2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

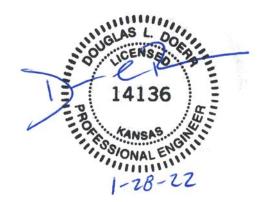
UPPER AQC IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To: Evergy Metro, Inc.

27217233.21 | January 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Professional Geologist in the State of Kansas, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the Upper AQC Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the Upper AQC Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

Revision Number	Revision Date	Revision Sections	Summary of Revisions

Table of Contents

Sect	ion		Pag	е
CERT	IFICAT	IONS		. i
1			ON	
	1.1	§ 257	.90(e)(6) Summary	1
		1.1.1	§ 257.90(e)(6)(i) Initial Monitoring Program	1
		1.1.2	§ 257.90(e)(6)(ii) Final Monitoring Program	1
		1.1.3	§ 257.90(e)(6)(iii) Statistically Significant Increases	1
		1.1.4	§ 257.90(e)(6)(iv) Statistically Significant Levels	2
		1.1.5	§ 257.90(e)(6)(v) Selection of Remedy	2
		1.1.6	§ 257.90(e)(6)(vi) Remedial Activities	2
2	§ 257	7.90(e)	ANNUAL REPORT REQUIREMENTS	3
	2.1	§ 257.	90(e)(1) Site Map	3
	2.2	§ 257.	90(e)(2) Monitoring System Changes	3
	2.3	§ 257.	90(e)(3) Summary of Sampling Events	3
	2.4	§ 257.	90(e)(4) Monitoring Transition Narrative	4
	2.5	§ 257.	90(e)(5) Other Requirements	4
		2.5.1	§ 257.90(e) Program Status	4
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency	5
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	5
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency	5
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	
	2.6	8 257	90(e)(6) Overview Summary	
3		-	DMMENTS	
				1
	endic			
Appe		-	jures Site Mon	
	-		Site Map Potentiometric Surface Map (May 2021)	
	_		Potentiometric Surface Map (November 2021)	
Appe			bles	
			ppendix III Detection Monitoring Results Detection Monitoring Field Measurements	
_			-	
Appe	ndix C	-	ernative Source Demonstrations	
	C.1	No	R Groundwater Monitoring Alternative Source Demonstration Report vember 2020 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne nerating Station (May 2021)	÷
	C.2	CC Gr	R Groundwater Monitoring Alternative Source Demonstration Report May 2021 oundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating ation (January 2022)	

1 INTRODUCTION

This 2021 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Metro, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the Upper AQC Impoundment at the La Cygne Generating Station.

1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2021), the CCR Impoundment was operating under a detection monitoring program in compliance with § 257.94.

1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2021), the CCR Impoundment was operating under a detection monitoring program in compliance with \S 257.94.

1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

Monitoring Event	Monitoring Well	Constituent	ASD
Fall 2020	MW-704	Chloride	Successful
Fall 2020	MW-706	Sulfate	Successful
Fall 2020	MW-TW-1	Sulfate	Successful
Spring 2021	MW-704	Chloride	Successful

Monitoring Event	Monitoring Well	Constituent	ASD
Spring 2021	MW-706	Sulfate	Successful
Spring 2021	TW-1	Sulfate	Successful

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the Upper AQC Impoundment and all background (or upgradient) and downgradient monitoring wells with identification numbers for the Upper AQC Impoundment groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the Upper AQC Impoundment in 2021.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2021). Samples collected in 2021 were collected and analyzed for Appendix III detection monitoring constituents. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include Fall 2020 semiannual detection monitoring event verification sample data collected and analyzed in 2021; Spring 2021 semiannual detection monitoring data and verification sample data; and the initial Fall 2021 semiannual detection monitoring data. The dates of sample collection and the monitoring program requiring the sample are also provided in these tables.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2021. Only detection monitoring was conducted in 2021.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2020 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2020 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2020 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2020 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2021 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2021 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. initiation of the Fall 2021 semiannual detection monitoring sampling and analysis event, and
- h. completion of a successful alternative source demonstration for the Spring 2021 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2022).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2021 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s). Semiannual Spring and Fall 2022 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2022 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as Appendix C:

- C1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (May 2021)
- C2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (January 2022)

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional

engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures for additional time to demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.6 § 257.90(e)(6) OVERVIEW SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the La Cygne Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the La Cygne Generating Station Upper AQC Impoundment. No warranties, express or implied, are intended or made.

APPENDIX A

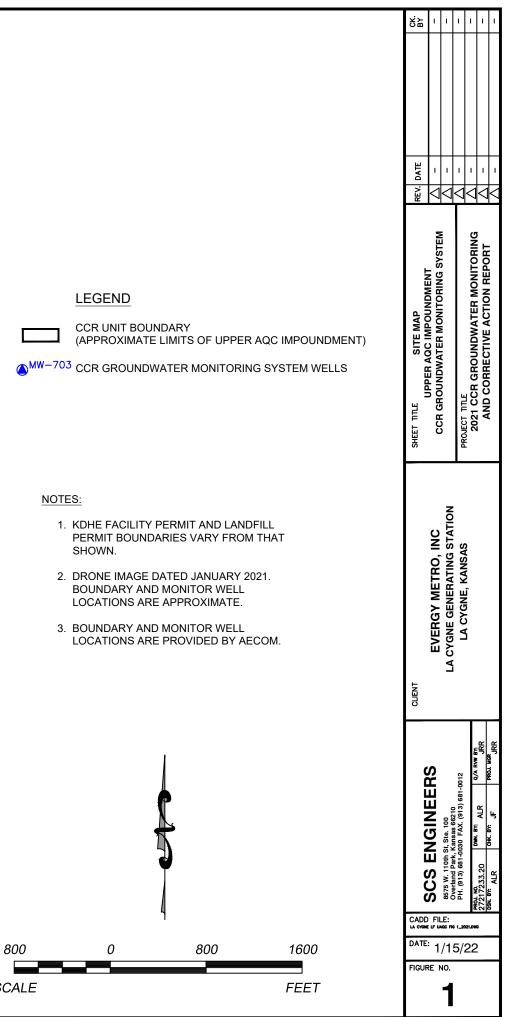
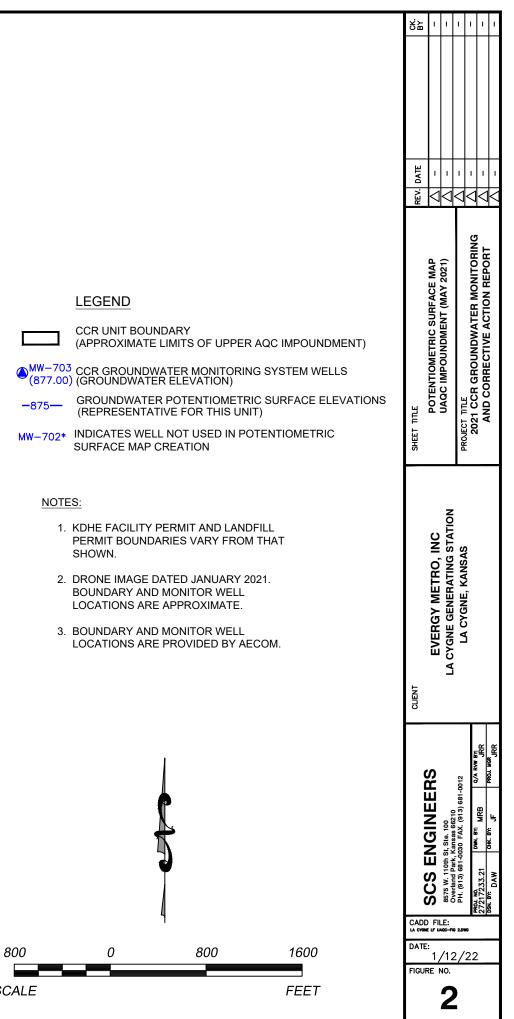
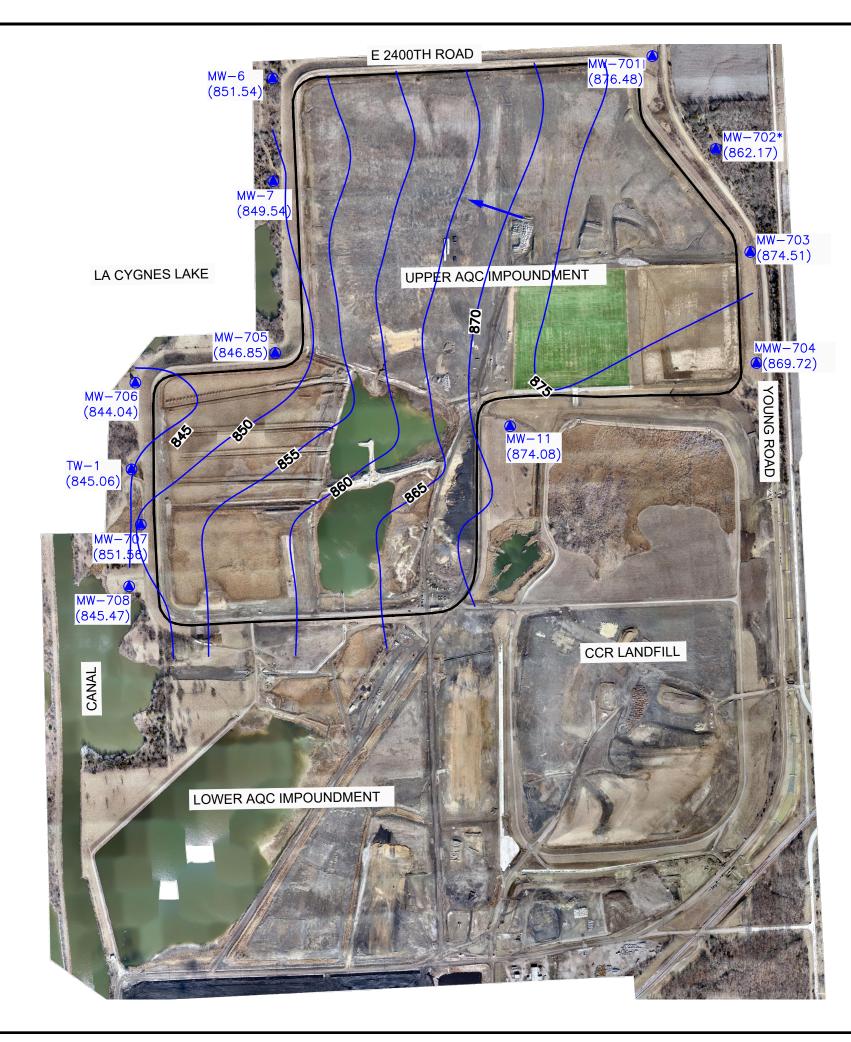
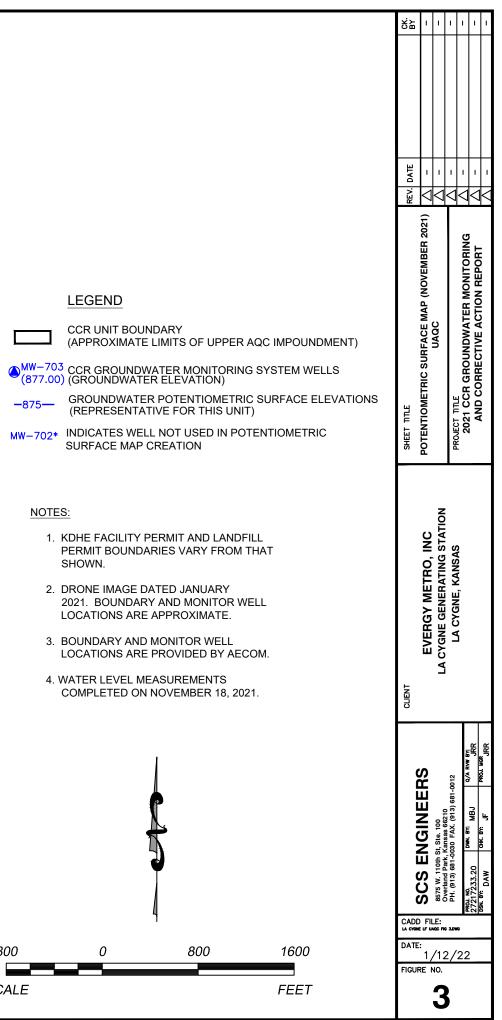

FIGURES

Figure 1: Site Map


Figure 2: Potentiometric Surface Map (May 2021)


Figure 3: Potentiometric Surface Map (November 2021)



800

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 Upper AQC Impoundment Appendix III Detection Monitoring Results Evergy LaCygne Generating Station

		Appendix III Constituents						
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	рН (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-6	5/19/2021	1.14	73.2	193	0.522	7.62	123	1060
MW-6	7/21/2021					*7.10		
MW-6	11/18/2021	1.14	77.8	201	0.549	7.10	115	1090
MW-7	5/19/2021	1.54	21.0	95.4	1.10	8.01	2.17 (J)	854
MW-7	7/21/2021					*7.97		
MW-7	11/18/2021	1.56	20.3	95.9	1.22	7.70	2.21 (J)	864
MW-11	5/19/2021	1.18	51.8	76.3	0.530	7.55	176	900
MW-11	11/18/2021	1.05	60.3	80.9	0.514	7.23	240	946
MW-701	2/4/2021		*43.5			**7.23		
MW-701	5/19/2021	0.931	43.0	48.2	0.641	7.83	86.2	561
MW-701	11/18/2021	0.907	45.3	47.4	0.589	7.45	86.3	534
MW-702	5/19/2021	1.58	5.07	41.0	1.09	9.51	1.85 (J)	527
MW-702	7/21/2021					*9.45		
MW-702	8/30/2021					*8.87		
MW-702	11/18/2021	1.53	4.61	42.2	1.19	8.15	1.97 (J)	541
MW-703	2/4/2021				*1.51	*7.37		
MW-703	5/19/2021	1.79	19.0	108	1.30	7.87	0.657	870
MW-703	11/18/2021	1.79	17.8	114	1.46	7.38	<5.00	840
MW-703	2/4/2021			*90.8		**7.62		
MW-704	3/2/2021			*91.0		**7.69		
MW-704	5/19/2021	2.07	21.1	90.5	0.781	7.03	154	1180
MW-704	7/21/2021			*91.9	0.781	**7.64		1100
MW-704	8/30/2021			*90.4		**7.74		
MW-704	11/18/2021	2.00	21.9	88.1	0.834	7.36	170	1230
MW-705	5/19/2021	2.00		139	0.834	7.53		932
		2.17	28.6	159	0.007		38.6	952
MW-705 MW-705	7/21/2021		28.7	141		*7.15	20 6	1000
	11/18/2021	2.12			0.966	7.16	38.6 *22.0	
MW-706	2/4/2021					*7.25 **7.64	*23.9	
MW-706	3/3/2021						*29.7	
MW-706	5/19/2021	2.04	24.1	236	0.946	7.69	19.2	1160
MW-706	7/21/2021					**7.27	*17.4	
MW-706	8/30/2021					**7.40	*17.0	
MW-706	11/18/2021	2.05	24.6	245	1.050	7.23	16.8	1170
MW-707B	2/4/2021			*168		*6.89		
MW-707B	5/19/2021	1.88	412	170	0.281	6.94	5480	6860
MW-707B	7/21/2021					**6.81	*5070	
MW-707B	11/18/2021	1.94	431	199	0.250	6.84	6500	6140
MW-708	2/4/2021					**7.01	*9.54	
MW-708	5/19/2021	1.36	29.6	45.0	0.546	7.73	8.64	624
MW-708	7/21/2021					*7.30		
MW-708	11/18/2021	1.37	30.9	46.2	0.567	7.23	12.7	641
TW-1	2/4/2021					**7.15	*68.3	
TW-1	3/3/2021					**7.42	*74.4	
TW-1	5/19/2021	1.42	24.5	40.8	0.412	7.52	67.7	1030
TW-1	7/21/2021					**7.53	*68.5	
TW-1	8/30/2021					**7.59	*70.8	
TW-1	11/18/2021	1.45	25.5	40.2	0.404	7.50	70.4	994

- * Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.
- **Extra Sample for Quality Control Validation or per Standard Sampling Procedure
- mg/L miligrams per liter
- pCi/L picocuries per liter
- S.U. Standard Units
- (J) Reported concentration is below the laboratory reporting limit concentration is estimated.
- --- Not Sampled

Table 2 Upper AQC Impoundment Detection Monitoring Field Measurements Evergy LaCygne Generating Station

			Specific					***Water	Groundwater
Well	Sample	рН	Conductivity	Temperature	Turbidity	ORP	DO	Level	Elevation
Number	Date	(S.U.)	(μS)	(°C)	(NTU)	(mV)	(mg/L)	(ft btoc)	(ft NGVD)
MW-6	5/19/2021	7.62	1730	15.57	3.3	-16	0.00	9.63	851.05
MW-6	7/21/2021	*7.10	1890	15.88	0.0	-133	3.92	9.28	851.40
MW-6	11/18/2021	7.10	1980	14.78	0.0	-151	0.00	9.14	851.54
MW-7	5/19/2021	8.01	1390	15.35	5.8	-37	0.00	6.71	848.95
MW-7	7/21/2021	*7.97	1580	19.10	0.0	-171	2.47	6.60	849.06
MW-7	11/18/2021	7.70	1600	14.27	0.0	-192	0.00	6.12	849.54
MW-11	5/19/2021	7.55	1590	15.03	0.0	117	1.50	2.53	874.45
MW-11	11/18/2021	7.23	1680	14.54	3.9	-30	0.00	2.90	874.08
MW-701	2/4/2021	**7.23	937	7.78	8.7	49	0.00	8.01	877.22
MW-701	5/19/2021	7.83	8.64	17.90	9.1	29	1.63	6.68	878.55
MW-701	11/18/2021	7.45	983	15.18	4.6	-25	0.00	8.75	876.48
MW-702	5/19/2021	9.51	1050	16.99	0.0	43	2.31	18.15	865.02
MW-702	7/21/2021	*9.45	993	17.54	0.0	-51	3.31	19.63	863.54
MW-702	8/30/2021	*8.87	1060	19.07	0.0	88	0.00	21.09	862.08
MW-702	11/18/2021	8.15	1120	14.14	3.2	-58	0.94	21.00	862.17
MW-703	2/4/2021	*7.37	1700	9.86	6.5	11	0.82	5.62	878.22
MW-703	5/19/2021	7.87	1600	16.00	0.0	-19	0.00	6.32	877.52
MW-703	11/18/2021	7.38	1590	15.24	0.0	-135	0.00	9.33	874.51
MW-704	2/4/2021	**7.62	1890	8.58	0.0	70	1.24	12.30	870.87
MW-704	3/2/2021	**7.69	1970	15.08	0.0	119	1.47	13.15	870.02
MW-704	5/19/2021	7.75	1780	19.43	13.6	71	1.34	12.50	870.67
MW-704	7/21/2021	**7.64	2040	19.85	0.0	29	0.64	13.29	869.88
MW-704	8/30/2021	**7.74	2050	22.30	0.0	123	0.00	13.85	869.32
MW-704	11/18/2021	7.36	2020	15.42	0.0	-40	0.00	13.45	869.72
MW-705	5/19/2021	7.53	1590	16.38	1.9	-17	0.36	9.60	846.35
MW-705	7/21/2021	*7.15	1670	16.27	0.0	-63	0.00	8.84	847.11
MW-705	11/18/2021	7.16	1780	15.08	0.0	-79	0.00	9.10	846.85
MW-706	2/4/2021	*7.25	2140	12.21	7.6	65	1.70	8.51	845.77
MW-706	3/3/2021	**7.64	2000	14.35	9.8	-31	1.79	8.87	845.41
MW-706	5/19/2021	7.69	1940	16.26	5.1	-37	0.00	9.13	845.15
MW-706	7/21/2021	**7.27	2060	17.17	0.0	-67	0.00	10.15	844.13
MW-706	8/30/2021	**7.40	2090	19.05	4.1	-100	0.97	10.90	843.38
MW-706	11/18/2021	7.23	2180	15.27	0.0	-83	0.00	10.24	844.04
MW-707B	2/4/2021	*6.89	8490	12.57	17.7	77	0.47	8.22	850.58
MW-707B	5/19/2021	6.94	8100	16.68	60.9	50	4.13	7.48	851.32
MW-707B	7/21/2021	**6.81	8250	18.00	16.2	38	0.00	7.82	850.98
MW-707B	11/18/2021	6.84	8360	14.74	27.0	42	0.00	7.24	851.56
MW-708	2/4/2021	**7.01	1180	13.19	7.3	70	0.87	7.98	845.05
MW-708	5/19/2021	7.73	1140	15.21	4.8	130	2.01	7.75	845.28
MW-708	7/21/2021	*7.30	1100	17.78	0.0	19	0.00	7.78	845.25
MW-708	11/18/2021	7.23	1210	15.14	4.0	2	0.20	7.56	845.47
TW-1	2/4/2021	**7.15	1730	13.17	10.4	57	0.55	16.43	845.67
TW-1	3/3/2021	**7.42	1680	15.26	0.0	47	0.68	16.70	845.40
TW-1	5/19/2021	7.52	1680	16.21	1.7	102	2.35	18.63	843.47
TW-1	7/21/2021	**7.53	1670	17.25	0.0	-1	3.13	18.41	843.69
TW-1	8/30/2021	**7.59	1700	18.53	0.0	69	2.09	18.29	843.81
TW-1	11/18/2021	7.50	1740	15.68	0.0	-28	0.00	17.04	845.06

* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data

at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

***Depth to water measured in all monitoring wells within 24 hour period prior to the sampling event

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATIONS

- C1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (May 2021)
- C2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (January 2022)

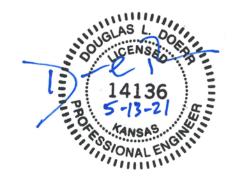
C1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (May 2021)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2020 GROUNDWATER MONITORING EVENT

UPPER AQC IMPOUNDMENT

La Cygne Generating Station Evergy Metro, Inc. La Cygne, Kansas

May 2021 File No. 27217233.20


8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700 I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Upper AQC Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

SCS ENGINEERS

John R. Rockhold, P.G. SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Upper AQC Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E. SCS Engineers

Table of Contents

Section

Page

CERT	IFICA	FIONS Error! Bookmark not defined	J.				
1	Regulatory Framework1						
2	Statistical Results						
3 Alternative Source Demonstration							
	3.1	Upgradient Well Location	2				
		Box and Whiskers Plots					
	3.3	Time Series Plots	3				
	3.4	Piper Diagram Plots	3				
4	Conc	lusion	4				
5	Gene	eral Comments	4				

Appendices

Appendix A	Figure 1
Appendix B	Box and Whiskers Plots
Appendix C	Time Series Plots
Appendix D	Piper Diagram Plots and Analytical Results

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Upper AQC Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 12, 2020. Review and validation of the results from the November 2020 Detection Monitoring Event was completed on December 24, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 4, 2021 and March 3, 2021.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits established for monitoring wells MW-704, MW-706 and TW-1.

Constituent/Monitoring Well	g Well *UPL Observation November 12, 2020		1st Verification February 4, 2021	2nd Verification March 3, 2021		
Chloride						
MW-704	88.89	90.2	90.8	91.0		
Sulfate						
MW-706	8.79	20.0	23.9	29.7		
TW-1	67.15	73.8	68.3	74.4		

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified three SSIs above the background prediction limit for chloride at MW-704, and sulfate at monitoring wells MW-706 and TW-1.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the Upper AQC Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate they are not caused by a release from the Upper AQC Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT WELL LOCATION

Figure 1 in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the Upper AQC Impoundment at the time of sampling. The groundwater flow directions indicated are for the November 2020 groundwater monitoring event and are typical flow directions for this unit. Upgradient monitoring well MW-701 has higher sulfate concentrations than both MW-706 and TW-1. As seen on the map, monitoring well MW-701 is located upgradient from the Upper AQC Impoundment indicating that naturally occurring sulfate levels can be significantly higher than the sulfate levels in MW-706 and TW-1. Therefore, natural groundwater flow from upgradient of the Upper AQC Impoundment likely contributed to the geochemistry of groundwater downgradient of the Upper AQC Impoundment and caused the sulfate level to increase. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSIs above the background level for sulfate, or that the SSI resulted from natural variation in groundwater quality.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots were prepared for chloride for upgradient wells MW-701, MW-702, and MW-703 and MW-704. Although the chloride SSI was only identified in MW-704, the box and whiskers plots show that it is below the chloride range for upgradient well MW-703. The comparison indicates the chloride level in upgradient well MW-703 is greater than the chloride level in MW-704. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSI above background levels for chloride, or that the SSI resulted from natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

Box and whiskers plots were prepared for sulfate for upgradient wells MW-701, MW-702, and MW-703 and downgradient wells MW-706 and TW-1. Although sulfate SSIs were only identified in downgradient wells MW-706 and TW-1, the box and whiskers plots show that concentrations in those wells are below the sulfate range for upgradient well MW-701. The comparison indicates the sulfate level in upgradient well MW-701 is greater than the sulfate level in MW-706 and TW-1. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSIs above background levels for sulfate, or that the SSIs resulted from natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for chloride were prepared for the CCR monitoring system upgradient wells MW-701, MW-702, and MW-703 and MW-704. Although the chloride SSI was only identified in well MW-704, the time series plots show that chloride concentrations in MW-704 are below the chloride concentrations in upgradient well MW-703. This demonstrates that a source other than the Upper AQC Impoundment could have caused the chloride SSI or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

Time series plots for sulfate were prepared for the CCR monitoring system upgradient wells MW-701, MW-702, and MW-703 and downgradient wells MW-706 and TW-1. Although the sulfate SSIs were only identified in downgradient wells MW-706 and TW-1, the time series plots show that sulfate concentrations in these wells are below the sulfate concentrations in upgradient well MW-701. The comparison indicates the sulfate level in upgradient well MW-701 is greater than the sulfate levels in downgradient wells MW-706 and TW-1. This demonstrates that a source other than the Upper AQC Impoundment could have caused the sulfate SSI or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

3.4 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

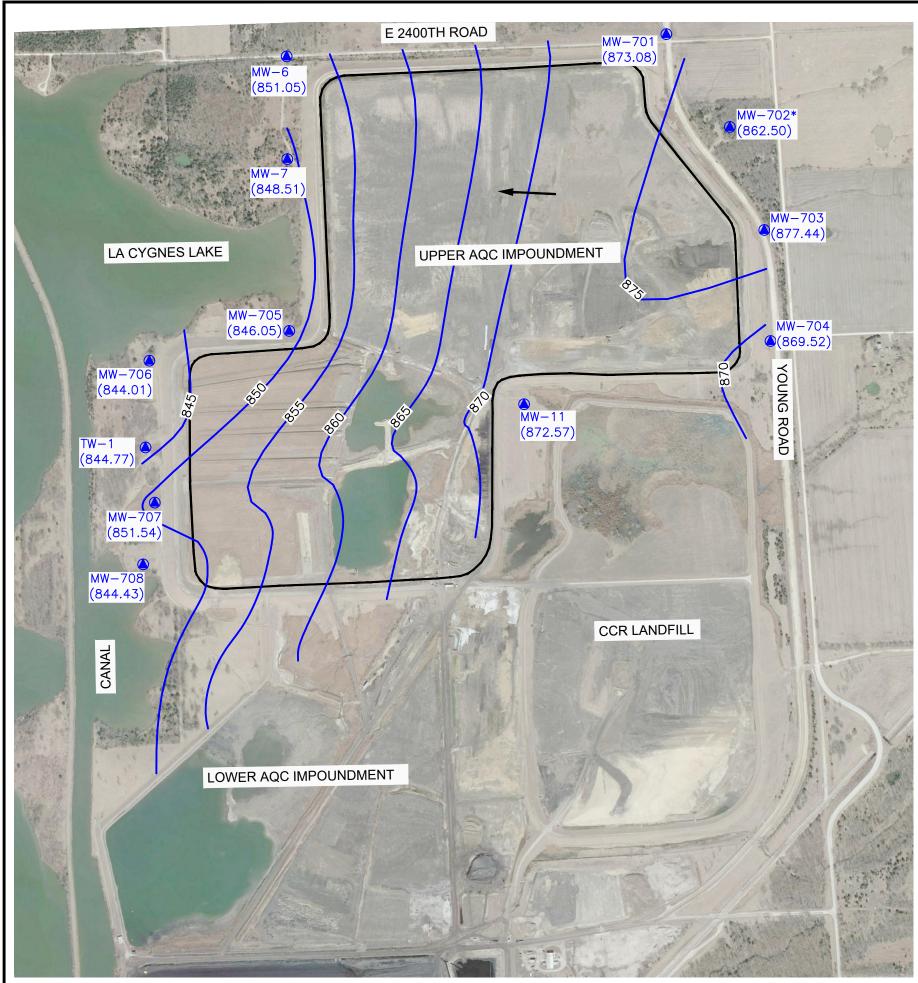
A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper

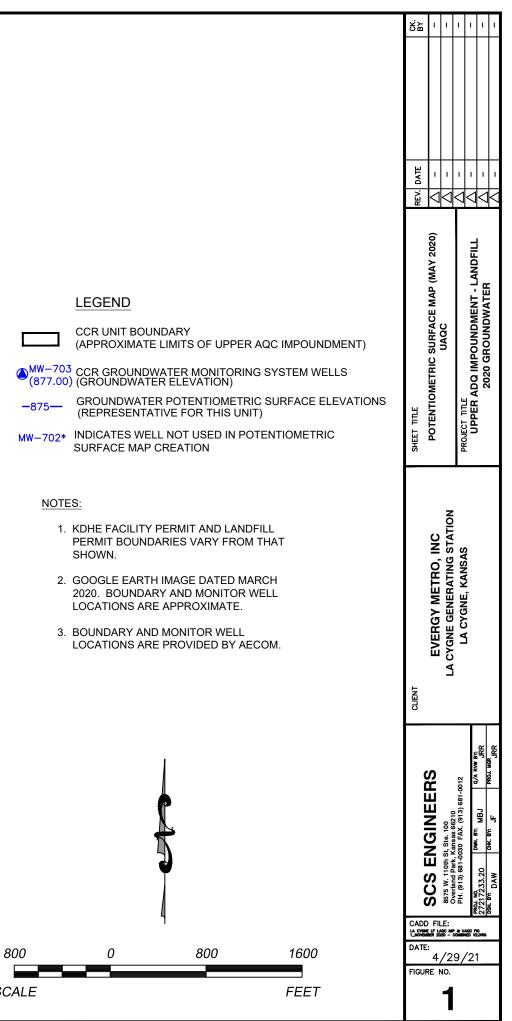
diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram was generated for samples from upgradient wells MW-701, MW-702, and MW-703 and from wells MW-704, MW-706 and TW-1. The samples from wells MW-704, MW-706 and TW-1 plot between the samples from upgradient wells MW-701 and MW-702 and between samples from MW-701 and MW-703 indicating similar geochemical characteristics to upgradient wells. Additionally of note, the difference between the upgradient wells indicates that natural variability occurs between relatively close upgradient wells and is likely to occur across the site. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSIs for MW-704, MW-706 and TW-1, or that the SSI resulted from natural variation in groundwater quality. The piper diagram plots and analytical results are provided in **Appendix D**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Upper AQC Impoundment caused the SSIs for chloride and sulfate, or that the SSI resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Upper AQC Impoundment may continue with the detection monitoring program under § 257.94.

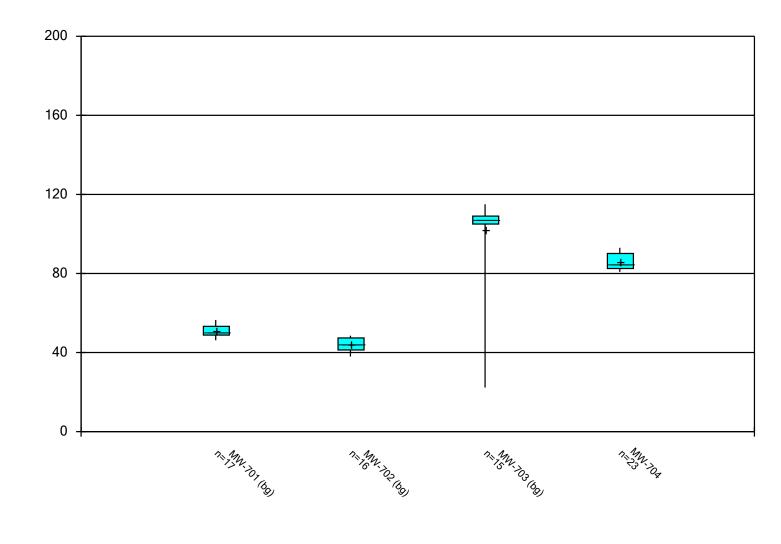

5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1

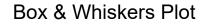


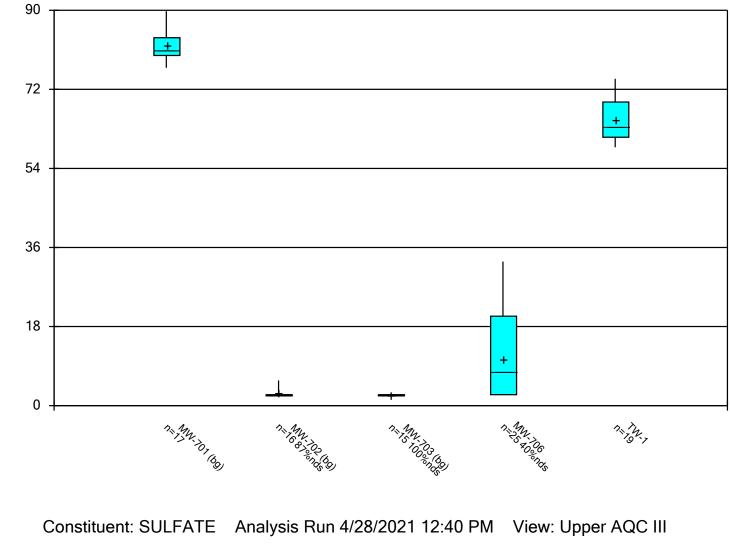
Appendix B

Box and Whiskers Plots

mg/l

Box & Whiskers Plot


Constituent: CHLORIDE Analysis Run 4/28/2021 12:42 PM View: Upper AQC III LaCygne Client: SCS Engineers Data: LaC GW Data


Box & Whiskers Plot

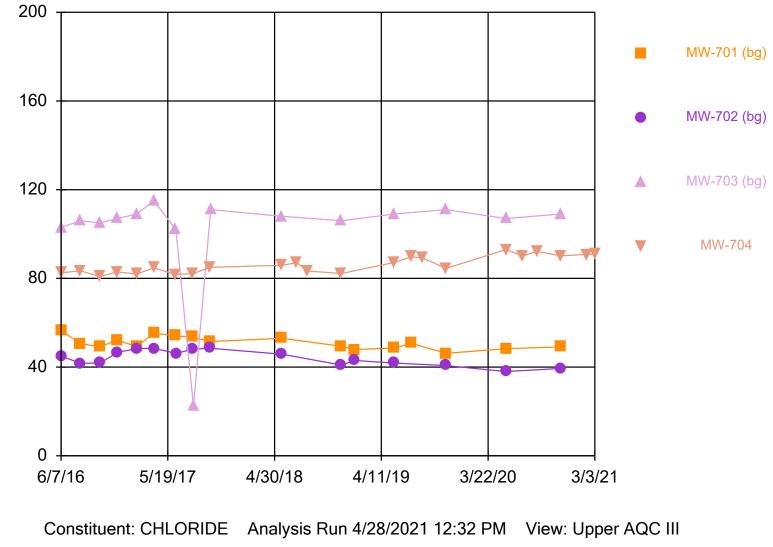
LaCygne Client: SCS Engineers Data: LaC GW Data Printed 4/28/2021, 12:43 PM N Mean Std Da Std En Madia W/all Min Mox

<u>Constituent</u>	Well	<u>N</u>	Mean	Std. Dev.	Std. Err.	Median	Min.	<u>Max.</u>	<u>%NDs</u>
CHLORIDE (mg/l)	MW-701 (bg)	17	50.89	2.84	0.6889	50.6	46.2	56.5	0
CHLORIDE (mg/l)	MW-702 (bg)	16	44.02	3.517	0.8794	43.95	38	48.5	0
CHLORIDE (mg/l)	MW-703 (bg)	15	102	22.29	5.756	107	22.3	115	0
CHLORIDE (mg/l)	MW-704	23	86.16	3.856	0.8041	85	80.8	93	0

mg/l

LaCygne Client: SCS Engineers Data: LaC GW Data

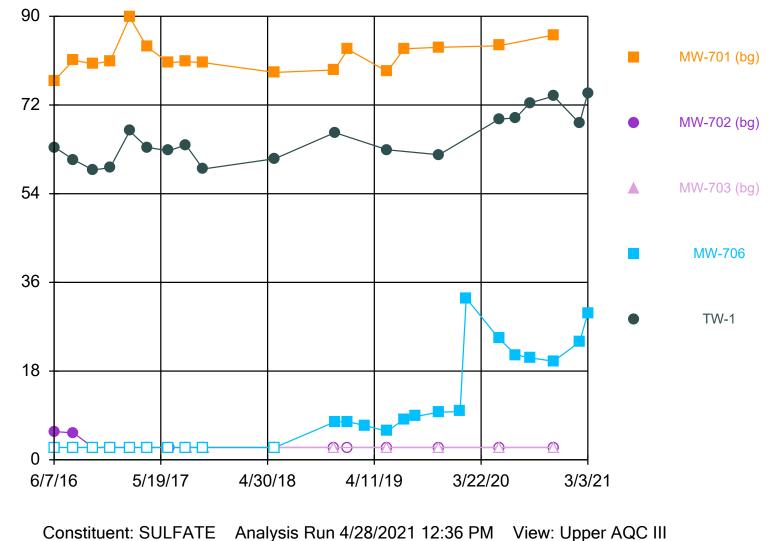
Box & Whiskers Plot


	LaCygne Clie	nt: SCS Engi	neers Data: La	aC GW Data Prir	nted 4/28/2021, 12:4	1 PM			
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	<u>Min.</u>	<u>Max.</u>	<u>%NDs</u>
SULFATE (mg/l)	MW-701 (bg)	17	81.88	3.147	0.7633	80.9	76.9	89.8	0
SULFATE (mg/l)	MW-702 (bg)	16	2.887	1.058	0.2646	2.5	2.5	5.73	87.5
SULFATE (mg/l)	MW-703 (bg)	15	2.5	0	0	2.5	2.5	2.5	100
SULFATE (mg/l)	MW-706	25	10.51	9.693	1.939	7.69	2.5	32.8	40
SULFATE (mg/l)	TW-1	19	65.15	4.925	1.13	63.4	58.8	74.4	0

Appendix C

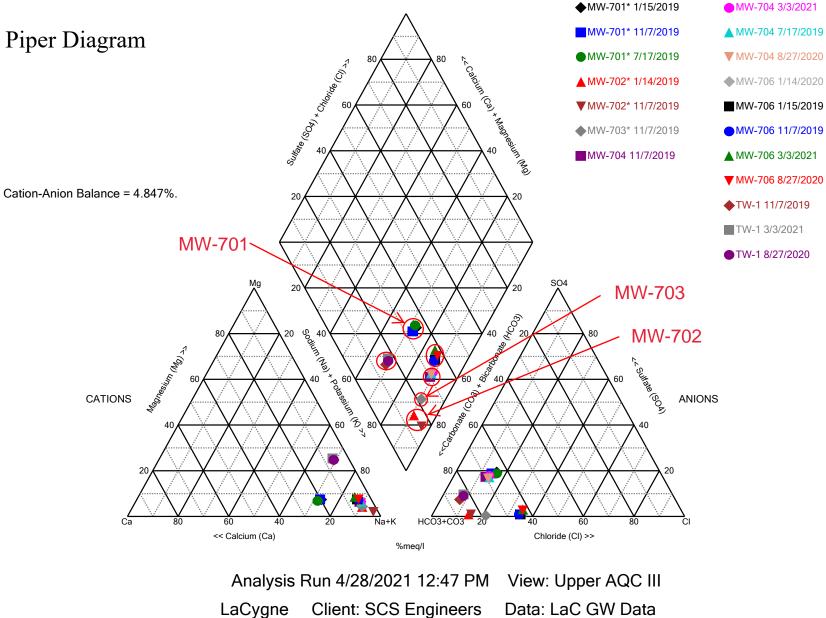
Time Series Plots

mg/l


Time Series

LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas[™] v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.



LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l

Appendix D

Piper Diagram Plots and Analytical Results

Piper Diagram

Analysis Run 4/28/2021 12:49 PM View: Upper AQC III

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3	CO3
MW-701* 1/15/2019	169	3.11	40.2	8.79	47.9	83.3	336	10
MW-701* 7/17/2019	172	2.91	45	8.71	50.7	83.4	349	10
MW-701* 11/7/2019	163	2.85	40.4	8.6	46.2	83.7	369	10
MW-702* 1/14/2019	230	3.14	11.2	5.24	43	2.5	461	10
MW-702* 11/7/2019	167	2.58	2.73	1.7	40.7	2.5	249	87.9
MW-703* 11/7/2019	339	3.53	17.6	8.07	111	2.5	725	10
MW-704 7/17/2019	442	5.85	21.5	15.8	89.7	156	790	10
MW-704 11/7/2019	429	5.47	21	15.5	84.5	163	844	10
MW-704 8/27/2020	444	5.51	21.8	16.1	92.2	150	803	10
MW-704 3/3/2021	434	5.6	20.7	15.7	91	164	791	10
MW-706 1/15/2019	442	6.52	24.7	19.5	238	7.73	769	10
MW-706 11/7/2019	427	6.26	22.5	19	240	9.68	806	10
MW-706 1/14/2020	422	6.18	24.4	19.3	247	9.78	767	10
MW-706 8/27/2020	437	6.25	23	19.4	238	20.7	751	10
MW-706 3/3/2021	412	6.65	25.7	21.6	228	29.7	716	10
TW-1 11/7/2019	286	7.72	23.3	55.4	40.1	61.9	878	10
TW-1 8/27/2020	304	7.61	23.6	58.3	41	72.4	835	10
TW-1 3/3/2021	298	7.95	24.9	59.2	40.2	74.4	818	10

C2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2021 Groundwater Monitoring Event, Upper AQC Impoundment, La Cygne Generating Station (January 2022)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2021 GROUNDWATER MONITORING EVENT

UPPER AQC IMPOUNDMENT

La Cygne Generating Station Evergy Metro, Inc. La Cygne, Kansas

SCS ENGINEERS

January 2022 File No. 27217233.21

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Upper AQC Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, P.G. SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Upper AQC Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E. SCS Engineers

Table of Contents

Section

Page

CEF	RTIFIC	ATIONS	i						
1	Regu	Regulatory Framework1							
2	Statistical Results								
3 Alternative Source Demonstration									
	3.1	Upgradient Well Location	. 2						
	3.2	Box and Whiskers Plots	. 2						
	3.3	Time Series Plots	. 3						
	3.4	Piper Diagram Plots	3						
4	Cond	clusion	. 4						
5	Gen	eral Comments	. 4						

Appendices

Appendix A	Figure 1
Appendix B	Box and Whiskers Plots
Appendix C	Time Series Plots
Appendix D	Piper Diagram Plots and Analytical Results

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Upper AQC Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 19, 2021. Review and validation of the results from the May 2021 Detection Monitoring Event was completed on July 8, 2021, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 21, 2021 and August 30, 2021.

The completed statistical evaluation identified three Appendix III constituents above their respective prediction limits established for monitoring wells MW-704, MW-706 and TW-1.

Constituent/Monitoring Well	*UPL	Observation May 19, 2021	1st Verification July 21, 2021	2nd Verification August 30, 2021
MW-704				
Chloride	88.89	90.5	91.9	90.4
MW-706				
Sulfate	8.79	19.2	17.4	17.0
TW-1				
Sulfate	67.15	67.7	68.5	70.8

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified three SSIs above the background prediction limit. These included chloride at MW-704, and sulfate at monitoring wells MW-706 and TW-1.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the Upper AQC Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate they are not caused by a release from the Upper AQC Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT WELL LOCATION

Figure 1 in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the Upper AQC Impoundment at the time of sampling. The groundwater flow directions indicated are for the May 2021 groundwater monitoring event and are typical flow directions for this unit. Upgradient monitoring well MW-701 has higher sulfate concentrations than both MW-706 and TW-1 and upgradient well MW-703 has higher chloride concentrations than MW-704. As seen on the map, monitoring well MW-701 and MW-703 are located upgradient from the Upper AQC Impoundment indicating that naturally occurring sulfate levels can be significantly higher than the sulfate levels in MW-706 and TW-1; and that naturally occurring chloride levels can be significantly higher than the chloride levels in MW-704. Therefore, natural groundwater flow from upgradient of the Upper AQC Impoundment likely contributed to the geochemistry of groundwater downgradient of the Upper AQC Impoundment and caused the sulfate and chloride levels to increase. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSIs above the background level for sulfate and chloride, or that the SSI resulted from natural variation in groundwater quality.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots were prepared for chloride for upgradient wells MW-701, MW-702, and MW-703 and MW-704. Although the chloride SSI was only identified in MW-704, the box and whiskers plots show that it is below the chloride range for upgradient well MW-703. The comparison indicates the chloride level in upgradient well MW-703 is greater than the chloride level in MW-704. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSI above

background levels for chloride, or that the SSI resulted from natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

Box and whiskers plots were prepared for sulfate for upgradient wells MW-701, MW-702, and MW-703 and downgradient wells MW-706 and TW-1. Although sulfate SSIs were only identified in downgradient wells MW-706 and TW-1, the box and whiskers plots show that concentrations in those wells are below the sulfate range for upgradient well MW-701. The comparison indicates the sulfate level in upgradient well MW-701 is greater than the sulfate level in MW-706 and TW-1. This demonstrates that a source other than the Upper AQC Impoundment could have caused the SSIs above background levels for sulfate, or that the SSIs resulted from natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for chloride were prepared for the CCR monitoring system upgradient wells MW-701, MW-702, and MW-703 and MW-704. Although the chloride SSI was only identified in well MW-704, the time series plots show that chloride concentrations in MW-704 are below the chloride concentrations in upgradient well MW-703. This demonstrates that a source other than the Upper AQC Impoundment caused the chloride SSI or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

Time series plots for sulfate were prepared for the CCR monitoring system upgradient wells MW-701, MW-702, and MW-703 and downgradient wells MW-706 and TW-1. Although the sulfate SSIs were only identified in downgradient wells MW-706 and TW-1, the time series plots show that sulfate concentrations in these wells are below the sulfate concentrations in upgradient well MW-701. The comparison indicates the sulfate level in upgradient well MW-701 is greater than the sulfate levels in downgradient wells MW-706 and TW-1. This demonstrates that a source other than the Upper AQC Impoundment caused the sulfate SSI or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

3.4 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection.

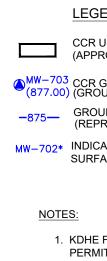
In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram was generated for samples from upgradient wells MW-701, MW-702, and MW-703 and from wells MW-704, MW-706 and TW-1. The samples from wells MW-704, MW-706 and TW-1 plot between the samples from upgradient wells MW-701 and MW-702 and between samples from MW-701 and MW-703 indicating similar geochemical characteristics to upgradient wells. Additionally of note, the difference between the upgradient wells indicates that natural variability occurs between relatively close upgradient wells and is likely to occur across the site. This demonstrates that a source other than the Upper AQC Impoundment caused the SSIs for MW-704, MW-706 and TW-1, or that the SSI resulted from natural variation in groundwater quality. The piper diagram plots and analytical results are provided in **Appendix D**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Upper AQC Impoundment caused the SSIs for chloride and sulfate, or that the SSI resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Upper AQC Impoundment may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

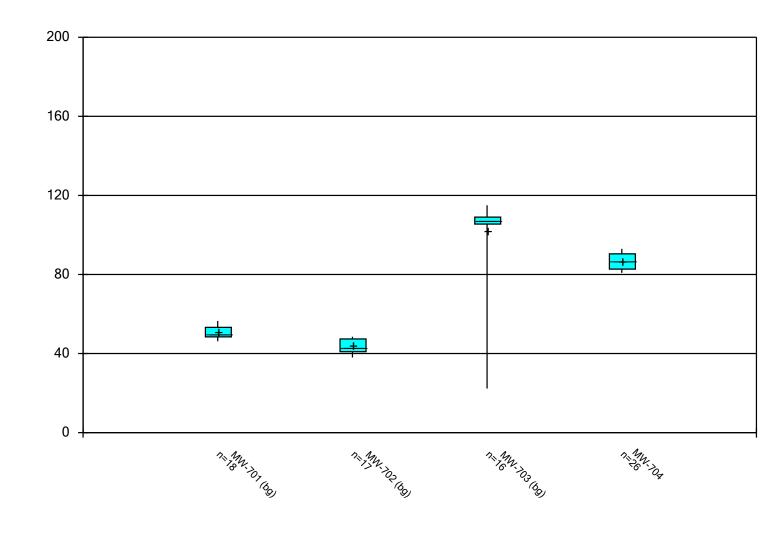
The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1

- PERMI SHOW 2. DRONI
- 2021. E LOCAT 3. BOUNE LOCAT

SCALE


800

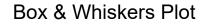
	₽Ŗ	I	I	I	ı	I	I
	REV. DATE	▽ –	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Δ -
END UNIT BOUNDARY ROXIMATE LIMITS OF UNIT) GROUNDWATER MONITORING SYSTEM WELLS DUNDWATER ELEVATION) UNDWATER POTENTIOMETRIC SURFACE ELEVATIONS PRESENTATIVE FOR THIS UNIT) CATES WELL NOT USED IN POTENTIOMETRIC FACE MAP CREATION	SHEET ПП.Е	POTENTIOMETRIC SURFACE MAP	UAQC IMPOUNDMENT (MAY 2021)	PROJECT TITLE	LA CYGNE UAQC IMPOUNDMENT	ALTERNATIVE SOURCE DEMONSTRATION	
E FACILITY PERMIT AND LANDFILL MIT BOUNDARIES VARY FROM THAT VN. NE IMAGE DATED JANUARY BOUNDARY AND MONITOR WELL TIONS ARE APPROXIMATE. NDARY AND MONITOR WELL TIONS ARE PROVIDED BY AECOM.	CLIENT	EVERGY METRO, INC		LA CYGNE. KANSAS			
0 800 1600 FEET	CADD DATE FIGUF	Fill Fill 12	/3	PH. (913) 681-0030 FAX. (913) 681- €	DWN. BY:	2/21/235.21 ALK DSN. BY: CHK. BY:	DAW JF

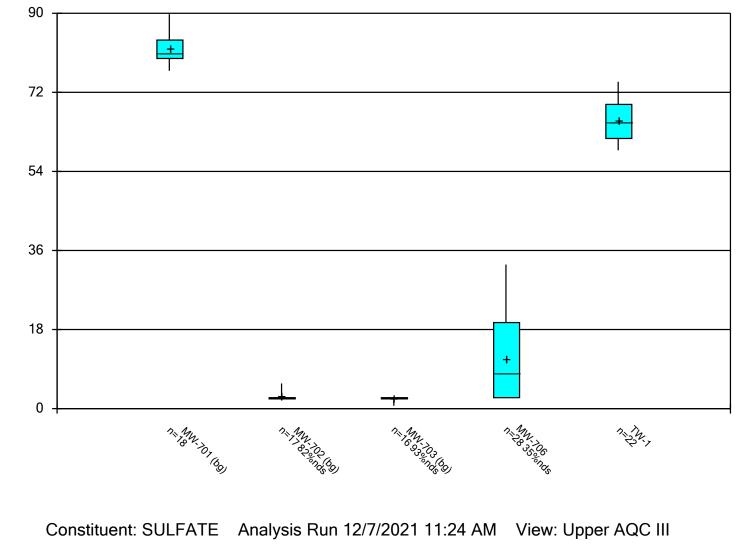
Appendix B

Box and Whiskers Plots

mg/l

Box & Whiskers Plot

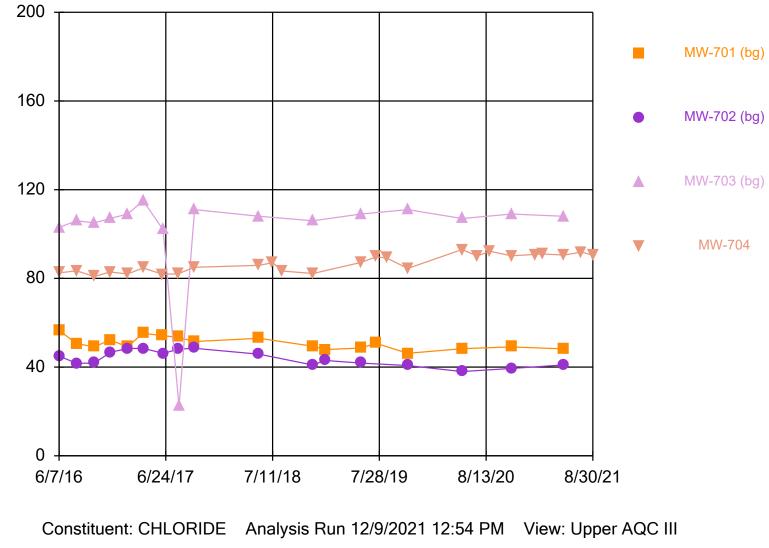

Constituent: CHLORIDE Analysis Run 12/7/2021 11:20 AM View: Upper AQC III LaCygne Client: SCS Engineers Data: LaC GW Data


Box & Whiskers Plot

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 12/7/2021, 11:21 AM

				01 L D	o				
<u>Constituent</u>	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	<u>Min.</u>	<u>Max.</u>	<u>%NDs</u>
CHLORIDE (mg/l)	MW-701 (bg)	18	50.74	2.828	0.6665	50	46.2	56.5	0
CHLORIDE (mg/l)	MW-702 (bg)	17	43.84	3.484	0.8449	43	38	48.5	0
CHLORIDE (mg/l)	MW-703 (bg)	16	102.4	21.59	5.397	107.5	22.3	115	0
CHLORIDE (mg/l)	MW-704	26	86.71	3.945	0.7737	86.5	80.8	93	0

mg/l


Box & Whiskers Plot

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 12/7/2021, 11:25 AM **Constituent** <u>Well</u> N <u>Mean</u> Std. Dev. Std. Err. <u>Median</u> Min. <u>Max.</u> <u>%NDs</u> SULFATE (mg/l) 0.7587 76.9 89.8 MW-701 (bg) 18 82.12 3.219 81 0 SULFATE (mg/l) MW-702 (bg) 17 2.826 1.055 0.2559 2.5 1.85 5.73 82.35 SULFATE (mg/l) MW-703 (bg) 16 2.385 0.4608 0.1152 2.5 0.657 2.5 93.75 SULFATE (mg/l) MW-706 28 11.3 9.433 1.783 8 2.5 32.8 35.71 SULFATE (mg/l) TW-1 22 65.67 4.782 1.02 65.15 58.8 74.4 0

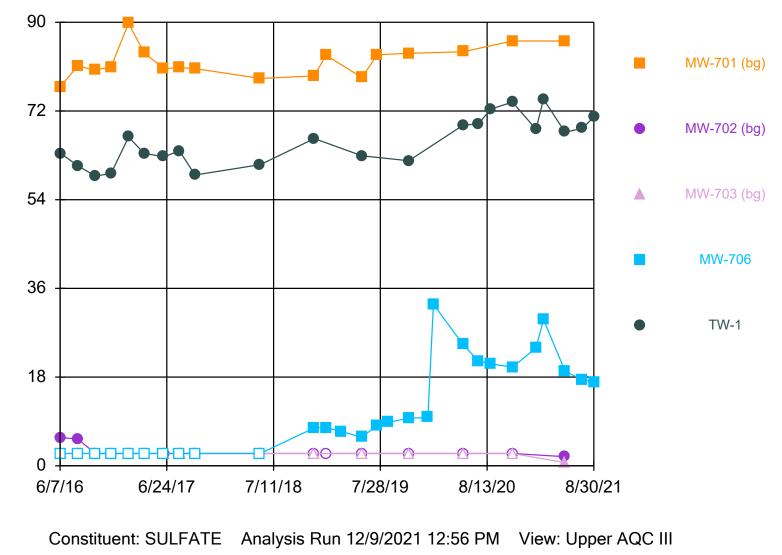
Appendix C

Time Series Plots

Time Series

LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l


Time Series

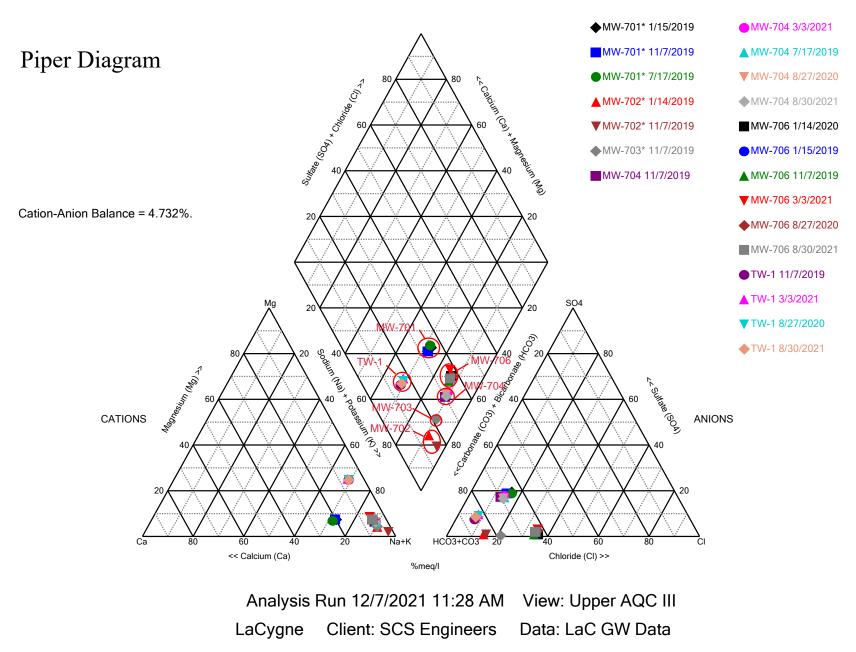
Constituent: CHLORIDE (mg/l) Analysis Run 12/9/2021 12:55 PM View: Upper AQC III

	MW-701 (bg)	MW-702 (bg)	MW-703 (bg)	MW-704
6/7/2016	56.5		103	82.5
6/8/2016		44.9		
8/9/2016	50.6	41.7	106	83.4
10/11/2016	49.1	41.8	105	80.8
12/6/2016	52.2		107	82.9
12/8/2016		46.7		
2/7/2017	49.2		109	82
2/8/2017		48.4		
4/4/2017	55.3		115	84.7
4/5/2017		48.4		
6/13/2017	54.1			81.8
6/14/2017			102	
6/15/2017		46.2		
8/8/2017	53.5			82.1
8/9/2017		48.1		
8/10/2017			22.3	
10/3/2017	51.5	48.5		85
10/5/2017			111	
5/24/2018	53	45.8	108	85.9
7/11/2018				87.1
8/16/2018				83.3
12/3/2018	49.4	40.9	106	82.2
1/14/2019		43		
1/15/2019	47.9			
5/23/2019	48.6	41.8	109	87.2
7/17/2019	50.7			89.7
8/23/2019				89.2
11/7/2019	46.2	40.7	111	84.5
5/19/2020	48.3	38	107	93
7/13/2020				90.1
8/27/2020				92.2
11/12/2020	49.1	39.4	109	90.2
2/4/2021				90.8
3/3/2021				91
5/19/2021	48.2	41	108	90.5
7/21/2021				91.9
8/30/2021				90.4

Sanitas[™] v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l


Time Series

Constituent: SULFATE (mg/l) Analysis Run 12/9/2021 12:57 PM View: Upper AQC III

	MW-701 (bg)	MW-702 (bg)	MW-703 (bg)	MW-706	TW-1
6/7/2016	76.9		<5		
6/8/2016		5.73		<5	
6/9/2016					63.4
8/9/2016	81.1	5.46	<5	<5	60.9
10/11/2016	80.3	<5	<5	<5	58.8
12/6/2016	80.9		<5	<5	59.3
12/8/2016		<5			
2/7/2017	89.8		<5	<5	66.7
2/8/2017		<5			
4/4/2017	83.8		<5	<5	63.4
4/5/2017		<5			
6/13/2017	80.6			<5	62.7
6/14/2017			<5		
6/15/2017		<5			
8/8/2017	80.8				63.9
8/9/2017		<5		<5	
8/10/2017			<5		
10/3/2017	80.6	<5			59
10/4/2017				<5	
10/5/2017			<5		
5/24/2018	78.6	<5	<5	<5	61.1
12/3/2018	79.1	<5	<5		
12/4/2018				7.69	66.4
1/14/2019		<5			
1/15/2019	83.3			7.73	
3/11/2019				6.96	
5/23/2019	78.8	<5	<5	5.78	62.9
7/17/2019	83.4			8.27	
8/23/2019				8.79	
11/7/2019	83.7	<5	<5	9.68	61.9
1/14/2020				9.78	
2/3/2020				32.8	
5/19/2020	84	<5	<5	24.6	69.1
7/13/2020				21.3	69.4
8/27/2020				20.7	72.4
11/12/2020	86.2	<5	<5	20	73.8
2/4/2021				23.9	68.3
3/3/2021				29.7	74.4
5/19/2021	86.2	1.85	0.657	19.2	67.7
7/21/2021				17.4	68.5
8/30/2021				17	70.8

Appendix D

Piper Diagram Plots and Analytical Results

Piper Diagram

Analysis Run 12/7/2021 11:32 AM View: Upper AQC III

Totals (ppm)	Na	К	Ca	Mq	Cl	S04	нсоз	C03
MW-701* 1/15/2019	169	3.11	40.2	8.79	47.9	83.3	336	10
MW-701* 7/17/2019	172	2.91	45	8.71	50.7	83.4	349	10
MW-701* 11/7/2019	163	2.85	40.4	8.6	46.2	83.7	369	10
MW-702* 1/14/2019	230	3.14	11.2	5.24	43	2.5	461	10
MW-702* 11/7/2019	167	2.58	2.73	1.7	40.7	2.5	249	87.9
MW-703* 11/7/2019	339	3.53	17.6	8.07	111	2.5	725	10
MW-704 7/17/2019	442	5.85	21.5	15.8	89.7	156	790	10
MW-704 11/7/2019	429	5.47	21	15.5	84.5	163	844	10
MW-704 8/27/2020	444	5.51	21.8	16.1	92.2	150	803	10
MW-704 3/3/2021	434	5.6	20.7	15.7	91	164	791	10
MW-704 8/30/2021	432	5.39	20.8	15.4	90.4	154	816	10
MW-706 1/15/2019	442	6.52	24.7	19.5	238	7.73	769	10
MW-706 11/7/2019	427	6.26	22.5	19	240	9.68	806	10
MW-706 1/14/2020	422	6.18	24.4	19.3	247	9.78	767	10
MW-706 8/27/2020	437	6.25	23	19.4	238	20.7	751	10
MW-706 3/3/2021	412	6.65	25.7	21.6	228	29.7	716	10
MW-706 8/30/2021	428	6.29	23.8	19.4	236	17	780	10
TW-1 11/7/2019	286	7.72	23.3	55.4	40.1	61.9	878	10
TW-1 8/27/2020	304	7.61	23.6	58.3	41	72.4	835	10
TW-1 3/3/2021	298	7.95	24.9	59.2	40.2	74.4	818	10
TW-1 8/30/2021	299	7.74	24.2	57	41	70.8	878	10