 03/24/20 13:31  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Me | thod: EPA 30  | 0.0                  |          |                |                 |               |      |
|                               | Pace Analytic | al Services - | Kansas City          |          |                |                 |               |      |
| Chloride                      | 37.9          | mg/L          | 10.0                 | 10       |                | 03/12/20 17:10  | 16887-00-6    |      |
| Chloride                      | 40.6          | mg/L          | 20.0                 | 20       |                | 03/23/20 22:04  | 16887-00-6    |      |
| Fluoride                      | 0.27          | mg/L          | 0.20                 | 1        |                | 03/12/20 16:41  | 16984-48-8    |      |
| Fluoride                      | 0.27          | mg/L          | 0.20                 | 1        |                | 03/23/20 21:49  | 16984-48-8    |      |
| Sulfate                       | 313           | mg/L          | 50.0                 | 50       |                | 03/12/20 17:39  | 14808-79-8    |      |
| Sulfate                       | 319           | mg/L          | 20.0                 | 20       |                | 03/23/20 22:04  | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-38-031020          | Lab ID: 603    | 31435002      | Collected: 03/10/2  | 20 17:00 | Received: 03   | 8/11/20 14:20 N | latrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|-----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF  | PA 200.7       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1        | 03/17/20 15:59 | 03/18/20 14:45  | 7440-39-3     |      |
| Boron, Total Recoverable      | 5.4            | mg/L          | 0.10                | 1        | 03/17/20 15:59 | 03/18/20 14:45  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 336            | mg/L          | 0.20                | 1        | 03/17/20 15:59 | 03/18/20 14:45  | 7440-70-2     |      |
| Lithium                       | 0.074          | mg/L          | 0.010               | 1        | 03/17/20 15:59 | 03/18/20 14:45  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF  | PA 200.8       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.015          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:15  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.082          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:15  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |          |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Total Dissolved Solids        | 2460           | mg/L          | 40.0                | 1        |                | 03/12/20 14:44  |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |          |                |                 |               |      |
| •                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| pH at 25 Degrees C            | 7.6            | Std. Units    | 0.10                | 1        |                | 03/18/20 14:23  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Chloride                      | 249            | mg/L          | 50.0                | 50       |                | 03/12/20 19:06  | 16887-00-6    |      |
| Fluoride                      | 4.9            | mg/L          | 0.20                | 1        |                | 03/12/20 18:08  | 16984-48-8    |      |
| Sulfate                       | 1290           | mg/L          | 100                 | 100      |                | 03/13/20 13:57  | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-K-031120           | Lab ID: 603    | 31435003      | Collected: 03/11/2  | 20 08:10 | Received: 03   | B/11/20 14:20 N | Aatrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|-----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | thod: EF | PA 200.7       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Barium, Total Recoverable     | 0.043          | mg/L          | 0.0050              | 1        | 03/17/20 15:59 | 03/18/20 14:48  | 7440-39-3     |      |
| Boron, Total Recoverable      | 1.8            | mg/L          | 0.10                | 1        | 03/17/20 15:59 | 03/18/20 14:48  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 562            | mg/L          | 0.20                | 1        | 03/17/20 15:59 | 03/18/20 14:48  | 7440-70-2     | M1   |
| Lithium                       | 0.077          | mg/L          | 0.010               | 1        | 03/17/20 15:59 | 03/18/20 14:48  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | thod: EF | PA 200.8       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.067          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:21  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.016          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:21  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |          |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Total Dissolved Solids        | 5020           | mg/L          | 125                 | 1        |                | 03/13/20 11:11  |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 45    | 00-H+B              |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| pH at 25 Degrees C            | 7.3            | Std. Units    | 0.10                | 1        |                | 03/18/20 14:29  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Chloride                      | 944            | mg/L          | 50.0                | 50       |                | 03/12/20 19:50  | 16887-00-6    |      |
| Fluoride                      | 2.7            | mg/L          | 0.20                | 1        |                | 03/12/20 19:21  | 16984-48-8    |      |
| Sulfate                       | 2190           | mg/L          | 200                 | 200      |                | 03/13/20 14:13  | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-L-031120           | Lab ID: 603    | 31435004      | Collected: 03/11/2  | 0 09:30 | Received: 03   | 8/11/20 14:20 N | latrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|---------|----------------|-----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF | PA 200.7       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                 |               |      |
| Barium, Total Recoverable     | 0.035          | mg/L          | 0.0050              | 1       | 03/17/20 15:59 | 03/18/20 14:59  | 7440-39-3     |      |
| Boron, Total Recoverable      | 2.6            | mg/L          | 0.10                | 1       | 03/17/20 15:59 | 03/18/20 14:59  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 551            | mg/L          | 0.20                | 1       | 03/17/20 15:59 | 03/18/20 14:59  | 7440-70-2     |      |
| Lithium                       | 0.057          | mg/L          | 0.010               | 1       | 03/17/20 15:59 | 03/18/20 14:59  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF | PA 200.8       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.024          | mg/L          | 0.0010              | 1       | 03/18/20 09:38 | 03/19/20 15:24  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.049          | mg/L          | 0.0010              | 1       | 03/18/20 09:38 | 03/19/20 15:24  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |         |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                 |               |      |
| Total Dissolved Solids        | 3880           | mg/L          | 100                 | 1       |                | 03/13/20 11:11  |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 45    | 00-H+B              |         |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                 |               |      |
| pH at 25 Degrees C            | 7.3            | Std. Units    | 0.10                | 1       |                | 03/18/20 14:30  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |         |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                 |               |      |
| Chloride                      | 633            | mg/L          | 50.0                | 50      |                | 03/12/20 20:34  | 16887-00-6    |      |
| Fluoride                      | 2.4            | mg/L          | 0.20                | 1       |                | 03/12/20 20:05  | 16984-48-8    |      |
| Sulfate                       | 1880           | mg/L          | 200                 | 200     |                | 03/13/20 14:29  | 14808-79-8    |      |
|                               |                |               |                     |         |                |                 |               |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-39-031120          | Lab ID: 603    | 31435005      | Collected: 03/11/2  | 20 10:45 | 6 Received: 03 | s/11/20 14:20 N | Aatrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|-----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF  | PA 200.7       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1        | 03/24/20 10:15 | 03/25/20 15:46  | 7440-39-3     |      |
| Boron, Total Recoverable      | 5.0            | mg/L          | 0.10                | 1        | 03/24/20 10:15 | 03/25/20 15:46  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 576            | mg/L          | 0.20                | 1        | 03/24/20 10:15 | 03/25/20 15:46  | 7440-70-2     |      |
| Lithium                       | 0.037          | mg/L          | 0.010               | 1        | 03/24/20 10:15 | 03/25/20 15:46  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF  | PA 200.8       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.011          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:26  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.18           | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:26  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |          |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Total Dissolved Solids        | 3370           | mg/L          | 66.7                | 1        |                | 03/13/20 11:11  |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| pH at 25 Degrees C            | 7.2            | Std. Units    | 0.10                | 1        |                | 03/19/20 09:24  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Chloride                      | 317            | mg/L          | 50.0                | 50       |                | 03/12/20 21:18  | 16887-00-6    |      |
| Fluoride                      | 2.2            | mg/L          | 0.20                | 1        |                | 03/12/20 20:49  | 16984-48-8    |      |
| Sulfate                       | 1730           | mg/L          | 200                 | 200      |                | 03/13/20 14:45  | 14808-79-8    |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: DUP-031120            | Lab ID: 603    | 31435006      | Collected: 03/11/2  | 0 10:55 | Received: 03   | /11/20 14:20 N | latrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|---------|----------------|----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF | PA 200.7       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                |               |      |
| Barium, Total Recoverable     | 0.033          | mg/L          | 0.0050              | 1       | 03/17/20 15:59 | 03/18/20 15:04 | 7440-39-3     |      |
| Boron, Total Recoverable      | 4.8            | mg/L          | 0.10                | 1       | 03/17/20 15:59 | 03/18/20 15:04 | 7440-42-8     |      |
| Calcium, Total Recoverable    | 577            | mg/L          | 0.20                | 1       | 03/17/20 15:59 | 03/18/20 15:04 | 7440-70-2     |      |
| Lithium                       | 0.037          | mg/L          | 0.010               | 1       | 03/17/20 15:59 | 03/18/20 15:04 | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF | PA 200.8       |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                |               |      |
| Arsenic, Total Recoverable    | 0.011          | mg/L          | 0.0010              | 1       | 03/18/20 09:38 | 03/19/20 15:29 | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.18           | mg/L          | 0.0010              | 1       | 03/18/20 09:38 | 03/19/20 15:29 | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |         |                |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                |               |      |
| Total Dissolved Solids        | 3450           | mg/L          | 66.7                | 1       |                | 03/13/20 11:11 |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 450   | 00-H+B              |         |                |                |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |         |                |                |               |      |
| pH at 25 Degrees C            | 7.3            | Std. Units    | 0.10                | 1       |                | 03/19/20 09:32 |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |         |                |                |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |         |                |                |               |      |
| Chloride                      | 351            | mg/L          | 50.0                | 50      |                | 03/12/20 22:31 | 16887-00-6    |      |
| Fluoride                      | 2.2            | mg/L          | 0.20                | 1       |                | 03/12/20 22:02 | 16984-48-8    |      |
| Sulfate                       | 1720           | mg/L          | 200                 | 200     |                | 03/13/20 15:32 | 14808-79-8    |      |
|                               |                |               |                     |         |                |                |               |      |



#### Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Sample: MW-40-031120          | Lab ID: 603    | 31435007      | Collected: 03/11/2  | 20 12:40 | Received: 03   | 8/11/20 14:20 N | Aatrix: Water |      |
|-------------------------------|----------------|---------------|---------------------|----------|----------------|-----------------|---------------|------|
| Parameters                    | Results        | Units         | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| 200.7 Metals, Total           | Analytical Met | hod: EPA 20   | 0.7 Preparation Met | hod: EF  | PA 200.7       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Barium, Total Recoverable     | 0.032          | mg/L          | 0.0050              | 1        | 03/17/20 15:59 | 03/18/20 15:07  | 7440-39-3     |      |
| Boron, Total Recoverable      | 4.9            | mg/L          | 0.10                | 1        | 03/17/20 15:59 | 03/18/20 15:07  | 7440-42-8     |      |
| Calcium, Total Recoverable    | 464            | mg/L          | 0.20                | 1        | 03/17/20 15:59 | 03/18/20 15:07  | 7440-70-2     | M1   |
| Lithium                       | 0.041          | mg/L          | 0.010               | 1        | 03/17/20 15:59 | 03/18/20 15:07  | 7439-93-2     |      |
| 200.8 MET ICPMS               | Analytical Met | hod: EPA 20   | 0.8 Preparation Met | hod: EF  | PA 200.8       |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Arsenic, Total Recoverable    | 0.014          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:31  | 7440-38-2     |      |
| Molybdenum, Total Recoverable | 0.096          | mg/L          | 0.0010              | 1        | 03/18/20 09:38 | 03/19/20 15:31  | 7439-98-7     |      |
| 2540C Total Dissolved Solids  | Analytical Met | hod: SM 254   | 40C                 |          |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Total Dissolved Solids        | 3090           | mg/L          | 66.7                | 1        |                | 03/13/20 11:11  |               |      |
| 4500H+ pH, Electrometric      | Analytical Met | hod: SM 45    | 00-H+B              |          |                |                 |               |      |
|                               | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| pH at 25 Degrees C            | 7.2            | Std. Units    | 0.10                | 1        |                | 03/19/20 09:34  |               | H6   |
| 300.0 IC Anions 28 Days       | Analytical Met | hod: EPA 30   | 0.0                 |          |                |                 |               |      |
| -                             | Pace Analytica | al Services - | Kansas City         |          |                |                 |               |      |
| Chloride                      | 289            | mg/L          | 50.0                | 50       |                | 03/12/20 23:15  | 16887-00-6    |      |
| Fluoride                      | 1.6            | mg/L          | 0.20                | 1        |                | 03/12/20 22:46  | 16984-48-8    |      |
| Sulfate                       | 1490           | mg/L          | 200                 | 200      |                | 03/13/20 15:48  | 14808-79-8    |      |



| Project:                                                | LEC INACTIV              | /E ASI | H PONDS CCR    |           |                     |             |             |                   |                    |            |                |       |       |
|---------------------------------------------------------|--------------------------|--------|----------------|-----------|---------------------|-------------|-------------|-------------------|--------------------|------------|----------------|-------|-------|
| Pace Project No.:                                       | 60331435                 |        |                |           |                     |             |             |                   |                    |            |                |       |       |
| QC Batch:                                               | 644386                   |        |                | Anal      | ysis Metho          | d: E        | EPA 200.7   |                   |                    |            |                |       |       |
| QC Batch Method:                                        | EPA 200.7                |        |                | Anal      | ysis Descr          | iption: 2   | 200.7 Metal | s, Total          |                    |            |                |       |       |
|                                                         |                          |        |                | Labo      | oratory:            | F           | Pace Analyt | ical Serv         | vices - Kansa      | as City    |                |       |       |
| Associated Lab San                                      | nples: 6033 <sup>-</sup> | 14350  | 02, 6033143500 |           |                     |             |             |                   |                    | ,          |                |       |       |
| METHOD BLANK:                                           | 2618357                  |        |                |           | Matrix: W           | /ater       |             |                   |                    |            |                |       |       |
| Associated Lab San                                      | nples: 6033              | 14350  | 01, 6033143500 | 2, 603314 | 35003, 603          | 31435004, 6 | 603314350   | 05, 6033          | 1435006, 60        | 0331435007 | ,              |       |       |
|                                                         |                          |        |                | Bla       | nk                  | Reporting   |             |                   |                    |            |                |       |       |
| Paran                                                   | neter                    |        | Units          | Res       | sult                | Limit       | Analy       | yzed              | Qualifie           | rs         |                |       |       |
| Barium                                                  |                          |        | mg/L           | <         | :0.0050             | 0.0050      | 03/18/2     | 0 14:41           |                    |            |                |       |       |
| Boron                                                   |                          |        | mg/L           |           | <0.10               | 0.10        | 03/18/2     | 0 14:41           |                    |            |                |       |       |
| Calcium                                                 |                          |        | mg/L           |           | <0.20               | 0.20        | 03/18/2     | 0 14:41           |                    |            |                |       |       |
| Lithium                                                 |                          |        | mg/L           |           | <0.010              | 0.010       | 0 03/18/2   | 0 14:41           |                    |            |                |       |       |
| LABORATORY CO                                           |                          | E:     | 2618358        |           |                     |             |             |                   |                    |            |                |       |       |
|                                                         |                          |        |                | Spike     | LC                  | CS          | LCS         | %                 | Rec                |            |                |       |       |
| Paran                                                   | neter                    |        | Units          | Conc.     |                     | sult        | % Rec       | Li                | mits               | Qualifiers |                |       |       |
| Barium                                                  |                          |        | mg/L           |           | 1                   | 0.98        | 9           | 8                 | 85-115             |            |                |       |       |
| Boron                                                   |                          |        | mg/L           |           | 1                   | 0.96        | 9           | 6                 | 85-115             |            |                |       |       |
| Calcium                                                 |                          |        | mg/L           |           | 10                  | 10.2        | 10          | 2                 | 85-115             |            |                |       |       |
| Lithium                                                 |                          |        | mg/L           |           | 1                   | 0.98        | 98          | В                 | 85-115             |            |                |       |       |
| MATRIX SPIKE & M                                        |                          | DUPL   | .ICATE: 2618   | 359       |                     | 2618360     |             |                   |                    |            |                |       |       |
|                                                         | -                        | _      |                | MS        | MSD                 |             |             |                   |                    |            |                |       |       |
|                                                         |                          |        | 60331435003    | Spike     | Spike               | MS          | MSD         | MS                | MSD                | % Rec      |                | Max   |       |
| Parameter                                               | r I                      | Units  | Result         | Conc.     | Conc.               | Result      | Result      | % Rec             | % Rec              | Limits     | RPD            | RPD   | Qu    |
| Barium                                                  |                          | mg/L   | 0.043          | 1         | 1                   | 1.0         | 1.0         | 10                | 00 99              | 9 70-130   | 1              | 20    |       |
| Boron                                                   |                          | mg/L   | 1.8            | 1         | 1                   | 2.7         | 2.7         |                   | 98 94              |            | 2              |       |       |
| Calcium                                                 |                          | mg/L   | 562            | 10        | 10                  | 576         | 558         | 13                | 38 -4;             | 3 70-130   | 3              |       | M1    |
| Lithium                                                 | I                        | mg/L   | 0.077          | 1         | 1                   | 1.1         | 1.1         | 10                | )2 10 <sup>-</sup> | 1 70-130   | 1              | 20    |       |
|                                                         | <br>MPLE:                |        | 2618361        |           |                     |             |             |                   |                    |            |                |       |       |
| MATRIX SPIKE SAI                                        |                          |        |                | 6033      | 1435007             | Spike       | MS          |                   | MS                 | % Rec      | :              |       |       |
| MATRIX SPIKE SAI                                        | notor                    |        | Units          |           | esult               | Conc.       | Result      |                   | % Rec              | Limits     |                | Quali | fiers |
| MATRIX SPIKE SAI<br>Paran                               | notor                    |        |                |           | 0.032               | 1           | (           | 0.99              | 95                 | 70         | -130           |       |       |
| Paran                                                   |                          |        | mg/L           |           |                     |             |             |                   |                    |            |                |       |       |
| Paran<br>Barium                                         |                          |        | mg/L<br>mg/L   |           | 4.9                 | 1           |             | 5.7               | 80                 | 70         | -130           |       |       |
| MATRIX SPIKE SAI<br>Paran<br>Barium<br>Boron<br>Calcium |                          |        | -              |           | 4.9<br>464<br>0.041 | 1<br>10     |             | 5.7<br>462<br>1.0 | 80<br>-20          |            | -130<br>-130 N | 1     |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Pace Project No.:                                                                        | 603314 |            | H PONDS CCR                                                                                       |                                           |                                                 |                                                                                  |                                                                                                                                   |                                                    |                                                      |                                     |          |                 |     |
|------------------------------------------------------------------------------------------|--------|------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------|----------|-----------------|-----|
| QC Batch:                                                                                | 6455   |            |                                                                                                   | Anal                                      | ysis Meth                                       | iod:                                                                             | EPA 200.7                                                                                                                         |                                                    |                                                      |                                     |          |                 |     |
| QC Batch Method:                                                                         | EPA    |            |                                                                                                   |                                           | ysis Desc                                       |                                                                                  | 200.7 Meta                                                                                                                        | ls. Total                                          |                                                      |                                     |          |                 |     |
|                                                                                          |        | 200.1      |                                                                                                   |                                           | pratory:                                        |                                                                                  | Pace Analy                                                                                                                        |                                                    | os - Kansa                                           | s Citv                              |          |                 |     |
| Associated Lab Sar                                                                       | mples: | 603314350  | 01, 6033143500                                                                                    |                                           | fatory.                                         |                                                                                  | r doe / tridiy                                                                                                                    |                                                    | co nunou                                             | o ony                               |          |                 |     |
| METHOD BLANK:                                                                            | 262224 | 40         |                                                                                                   |                                           | Matrix:                                         | Water                                                                            |                                                                                                                                   |                                                    |                                                      |                                     |          |                 |     |
| Associated Lab Sar                                                                       | mples: | 603314350  | 01, 6033143500                                                                                    | 5                                         |                                                 |                                                                                  |                                                                                                                                   |                                                    |                                                      |                                     |          |                 |     |
|                                                                                          |        |            |                                                                                                   | Bla                                       | nk                                              | Reporting                                                                        |                                                                                                                                   |                                                    |                                                      |                                     |          |                 |     |
| Parar                                                                                    | meter  |            | Units                                                                                             | Res                                       | ult                                             | Limit                                                                            | Ana                                                                                                                               | yzed                                               | Qualifier                                            | S                                   |          |                 |     |
| Barium                                                                                   |        |            | mg/L                                                                                              | <                                         | 0.0050                                          | 0.005                                                                            | 50 03/25/2                                                                                                                        | 20 15:36                                           |                                                      |                                     |          |                 |     |
| Boron                                                                                    |        |            | mg/L                                                                                              |                                           | <0.10                                           | 0.1                                                                              | 0 03/25/2                                                                                                                         | 20 15:36                                           |                                                      |                                     |          |                 |     |
| Calcium                                                                                  |        |            | mg/L                                                                                              |                                           | <0.20                                           | 0.2                                                                              | 20 03/25/2                                                                                                                        | 20 15:36                                           |                                                      |                                     |          |                 |     |
| Lithium                                                                                  |        |            | mg/L                                                                                              |                                           | <0.010                                          | 0.01                                                                             | 0 03/25/2                                                                                                                         | 20 15:36                                           |                                                      |                                     |          |                 |     |
|                                                                                          |        |            |                                                                                                   |                                           |                                                 |                                                                                  |                                                                                                                                   |                                                    |                                                      |                                     |          |                 |     |
|                                                                                          | NTROL  | SAMPLE:    | 2622241<br>Units                                                                                  | Spike<br>Conc.                            |                                                 | _CS<br>esult                                                                     | LCS<br>% Rec                                                                                                                      | % R<br>                                            |                                                      | Qualifiers                          |          |                 |     |
| Parar                                                                                    | -      | SAMPLE:    | -                                                                                                 |                                           |                                                 |                                                                                  |                                                                                                                                   | Limi                                               |                                                      | Qualifiers                          | _        |                 |     |
| LABORATORY CO<br>Parar<br>Barium<br>Boron                                                | -      | SAMPLE:    | Units                                                                                             |                                           | R                                               | esult                                                                            | % Rec<br>10                                                                                                                       | Limi                                               | ts                                                   | Qualifiers                          | _        |                 |     |
| Parar<br>Barium                                                                          | -      | SAMPLE:    | Units<br>mg/L<br>mg/L<br>mg/L                                                                     | Conc.                                     | R                                               | esult<br>1.0<br>0.98<br>10.5                                                     | % Rec<br>10<br>9<br>10                                                                                                            | Limi<br>02<br>08<br>05                             | its<br>85-115                                        | Qualifiers                          | _        |                 |     |
| Parar<br>Barium<br>Boron                                                                 | -      | SAMPLE:    | Units<br>mg/L<br>mg/L                                                                             | Conc.                                     | R<br>1<br>1                                     | esult<br>1.0<br>0.98                                                             | % Rec<br>10<br>9                                                                                                                  | Limi<br>02<br>08<br>05                             | ts<br>85-115<br>85-115                               | Qualifiers                          | _        |                 |     |
| Parar<br>Barium<br>Boron<br>Calcium                                                      | meter  |            | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                             | Conc.                                     | R<br>1<br>10<br>1                               | esult<br>1.0<br>0.98<br>10.5                                                     | % Rec<br>10<br>9<br>10<br>10                                                                                                      | Limi<br>02<br>08<br>05                             | its<br>85-115<br>85-115<br>85-115                    | Qualifiers                          | _        |                 |     |
| Parar<br>Barium<br>Boron<br>Calcium<br>Lithium                                           | meter  |            | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                             | Conc.                                     | R<br>1<br>10<br>1<br>MSD                        | esult<br>1.0<br>0.98<br>10.5<br>1.0<br>2622243                                   | % Rec<br>10<br>9<br>10<br>10<br>10                                                                                                | Limi<br>12<br>18<br>15<br>12                       | ts<br>85-115<br>85-115<br>85-115<br>85-115<br>85-115 |                                     | _        |                 |     |
| Parar<br>Barium<br>Boron<br>Calcium<br>Lithium                                           | MATRIX |            | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                             | Conc.                                     | R<br>1<br>10<br>1                               | esult<br>1.0<br>0.98<br>10.5<br>1.0                                              | % Rec<br>10<br>9<br>10<br>10                                                                                                      | Limi<br>02<br>08<br>05                             | its<br>85-115<br>85-115<br>85-115                    | Qualifiers<br>% Rec<br>Limits       | RPD      | Max<br>RPD      | Qua |
| Parar<br>Barium<br>Boron<br>Calcium<br>Lithium<br>MATRIX SPIKE & M<br>Paramete           | MATRIX | SPIKE DUPL | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 2622:<br>60331875001                             | Conc.<br>242<br>MS<br>Spike               | R<br>1<br>1<br>10<br>1<br>MSD<br>Spike<br>Conc. | esult<br>1.0<br>0.98<br>10.5<br>1.0<br>2622243<br>MS                             | % Rec<br>10<br>9<br>10<br>10<br>10<br>3<br>3<br>MSD                                                                               | Limi<br>12<br>18<br>15<br>12<br>12                 | ts                                                   | % Rec<br>Limits                     | <br>RPD0 | RPD             | Qua |
| Parar<br>Barium<br>Boron<br>Calcium<br>Lithium<br>MATRIX SPIKE & M<br>Paramete<br>Barium | MATRIX | SPIKE DUPL | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 2622<br>60331875001<br>Result<br>16.7 ug/L<br>ND | Conc.<br>242<br>MS<br>Spike<br>Conc.      | R<br>1<br>1<br>10<br>1<br>MSD<br>Spike<br>Conc. | esult<br>1.0<br>0.98<br>10.5<br>1.0<br>262224:<br>MS<br>Result                   | % Rec<br>10<br>9<br>10<br>10<br>10<br>3<br>3<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | Limi<br>12<br>18<br>15<br>12<br>MS<br>% Rec        | MSD<br>% Rec                                         | % Rec<br>Limits<br>70-130           |          | RPD<br>20       | Qua |
| Parar<br>Barium<br>Boron<br>Calcium<br>Lithium<br>MATRIX SPIKE & N                       | MATRIX | SPIKE DUPL | Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 2622<br>60331875001<br>Result<br>16.7 ug/L       | Conc.<br>242<br>MS<br>Spike<br>Conc.<br>1 | R<br>1<br>1<br>10<br>1<br>MSD<br>Spike<br>Conc. | esult<br>1.0<br>0.98<br>10.5<br>1.0<br>262224:<br>MS<br>Result<br>1 1.0<br>1 1.0 | % Rec<br>10<br>9<br>10<br>10<br>10<br>3<br>3<br>MSD<br>Result<br>1.1                                                              | Limi<br>12<br>18<br>15<br>12<br>MS<br>% Rec<br>103 | MSD<br>% Rec<br>104                                  | % Rec<br>Limits<br>70-130<br>70-130 | 0        | RPD<br>20<br>20 | Qua |

| Parameter | Units | 60331955002<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Barium    | mg/L  | ND                    | 1              | 1.0          | 103         | 70-130          |            |
| Boron     | mg/L  | ND                    | 1              | 0.97         | 97          | 70-130          |            |
| Calcium   | mg/L  | ND                    | 10             | 10.4         | 104         | 70-130          |            |
| Lithium   | mg/L  | ND                    | 1              | 1.0          | 105         | 70-130          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:<br>Pace Project No.:                                                      | LEC INACTI<br>60331435 | VE ASH PC  | ONDS CCR                                                       |                                                           |                               |                                                          |                                  |                                |                               |                     |     |            |      |
|------------------------------------------------------------------------------------|------------------------|------------|----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|----------------------------------------------------------|----------------------------------|--------------------------------|-------------------------------|---------------------|-----|------------|------|
| QC Batch:                                                                          | 644518                 |            |                                                                | Analy                                                     | ysis Meth                     | od:                                                      | EPA 200.8                        |                                |                               |                     |     |            |      |
| QC Batch Method:                                                                   | EPA 200.8              |            |                                                                | Analy                                                     | ysis Desc                     | ription:                                                 | 200.8 MET                        |                                |                               |                     |     |            |      |
|                                                                                    |                        |            |                                                                | Labo                                                      | oratory:                      |                                                          | Pace Analyt                      | ical Service                   | es - Kansa                    | s City              |     |            |      |
| Associated Lab San                                                                 | nples: 6033            | 1435001, 6 | 6033143500                                                     | 2, 6033143                                                | 35003, 60                     | 331435004,                                               | 603314350                        | 05, 603314                     | 35006, 60                     | 331435007           | ,   |            |      |
| METHOD BLANK:                                                                      | 2618776                |            |                                                                |                                                           | Matrix: \                     | Water                                                    |                                  |                                |                               |                     |     |            |      |
| Associated Lab San                                                                 | nples: 6033            | 1435001, 6 | 6033143500                                                     | 2, 6033143                                                | 35003, 60                     | 331435004,                                               | 603314350                        | 05, 603314                     | 35006, 60                     | 331435007           | ,   |            |      |
|                                                                                    |                        |            |                                                                | Blar                                                      | nk                            | Reporting                                                |                                  |                                |                               |                     |     |            |      |
| Param                                                                              | neter                  |            | Units                                                          | Res                                                       | ult                           | Limit                                                    | Analy                            | /zed                           | Qualifier                     | s                   |     |            |      |
|                                                                                    |                        |            | mg/L                                                           |                                                           | 0.0010                        | 0.001                                                    | 0 03/19/20                       |                                |                               |                     |     |            |      |
| Arsenic                                                                            |                        |            |                                                                |                                                           |                               |                                                          |                                  |                                |                               |                     |     |            |      |
| Arsenic<br>Molybdenum                                                              |                        |            | mg/L                                                           | <                                                         | 0.0010                        | 0.001                                                    | 0 03/19/20                       | 0 15:05                        |                               |                     |     |            |      |
|                                                                                    |                        | LE: 2618   | mg/L                                                           | Spike                                                     | L                             | 0.001<br>.CS<br>esult                                    | 0 03/19/20<br>LCS<br>% Rec       | 0 15:05<br>% Re<br>Limi        |                               | Qualifiers          |     |            |      |
| Molybdenum<br>LABORATORY CON<br>Paran<br>Arsenic                                   |                        | LE: 2618   | mg/L<br>3777<br>Units<br>mg/L                                  | Spike<br>Conc.<br>0.0                                     | L<br>Re<br>                   | .CS<br>esult<br>0.039                                    | LCS<br>% Rec<br>98               | % Re<br>                       | ts<br>35-115                  | Qualifiers          |     |            |      |
| Molybdenum<br>LABORATORY CON<br>Paran                                              |                        | LE: 2618   | mg/L<br>3777<br>Units                                          | Spike<br>Conc.                                            | L<br>Re<br>                   | .CS<br>esult                                             | LCS<br>% Rec                     | % Re<br>                       | ts                            | Qualifiers          |     |            |      |
| Molybdenum<br>LABORATORY CON<br>Paran<br>Arsenic                                   | neter                  |            | mg/L<br>3777<br>Units<br>mg/L<br>mg/L                          | Spike<br>Conc.<br>0.0<br>0.0                              | L<br>Re<br>                   | .CS<br>esult<br>0.039                                    | LCS<br>% Rec<br>98<br>100        | % Re<br>                       | ts<br>35-115                  | Qualifiers          | _   |            |      |
| Molybdenum<br>LABORATORY COM<br>Paran<br>Arsenic<br>Molybdenum                     | neter                  |            | mg/L<br>3777<br>Units<br>mg/L<br>mg/L                          | Spike<br>Conc.<br>0.0<br>0.0                              | L<br>Re<br>                   | CS<br>esult<br>0.039<br>0.040                            | LCS<br>% Rec<br>98<br>100        | % Re<br>                       | ts<br>35-115                  | Qualifiers          | _   |            |      |
| Molybdenum<br>LABORATORY COM<br>Paran<br>Arsenic<br>Molybdenum                     | neter                  | DUPLICA    | mg/L<br>3777<br>Units<br>mg/L<br>mg/L                          | Spike<br>Conc.<br>0.0<br>0.0                              | L<br>Re<br>04<br>04           | CS<br>esult<br>0.039<br>0.040                            | LCS<br>% Rec<br>98<br>100        | % Re<br>                       | ts<br>35-115                  | Qualifiers<br>% Rec |     | Мах        |      |
| Molybdenum<br>LABORATORY COM<br>Paran<br>Arsenic<br>Molybdenum                     | neter<br>IATRIX SPIKE  | DUPLICA    | mg/L<br>3777<br>Units<br>mg/L<br>mg/L<br>TE: 2618              | Spike<br>Conc.<br>0.0<br>0.0<br>778<br>MS                 | L<br>04<br>04<br>MSD          | CS<br>esult<br>0.039<br>0.040<br>2618775                 | LCS<br>% Rec<br>98<br>100        | % Re<br>Limi<br>3              | ts<br>35-115<br>35-115        |                     | RPD | Max<br>RPD | Qual |
| Molybdenum<br>LABORATORY COM<br>Paran<br>Arsenic<br>Molybdenum<br>MATRIX SPIKE & M | neter<br>IATRIX SPIKE  | DUPLICA    | mg/L<br>3777<br>Units<br>mg/L<br>mg/L<br>TE: 2618<br>331435001 | Spike<br>Conc.<br>0.0<br>0.0<br>0.0<br>778<br>MS<br>Spike | L<br>D4<br>D4<br>MSD<br>Spike | CS<br>esult<br>0.039<br>0.040<br>2618779<br>MS<br>Result | LCS<br>% Rec<br>98<br>100<br>MSD | % Re<br>Limi<br>3 & {<br>0 & { | ts<br>35-115<br>35-115<br>MSD | % Rec               |     | RPD        | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| ,                      | EC INACTIVE A<br>0331435 | SH PONDS CCR      |             |               |                |                 |        |            |  |  |
|------------------------|--------------------------|-------------------|-------------|---------------|----------------|-----------------|--------|------------|--|--|
| QC Batch: 643527       |                          |                   | Analysis Me | ethod:        | SM 2540C       |                 |        |            |  |  |
| QC Batch Method:       | SM 2540C                 |                   | Analysis De | escription: 2 | 2540C Total Di | ssolved Solids  |        |            |  |  |
|                        |                          |                   | Laboratory: | : F           | Pace Analytica | I Services - Ka | nsas C | City       |  |  |
| Associated Lab Sampl   | es: 60331435             | 5001, 60331435002 |             |               |                |                 |        |            |  |  |
| METHOD BLANK: 2        | 614869                   |                   | Matrix      | : Water       |                |                 |        |            |  |  |
| Associated Lab Sampl   | es: 60331435             | 5001, 60331435002 |             |               |                |                 |        |            |  |  |
|                        |                          |                   | Blank       | Reporting     |                |                 |        |            |  |  |
| Paramet                | er                       | Units             | Result      | Limit         | Analyze        | d Quali         | ifiers | _          |  |  |
| Total Dissolved Solids |                          | mg/L              | <5.0        | ) 5.0         | 0 03/12/20 1   | 4:44            |        |            |  |  |
|                        |                          |                   |             |               |                |                 |        |            |  |  |
| LABORATORY CONT        | ROL SAMPLE:              | 2614870           |             |               |                |                 |        |            |  |  |
|                        |                          |                   | Spike       | LCS           | LCS            | % Rec           |        |            |  |  |
| Paramet                | er                       | Units             | Conc.       | Result        | % Rec          | Limits          | Qu     | alifiers   |  |  |
| Total Dissolved Solids |                          | mg/L              | 1000        | 1020          | 102            | 80-120          |        |            |  |  |
|                        |                          |                   |             |               |                |                 |        |            |  |  |
| SAMPLE DUPLICATE       | : 2614871                |                   |             |               |                |                 |        |            |  |  |
|                        |                          |                   | 60331300001 | Dup           |                | Max             |        |            |  |  |
| Paramet                | er                       | Units             | Result      | Result        | RPD            | RPD             |        | Qualifiers |  |  |
| Total Dissolved Solids |                          | mg/L              | 2410        | ) 249         | 0              | 3               | 10     |            |  |  |
|                        |                          |                   |             |               |                |                 |        |            |  |  |
| SAMPLE DUPLICATE       | : 2614872                |                   |             |               |                |                 |        |            |  |  |
|                        |                          |                   | 60331438006 | Dup           |                | Max             |        |            |  |  |
| Paramet                | er                       | Units             | Result      | Result        | RPD            | RPD             |        | Qualifiers |  |  |
| Total Dissolved Solids |                          | mg/L              | 24900       | 2530          | 0              | 2               | 10     |            |  |  |
|                        |                          |                   |             |               |                |                 |        |            |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch:       643742       Analysis Method:       SM 2540C         QC Batch Method:       SM 2540C       Analysis Description:       2540C Total Dissolved Solids         Laboratory:       Pace Analytical Services - Kansas City         Associated Lab Samples:       60331435003, 60331435004, 60331435006, 60331435006, 60331435007         METHOD BLANK:       2615836       Matrix:         Associated Lab Samples:       60331435003, 60331435004, 60331435006, 60331435007       Blank         Parameter       Units       Result       Limit       Analyzed       Qualifiers         Total Dissolved Solids       mg/L       <5.0       5.0       03/13/20 11:10       Qualifiers         SAMPLE DUPLICATE:       2615837       Spike       LCS       LCS       % Rec       Limits       Qualifiers         SAMPLE DUPLICATE:       2615838       mg/L       1000       1000       100       80-120       Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <b>,</b>           | LEC INACTIVE A<br>60331435 | SH PONDS CCR      |                  |             |       |               |            |          |            |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------|------------------|-------------|-------|---------------|------------|----------|------------|---|--|
| Laboratory:       Pace Analytical Services - Kansas City         Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435006, 60331435007         METHOD BLANK:       2615836         Matrix:       Water         Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435007         Blank       Reporting         Parameter       Units         Result       Limit         Analyzed       Qualifiers         Total Dissolved Solids       mg/L         Voltable       Spike         LCS       % Rec         Parameter       Units         Conc.       Result         % Rec       Limits         Qualifiers         Total Dissolved Solids       mg/L         1000       1000         1000       100         8031477008       Dup         Max       RPD         Qualifiers         Qualifiers       Qualifiers         Qualifiers       Max         Parameter       Units         60331477008       Dup         RPD       RPD         Qualifiers         Qualifiers       Result         RPD       RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Batch:               | 643742                     | Analysis M        | Analysis Method: |             |       | SM 2540C      |            |          |            |   |  |
| Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435006, 60331435007         METHOD BLANK:       2615836         Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331435007, 60331477008, 60331477008, 60331477007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007, 6007 | Batch Method:        | SM 2540C                   |                   | Analysis De      | escription: | 254   | 40C Total Dis | solved So  | lids     |            |   |  |
| METHOD BLANK:       2615836       Matrix:       Water         Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435007, 60331435007       Blank       Reporting         Parameter       Units       Result       Limit       Analyzed       Qualifiers         Total Dissolved Solids       mg/L       <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                            |                   | Laboratory       | :           | Pa    | ce Analytical | Services - | Kansa    | as City    |   |  |
| Associated Lab Samples:       60331435003, 60331435004, 60331435005, 60331435006, 60331435007         Parameter       Units       Result       Limit       Analyzed       Qualifiers         Total Dissolved Solids       mg/L       <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sociated Lab Samp    | oles: 60331435             | 5003, 60331435004 | l, 60331435005,  | 60331435006 | 6, 60 | 331435007     |            |          |            |   |  |
| ParameterUnitsBlank<br>ResultReporting<br>LimitAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THOD BLANK: 2        | 2615836                    |                   | Matrix           | x: Water    |       |               |            |          |            |   |  |
| ParameterUnitsResultLimitAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sociated Lab Samp    | oles: 60331435             | 5003, 60331435004 | l, 60331435005,  | 60331435006 | 6, 60 | 331435007     |            |          |            |   |  |
| Total Dissolved Solidsmg/L<5.05.003/13/20 11:10LABORATORY CONTROL SAMPLE:2615837ParameterUnitsSpikeLCSLCS% RecTotal Dissolved Solidsmg/L1000100010080-120SAMPLE DUPLICATE:261583860331477008DupMaxParameterUnits60331477008DupMaxParameterUnitsResultResultRPDQualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                            |                   | Blank            |             | 9     |               |            |          |            |   |  |
| LABORATORY CONTROL SAMPLE:     2615837       Parameter     Units     Spike     LCS     LCS     % Rec       Total Dissolved Solids     mg/L     1000     1000     100     80-120       SAMPLE DUPLICATE:     2615838     60331477008     Dup     Max       Parameter     Units     Result     RPD     Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parame               | eter                       | Units             | Result           | Limit       |       | Analyzed      | d 0        | Qualifie | ers        |   |  |
| ParameterUnitsSpike<br>Conc.LCS<br>ResultLCS<br>% Rec<br>Limits% Rec<br>LimitsQualifiersTotal Dissolved Solidsmg/L1000100010080-120SAMPLE DUPLICATE:2615838ParameterUnits60331477008<br>ResultDup<br>ResultMax<br>RPDQualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Dissolved Solids  | S                          | mg/L              | <5.0             | )           | 5.0   | 03/13/20 11   | :10        |          |            |   |  |
| ParameterUnitsSpike<br>Conc.LCS<br>ResultLCS<br>% Rec<br>Limits% Rec<br>LimitsQualifiersTotal Dissolved Solidsmg/L1000100010080-120SAMPLE DUPLICATE:2615838ParameterUnits60331477008<br>ResultDup<br>ResultMax<br>RPDQualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                            |                   |                  |             |       |               |            |          |            |   |  |
| ParameterUnitsConc.Result% RecLimitsQualifiersTotal Dissolved Solidsmg/L1000100010080-120SAMPLE DUPLICATE:2615838ParameterUnits60331477008Dup<br>ResultMax<br>ResultQualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BORATORY CON         | TROL SAMPLE:               | 2615837           |                  |             |       |               |            |          |            |   |  |
| Total Dissolved Solids     mg/L     1000     1000     100     80-120       SAMPLE DUPLICATE:     2615838     60331477008     Dup     Max       Parameter     Units     Result     Result     RPD     Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                            |                   | Spike            | LCS         |       |               |            |          |            |   |  |
| SAMPLE DUPLICATE: 2615838<br>60331477008 Dup Max<br>Parameter Units Result Result RPD RPD Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parame               | eter                       | Units             | Conc             | Result      | %     | 6 Rec         | Limits     |          | Qualifiers |   |  |
| 60331477008     Dup     Max       Parameter     Units     Result     Result     RPD     Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tal Dissolved Solids | s                          | mg/L              | 1000             | 1000        |       | 100           | 80-        | 120      |            |   |  |
| 60331477008     Dup     Max       Parameter     Units     Result     Result     RPD     Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                            |                   |                  |             |       |               |            |          |            |   |  |
| Parameter Units Result Result RPD RPD Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | E: 2615838                 |                   |                  |             |       |               |            |          |            |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                    |                            |                   |                  |             |       |               |            |          |            |   |  |
| Total Dissolved Solids mg/L 797 799 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parame               | eter                       | Units             |                  |             |       | RPD           | R          | PD       | Qualifiers | _ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tal Dissolved Solids | s                          | mg/L              | 797              | 7           | 799   |               | 0          | 1        | 10         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                            |                   |                  |             |       |               |            |          |            |   |  |
| SAMPLE DUPLICATE: 2615839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | E: 2615839                 |                   |                  |             |       |               |            |          |            |   |  |
| 60331478001 Dup Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                            |                   |                  | •           |       |               |            |          |            |   |  |
| Parameter Units Result Result RPD RPD Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parame               | eter                       | Units             | Result           | Result      |       | RPD           | R          | PD       | Qualifiers | _ |  |
| Total Dissolved Solids mg/L 508 508 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Dissolved Solids  | S                          | mg/L              | 508              | 3 (         | 508   |               | 0          | 1        | 10         |   |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:<br>Pace Project No.: | LEC INACTIVE A | SH PONDS CCR |                       |           |                |                  |            |  |  |  |
|-------------------------------|----------------|--------------|-----------------------|-----------|----------------|------------------|------------|--|--|--|
| QC Batch:                     | 645498         |              | Analysis M            | ethod:    | SM 2540C       |                  |            |  |  |  |
| QC Batch Method:              | SM 2540C       |              | Analysis Description: |           | 2540C Total D  | issolved Solids  |            |  |  |  |
|                               |                |              | Laboratory            | :         | Pace Analytica | al Services - Ka | nsas City  |  |  |  |
| Associated Lab Sam            | ples: 60331435 | 5001         |                       |           |                |                  |            |  |  |  |
| METHOD BLANK:                 | 2622089        |              | Matrix                | k: Water  |                |                  |            |  |  |  |
| Associated Lab Sam            | ples: 60331435 | 5001         |                       |           |                |                  |            |  |  |  |
|                               |                |              | Blank                 | Reporting |                |                  |            |  |  |  |
| Param                         | ieter          | Units        | Result                | Limit     | Analyze        | ed Quali         | ifiers     |  |  |  |
| Total Dissolved Solid         | ls             | mg/L         | <5.0                  | )         | 5.0 03/23/20 1 | 5:55             |            |  |  |  |
|                               |                |              |                       |           |                |                  |            |  |  |  |
| LABORATORY CON                | ITROL SAMPLE:  | 2622090      |                       |           |                |                  |            |  |  |  |
|                               |                |              | Spike                 | LCS       | LCS            | % Rec            |            |  |  |  |
| Param                         | neter          | Units        | Conc.                 | Result    | % Rec          | Limits           | Qualifiers |  |  |  |
| Total Dissolved Solid         | ls             | mg/L         | 1000                  | 1020      | 102            | 80-120           |            |  |  |  |
|                               |                |              |                       |           |                |                  |            |  |  |  |
| SAMPLE DUPLICAT               | E: 2622091     |              |                       |           |                |                  |            |  |  |  |
| 5                             |                |              | 60331435001           | Dup       |                | Max              | 0          |  |  |  |
| Param                         |                | Units        | Result                | Result    | RPD            | RPD              | Qualifiers |  |  |  |
| Total Dissolved Solid         | ls             | mg/L         | 853                   | 8 8       | 399            | 5                | 10 H1      |  |  |  |
|                               |                |              |                       |           |                |                  |            |  |  |  |
| SAMPLE DUPLICAT               | E: 2622092     |              |                       |           |                |                  |            |  |  |  |
| _                             |                |              | 60332166010           |           |                | Max              | -          |  |  |  |
| Param                         | neter          | Units        | Result                | Result    | RPD            | RPD              | Qualifiers |  |  |  |
| Total Dissolved Solid         | ls             | mg/L         | 214                   | 4 2       | 215            | 1                | 10         |  |  |  |
|                               |                |              |                       |           |                |                  |            |  |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| ,                            | LEC INACTIVE AS<br>60331435 | H PONDS CCR      |                |           |               |          |              |            |  |
|------------------------------|-----------------------------|------------------|----------------|-----------|---------------|----------|--------------|------------|--|
| QC Batch:                    | 644593                      |                  | Analysis Meth  | iod:      | SM 4500-H+    | В        |              |            |  |
| QC Batch Method: SM 4500-H+B |                             |                  | Analysis Desc  | cription: | 4500H+B pH    |          |              |            |  |
|                              |                             |                  | Laboratory:    |           | Pace Analytic | cal Serv | /ices - Kans | sas City   |  |
| Associated Lab Samp          | ples: 60331435              | 002, 60331435003 | 3, 60331435004 |           |               |          |              |            |  |
| SAMPLE DUPLICATI             | E: 2619185                  |                  |                |           |               |          |              |            |  |
|                              |                             |                  | 60331267002    | Dup       |               |          | Max          |            |  |
| Parame                       | eter                        | Units            | Result         | Result    | RPD           |          | RPD          | Qualifiers |  |
| pH at 25 Degrees C           |                             | Std. Units       | 6.9            |           | 7.2           | 4        |              | 5 H6       |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:<br>Pace Project No.: | LEC INACTIVE AS<br>60331435 | H PONDS CCR     |                |               |             |   |     |            |  |
|-------------------------------|-----------------------------|-----------------|----------------|---------------|-------------|---|-----|------------|--|
| QC Batch:                     | 644682                      |                 | Analysis Meth  | iod:          | SM 4500-H+E | 3 |     |            |  |
| QC Batch Method: SM 4500-H+B  |                             |                 | Analysis Desc  | cription:     | 4500H+B pH  |   |     |            |  |
|                               |                             |                 | Laboratory:    | Pace Analytic |             |   |     |            |  |
| Associated Lab San            | nples: 60331435             | 005, 6033143500 | 6, 60331435007 |               |             |   |     |            |  |
| SAMPLE DUPLICA                | TE: 2619321                 |                 |                |               |             |   |     |            |  |
|                               |                             |                 | 60331435005    | Dup           |             |   | Max |            |  |
| Paran                         | neter                       | Units           | Result         | Result        | RPD         |   | RPD | Qualifiers |  |
|                               |                             | Std. Units      | 7.2            |               | 7.2         |   |     | 5 H6       |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:<br>Pace Project No.: | LEC INACTIVE ASI<br>60331435 | H PONDS CCR |               |           |                |               |            |   |
|-------------------------------|------------------------------|-------------|---------------|-----------|----------------|---------------|------------|---|
| QC Batch:                     | 645273                       |             | Analysis Meth | iod:      | SM 4500-H+B    |               |            |   |
| QC Batch Method:              | SM 4500-H+B                  |             | Analysis Desc | cription: | 4500H+B pH     |               |            |   |
|                               |                              |             | Laboratory:   |           | Pace Analytica | Services - Ka | nsas City  |   |
| Associated Lab Sa             | mples: 603314350             | 01          |               |           |                |               |            |   |
| SAMPLE DUPLIC                 | ATE: 2621668                 |             |               |           |                |               |            |   |
|                               |                              |             | 60331435001   | Dup       |                | Max           |            |   |
| Para                          | meter                        | Units       | Result        | Result    | RPD            | RPD           | Qualifiers |   |
| pH at 25 Degrees              | C                            | Std. Units  | 7.0           |           | 7.2            | 3             | 5 H6       | - |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| QC Batch:                                                                                                             | 6433                                            | 57                       |                                                                                                                                         | Analy                                                              | sis Method                                                                                               | √ F                                                                                         | PA 300.0                                                                             |                                                                                                                   |                                                                                                      |                                         |   |            |      |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|---|------------|------|
| QC Batch Meth                                                                                                         |                                                 | 300.0                    |                                                                                                                                         | -                                                                  | sis Descri                                                                                               |                                                                                             | 00.0 IC Ani                                                                          | ons                                                                                                               |                                                                                                      |                                         |   |            |      |
|                                                                                                                       |                                                 | 300.0                    |                                                                                                                                         |                                                                    | atory:                                                                                                   |                                                                                             | Pace Analyti                                                                         |                                                                                                                   | s - Kansa                                                                                            | s Citv                                  |   |            |      |
| Associated Lat                                                                                                        | Samples:                                        | 6033143500               | 1, 6033143500                                                                                                                           |                                                                    |                                                                                                          |                                                                                             | •                                                                                    |                                                                                                                   |                                                                                                      | •                                       | 7 |            |      |
| METHOD BLA                                                                                                            | NK: 26141                                       | 92                       |                                                                                                                                         |                                                                    | Matrix: W                                                                                                | ater                                                                                        |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| Associated Lat                                                                                                        | o Samples:                                      | 6033143500               | 1, 6033143500                                                                                                                           | 2, 6033143                                                         | 5003, 603                                                                                                | 31435004, 6                                                                                 | 6033143500                                                                           | 5, 603314                                                                                                         | 35006, 603                                                                                           | 331435007                               | 7 |            |      |
|                                                                                                                       |                                                 |                          |                                                                                                                                         | Blan                                                               | k l                                                                                                      | Reporting                                                                                   |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| F                                                                                                                     | Parameter                                       |                          | Units                                                                                                                                   | Resu                                                               | ult                                                                                                      | Limit                                                                                       | Analy                                                                                | zed                                                                                                               | Qualifier                                                                                            | s                                       |   |            |      |
| Chloride                                                                                                              |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <1.0                                                                                                     | 1.0                                                                                         | 03/12/20                                                                             | 07:28                                                                                                             |                                                                                                      |                                         |   |            |      |
| Fluoride                                                                                                              |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <0.20                                                                                                    | 0.20                                                                                        |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| Sulfate                                                                                                               |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <1.0                                                                                                     | 1.0                                                                                         | ) 03/12/20                                                                           | 07:28                                                                                                             |                                                                                                      |                                         |   |            |      |
| METHOD BLA                                                                                                            | NK: 26155                                       | 95                       |                                                                                                                                         |                                                                    | Matrix: W                                                                                                | ater                                                                                        |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| Associated Lat                                                                                                        |                                                 |                          | 1, 6033143500                                                                                                                           |                                                                    |                                                                                                          |                                                                                             | 6033143500                                                                           | 5, 603314                                                                                                         | 35006, 603                                                                                           | 331435007                               | 7 |            |      |
|                                                                                                                       | _                                               |                          |                                                                                                                                         | Blan                                                               |                                                                                                          | Reporting                                                                                   |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| F                                                                                                                     | Parameter                                       |                          | Units                                                                                                                                   | Resu                                                               | ult                                                                                                      | Limit                                                                                       | Analy                                                                                | zed                                                                                                               | Qualifier                                                                                            | S                                       |   |            |      |
| Chloride                                                                                                              |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <1.0                                                                                                     | 1.0                                                                                         |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| Fluoride                                                                                                              |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <0.20                                                                                                    | 0.20                                                                                        |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
|                                                                                                                       |                                                 |                          | ma/l                                                                                                                                    |                                                                    | <1.0                                                                                                     | 1.0                                                                                         | ) 03/13/20                                                                           | 12:54                                                                                                             |                                                                                                      |                                         |   |            |      |
| Sulfate                                                                                                               |                                                 |                          | mg/L                                                                                                                                    |                                                                    | <1.0                                                                                                     | 1.0                                                                                         | 00,10,20                                                                             |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| LABORATORY                                                                                                            | CONTROL                                         | SAMPLE: 2                | 614193                                                                                                                                  |                                                                    | <1.0                                                                                                     |                                                                                             |                                                                                      |                                                                                                                   |                                                                                                      |                                         |   |            |      |
| LABORATORY                                                                                                            |                                                 | SAMPLE: 2                | 614193                                                                                                                                  | Spike                                                              | LC                                                                                                       | S                                                                                           | LCS                                                                                  | % Re                                                                                                              |                                                                                                      | Qualifiara                              |   |            |      |
| LABORATORY                                                                                                            | CONTROL<br>Parameter                            | SAMPLE: 2                | 614193<br>Units                                                                                                                         | Conc.                                                              | LC<br>Res                                                                                                | S<br>sult                                                                                   | LCS<br>% Rec                                                                         | % Re<br>Limit                                                                                                     | is (                                                                                                 | Qualifiers                              |   |            |      |
| LABORATORY<br>F<br>Chloride                                                                                           |                                                 | SAMPLE: 2                | 614193<br>Units<br>mg/L                                                                                                                 | Conc.                                                              | LC<br>Res<br>5                                                                                           | S<br>sult<br>4.7                                                                            | LCS<br>% Rec<br>93                                                                   | % Re<br>Limit                                                                                                     | is (<br>)0-110                                                                                       | Qualifiers                              |   |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride                                                                               |                                                 | SAMPLE: 2                | 614193<br>Units<br>mg/L<br>mg/L                                                                                                         | Conc.                                                              | LC<br>                                                                                                   | S<br>sult<br>4.7<br>2.4                                                                     | LCS<br>% Rec<br>93<br>95                                                             | % Re<br>Limit                                                                                                     | 8 (0)<br>90-110<br>90-110                                                                            | Qualifiers                              | _ |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride                                                                               |                                                 | SAMPLE: 2                | 614193<br>Units<br>mg/L                                                                                                                 | Conc.                                                              | LC<br>Res<br>5                                                                                           | S<br>sult<br>4.7                                                                            | LCS<br>% Rec<br>93                                                                   | % Re<br>Limit                                                                                                     | is (<br>)0-110                                                                                       | Qualifiers                              |   |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate                                                                    | Parameter                                       |                          | 614193<br>Units<br>mg/L<br>mg/L                                                                                                         | 2.                                                                 | LC<br>Res<br>5<br>5<br>5<br>5                                                                            | Sult<br>4.7<br>2.4<br>5.1                                                                   | LCS<br>% Rec<br>93<br>95<br>101                                                      | % Re<br>Limit<br>9<br>9<br>9<br>9                                                                                 | is (<br>00-110<br>00-110<br>00-110                                                                   | Qualifiers                              | _ |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY                                                      | Parameter<br>7 CONTROL                          |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596                                                                                       | Conc.<br>2.<br>Spike                                               | LC<br>Res<br>5<br>5<br>5<br>LC                                                                           | S<br>sult<br>4.7<br>2.4<br>5.1<br>S                                                         | LCS<br>% Rec<br>93<br>95<br>101<br>LCS                                               | % Re<br>Limit<br>9<br>9<br>9<br>9<br>8<br>9<br>8                                                                  | 200-110<br>00-110<br>00-110<br>00-110                                                                |                                         |   |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY                                                      | Parameter                                       |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L                                                                                                 | 2.                                                                 | LC<br>Res<br>5<br>5<br>5<br>5                                                                            | S<br>sult<br>4.7<br>2.4<br>5.1<br>S                                                         | LCS<br>% Rec<br>93<br>95<br>101                                                      | % Re<br>Limit<br>9<br>9<br>9<br>9                                                                                 | 200-110<br>00-110<br>00-110<br>00-110                                                                | Qualifiers                              |   |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY<br>F<br>Chloride                                     | Parameter<br>7 CONTROL                          |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L                                                                      | Spike<br>Conc.                                                     | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                   | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6                                          | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93                                | % Re<br>Limit<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g      | 200-110<br>00-110<br>00-110<br>00-110                                                                |                                         | _ |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY<br>F<br>Chloride<br>Fluoride                         | Parameter<br>7 CONTROL                          |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L                                                              | Spike<br>Conc.                                                     | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                              | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6<br>2.6                                   | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105                         | % Re<br>Limit<br>9<br>9<br>9<br>9<br>8<br>9<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | s (0<br>00-110<br>00-110<br>00-110<br>00-110<br>ec<br>s (0<br>00-110<br>00-110                       |                                         | _ |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY<br>F<br>Chloride                                     | Parameter<br>7 CONTROL                          |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L                                                                      | Spike<br>Conc.                                                     | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                   | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6                                          | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93                                | % Re<br>Limit<br>9<br>9<br>9<br>9<br>8<br>9<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | (0)-110<br>00-110<br>00-110<br>00-110<br>00-110<br>ec<br>(0)-110                                     |                                         | _ |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY<br>F<br>Chloride<br>Fluoride                         | Parameter<br>CONTROL<br>Parameter               |                          | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L<br>mg/L                                                      | Conc.<br>2.<br>Spike<br>Conc.<br>2.                                | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                              | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6<br>2.6                                   | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105                         | % Re<br>Limit<br>9<br>9<br>9<br>9<br>8<br>9<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | s (0<br>00-110<br>00-110<br>00-110<br>00-110<br>ec<br>s (0<br>00-110<br>00-110                       |                                         | _ |            |      |
| LABORATORY<br>Fluoride<br>Sulfate<br>LABORATORY<br>Fluoride<br>Fluoride<br>Sulfate                                    | Parameter<br>CONTROL<br>Parameter               | SAMPLE: 2                | 614193<br>Units<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                      | Spike<br>Conc.<br>2.<br>Spike<br>Conc.<br>2.                       | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Sult<br>4.7<br>2.4<br>5.1<br>Sult<br>4.6<br>2.6<br>5.1<br>2614195                           | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105<br>102                  | % Re<br>Limit<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                     | 100-110     000-110       000-110     000-110       000-110     000-110       000-110     000-110    | Qualifiers                              |   |            |      |
| LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate              | Parameter<br>CONTROL<br>Parameter<br>E & MATRIX | SAMPLE: 2                | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L<br>mg/L                                                      | Conc.<br>2.<br>Spike<br>Conc.<br>2.                                | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                    | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6<br>2.6<br>5.1                            | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105                         | % Re<br>Limit<br>9<br>9<br>9<br>9<br>8<br>9<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | s (0<br>00-110<br>00-110<br>00-110<br>00-110<br>ec<br>s (0<br>00-110<br>00-110                       |                                         |   | Max<br>RPD | Qual |
| LABORATORY<br>F<br>Chloride<br>Sulfate<br>LABORATORY<br>F<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE<br>Parar | Parameter<br>CONTROL<br>Parameter<br>E & MATRIX | SAMPLE: 2<br>SPIKE DUPLI | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L<br>mg/L<br>CATE: 2614 <sup>-1</sup><br>20145436001<br>Result | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>194<br>MS<br>Spike<br>Conc. | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | S<br>sult<br>4.7<br>2.4<br>5.1<br>S<br>sult<br>4.6<br>2.6<br>5.1<br>2614195<br>MS<br>Result | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105<br>102<br>MSD<br>Result | % Re<br>Limit<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9      | s (0<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>MSD<br>% Rec | Qualifiers<br>% Rec<br>Limits           |   | RPD        | Qual |
| LABORATORY<br>Fluoride<br>Sulfate<br>LABORATORY<br>Fluoride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE                    | Parameter<br>CONTROL<br>Parameter<br>E & MATRIX | SAMPLE: 2                | 614193<br>Units<br>mg/L<br>mg/L<br>mg/L<br>615596<br>Units<br>mg/L<br>mg/L<br>mg/L<br>CATE: 2614 <sup>-</sup><br>20145436001            | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>194<br>MS<br>Spike          | LC<br>Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Sult<br>4.7<br>2.4<br>5.1<br>Sult<br>4.6<br>2.6<br>5.1<br>2614195<br>MS                     | LCS<br>% Rec<br>93<br>95<br>101<br>LCS<br>% Rec<br>93<br>105<br>102<br>MSD           | % Re<br>Limit<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9      | s (00-110)<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>MSD    | Qualifiers<br>% Rec<br>Limits<br>80-120 |   | RPD<br>15  | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| MATRIX SPIKE SAMPLE: | 2614196 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60331435001 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride             | mg/L    | 40.6        | 50    | 88.5   | 101   | 80-120 |            |
| Fluoride             | mg/L    | 0.27        | 2.5   | 3.1    | 112   | 80-120 |            |
| Sulfate              | mg/L    | 319         | 250   | 587    | 110   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| QC Batch:                                                                                                                           | 645341                                    |                                                                                                            | Analys                                                                                            | sis Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d: E                                                                                        | EPA 300.0                                                                                                                                               |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|------------|------|
| QC Batch Method:                                                                                                                    | EPA 300.0                                 |                                                                                                            | Analys                                                                                            | sis Descrip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otion: 3                                                                                    | 300.0 IC Ani                                                                                                                                            | ons                                                                                                  |                                                                                                                                                      |                                         |   |            |      |
|                                                                                                                                     |                                           |                                                                                                            | Labor                                                                                             | atory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                           | Pace Analyti                                                                                                                                            | cal Service                                                                                          | es - Kansa                                                                                                                                           | s City                                  |   |            |      |
| Associated Lab Sampl                                                                                                                | es: 603314350                             | 01                                                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| METHOD BLANK: 20                                                                                                                    |                                           |                                                                                                            | I                                                                                                 | Matrix: Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ater                                                                                        |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Associated Lab Sampl                                                                                                                | es: 603314350                             | 01                                                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Doromot                                                                                                                             | ~ <b>*</b>                                | Linita                                                                                                     | Blan                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reporting                                                                                   | Analy                                                                                                                                                   |                                                                                                      | Qualifiar                                                                                                                                            |                                         |   |            |      |
| Paramet                                                                                                                             | er -                                      | Units                                                                                                      | Resu                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                       | Analy                                                                                                                                                   |                                                                                                      | Qualifier                                                                                                                                            | s                                       |   |            |      |
| Chloride<br>Fluoride                                                                                                                |                                           | mg/L                                                                                                       |                                                                                                   | <1.0<br><0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>0.20                                                                                 |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Sulfate                                                                                                                             |                                           | mg/L<br>mg/L                                                                                               |                                                                                                   | <0.20<br><1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20                                                                                        |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Cullato                                                                                                                             |                                           |                                                                                                            |                                                                                                   | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             | 00,20,20                                                                                                                                                | 12.00                                                                                                |                                                                                                                                                      |                                         |   |            |      |
| METHOD BLANK: 20                                                                                                                    | 622225                                    |                                                                                                            |                                                                                                   | Matrix: Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ater                                                                                        |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Associated Lab Sampl                                                                                                                | es: 603314350                             | 01                                                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
|                                                                                                                                     |                                           |                                                                                                            | Blan                                                                                              | k I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reporting                                                                                   |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Paramet                                                                                                                             | er                                        | Units                                                                                                      | Resu                                                                                              | lt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit                                                                                       | Analy                                                                                                                                                   | zed                                                                                                  | Qualifier                                                                                                                                            | s                                       |   |            |      |
| Chloride                                                                                                                            | -                                         | mg/L                                                                                                       |                                                                                                   | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                         | 03/24/20                                                                                                                                                | 08:07                                                                                                |                                                                                                                                                      |                                         |   |            |      |
| Fluoride                                                                                                                            |                                           | mg/L                                                                                                       |                                                                                                   | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                                                                        |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| Sulfate                                                                                                                             |                                           | mg/L                                                                                                       |                                                                                                   | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                         | 0 03/24/20                                                                                                                                              | 08:07                                                                                                |                                                                                                                                                      |                                         |   |            |      |
|                                                                                                                                     |                                           |                                                                                                            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
|                                                                                                                                     |                                           | 0004005                                                                                                    |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                         |                                                                                                      |                                                                                                                                                      |                                         |   |            |      |
| LABORATORY CONT                                                                                                                     | ROL SAMPLE:                               | 2621835                                                                                                    | Spike                                                                                             | LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s                                                                                           | LCS                                                                                                                                                     | % Re                                                                                                 | 90                                                                                                                                                   |                                         |   |            |      |
| LABORATORY CONT                                                                                                                     |                                           | 2621835<br>Units                                                                                           | Spike<br>Conc.                                                                                    | LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | LCS<br>% Rec                                                                                                                                            | % Re<br>Limit                                                                                        |                                                                                                                                                      | Qualifiers                              |   |            |      |
|                                                                                                                                     |                                           | Units                                                                                                      |                                                                                                   | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                                                                                         | Limit                                                                                                |                                                                                                                                                      | Qualifiers                              |   |            |      |
| Paramet                                                                                                                             |                                           |                                                                                                            | Conc.                                                                                             | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ult                                                                                         | % Rec                                                                                                                                                   | Limit                                                                                                | is (                                                                                                                                                 | Qualifiers                              | _ |            |      |
| Paramet                                                                                                                             |                                           | Units<br>mg/L                                                                                              | Conc.                                                                                             | Res<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ult                                                                                         | % Rec<br>96                                                                                                                                             | Limit<br>g<br>g                                                                                      | is<br>90-110                                                                                                                                         | Qualifiers                              | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate                                                                                          | er -                                      | Units<br>mg/L<br>mg/L<br>mg/L                                                                              | Conc.                                                                                             | Res<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ult<br>4.8<br>2.5                                                                           | % Rec<br>96<br>100                                                                                                                                      | Limit<br>g<br>g                                                                                      | is (<br>)0-110<br>)0-110                                                                                                                             | Qualifiers                              | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate                                                                                          | er -                                      | Units<br>mg/L<br>mg/L                                                                                      | Conc.                                                                                             | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8<br>2.5<br>5.1                                                                           | % Rec<br>96<br>100<br>102                                                                                                                               | Limit<br>9<br>9<br>9<br>9                                                                            | is ()<br>00-110<br>00-110<br>00-110                                                                                                                  | Qualifiers                              |   |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate                                                                                          | er<br>                                    | Units<br>mg/L<br>mg/L<br>mg/L                                                                              | Conc.                                                                                             | Res<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ult<br>4.8<br>2.5<br>5.1<br>S                                                               | % Rec<br>96<br>100                                                                                                                                      | Limit<br>g<br>g                                                                                      | ec                                                                                                                                                   | Qualifiers                              | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI<br>Paramet                                                           | er<br>                                    | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226<br>Units                                                          | Conc.                                                                                             | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ult                                                                                         | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec                                                                                                               | Limit                                                                                                | 200-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                            |                                         | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride                                               | er<br>                                    | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226                                                                   | Conc.                                                                                             | Res<br>LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ult<br>4.8<br>2.5<br>5.1<br>S                                                               | % Rec<br>96<br>100<br>102<br>LCS                                                                                                                        | Limit                                                                                                | 200-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                                      |                                         | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI                                                                      | er<br>                                    | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L                                                  | Conc.                                                                                             | Res<br>LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8                                                 | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96                                                                                                         | Limit<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                  | 200-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                  |                                         | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride<br>Sulfate                        | er<br>ROL SAMPLE:<br>er                   | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L                                  | Conc.                                                                                             | Res<br>LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8<br>2.4<br>5.1                                   | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96<br>97<br>101                                                                                            | Limit<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                  | 200-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                  |                                         | _ |            |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride                                   | er<br>ROL SAMPLE:<br>er                   | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L                                  | Conc.                                                                                             | Res<br>LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ult         4.8           2.5         5.1           S         ult           4.8         2.4 | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96<br>97<br>101                                                                                            | Limit<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                  | 200-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                  |                                         | _ |            |      |
| Paramet<br>Chloride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride<br>Sulfate                                    | er<br>ROL SAMPLE:<br>er                   | Units<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                  | Conc.<br>2.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Res<br>LC<br>Res<br>MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8<br>2.4<br>5.1<br>2621837                        | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96<br>97<br>101                                                                                            | Limit<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                         | is     0       io0-110     0 | Qualifiers                              |   | Max        |      |
| Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride<br>Sulfate                        | er<br>ROL SAMPLE:<br>er                   | Units<br>mg/L<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L                                  | Conc.                                                                                             | Res<br>LC<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8<br>2.4<br>5.1                                   | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96<br>97<br>101                                                                                            | Limit<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                  | 200-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110                                                                                  |                                         |   | Max<br>RPD | Qual |
| Paramet<br>Chloride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MAT<br>Parameter | er<br>ROL SAMPLE:<br>er<br>RIX SPIKE DUPI | Units<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                  | Conc.                                                                                             | Accession of the second | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8<br>2.4<br>5.1<br>2621837<br>MS                  | % Rec<br>96<br>100<br>102<br>LCS<br>% Rec<br>96<br>97<br>101<br>MSD                                                                                     | Limit<br>g<br>g<br>g<br>g<br>g<br>k<br>k<br>k<br>s<br>s<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g      | s (00-110)<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>00-110<br>MSD                                                              | Qualifiers<br>% Rec<br>Limits           |   | RPD        | Qual |
| Paramet<br>Chloride<br>Sulfate<br>LABORATORY CONTI<br>Paramet<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MAT              | er<br>ROL SAMPLE:<br>er                   | Units<br>mg/L<br>mg/L<br>2622226<br>Units<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 2621<br>60332331001<br>Result | Conc.                                                                                             | Res<br>LC<br>Res<br>MSD<br>Spike<br>Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ult<br>4.8<br>2.5<br>5.1<br>S<br>ult<br>4.8<br>2.4<br>5.1<br>2621837<br>MS<br>Result        | % Rec         96           100         102           LCS         % Rec           % Rec         96           97         101           MSD         Result | Limit<br>9<br>9<br>9<br>9<br>9<br>9<br>1<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | (5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                    | Qualifiers<br>% Rec<br>Limits<br>80-120 |   | RPD<br>15  | Qual |



Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| MATRIX SPIKE SAMPLE: | 2621838 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60332423003 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride             | mg/L    | 2.7         | 5     | 7.9    | 104   | 80-120 |            |
| Fluoride             | mg/L    | <0.075      | 2.5   | 2.8    | 114   | 80-120 |            |
| Sulfate              | mg/L    | 33.7        | 25    | 58.6   | 100   | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



#### QUALIFIERS

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- H1 Analysis conducted outside the EPA method holding time.
- H5 Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC INACTIVE ASH PONDS CCR

Pace Project No.: 60331435

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60331435001 | MW-37-031020 | EPA 200.7       | 645571   | EPA 200.7         | 645733              |
| 60331435002 | MW-38-031020 | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435003 | MW-K-031120  | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435004 | MW-L-031120  | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435005 | MW-39-031120 | EPA 200.7       | 645571   | EPA 200.7         | 645733              |
| 60331435006 | DUP-031120   | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435007 | MW-40-031120 | EPA 200.7       | 644386   | EPA 200.7         | 644506              |
| 60331435001 | MW-37-031020 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435002 | MW-38-031020 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435003 | MW-K-031120  | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435004 | MW-L-031120  | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435005 | MW-39-031120 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435006 | DUP-031120   | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435007 | MW-40-031120 | EPA 200.8       | 644518   | EPA 200.8         | 644596              |
| 60331435001 | MW-37-031020 | SM 2540C        | 643527   |                   |                     |
| 60331435001 | MW-37-031020 | SM 2540C        | 645498   |                   |                     |
| 60331435002 | MW-38-031020 | SM 2540C        | 643527   |                   |                     |
| 60331435003 | MW-K-031120  | SM 2540C        | 643742   |                   |                     |
| 60331435004 | MW-L-031120  | SM 2540C        | 643742   |                   |                     |
| 60331435005 | MW-39-031120 | SM 2540C        | 643742   |                   |                     |
| 60331435006 | DUP-031120   | SM 2540C        | 643742   |                   |                     |
| 60331435007 | MW-40-031120 | SM 2540C        | 643742   |                   |                     |
| 60331435001 | MW-37-031020 | SM 4500-H+B     | 645273   |                   |                     |
| 60331435002 | MW-38-031020 | SM 4500-H+B     | 644593   |                   |                     |
| 60331435003 | MW-K-031120  | SM 4500-H+B     | 644593   |                   |                     |
| 60331435004 | MW-L-031120  | SM 4500-H+B     | 644593   |                   |                     |
| 60331435005 | MW-39-031120 | SM 4500-H+B     | 644682   |                   |                     |
| 0331435006  | DUP-031120   | SM 4500-H+B     | 644682   |                   |                     |
| 60331435007 | MW-40-031120 | SM 4500-H+B     | 644682   |                   |                     |
| 60331435001 | MW-37-031020 | EPA 300.0       | 643357   |                   |                     |
| 60331435001 | MW-37-031020 | EPA 300.0       | 645341   |                   |                     |
| 60331435002 | MW-38-031020 | EPA 300.0       | 643357   |                   |                     |
| 60331435003 | MW-K-031120  | EPA 300.0       | 643357   |                   |                     |
| 60331435004 | MW-L-031120  | EPA 300.0       | 643357   |                   |                     |
| 60331435005 | MW-39-031120 | EPA 300.0       | 643357   |                   |                     |
| 60331435006 | DUP-031120   | EPA 300.0       | 643357   |                   |                     |
| 60331435007 | MW-40-031120 | EPA 300.0       | 643357   |                   |                     |



Sample Condition Upon Receipt

# WO#:60331435

| Client Name: Evergy Kansas Central                                                                     |                      |                                                                            |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|
|                                                                                                        | EX 🗆 ECI 🗆           | Pace 🗆 🛛 Xroads 🗆 Client 🗹 🛛 Other 🗆                                       |
| Tracking #: Pace                                                                                       | e Shipping Label Use | d?Yes 🗆 No 🗹                                                               |
| Custody Seal on Cooler/Box Present: Yes 🗆 🛛 No 🗹                                                       | Seals intact: Yes    |                                                                            |
| Packing Material: Bubble Wrap  Bubble Bags                                                             | Foam 🗆               | None 🗆 Other 🖻 Epic                                                        |
| Thermometer Used: T-299 Type of                                                                        | Ice: Wet Blue No     |                                                                            |
| Cooler Temperature (°C): As-read 1.6 Corr. Facto                                                       | or +1.0 Correc       | ted 2.4 Date and initials of person examining contents: 3.11.20            |
| Temperature should be above freezing to 6°C                                                            |                      |                                                                            |
| Chain of Custody present:                                                                              | ØYes □No □N/A        |                                                                            |
| Chain of Custody relinquished:                                                                         | ØYes □No □N/A        |                                                                            |
| Samples arrived within holding time:                                                                   | ØYes □No □N/A        |                                                                            |
| Short Hold Time analyses (<72hr):                                                                      | □Yes ØNo □N/A        |                                                                            |
| Rush Turn Around Time requested:                                                                       | □Yes ∎No □N/A        |                                                                            |
| Sufficient volume:                                                                                     | ØYes □No □N/A        |                                                                            |
| Correct containers used:                                                                               | E¶Yes □No □N/A       |                                                                            |
| Pace containers used:                                                                                  | ØYes □No □N/A        |                                                                            |
| Containers intact:                                                                                     | ØYes □No □N/A        |                                                                            |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?                                                 | □Yes □No 2N/A        |                                                                            |
| Filtered volume received for dissolved tests?                                                          | □Yes □No ØN/A        |                                                                            |
| Sample labels match COC: Date / time / ID / analyses                                                   | ØYes □No □N/A        |                                                                            |
| Samples contain multiple phases? Matrix: WT                                                            | □Yes □No □N/A        |                                                                            |
| Containers requiring pH preservation in compliance?                                                    | Yes No N/A           | List sample IDs, volumes, lot #'s of preservative and the date/time added. |
| (HNO3, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)<br>(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) | 3173                 |                                                                            |
| Cyanide water sample checks:                                                                           |                      |                                                                            |
| Lead acetate strip turns dark? (Record only)                                                           | □Yes □No             |                                                                            |
| Potassium iodide test strip turns blue/purple? (Preserve)                                              | Yes No               |                                                                            |
| Trip Blank present:                                                                                    | Yes No N/A           |                                                                            |
| Headspace in VOA vials ( >6mm):                                                                        | □Yes □No ☑N/A        |                                                                            |
| Samples from USDA Regulated Area: State:                                                               | □Yes □No 2N/A        |                                                                            |
| Additional labels attached to 5035A / TX1005 vials in the field?                                       | Yes No IN/A          |                                                                            |
| Client Notification/ Resolution: Copy COC to                                                           | Client? Y / N        | Field Data Required? Y / N                                                 |
| Person Contacted: Date/Ti                                                                              | me:                  |                                                                            |
| Comments/ Resolution                                                                                   |                      |                                                                            |
|                                                                                                        |                      |                                                                            |
|                                                                                                        |                      |                                                                            |

Project Manager Review:

Date:

Pace A ..... Vtical

# CHAIN-OF-CU<sup>C</sup> ODY / Analytical Request Document

The Chain-of-Custody is a L. \_ DOCUMENT. All relevant fields must be completed accurately.

| Require       | d Client Information:                         |       |                                                      | Section<br>Required                   |                                               | ormation:  |            |                |           |                           |                 | tion C            | ;<br>rmatior     |             |                                               |                   |       |                      |                  |                       |         |      |        |            | Pa                         | ige:        |        | of                       |            |        |
|---------------|-----------------------------------------------|-------|------------------------------------------------------|---------------------------------------|-----------------------------------------------|------------|------------|----------------|-----------|---------------------------|-----------------|-------------------|------------------|-------------|-----------------------------------------------|-------------------|-------|----------------------|------------------|-----------------------|---------|------|--------|------------|----------------------------|-------------|--------|--------------------------|------------|--------|
| Compar        | V: EVERGY K                                   | ANS   | AS CENTRAL, INC.                                     |                                       |                                               | a Michels  |            |                |           |                           | Atten           | _                 |                  |             | ts Pay                                        | able              |       |                      |                  |                       |         |      |        | 9          |                            |             |        |                          |            |        |
| Address       | : Lawrence E                                  | nerg  | y Center (LEC)                                       | Copy To:                              | Jared                                         | Morrison,  | Jake Hurr  | phrey, La      | ura Hine  | S                         | Corne           | bany N            | ame:             | EVE         | RGY                                           | KANS              | SAS C | ENTR                 | RAL, I           | INC                   | FGUI    | ATO  | RY AG  | ENCY       |                            |             |        |                          |            |        |
|               | 818 Kansas                                    | Ave   | e, Topeka, KS 66612                                  |                                       | Andrev                                        | v Hare, Ta | bitha Hyli | ton, Sama      | intha Kan | ey                        | Addre           | 3581              | SA               | ME A        | AS A                                          |                   |       |                      | 0                | _                     | NF      |      |        |            | _                          |             |        |                          |            |        |
| Email To      | melissa.mit                                   | heis  | @everay.com                                          | Purchase                              | Order No.:                                    | 10LEC-     | 0000018    | 165            |           |                           | Pace            |                   |                  |             | _                                             |                   |       |                      |                  | _                     | - US    |      |        | RCRA       | JND WATER F DRINKING WATER |             |        | I EH                     |            |        |
| Phone:        | 785-575-8113                                  | F     | ax.                                                  | Project Na                            | ime: LE                                       | C Inactive | Ash Por    | nds CCR        |           |                           |                 | Project           | Jas              | mine        | Ame                                           | rin, 9'           | 13-56 | 3-140                | 3                |                       | Site Lo | _    | -      | HURA       |                            | 1000        | 1      | OTHE                     | .н 🧫       |        |
| Reques        | ted Due Date/TAT:                             | 7     | day                                                  | Project Nu                            | imber:                                        | 1297       | 181        | 28             |           |                           | Manag<br>Pace I | ger:<br>Profile # |                  | 55.2        |                                               | -                 |       |                      |                  | -1                    |         |      |        | KS         |                            |             |        |                          |            | 5158   |
|               |                                               |       |                                                      |                                       |                                               | 13( /      | 1000       | 50             |           | -                         | I               | _                 | _                |             |                                               | -                 |       | Dog                  | ueet             | od Ar                 | _       |      | red (Y | <b>A</b> D | -                          | -           |        |                          | -          |        |
|               | Section D<br>Required Client Inform           | ition | WATER                                                | DW<br>DW<br>WT<br>WW                  | codes to left)<br>C=COMP1                     | COME       | COLL       | ECTED          |           | ION                       |                 |                   | Pre              | serva       | tives                                         |                   | 1 NIA |                      |                  |                       |         |      |        |            |                            |             |        |                          |            |        |
| ITEM #        | SAMPI<br>(A-Z, 0-<br>Sample IDs MUS           | 1)    | PRODUCT<br>SOIL/SOLID<br>OIL<br>WIPE<br>AIR<br>OTHER | P<br>SL<br>OL<br>WP<br>AR<br>OT<br>TS | MATRIX CODE (see valid<br>SAMPLE TYPE (G=GRAB | ST/        |            | COMPC<br>END/G | RAB       | SAMPLE TEMP AT COLLECTION | # OF CONTAINERS | Unpreserved       | HNO <sub>3</sub> | ICI<br>JaOH | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol<br>Other | lysis | 200.7 Total Metals** | 300: CI, F, SO4  | 2540C TDS<br>4500 H+B |         |      |        |            | MW/W Therefore the terms.  | esi         |        |                          | 435        |        |
| 1             | MW-                                           | 37    | -031020                                              |                                       | W+                                            | 03/10      | 1525       | DATE           | TIME      | 0)                        | 3               | X                 | K                | <u>+   </u> | 2                                             | 20                |       | _                    | 1                |                       | _       |      | ++     | ++         | -+°                        |             | Pace F | roject                   | No./ La    | b I.D. |
| 2             | Att                                           |       | MW-38-03                                             | 1020                                  | ĩ                                             | 03/10      |            |                |           |                           | 1               |                   | 2                |             |                                               |                   |       | XX                   | ×                | XX                    |         |      |        | ++         | +                          | +           |        |                          |            |        |
| 3             | MW-                                           | <     | 03/120                                               | 10 11                                 |                                               | 03/11      | 810        |                |           |                           | +               | X                 | x                |             | ++                                            | +                 | -     |                      | X                |                       |         |      | ┼-├-   | +          | +                          |             |        |                          |            |        |
| 4             | MW-6                                          | 1-    | 031120                                               |                                       |                                               | 03/11      | 930        |                |           |                           | T               | X                 | 2                | +           | ++                                            | +                 | - H-  |                      | 2                |                       |         |      |        |            | +                          |             |        |                          |            |        |
| 5             | MW - 3                                        | 9.    | 031120                                               |                                       |                                               | 03/11      | 1045       |                |           |                           | 1               | X                 | K                |             | ++                                            | +                 | F     | X î                  | 17               | 20                    | +       | -    |        | +          | +                          |             |        |                          |            |        |
| 6             | Ant                                           | D     | 10-031120                                            |                                       |                                               | 03/11      | 1055       |                |           |                           | $\top$          | X                 | 12               |             | ++                                            |                   | H     | XX                   | 12               | XX                    | +-+     |      |        | ++         | +                          |             |        | _                        | _          |        |
| 7             | MW-41                                         | 7 -   | 031120                                               |                                       | 4                                             | 03/11      | 1240       | )              |           |                           | $\checkmark$    | X                 | X                |             |                                               |                   |       | X                    |                  | XX                    |         | -    | +      | ++         | +                          |             |        |                          |            |        |
| 8             | 1-                                            |       |                                                      |                                       |                                               |            | - and the  |                |           |                           | -               | -                 | 17               | -           |                                               |                   | F     | 1r                   | 1                | 4                     |         |      |        | ++         | +                          | +           |        |                          |            |        |
| 9             |                                               |       |                                                      |                                       |                                               |            |            |                |           |                           | _               |                   |                  |             |                                               |                   |       |                      |                  | -                     |         |      |        | ++         | +                          | +           |        |                          |            |        |
| 10            |                                               |       |                                                      |                                       |                                               |            |            |                |           |                           |                 |                   |                  |             | $\square$                                     |                   |       |                      |                  |                       |         |      |        |            | ┿                          | +           |        |                          |            |        |
| 11            |                                               |       |                                                      |                                       |                                               |            |            |                |           |                           |                 |                   |                  |             |                                               |                   |       |                      |                  |                       |         |      |        |            | +                          |             |        |                          | -          |        |
| 12            |                                               |       |                                                      |                                       |                                               |            |            |                |           |                           |                 |                   |                  |             |                                               |                   |       |                      |                  |                       |         |      |        |            | +                          | +           |        |                          |            |        |
|               | ADDITION.                                     |       | DMMENTS                                              |                                       | RELINGU                                       | ISHED BY / | AFFILIATIO | NC             | DATE      |                           | TI              | ME                |                  |             | ACCE                                          | PTED              | BY/A  | FFILIA               | TION             |                       | DA      | TE   | TIN    | E          | 2 (-                       | 3.11 S      | AMPLI  | E CONDE                  | TIONS      |        |
|               | al Metals*: B, Ca, Ba,<br>al Metals**: As, Mo |       |                                                      | El                                    | Fre                                           | dr.ick     | 5-101      | 444            | 03/11     |                           | 14              | 5                 | E                | Bc+         | رادر                                          | 4                 | IPa   | u.                   |                  | 74                    | 3/ k (  | 2.0  | 14:0   | ;<br>د     | 7.6                        | r y         |        | 77                       |            | 1      |
| P             |                                               |       |                                                      |                                       |                                               |            |            |                |           |                           |                 |                   |                  |             |                                               |                   |       |                      |                  |                       |         |      |        |            |                            |             |        |                          |            |        |
| age           |                                               |       |                                                      |                                       |                                               | 9          | _          | R NAME AN      | _         | _                         | -               | _                 | _                |             |                                               |                   | _     |                      |                  |                       |         |      |        |            | ů                          | 6 -         | -      | Sealed<br>(Y/N)          | tart       |        |
| Page 34 of 34 |                                               |       |                                                      |                                       |                                               |            |            | PRINT Name     |           |                           | E               | 10                | Tre              | 2.5.        | edr                                           | ick               | 1     | DATES                | Signed<br>D/YY): |                       | 03[     | 'u/' | 20     |            | Temp in                    | Received on | 101    | Custody Se<br>Cooler (Y/ | Samnles In | (N/A)  |



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

April 02, 2020

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: LEC Inactive Ash Ponds CCR Pace Project No.: 60331669

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 12, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jasmine Amerin jasmine.amerin@pacelabs.com (913)599-5665 Project Manager

Enclosures

cc: Andrew Hare, Evergy, Inc.
Laura Hines, Evergy, Inc.
Jake Humphrey, Evergy, Inc.
Tabitha Hylton, KCP&L & Westar, Evergy Companies
Samantha Kaney, Haley & Aldrich
Jared Morrison, Evergy, Inc.
Melanie Satanek, Haley & Aldrich, Inc.
Danielle Zinmaster, Haley & Aldrich





Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

#### CERTIFICATIONS

Project: LEC Inactive Ash Ponds CCR Pace Project No.: 60331669

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



#### SAMPLE SUMMARY

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60331669001 | MW-37-031020 | Water  | 03/10/20 15:25 | 03/12/20 09:10 |
| 60331669002 | MW-38-031020 | Water  | 03/10/20 17:00 | 03/12/20 09:10 |
| 60331669003 | MW-K-031120  | Water  | 03/11/20 08:10 | 03/12/20 09:10 |
| 60331669004 | MW-L-031120  | Water  | 03/11/20 09:30 | 03/12/20 09:10 |
| 60331669005 | MW-39-031120 | Water  | 03/11/20 10:45 | 03/12/20 09:10 |
| 60331669006 | DUP-031120   | Water  | 03/11/20 10:55 | 03/12/20 09:10 |
| 60331669007 | MW-40-031120 | Water  | 03/11/20 12:40 | 03/12/20 09:10 |



# SAMPLE ANALYTE COUNT

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Lab ID      | Sample ID    | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|--------------------------|----------|----------------------|------------|
| 60331669001 | MW-37-031020 | EPA 903.1                |          | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669002 | MW-38-031020 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669003 | MW-K-031120  | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669004 | MW-L-031120  | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669005 | MW-39-031120 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669006 | DUP-031120   | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 60331669007 | MW-40-031120 | EPA 903.1                | MK1      | 1                    | PASI-PA    |
|             |              | EPA 904.0                | VAL      | 1                    | PASI-PA    |
|             |              | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-37-031020</b><br>PWS: | Lab ID: 6033<br>Site ID:    | 1669001 Collected: 03/10/20 15:25<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|-------------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                          | EPA 903.1                   | -0.153 ± 0.265 (0.667)<br>C:NA T:92%              | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                          | EPA 904.0                   | 0.291 ± 0.339 (0.710)<br>C:79% T:81%              | pCi/L     | 04/01/20 11:28 | 8 15262-20-1  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                        | Total Radium<br>Calculation | 0.291 ± 0.430 (0.710)                             | pCi/L     | 04/02/20 14:00 | 0 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-38-031020</b><br>PWS: | Lab ID: 6033<br>Site ID:    | 1669002 Collected: 03/10/20 17:00<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|-------------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                          | EPA 903.1                   | 0.107 ± 0.297 (0.577)<br>C:NA T:93%               | pCi/L     | 04/02/20 11:3  | 5 13982-63-3  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                          | EPA 904.0                   | 0.138 ± 0.324 (0.721)<br>C:78% T:84%              | pCi/L     | 04/01/20 11:28 | 8 15262-20-1  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                        | Total Radium<br>Calculation | 0.245 ± 0.440 (0.721)                             | pCi/L     | 04/02/20 14:0  | 0 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: MW-K-031120<br>PWS: | Lab ID: 6033<br>Site ID:    | 1669003 Collected: 03/11/20 08:10<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|-----------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                  | EPA 903.1                   | 0.0529 ± 0.311 (0.635)<br>C:NA T:94%              | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                             | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                  | EPA 904.0                   | 1.16 ± 0.434 (0.642)<br>C:83% T:90%               | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                             | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                | Total Radium<br>Calculation | 1.21 ± 0.534 (0.642)                              | pCi/L     | 04/02/20 14:00 | ) 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-L-031120</b><br>PWS: | Lab ID: 6033<br>Site ID:    | 1669004 Collected: 03/11/20 09:30<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|------------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                         | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                                    | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                         | EPA 903.1                   | -0.0604 ± 0.275 (0.560)<br>C:NA T:84%             | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                                    | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                         | EPA 904.0                   | 0.939 ± 0.418 (0.679)<br>C:77% T:86%              | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                                    | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                       | Total Radium<br>Calculation | 0.939 ± 0.500 (0.679)                             | pCi/L     | 04/02/20 14:00 | ) 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| <b>Sample: MW-39-031120</b><br>PWS: | Lab ID: 6033<br>Site ID:    | 1669005 Collected: 03/11/20 10:45<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|-------------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                          | EPA 903.1                   | 0.000 ± 0.429 (0.860)<br>C:NA T:89%               | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                          | EPA 904.0                   | 0.484 ± 0.340 (0.648)<br>C:79% T:87%              | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                                     | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                        | Total Radium<br>Calculation | 0.484 ± 0.547 (0.860)                             | pCi/L     | 04/02/20 14:00 | ) 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: DUP-031120<br>PWS: | Lab ID: 6033<br>Site ID:    | 1669006 Collected: 03/11/20 10:55<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|----------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.000 ± 0.313 (0.677)<br>C:NA T:87%               | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.116 ± 0.315 (0.706)<br>C:78% T:83%              | pCi/L     | 04/01/20 11:28 | 3 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.116 ± 0.444 (0.706)                             | pCi/L     | 04/02/20 14:00 | ) 7440-14-4   |      |



Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Sample: MW-40-031120<br>PWS: | Lab ID: 6033<br>Site ID:    | 1669007 Collected: 03/11/20 12:40<br>Sample Type: | Received: | 03/12/20 09:10 | Matrix: Water |      |
|------------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                   | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                   | EPA 903.1                   | 0.348 ± 0.403 (0.651)<br>C:NA T:96%               | pCi/L     | 04/02/20 11:35 | 5 13982-63-3  |      |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                   | EPA 904.0                   | 0.205 ± 0.276 (0.590)<br>C:83% T:90%              | pCi/L     | 04/01/20 11:29 | 9 15262-20-1  |      |
|                              | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium                 | Total Radium<br>Calculation | 0.553 ± 0.488 (0.651)                             | pCi/L     | 04/02/20 14:00 | ) 7440-14-4   |      |



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:          | LEC Inactive Ash Ponds CCR | R                               |                 |                     |            |
|-------------------|----------------------------|---------------------------------|-----------------|---------------------|------------|
| Pace Project No.: | 60331669                   |                                 |                 |                     |            |
| QC Batch:         | 388333                     | Analysis Method:                | EPA 904.0       |                     |            |
| QC Batch Method:  | EPA 904.0                  | Analysis Description:           | 904.0 Radium 2  | 228                 |            |
|                   |                            | Laboratory:                     | Pace Analytical | Services - Greensbu | rg         |
| Associated Lab Sa | mples: 60331669001, 60331  | 669002, 60331669003, 6033166900 | 4, 60331669005, | 60331669006, 60331  | 669007     |
| METHOD BLANK:     | 1881033                    | Matrix: Water                   |                 |                     |            |
| Associated Lab Sa | mples: 60331669001, 60331  | 669002, 60331669003, 6033166900 | 4, 60331669005, | 60331669006, 60331  | 669007     |
| Para              | meter                      | Act ± Unc (MDC) Carr Trac       | Units           | Analyzed            | Qualifiers |
| Radium-228        | $0.470 \pm 0.3$            | 349 (0.684) C:82% T:90%         | pCi/L           | 04/01/20 11:27      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:          | LEC Inactive Ash Pond | ds CCR                             |                     |                     |            |
|-------------------|-----------------------|------------------------------------|---------------------|---------------------|------------|
| Pace Project No.: | 60331669              |                                    |                     |                     |            |
| QC Batch:         | 388332                | Analysis Method:                   | EPA 903.1           |                     |            |
| QC Batch Method:  | EPA 903.1             | Analysis Description:              | 903.1 Radium-2      | 26                  |            |
|                   |                       | Laboratory:                        | Pace Analytical     | Services - Greensbu | irg        |
| Associated Lab Sa | mples: 60331669001,   | 60331669002, 60331669003, 60331669 | 004, 60331669005, 6 | 60331669006, 60331  | 669007     |
| METHOD BLANK:     | 1881032               | Matrix: Water                      |                     |                     |            |
| Associated Lab Sa | mples: 60331669001,   | 60331669002, 60331669003, 60331669 | 004, 60331669005, 6 | 60331669006, 60331  | 669007     |
| Para              | meter                 | Act ± Unc (MDC) Carr Trac          | Units               | Analyzed            | Qualifiers |
| Radium-226        | -0.2                  | 25 ± 0.234 (0.595) C:NA T:90%      | pCi/L               | 04/02/20 11:22      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC Inactive Ash Ponds CCR

Pace Project No.: 60331669

| Lab ID      | Sample ID    | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|--------------------------|----------|-------------------|---------------------|
| 60331669001 | MW-37-031020 | EPA 903.1                | 388332   |                   |                     |
| 60331669002 | MW-38-031020 | EPA 903.1                | 388332   |                   |                     |
| 60331669003 | MW-K-031120  | EPA 903.1                | 388332   |                   |                     |
| 60331669004 | MW-L-031120  | EPA 903.1                | 388332   |                   |                     |
| 60331669005 | MW-39-031120 | EPA 903.1                | 388332   |                   |                     |
| 60331669006 | DUP-031120   | EPA 903.1                | 388332   |                   |                     |
| 60331669007 | MW-40-031120 | EPA 903.1                | 388332   |                   |                     |
| 60331669001 | MW-37-031020 | EPA 904.0                | 388333   |                   |                     |
| 60331669002 | MW-38-031020 | EPA 904.0                | 388333   |                   |                     |
| 60331669003 | MW-K-031120  | EPA 904.0                | 388333   |                   |                     |
| 60331669004 | MW-L-031120  | EPA 904.0                | 388333   |                   |                     |
| 60331669005 | MW-39-031120 | EPA 904.0                | 388333   |                   |                     |
| 60331669006 | DUP-031120   | EPA 904.0                | 388333   |                   |                     |
| 60331669007 | MW-40-031120 | EPA 904.0                | 388333   |                   |                     |
| 60331669001 | MW-37-031020 | Total Radium Calculation | 390899   |                   |                     |
| 60331669002 | MW-38-031020 | Total Radium Calculation | 390899   |                   |                     |
| 60331669003 | MW-K-031120  | Total Radium Calculation | 390899   |                   |                     |
| 60331669004 | MW-L-031120  | Total Radium Calculation | 390899   |                   |                     |
| 60331669005 | MW-39-031120 | Total Radium Calculation | 390899   |                   |                     |
| 60331669006 | DUP-031120   | Total Radium Calculation | 390899   |                   |                     |
| 60331669007 | MW-40-031120 | Total Radium Calculation | 390899   |                   |                     |

Pace A \_\_\_ytical\* www.pacelabs.com

# CHAIN-OF-CUC DDY / Analytical Request Document

The Chain-of-Custody is a Louis DOCUMENT. All relevant fields must be completed accurately.

| Marchael Contraction of the second seco | Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | Section C                                    |                                                             |                                         |                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Required Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | Invoice Information:                         |                                                             |                                         | Page: of                                                                                            |
| ETERATISTICAE DENTINAL, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Report To: Melissa Michels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                               | Attention: Accounts Payable                  |                                                             |                                         |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Copy To: Jared Morrison,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jake Humphrey, Laura Hines                      | Company Name: EVERGY KAN                     | SAS CENTRAL, INC                                            |                                         | ~                                                                                                   |
| 818 Kansas Ave, Topeka, KS 66612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Andrew Hare, Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bitha Hylton, Samantha Kaney                    | Address: SAME AS A                           |                                                             |                                         |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Purchase Order No.: 10LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0000018165                                     | Pace Quote                                   |                                                             | A DLO I GHOU                            |                                                                                                     |
| Phone: 785-575-8113   Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project Name: LEC Inactiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Ash Ponds CCR                                 | Reference:<br>Pace Project Jasmine Amerin, 9 | 10 500 4 400                                                |                                         | A OTHER                                                                                             |
| Requested Due Date/TAT: 15 day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Number: 100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78-038                                          | Manager:<br>Pace Profile #: 9655, 1          | 10 000 1400                                                 | Site Location KS                        | s since and so show the                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-038                                          |                                              |                                                             | STATE:                                  |                                                                                                     |
| DRINKING WATER<br>WATER<br>WASTE WATER<br>PRODUCT<br>PRODUCT<br>SOL/SOLID<br>SAMPLEID<br>WIPE<br>WIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CODE         ei         or           www.state         or         or           WW         or         or           WH         or <td< td=""><td>COLLECTED<br/>POSITE COMPOSITE<br/>END/GRAB</td><td>Preservatives</td><td>nun (</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                           | COLLECTED<br>POSITE COMPOSITE<br>END/GRAB       | Preservatives                                | nun (                                                       |                                         |                                                                                                     |
| AIR A<br>(A-Z, 0-9 / ,-) OTHER C<br>Sample IDs MUST BE UNIQUE TISSUE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MATRIX CODE<br>s and<br>s and |                                                 | NTAINEI<br>sived                             | L Analysis Test<br>Radium-226<br>Radium-228<br>Total Radium |                                         | Hesidual Chorine (Y/N)                                                                              |
| 1 MW-37-031020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UT 03/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1525                                            | A X 1                                        |                                                             |                                         | Lab 1.0,                                                                                            |
| 2 MW-38-031020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V 03/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1700                                            |                                              |                                                             | ╉╌╂╌╋╴╏╌╋╸┨╌╌┩                          |                                                                                                     |
| 3 MW-K-031120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 810                                             |                                              |                                                             |                                         | 03                                                                                                  |
| MW-L-031120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 03/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 930                                             |                                              |                                                             | ┽┼┼┽┥┥                                  | 43                                                                                                  |
| 5 MW-39-031120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1045                                            |                                              | KXX                                                         |                                         |                                                                                                     |
| 6 Pup-031120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1055                                            |                                              |                                                             |                                         | 05                                                                                                  |
| 6 Dup-031120<br>7 MW-40-031120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V 03/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1240                                            |                                              | ┨ <u>┣┉╤┝┵╰┥┈╲┥╼╸┥</u> ──                                   | ┼╾┼╌┽╌┥╶┥                               | 66                                                                                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                              | XXX                                                         | + + + + + + + + + + + + + + + + + + + + |                                                                                                     |
| 9 9 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | ┨┈┼╾┼╌┼╌┟╌┟╌┟╌╢╌                             |                                                             | ┽┥┥┥                                    |                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                              |                                                             |                                         |                                                                                                     |
| ini .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                              |                                                             | ┽╾┟╌┼╌┼╶┼╶┤                             |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                              |                                                             |                                         |                                                                                                     |
| ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RELINQUISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFFILIATION DATE                                | TIME                                         | BY / AFFILIATION                                            | DATE                                    |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EFORDAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ses \$124 \$11/20                               | 1000110                                      | n Pranz                                                     |                                         | SAMPLE CONDITIONS                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pilleanch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 WONF PI 1/20                                | noo VIVBUIM                                  | fuces                                                       | 113/2020 9:10                           |                                                                                                     |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLER NAME AND SIGNATUR                       | <b> </b>                                     |                                                             |                                         | on or on tated                                                                                      |
| e 16 of 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRINT Name of SAMPLER:<br>SIGNATURE of SAMPLER: |                                              | DATE Signed<br>(MM/DD/YY): C                                | 13/11/20                                | Temp in °C<br>Received on<br>Ica (Y/N)<br>Custody Seated<br>Cooler (Y/N)<br>Samples Intact<br>(Y/N) |

| Pittsburgh Lab Sample Condit                                           | tion L    | Jpon       | Red      | ceipt                                               |
|------------------------------------------------------------------------|-----------|------------|----------|-----------------------------------------------------|
| Pace Analytical Client Name:                                           | Ē         | <u>V</u> E | RG       | <u> </u>                                            |
|                                                                        | : p       | ommer      | cial     | Deace Other Label                                   |
| Tracking #: 15/15 87/08, 584                                           | 5         |            |          | LIMS Login                                          |
| Custody Seal on Cooler/Box Present: Vyes                               | _ no      | o          | Seals    | intact: ves no                                      |
| Thermometer Used                                                       | Туре      | of Ice:    | Wet      | Blue None                                           |
| Cooler Temperature Observed Temp                                       | <b></b>   | °C         | Corre    | ection Factor: °C Final Temp: °C                    |
| Temp should be above freezing to 6°C                                   |           | •          |          |                                                     |
|                                                                        |           |            |          | pH paper Lot# Date and Initials of person examining |
| Comments:                                                              | Yes       | No         | N/A      | 1002141 100 0101000                                 |
| Chain of Custody Present:                                              |           |            |          | 1.                                                  |
| Chain of Custody Filled Out:                                           |           |            |          | 2.                                                  |
| Chain of Custody Relinquished:                                         |           |            |          | 3.                                                  |
| Sampler Name & Signature on COC:                                       | $\square$ | ļ          |          | 4.                                                  |
| Sample Labels match COC:                                               | 1/1       |            |          | 5.                                                  |
| -Includes date/time/ID Matrix:                                         | <u></u>   | <u>/I</u>  | <b>_</b> |                                                     |
| Samples Arrived within Hold Time:                                      | $\square$ |            |          | 6.                                                  |
| Short Hold Time Analysis (<72hr remaining):                            |           | 4          |          | 7                                                   |
| Rush Turn Around Time Requested:                                       |           |            |          | 8.                                                  |
| Sufficient Volume:                                                     |           | ļ          |          | 9.                                                  |
| Correct Containers Used:                                               | $\angle$  |            |          | 10.                                                 |
| -Pace Containers Used:                                                 |           |            |          |                                                     |
| Containers Intact:                                                     |           |            |          | 11.                                                 |
| Orthophosphate field filtered                                          |           |            |          | 12.                                                 |
| Hex Cr Aqueous sample field filtered                                   |           |            |          | 13.                                                 |
| Organic Samples checked for dechlorination:                            |           |            | /        | 14.                                                 |
| Filtered volume received for Dissolved tests                           |           |            | /        | 15.                                                 |
| exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix     | Radon,    |            |          | 16. PMK2                                            |
| All containers meet method preservation                                |           |            |          | Initial when A A Date/time of                       |
| requirements.                                                          | Ĺ         |            |          | completed Up preservation                           |
|                                                                        | 1         |            |          | preservative                                        |
| Headspace in VOA Vials ( >6mm):                                        |           |            |          | 17.<br>18.                                          |
| Trip Blank Present:                                                    |           | ř          |          | 10.                                                 |
| Trip Blank Custody Seals Present<br>Rad Samples Screened < 0.5 mrem/hr |           |            |          | Initial when MM Date: 3/13/3/3/                     |
| Client Notification/ Resolution:                                       |           |            |          |                                                     |
| Person Contacted:                                                      |           |            | -Date/-  | Fime:Contacted By:                                  |
| Comments/ Resolution:)                                                 |           |            |          |                                                     |
| Waiting                                                                | £01C      | Ú          | N        | Thow                                                |
| A check in this box indicates that add                                 | itional   | infor      | natio    | has been stored in erenorts.                        |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

\*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-9 5April2019)

# **Quality Control Sample Performance Assessment**

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|                                              |                |                 | Analyst Must Manually Enter All Fields Highlighted i              | n Yellow.     |          |
|----------------------------------------------|----------------|-----------------|-------------------------------------------------------------------|---------------|----------|
| www.pacolats.com Test:                       | Ra-226         |                 |                                                                   |               |          |
| Analyst:                                     |                |                 | Sample Matrix Spike Control Assessment                            | MS/MSD 1      | MS/MSD 2 |
| Date:                                        | 3/18/2020      |                 | Sample Collection Date:                                           | 3/10/2020     |          |
| Batch ID:                                    |                |                 | Sample I.D.                                                       | 30354610001   |          |
| Matrix:                                      | DW             |                 | Sample MS I.D.                                                    | 30354610001MS |          |
|                                              |                | -               | Sample MSD I.D.                                                   |               |          |
| Method Blank Assessment                      |                |                 | Spike I.D.:                                                       | 18-039        |          |
| MB Sample ID                                 |                |                 | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 31.432        |          |
| MB concentration:                            |                |                 | Spike Volume Used in MS (mL):                                     | 0.20          |          |
| M/B Counting Uncertainty:                    |                |                 | Spike Volume Used in MSD (mL):                                    |               |          |
| MB MDC:                                      |                |                 | MS Aliquot (L, g, F):                                             | 0.639         |          |
| MB Numerical Performance Indicator:          |                |                 | MS Target Conc.(pCi/L, g, F):                                     | 9.838         |          |
| MB Status vs Numerical Indicator:            |                |                 | MSD Aliquot (L, g, F):                                            |               |          |
| MB Status vs. MDC:                           | Pass           |                 | MSD Target Conc. (pCi/L, g, F):                                   |               |          |
|                                              |                |                 | MS Spike Uncertainty (calculated):                                | 0.462         |          |
| aboratory Control Sample Assessment          | LCSD (Y or N)? | N               | MSD Spike Uncertainty (calculated):                               |               |          |
|                                              | LC\$52931      | LCSD52931       | Sample Result:                                                    | 0.197         |          |
| Count Date:                                  |                |                 | Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.256         |          |
| Spike I.D.:                                  | 18-039         |                 | Sample Matrix Spike Result:                                       | 9,814         |          |
| Spike Concentration (pCi/mL):                | 31.432         |                 | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 1,216         |          |
| Volume Used (mL):                            |                |                 | Sample Matrix Spike Duplicate Result:                             |               |          |
| Aliquot Volume (L, g, F):                    |                |                 | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): |               |          |
| Target Conc. (pCi/L, g, F):                  |                |                 | MS Numerical Performance Indicator:                               | -0.327        |          |
| Uncertainty (Calculated):                    |                |                 | MSD Numerical Performance Indicator:                              |               |          |
| Result (pCi/L, g, F):                        |                |                 | MS Percent Recovery:                                              | 97.75%        |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): |                |                 | MSD Percent Recovery:                                             |               |          |
| Numerical Performance Indicator:             |                |                 | MS Status vs Numerical Indicator:                                 | N/A           |          |
| Percent Recovery:                            |                |                 | MSD Status vs Numerical Indicator:                                |               |          |
| Status vs Numerical Indicator:               |                |                 | MS Status vs Recovery:                                            | Pass          |          |
| Status vs Recovery:                          |                |                 | MSD Status vs Recovery:                                           |               |          |
| Upper % Recovery Limits:                     | 135%           |                 | MS/MSD Upper % Recovery Limits:                                   | 136%          |          |
| Lower % Recovery Limits:                     | 73%            |                 | MS/MSD Lower % Recovery Limits:                                   | 71%           |          |
| uplicate Sample Assessment                   | 1              | 1               | Matrix Spike/Matrix Spike Duplicate Sample Assessment             |               |          |
|                                              |                |                 | matik opikermatik opike Dupitcate Sample Assessment               |               |          |
| Sample I.D.:                                 | 30354609001    | Enter Duplicate | Sample I.D.                                                       |               |          |
|                                              |                |                 |                                                                   |               |          |

| Duplicate Sample Assessment                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                            | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample I.D.:<br>Duplicate Sample I.D.<br>Sample Result (pCi/L, g, F):<br>Sample Result Counting Uncertainty (pCi/L, g, F):<br>Sample Duplicate Result (pCi/L, g, F):<br>Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):<br>Are sample and/or duplicate results below RL?<br>Duplicate Numerical Performance Indicator:<br>Duplicate RPD: | 30354609001DUP<br>0.397<br>0.390<br>0.054<br>0.282<br>See Below ##<br>1.398<br>151.81% | Enter Duplicate<br>sample IDs if<br>other than<br>LCS/LCSD in<br>the space below.<br><u>303546090011</u><br>30354609001DUP | Sample I.D.<br>Sample MS I.D.<br>Sample MS D.D.<br>Sample Matrix Spike Result:<br>Matrix Spike Result Counting Uncertainty (pCi/L, g, F):<br>Sample Matrix Spike Duplicate Result:<br>Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):<br>Duplicate Numerical Performance Indicator:<br>(Based on the Percent Recoveries) MS/ MSD Duplicate RPD: |  |
| Duplicate Status vs Numerical Indicator:<br>Duplicate Status vs RPD:                                                                                                                                                                                                                                                                                 | Faire                                                                                  |                                                                                                                            | MS/ MSD Duplicate Status vs Numerical Indicator:<br>MS/ MSD Duplicate Status vs RPD:                                                                                                                                                                                                                                                                              |  |
| % RPD Limit:                                                                                                                                                                                                                                                                                                                                         | 32%                                                                                    | 1                                                                                                                          | % RPD Limit:                                                                                                                                                                                                                                                                                                                                                      |  |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

🏻 🖉 Pace Analytical

Comments: re-propped due to unacceptable precision Ra-226 NELAC QC Printed: 4/2/2020 12:34 PM 1 of 1 5

Ra-226\_52931\_DW\_W.xis Ra-226 (R085-8 01Apr2019).xis

# **Quality Control Sample Performance Assessment**

#### Analyst Must Manually Enter All Fields Highlighted in Yellow.

| /                                                                    |                    |                                       | Analyst must manually Enter An Fleius ritginighted in                                             | <u>renow.</u>  |            |
|----------------------------------------------------------------------|--------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|----------------|------------|
| www.pacelabs.com Test:                                               | Ra-228             |                                       |                                                                                                   |                |            |
| Analyst:                                                             | VAL                |                                       | Sample Matrix Spike Control Assessment                                                            | MS/MSD 1       | M\$/M\$D 2 |
| Date:                                                                | 3/23/2020          |                                       | Sample Collection Date:                                                                           | 3/10/2020      |            |
| Worklist                                                             | 52932              |                                       |                                                                                                   | 30354610003    |            |
| Matrix:                                                              | 52932<br>WT        |                                       | Sample I.D.<br>Sample MS I.D.                                                                     |                |            |
| Maura.                                                               | **1                |                                       | Sample MS I.D.                                                                                    | 00004010000000 |            |
| Method Blank Assessment                                              |                    | 1                                     | Sample Wi3D I.D.<br>Spike I.D.:                                                                   | 19-057         |            |
| Metriod Blank Assessment<br>MB Sample ID                             | 1881033            |                                       | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                              | 34,895         |            |
| · · · · · · · · · · · · · · · · · · ·                                |                    |                                       | Spike Volume Used in MS (mL):                                                                     | 0.20           |            |
| MB concentration:<br>M/B 2 Sigma CSU:                                | 0.470<br>0.349     |                                       | Spike Volume Used in MS (mL):                                                                     | 0,20           |            |
| M/B Z Signa CSU.<br>MB MDC:                                          | 0.684              |                                       | MS Aliquot (L, g, F):                                                                             | 0.809          |            |
| MB Numerical Performance Indicator:                                  | 2.64               |                                       | MS Target Conc.(pCi/L, g, F):                                                                     |                |            |
|                                                                      |                    |                                       | MSTalgerCond.(pc//2, g, F).<br>MSD Aliquot (L, g, F):                                             |                |            |
| MB Status vs Numerical Indicator:<br>MB Status vs. MDC:              | Warning<br>Pass    |                                       | MSD Ailquot (L, g, F).<br>MSD Target Conc. (pCi/L, g, F):                                         |                |            |
| MIB Status VS. MIDC.                                                 | FdSS               | 1                                     | MSD Target Conc. (pCirc, g, r).<br>MS Spike Uncertainty (calculated):                             |                |            |
| Laboratory Control Samula Assessment                                 | LCCD (V or NP2     | V I                                   | MS Spike Uncertainty (calculated):<br>MSD Spike Uncertainty (calculated):                         | 0.021          |            |
| Laboratory Control Sample Assessment                                 | LCSD (Y or N)?     | LCSD52932                             |                                                                                                   | 0.695          |            |
| Court Date                                                           | LCS52932           | 4/1/2020                              | Sample Result 2 Signa CSU (oCid. or E):                                                           |                |            |
| Count Date:<br>Spike I.D.:                                           | 4/1/2020<br>19-057 | 4/1/2020                              | Sample Result 2 Sigma CSU (pCi/L, g, F):<br>Sample Matrix Spike Result:                           | 8.032          |            |
| Decay Corrected Spike Concentration (pCi/mL);                        | 34,642             | 34.642                                | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                                                    |                |            |
|                                                                      |                    |                                       |                                                                                                   |                |            |
| Volume Üsed (mL):                                                    | 0.10               | 0.10                                  | Sample Matrix Spike Duplicate Result:<br>Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |                |            |
| Aliquot Volume (L, g, F):                                            | 0.804<br>4.306     | 0.805<br>4.304                        | Mainx Spike Dupicate Result 2 Signa CSO (pCi/L, g, F):<br>MS Numerical Performance Indicator:     | -1.418         |            |
| Target Conc. (pCi/L, g, F):                                          |                    | 0.310                                 | MS Numerical Performance Indicator.                                                               | -1.410         |            |
| Uncertainty (Calculated):                                            | 0.310              |                                       | MSD Numerical Performance indicator.<br>MS Percent Recovery:                                      | 85.09%         |            |
| Result (pCi/L, g, F):<br>LCS/LCSD 2 Sigma CSU (pCi/L, g, F):         | 3.600<br>0.833     | 3.296<br>0.797                        | MS Percent Recovery.<br>MSD Percent Recovery:                                                     | 65.09%         |            |
|                                                                      | -1,56              | -2.31                                 | MSD Percent Recovery.<br>MS Status vs Numerical Indicator:                                        | Pass           |            |
| Numerical Performance Indicator:<br>Percent Recovery:                | 83.59%             | 76.58%                                | MSD Status vs Numerical Indicator:                                                                | Газа           |            |
| Status vs Numerical Indicator                                        | 63.59%<br>N/A      | N/A                                   | MSD Status vs Nutriencal Indicator.<br>MS Status vs Recovery:                                     | Pass           |            |
| Status vs Numerical Indicator.<br>Status vs Recovery:                | Pass               | Pass                                  | MSD Status vs Recovery:<br>MSD Status vs Recovery:                                                | 1.032          |            |
| Upper % Recovery Limits:                                             | 135%               | 135%                                  | MS/MSD Upper % Recovery Limits:                                                                   | 135%           |            |
| Lower % Recovery Limits:                                             | 60%                | 60%                                   | MS/MSD Copper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits:                               | 60%            |            |
| Lower % Recovery Limits.                                             | 0078               | 0078                                  | MOMOD EOWER /2 RECOVERY Lands.                                                                    | 0070           |            |
| Duplicate Sample Assessment                                          |                    |                                       | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                             |                |            |
| Dupicate Sample Assessment                                           |                    |                                       | wattk opike/wattk opike bupicate oampie Rosessnien                                                |                |            |
| Sample I.D.:                                                         | LCS52932           | Enter Duplicate                       | Sample I.D.                                                                                       |                |            |
| Duplicate Sample I.D.                                                | LCSD52932          | sample IDs if                         | Sample MS I.D.                                                                                    |                |            |
| Sample Result (pCi/L, g, F):                                         | 3,600              | other than                            | Sample MSD I.D.                                                                                   |                |            |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                             | 0.833              | LCS/LCSD in                           | Sample Matrix Spike Result:                                                                       |                |            |
| Sample Duplicate Result (pCi/L, g, F):                               | 3.296              | the space below.                      | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                                                    |                |            |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):                   | 0.797              |                                       | Sample Matrix Spike Duplicate Result:                                                             |                |            |
| Are sample and/or duplicate results below RL?                        | NO                 |                                       | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):                                          |                |            |
| Duplicate Numerical Performance Indicator:                           | 0.517              |                                       | Duplicate Numerical Performance Indicator:                                                        |                |            |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:            | 8.76%              |                                       | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:                                          |                |            |
| Duplicate Status vs Numerical Indicator:                             | Pass               | · · · · · · · · · · · · · · · · · · · | MS/ MSD Duplicate Status vs Numerical Indicator:                                                  |                |            |
| Duplicate Status vs Numerical indicator:<br>Duplicate Status vs RPD: | Pass               |                                       | MS/ MSD Duplicate Status vs RPD:                                                                  |                |            |
| % RPD Limit:                                                         | 36%                |                                       | % RPD Limit:                                                                                      |                |            |
| % RPD Limit:                                                         | 36%                |                                       | % RPD Limit:                                                                                      |                |            |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228 NELAC DW2

Ra-228\_52932\_DW\_W Ra-228 (R086-8 04Sep2019).xis

Page 19 of 19

Pace Analytical"

**ATTACHMENT 2 Statistical Analysis**  ATTACHMENT 2-1 March 2019 Statistical Analysis



HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

# TECHNICAL MEMORANDUM

November 2, 2022 File No. 129778-049

| TO:      | Evergy Kansas Central, Inc.<br>Jared Morrison – Director, Water and Waste Programs                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM:    | Haley & Aldrich, Inc.<br>Steven F. Putrich, P.E., Principal Consultant – Engineering Principal<br>Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist                                    |
| SUBJECT: | March 2019 Background Groundwater Monitoring Data<br>Statistical Evaluation<br><b>Completed on July 15, 2019</b><br>Lawrence Energy Center<br>Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive) |

Pursuant to Title 40 Code of Federal Regulations (40 CFR) § 257.90 (Rule), this memorandum summarizes the statistical evaluation of analytical results for the background monitoring groundwater sampling events for the Lawrence Energy Center (LEC) Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive; collectively, inactive Ash Ponds). These background monitoring groundwater sampling events were completed from March 2018 through March 2019, with laboratory results received and accepted on April 16, 2019.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

# **Statistical Evaluation of Appendix III Constituents**

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at the coal combustion residuals (CCR) unit (40 CFR § 257.93(f) (1-4)). One statistical method used for these evaluations, the prediction limits (PL) method, was certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. November 2, 2022 Page 2

# **STATISTICAL ANALYSIS**

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-37). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

# **BACKGROUND DISTRIBUTIONS**

The groundwater analytical results for each sampling event from the background sample location (MW-37) were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled data set was evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2019**.

# **RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS**

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the **March 2019** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in March 2019**, **SSIs above the background PL are presented in Table I**.

Tables:

Table I – Summary of Background Groundwater Monitoring Statistical Evaluation



**TABLES** 

# TABLE I SUMMARY OF BACKGROUND GROUNDWATER MONITORING STATISTICAL EVALUATION BACKGROUND SAMPLING EVENTS (MARCH 2018 - MARCH 2019) LAWRENCE ENERGY CENTER INACTIVE ASH PONDS

|                             |                           |                        |                        |                   |                |                       |                            |                         |                    |            |                   |                                       | Interwell                                          | Comparison |
|-----------------------------|---------------------------|------------------------|------------------------|-------------------|----------------|-----------------------|----------------------------|-------------------------|--------------------|------------|-------------------|---------------------------------------|----------------------------------------------------|------------|
| Location Id                 | Frequency of<br>Detection | Percent<br>Non-Detects | Range of<br>Non-Detect | Maximum<br>Detect | Variance       | Standard<br>Deviation | Coefficient of<br>Variance | Outlier<br>Presence     | Outlier<br>Removed | Trend      | Distribution Well | March 2019<br>Concentration<br>(mg/L) | Background<br>Limits <sup>1</sup><br>(UPL)<br>mg/L | SSI        |
|                             |                           |                        |                        |                   |                | •                     | CCR Appendix               | k-III: Boron, To        | tal (mg/L)         |            |                   |                                       |                                                    |            |
| 1W-37 (upgradient)          | 8/8                       | 0%                     | -                      | 2.2               | 0.01268        | 0.1126                | 0.0533                     | No                      | No                 | Stable     |                   |                                       | 2.8                                                |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 6.2               | 0.18           | 0.4243                | 0.07576                    | No                      | No                 | Decreasing | Normal            | 5.2                                   |                                                    | Y          |
| MW-39                       | 8/8                       | 0%                     | -                      | 5.5               | 0.2171         | 0.466                 | 0.09137                    | No                      | No                 | Stable     | Normal            | 4.6                                   |                                                    | Y          |
| MW-40                       | 8/8                       | 0%                     | -                      | 7.4               | 3.073          | 1.753                 | 0.2822                     | Yes                     | No                 | Decreasing | Non-parametric    | 5.8                                   |                                                    | Ν          |
| MW-K                        | 8/8                       | 0%                     | -                      | 3.6               | 0.2507         | 0.5007                | 0.1837                     | No                      | No                 | Decreasing | Normal            | 2.4                                   |                                                    | Ν          |
| MW-L                        | 8/8                       | 0%                     | -                      | 2.6               | 0.1079         | 0.3284                | 0.1622                     | No                      | No                 | Stable     | Normal            | 2.1                                   |                                                    | N          |
|                             |                           |                        |                        | -                 |                |                       | CCR Appendix               | -III: Calcium, To       | otal (mg/L)        |            |                   |                                       |                                                    |            |
| IW-37 (upgradient)          | 8/8                       | 0%                     | -                      | 143               | 8.857          | 2.976                 | 0.02157                    | No                      | No                 | Stable     |                   |                                       | 155                                                |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 322               | 66.57          | 8.159                 | 0.02615                    | No                      | No                 | Stable     | Normal            | 302                                   |                                                    | Y          |
| MW-39                       | 8/8                       | 0%                     | -                      | 511               | 160.3          | 12.66                 | 0.02573                    | No                      | No                 | Stable     | Normal            | 490                                   |                                                    | Y          |
| MW-40                       | 8/8                       | 0%                     | -                      | 536               | 257.1          | 16.04                 | 0.03111                    | No                      | No                 | Stable     | Normal            | 468                                   |                                                    | Y          |
| MW-K                        | 8/8                       | 0%                     | -                      | 554               | 855.4          | 29.25                 | 0.05654                    | No                      | No                 | Stable     | Normal            | 538                                   |                                                    | Y          |
| MW-L                        | 8/8                       | 0%                     | -                      | 668               | 3857           | 62.1                  | 0.1061                     | No                      | No                 | Stable     | Normal            | 612                                   |                                                    | Y          |
|                             |                           |                        |                        |                   |                |                       | CCR Appendix-              | III: Chloride, To       | otal (mg/L)        |            |                   |                                       |                                                    |            |
| IW-37 (upgradient)          | 8/8                       | 0%                     | -                      | 33.5              | 3.423          | 1.85                  | 0.06208                    | No                      | No                 | Stable     |                   |                                       | 40                                                 |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 254               | 496.8          | 22.29                 | 0.1005                     | No                      | No                 | Stable     | Normal            | 199                                   |                                                    | Y          |
| MW-39                       | 8/8                       | 0%                     | -                      | 535               | 3880           | 62.29                 | 0.1478                     | No                      | No                 | Stable     | Normal            | 399                                   |                                                    | Y          |
| MW-40                       | 8/8                       | 0%                     | -                      | 429               | 2077           | 45.57                 | 0.1247                     | No                      | No                 | Stable     | Normal            | 329                                   |                                                    | Y          |
| MW-K                        | 8/8                       | 0%                     | -                      | 825               | 11850          | 108.8                 | 0.1741                     | No                      | No                 | Stable     | Normal            | 825                                   |                                                    | Y          |
| MW-L                        | 8/8                       | 0%                     | -                      | 946               | 24340          | 156                   | 0.2055                     | No                      | No                 | Stable     | Normal            | 946                                   |                                                    | Ŷ          |
|                             | -,-                       |                        |                        |                   |                |                       | CCR Appendix-              |                         |                    |            |                   |                                       |                                                    |            |
| 1W-37 (upgradient)          | 8/8                       | 0%                     | -                      | 0.44              | 0.002457       | 0.04957               | 0.1358                     | No                      | No                 | Stable     |                   |                                       | 0.6                                                |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 5.5               | 0.08125        | 0.285                 | 0.05687                    | No                      | No                 | Stable     | Normal            | 4.7                                   |                                                    | Y          |
| MW-39                       | 8/8                       | 0%                     | -                      | 3.5               | 0.2364         | 0.4862                | 0.1662                     | Yes                     | No                 | Stable     | Normal            | 1.9                                   |                                                    | Ŷ          |
| MW-40                       | 8/8                       | 0%                     | -                      | 2.1               | 0.08839        | 0.2973                | 0.1711                     | Yes                     | No                 | Stable     | Normal            | 1.2                                   |                                                    | Y          |
| MW-K                        | 8/8                       | 0%                     | -                      | 3.5               | 0.8776         | 0.9368                | 0.3307                     | No                      | No                 | Stable     | Non-parametric    | 2.2                                   |                                                    | Y          |
| MW-L                        | 8/8                       | 0%                     | -                      | 2.2               | 0.1441         | 0.3796                | 0.2011                     | Yes                     | No                 | Stable     | Non-parametric    | 1.0                                   |                                                    | Y          |
|                             | 6, 6                      | 0/0                    |                        |                   | 0.1441         | 0.3750                |                            | x-III: pH (lab), 1      | -                  | Stubic     | Hon parametric    | 1.0                                   |                                                    |            |
| IW-37 (upgradient)          | 8/8                       | 0%                     | -                      | 7.7               | 0.03071        | 0.1753                | 0.02393                    | Yes                     | No                 | Stable     |                   |                                       | 8.5                                                |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 7.7               | 0.005536       | 0.0744                | 0.009838                   | No                      | No                 | Stable     | Normal            | 7.5                                   | 0.5                                                | N          |
| MW-39                       | 8/8                       | 0%                     | -                      | 7.5               | 0.01554        | 0.1246                | 0.003838                   | No                      | No                 | Stable     | Normal            | 7.3                                   |                                                    | N          |
| MW-40                       | 8/8                       | 0%                     |                        | 7.2               | 0.005          | 0.1240                | 0.0171                     | No                      |                    | Stable     | Non-parametric    | 7.3                                   |                                                    | N          |
| MW-K                        | 8/8                       | 0%                     | -                      | 7.2               | 0.03429        | 0.1852                | 0.01007                    | Yes                     | No<br>No           | Stable     | Non-parametric    | 7.2                                   |                                                    | N          |
| MW-L                        | 8/8                       | 0%                     | -                      | 7.3               | 0.02554        | 0.1598                | 0.02330                    | No                      | No                 | Stable     | Normal            | 7.3                                   |                                                    | N          |
|                             | 0/0                       | 078                    | -                      | 7.5               | 0.02334        | 0.1398                | 1 1                        |                         |                    | Stable     | Normal            | 1.2                                   |                                                    | IN         |
| W-37 (upgradiant)           | 8/8                       | 0%                     | 1                      | 371               | 1282           | 35.8                  | 0.1144                     | -III: Sulfate, To<br>No | No                 | Stable     |                   |                                       | 518                                                |            |
| IW-37 (upgradient)<br>MW-38 | 8/8                       | 0%                     | -                      | 1560              | 1282           | 118.9                 | 0.1144                     | No                      | No                 | Stable     | Normal            | 1350                                  | 510                                                | Y          |
| MW-39                       | 8/8<br>8/8                | 0%                     | -                      |                   |                |                       |                            | NO                      |                    |            | Normal            |                                       |                                                    | Y<br>Y     |
|                             | 8/8                       | 0%                     | -                      | 2110              | 14630<br>26650 | 120.9<br>163.2        | 0.06446 0.08884            |                         | No                 | Stable     | Normal            | 1810<br>1730                          |                                                    | Y<br>Y     |
| MW-40                       |                           |                        | -                      | 2160              |                |                       |                            | No                      | No                 | Stable     | Normal            |                                       |                                                    | Y<br>Y     |
| MW-K                        | 8/8                       | 0%                     | -                      | 2160              | 38420          | 196                   | 0.103                      | No                      | No                 | Stable     | Normal            | 2160                                  |                                                    | -          |
| MW-L                        | 8/8                       | 0%                     | -                      | 2410              | 50010          | 223.6                 | 0.1046                     | No                      | No                 | Stable     | Normal            | 2180                                  |                                                    | Y          |
|                             | 0/2                       | 051                    | 1                      | 2455              | 704100         | 1                     | Appendix-III: Tot          |                         |                    | -          |                   |                                       | 2465                                               |            |
| W-37 (upgradient)           | 8/8                       | 0%                     | -                      | 3120              | 704100         | 839.1                 | 0.8039                     | Yes                     | No                 | Stable     | . ·               | 24.12                                 | 3120                                               |            |
| MW-38                       | 8/8                       | 0%                     | -                      | 2600              | 531900         | 729.3                 | 0.3628                     | No                      | No                 | Stable     | Normal            | 2140                                  |                                                    | N          |
| MW-39                       | 8/8                       | 0%                     | -                      | 3770              | 40860          | 202.1                 | 0.05802                    | No                      | No                 | Stable     | Normal            | 3480                                  |                                                    | Y          |
| MW-40                       | 8/8                       | 0%                     | -                      | 3310              | 8713           | 93.34                 | 0.02932                    | No                      | No                 | Stable     | Normal            | 3060                                  |                                                    | N          |
| MW-K                        | 8/8                       | 0%                     | -                      | 4370              | 101000         | 317.8                 | 0.08208                    | No                      | No                 | Increasing | Normal            | 4370                                  |                                                    | Y          |
| MW-L                        | 8/8                       | 0%                     | -                      | 4900              | 292900         | 541.2                 | 0.1304                     | No                      | No                 | Stable     | Normal            | 4710                                  |                                                    | Y          |

Notes & Abbreviations:

<sup>1</sup> Based on background data collected from 03/07/2018 through 03/18/2015 CCR = coal combustion residua.

mg/L = milligrams per Liter SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limit



NOVEMBER 2022

ATTACHMENT 2-1 September 2019 Statistical Analysis



HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

## TECHNICAL MEMORANDUM

November 2, 2022 File No. 0204993-000

| TO:      | Evergy Kansas Central, Inc.<br>Jared Morrison – Director, Water and Waste Programs                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM:    | Haley & Aldrich, Inc.<br>Steven F. Putrich, P.E., Principal Consultant – Engineering Principal<br>Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist                    |
| SUBJECT: | September 2019 Semi-Annual Groundwater Detection Monitoring Data<br>Statistical Analyses Summary<br>Lawrence Energy Center<br>Area 2 Pond, Area 3 Pond, and Area 4 Pond (inactive) |

Pursuant to Code of Federal Regulations Title 40 §257.93 and §257.94 (Rule), this memorandum summarizes the statistical summary of the analytical results for the first semi-annual detection monitoring groundwater sampling event for the Lawrence Energy Center Area 2 Pond (inactive), Area 3 Pond (inactive), and Area 4 Pond (inactive), which took place in September 2019. This semi-annual detection monitoring groundwater sampling event was completed on September 4 and 5, 2019, with laboratory results received and accepted on October 21, 2019. Due to the determination of statistically significant increases in the March 2019 statistical analyses, the unit transitioned to an assessment monitoring program; therefore, no statistical analyses were completed on this September 2019 detection monitoring sampling event data.

ATTACHMENT 3 Groundwater Potentiometric Maps



#### LEGEND

| MW-37<br>822.24 | WELL NAME AND GROUNDWATER ELEVATION IN FEET<br>ABOVE MEAN SEA LEVEL (AMSL), SEPTEMBER 2019 |
|-----------------|--------------------------------------------------------------------------------------------|
| <b>•</b>        | MONITORING WELL                                                                            |
|                 | ESTIMATED GROUNDWATER POTENTIOMETRIC<br>OBSERVATION ELEVATION CONTOUR, 1-FT INTERVAL       |
| -               | GROUNDWATER FLOW DIRECTION AND APPROXIMATE<br>GROUNDWATER FLOW RATE (FEET/YEAR)            |
|                 | ASH PONDS (INACTIVE)                                                                       |

#### NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 04 - 05 SEPTEMBER 2019.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 04 - 05 SEPTEMBER 2019 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY 2019.

4. AERIAL IMAGERY SOURCE: ESRI, 17 APRIL 2018



250 500 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS

ASH PONDS (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP SEPTEMBER 4 - 5, 2019



FIGURE 2



#### LEGEND

| MW-37<br>822.24 | WELL NAME AND GROUNDWATER ELEVATION IN FEET<br>ABOVE MEAN SEA LEVEL (AMSL), DECEMBER 2019 |
|-----------------|-------------------------------------------------------------------------------------------|
| <b>•</b>        | MONITORING WELL                                                                           |
|                 | ESTIMATED GROUNDWATER POTENTIOMETRIC<br>OBSERVATION ELEVATION CONTOUR, 1-FT INTERVAL      |
| -               | GROUNDWATER FLOW DIRECTION AND APPROXIMATE<br>GROUNDWATER FLOW RATE (FEET/YEAR)           |
|                 | ASH PONDS (INACTIVE)                                                                      |

#### NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 06 DECEMBER 2019.

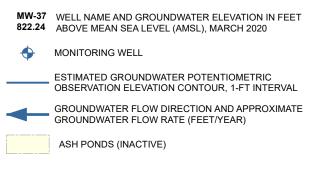
3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 06 DECEMBER 2019 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY 2019.

4. AERIAL IMAGERY SOURCE: ESRI, 17 APRIL 2018



250 500 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. LAWRENCE ENERGY CENTER LAWRENCE, KANSAS


ASH PONDS (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP **DECEMBER 6, 2019** 

>> evergy NOVEMBER 2022

FIGURE 3



#### LEGEND



NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 10 MARCH 2020.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 10 MARCH 2020 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN MARCH 2018 AND JANUARY 2019.

4. AERIAL IMAGERY SOURCE: ESRI, 04 MARCH 2020



500 250 SCALE IN FEET



ASH PONDS (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION MAP MARCH 10, 2020

NOVEMBER 2022

FIGURE 4