

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT
847 LANDFILL
LAWRENCE ENERGY CENTER
LAWRENCE, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-041 January 2023

2022 Annual Groundwater Monitoring and Corrective Action Report

Table of Contents

				Page									
1.	Intro	1											
	1.1	40 CFR	s § 257.90(E)(6) SUMMARY	1									
		1.1.1	40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1									
		1.1.2	40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1									
		1.1.3	40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	1									
		1.1.4	40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2									
		1.1.5	40 CFR § 257.90(e)(6)(v) – Selection of Remedy	3									
		1.1.6	40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3									
2.	40 C	40 CFR § 257.90 Applicability											
	2.1	40 CFR	s § 257.90(A)	4									
	2.2	40 CFR	40 CFR § 257.90(A) 40 CFR § 257.90(E) – SUMMARY										
		2.2.1	Status of the Groundwater Monitoring Program	4									
		2.2.2	Key Actions Completed	5									
		2.2.3	Problems Encountered	5									
		2.2.4	Actions to Resolve Problems	5									
		2.2.5	Project Key Activities for Upcoming Year	5									
	2.3	40 CFR	§ 257.90(E) – INFORMATION	5									
		2.3.1	40 CFR § 257.90(e)(1)	6									
		2.3.2	40 CFR § 257.90(e)(2) – Monitoring System Changes	6									
		2.3.3	40 CFR § 257.90(e)(3) – Summary of Sampling Events	6									
		2.3.4	40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	6									
		2.3.5	40 CFR § 257.90(e)(5) – Other Requirements	7									

Revision No.	Date	Notes

i

List of Tables

Table No. Title

I Summary of Analytical Results – 2022 Detection Monitoring

List of Figures

Figure No.	Title
1	847 Landfill Monitoring Well Location Map
2	847 Landfill Groundwater Potentiometric Elevation Contour Map – March 15, 2022
3	847 Landfill Groundwater Potentiometric Elevation Contour Map – September 9, 2022

List of Attachments

Attachment 1 – Statistical Analyses

- 1-1 September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation
- 1-2 March 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

- 2-1 March 2022 Semi-Annual Sampling Event Laboratory Analytical Report
- 2-2 September 2022 Semi-Annual Sampling Event Laboratory Analytical Report

2022 Annual Groundwater Monitoring and Corrective Action Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Lawrence Energy Center (LEC) 847 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2022) and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the LEC 847 Landfill is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. 881

Title: Technical Expert 2
Company: Haley & Aldrich, Inc.

1. Introduction

This 2022 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the 847 Landfill (also known as Ash Landfill 847) at the Lawrence Energy Center (LEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the 847 Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2022) and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(E)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2022), the 847 Landfill was operating under a detection monitoring program in compliance with 40 CFR § 257.94.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2022), the 847 Landfill was operating under a detection monitoring program in compliance with 40 CFR § 257.94.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a) – Statistically Significant Increase Constituents

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

No statistically significant increases (SSI) over background were identified during the previous calendar year (2022). The statistical evaluation reports for semi-annual assessment monitoring sampling events from September 2021 and March 2022 were completed in January 2022 and July 2022, respectively, and are included in Attachment 1.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b) – Initiation of Assessment Monitoring

Provide the date when the assessment monitoring program was initiated for the CCR unit.

No SSIs over background were identified during the previous calendar year (2022); therefore, an assessment monitoring program was not initiated for the 847 Landfill in 2022.

1.1.4 40 CFR § 257.90€(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

The 847 Landfill remains in detection monitoring, and no appendix IV constituents were collected or analyzed in 2022. Therefore, no statistically significant levels above the groundwater protection standard were identified for the 847 Landfill.

1.1.4.2 40 CFR \S 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated in 2022 for this unit. The 847 Landfill remained in detection monitoring during 2022.

1.1.4.3 40 CFR § 257.90(e)(6)(€(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the 847 Landfill in 2022; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated in 2022 for this unit. The 847 Landfill remained in detection monitoring during 2022.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The 847 Landfill remains in detection monitoring, and no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required in 2022.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the LEC 847 Landfill. The 847 Landfill is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the LEC 847 Landfill as required by the Rule. Groundwater sampling and analysis was conducted in accordance with requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 is provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2022.

2.2.1 Status of the Groundwater Monitoring Program

The 847 Landfill remained in the detection monitoring program during 2022.

2022 Annual Groundwater Monitoring and Corrective Action Report

2.2.2 Key Actions Completed

The 2021 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2022. Statistical evaluation was completed in January 2022 on analytical data from the September 2021 semi-annual detection monitoring sampling event. Semi-annual detection monitoring events were completed in March and September 2022. Statistical evaluation was completed in July 2022 on analytical data from the March 2022 semi-annual detection monitoring sampling event. Statistical evaluation of the results from the September 2022 semi-annual detection monitoring sampling event are due to be completed in January 2023 and will be reported in the next annual report.

2.2.3 Problems Encountered

Two problems encountered during groundwater monitoring activities in 2022 consisted of laboratory analytical errors that required the laboratory to reanalyze the following analytical results for the March and September 2022 semi-annual detection monitoring sampling events:

- Total dissolved solids for monitoring wells MW-31R and MW-35 during the March 2022 sampling event;
- Chloride for monitoring wells MW-33, MW-34, and MW-35 during the September 2022 sampling event; and
- Sulfate for monitoring well MW-35 during the September 2022 monitoring event.

These were the only issues that needed to be addressed at the 847 Landfill in 2022.

2.2.4 Actions to Resolve Problems

The resolution to problems encountered in 2022 included additional laboratory analyses as described above. The analytical results were revised accordingly. No other problems were encountered at the 847 Landfill in 2022; therefore, no actions to resolve problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2023 include completion of the 2022 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual detection monitoring analytical data collected in September 2022, and semi-annual detection monitoring and subsequent statistical evaluations.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the 847 Landfill is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned during 2022.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.94(b), two independent detection monitoring samples from each background and downgradient monitoring well were collected during 2022. A summary including the sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the 847 Landfill is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in 2022 are provided in Figures 2 and 3.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2022. Only detection monitoring was conducted in 2022.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.94 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for the activities completed in calendar year 2022.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No alternate source demonstration or certification was required in 2022; therefore, no demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The 847 Landfill remains in detection monitoring and an alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The 847 Landfill remains in detection monitoring, and no assessment monitoring samples were collected or analyzed in 2022. Consequently, Evergy is not required to establish groundwater protection standards for this CCR unit, and this criterion is not applicable.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring alternate source demonstration or certification was required in 2022. The 847 Landfill remained in detection monitoring during 2022.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated in 2022; therefore, no demonstration or certification is applicable for this unit.

TABLE

TABLE I

SUMMARY OF ANALYTICAL RESULTS - 2022 DETECTION MONITORING

EVERGY KANSAS CENTRAL, INC.

LAWRENCE ENERGY CENTER 847 LANDFILL

LAWRENCE, KANSAS

Location		Upgra	dient		Downgradient										
Location	MW-32		MV	V-35		MW	/-31R	MV	V-33	MW-34 871.96					
Measure Point (TOC)	86	1.96	862.52			85	7.67	85	5.44						
Sample Name	MW-32-031522	MW-32-090922	MW-35-031522	MW-35-090922	MW-31R-031522	DUP-847LF-031522	MW-31R-090922	DUP-847LF-090922	MW-33-031522	MW-33-090922	MW-34-031522	MW-34-090922			
Sample Date	3/15/2022	9/9/2022	3/15/2022	9/9/2022	3/15/2022	3/15/2022	9/9/2022	9/9/2022	3/15/2022	9/9/2022	3/15/2022	9/9/2022			
Final Lab Report Date	3/28/2022	9/23/2022	3/28/2022	9/23/2022	3/28/2022	3/28/2022	9/23/2022	9/23/2022	3/28/2022	9/23/2022	3/28/2022	9/23/2022			
Final Lab Report Revision Date	5/3/2022	10/14/2022	5/3/2022	10/14/2022	5/3/2022	5/3/2022	10/14/2022	10/14/2022	5/3/2022	10/14/2022	5/3/2022	10/14/2022			
Lab Data Reviewed and Accepted	5/9/2022	11/4/2022	5/9/2022	11/4/2022	5/9/2022	5/9/2022	11/4/2022	11/4/2022	5/9/2022	11/4/2022	5/9/2022	11/4/2022			
Depth to Water (ft btoc)	45.93	46.31	48.20	48.74	42.14	-	42.21	-	39.83	40.26	56.50	56.62			
Temperature (Deg C)	9.60	19.61	11.02	16.89	13.11	-	18.49	-	14.78	17.94	13.96	19.73			
Conductivity (μS/cm)	972	864	3820	3590	1345	-	931	-	1990	1900	1800	1660			
Turbidity (NTU)	0.0	0.0	0.0	0.0	0.0	-	0.0	-	0.0	0.0	2.5	0.0			
pH, Field (su)	7.72	7.39	7.28	7.43	7.36	-	7.28	-	7.51	7.58	7.64	7.85			
Boron, Total (mg/L)	0.17	0.17	1.8	1.8	0.55	0.55	0.55	0.55	1.5	1.5	2.0	2.0			
Calcium, Total (mg/L)	60.9	57.3	564	521	245	237	237	235	261	242	211	191			
Chloride (mg/L)	113	101	26600	17200	3850	4420	4050	4160	7510	9200	6720	9710			
Fluoride (mg/L)	<0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	<0.20	< 0.20			
Sulfate (mg/L)	6.5	5.9	496	620	102	108	186	138	238	268	356	409			
pH (su)	7.4	7.9	7.1	7.5	7.3	7.5	7.5	7.5	7.4	7.6	7.5	7.7			
TDS (mg/L)	485	531	28800	27900	4670	4790	8380	8270	13100	14100	14400	13800			

Notes:

Bold value: Detection above laboratory reporting limit.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

NTU = Nephelometric Turbidity Unit su = standard unit

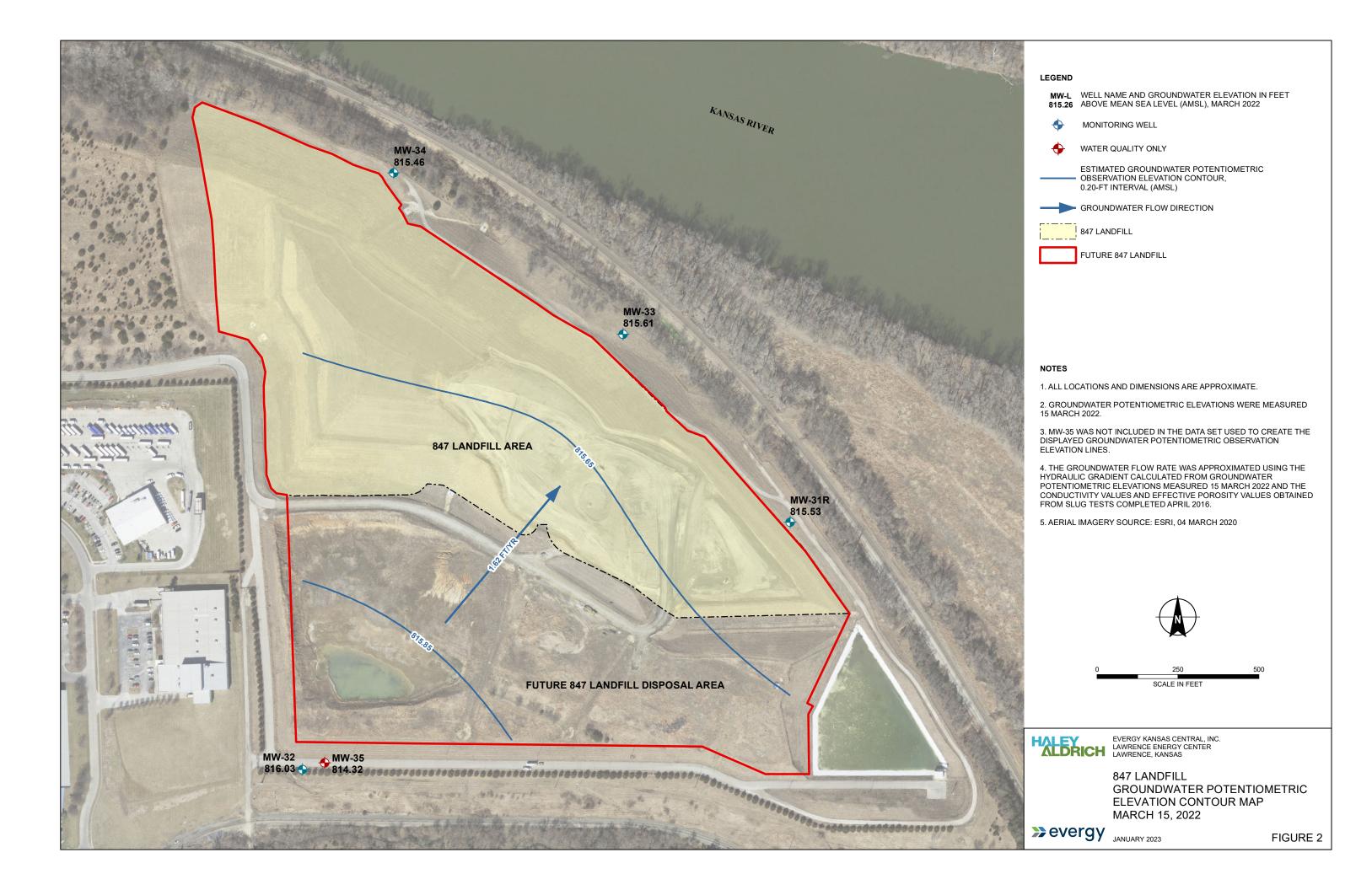
TDS = total dissolved solids

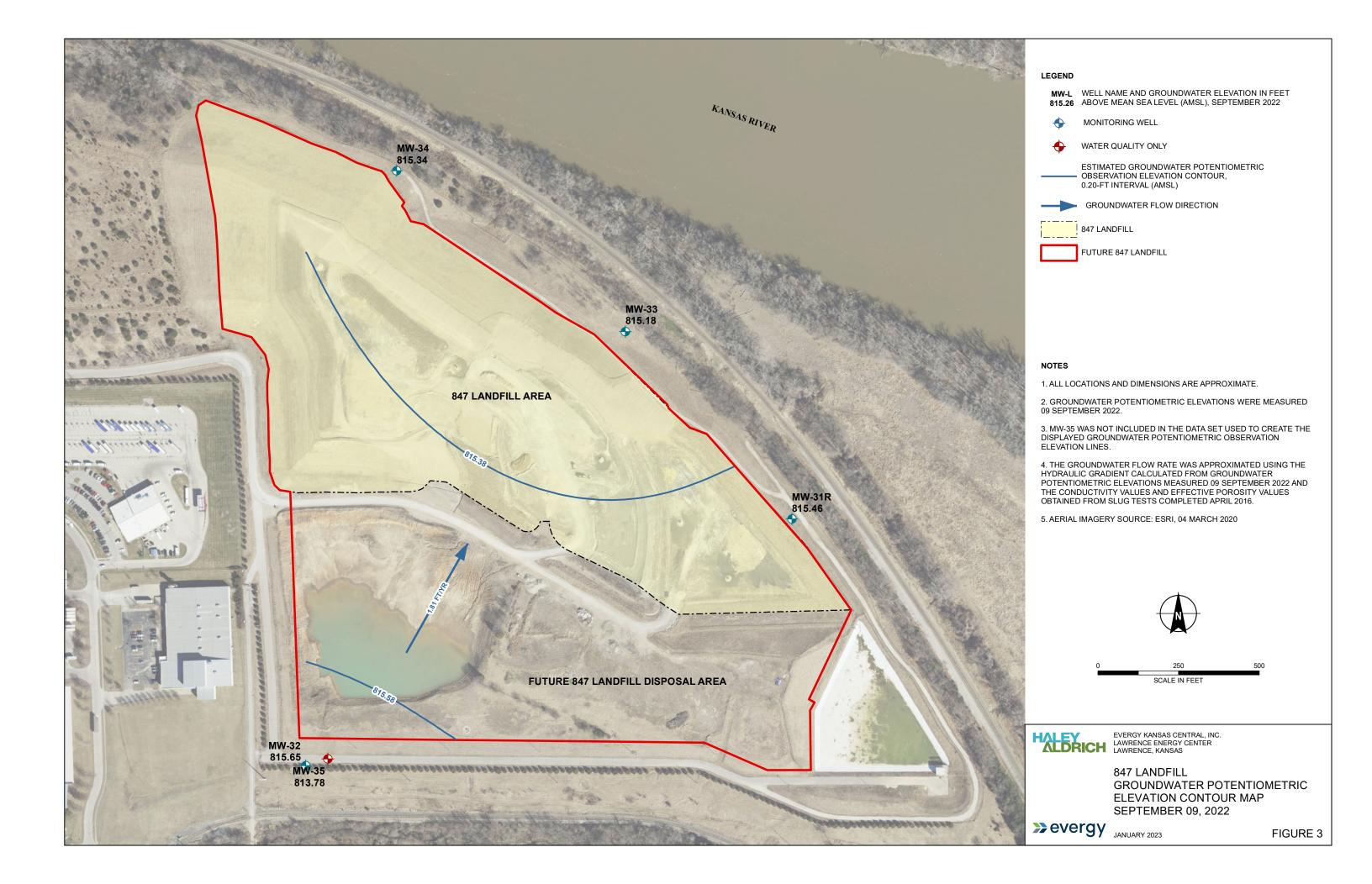
TOC = top of casing

FIGURES

847 LANDFILL AREA

FUTURE 847 LANDFILL DISPOSAL AREA




SCALE IN FEET

847 LANDFILL MONITORING WELL LOCATION MAP

FIGURE 1

ATTACHMENT 1 Statistical Analyses

ATTACHMENT 1-1 September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2023 File No. 129778-037

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2021 Semi-Annual Groundwater Detection Monitoring Data

Statistical Evaluation

Completed January 18, 2022 Lawrence Energy Center

847 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2021** semi-annual detection monitoring groundwater sampling event for the Lawrence Energy Center (LEC) 847 Landfill. This semi-annual detection monitoring groundwater sampling event was completed on **September 15, 2021**, with laboratory results received and validated on **December 9, 2021**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at the coal combustion residuals (CCR) unit (40 CFR § 257.93(f) (1-4)). One statistical method used for these evaluations, the prediction limits (PL) method, was certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2023 Page 2

STATISTICAL EVALUATION

Either an interwell or intrawell evaluation was used to complete the statistical evaluation of the referenced data set. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-32 and MW-35), and the intrawell evaluation compares the most recent values from each compliance well against a background dataset composed of its own historical data.

A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations (MW-32 and MW-35 for interwell evaluation) were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009,* background concentrations were updated based on statistical evaluation of analytical results collected through **September 2021 (interwell evaluation)** or through **September 2019 (intrawell evaluation).**

Evergy Kansas Central, Inc. January 31, 2023 Page 3

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the September 2021 semi-annual detection monitoring sampling event were compared to their respective background PLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. Based on previous compliance sampling events, statistical evaluations, and associated alternative source demonstrations, an intrawell comparison is utilized for MW-34 for boron statistical evaluations. Interwell comparisons are being utilized for all other well and constituent evaluations. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation on groundwater sampling data collected in September 2021, no SSIs above background PLs occurred at the LEC 847 Landfill.

Attachment:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I
SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2021 SAMPLING EVENT LAWRENCE ENERGY CENTER 847 LANDFILL LAWRENCE, KANSAS

													Interwell Analysis		Intrawell An	alysis
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well*	September 2021 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI	Background Limits ² (UPL) mg/L	SSI
							•	CCR Apper	ndix-III: Bord	on, Total (mg/L)			-			
MW-32	16/16	0%	-	0.2	0.0000534	0.007307	0.04014	No	No	Stable		0.20	2.050			
MW-35	16/16	0%	-	2.05	0.01961	0.14	0.07649	Yes	No	Stable		1.8	2.050			
MW-31R	16/16	0%	-	0.75	0.01099	0.1048	0.167	No	No	Decreasing	Normal	0.74		No		
MW-33	16/16	0%	-	1.7	0.008573	0.09259	0.05731	No	No	Stable	Non-parametric	1.6		No		
MW-34	16/16	0%	-	2.2	0.01721	0.1312	0.06513	No	No	Increasing	Normal	2.1			2.508	No
CCR Appendix-III: Calcium, Total (mg/L)																
MW-32	16/16	0%	-	66.6	6.368	2.523	0.04245	No	No	Stable		66.6	545			
MW-35	16/16	0%	-	545	1287	35.87	0.07059	Yes	No	Stable		501	545			
MW-31R	16/16	0%	-	275	577.5	24.03	0.106	No	No	Stable	Normal	275		No		
MW-33	16/16	0%	-	267	173.7	13.18	0.05293	No	No	Stable	Normal	267		No		
MW-34	16/16	0%	-	243	251.7	15.86	0.07313	No	No	Decreasing	Normal	216		No		
CCR Appendix-III: Chloride (mg/L)																
MW-32	16/16	0%	-	113	41.29	6.426	0.06473	No	No	Increasing		108	16700			
MW-35	16/16	0%	-	16700	2005000	1416	0.0988	No	No	Stable		12100	10700			
MW-31R	15/16	6%	1-1	5210	1272000	1128	0.2904	Yes	Yes	Stable	Normal	4530		No		
MW-33	16/16	0%	-	8700	442400	665.1	0.09115	Yes	No	Stable	Normal	6000		No		
MW-34	16/16	0%	-	6960	196200	442.9	0.07151	No	No	Stable	Normal	5380		No		
								CCR App	endix-III: Flu	uoride (mg/L)						
MW-32	13/16	19%	0.2-0.2	0.38	0.00234	0.04837	0.193	No	No	Increasing		0.26	1.7			
MW-35	2/16	88%	0.1-10	1.6	6.049	2.46	2.589	Yes	No	Stable		< 0.20	1.7			
MW-31R	11/16	31%	0.2-0.2	0.73	0.03577	0.1891	0.4818	No	No	Stable	Normal	0.26		No		
MW-33	9/16	44%	0.2-0.2	1.5	0.283	0.5319	0.7702	No	No	Stable	Non-parametric	0.57		No		
MW-34	13/16	19%	0.2-0.2	1.9	0.3774	0.6143	0.5325	No	No	Stable	Normal	1.1		No		
										H (lab) (SU)						
MW-32	16/16	0%	-	7.9	0.02267	0.1506	0.01994	Yes	No	Stable		7.5	8.19			
MW-35	16/16	0%	-	7.4	0.01229	0.1109	0.01544	Yes	No	Stable		7.1	0.19			
MW-31R	16/16	0%	-	7.5	0.01263	0.1124	0.01538	Yes	No	Stable	Normal	7.3		No		
MW-33	16/16	0%	-	7.8	0.02629	0.1621	0.02182	Yes	No	Stable	Normal	7.5		No		
MW-34	16/16	0%	-	7.9	0.03129	0.1769	0.02329	No	No	Increasing	Normal	7.6		No		
								CCR App	pendix-III: Sı	ulfate (mg/L)						
MW-32	16/16	0%	-	9.1	0.9447	0.9719	0.1404	No	No	Decreasing		6.4	666			
MW-35	16/16	0%	-	666	654.6	25.59	0.04095	No	No	Stable		617	000			
MW-31R	16/16	0%	-	187	710.7	26.66	0.1755	No	No	Stable	Normal	184		No		
MW-33	16/16	0%	-	462	2311	48.08	0.1525	Yes	No	Stable	Normal	297		No		
MW-34	16/16	0%	-	561	2091	45.73	0.09747	No	No	Stable	Normal	561		No		

SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2021 SAMPLING EVENT LAWRENCE ENERGY CENTER 847 LANDFILL LAWRENCE, KANSAS

						Interwell Analysis		Intrawell An	alysis							
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well*	September 2021 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI	Background Limits ² (UPL) mg/L	SSI
							CCR A	Appendix-III:	Total Dissolv	ved Solids (TDS) (mg/L)					
MW-32	16/16	0%	-	530	367.3	19.17	0.03846	No	No	Increasing		511	28600			
MW-35	16/16	0%	-	28600	38090000	6172	0.2578	Yes	No	Stable		26600	28000			
MW-31R	16/16	0%	-	9270	900800	949.1	0.1274	No	No	Stable	Normal	9270		No		
MW-33	16/16	0%	-	14100	1241000	1114	0.08803	Yes	No	Stable	Normal	12800		No		
MW-34	16/16	0%	-	13000	5033000	2243	0.2075	Yes	No	Stable	Non-parametric	11100		No		

Notes and Abbreviations:

CCR = coal combustion residuals

mg/L = milligrams per Liter

SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limits

¹ Interwell background data collected from 08/16/2016 through 09/15/2021.

² Intrawell background data collected from 08/16/2016 through 09/03/2019.

ATTACHMENT 1-2 March 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2023 File No. 129778-049

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2022 Semi-Annual Groundwater Detection Monitoring Data

Statistical Evaluation

Completed July 18, 2022

Lawrence Energy Center

847 Landfill

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2022** semi-annual detection monitoring groundwater sampling event for the Lawrence Energy Center (LEC) 847 Landfill. This semi-annual detection monitoring groundwater sampling event was completed on **March 15, 2022**, with laboratory results received and validated on **May 9, 2022**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at the coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). One statistical method used for these evaluations, the prediction limit (PL) method, was certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPLs), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2023 Page 2

STATISTICAL EVALUATION

Either an interwell or intrawell evaluation was used to complete the statistical evaluation of the referenced data set. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-32 and MW-35), and the intrawell evaluation compares the most recent values from each compliance well against a background dataset composed of its own historical data.

A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations MW-32 and MW-35 (for interwell evaluation) were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009,* background concentrations were updated based on statistical evaluation of analytical results collected through **September 2021 (interwell and intrawell evaluation).**

Evergy Kansas Central, Inc. January 31, 2023 Page 3

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the March 2022 semi-annual detection monitoring sampling event were compared to their respective background PLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. Based on previous compliance sampling events, statistical evaluations, and associated alternative source demonstrations, an intrawell comparison is utilized for MW-34 for boron statistical evaluations. Interwell comparisons are being utilized for all other well and constituent evaluations. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation of groundwater sampling data collected in March 2022, no SSIs above background PLs occurred at the LEC 847 Landfill.

Attachments:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2022 SAMPLING EVENT LAWRENCE ENERGY CENTER 847 LANDFILL LAWRENCE, KANSAS

													Interwell Analysis		Intrawell Analysis		
Location ID	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2022 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI	Background Limits ² (UPL) mg/L	SSI	
			CCR Append	ix-III: Boron,	Total (mg/L)		-										
MW-32	17/17	0%	-	0.2	0.00005862	0.007656	0.04222	No	No	Stable		0.17	2.050				
MW-35	17/17	0%	-	2.05	0.01844	0.1358	0.07424	Yes	No	Stable		1.8	2.030				
MW-31R	17/17	0%	-	0.75	0.01065	0.1032	0.1656	Yes	No	Stable	Normal	0.55		No			
MW-33	17/17	0%	-	1.7	0.008824	0.09393	0.05839	No	No	Stable	Normal	1.5		No			
MW-34	17/17	0%	-	2.2	0.01615	0.1271	0.06311	No	No	Increasing	Normal	2.0			2.479	No	
			CCR Appendi	x-III: Calcium	, Total (mg/L)												
MW-32	17/17	0%	-	66.6	6.095	2.469	0.04147	No	No	Stable		60.9	545				
MW-35	17/17	0%	-	564	1390	37.28	0.0729	Yes	No	Stable		564	343				
MW-31R	17/17	0%	-	275	561.2	23.69	0.104	No	No	Stable	Normal	245		No			
MW-33	17/17	0%	-	267	171.3	13.09	0.05242	No	No	Stable	Normal	261		No			
MW-34	17/17	0%	-	243	238	15.43	0.07123	No	No	Decreasing	Normal	211		No			
			CCR Apper	ndix-III: Chlo	ride (mg/L)												
MW-32	17/17	0%	-	113	49.79	7.056	0.0705	No	No	Increasing		113	16700				
MW-35	17/17	0%	-	26600	10730000	3276	0.2176	No	No	Stable		26600	16/00				
MW-31R	16/17	6%	1-1	5210	1193000	1092	0.2813	Yes	No	Stable	Normal	3850		No			
MW-33	17/17	0%	-	8700	417400	646.1	0.08839	No	No	Decreasing	Normal	7510		No			
MW-34	17/17	0%	-	6960	200200	447.4	0.07187	No	No	Stable	Normal	6720		No			
			CCR Appei	ndix-III: Fluoi	ride (mg/L)												
MW-32	13/17	24%	0.2-0.2	0.38	0.002344	0.04842	0.1955	No	No	Increasing		< 0.20	1.7				
MW-35	3/17	82%	0.1-0.2	1.7	0.3215	0.567	1.358	Yes	No	Stable		< 0.20	1.7				
MW-31R	11/17	35%	0.2-0.2	0.73	0.03571	0.189	0.4958	No	No	Stable	Normal	< 0.20		No			
MW-33	9/17	47%	0.2-0.2	1.5	0.2794	0.5286	0.7988	No	No	Stable	Non-parametric	< 0.20		No			
MW-34	13/17	24%	0.2-0.2	1.9	0.4073	0.6382	0.5815	No	No	Stable	Normal	< 0.20		No			
			CCR App	endix-III: pH	(lab) (SU)												
MW-32	17/17	0%	-	7.9	0.02257	0.1502	0.01992	Yes	No	Stable		7.4	8.19				
MW-35	17/17	0%	-	7.4	0.01191	0.1091	0.01521	Yes	No	Stable		7.1	6.19				
MW-31R	17/17	0%	-	7.5	0.01184	0.1088	0.01489	No	No	Stable	Normal	7.3		No			
MW-33	17/17	0%	-	7.8	0.02471	0.1572	0.02116	Yes	No	Stable	Non-parametric	7.4		No			
MW-34	17/17	0%	-	7.9	0.02985	0.1728	0.02277	No	No	Decreasing	Normal	7.5		No			
			CCR Appe	endix-III: Sulfa	ate (mg/L)												
MW-32	17/17	0%	-	9.1	0.8963	0.9467	0.1372	No	No	Decreasing		6.5	666				
MW-35	17/17	0%	-	666	1589	39.86	0.06458	No	No	Stable		496	000				
MW-31R	17/17	0%	-	187	813	28.51	0.1914	No	No	Stable	Normal	102		No			
MW-33	17/17	0%	-	462	2518	50.18	0.1615	Yes	No	Decreasing	Non-parametric	238		No			
MW-34	17/17	0%	-	561	2713	52.09	0.1126	No	No	Stable	Normal	356		No			

SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2022 SAMPLING EVENT

LAWRENCE ENERGY CENTER 847 LANDFILL

LAWRENCE, KANSAS

													Interwell Analysis		Intrawell Analysis	
Location ID	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2022 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI	Background Limits ² (UPL) mg/L	SSI
		CCR A	ppendix-III: To	otal Dissolved	l Solids (TDS) (mg/L)										
MW-32	17/17	0%	-	530	354.9	18.84	0.03786	No	No	Increasing		485	28600			
MW-35	17/17	0%	-	28800	37100000	6091	0.2515	Yes	No	Stable		28800	28000			
MW-31R	17/17	0%	-	9270	1298000	1139	0.1564	No	No	Stable	Normal	4670		No		
MW-33	17/17	0%	-	14100	1175000	1084	0.08548	Yes	No	Stable	Normal	13100		No		
MW-34	17/17	0%	-	14400	5476000	2340	0.2123	Yes	No	Stable	Non-parametric	14400		No		

Notes and Abbreviations:

CCR = coal combustion residuals

mg/L = milligrams per Liter

SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limits

¹ Interwell background data collected from 08/16/2016 through 09/15/2021.

² Intrawell background data collected from 08/16/2016 through 09/15/2021.

ATTACHMENT 2 Laboratory Analytical Reports

ATTACHMENT 2-1
March 2022 Semi-Annual Sampling Event
Laboratory Analytical Report

May 03, 2022

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 15, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

· Pace Analytical Services - Kansas City

REVISED 2 5/3/22 report re-analysis results for TDS.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com (913)599-5665

alice Spiller

PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Tabitha Hylton, Evergy Kansas Central, Inc. Lawrence **Energy Center** Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc. Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Danielle Oberbroekling, Haley Aldrich

Zach Phillips, Evergy, Inc.

Melanie Satanek, Haley & Aldrich, Inc.

CERTIFICATIONS

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60395291001	MW-31R-031522	Water	03/15/22 11:25	03/15/22 17:30
60395291002	MW-32-031522	Water	03/15/22 10:15	03/15/22 17:30
60395291003	MW-33-031522	Water	03/15/22 13:20	03/15/22 17:30
60395291004	MW-34-031522	Water	03/15/22 12:35	03/15/22 17:30
60395291005	MW-35-031522	Water	03/15/22 09:10	03/15/22 17:30
60395291006	DUP-847LF-031522	Water	03/15/22 11:25	03/15/22 17:30

SAMPLE ANALYTE COUNT

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60395291001	MW-31R-031522	EPA 200.7		2	PASI-K
		SM 2540C	SK	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K
60395291002	MW-32-031522	EPA 200.7	JLH	2	PASI-K
		SM 2540C	TNB	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K
60395291003	MW-33-031522	EPA 200.7	JLH	2	PASI-K
		SM 2540C	SK	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K
60395291004	MW-34-031522	EPA 200.7	JLH	2	PASI-K
		SM 2540C	TNB	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K
60395291005	MW-35-031522	EPA 200.7	JLH	2	PASI-K
		SM 2540C	SK	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K
60395291006	DUP-847LF-031522	EPA 200.7	JLH	2	PASI-K
		SM 2540C	TNB	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2, KB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: May 03, 2022

General Information:

6 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 776419

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394690001,60395291003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3098520)
 - Calcium

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2022

General Information:

6 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- MW-31R-031522 (Lab ID: 60395291001)
- MW-32-031522 (Lab ID: 60395291002)
- MW-33-031522 (Lab ID: 60395291003)

H5: Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.

• MW-35-031522 (Lab ID: 60395291005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2022

General Information:

6 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-847LF-031522 (Lab ID: 60395291006)
- MW-31R-031522 (Lab ID: 60395291001)
- MW-32-031522 (Lab ID: 60395291002)
- MW-33-031522 (Lab ID: 60395291003)
- MW-34-031522 (Lab ID: 60395291004)
- MW-35-031522 (Lab ID: 60395291005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: May 03, 2022

General Information:

6 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: MW-31R-031522	Lab ID: 603	95291001	Collected: 03/	15/22	2 11:25	Received: 03	/15/22 17:30 M	latrix: Water	
Parameters	Results	Units	Report Lim	it	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation	Meth	od: EP	A 200.7			
	Pace Analytica	I Services -	Kansas City						
Boron, Total Recoverable	0.55	mg/L	0.	10	1	03/18/22 14:46	03/21/22 13:45	7440-42-8	
Calcium, Total Recoverable	245	mg/L	0.	60	3	03/18/22 14:46	03/21/22 18:22	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	nod: SM 254	10C						
	Pace Analytica	l Services -	Kansas City						
Total Dissolved Solids	4670	mg/L	1	67	1		04/27/22 16:08		H1
4500H+ pH, Electrometric	Analytical Met	nod: SM 450	00-H+B						
	Pace Analytica	l Services -	Kansas City						
pH at 25 Degrees C	7.3	Std. Units	0.	10	1		03/23/22 13:54		H6
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 30	0.0						
·	Pace Analytica	l Services -	Kansas City						
Chloride	3850	mg/L	4	00	400		03/22/22 05:53	16887-00-6	
Fluoride	<0.20	mg/L	0.	20	1		03/22/22 05:38	16984-48-8	
Sulfate	102	mg/L	20	0.0	20		03/22/22 21:34	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: MW-32-031522	Lab ID: 603	95291002	Collected: 03/15/	22 10:15	Received: 03	3/15/22 17:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met		0.7 Preparation Me	ethod: EF	PA 200.7			
Boron, Total Recoverable Calcium, Total Recoverable	0.17 60.9	mg/L mg/L	0.10 0.20			03/21/22 13:48 03/21/22 13:48		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	485	mg/L	10.0	1		03/24/22 18:33		H1
4500H+ pH, Electrometric	Analytical Met Pace Analytica							
pH at 25 Degrees C	7.4	Std. Units	0.10	1		03/23/22 13:44		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Chloride Fluoride Sulfate	113 <0.20 6.5	mg/L mg/L mg/L	20.0 0.20 1.0			03/22/22 21:48 03/22/22 06:07 03/22/22 06:07	16984-48-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: MW-33-031522	Lab ID: 603	95291003	Collected: 03/15/2	22 13:20	Received: 03	/15/22 17:30 N	latrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•		0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	1.5	mg/L	0.50	5	03/18/22 14:46	03/21/22 14:31	7440-42-8	
Calcium, Total Recoverable	261	mg/L	1.0	5	03/18/22 14:46	03/21/22 14:31	7440-70-2	M1
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	13100	mg/L	1000	1		04/27/22 16:08		H1
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		03/24/22 10:04		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	7510	mg/L	400	400		03/22/22 01:10	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/22 00:56	16984-48-8	
Sulfate	238	mg/L	50.0	50		03/23/22 02:25	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: MW-34-031522	Lab ID: 603	95291004	Collected: 03/15/2	22 12:35	Received: 03	/15/22 17:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•		0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	2.0	mg/L	0.50	5	03/18/22 14:46	03/21/22 14:36	7440-42-8	
Calcium, Total Recoverable	211	mg/L	1.0	5	03/18/22 14:46	03/21/22 14:36	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	14400	mg/L	500	1		03/21/22 16:37		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	0.10	1		03/24/22 10:01		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
·	Pace Analytica	al Services -	Kansas City					
Chloride	6720	mg/L	400	400		03/22/22 01:38	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/22 01:24	16984-48-8	
Sulfate	356	mg/L	50.0	50		03/23/22 02:39	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: MW-35-031522	Lab ID: 603	95291005	Collected: 03/15/2	22 09:10	Received: 03	/15/22 17:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•		0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	Il Services -	Kansas City					
Boron, Total Recoverable	1.8	mg/L	1.0	10	03/18/22 14:46	03/21/22 14:38	7440-42-8	
Calcium, Total Recoverable	564	mg/L	2.0	10	03/18/22 14:46	03/21/22 14:38	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	28800	mg/L	2000	1		04/27/22 16:08		H5
4500H+ pH, Electrometric	Analytical Metl	hod: SM 450	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		03/23/22 13:33		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytica	l Services -	Kansas City					
Chloride	26600	mg/L	2000	2000		03/23/22 03:06	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/22/22 01:52	16984-48-8	
Sulfate	496	mg/L	100	100		03/23/22 02:52	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Sample: DUP-847LF-031522	Lab ID: 603	95291006	Collected: 03/1	5/22 11:25	5 Received: 03	8/15/22 17:30 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation N	ethod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	0.55	mg/L	0.1) 1	03/18/22 14:46	03/21/22 13:59	7440-42-8	
Calcium, Total Recoverable	237	mg/L	0.6	3	03/18/22 14:46	03/21/22 18:28	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	4790	mg/L	14	3 1		03/21/22 16:37		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	0.1) 1		03/24/22 09:54		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	4420	mg/L	40	400		03/22/22 02:34	16887-00-6	
Fluoride	<0.20	mg/L	0.2) 1		03/22/22 02:20	16984-48-8	
Sulfate	108	mg/L	10.	10		03/23/22 03:20	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 776419

Boron

Calcium

Date: 05/03/2022 03:06 PM

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

METHOD BLANK: 3098516 Matrix: Water

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed < 0.10 0.10 03/21/22 13:14 mg/L < 0.20 0.20 03/21/22 13:14 mg/L

LABORATORY CONTROL SAMPLE: 3098517

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	mg/L		0.98	98	85-115	
Calcium	mg/L	10	10.2	102	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3098518 3098519 MS MSD 60394690001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Boron mg/L 430 ug/L 1 1 1.4 1.4 97 70-130 20 Calcium 24500 10 10 35.8 35.0 113 105 70-130 2 20 mg/L ug/L

MATRIX SPIKE SAMPLE:	3098520					0/ 5	
Parameter	Units	60395291003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Boron	mg/L	1.5	1	2.4	88	70-130	
Calcium	mg/L	261	10	265	33	70-130 N	Л1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 776850 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

60395291004, 60395291006 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60395291004, 60395291006

> Blank Reporting Qualifiers Parameter Units Result Limit Analyzed

Total Dissolved Solids <5.0 03/21/22 16:36 mg/L

mg/L

LABORATORY CONTROL SAMPLE: 3099915

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 1000 979 98 80-120

SAMPLE DUPLICATE: 3099916

Date: 05/03/2022 03:06 PM

60395176007 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 1630 **Total Dissolved Solids** mg/L 1640 0 10

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 777585

QC Batch Method: SM 2540C Analysis Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60395291002

METHOD BLANK: 3102581

Matrix: Water

Associated Lab Samples: 60395291002

Blank Units Result Reporting Limit

Qualifiers Analyzed

Total Dissolved Solids <5.0 5.0 03/24/22 18:31 mg/L

LABORATORY CONTROL SAMPLE: 3102582

Parameter

Parameter

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

mg/L

Units

Units

Conc. 1000

995

100

80-120

SAMPLE DUPLICATE: 3102585

Parameter

60395342005

Dup Result

RPD

Max **RPD**

Qualifiers

Total Dissolved Solids

Date: 05/03/2022 03:06 PM

mg/L

952

Result

865

10

10

Project: LEC 847 LANDFILL CCR

Pace Project No.:

60395291

QC Batch: QC Batch Method:

783698

SM 2540C

Analysis Method:

SM 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Kansas City

60395291001, 60395291003, 60395291005 Associated Lab Samples:

METHOD BLANK: 3125160

Matrix: Water

Associated Lab Samples:

60395291001, 60395291003, 60395291005

Blank Result Reporting Limit

Analyzed

Qualifiers

Total Dissolved Solids

Units mg/L

<5.0

04/27/22 16:08

LABORATORY CONTROL SAMPLE: 3125161

Parameter

Parameter

LCS

% Rec

LCS

% Rec Limits

Qualifiers

10 H1

Total Dissolved Solids

Units mg/L

Units

Conc. 1000

Spike

Result 982

98

80-120

SAMPLE DUPLICATE: 3125162

Parameter

60395291001 Result

Dup

Result

RPD

Max **RPD**

Qualifiers

Total Dissolved Solids

Date: 05/03/2022 03:06 PM

mg/L

4670

4580

2

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 777233 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60395291001, 60395291002, 60395291005

SAMPLE DUPLICATE: 3101235

Date: 05/03/2022 03:06 PM

		60395027001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	9.2	9.2	0		5 H6

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 777234 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60395291003, 60395291004, 60395291006

SAMPLE DUPLICATE: 3101236

Date: 05/03/2022 03:06 PM

		60395291006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	7.5	7.3	3		5 H6

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

QC Batch: 776430 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

METHOD BLANK: 3098553 Matrix: Water

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/22/22 01:24	
Fluoride	mg/L	<0.20	0.20	03/22/22 01:24	
Sulfate	mg/L	<1.0	1.0	03/22/22 01:24	

METHOD BLANK: 3100179 Matrix: Water

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/21/22 07:11	
Fluoride	mg/L	<0.20	0.20	03/21/22 07:11	
Sulfate	mg/L	<1.0	1.0	03/21/22 07:11	

METHOD BLANK: 3100401 Matrix: Water

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/22/22 09:01	
Fluoride	mg/L	<0.20	0.20	03/22/22 09:01	
Sulfate	mg/L	<1.0	1.0	03/22/22 09:01	

METHOD BLANK: 3102305 Matrix: Water

Associated Lab Samples: 60395291001, 60395291002, 60395291003, 60395291004, 60395291005, 60395291006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	03/22/22 13:22	
Fluoride	mg/L	<0.20	0.20	03/22/22 13:22	
Sulfate	mg/L	<1.0	1.0	03/22/22 13:22	

LABORATORY CONTROL SAMPLE: 3098554

Date: 05/03/2022 03:06 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.9	99	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

LABORATORY CONTROL SAM	1PLE: 3	3098554										
Darameter		Llaita	Spike	LC		LCS	% Re		Qualifiers			
Parameter		Units	Conc.	Res		% Rec	Limit		Juailliers	_		
Sulfate		mg/L		5	5.1	101	9	90-110				
LABORATORY CONTROL SAM	1PLE: 3	3100180										
			Spike	LC	S	LCS	% Re					
Parameter		Units	Conc.	Res	ult	% Rec	Limit	ts (Qualifiers			
Chloride		mg/L		5	4.5	91	ç	90-110				
Fluoride		mg/L	2.		2.4	96		90-110				
Sulfate		mg/L		5	4.9	97	. 6	90-110				
LABORATORY CONTROL SAM	1PLE: 3	3100402										
			Spike	LC	S	LCS	% Re	ЭС				
Parameter		Units	Conc.	Res	ult	% Rec	Limit	ts (Qualifiers			
Chloride		mg/L		 5	4.5	91	. ———	90-110				
Fluoride		mg/L	2.	5	2.6	105	9	90-110				
Sulfate		mg/L		5	4.7	95	9	90-110				
LABORATORY CONTROL SAM	1PLE: 3	3102306										
LABORATORY CONTROL SAM	1PLE: 3	3102306	Spike	LC	 S	LCS	% Re	ec				
LABORATORY CONTROL SAM	1PLE: 3	3102306 Units	Spike Conc.	LC Res		LCS % Rec	% Re		Qualifiers			
	1PLE: 3	Units	Conc.				Limit		Qualifiers	_		
Parameter	1PLE: 3		Conc.	Res 5	ult	% Rec	Limit	ts (Qualifiers	_		
Parameter Chloride Fluoride	MPLE: 3	Units mg/L	Conc.	Res 5	4.9	% Rec	Limit	ts 0 90-110	Qualifiers	_		
Parameter Chloride Fluoride Sulfate		Units mg/L mg/L mg/L	Conc.	Res 5 5	4.9 2.5 5.1	% Rec 98 98 102	Limit	ts (90-110) 90-110	Qualifiers	_		
Parameter Chloride Fluoride Sulfate		Units mg/L mg/L mg/L	Conc.	Res 5 5	4.9 2.5	% Rec 98 98 102	Limit	ts (90-110) 90-110	Qualifiers	-		
Parameter Chloride Fluoride Sulfate	KE DUPL	Units mg/L mg/L mg/L	2.	Res 5 5 5 5	4.9 2.5 5.1	% Rec 98 98 102	Limit	ts (90-110) 90-110	Qualifiers % Rec	-	Max	
Parameter Chloride Fluoride Sulfate	KE DUPL	Units mg/L mg/L mg/L mg/L	2. 555 MS	Res 5 5 5 5 MSD	4.9 2.5 5.1 3098556	% Rec 98 98 102	Limit S S S	00-110 00-110 00-110 00-110		RPD	Max RPD	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIR	KE DUPL Units	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result	Conc. 2. 555 MS Spike Conc.	Res 5 5 5 5 MSD Spike Conc.	4.9 2.5 5.1 3098556 MS Result	% Rec 98 98 102 MSD Result	Limit S S S MS % Rec	00-110 00-110 00-110 00-110 MSD % Rec	% Rec Limits		RPD	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK Parameter Chloride	KE DUPL Units mg/L	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288	Conc. 2. 5555 MS Spike Conc. 1000	Res 5 5 5 5 5 MSD Spike Conc.	4.9 2.5 5.1 3098556 MS Result	% Rec 98 98 102 MSD Result 1150	MS % Rec	MSD 87 MSD 87	% Rec Limits 80-120	0	RPD 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK	KE DUPL Units	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result	Conc. 2. 555 MS Spike Conc.	Res 5 5 5 5 MSD Spike Conc.	4.9 2.5 5.1 3098556 MS Result	% Rec 98 98 102 MSD Result	Limit S S S MS % Rec	00-110 00-110 00-110 00-110 MSD % Rec	% Rec Limits 80-120 80-120		RPD 15 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK Parameter Chloride Fluoride	Very Dupter Service Se	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288 ND	555 MS Spike Conc. 1000 500	Res 5 5 5 5 5 MSD Spike Conc. 1000 500	4.9 2.5 5.1 3098556 MS Result 1150 536	% Rec 98 98 102 MSD Result 1150 538	MS % Rec 87	MSD % Rec 87 108	% Rec Limits 80-120 80-120	0	RPD 15 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK Parameter Chloride Fluoride Sulfate	Very Dupter Service Se	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288 ND	555 MS Spike Conc. 1000 500	MSD Spike Conc. 1000 500 1000	4.9 2.5 5.1 3098556 MS Result 1150 536 2870	% Rec 98 98 102 MSD Result 1150 538	MS % Rec 87	MSD % Rec 87 108 90-110	% Rec Limits 80-120 80-120	0	RPD 15 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIKE Parameter Chloride Fluoride Sulfate	Very Dupter Service Se	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288 ND	555 MS Spike Conc. 1000 500 1000	MSD Spike Conc. 1000 500 1000	4.9 2.5 5.1 3098556 MS Result 1150 536	% Rec 98 98 102 MSD Result 1150 538	MS % Rec 87 107 93	MSD % Rec 87 108	% Rec Limits 80-120 80-120	0 0 1	RPD 15 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK Parameter Chloride Fluoride Sulfate SAMPLE DUPLICATE: 30985	Very Dupter Service Se	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288 ND 1940 Units	Conc. 2. 555 MS Spike Conc. 1000 500 1000	MSD Spike Conc. 1000 500 1000	4.9 2.5 5.1 3098556 MS Result 1150 536 2870 Dup Result	% Rec 98 98 102 MSD Result 1150 538 2890	MS % Rec 87 107 93	MSD % Rec 87 108 95 Max RPD	% Rec Limits 80-120 80-120 80-120	0 0 1	RPD 15 15	Qual
Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX SPIK Parameter Chloride Fluoride Sulfate SAMPLE DUPLICATE: 30985	Very Dupter Service Se	Units mg/L mg/L mg/L ICATE: 3098 60395185002 Result 288 ND 1940	Conc. 2. 555 MS Spike Conc. 1000 500 1000	MSD Spike Conc. 1000 500 1000	4.9 2.5 5.1 3098556 MS Result 1150 536 2870	MSD Result 1150 538 2890	MS % Rec 87 107 93	MSD % Rec 87 108 90-110 00-110	% Rec Limits 80-120 80-120 80-120	0 0 1	RPD 15 15	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/03/2022 03:06 PM

- H1 Analysis conducted outside the EPA method holding time.
- H5 Reanalysis conducted in excess of EPA method holding time. Results confirm original analysis performed in hold time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60395291

Date: 05/03/2022 03:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60395291001	MW-31R-031522	EPA 200.7	776419	EPA 200.7	 776589
60395291002	MW-32-031522	EPA 200.7	776419	EPA 200.7	776589
60395291003	MW-33-031522	EPA 200.7	776419	EPA 200.7	776589
60395291004	MW-34-031522	EPA 200.7	776419	EPA 200.7	776589
60395291005	MW-35-031522	EPA 200.7	776419	EPA 200.7	776589
60395291006	DUP-847LF-031522	EPA 200.7	776419	EPA 200.7	776589
60395291001	MW-31R-031522	SM 2540C	783698		
60395291002	MW-32-031522	SM 2540C	777585		
60395291003	MW-33-031522	SM 2540C	783698		
60395291004	MW-34-031522	SM 2540C	776850		
60395291005	MW-35-031522	SM 2540C	783698		
60395291006	DUP-847LF-031522	SM 2540C	776850		
60395291001	MW-31R-031522	SM 4500-H+B	777233		
60395291002	MW-32-031522	SM 4500-H+B	777233		
60395291003	MW-33-031522	SM 4500-H+B	777234		
60395291004	MW-34-031522	SM 4500-H+B	777234		
60395291005	MW-35-031522	SM 4500-H+B	777233		
60395291006	DUP-847LF-031522	SM 4500-H+B	777234		
60395291001	MW-31R-031522	EPA 300.0	776430		
60395291002	MW-32-031522	EPA 300.0	776430		
60395291003	MW-33-031522	EPA 300.0	776430		
60395291004	MW-34-031522	EPA 300.0	776430		
60395291005	MW-35-031522	EPA 300.0	776430		
60395291006	DUP-847LF-031522	EPA 300.0	776430		

DC#_Title: ENV-FRM-LENE-0009_Sample C

	/- 1 acc				603952	291	
	ANALYTICAL SERVICES	Revision: 2	Effective Date:	01/12/20	22 Issuea D	y. Leneka	1
Client Nar	me: E	ergy Kansas	Central Inc				
Courier:		S D VIA D Cla			Pace □ Xroa	ads □ Client 🗹	Other □
Tracking #:			Pace Shipping	Label Used	? Yes □ No	o 2	
Custody Sea	I on Cooler/Bo	ox Present: Yes 🗆	No Seals inta	act: Yes 🗆	No.		
Packing Mate			e Bags □	Foam □	None □	Other Z PC	K.
Thermomete		295	Type of Ice: Wet			Date and it	nitials of person 3.1
Cooler Temp		As-read 3.0 C	orr. Factor <u>~ (b. 2</u>	_ Correcte	ed <u>9.8</u>		contents: (C), (a)
Temperature sh	hould be above fr	eezing to 6°C					
Chain of Cust	tody present:		✓Yes □	NO □N/A			
Chain of Cust	tody relinquishe	d:	ØYes □I	No □N/A			
Samples arriv	ed within holdir	ng time:	ØYes □	No □N/A			
Short Hold T	ime analyses (<72hr):	□Yes 🗗	No □N/A			
Rush Turn A	round Time re	quested:	□Yes Ø f	No □N/A			
Sufficient volu	ıme:		ØYes □r	lo □N/A			
Correct contai	iners used:		ØYes □	lo □N/A			
Pace containe	ers used:		☑Yes ☐N	lo □N/A			
Containers int	act:		∕∐Yes □N	lo □N/A			
Unpreserved 5	5035A / TX100	5/1006 soils frozen in 48	hrs? □Yes □N	lo □ N/A			
Filtered volum	e received for o	dissolved tests?	□Yes □N	lo 🗖 N/A			
Sample labels	match COC: D	ate / time / ID / analyses	. □Yes □N	lo □N/A			
Samples conta	ain multiple pha	ises? Matrix: WT	□Yes Ø	io □N/A			
Containers rec	quiring pH prese	ervation in compliance?	Pres □N				preservative and the
		Sulfide, NaOH>10 Cyanide KS TPH, OK-DRO)	LOT#: 55192	C	late/time added.		
	sample checks		LUI#: 4 3 1 1 2				
1		(Record only)	□Yes □N				
Potassium iodi	ide test strip tur	ns blue/purple? (Presen	/e) □Yes □N	0			
Trip Blank pres	sent:		□Yes □N	o J⊉N/A			
Headspace in	VOA vials (>6r	nm):	□Yes □N	o AN/A			
Samples from	USDA Regulat	ed Area: State:	□Yes □N	o 🗹 N/A			
Additional labe	els attached to 5	5035A / TX1005 vials in		o 🗹 N/A			
	ation/ Resoluti	on: Cop	y COC to Client? Y	/ N	Field Data Re	equired? Y / N	
Person Contac	-		Date/Time:				
Comments/ Re	esolution:						
	er Reviev:Re	viewed		Date:			

Date: _

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	n A d Client Information:		Section B	!4							Sec	tion (С																Г					_	
Compan		NSAS CENTRAL, INC.	Report To:				Samanth	a Kaney I	Danielle (Shor	Invoi	ice Inf	formati	_		D	- 1-1-				_		-						L	Page	: 1		of	1	
Address		ergy Center (LEC)						nphrey, La			_			Acco									L												
<u> </u>		Ave, Topeka, KS 66612	150, 15.	Jaie	u IVIC	Jilisoli, J	ake nuii	iprirey, La	ura Hines	· 			Name:				KAN	ISAS	SCE	ENT	RAI	L, IN	9 _{RI}	EGUI	LAT	OR	/ AG	EN	CY						
Email To											Addn	ess:		SAM	E AS	S A							T	NF	PDES	S	V	GRO	UND	WAT	TER [- [RINKI	NG V	/ATER
	monoca.mon	els@evergy.com	Purchase Or		lo.;						Pace Refer	Quote ence:											٦ [US	ST		F F	RCR	Α		_	- c	THER		
Phone:	785-575-8113	Fax:	Project Name	B ;	LEC	847 Lan	dfill CCF	₹				Projec		Alice	Spil	ler, 9	913-	563	-140	3			۱,	ite L	ocat	ion					144.93	10		775	FOOT SER
Request	ted Due Date/TAT:	7 day	Project Numb	ber:							Pace	Profile	e#: g	655	2		-						1		STAT	- 1		H	(S		CIICUOI				
					_					_	_	_				-		_		Ra	2110	etec	I An	alysi			-	//NI)		New	SES	100			
	Section D Required Client Informati	Valid Matrix (MATRIX DRINKING WATER WATER WASTE WATER PRODUCT	CODE	valid codes to left)	AB C=COMP)	COMP STA	POSITE	ECTED COMPO	SITE RAB	COLLECTION			P	rese	rvati	ves		12.55	N /A		y 1	Т		diysi	311		- C (1	 		9					
ITEM #	SAMPL (A-Z, 0-9 , Sample IDs MUST	AIR OTHER	SL OL WP AR OT TS	E (see	SAMPLE TYPE (G=GRAB	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLE	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI	NaOH	Na ₂ S ₂ O ₃	Methanol		#Analysis lest#	200.7 Total B, Ca		2340C 1DS 4500 H+B nH								Residual Chlorine (Y/N)	1.0°				
1	N	IW-31R-031522	Ţ,	wr	G	-	10	03/15/22	11:25		4	3	-	1	Ħ	Ħ		+	\neg	()	-	X X	_	H	-	+	\dashv	╅	+	╫	Pac	ce P	roject	NO.	Lab I.D.
2		MW-32-031522		wt	G			03/15/22	10:15		4	3	Η.	1	Ħ	\dashv	\dashv	1	f		_	x x	_	H	-	\dashv	+	+	╁	╁	-			-	
3		MW-33-031522		wT	G	_	92	03/15/22	13:20	-	4	3	1		\vdash	\exists	\top	1	5	_	_	X X	1	H	7	\dashv	+	+	+	+				_	
4		MW-34-031522		wT	G	-21		03/15/22	12:35	1	4	3	Η.	-	Ħ	\exists	\dashv		T,	_		X X		H	-	\dashv	+	╅	+	╁	_			_	
5		MW-35-031522		wT	G			03/15/22	9:10	-	4	3	Η.	_	Н	\dashv	\dashv	1	-			x x	+	\vdash	-	\dashv	+	╁	+	╁				-	
6	DL	JP-847LF-031522		\neg	G	45		03/15/22	11:25	1	4	3	١,	-	Н	\dashv	\top	1	ļ,		_	X X	\neg	\vdash	+	\dashv	+	╁	+	+	-	-		_	
7								00/10/22	11.20		Ť	Ħ		+	H	\dashv	\forall	1	H	+	+	+	+	H	-	\dashv	+	╁	+	╁				_	
8			1								\vdash	Ħ	\vdash	+	Н	\dashv	\dashv	1	H	╁	+	+	╁	H	\dashv	\dashv	+	+	+	╁			-		
9												H		+	H	\forall	+	1	H	╈	t	+	+	H	\dashv	+	+	+	+	+	_	_		-	
10				1								H		+	H	\dashv	+	1	H	+	+	+	╁	\vdash	+	\dashv	+	+	+	╁				_	
-11				7							\vdash	H	\vdash	+	Н	\dashv	+	1	\vdash	+	╁	+	+	\vdash	+	+	+	╁	+	╁		-		_	
12				7								\vdash		+	H	\dashv	+	1	H	+	t	+	+	\forall	+	+	\dashv	+	┿	+	_		_		
	ADDITIONA	L COMMENTS	F	RELIN	QUIS	SHED BY /	AFFILIATI	ION	DATE	_	7	IME	_	٠,		ACC	EPTI	ED B	Y/A	FFILI	ATIC	ON.	-	+	ATE	+	TI	ME	╈	_	SAI	MDIE	COND	TION	
			1							-	11-	727	1	/-	=	_	_	1	2		7	-		_					+	0			COND		-
					asor	R. Frank	s/SCS		3/15/2	2	17	130	4	W	4	1	\sim	E	1		74	MC	<u>l</u>	3/	15/2	13	17	<u> 30</u>	×	-8	4	+	N	╀	<u> </u>
									-				_								' !			Ľ	_	_								L	
																										T								T	
Pa							SAMPLE	ER NAME A	ND SIGNA	TUR	Œ													-					1	o	E	+	pele (+	act
ge 2								PRINT Name	e of SAMP	LER:	Jaso	n R	Fran	ıks	,													-	7	Temp in °C	ved c		y See		ss Int
Page 26 of 2								SIGNATURI			//		2K	24	10		les	/		DATE (MM/					3/1	5/22	2		1	Tem	Received on Ice (Y/N)		Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)

Client:	Everav	Kansas	Central	Inc.
Site:	IEC	-	l and fill	CCR.

Profile #_____9655______

Notes_

COC Line Item	Matrix	NG9H	неэа	D69G	N69A	nesa	реэм	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	wgpu	BP1U	BP2U	врзи	BP1N	BP3N	врзг	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	Tin																		1.5		2		1						-14		
2	1																		1		1		1								
3																															
4																															
5										14																					
6	4																		P		-		4								
7																															
8																															
9																															
10																															
11																															
12																															

Container Codes

		Glass		, A	Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	11	Wipe/Swab
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
OG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
OG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		10-4-1
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
3G3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
	, 	AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		
				-			

BP4S

WPDU

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

WO#:60395291

PM: AS Due Date: 03/25/22

CLIENT: WESTAR ENRGY

ATTACHMENT 2-2
September 2022 Semi-Annual Sampling Event
Laboratory Analytical Report

October 14, 2022

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

REVISION_1 10/4/22

REVISION_2 10/14/22

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller alice.spiller@pacelabs.com

alice Spiller

(913)599-5665

PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Danielle Oberbroekling, Haley Aldrich

CERTIFICATIONS

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 22-031-0

Arkansas Drinking Water

Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60410045001	MW-31R-090922	Water	09/09/22 12:10	09/09/22 17:00
60410045002	MW-32-090922	Water	09/09/22 11:10	09/09/22 17:00
60410045003	MW-33-090922	Water	09/09/22 13:10	09/09/22 17:00
60410045004	MW-34-090922	Water	09/09/22 14:00	09/09/22 17:00
60410045005	MW-35-090922	Water	09/09/22 10:05	09/09/22 17:00
60410045006	DUP-847LF-090922	Water	09/09/22 12:15	09/09/22 17:00

SAMPLE ANALYTE COUNT

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60410045001	MW-31R-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60410045002	MW-32-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60410045003	MW-33-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60410045004	MW-34-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60410045005	MW-35-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2, RKA	3	PASI-K
60410045006	DUP-847LF-090922	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: October 14, 2022

Amended to include reanalysis and/or review of the chloride and sulfate.

Amended 10/14/22 to reflect updates to choride data review for sample 60410045005. New data is reported from the correct dilution.

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: October 14, 2022

General Information:

6 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 807692

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60410087001,60410087002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3213099)
 - Boron
 - Calcium

Additional Comments:

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: October 14, 2022

General Information:

6 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: October 14, 2022

General Information:

6 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-847LF-090922 (Lab ID: 60410045006)
- MW-31R-090922 (Lab ID: 60410045001)
- MW-32-090922 (Lab ID: 60410045002)
- MW-33-090922 (Lab ID: 60410045003)
- MW-34-090922 (Lab ID: 60410045004)
- MW-35-090922 (Lab ID: 60410045005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: October 14, 2022

General Information:

6 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 808515

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60410000004,60410030004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3216066)
 - Chloride
- MSD (Lab ID: 3216067)
 - ChlorideFluoride

Additional Comments:

Analyte Comments:

QC Batch: 808515

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 3216066)
 - Chloride
- MS (Lab ID: 3216068)
 - Sulfate
- MSD (Lab ID: 3216067)
 - Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: MW-31R-090922	Lab ID: 604	10045001	Collected: 09/09/2	22 12:10	Received: 09	0/09/22 17:00 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	0.55	mg/L	0.10	1	09/14/22 15:20	09/19/22 15:05	7440-42-8	
Calcium, Total Recoverable	237	mg/L	0.20	1	09/14/22 15:20	09/19/22 15:05	7440-70-2	
2540C Total Dissolved Solids	Analytical Meth	hod: SM 254	OC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	8380	mg/L	250	1		09/16/22 17:10		
4500H+ pH, Electrometric	Analytical Meth	hod: SM 450	0-H+B					
-	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	0.10	1		09/14/22 11:20		H6
300.0 IC Anions 28 Days	Analytical Meth	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Kansas City					
Chloride	4050	mg/L	500	500		09/21/22 20:02	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/21/22 19:36	16984-48-8	
Sulfate	186	mg/L	10.0	10		09/21/22 19:49	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: MW-32-090922	Lab ID: 604	410045002	Collected: 09/09	/22 11:10	Received: 09)/09/22 17:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•		0.7 Preparation M	ethod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	0.17	mg/L	0.10	1	09/14/22 15:20	09/19/22 15:08	7440-42-8	
Calcium, Total Recoverable	57.3	mg/L	0.20	1	09/14/22 15:20	09/19/22 15:08	7440-70-2	
2540C Total Dissolved Solids	Analytical Me	thod: SM 254	10C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	531	mg/L	10.0	1		09/16/22 17:10		
4500H+ pH, Electrometric	Analytical Me	thod: SM 450	00-H+B					
•	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.9	Std. Units	0.10	1		09/14/22 11:20		H6
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0					
•	Pace Analytic	al Services -	Kansas City					
Chloride	101	mg/L	10.0	10		09/21/22 20:52	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/21/22 20:14	16984-48-8	
Sulfate	5.9	mg/L	1.0	1		09/21/22 20:14	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: MW-33-090922	Lab ID: 604	10045003	Collected: 09/09	/22 13:10	Received: 09)/09/22 17:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation M	ethod: Ef	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	1.5	mg/L	0.10	1	09/14/22 15:20	09/19/22 15:10	7440-42-8	
Calcium, Total Recoverable	242	mg/L	0.20	1	09/14/22 15:20	09/19/22 15:10	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	14100	mg/L	1000	1		09/16/22 17:10		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.6	Std. Units	0.10	1		09/14/22 11:20		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
•	Pace Analytic	al Services -	Kansas City					
Chloride	9200	mg/L	1000	1000		09/22/22 22:28	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/21/22 18:40	16984-48-8	
Sulfate	268	mg/L	50.0	50		09/21/22 19:06	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: MW-34-090922	Lab ID: 604	10045004	Collected:	09/09/2	22 14:00	Received: 09	/09/22 17:00 N	fatrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparati	on Met	hod: EP	A 200.7			
	Pace Analytica	I Services -	Kansas City						
Boron, Total Recoverable	2.0	mg/L		0.10	1	09/14/22 15:20	09/19/22 15:12	7440-42-8	
Calcium, Total Recoverable	191	mg/L		0.20	1	09/14/22 15:20	09/19/22 15:12	7440-70-2	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 25	40C						
	Pace Analytica	l Services -	Kansas City						
Total Dissolved Solids	13800	mg/L		1000	1		09/16/22 17:10		
4500H+ pH, Electrometric	Analytical Meth	nod: SM 45	00-H+B						
•	Pace Analytica	l Services -	Kansas City						
pH at 25 Degrees C	7.7	Std. Units	i	0.10	1		09/14/22 11:20		H6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0						
·	Pace Analytica	l Services -	Kansas City						
Chloride	9710	mg/L		1000	1000		09/22/22 22:43	16887-00-6	
Fluoride	<0.20	mg/L		0.20	1		09/21/22 19:18	16984-48-8	
Sulfate	409	mg/L		50.0	50		09/21/22 19:43	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: MW-35-090922	Lab ID: 604	10045005	Collected: 09/09/	22 10:05	Received: 09	/09/22 17:00 N	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	1.8	mg/L	0.20	2	09/14/22 15:20	09/19/22 16:47	7440-42-8	
Calcium, Total Recoverable	521	mg/L	0.40	2	09/14/22 15:20	09/19/22 16:47	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	27900	mg/L	1000	1		09/16/22 17:10		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
•	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	0.10	1		09/16/22 11:53		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
·	Pace Analytica	al Services -	Kansas City					
Chloride	17200	mg/L	5000	5000		09/22/22 23:26	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/21/22 20:21	16984-48-8	
Sulfate	620	mg/L	50.0	50		09/28/22 21:19	14808-79-8	

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Sample: DUP-847LF-090922	Lab ID: 604	10045006	Collected: 09/09/	22 12:15	Received: 09	0/09/22 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	nod: EPA 20	0.7 Preparation Me	ethod: EF	PA 200.7			
	Pace Analytica	l Services -	Kansas City					
Boron, Total Recoverable	0.55	mg/L	0.10	1	09/14/22 15:20	09/19/22 15:22	7440-42-8	
Calcium, Total Recoverable	235	mg/L	0.20	1	09/14/22 15:20	09/19/22 15:22	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	10C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	8270	mg/L	333	1		09/16/22 17:11		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
•	Pace Analytica	l Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	0.10	1		09/14/22 11:20		H6
300.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0					
·	Pace Analytica	al Services -	Kansas City					
Chloride	4160	mg/L	500	500		09/22/22 23:41	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/21/22 20:59	16984-48-8	
Sulfate	138	mg/L	50.0	50		09/21/22 21:24	14808-79-8	

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Associated Lab Samples:

Date: 10/14/2022 01:28 PM

Boron

Calcium

QC Batch: 807692

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

60410045001, 60410045002, 60410045003, 60410045004, 60410045005, 60410045006

Pace Analytical Services - Kansas City

METHOD BLANK: 3213095 Matrix: Water

Associated Lab Samples: 60410045001, 60410045002, 60410045003, 60410045004, 60410045005, 60410045006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed < 0.10 0.10 09/19/22 14:20 mg/L < 0.20 0.20 09/19/22 14:20 mg/L

Laboratory:

LABORATORY CONTROL SAMPLE: 3213096

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 0.98 98 85-115 Boron mg/L 1 Calcium 10 9.9 99 85-115 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3213097 3213098 MS MSD 60410087001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron mg/L 0.39 1 1 1.4 1.4 99 100 70-130 20 Calcium 196 10 10 204 206 85 70-130 20 mg/L 100

3213099 MATRIX SPIKE SAMPLE: 60410087002 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.59 70-130 M1 Boron 4.8 420 mg/L 1 225 10 2240 70-130 M1 Calcium mg/L 449

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

QC Batch: 808022 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045001, 60410045002, 60410045003, 60410045004, 60410045005, 60410045006

METHOD BLANK: 3214376 Matrix: Water

Associated Lab Samples: 60410045001, 60410045002, 60410045003, 60410045004, 60410045005, 60410045006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/16/22 17:09

LABORATORY CONTROL SAMPLE: 3214377

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 1000 994 99 80-120 mg/L

·

SAMPLE DUPLICATE: 3214378

60409977004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1950 **Total Dissolved Solids** 1850 mg/L 5 10

SAMPLE DUPLICATE: 3214379

Date: 10/14/2022 01:28 PM

60410045005 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 27900 mg/L 28300 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

QC Batch: 807539 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045001, 60410045002, 60410045003, 60410045004, 60410045006

SAMPLE DUPLICATE: 3212485

Date: 10/14/2022 01:28 PM

 Parameter
 Units
 60410032019 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 7.7
 7.8
 1
 5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

QC Batch: 807931 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045005

SAMPLE DUPLICATE: 3214114

Date: 10/14/2022 01:28 PM

		60410030003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	7.3	7.6	3		5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

QC Batch: 808515 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045001, 60410045002

METHOD BLANK: 3216064 Matrix: Water

Associated Lab Samples: 60410045001, 60410045002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/20/22 09:08	
Fluoride	mg/L	< 0.20	0.20	09/20/22 09:08	
Sulfate	mg/L	<1.0	1.0	09/20/22 09:08	

METHOD BLANK: 3218088 Matrix: Water

Associated Lab Samples: 60410045001, 60410045002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/21/22 08:57	
Fluoride	mg/L	<0.20	0.20	09/21/22 08:57	
Sulfate	mg/L	<1.0	1.0	09/21/22 08:57	

LABORATORY CONTROL SAMPLE:	3216065					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	

 Chloride
 mg/L
 5
 4.7
 94
 90-110

 Fluoride
 mg/L
 2.5
 2.5
 100
 90-110

 Sulfate
 mg/L
 5
 4.9
 97
 90-110

LABORATORY CONTROL SAMPLE: 3218089

Date: 10/14/2022 01:28 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.7	94	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3216066 3216067

Parameter	Units	60410000004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	137	50	50	227	207	179	140	80-120	9	_	E,M1
Fluoride	mg/L	<0.20			2.9	3.1				7	_	M1
Sulfate	mg/L	18.7	500	500	1500	1510	297	297	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

MATRIX SPIKE SAMPLE:	3216068						
		60410030004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	248	250	484	94	80-120	
Fluoride	mg/L	0.63		3.4			
Sulfate	mg/L			2070		E	≣

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

QC Batch: 808656 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045003, 60410045004, 60410045005, 60410045006

METHOD BLANK: 3216506 Matrix: Water

Associated Lab Samples: 60410045003, 60410045004, 60410045005, 60410045006

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/21/22 16:21	
Fluoride	mg/L	< 0.20	0.20	09/21/22 16:21	
Sulfate	mg/L	<1.0	1.0	09/21/22 16:21	

METHOD BLANK: 3218103 Matrix: Water

Associated Lab Samples: 60410045003, 60410045004, 60410045005, 60410045006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/21/22 08:57	
Fluoride	mg/L	<0.20	0.20	09/21/22 08:57	
Sulfate	mg/L	<1.0	1.0	09/21/22 08:57	

METHOD BLANK: 3219013 Matrix: Water

Associated Lab Samples: 60410045003, 60410045004, 60410045005, 60410045006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/23/22 01:38	
Fluoride	mg/L	<0.20	0.20	09/23/22 01:38	
Sulfate	mg/L	<1.0	1.0	09/23/22 01:38	

LABORATORY CONTROL SAMPLE: 3216507

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	5	4.7	94	90-110	

LABORATORY CONTROL SAMPLE: 3218104

Date: 10/14/2022 01:28 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

mg/L

ND

100

Pace Project No.: 60410045

Sulfate

Date: 10/14/2022 01:28 PM

LABORATORY CONTROL SAM	MPLE: 32	219014										
Parameter		Units	Spike Conc.	LC	-	LCS	% Re Limi		Qualifiers			
Parameter		Units	Conc.	c. Result % Rec			is (Juailliers	_			
Chloride		mg/L		5	4.7 94		4 9	90-110				
Fluoride		mg/L	2	.5	2.6	10	5 9	90-110				
Sulfate		mg/L		5	4.8	9	7 9	90-110				
MATRIX SPIKE & MATRIX SPII	KE DUPLI	CATE: 3216	508		3216509	1						
			MS	MSD								
	6	0409930004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	85.2	100	100	185	184	100	100 98		1	15	
Official												

MATRIX SPIKE SAMPLE:	3216510						
		60410087001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	109	50	159	101	80-120	
Fluoride	mg/L	0.25		2.2			
Sulfate	mg/L	427	250	665	95	80-120	

100

116

115

97

80-120

15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

QC Batch: 810065 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60410045005

METHOD BLANK: 3221833 Matrix: Water

Associated Lab Samples: 60410045005

Parameter Units Blank Reporting
Result Limit Analyzed Qualifiers

Sulfate mg/L <1.0 1.0 09/28/22 20:53

LABORATORY CONTROL SAMPLE: 3221834

Spike LCS LCS % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Sulfate mg/L 5 4.9 97 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/14/2022 01:28 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEC 847 LANDFILL CCR

Pace Project No.: 60410045

Date: 10/14/2022 01:28 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60410045001	MW-31R-090922	EPA 200.7	807692	EPA 200.7	807723
60410045002	MW-32-090922	EPA 200.7	807692	EPA 200.7	807723
60410045003	MW-33-090922	EPA 200.7	807692	EPA 200.7	807723
60410045004	MW-34-090922	EPA 200.7	807692	EPA 200.7	807723
60410045005	MW-35-090922	EPA 200.7	807692	EPA 200.7	807723
60410045006	DUP-847LF-090922	EPA 200.7	807692	EPA 200.7	807723
60410045001	MW-31R-090922	SM 2540C	808022		
60410045002	MW-32-090922	SM 2540C	808022		
60410045003	MW-33-090922	SM 2540C	808022		
60410045004	MW-34-090922	SM 2540C	808022		
60410045005	MW-35-090922	SM 2540C	808022		
60410045006	DUP-847LF-090922	SM 2540C	808022		
60410045001	MW-31R-090922	SM 4500-H+B	807539		
60410045002	MW-32-090922	SM 4500-H+B	807539		
60410045003	MW-33-090922	SM 4500-H+B	807539		
60410045004	MW-34-090922	SM 4500-H+B	807539		
60410045005	MW-35-090922	SM 4500-H+B	807931		
60410045006	DUP-847LF-090922	SM 4500-H+B	807539		
60410045001	MW-31R-090922	EPA 300.0	808515		
60410045002	MW-32-090922	EPA 300.0	808515		
60410045003	MW-33-090922	EPA 300.0	808656		
60410045004	MW-34-090922	EPA 300.0	808656		
60410045005	MW-35-090922	EPA 300.0	808656		
60410045005	MW-35-090922	EPA 300.0	810065		
60410045006	DUP-847LF-090922	EPA 300.0	808656		

Revision: 2

DC#_Title: ENV-FRM-LENE-0009_Sat

WO#:60410045

Revision: 2	Effective Date: 01/12	60410045	
Client Name: Evergu			
	— ay □ PEX □ ECI □	Pace □ Xroads □ Client □	Other □
Tracking #:	Pace Shipping Label Use		Other 🗖
Custody Seal on Cooler/Box Present: Yes □	No Seals intact: Yes I	(
Packing Material: Bubble Wrap ☐ Bubl	ole Bags □ Foam □		(
Thermometer Used:	Type of ice: Wet Blue No	one	
Cooler Temperature (°C): As-read <u>る</u> .ヿ(orr. Factor O.O Correc	ted 2.) Date and	initials of person contents: () 9 - ()
Temperature should be above freezing to 6°C			,
Chain of Custody present:	✓Yes □No □N/A		
Chain of Custody relinquished:	Yes ONO ON/A		
Samples arrived within holding time:	✓Yes □No □N/A		
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A		
Rush Turn Around Time requested:	□Yes ☑No □N/A		
Sufficient volume:			
	Yes No N/A		
Correct containers used:	ZYes □No □N/A		
Pace containers used:	√Yes □No □N/A		
Containers intact:	ZYes □No □N/A		
Inpreserved 5035A / TX1005/1006 soils frozen in 48	Bhrs? □Yes □No ¬N/A		
iltered volume received for dissolved tests?	□Yes □No □N/A		
ample labels match COC: Date / time / ID / analyse	s Øyes □no □n/A		
amples contain multiple phases? Matrix:	TOYES THO DN/A		
ontainers requiring pH preservation in compliance?	-	List sample IDs, volumes, lot #'s of	preservative and the
HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) ,	date/time added.	preservative and the
exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) yanide water sample checks:	LOT#: 55192		
ead acetate strip turns dark? (Record only)	□Yes □No		
otassium iodide test strip turns blue/purple? (Preser	ve) □Yes □No		
ip Blank present:	□Yes □No ZN/A		
eadspace in VOA vials (>6mm):	□Yes □No ØN/A		
amples from USDA Regulated Area: State:	□Yes □No □XN/A		
dditional labels attached to 5035A / TX1005 vials in			
	the field? Yes No N/A OY COC to Client? Y / N	Field Data Required? Y / N	
erson Contacted:	Date/Time:	Flora para Nedaliea (1 / M	
omments/ Resolution:			
oject Manager Review:			
SJOOK HIGHINGER INEVIEW.	Date:		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

	Client Information:		Section B Required Project Information: Invoice Information:																		Γ	Page:	: 1	of	1							
Company	EVERGY KA	NSAS CENTRAL, INC.	Report To: N	elissa	Michels,	Samanth	a Kaney,	Danielle (Ober					unts	-												_	_				
Address:	Lawrence Er	nergy Center (LEC)	Copy To: J	ared M	orrison, .	Jake Hum	phrey, La	ura Hines	;	Comp	pany I	Name	E	VER	GY	KAN	ISAS	S CE	NTF	RAL,	INC	REG	ULA	TOR	Y A	GEN	CY				_	
	818 Kansas	Ave, Topeka, KS 66612	1							Addre		5	SAM	E AS	6 A					_	-	-	NPDE				DUND WATER DRINKING WATER					
Email To	melissa.mich	nels@evergy.com	Purchase Ord	er No.:							Quote	-	_										RCR		****		OTHER		MAILIN			
Phone:	785-575-8113	Fax	Project Name	LE	C 847 Lai	ndfill CCR	1				Projec	ot A	Alice	Spil	ler.	913-	563-	-140	3	_	\dashv	_	Loca	tion	_	INOIN		_	<i>*************************************</i>			
Request	ed Due Date/TAT:	7 day	Project Numb	er:						Manag Pace I	ger: Profile		655								\dashv	Site			1	ŀ	K S	3				
_														, _	_		_		Dan			\I	STA sis F			VAN		2////				
	Section D Required Client Informal	Valid Matrix C ion MATRIX DRINKING WATER	Codes CODE DW	codes to feft)		COLL	ECTED					P	rese	ervati	ives		I N X	_		N		Analy	/SIS I	lite	ea (T/N)						
ITEM#	SAMPL (A-Z, 0-9 Sample IDs MUST	WATER WASTE WATER PRODUCT SOIL/SOLID OIL WIPE AIR OTHER	P SL OL WP AR	SAMPLE TYPE (G=GRAB C=C	STA	POSITE	COMPC END/G	RAB	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI	laOH	la ₂ S ₂ O ₃	Methanol	LAnalysis Test I	200 7 Total B. Ca), F. SO4	2540C TDS	[뿌]							Residual Chlorine (Y/N)		OH(C		
1		MW-31R-090922		VT G		TIME	9/9/22	12:10	S	4	3		1 1	- Z	2	≥ C	╫	X	_	_								t No.	./ Lab I.D.			
2		MW-32-090922		VT G		+	9/9/22	11:10	l-	4	3	 	1	+	Н	+	-	F _x	+	X	1 1	+	+	\vdash		+					_	
3		MW-33-090922		VT G			9/9/22	13:10	Η.	4	3	1	1	+	\vdash	+	┨	F _x	+	×	1	+	+	\vdash	H	+	+	 				
4		MW-34-090922		VT G			9/9/22	14:00	-	4	3		1	+	\vdash	+	┪	F _x	+	X	\vdash	+	+	\vdash		\dashv	+	╀				
5		MW-35-090922		VT G			9/9/22	10:05		4	3		1	+	\vdash	+	1	F _x	+-	X	\vdash	+	+	\vdash	H	+	+	\vdash			_	
6	DI	JP-847LF-090922		VT G	-		9/9/22	12:15	-	4	3	<u> </u>	1	+	\vdash	+	┨	F _x	+	X	\vdash	+	╁	\vdash	Н	\dashv	+	╁				
7				1	1		O/G/EE	12.10		<u> </u>	۲	\vdash	+		\vdash	1	1	F	Ť	Ĥ		\forall	+	\vdash	H	\dashv	+	Ħ				
8										Т	Ħ	\vdash	+	T	П	\top	1	\vdash	T	Т	H	-	+	\vdash	Н	\forall	+	\vdash				
9				\top						T	Ħ	\vdash	╅	T	\Box	\top	1	\vdash	\dagger	T	H	\forall	+	\vdash	H	\dashv	\top	\top				
10				1					\vdash	ı	Ħ	\vdash	+	T	П	1	1	Н	1		Ħ	П	+	\vdash	H	\pm	\top	Ħ			_	
11									\Box		\Box	\vdash	1				1	\vdash	T				1				\top	\vdash				
12				1							Ħ	\vdash	T	T	П	1	1	F	T			Ħ	1	T		\dashv	1	T				
	ADDITIONA	AL COMMENTS	R	ELINQ	JISHED BY	/ AFFILIATI	ON	DAT	Ĕ	1	TIME		_	_	ACC	EPTI	ED B	Y / A	FFILI	ATIO	N		DAT	Ē		TIME	┪	_	SAN	PLE CONI	DITIO	NS
					D 5	1 1.000		0/0/0	_			7	7	~	$\overline{\sim}$	_	U	~~	6			7	9/9	127	17	00	1	7	V	TA	T	V
			_	Jas	on R. Fran	1KS / SCS		9/9/2	2			\dashv	- 0									+	1/ /		11	00	12	<u>~/</u>	-	-W	+	
								-				+	_				_	_				+					+	_		-	+	
-										_		_										_					\perp			1	\perp	
L																											\perp				\perp	
age							ER NAME																					ပ္	5 5) N)		ntact
28							PRINT Nan	ne of SAMF	LER:	Jaso	on R	. Fra	nks		,													С петр in °С	Received on Ice (Y/N)	dy Si		oles I
age 28 of 29			SIGNATURE of SAMPLER: DATE Signed (MM/DD/YY):							9/9/2	22			Tel	Rec	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)														

Client:	Evergy

Profile #

Site:

LEC 847 Landfill CCR

Notes

COC Line Item		NG9H	реэн	DG90	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	врзи	BP1N	BP3N	ВРЗГ	BP3S	врзс	BP3Z	WPDU	ZPLC	Other	
1	WT																														
2	1																														
3	П																														
4	П																														
5																															
6	1-1								N.																						
7																															
8																															
9																															
10																															
11										- 4																					
12																															

Container Codes

		Glass			Plastic	Misc.				
DG9B	40mL bisulfate clear vial	IWGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab			
DG9H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate			
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag			
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter			
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	C	Air Cassettes			
DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit			
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can			
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic					
VG9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic					
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix			
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic					
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water			
	Title: drip: 00 g.d00			_		To:	10-11-1			

BP3N

BP3U

OIL 250mL H2SO4 plastic OL BP3S Wipe 250mL NaOH, Zn Acetate WP BP3Z Drinking Water DW BP4U 125mL unpreserved plastic BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic

250mL HNO3 plastic

250mL unpreserved plastic

SL

NAL

Solid

Non-aqueous Liquid

Work Order Number:

BG3H

BG3U

WGDU

60410045

250mL HCL Clear glass

16oz clear soil jar

250mL Unpres Clear glass

AG2U

AG3U

AG4U

AG5U

500mL unpres amber glass

250mL unpres amber glass

125mL unpres amber glass

100mL unpres amber glass