2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

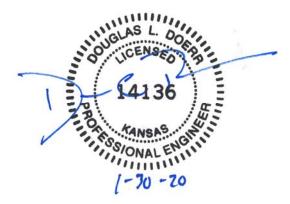
Presented To: Evergy Metro, Inc. (f/k/a Kansas City Power & Light Co.)

SCS ENGINEERS

27217233.19 | January 2020

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Professional Geologist in the State of Kansas, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

Revision Number	Revision Date	Revision Section	Summary of Revisions

Table of Contents

Sectio	n		Pag	ge
CERTIFI	ICATIO	NS		i
			ON	
2 §	257.9	90(e)	ANNUAL REPORT REQUIREMENTS	1
2.	.1 §	257.9	90(e)(1) Site Map	1
2.	.2 §	257.9	90(e)(2) Monitoring System Changes	1
2.			90(e)(3) Summary of Sampling Events	
2.			90(e)(4) Monitoring Transition Narrative	
2.	.5 §		90(e)(5) Other Requirements	
	2.	.5.1	§ 257.90(e) Program Status	2
	2.	.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency.	3
	2.	.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	3
	2.	.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency	4
	2.	.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	
	2.	.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	4
	2.	.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	5
3 GI	ENER/	AL CO	MMENTS	5

Appendices

Appendix A Figures

Figure 1: Site Map

Appendix B Tables

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstrations

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (June 2019)
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (December 2019)

1 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared for Evergy Metro, Inc. (f/k/a Kansas City Power & Light Company) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the Bottom Ash Impoundment and all background (or upgradient) and downgradient monitoring wells with identification numbers for the Bottom Ash Impoundment groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the Bottom Ash Impoundment in 2019.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and

downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2019). Samples collected in 2019 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include Fall 2018 semiannual detection monitoring event verification data taken in 2019; Spring 2019 semiannual detection monitoring data; and the initial Fall 2019 semiannual detection monitoring data.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2019. Only detection monitoring was conducted in 2019.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2018 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2018 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2018 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2018 semiannual sampling and analysis detection monitoring event,
- e. completion of the Spring 2019 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,

- f. completion of the statistical evaluation of the Spring 2019 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2019 semiannual detection monitoring sampling and analysis event, and
- h. initiation of the Fall 2019 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2020).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2019 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2020 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2020 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as Appendix C.

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (June 2019)
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (December 2019).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

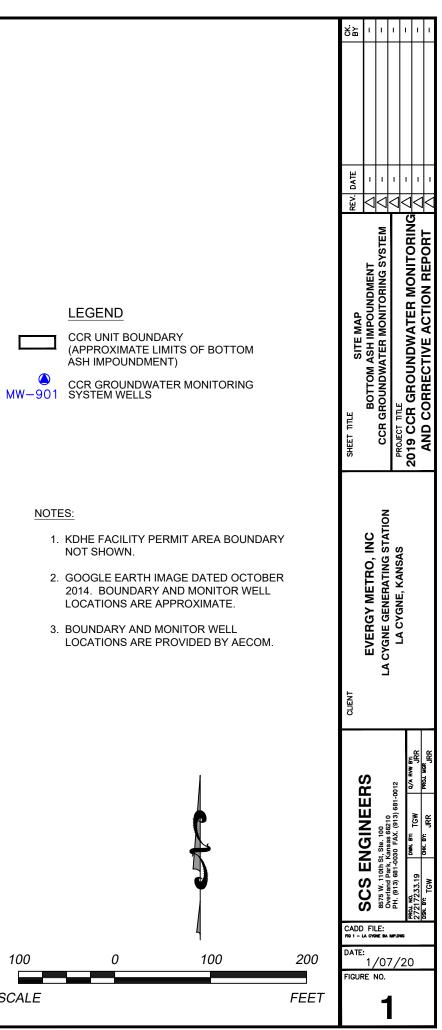
2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective montoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the La Cygne Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.


Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the La Cygne Generating Station Bottom Ash Impoundment. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES

Figure 1: Site Map

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 Bottom Ash Impoundment Appendix III Detection Monitoring Results Evergy LaCygne Generating Station

		Appendix III Constituents						
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	рН (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-901	5/23/2019	1.18	52.3	22.8	0.489	7.31	21.0	514
MW-901	11/8/2019	1.09	53.4	23.2	0.481	7.37	21.2	502
MW-902	1/14/2019					**6.98		*492
MW-902	5/23/2019	1.24	66.5	32.8	0.441	7.26	29.4	511
MW-902	11/8/2019	1.17	64.3	32.1	0.455	7.28	27.9	471
MW-903	1/14/2019		*377			**6.58		
MW-903	3/11/2019		*375			**6.95		
MW-903	5/23/2019	0.494	367	24.5	0.130	6.86	1030	2030
MW-903	7/17/2019		*373			**7.11		
MW-903	8/22/2019		*366			**6.73		
MW-903	11/8/2019	0.508	348	24.5	0.140	6.83	1050	1870
MW-904	5/23/2019	1.11	68.2	33.4	0.382	7.23	81.7	696
MW-904	11/8/2019	0.957	65.3	32.6	0.369	7.34	78.3	607
MW-905	5/23/2019	1.87	46.4	52.0	0.494	7.36	28.7	621
MW-905	11/8/2019	1.77	46.0	52.8	0.488	7.52	27.7	537

* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

Table 2Bottom Ash ImpoundmentDetection Monitoring Field MeasurementsEvergy LaCygne Generating Station

Well Number	Sample Date	рН (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	***Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-901	5/23/2019	7.31	1030	21.38	0.00	102	2.06	10.90	843.39
MW-901	11/8/2019	7.37	845	17.45	10.70	39	0.89	10.69	843.60
MW-902	1/14/2019	**6.98	856	14.35	8.40	415	0.00	12.68	842.39
MW-902	5/23/2019	7.26	1050	20.78	0.00	-17	2.54	12.89	842.18
MW-902	11/8/2019	7.28	821	16.23	0.80	-19	0.45	13.70	841.37
MW-903	1/14/2019	**6.58	2560	11.95	5.00	31	1.44	13.04	841.36
MW-903	3/11/2019	**6.95	2420	13.21	5.90	66	9.06	11.87	842.53
MW-903	5/23/2019	6.86	2840	17.86	0.00	27	2.47	11.89	842.51
MW-903	7/17/2019	**7.11	2410	22.85	0.00	109	1.77	12.03	842.37
MW-903	8/22/2019	**6.73	2370	20.58	0.50	214	0.19	12.63	841.77
MW-903	11/8/2019	6.83	2430	15.79	0.00	45	0.88	13.10	841.30
MW-904	5/23/2019	7.23	1340	17.84	5.20	-72	2.32	13.60	841.45
MW-904	11/8/2019	7.34	1070	16.58	9.10	-44	0.69	13.65	841.40
MW-905	5/23/2019	7.36	1250	17.15	21.5	24	2.47	9.98	844.24
MW-905	11/8/2019	7.52	1000	16.61	17.0	8	1.02	11.70	842.52

* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

***Depth to water measured in all monitoring wells within 24 hour period prior to the sampling event

S.U. - Standard Units

 μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

Appendix C

Alternative Source Demonstrations

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (June 2019)
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, La Cygne Generating Station (December 2019)

C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (June 2019)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2018 GROUNDWATER MONITORING EVENT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To:

Kansas City Power & Light Company

Presented By:

SCS ENGINEERS

8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

(913) 681-0030

June 2019

File No. 27217233.19

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Section

Page

CERT	IFICA	[IONS	.i
1		latory Framework	
2		stical Results	
3	Alteri	native Source Demonstration	2
	3.1	Bottom Ash SPLP Analysis	2
	3.2	Box and Whiskers Plots	2
	3.3	Time Series Plots	3
		Piper Plots	
	3.5	Facility Wide Interwell Prediction Limit	4
4	Conc	lusion	4
5	Gene	ral Comments	4

Appendices

- Appendix A Bottom Ash SPLP Laboratory Report
- Appendix B Box and Whiskers Plots
- Appendix C Time Series Plots
- Appendix D Piper Diagrams
- Appendix E Facility Wide Interwell Prediction Limits

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a gualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 29, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on January 12, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 14, 2019 and March 11, 2019.

The completed statistical evaluation identified Appendix III constituent, calcium, above its prediction limit in monitoring well MW-903. The prediction limit for calcium in monitoring well MW-903 is 358.2 mg/L. The detection monitoring sample was reported at 375 mg/L. The first verification re-sample was collected on January 14, 2019 with a result of 377 mg/L. The second verification re-sample was collected on March 11, 2019 with a result of 375 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring well MW-903 exceeds its prediction limit and is a confirmed SSI over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified one SSI above the background prediction limit for calcium in monitoring well MW-903.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the Bottom Ash Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate the SSI was not caused by a release from the Bottom Ash Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 BOTTOM ASH SPLP ANALYSIS

The Synthetic Precipitation Leaching Procedure (SPLP) is an Environmental Protection Agency (EPA) approved extraction procedure designed to simulate and then analyze leachate, which would be produced from rainfall passing through a contaminated material (assuming the rainfall is slightly acidic). The SPLP is used to assess the potential of a contaminated material (in or on top of the ground) to impact groundwater (or surface water), when exposed to normal weathering. A bottom ash sample was collected on September 17, 2018 and submitted to the laboratory for SPLP analysis for calcium. The calcium result for the SPLP extract (simulated leachate) was 73.7 mg/L. The prediction limit for calcium in monitoring well MW-903 is 358 mg/L and the detection monitoring sample was reported at 375 mg/L. The calcium concentration in the groundwater from MW-903 is significantly greater than what would be expected from bottom ash leachate. The comparison indicates the elevated calcium concentrations in monitoring well MW-903 are not from bottom ash leachate but from a source other than bottom ash, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The laboratory report is provided in **Appendix A.**

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic "box" plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Based on the bottom ash SPLP calcium analysis compared to the calcium results for MW-903, the calcium levels for additional wells at the LaCygne Generating Station (not part of the CCR Bottom Ash groundwater monitoring system) were reviewed for elevated calcium levels to determine if elevated calcium concentrations could occur naturally in the vicinity of the facility and if natural variability between wells occurred in the vicinity of the facility. Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Box and whiskers plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located in close proximity to MW-13, indicating natural variability of calcium over short distances occurs at the site. The comparison also indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the facility site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from

error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Of the four wells exhibiting elevated calcium, wells, MW-805 and MW-903 also exhibited a SSIs. Time series plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located close to MW-13 indicating natural variability of calcium over short distances occurs at the site. The comparison indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

3.4 PIPER PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for samples from MW-903 and samples from MW-13 (upgradient well for the CCR Landfill and Lower AQC Impoundment) are provided in **Appendix D**. The samples plot near one another in the same hydrochemical facies indicating similar geochemical characteristics between an upgradient well in the vicinity of the facility and a downgradient well for the Bottom Ash Impoundment. The comparison indicates the hydrochemical characteristics (particularly calcium) of groundwater from monitoring well MW-903 are similar to the hydrochemical characteristics (particularly calcium) of background groundwater and are a similar range as that of an upgradient well at the facility and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The piper diagram plots are provided in **Appendix D**.

3.5 FACILITY WIDE INTERWELL PREDICTION LIMIT

Because of known complexities and heterogeneities of the water bearing zone at the facility, an intrawell prediction limit analysis with retesting was the selected statistical method for the Bottom Ash Impoundment. However, false positives (SSIs) may occur due to a limited background data set that may not truly represent the background population for that particular well until the number of background observations are increased to better represent the entire population. The CCR Rule preamble recommends a minimum of eight to ten independent background observations be collected before performing the first statistical test; but also states that background sample sets of at least 20 are considered optimal. To further demonstrate that an intrawell prediction limit exceedance (SSI) could be naturally occurring and likely the result of a limited background data set for a particular well, an interwell prediction limit analysis on a facility wide basis can be useful to further demonstrate natural variability across a site or in the vicinity of the site and that the potential true background population may not be represented.

An interwell prediction limit analysis on a facility wide basis was performed comparing the calcium concentration in MW-903 to the prediction limit calculated from the combined background calcium data from all of the background monitoring wells across the facility. For this scenario, the facility wide interwell prediction limit for calcium is 395 mg/L. The highest calcium concentration from MW-903 is 384 mg/L, which is below the facility wide interwell prediction limit for calcium. The interwell prediction limit analysis further indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the facility site. This demonstrates that a source other than the bottom ash could cause the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Facility wide interwell prediction limit outputs are provided in **Appendix E**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Bottom Ash Impoundment caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Bottom Ash Impoundment may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other

estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Bottom Ash SPLP Laboratory Report

ANALYTICAL REPORT

October 01, 2018

SCS Engineers - KS

Sample Delivery Group:	L1027123
Samples Received:	09/19/2018
Project Number:	27217233.18
Description:	KCPL - LaCygne Generating Station

Report To:

Jason Franks 8575 West 110th Street Suite 100 Overland Park, KS 66210

Entire Report Reviewed By:

Vubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ss
4

TC
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BOTTOM ASH L1027123-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 9056A	6
Metals (ICP) by Method 6010B	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

BOTTOM ASH L1027123-01 GW			Collected by Jason R Franks	Collected date/time 09/17/18 12:00	Received date/time 09/19/18 11:50	1
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	2
Preparation by Method 1312	WG1169395	1	09/21/18 11:47	09/21/18 11:47	TM	L
Wet Chemistry by Method 9056A	WG1169693	1	09/24/18 20:14	09/24/18 20:14	NJM	
Metals (ICP) by Method 6010B	WG1170271	1	09/23/18 09:55	09/23/18 22:31	CCE	

IC
^³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

*

Ср

SDG: L1027123 DATE/TIME: 10/01/18 09:32 PAGE: 3 of 10

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 4 of 10

SAMPLE RESULTS - 01 L1027123

Qc

Gl

Â

Sc

Preparation by Method 1312

					l'Cn	L
	Result	Qualifier	Prep	Batch	Cp	l
Analyte			date / time		2	i
SPLP Extraction	-		9/21/2018 11:47:27 AM	WG1169395	Tc	l

Wet Chemistry by Method 9056A

	Result	Qualifier	Flep		Balch		
Analyte		(
SPLP Extraction	-		9/21/2018 11	I:47:27 AM	WG1169395		
Wet Chemistry by	Method 9056A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	ND		1000	1	09/24/2018 20:14	WG1169693	
Fluoride	118		100	1	09/24/2018 20:14	WG1169693	
Sulfate	51100		5000	1	09/24/2018 20:14	<u>WG1169693</u>	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	959		200	1	09/23/2018 22:31	WG1170271
Calcium	73700		1000	1	09/23/2018 22:31	WG1170271

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1027123-01

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3344732-1	09/24/18 17:59

(1010) K3544752-1 C	13/24/10 17.33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1027594-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1027594-11 09/24	/18 22:52 • (DUP)	1 R3344732-4	09/24/18	23:07		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	244	184	1	27.8	<u>J P1</u>	15
Sulfate	U	0.000	1	0.000		15

L1027715-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1027715-01 09/25/18 01:45 • (DUP) R3344732-7 09/25/18 02:00

	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	8430	8420	1	0.118		15
Sulfate	8690	8710	1	0.147		15

L1027594-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1027594-11 09/24/18 22:52 • (MS) R3344732-5 09/24/18 23:21 • (MSD) R3344732-6 09/24/18 23:36												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	244	50900	51100	101	102	1	80.0-120			0.435	15
Sulfate	50000	U	51800	51400	104	103	1	80.0-120			0.729	15

L1027715-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1027715-01 09/25/18	(OS) L1027715-01 09/25/18 01:45 • (MS) R3344732-8 09/25/18 02:14									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Chloride	50000	8430	59200	102	1	80.0-120				
Sulfate	50000	8690	59100	101	1	80.0-120				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L1027123	10/01/18 09:32	6 of 10

WG1170271

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1027123-01

⁺Cn

Sr

Qc

GI

Method Blank (MB)

Method Blau	K (IVIB)				
(MB) R3344358-1	09/23/18 21:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		12.6	200	
Calcium	U		46.3	1000	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3344358-2 09/23/	(LCS) R3344358-2 09/23/18 22:01 • (LCSD) R3344358-3 09/23/18 22:03											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Boron	1000	992	995	99.2	99.5	80.0-120			0.340	20		
Calcium	10000	10000	9930	100	99.3	80.0-120			0.917	20		

L1026826-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026826-01 09/23/	(OS) L1026826-01 09/23/18 22:06 • (MS) R3344358-5 09/23/18 22:12 • (MSD) R3344358-6 09/23/18 22:14												⁸ Al
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	155	1170	1170	101	102	1	75.0-125			0.133	20	SC
Calcium	10000	43500	53700	53700	102	102	1	75.0-125			0.0395	20	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1027123

DATE/TIME: 10/01/18 09:32

PAGE: 7 of 10

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 8 of 10

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Nevad
Arizona	AZ0612	New H
Arkansas	88-0469	New J
California	2932	New N
Colorado	TN00003	New Y
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virgini
Minnesota	047-999-395	Washi
Mississippi	TN00003	West \
Missouri	340	Wisco
Montana	CERT0086	Wyom

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

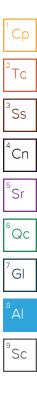
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

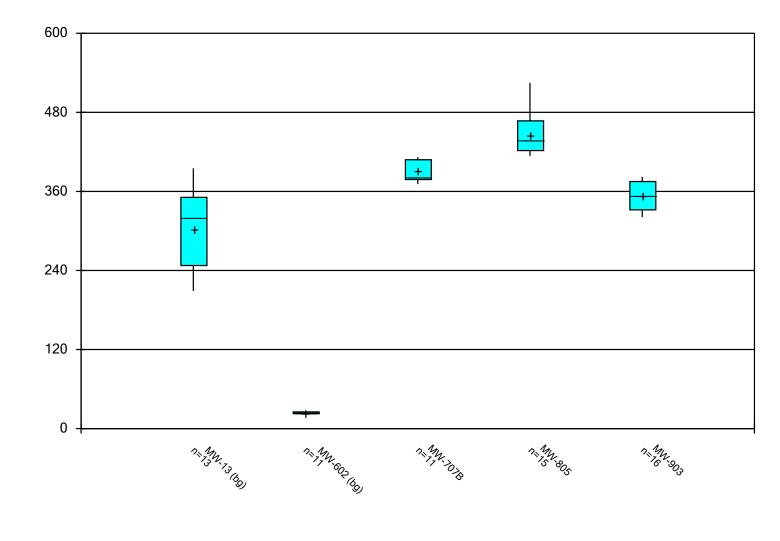
Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27217233.18

L1027123

PAGE: 9 of 10


10/01/18 09:32

SCS Engineers - KS			Billing Information:				1	1.	Analusis / Co			_	1 1		
		Accounts Payable			Drose	1		Analysis / Co	ontainer / Preserva	tive	1 1	Chain of Custod	V Page of		
				est 110th Stre	et	Pres		1.0			100		\$7		
8575 West 110th Street			Suite 10		1.1	-		1			-		1 300	Analysian"	
Suite 100 Overland Park KS 66210			Overlan	d Park, KS 662	10		1.500	100		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1		/	and a state to and	
Report to:	2.5.1	1211	Email To:	franks@scsengine	ers.com:	-	133						112		
Jason Franks Jay.martir				@kcpl.com;				1 12				10.8	12065 Lebanon Rd		
Project Description: KCPL - LaCygne Generating Station			Iterate and	City/State Collected: La CygNE, KS Lab Project # AQUAOPKS-LACYGNE P.O. #			16ozClr-NoPres						Phone: 615-758-58 Phone: 800-767-58	Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
Phone: 913-681-0030 Fax: 913-681-0012	Client Project # 27217233.18												L# L1027123 E242		
Collected by (print): JASON R. FRANKS	Site/Facility ID #											U.B.H			
Jason R. Franks collected by (signature):	Collected by (signature); Rush? (Lab MUST Be			d) Quote #			/ anions				2.64	P.	Template:T14	Acctnum: AQUAOPKS Template:T140691	
Next Day 5 Day (F		(Rad Only) y (Rad Only)	Date Res	Date Results Needed		metals /	-#5					TSR: 206 - Jeff	Prelogin: P672563 TSR: 206 - Jeff Carr PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs					100		Shipped Via:		
2 1	0			1 1 1		1	SPLP					1.10	Bemarks	Sample # (lab only)	
Bortom ASH	GRAB	SS	-	9/17/18	1200	1	x						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-01	
	-			1.1.2	1. 1. 1. 1	-					1		1 전품 전	-	
THE STATE			21								1		2		
	1.1			1	1.	31					-		530		
								12.2							
	-		_												
			-	-	Call Conse	-	12							and the second	
			1911	200											
GW - Groundwater B - Bioassay WW - WasteWater	Remarks: SPLP - Extract for B, Ca, Cl, Fl, and SO4								рН	Temp	1.1	COC Seal	ample Receipt Ch 1 Present/Intact:	NP Y N	
	Samples returned via: UPSFedExCourierTracking #						Flow Other					COC Signed/Accurate:N Bottles arrive intact:N Correct bottles used:N Sufficient volume sent:N			
Relinquished by Astgnature		Date:	/ Th	and the second s	cking # :e/Ved hy: (Signat	ure)	9	-18-18	Trip Blank Re	ceived: Yes No	1. 18	VOA Zero	If Applicab) D Headspace: ation Correct/Che	v v	
Relinquished by : (Signature)		9/19/1 Date:	-	Te: Rec	eived by: (Signati	loa	~	1505		HCL/N TBR	Леон				
Palinguiched by - (Cigostrue)	-	Deter			1.2	T			Last.	°C Bottles Recei	lved:	If preserva	ation required by Log	in: Date/Time	
Relinquished by : (Signature) Date:		Tir	Received for lab by: (Signature)				8C1 9/19/18 1150				Hold: Condition				

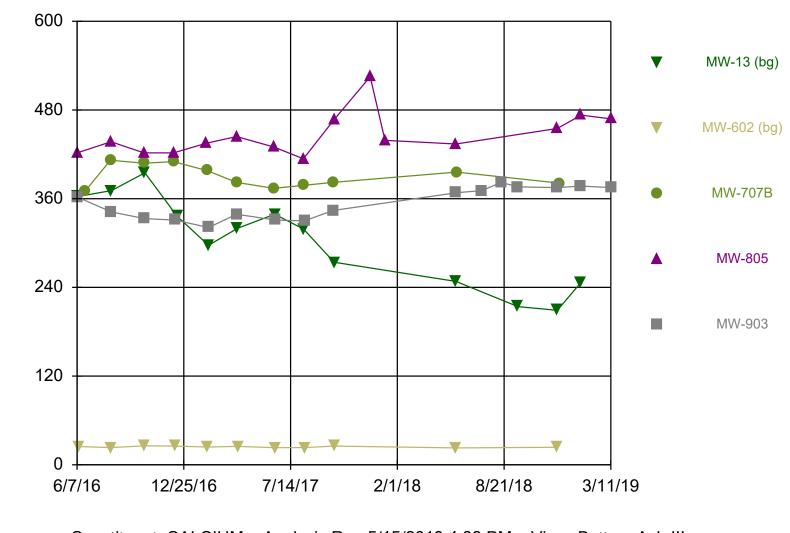
Appendix B

Box and Whiskers Plots

Constituent: CALCIUM Analysis Run 5/15/2019 4:27 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l

Constituent: CALCIUM (mg/l) Analysis Run 5/15/2019 4:29 PM View: Bottom Ash III


			200	, grio oliona oco	
0/7/0010	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/7/2016				422	
6/8/2016					362
6/9/2016	363				
6/10/2016		24.7			
6/23/2016			371		
8/9/2016		23.3	412		
8/10/2016				437	
8/11/2016	371				342
10/11/2016			408	422	
10/13/2016	395	25.7			333
12/6/2016			410	422	
12/9/2016		25.3			331
12/13/2016	336				
2/6/2017				435	
2/7/2017			398		
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320				
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017				525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376
11/29/2018					375
11/30/2018	209	23.7		455	
12/4/2018			381		
1/14/2019	247			473	377
3/11/2019				468	375
Median	319	24	382	437	353
LowerQ.	247.5	23.3	378	422	332
UpperQ.	351	25.3	408	467	375
Min	209	22.9	371	414	321
Max	395	25.7	412	525	382
Mean	302.5	24.21	390.2	445.8	353.6
	-		-		

	LaCygne (Client: SCS Er	ngineers	Data: LaC GW Data	Printed 5/15/2019,	4:29 PM			
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
CALCIUM (mg/I)	MW-13 (bg)	13	302.5	60.15	16.68	319	209	395	0
CALCIUM (mg/I)	MW-602 (bg)	11	24.21	1	0.3016	24	22.9	25.7	0
CALCIUM (mg/l)	MW-707B	11	390.2	15.09	4.55	382	371	412	0
CALCIUM (mg/l)	MW-805	15	445.8	28.51	7.362	437	414	525	0
CALCIUM (mg/l)	MW-903	16	353.6	21.38	5.346	353	321	382	0

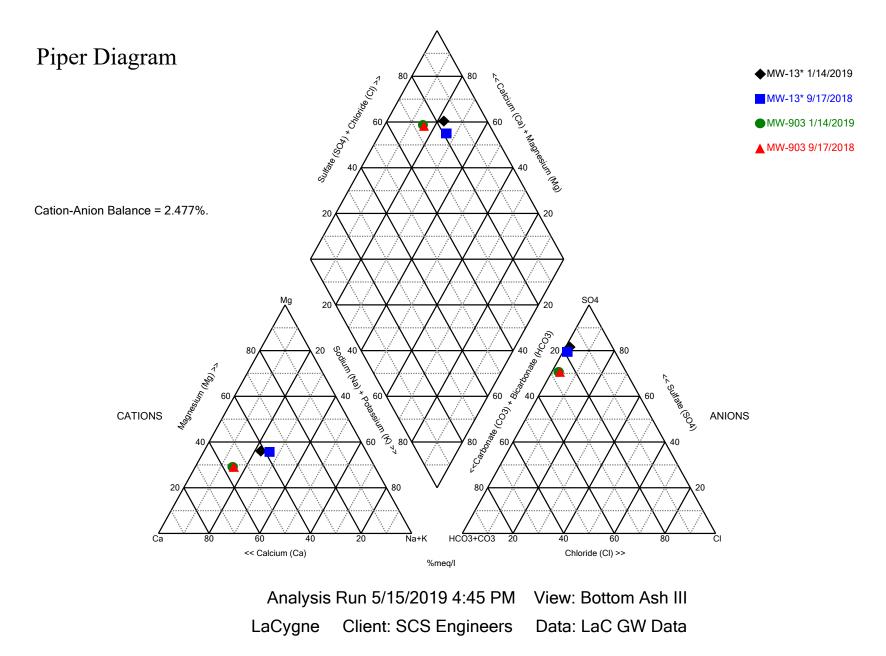
Appendix C

Time Series Plots

Time Series

Constituent: CALCIUM Analysis Run 5/15/2019 4:33 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l


Time Series

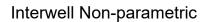
Constituent: CALCIUM (mg/l) Analysis Run 5/15/2019 4:34 PM View: Bottom Ash III

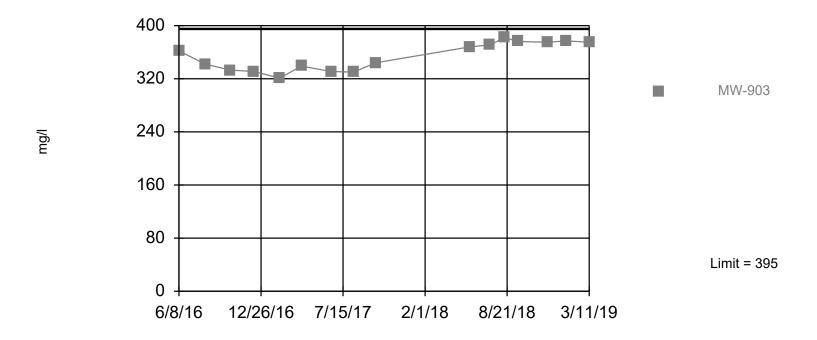
			Lac	Sygne Chent. Ooc	
	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/7/2016				422	
6/8/2016					362
6/9/2016	363				
6/10/2016		24.7			
6/23/2016			371		
8/9/2016		23.3	412		
8/10/2016				437	
8/11/2016	371				342
10/11/2016			408	422	
10/13/2016	395	25.7			333
12/6/2016			410	422	
12/9/2016		25.3			331
12/13/2016	336				
2/6/2017				435	
2/7/2017			398		
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320				
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017				525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376
11/29/2018					375
11/30/2018	209	23.7		455	
12/4/2018			381		
1/14/2019	247			473	377
3/11/2019				468	375

Appendix D

Piper Diagrams

Analysis Run 5/15/2019 4:46 PM View: Bottom Ash III


Totals (ppm)	Na	ĸ	Ca	Mg	Cl	SO4	HCO3	CO3
MW-13* 9/17/2018	165	3.55	214	120	13.1	1010	295	10
MW-13* 1/14/2019	151	3.3	247	128	12.5	1120	289	10
MW-903 9/17/2018	116	6.47	376	117	26.1	1070	497	10
MW-903 1/14/2019	110	6.18	377	118	24.3	1070	501	10


Appendix E

Facility Wide Interwell Prediction Limits

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 82 background values. Annual per-constituent alpha = 0.0001433. Individual comparison alpha = 0.0001024 (1 of 3). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Constituent: CALCIUM Analysis Run 5/15/2019 4:56 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Prediction Limit

Constituent: CALCIUM (mg/l) Analysis Run 5/15/2019 5:17 PM View: Bottom Ash III

	MW-10 (bg)	MW-703 (bg)	MW-701 (bg)	MW-903	MW-901 (bg)	MW-601 (bg)	MW-13 (bg)	MW-602 (bg)
6/6/2016	60.1							
6/7/2016		22	39.6					
6/8/2016				362	57.2			
6/9/2016						21.7	363	
6/10/2016								24.7
8/9/2016		17.9	35.3			20.3		23.3
8/11/2016	58.7			342	53.9		371	
10/11/2016		20.5	37.2					
10/12/2016	60.7							
10/13/2016				333		23.9	395	25.7
10/14/2016					52.1			
12/6/2016		19.8	37.2					
12/7/2016						22.5		
12/9/2016	59			331				25.3
12/12/2016					56.9			
12/13/2016							336	
2/7/2017		17.7	37.4					
2/8/2017	58.8					20.1		24
2/9/2017					55.7			
2/10/2017				321			297	
4/4/2017		22.4	36.3	339	57.6			
4/6/2017	57.4					21.3	320	
4/7/2017								24.9
6/13/2017			36.1					
6/14/2017		17.4						
6/15/2017	55.5					22	339	23.2
6/16/2017				331	56.7			
8/8/2017			36.3				319	
8/9/2017						20.9		
8/10/2017	56.1	17.5		330				23.3
8/11/2017					56			
10/3/2017			36.1	344	58.2			
10/4/2017	58.4							
10/5/2017		21.6					274	25.3
10/6/2017						21.1		
5/23/2018	54.1			368	57.1	17.6	248	22.9
5/24/2018		21.8	39.5					
7/11/2018				371				
8/16/2018				382				
9/17/2018				376			214	
11/29/2018				375	56.4			
11/30/2018	57.5					17.5	209	23.7
12/3/2018		17.7	44.8					
1/14/2019				377		17.9	247	
1/15/2019			40.2					
3/11/2019			44.2	375				

Prediction Limit

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 5/15/2019, 5:17 PM

<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	Bg N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
CALCIUM (mg/l)	MW-903	395	n/a	3/11/2019	375	No	82	0	n/a	0.000	NP Inter (normality)

C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, La Cygne Generating Station (December 2019)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2019 GROUNDWATER MONITORING EVENT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To:

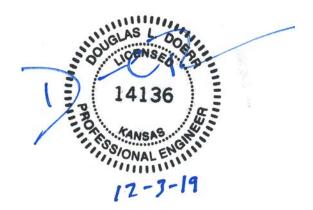
Evergy Metro, Inc.

Presented By:

SCS ENGINEERS

8575 West 110th Street, Suite 100 Overland Park, Kansas 66210 (913) 681-0030 December 2019 File No. 27217233.19

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Section

Page

CERT	IFICAT	'IONS	. i
1	Regu	latory Framework	1
2	_	tical Results	
3	Alter	native Source Demonstration	2
	3.1	Bottom Ash SPLP Analysis	2
	3.2	Box and Whiskers Plots	2
	3.3	Time Series Plots	3
	3.4	Piper Plots	3
	3.5	Facility Wide Interwell Prediction Limit	4
4	Conc	lusion	4
5	Gene	ral Comments	5

Appendices

Appendix A	Bottom Ash SPLP Laboratory Report
Appendix B	Box and Whiskers Plots
Appendix C	Time Series Plots
Appendix D	Piper Diagrams
Appendix E	Facility Wide Interwell Prediction Limits

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 23, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on July 5, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 17, 2019 and August 22, 2019.

The completed statistical evaluation identified Appendix III constituent, calcium, above its prediction limit in monitoring well MW-903.

Constituent/Monitoring Well *UPL		Observation May 23, 2019	1st Verification July 17, 2019	2nd Verification August 22, 2019	
Calcium					
MW-903	358.2	367	373	366	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation confirmed one SSI above the background prediction limit for calcium in monitoring well MW-903.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the Bottom Ash Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate the SSI was not caused by a release from the Bottom Ash Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 BOTTOM ASH SPLP ANALYSIS

The Synthetic Precipitation Leaching Procedure (SPLP) is an Environmental Protection Agency (EPA) approved extraction procedure designed to simulate and then analyze leachate, which would be produced from rainfall passing through a contaminated material (assuming the rainfall is slightly acidic). The SPLP is used to assess the potential of a contaminated material (in or on top of the ground) to impact groundwater (or surface water), when exposed to normal weathering. A bottom ash sample was collected on September 17, 2018 and submitted to the laboratory for SPLP analysis for calcium. The calcium result for the SPLP extract (simulated leachate) was 73.7 mg/L. The prediction limit for calcium in monitoring well MW-903 is 358.2 mg/L and the detection monitoring sample was reported at 367 mg/L. The calcium concentration in the groundwater from MW-903 is significantly greater than what would be expected from bottom ash leachate. The comparison indicates the elevated calcium concentrations in monitoring well MW-903 are not from bottom ash leachate but from a source other than bottom ash, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The laboratory report is provided in **Appendix A**.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic "box" plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Based on the bottom ash SPLP calcium analysis compared to the calcium results for MW-903, the calcium levels for additional wells at the La Cygne Generating Station (not part of the CCR Bottom Ash groundwater monitoring system) were reviewed for elevated calcium levels to determine if elevated calcium concentrations could occur naturally in the vicinity of the facility and if natural variability between wells occurred in the vicinity of the facility. Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Box and whiskers plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located in close proximity to MW-13, indicating natural variability of calcium over short distances occurs at the site. The comparison also indicates the calcium levels in monitoring well MW-903 are within the range of calcium

concentrations in upgradient wells at the facility site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Of the four wells exhibiting elevated calcium, wells, MW-805 and MW-903 also exhibited a SSIs. Time series plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located close to MW-13 indicating natural variability of calcium over short distances occurs at the site. The comparison indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

3.4 PIPER PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for samples from MW-903 and samples from MW-13 (upgradient well for the CCR Landfill and Lower AQC Impoundment) are provided in **Appendix D.** The samples plot near one another in the same hydrochemical facies indicating similar geochemical characteristics between an

upgradient well at the facility and a downgradient well for the Bottom Ash Impoundment. The comparison indicates the hydrochemical characteristics (particularly calcium) of groundwater from monitoring well MW-903 are similar to the hydrochemical characteristics (particularly calcium) of background groundwater and are a similar range as that of an upgradient well at the facility and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The piper diagram plots are provided in **Appendix D**.

3.5 FACILITY WIDE INTERWELL PREDICTION LIMIT

Because of known complexities and heterogeneities of the water bearing zone at the facility, an intrawell prediction limit analysis with retesting was the selected statistical method for the Bottom Ash Impoundment. However, false positives (SSIs) may occur due to a limited background data set that may not truly represent the background population for that particular well until the number of background observations are increased to better represent the entire population. The CCR Rule preamble recommends a minimum of eight to ten independent background observations be collected before performing the first statistical test; but also states that background sample sets of at least 20 are considered optimal. To further demonstrate that an intrawell prediction limit exceedance (SSI) could be naturally occurring and likely the result of a limited background data set for a particular well, an interwell prediction limit analysis on a facility wide basis can be useful to further demonstrate natural variability across a site or in the vicinity of the site and that the potential true background population may not be represented.

An interwell prediction limit analysis on a facility wide basis was performed comparing the calcium concentration in MW-903 to the prediction limit calculated from the combined background calcium data from all of the background (upgradient) monitoring wells across the facility. For this scenario, the facility wide interwell prediction limit for calcium is 395 mg/L. The highest calcium concentration from MW-903 is 382 mg/L, which is below the facility wide interwell prediction limit for calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the facility site. This demonstrates that a source other than the bottom ash could cause the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Facility wide interwell prediction limit outputs are provided in **Appendix E**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Bottom Ash Impoundment caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Bottom Ash Impoundment may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Bottom Ash SPLP Laboratory Report

ANALYTICAL REPORT

October 01, 2018

SCS Engineers - KS

Sample Delivery Group:	L1027123
Samples Received:	09/19/2018
Project Number:	27217233.18
Description:	KCPL - LaCygne Generating Station

Report To:

Jason Franks 8575 West 110th Street Suite 100 Overland Park, KS 66210

Entire Report Reviewed By:

Vubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ss
⁴ C ra

TC
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BOTTOM ASH L1027123-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 9056A	6
Metals (ICP) by Method 6010B	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

BOTTOM ASH L1027123-01 GW			Collected by Jason R Franks	Collected date/time 09/17/18 12:00	Received date/time 09/19/18 11:50	1
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	2
Preparation by Method 1312	WG1169395	1	09/21/18 11:47	09/21/18 11:47	TM	L
Wet Chemistry by Method 9056A	WG1169693	1	09/24/18 20:14	09/24/18 20:14	NJM	
Metals (ICP) by Method 6010B	WG1170271	1	09/23/18 09:55	09/23/18 22:31	CCE	

IC
^³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

*

Ср

SDG: L1027123 DATE/TIME: 10/01/18 09:32 PAGE: 3 of 10

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 4 of 10

SAMPLE RESULTS - 01 L1027123

Qc

Gl

Â

Sc

Preparation by Method 1312

					l'Cn	L
	Result	Qualifier	Prep	Batch	Cp	l
Analyte			date / time		2	i
SPLP Extraction	-		9/21/2018 11:47:27 AM	WG1169395	Tc	l

Wet Chemistry by Method 9056A

	Result	Qualifier	Flep		Balch		
Analyte			date / time				
SPLP Extraction	-		9/21/2018 11	I:47:27 AM	WG1169395		
Wet Chemistry by	Method 9056A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	ND		1000	1	09/24/2018 20:14	WG1169693	
Fluoride	118		100	1	09/24/2018 20:14	WG1169693	
Sulfate	51100		5000	1	09/24/2018 20:14	<u>WG1169693</u>	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	959		200	1	09/23/2018 22:31	WG1170271
Calcium	73700		1000	1	09/23/2018 22:31	WG1170271

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1027123-01

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3344732-1	09/24/18 17:59

(1010) K3544752-1 C	19/24/10 17.59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1027594-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1027594-11 09/24	/18 22:52 • (DUP)	1 R3344732-4	09/24/18	23:07		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	244	184	1	27.8	<u>J P1</u>	15
Sulfate	U	0.000	1	0.000		15

L1027715-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1027715-01 09/25/18 01:45 • (DUP) R3344732-7 09/25/18 02:00

	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	8430	8420	1	0.118		15
Sulfate	8690	8710	1	0.147		15

L1027594-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1027594-11 09/24/1	8 22:52 • (MS) F	R3344732-5 0	9/24/18 23:21	• (MSD) R33447	732-6 09/24/1	8 23:36						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	244	50900	51100	101	102	1	80.0-120			0.435	15
Sulfate	50000	U	51800	51400	104	103	1	80.0-120			0.729	15

L1027715-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1027715-01 09/25/18	3 01:45 • (MS) R	3344732-8 09	/25/18 02:14				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	8430	59200	102	1	80.0-120	
Sulfate	50000	8690	59100	101	1	80.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L1027123	10/01/18 09:32	6 of 10

WG1170271

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1027123-01

⁺Cn

Sr

Qc

GI

Method Blank (MB)

Method Blau	K (IVIB)						
(MB) R3344358-1 09/23/18 21:58							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Boron	U		12.6	200			
Calcium	U		46.3	1000			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3344358-2 09/23/18 22:01 • (LCSD) R3344358-3 09/23/18 22:03										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	992	995	99.2	99.5	80.0-120			0.340	20
Calcium	10000	10000	9930	100	99.3	80.0-120			0.917	20

L1026826-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026826-01 09/23/	DS) L1026826-01 09/23/18 22:06 • (MS) R3344358-5 09/23/18 22:12 • (MSD) R3344358-6 09/23/18 22:14								⁸ Al				
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	155	1170	1170	101	102	1	75.0-125			0.133	20	SC
Calcium	10000	43500	53700	53700	102	102	1	75.0-125			0.0395	20	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1027123

DATE/TIME: 10/01/18 09:32

PAGE: 7 of 10

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 8 of 10

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Nevad
Arizona	AZ0612	New H
Arkansas	88-0469	New J
California	2932	New N
Colorado	TN00003	New Y
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virgini
Minnesota	047-999-395	Washi
Mississippi	TN00003	West \
Missouri	340	Wisco
Montana	CERT0086	Wyom

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

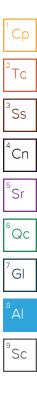
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

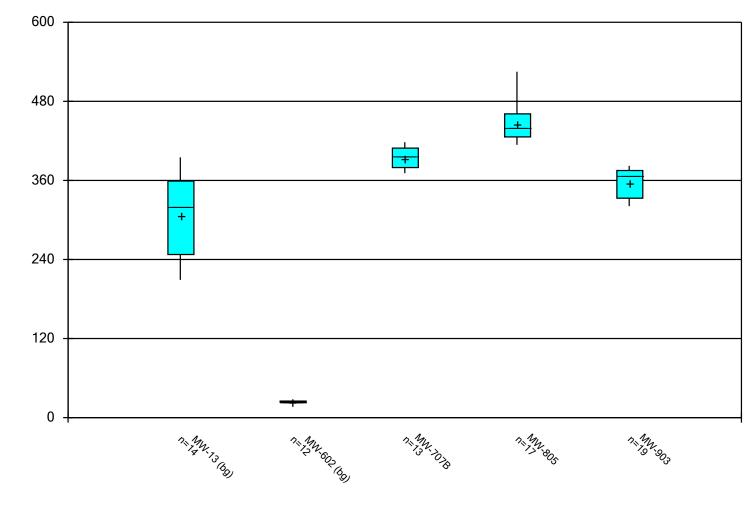
Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27217233.18

L1027123

PAGE: 9 of 10


10/01/18 09:32

			Billing Inf	ormation:	1	1	Analysis / Container / Preservative				1					
SCS Engineers - KS 8575 West 110th Street Suite 100 Overland Park, KS 65210		Account	ts Payable		Pres	1		Analysis / Co	ntainer / Preserva	tive	1 1	Chain of Custod	y Page of			
		8575 West 110th Street				1.33	1.00	1.1		100		\$7				
			Suite 10		-	1	1			-		1 300	Analysian"			
		Overlan	Overland Park, KS 66210						1	1.1		/	even er deteg Grands			
Report to:	2.5.1	1211	Email To:	franks@scsengin	ers.com:	-							and the second	1997 - Ser - 1997		
Jason Franks			jay.martir	@kcpl.com;				1 12					12065 Lebanon Rd			
Project Description: KCPL - LaCygne Gen	erating Stat	ion	Iterate and	City/State Collected:			NoPres						Mount Juliet, TN 3 Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5859	158 159		
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27217233.			Lab Project # AQUAOPKS-	Lab Project #		16ozClr-No							L# L1027123		
Collected by (print): JASON R. FRANKS	Site/Facility I	D#	8	P.O. #		53					1		Carles I	E242 Acctnum: AQUAOPKS Template:T140691		
JASON R. FRANKS Collected by (signature):	Rush? (I	ab MUST Be		Quote #			'anions						and the second second second			
Immediately Packed on Ice N Y	Wext Da Two Day Three D	y 5 Day 10 Da	(Rad Only) y (Rad Only)	Date Res	ults Needed	No. of	metals ,	-19						Prelogin: P672563 TSR: 206 - Jeff Carr PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotrs							Shipped Via:			
2 1	0			1 1 1		1	SPLP					1.10	Bemarks	Sample # (lab only)		
Bortom ASH	GRAB	SS	-	9/17/18	1200	1	x						1.11.14	-01		
	-			1.1.1	1.1.1.1.1	-					1			Sector and		
THE STATE			21					_	12.0				1			
	1.1			1	1.1.1	31					-		545			
								12.8								
	-		_													
				1	Carl Conse		1.21							- A CONTRACT		
			1911	200												
GW - Groundwater B - Bioassay	Remarks: SPI	.P - Extract	for B, Ca, C	I, FI, and SO4	1			pH Temp				Sample Receipt Checklist COC Seal Present/Intact: _NP _Y _N				
WW - WasteWater DW - Drinking Water OT - Other	Samples return UPSFed	ed via: IEx Cour	er				Flow Other					COC Signed/Accurate:NP1N Bottles arrive intact:NPN Correct bottles used:NPN Sufficient volume sent:NPN				
Relinquished by Astgnature		Date:	/ Th	and the second s	cking # :e/Ved by: (Signat	ure)	9	-18-18	Trip Blank Re	ceived: Yes No	1. 18	VOA Zero	If Applicab) o Headspace: ation Correct/Che	v v		
Relinquished by : (Sighature)		9/19/1 Date:	-	The: Rec	eived by: (Signat	loa	-	1505		HCL/N TBR	Леон					
Relinquished by : (Signature)	-	Data			1.2.	T			Temp: 1	°C Bottles Rece	ived:	If preserva	ation required by Log	in: Date/Time		
Demilation of a failuren of		Date:	Tir	ne:	elved for lab.by:	(Signatu	re) 80	ā	Date: 9/19/18	Time:		Hold:		Condition NCF / OK		

Appendix B

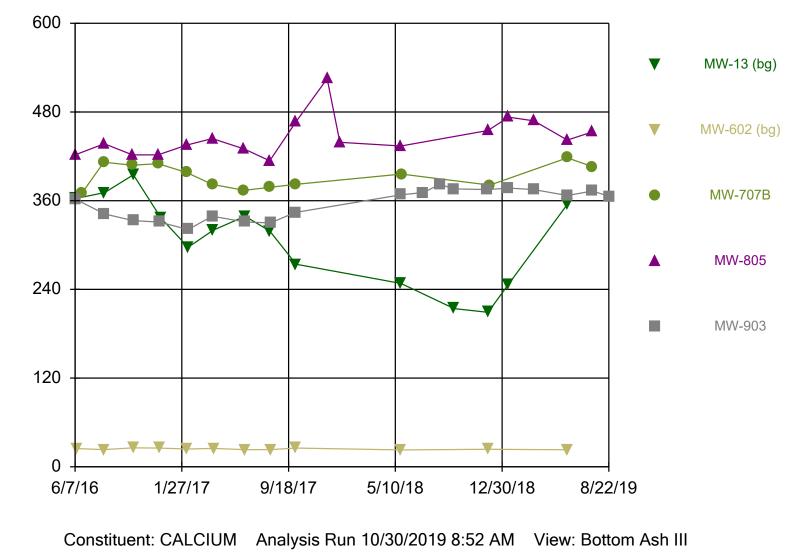
Box and Whiskers Plots

Constituent: CALCIUM Analysis Run 10/30/2019 9:12 AM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l

Constituent: CALCIUM (mg/l) Analysis Run 10/30/2019 9:13 AM View: Bottom Ash III

				,,	с С
	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/7/2016				422	
6/8/2016					362
6/9/2016	363				
6/10/2016		24.7			
6/23/2016			371		
8/9/2016		23.3	412		
8/10/2016				437	
8/11/2016	371				342
10/11/2016	6		408	422	
10/13/2016	6 395	25.7			333
12/6/2016			410	422	
12/9/2016		25.3			331
12/13/2016	6 336				
2/6/2017				435	
2/7/2017			398		
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320				
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017	7			525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376
11/29/2018	8				375
11/30/2018	8 209	23.7		455	
12/4/2018			381		
1/14/2019	247			473	377
3/11/2019				468	375
5/23/2019	355	23.1	418	442	367
7/17/2019			406 (i)	453 (i)	373
8/22/2019					366
Median	319.5	23.85	396	439	366
LowerQ.	247.5	23.25	379.5	426	333
UpperQ.	359	25.1	409	461	375
Min	209	22.9	371	414	321
Max	395	25.7	418	525	382
Mean	306.2	24.12	393.5	446	355.9

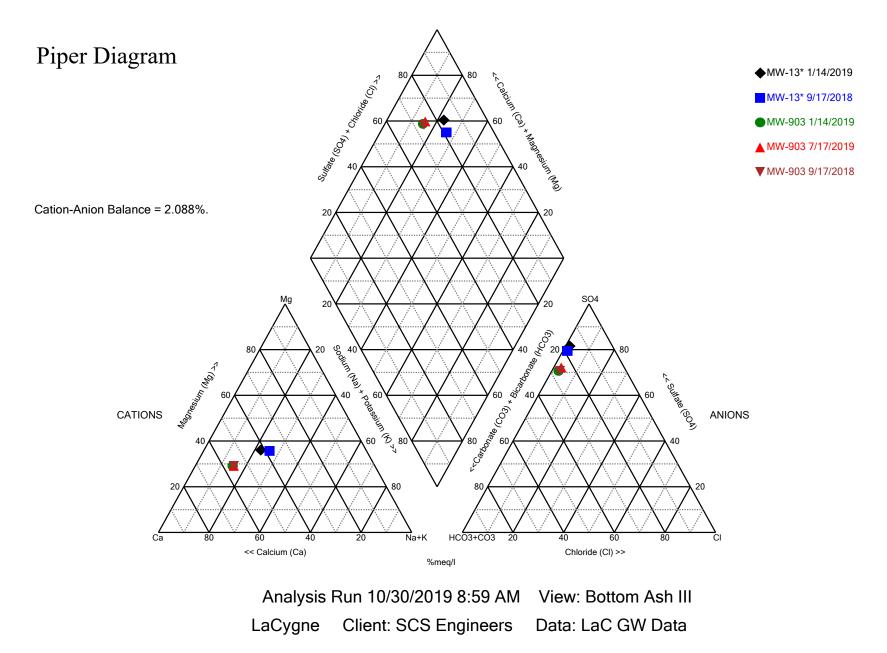

	LaCygne Clie	e Client: SCS Engineers Data: LaC GW Data F		aC GW Data Pri	nted 10/30/2019, 9:	13 AM			
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	<u>Min.</u>	<u>Max.</u>	<u>%NDs</u>
CALCIUM (mg/l)	MW-13 (bg)	14	306.2	59.47	15.89	319.5	209	395	0
CALCIUM (mg/l)	MW-602 (bg)	12	24.12	1.006	0.2905	23.85	22.9	25.7	0
CALCIUM (mg/l)	MW-707B	13	393.5	16.22	4.497	396	371	418	0
CALCIUM (mg/l)	MW-805	17	446	26.75	6.488	439	414	525	0
CALCIUM (mg/l)	MW-903	19	355.9	20.36	4.671	366	321	382	0

Appendix C

Time Series Plots

mg/l

Time Series


Time Series

Constituent: CALCIUM (mg/l) Analysis Run 10/30/2019 8:53 AM View: Bottom Ash III

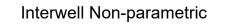
			Euo	ygne onent eee	
	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/7/2016				422	
6/8/2016					362
6/9/2016	363				
6/10/2016		24.7			
6/23/2016			371		
8/9/2016		23.3	412		
8/10/2016				437	
8/11/2016	371				342
10/11/2016			408	422	
10/13/2016	395	25.7			333
12/6/2016			410	422	
12/9/2016		25.3			331
12/13/2016	336				
2/6/2017				435	
2/7/2017			398		
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320				
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017				525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376
11/29/2018					375
11/30/2018	209	23.7		455	
12/4/2018			381		
1/14/2019	247			473	377
3/11/2019				468	375
5/23/2019	355	23.1	418	442	367
7/17/2019			406 (i)	453 (i)	373
8/22/2019					366

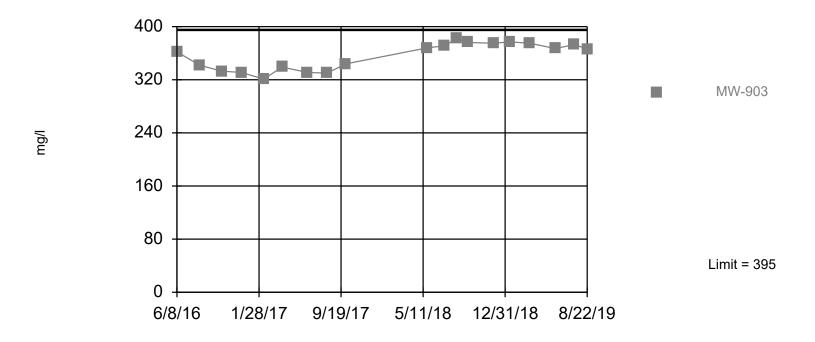
Appendix D

Piper Diagrams

Piper Diagram

Analysis Run 10/30/2019 9:01 AM View: Bottom Ash III


Totals (p	ppm)	Na	К	Ca	Mg	Cl	SO4	HCO3	CO3
MW-13* 9/	/17/2018	165	3.55	214	120	13.1	1010	295	10
MW-13* 1/	/14/2019	151	3.3	247	128	12.5	1120	289	10
MW-903 9/	/17/2018	116	6.47	376	117	26.1	1070	497	10
MW-903 1/	/14/2019	110	6.18	377	118	24.3	1070	501	10
MW-903 7/	/17/2019	114	6.45	373	117	25.6	1140	495	10


Appendix E

Facility Wide Interwell Prediction Limits

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 105 background values. Annual per-constituent alpha = 0.0000709. Individual comparison alpha = 0.00005064 (1 of 3). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Constituent: CALCIUM Analysis Run 10/30/2019 9:04 AM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Prediction Limit

Constituent: CALCIUM (mg/l) Analysis Run 10/30/2019 9:07 AM View: Bottom Ash III

					0				
	MW-10 (bg)	MW-703 (bg)	MW-701 (bg)	MW-903	MW-901 (bg)	MW-702 (bg)	MW-601 (bg)	MW-13 (bg)	MW-602 (bg)
6/6/2016	60.1								
6/7/2016		22	39.6						
6/8/2016				362	57.2	17.3			
6/9/2016							21.7	363	
6/10/2016									24.7
8/9/2016		17.9	35.3			11.2	20.3		23.3
8/11/2016	58.7			342	53.9			371	
10/11/2016		20.5	37.2			14.9			
10/12/2016	60.7								
10/13/2016				333			23.9	395	25.7
10/14/2016					52.1				
12/6/2016		19.8	37.2						
12/7/2016							22.5		
12/8/2016						19.4			
12/9/2016	59			331		10.4			25.3
12/12/2016	55			551	56.9				20.0
12/13/2016					50.5			336	
		177	27.4					330	
2/7/2017	50.0	17.7	37.4			10.1	20.1		04
2/8/2017	58.8					18.1	20.1		24
2/9/2017					55.7				
2/10/2017				321				297	
4/4/2017		22.4	36.3	339	57.6				
4/5/2017						18.5			
4/6/2017	57.4						21.3	320	
4/7/2017									24.9
6/13/2017			36.1						
6/14/2017		17.4							
6/15/2017	55.5					15.1	22	339	23.2
6/16/2017				331	56.7				
8/8/2017			36.3					319	
8/9/2017						20.3	20.9		
8/10/2017	56.1	17.5		330					23.3
8/11/2017					56				
10/3/2017			36.1	344	58.2	19.6			
10/4/2017	58.4								
10/5/2017		21.6						274	25.3
10/6/2017							21.1		
5/23/2018	54.1			368	57.1		17.6	248	22.9
5/24/2018		21.8	39.5			7.13			
7/11/2018				371					
8/16/2018				382					
9/17/2018				376				214	
11/29/2018				375	56.4				
11/30/2018	57.5						17.5	209	23.7
12/3/2018		17.7	44.8			3.24			
1/14/2019				377		11.2	17.9	247	
1/15/2019			40.2						
3/11/2019			44.2	375					
5/23/2019	52.9	19.3	41.6	367	52.3	5.7	17.7	355	23.1
7/17/2019	-		45	373	-		18.2 (i)		
8/22/2019			*	366					
8/23/2019			39.9						

Prediction Limit

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 10/30/2019, 9:07 AM

<u>Constituent</u>	Well	<u>Upper Lim.</u>	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
CALCIUM (mg/I)	MW-903	395	n/a	8/22/2019	366	No	105	0	n/a	0.000	NP Inter (normality)