2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To: Kansas City Power & Light Company

27217233.18 | January 2019 Revised December 16, 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Professional Geologist in the State of Kansas, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

Revision Number	Revision Date	Revision Section	Summary of Revisions
0	January 2019	NA	Original
1	December 16, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sect	ion		Page	Ş					
CERT	CERTIFICATIONSi								
1	INTRODUCTION1								
2	§ 257.90(e) ANNUAL REPORT REQUIREMENTS1								
	2.1	§ 257.	90(e)(1) Site Map	1					
	2.2	§ 257.	90(e)(2) Monitoring System Changes	1					
	2.3	§ 257.	90(e)(3) Summary of Sampling Events	1					
	2.4	§ 257.	90(e)(4) Monitoring Transition Narrative2	2					
	2.5	§ 257.	90(e)(5) Other Requirements	2					
		2.5.1	§ 257.90(e) Program Status	2					
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency3	3					
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	3					
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency	4					
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	4					
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration4	4					
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	4					
3	GENE	ERAL CO	MMENTS	5					

Appendices

Appendix A Figures Figure 1: Site Map

Appendix BTablesTable 1: Appendix III Detection Monitoring ResultsTable 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstrations

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (April 2018)
- C.2. CCR Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, La Cygne Generating Station (November 2018).
- C.3 Supplemental Data for the Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, La Cygne Generating Station (November 2018).

Addendum 1 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the Bottom Ash Impoundment at the La Cygne Generating Station.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the Bottom Ash Impoundment and all background (or upgradient) and downgradient monitoring wells with identification numbers for the Bottom Ash Impoundment groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the Bottom Ash Impoundment in 2018.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and

downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2018). Samples collected in 2018 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include both the Spring 2018 semiannual detection monitoring data and the Fall 2018 semiannual detection monitoring data.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2018. Only detection monitoring was conducted in 2018.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the statistical evaluation of the initial Fall 2017 semiannual detection monitoring event per the certified statistical method,
- b. completion of the 2017 Annual Groundwater Monitoring and Corrective Action Report,
- c. completion of a successful alternative source demonstration for the Fall 2017 semiannual detection monitoring event,
- d. completion of the Spring 2018 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- e. completion of the statistical evaluation of the Spring 2018 semiannual detection monitoring event per the certified statistical method,
- f. completion of a successful alternative source demonstration for the Spring 2018 semiannual

detection monitoring event, and

g. initiation of the Fall 2018 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2019).

Semiannual Spring and Fall 2019 groundwater sampling and analysis. Completion of verification sampling and analyses and statistical evaluation of Fall 2018 and Spring 2019 detection monitoring data and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following reports are included as Appendix C.

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, Bottom Ash Impoundment, La Cygne Generating Station (April 2018)
- C.2. CCR Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, La Cygne Generating Station (November 2018).

C.3 Supplemental Data for the Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event, La Cygne Generating Station (November 2018).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases

and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the La Cygne Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Kansas City Power & Light Company for specific application to the La Cygne Generating Station Bottom Ash Impoundment. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES

Figure 1: Site Map

100 SCALE

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 Bottom Ash Impoundment Appendix III Detection Monitoring Results KCP&L LaCygne Generating Station

		Appendix III Constituents						
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	рН (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-901	1/9/2018					*6.84		
MW-901	5/23/2018	1.14	57.1	22.6	0.547	7.53	17.9	520
MW-901	11/29/2018	1.16	56.4	23.0	0.517	7.12	19.7	487
MW-902	1/9/2018					**6.99	*37.9	
MW-902	5/23/2018	1.22	70.9	33.9	0.541	7.35	32.5	511
MW-902	7/11/2018		*69.1			**7.28		
MW-902	11/29/2018	1.25	70.4	32.1	0.488	7.07	28.6	796
MW-903	1/9/2018					*6.87		
MW-903	5/23/2018	0.428	368	25.6	<0.100	6.89	896	1920
MW-903	7/11/2018		*371			**6.84		
MW-903	8/16/2018		*382			**6.65		
MW-903	11/29/2018	0.493	375	24.7	0.104	6.58	1120	1230
MW-904	5/23/2018	1.10	72.2	33.8	0.444	7.38	80.7	677
MW-904	7/11/2018					*7.10		
MW-904	11/29/2018	1.11	72.1	33.5	0.406	7.07	81.5	604
MW-905	5/23/2018	1.78	47.8	51.9	0.581	7.68	27.5	602
MW-905	11/29/2018	1.89	46.9	52.4	0.520	7.23	29.0	619

* Verification sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

S.U. - Standard Units

--- Not Sampled

Table 2 Bottom Ash Impoundment Detection Monitoring Field Measurements KCP&L LaCygne Generating Station

Well Number	Sample Date	рН (S.U.)	Specific Conductivity (μS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	***Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-901	1/9/2018	*6.84	811	19.23	0.77	NA	NA	10.30	843.99
MW-901	5/23/2018	7.53	934	23.90	0.00	152	1.78	11.28	843.01
MW-901	11/29/2018	7.12	919	16.88	0.00	-4	0.00	11.28	843.01
MW-902	1/9/2018	**6.99	814	16.07	1.27	NA	NA	13.15	841.92
MW-902	5/23/2018	7.35	920	24.70	0.00	8	1.67	13.00	842.07
MW-902	7/11/2018	**7.28	908	28.94	0.00	-17	1.22	13.38	841.69
MW-902	11/29/2018	7.07	888	15.81	5.40	-32	0.00	13.60	841.47
MW-903	1/9/2018	*6.87	1889	16.21	1.07	NA	NA	12.32	842.08
MW-903	5/23/2018	6.89	2480	21.98	0.00	56	3.00	12.14	842.26
MW-903	7/11/2018	**6.84	2360	25.78	0.00	17	6.76	12.75	841.65
MW-903	8/16/2018	**6.65	2400	22.16	0.40	-5	7.15	14.80	839.60
MW-903	11/29/2018	6.58	2490	15.27	0.70	63	0.00	12.85	841.55
MW-904	5/23/2018	7.38	1200	20.78	66.10	-72	2.23	15.70	839.35
MW-904	7/11/2018	*7.10	1180	25.62	3.60	-68	2.33	17.33	837.72
MW-904	11/29/2018	7.07	1170	14.77	8.10	-38	0.00	15.14	839.91
MW-905	5/23/2018	7.68	1090	23.31	23.1	49	2.35	9.65	844.57
MW-905	11/29/2018	7.23	1080	16.01	19.9	-42	0.00	11.34	842.88

* Verification sample obtained per certified statistical method and Statistical Analysis of Groundwater

Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

***Depth to water measured in all monitoring wells within 24 hour period prior to the sampling event

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

Appendix C

Alternative Source Demonstrations

- C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event
- C.2 Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event
- C.3 Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT OCTOBER 2017 GROUNDWATER MONITORING EVENT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To:

Kansas City Power & Light Company

Presented By:

SCS ENGINEERS

7311 West 130th Street, Suite 100 Overland Park, Kansas 66213 (913) 681-0030

> April 2018 File No. 27217233.00

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, P.G. SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E. SCS Engineers

Table of Contents

Section

Page

CERTI	IFICATIONS	1
1	REGULATORY FRAMEWORK	1
2	STATISTICAL RESULTS	1
3	ALTERNATIVE SOURCE DEMONSTRATION	2
	3.1 Upgradient Well Location	.2
	3.2 Box and Whiskers Plots	.2
	3.3 Time Series Plots	.3
4	CONCLUSION	3
5	GENERAL COMMENTS	3

Appendices

Appendix A	Figure 1
Appendix B	Box and Whiskers Plots
Appendix C	Time Series Plots

1 REGULATORY FRAMEWORK

In accordance with the Coal Combustion Residuals (CCR) Final Rule § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at Kansas City Power & Light Company's (KCP&L) La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a SSI over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

If an SSI is preliminarily identified by the prediction limit analysis, verification retesting will be performed in accordance with the certified statistical method and the resampling plan to verify the result is not due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Up to two rounds of verification sampling and retesting may be conducted. Verification retesting with a "1 of 2" or "1 of 3" resampling plan is performed by collecting a verification sample(s) and comparing it to the calculated prediction limit. If the resulting concentration of any verification sample is not an SSI, then an SSI has not occurred.

Determinations of SSIs for the Bottom Ash Impoundment at the La Cygne Generating Station were completed no later than January 15, 2018 and placed into the CCR Operating Record.

The completed statistical evaluation identified Appendix III constituent pH below its lower prediction limit in monitoring well MW-901. The lower prediction limit for pH in monitoring well MW-901 is 6.95 standard units (S.U.). The detection monitoring sample was reported at 6.77 S.U. The first verification sample was collected on January 9, 2018 with a result of 6.84 S.U., which is still below the lower prediction limit. Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for pH from monitoring well MW-901 exceeds its lower prediction limit and is a confirmed statistically significant decrease (SSD) below background. An SSD is similar to an SSI in that it indicates a statistically significant difference

from background (i.e., potential impact) when a bracketed (upper and lower) prediction limit is computed such as is done for pH.

Additionally, the completed statistical evaluation identified Appendix III constituent sulfate above its prediction limit in monitoring well MW-902. The prediction limit for sulfate in monitoring well MW-902 is 36 mg/L. The detection monitoring sample was reported at 36.5 mg/L. The first verification sample was collected on December 12, 2017 with a result of 36.1 mg/L. The second verification sample was collected on January 9, 2018 with a result of 37.9 mg/L. Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-902 exceeds its prediction limit and is a confirmed SSI over background.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI or an SSD. For the above identified SSD and SSI for the Bottom Ash Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate the above SSI and SSD are not caused by a release from the Bottom Ash Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT WELL LOCATION

Figure 1 in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at the Bottom Ash Impoundment for the sampling event. Although the groundwater level in monitoring well MW-904 is lower than normal as compared to the other system wells, the flow directions indicated for the October 2017 groundwater monitoring event are typical. As seen in the map, monitoring well MW-901 is located upgradient from the Bottom Ash Impoundment indicating the SSD for pH is not caused by a release from the Bottom Ash Impoundment. This demonstrates that a source other than the Bottom Ash Impoundment caused the SSD below background levels for pH, or that the SSD resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axes to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Although an SSD for pH was only identified in upgradient well MW-901 and the SSI for sulfate was only identified in well MW-902, the box and whiskers plot for pH and sulfate in MW-901 and MW-902 were compared to each other. Parts of Lake La Cygne surround the Bottom Ash Impoundment on three sides, including upgradient. The background sulfate concentration for Lake La Cygne as identified in an application for an NPDES permit modification dated September 16, 2016 was plotted alongside the sulfate data for comparison. The comparison indicates the pH levels in upgradient wells MW-901 and MW-902 are similar and sulfate concentrations in both MW-901 and MW-902 are below the background concentration for Lake La Cygne. This demonstrates that a source other than the Bottom Ash Impoundment caused the observed pH SSD below background and the observed sulfate SSI above background, or that the SSD and SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for monitoring wells MW-901 and MW-902 indicate pH levels for both wells are similar. Additionally, time series plots for sulfate concentrations for both wells when plotted along with the background sulfate concentration for Lake La Cygne indicate the well concentrations are less than the lake concentration. This demonstrates that a source other than the Bottom Ash Impoundment caused the observed pH SSD below background and the observed sulfate SSI above background, or that the SSD and SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Bottom Ash Impoundment caused the SSD below background levels for pH, and SSI above background levels for sulfate, or that the SSD and SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Bottom Ash Impoundment may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of his knowledge, information, and belief in the exercise of his professional judgement in accordance with the standard of practice, it is his professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by him are made on the basis of his experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Figure 1

100 SCALE

Appendix B

Box and Whiskers Plots

SU

mg/l

Box & Whiskers Plot

Constituent: SULFATE Analysis Run 4/10/2018 4:38 PM View: CCR III LaCygne Client: SCS Engineers Data: LaC GW Data

Box & Whiskers Plot

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 4/10/2018, 4:40 PM **Constituent** <u>Well</u> N <u>Mean</u> Std. Dev. Std. Err. Min. <u>Max.</u> <u>%NDs</u> Median 0.0993 pH (SU) MW-901 (bg) 10 7.26 0.314 7.37 6.77 7.62 0 pH (SU) MW-902 11 7.06 0.294 0.0888 7.11 6.52 7.48 0 SULFATE (mg/l) LACYGNELAKE 1 46.5 0 0 46.5 46.5 46.5 0 SULFATE (mg/l) MW-901 (bg) 9 18.3 6.06 2.02 15.6 14.5 33.8 0 SULFATE (mg/l) MW-902 11 32.9 3.35 1.01 33.3 27.4 37.9 0

Appendix C

Time Series Plots

Time Series

LaCygne Client: SCS Engineers Data: LaC GW Data

SU

Time Series

Constituent: pH (SU) Analysis Run 4/11/2018 3:17 PM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

	MW-901 (bg)	MW-902
6/7/2016		7.24
6/8/2016	7.46	
8/11/2016	7.35	7.11
10/13/2016		7.16
10/14/2016	7.43	
12/12/2016	7.57	7.1
2/9/2017	7.62	
2/10/2017		7.48
4/4/2017	7.39	7.27
6/15/2017		7.07
6/16/2017	7.26	
8/11/2017	6.87	6.52
10/3/2017	6.77	6.53
12/12/2017		7.21
1/9/2018	6.84	6.99

mg/l

Time Series

Constituent: SULFATE Analysis Run 4/11/2018 3:17 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Time Series

Constituent: SULFATE (mg/l) Analysis Run 4/11/2018 3:17 PM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

	LACYGNELAKE	MW-901 (bg)	MW-902
6/7/2016			33.4
6/8/2016		19.5	
7/5/2016	46.5		
8/11/2016		33.8	29.6
10/13/2016			29.2
10/14/2016		15.6	
12/12/2016		14.5	27.4
2/9/2017		17.1	
2/10/2017			34.5
4/4/2017		18.4	33.1
6/15/2017			30.4
6/16/2017		15.6	
8/11/2017		15.1	33.3
10/3/2017		14.9	36.5
12/12/2017			36.1
1/9/2018			37.9

C.2. Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT May 2018 GROUNDWATER MONITORING EVENT

BOTTOM ASH IMPOUNDMENT LA CYGNE GENERATING STATION LA CYGNE, KANSAS

Presented To:

Kansas City Power & Light Company

Presented By:

SCS ENGINEERS

8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

(913) 681-0030

November 2018

File No. 27217233.18
CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and licensed Professional Geologist in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, P.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Kansas, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the Bottom Ash Impoundment at the La Cygne Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Section

Page

SCS ENGINEERS

CERT	IFICA	TIONS	i
1	Regu	ulatory Framework	1
2	Stati	stical Results	1
3	Alter	native Source Demonstration	2
	3.1	Bottom Ash SPLP Analysis	2
	3.2	Box and Whiskers Plots	2
	3.3	Time Series Plots	3
	3.4	Piper Plots	3
	3.5	Facility Wide Interwell Prediction Limit	4
4	Cond	clusion	4
5	Gene	eral Comments	4

Appendices

- Appendix A Bottom Ash SPLP Laboratory Report
- Appendix B Box and Whiskers Plots
- Appendix C Time Series Plots
- Appendix D Piper Diagrams
- Appendix C Facility Wide Interwell Prediction Limits

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternate source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a gualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at Kansas City Power & Light Company's (KCP&L) La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Detection monitoring groundwater samples were collected on May 23, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 15, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 11, 2018 and August 16, 2018.

If an SSI is preliminarily identified by the prediction limit analysis, verification retesting is performed in accordance with the certified statistical method and the resampling plan to verify the result is not due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Up to two rounds of verification sampling and retesting may be conducted. Verification retesting with a "1 of 2" or "1 of 3" resampling plan is performed by collecting a verification sample(s) and comparing it to the calculated prediction limit. If the resulting concentration of any verification sample is not above the prediction limit, then an SSI is not confirmed.

Determinations of SSIs for the Bottom Ash Impoundment at the La Cygne Generating Station were completed September 12, 2018 and placed into the CCR Operating Record.

The completed statistical evaluation identified Appendix III constituent, calcium, above its prediction limit in monitoring well MW-903. The prediction limit for calcium in monitoring well MW-903 is 358 milligrams per liter (mg/L). The detection monitoring sample was reported at 368 mg/L. The first verification re-sample was collected on July 11, 2018 with a result of 371 mg/L. The second verification re-sample was collected on August 16, 2018 with a result of 382 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring wells MW-903 exceeds its prediction limit and is a confirmed SSI over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified one SSI above the background prediction limit for calcium in monitoring well MW-903.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI or an SSD. For the above identified SSI for the Bottom Ash Impoundment at the La Cygne Generating Station, there are multiple lines of supporting evidence to indicate the SSI was not caused by a release from the Bottom Ash Impoundment. Select multiple lines of supporting evidence are described as follows.

3.1 BOTTOM ASH SPLP ANALYSIS

The Synthetic Precipitation Leaching Procedure (SPLP) is an Environmental Protection Agency (EPA) approved extraction procedure designed to simulate and then analyze leachate, which would be produced from rainfall passing through a contaminated material (assuming the rainfall is slightly acidic). The SPLP is used to assess the potential of a contaminated material (in or on top of the ground) to impact groundwater (or surface water), when exposed to normal weathering. A bottom ash sample was collected on September 17, 2018 and submitted to the laboratory for SPLP analysis for calcium. The calcium result for the SPLP extract (simulated leachate) was 73.7 mg/L. The prediction limit for calcium in monitoring well MW-903 is 358 mg/L and the detection monitoring sample was reported at 368 mg/L. The calcium concentration in the groundwater from MW-903 is significantly greater than what would be expected from bottom ash leachate. The comparison indicates the elevated calcium concentrations in monitoring well MW-903 are not from bottom ash leachate but from a source other than bottom ash, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The laboratory report is provided in **Appendix A**.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axes to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Based on the bottom ash SPLP calcium analysis compared to the calcium results for MW-903, the calcium levels for additional wells at the LaCygne Generating Station (not part of the CCR Bottom Ash groundwater monitoring system) were reviewed for elevated calcium levels to determine if elevated calcium concentrations could occur naturally in the vicinity of the facility and if natural variability

between wells occurred in the vicinity of the facility. Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Box and whiskers plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located close to MW-13 indicating natural variability of calcium over short distances occurs at the site. The comparison indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the facility site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whiskers plots are provided in **Appendix B**.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Four wells were identified as exhibiting elevated calcium and one of them was an upgradient well. Of the four wells exhibiting elevated calcium, one well, MW-903 also exhibited an SSI. Time series plots for calcium for upgradient monitoring wells MW-13 and MW-602 and downgradient wells MW-707B, MW-805, and MW-903 were prepared for comparison. Upgradient monitoring well MW-602 does not have elevated calcium but is located close to MW-13 indicating natural variability of calcium over short distances occurs at the site. The comparison indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the site and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

3.4 PIPER PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analysis. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for a sample from MW-903 and a sample from MW-13 (upgradient well for the CCR Landfill and Lower AQC) are provided in **Appendix D.** The samples plot near one another in

the same hydrochemical facies indicating similar geochemical characteristics between an upgradient well in the vicinity of the facility and a downgradient well for the Bottom Ash Impoundment. The comparison indicates the hydrochemical characteristics (particularly calcium) of groundwater from monitoring well MW-903 are similar to the hydrochemical characteristics (particularly calcium) of background groundwater and are in the range as that of an upgradient well at the facility and that significant natural variability occurs between wells and across the site. This demonstrates that a source other than the bottom ash caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The piper diagram plots are provided in **Appendix D**.

3.5 FACILITY WIDE INTERWELL PREDICTION LIMIT

Because of known complexities and heterogeneities of the water bearing zone at the facility, an intrawell prediction limit analysis with retesting was the selected statistical method for the Bottom Ash Impoundment. However, false positives (SSIs) may occur due to a limited background data set that may not truly represent the background population for that particular well until the number of background observations are increased to better represent the entire population. The CCR Rule preamble recommends a minimum of eight to ten independent background observations be collected before performing the first statistical test; but also states that background sample sets of at least 20 are considered optimal. To further demonstrate that an interwell prediction limit exceedance (SSI) could be naturally occurring and likely the result of a limited background data set for a particular well, an interwell prediction limit analysis on a facility wide basis can be useful to further demonstrate natural variability across a site or in the vicinity of the site and that the potential true background population may not be represented.

An interwell prediction limit analysis on a facility wide basis was performed comparing the calcium concentration in MW-903 to the prediction limit calculated from the combined background calcium data from all of the background monitoring wells across the facility. The facility wide interwell prediction limit for calcium is 395 mg/L. The highest calcium concentration from MW-903 is 384 mg/L, which is below the facility wide interwell prediction limit for calcium. The interwell prediction limit analysis further indicates the calcium levels in monitoring well MW-903 are within the range of calcium concentrations in upgradient wells at the facility site. This demonstrates that a source other than the bottom ash could cause the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Facility wide interwell prediction limit outputs are provided in **Appendix E**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the Bottom Ash Impoundment caused the SSI above background levels for calcium, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the Bottom Ash Impoundment may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the La Cygne Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of his professional judgement in accordance with the standard of practice, it is his professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by them are made on the basis of his experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Bottom Ash SPLP Laboratory Report

ANALYTICAL REPORT

October 01, 2018

SCS Engineers - KS

27123
19/2018
17233.18
PL - LaCygne Generating Station

Report To:

Jason Franks 8575 West 110th Street Suite 100 Overland Park, KS 66210

Entire Report Reviewed By:

Vubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1 2

3

4

5

5

6

6

7

8

9

10

*
¹ Cp
² Tc
³ Ss
4

IC
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT:						
SCS Engineers - KS						

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

GI: Glossary of Terms

BOTTOM ASH L1027123-01

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 2 of 10

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

BOTTOM ASH L1027123-01 GW		Collected by Jason R Franks	Collected date/time 09/17/18 12:00	Received date/time 09/19/18 11:50	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Preparation by Method 1312	WG1169395	1	09/21/18 11:47	09/21/18 11:47	TM
Wet Chemistry by Method 9056A	WG1169693	1	09/24/18 20:14	09/24/18 20:14	NJM
Metals (ICP) by Method 6010B	WG1170271	1	09/23/18 09:55	09/23/18 22:31	CCE

IC
³Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
Q
Sc

*

Ср

SDG: L1027123 DATE/TIME: 10/01/18 09:32 PAGE: 3 of 10

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 4 of 10

SAMPLE RESULTS - 01 L1027123

Qc

Gl

Â

Sc

Preparation by Method 1312

					l'Cn
	Result	Qualifier	Prep	Batch	Cp
Analyte			date / time		2
SPLP Extraction	-		9/21/2018 11:47:27 AM	WG1169395	Tc

Wet Chemistry by Method 9056A

	Result	Quanner	TTCP		Daten		
Analyte			date / time				Ē
SPLP Extraction	-		9/21/2018 11:47:	27 AM	WG1169395		
Wet Chemistry by Metho	d 9056A						L F
	Result	Qualifier	RDL	Dilution	Analysis	Batch	۰L
Analyte	ug/l		ug/l		date / time		- [
Chloride	ND		1000	1	09/24/2018 20:14	WG1169693	
Fluoride	118		100	1	09/24/2018 20:14	WG1169693	
Sulfate	51100		5000	1	09/24/2018 20:14	WG1169693	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	959		200	1	09/23/2018 22:31	WG1170271
Calcium	73700		1000	1	09/23/2018 22:31	WG1170271

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Ср

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3344732-1	09/24/18 17:59

()							
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	ug/l		ug/l	ug/l			
Chloride	U		51.9	1000			
Fluoride	U		9.90	100			3
Sulfate	U		77.4	5000			Ľ
							_

L1027594-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1027594-11 09/24/1	18 22:52 • (DUP)) R3344732-4	09/24/18	23:07		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	244	184	1	27.8	<u>J P1</u>	15
Sulfate	U	0.000	1	0.000		15

L1027715-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1027715-01 09/25/18 01:45 • (DUP) R3344732-7 09/25/18 02:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	8430	8420	1	0.118		15
Sulfate	8690	8710	1	0.147		15

L1027594-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1027594-11 09/24/18 22:52 • (MS) R3344732-5 09/24/18 23:21 • (MSD) R3344732-6 09/24/18 23:36												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	244	50900	51100	101	102	1	80.0-120			0.435	15
Sulfate	50000	U	51800	51400	104	103	1	80.0-120			0.729	15

L1027715-01 Original Sample (OS) • Matrix Spike (MS)

DS) L1027715-01 09/25/18 01:45 • (MS) R3344732-8 09/25/18 02:14									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier		
Analyte	ug/l	ug/l	ug/l	%		%			
Chloride	50000	8430	59200	102	1	80.0-120			
Sulfate	50000	8690	59100	101	1	80.0-120			

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L1027123	10/01/18 09:32	6 of 10

WG1170271

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1027123-01

⁺Cn

Sr

Qc

GI

Method Blank (MB)

(MB) R3344358-1 09/23/18 21:58						
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l		Tc
Boron	U		12.6	200		
Calcium	U		46.3	1000		³ Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3344358-2 09/23/18 22:01 • (LCSD) R3344358-3 09/23/18 22:03										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	992	995	99.2	99.5	80.0-120			0.340	20
Calcium	10000	10000	9930	100	99.3	80.0-120			0.917	20

L1026826-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026826-01 09/23/18 22:06 • (MS) R3344358-5 09/23/18 22:12 • (MSD) R3344358-6 09/23/18 22:14									⁸ Al				
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	155	1170	1170	101	102	1	75.0-125			0.133	20	SC
Calcium	10000	43500	53700	53700	102	102	1	75.0-125			0.0395	20	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1027123

DATE/TIME: 10/01/18 09:32

PAGE: 7 of 10

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT: 27217233.18

SDG: L1027123 DATE/TIME: 10/01/18 09:32

PAGE: 8 of 10

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampsh
Arkansas	88-0469	New Jersey-
California	2932	New Mexico 1
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolin
Florida	E87487	North Carolin
Georgia	NELAP	North Carolin
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolin
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27217233.18

L1027123

PAGE: 9 of 10

10/01/18 09:32

			Billing Inf	ormation:	1.5	1	1	1.1	Applusis / Co					1 1
SCS Engineers - KS			Account	ts Pavable		Drose	1		Analysis / Co	ntainer / Preserva	tive	1 1	Chain of Custod	ly Page of
			8575 W	est 110th Stre	et	Chk	1.53	1.00	1.0		100		\$7	
8575 West 110th Street			Suite 10	e 100				1			-		1 200	Arrighter"
Suite 100			Overlan	d Park, KS 662	rk, KS 66210					1	1.1		/	and a state Louise
Report to:	2.5.1	1211	Email To:	franks@scsenging	ers.com:	-	133						12	and the second
Jason Franks			jay.martir	@kcpl.com;	cera.com,			1 1				100	12065 Lehanon Rd	
Project Description: KCPL - LaCygne Gen	erating Stat	ion	Iterate and	City/State Collected:	P	RI	oPres						Mount Juliet, TN 3 Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5859	
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27217233.	# 18		Lab Project # AQUAOPKS-	LACYGNE	12	zClr-N	2					L# L10.	27:23
Collected by (print): Joson R. FRANKS	Site/Facility I		41	P.O. #		the'	ns 160				6.5		E24	4
Collected by (signature):	Rush? (I	ab MUST Be	Notified)	Quote #			anioi				2.84		Template:T14	UAOPKS 10691
Immediately Packed on Ice N Y	Next Da Two Day Three D	y 5 Day / 10 Da ay	(Rad Only) v (Rad Only)	Date Res	ults Needed	No.	netals /	12					Prelogin: P67 TSR: 206 - Jeff	2563 Carr
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotrs	P				100		Shipped Via:	
2 1	0			1 1 1 1	1	1	SP				L		Bemarks	Sample # (lab only)
BOTTOM ASH	GRAB	SS	-	9/19/18	1200	1	x	2.4					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-01
	-			1.1.2	1.1.1.1.1.1	-					1		이 것을 할	
11 12 20			27										1	
	1. 1997		1			131					-		1 - 5 - 1 - C	
								199						
			_											
					1.									
			10 10										-	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks: SPI	.P - Extract	for B, Ca, C	I, FI, and SO4	1		2		рН	Temp		S COC Seal	ample Receipt Ch L Present/Intact	NP Y N
WW - WasteWater DW - Drinking Water OT - Other	Samples return UPS Fed	ed via: IEx Cour	er				- 3	-	Flow	Other		COC Sign Bottles Correct Sufficie	arrive intact: bottles used: nt volume cent.	
Reluctuished by Asignature		Date:	/ Th	mer/500 Rec	cking # :e/Ved by: (Signat	ure)	9	-18-18	Trip Blank Re	ceived: Yes /No	-	VOA Zero Preserva	If Applicab Neadspace: ation Correct/Che	$\frac{Z^{*} - N}{\sum_{k=0}^{N} - \sum_{k=0}^{N} - \sum$
Relinquished by (Sighature)		9/19/1 Date:	8 4	The: Rec	eived by (Signal	loa	~	1505	1	HCL/N TBR	1eoH			*
Pallanuiched bus (Finantural	-				and an laight	ler			Temp: 1	°C Bottles Rece	wed:	If preserva	ation required by Log	in: Date/Time
Reindusien of - (Signature)		Date:	Tir	ne:	elved for lab.by:	(Signatu	(re)	ā	Date: 9/19/18	Time:		Hold:		Condition NCF / OK

Appendix B

Box and Whiskers Plots

Box & Whiskers Plot

Constituent: CALCIUM Analysis Run 11/14/2018 5:04 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l

Box & Whiskers Plot

Constituent: CALCIUM (mg/l) Analysis Run 11/14/2018 5:05 PM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

6/7/2016	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/8/2016				422	262
6/9/2016	363				502
6/10/2016	505	24.7			
6/23/2016		24.7	371		
8/9/2016		23.3	412		
8/10/2016		23.5	712	137	
8/11/2016	371			407	342
10/11/2016	0/1		408	422	
10/13/2016	395	25.7	400	722	333
12/6/2016	000	20.7	410	422	
12/9/2016		25.3	410	722	331
12/13/2016	336	20.0			
2/6/2017	000			435	
2/7/2017			398	100	
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320		002		
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017				525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376
Median	320	24.4	389	435	342
LowerQ.	274	23.3	376	422	331
UpperQ.	363	25.3	409	442	370
Min	214	22.9	371	414	321
Max	395	25.7	412	525	382
Mean	316	24.3	391	441	348

Box & Whiskers Plot

	LaCygne (Client: SCS Engir	neers Data: La	C GW Data Prin	ted 11/14/2018, 5:0)5 PM			
Constituent	Well	N	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	<u>Min.</u>	<u>Max.</u>	<u>%NDs</u>
CALCIUM (mg/I)	MW-13 (bg)	11	316	54.4	16.4	320	214	395	0
CALCIUM (mg/I)	MW-602 (bg)	10	24.3	1.04	0.329	24.4	22.9	25.7	0
CALCIUM (mg/I)	MW-707B	10	391	15.6	4.93	389	371	412	0
CALCIUM (mg/I)	MW-805	12	441	29.8	8.61	435	414	525	0
CALCIUM (mg/I)	MW-903	13	348	20.5	5.69	342	321	382	0

Appendix C

Time Series Plots

Time Series

LaCygne Client: SCS Engineers Data: LaC GW Data

mg/l

Time Series

Constituent: CALCIUM (mg/l) Analysis Run 11/14/2018 5:06 PM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

	MW-13 (bg)	MW-602 (bg)	MW-707B	MW-805	MW-903
6/7/2016				422	
6/8/2016					362
6/9/2016	363				
6/10/2016		24.7			
6/23/2016			371		
8/9/2016		23.3	412		
8/10/2016				437	
8/11/2016	371				342
10/11/2016			408	422	
10/13/2016	395	25.7			333
12/6/2016			410	422	
12/9/2016		25.3			331
12/13/2016	336				
2/6/2017				435	
2/7/2017			398		
2/8/2017		24			
2/10/2017	297				321
4/4/2017			382	444	339
4/6/2017	320				
4/7/2017		24.9			
6/13/2017			374	430	
6/15/2017	339	23.2			
6/16/2017					331
8/8/2017	319		378	414	
8/10/2017		23.3			330
10/3/2017			382		344
10/5/2017	274	25.3		467	
12/12/2017				525	
1/9/2018				439	
5/23/2018	248	22.9		434	368
5/24/2018			396		
7/11/2018					371
8/16/2018					382
9/17/2018	214				376

Appendix D

Piper Diagrams

Appendix E

Facility Wide Interwell Prediction Limits

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 73 background values. Annual per-constituent alpha = 0.000029. Individual comparison alpha = 0.0000145 (1 of 3). Seasonality was not detected with 95% confidence.

Constituent: CALCIUM Analysis Run 11/16/2018 11:48 AM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Prediction Limit

Constituent: CALCIUM (mg/l) Analysis Run 11/16/2018 11:51 AM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

	MW-10 (bg)	MW-703 (bg)	MW-701 (bg)	MW-901 (bg)	MW-702 (bg)	MW-903	MW-13 (bg)	MW-601 (bg)	MW-602 (bg)
6/6/2016	60.1								
6/7/2016		22	39.6						
6/8/2016				57.2	17.3	362			
6/9/2016							363	21.7	
6/10/2016									24.7
8/9/2016		17.9	35.3		11.2			20.3	23.3
8/11/2016	58.7			53.9		342	371		
10/11/2016		20.5	37.2		14.9				
10/12/2016	60.7								
10/13/2016						333	395	23.9	25.7
10/14/2016				52.1					
12/6/2016		19.8	37.2						
12/7/2016								22.5	
12/8/2016					19.4				
12/9/2016	59					331			25.3
12/12/2016				56.9					
12/13/2016							336		
2/7/2017		17.7	37.4						
2/8/2017	58.8				18.1			20.1	24
2/9/2017				55.7					
2/10/2017						321	297		
4/4/2017		22.4	36.3	57.6		339			
4/5/2017					18.5				
4/6/2017	57.4						320	21.3	
4/7/2017									24.9
6/13/2017			36.1						
6/14/2017		17.4							
6/15/2017	55.5				15.1		339	22	23.2
6/16/2017				56.7		331			
8/8/2017			36.3				319		
8/9/2017					20.3			20.9	
8/10/2017	56.1	17.5				330			23.3
8/11/2017				56					
5/23/2018	54.1			57.1		368	248	17.6	22.9
5/24/2018		21.8	39.5		7.13				
7/11/2018						371			
8/16/2018						382			
9/17/2018						376	214		

Prediction Limit

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 11/16/2018, 11:51 AM

Constituent	Well	<u>Upper Lim.</u>	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
CALCIUM (mg/l)	MW-903	395	n/a	9/17/2018	376	No	73	0	n/a	0.000	NP Inter (normality)

C.3 Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report May 2018 Groundwater Monitoring Event

Piper Diagram

Analysis Run 1/24/2019 6:36 PM View: Bottom Ash III

LaCygne Client: SCS Engineers Data: LaC GW Data

Totals (ppm)	Na	ĸ	Ca	Mg	Cl	SO4	HCO3	C03
MW-13* 9/17/2018	165	3.55	214	120	13.1	1010	295	10
MW-903 9/17/2018	116	6.47	376	117	26.1	1070	497	10

ADDENDUM 1

2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

SCS ENGINEERS

Evergy Metro, Inc.

Douglas L. Doerr, P.E. John R. Rockhold, P.G.

SCS Engineers

December 16, 2022 File No. 27217233.18

To:

From:

Subject: 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Metro, Inc. Bottom Ash Impoundment La Cygne Generating Station - La Cygne, Kansas

Jared Morrison - Director, Water and Waste Programs

The Bottom Ash Impoundment at the La Cygne Generating Station are subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2018 for the Bottom Ash Impoundment was completed and placed in the facility's operating record on January 30, 2019, as required by the Rule. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- · Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

Jared Morrison December 16, 2022 Page 2

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- January 2018 Second verification sampling for the Fall 2017 detection monitoring sampling event.
- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- July 2018 First verification sampling for the Spring 2018 detection monitoring sampling event.
- August 2018 Second verification sampling for the Spring 2018 detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2018 included the following:

- o Fall 2017 semiannual detection monitoring statistical analyses.
- Spring 2018 semiannual detection monitoring statistical analyses.
- Attachment 3 Revised Groundwater Potentiometric Surface Maps:

Includes revised groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.
Jared Morrison December 16, 2022

ATTACHMENT 1

Laboratory Analytical Reports

ATTACHMENT 1-1 January 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

January 11, 2018

AECOM - Kansas City, MO

Sample Delivery Group:	L962121
Samples Received:	01/10/2018
Project Number:	60482842
Description:	La Cygne Generating Station
Site:	TASK 100
Report To:	Alla Skaskevych
	2380 McGee Suite 200
	Kansas City, MO 64108

Entire Report Reviewed By:

Jubb law

Jeff Carr Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	

Sr

Qc

GI

A

Sc

Cp: Cover Page	1					
Tc: Table of Contents	2					
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
MW-902 L962121-01	5					
MW-805 L962121-02	6					
Qc: Quality Control Summary	7					
Wet Chemistry by Method 9056A	7					
Metals (ICPMS) by Method 6020	8					
GI: Glossary of Terms	9					
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

SDG: L962121

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received date/time
MW-902 L962121-01 GW			Terry Andrews	01/09/18 11:50	01/10/18 09:15
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1061236	1	01/10/18 19:02	01/10/18 19:02	DR
			Collected by	Collected date/time	Received date/time
MW-805 L962121-02 GW			Terry Andrews	01/09/18 12:45	01/10/18 09:15
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICPMS) by Method 6020	WG1061246	1	01/10/18 10:53	01/10/18 14:01	JPD

SDG: L962121

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb an

Jeff Carr Technical Service Representative

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 60482842

SDG: L962121 DATE/TIME: 01/11/18 10:07 PAGE: 4 of 11

SAMPLE RESULTS - 01 L962121

*

Wet Chemistry by Method 9056A

	, ,							1'Cn
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte		mg/l		mg/l		date / time		2
Sulfate		37.9		5.00	1	01/10/2018 19:02	WG1061236	Tc

³Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

SAMPLE RESULTS - 02

*

Ss

Cn

Qc

GI

Â

Sc

Metals (ICPMS) by Method 6020

							1°Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Calcium	439		1.00	1	01/10/2018 14:01	WG1061246	Tc

ACCOUNT:
AECOM - Kansas City, MO

WG1061236

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L962121-01

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3278661-1 01/10/18 06:59							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Sulfate	U		0.0774	5.00			

L962121-01 Original Sample (OS) • Duplicate (DUP)

(OS) L962121-01 01/10/18 19:02 • (DUP) R3278661-7 01/10/18 19:16										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/l	mg/l		%		%				
Sulfate	37.9	37.9	1	0.0427		15				

L962047-01 Original Sample (OS) • Duplicate (DUP)

L962047-01 Original Sample (OS) • Duplicate (DUP)										
(OS) L962047-01 01/10/18 21:42 • (DUP) R3278661-9 01/10/18 21:56										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al		
Analyte	mg/l	mg/l		%		%				
Sulfate	ND	0.674	1	0		15		⁹ Sc		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278661-2 01/10/18 07:14 • (LCSD) R3278661-3 01/10/18 07:28										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Sulfate	40.0	39.8	39.8	99.5	99.4	80-120			0.127	15

L962047-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L962047-01 01/10/18 2)S) L962047-01 01/10/18 21:42 • (MS) R3278661-5 01/10/18 13:16 • (MSD) R3278661-6 01/10/18 13:31											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	ND	52.2	52.6	103	104	1	80-120			0.814	15

L962121-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L962121-01 01/10/18 19	DS) L962121-01 01/10/18 19:02 • (MS) R3278661-8 01/10/18 19:31												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte	mg/l	mg/l	mg/l	%		%							
Sulfate	50.0	37.9	87.3	98.7	1	80-120							

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
AECOM - Kansas City, MO	60482842	L962121	01/11/18 10:07	7 of 11

WG1061246

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3278574-1 01/1	(MB) R3278574-1 01/10/18 13:34						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Calcium	U		0.046	1.00			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278574-2 01/10/18 13:38 • (LCSD) R3278574-3 01/10/18 13:41												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Calcium	5.00	4.88	4.89	97.7	97.9	80-120			0.177	20		

L961908-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961908-01 01/10/18 13:45 • (MS) R3278574-5 01/10/18 13:53 • (MSD) R3278574-6 01/10/18 13:57												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium	5.00	66.8	72.3	73.0	108	123	1	75-125			1.03	20

SDG: L962121 DATE/TIME: 01/11/18 10:07 PAGE: 8 of 11

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDI	Method Detection Limit
ND	Not detected at the Penorting Limit (or MDL where applicable)
RDI	Reported Detection Limit
Rec	Recovery
RPD	Relative Percent Difference
SDG	Sample Delivery Group
U	Not detected at the Reporting Limit (or MDL where applicable)
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L962121

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Connecticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
AECOM - Kansas City, MO	60482842	L962121	01/11/18 10:07

AFCOM - Kansas City MO			Billing Info	Billing Information:						An	Analysis / Container / Preservative				Chain of Custo	ody Page of		
2380 McGee Suite 200 Kansas City, MO 64108	, MO		Dana M 2380 M Kansas	lonroe - cGee Sui City, MO	13349 te 200 64108	927	Pres Chk								- X	ESC		
Report to: Alla Skaskevych			Email To: a	alla.skaske ceen@aeco	vych@a om.com;	ecom.com; ; jay.martin@kcp	ol.com								12065 Lebanon P	gadiganan 		
Project Description: La Cygne Generatin	g Station			City/State Collected:											Phone: 615-758- Phone: 800-767- Fax: 615-758-585			
Phone: 913-344-1000 ax: 913-344-1011	Client Project 60482842	#		Lab Proje	Lab Project # URSKC-LACYGNE			PE-HN	Pres			1000			L# 962	121		
Terry Andrews	Site/Facility ID TASK 100) #		P.O. # PROCESS AS NON-PO			DHIMO	PE-No						H24	9 RSKC			
ollected by (signature):	Rush? (L	ab MUST Be	Notified) Quote #					120 25(SmiHD						Template:T1	30678		
mmediately acked on Ice N Y	Two Day Two Day Three Da	y 5 Day 10 D.	/ (Rad Only) iy (Rad Only)	Da	nte Resu	lts Needed	No. of	nm - 6(ATE 12						TSR: 206 - Jef PB:	ff Carr		
Sample ID	Comp/Grab	Matrix *	Depth	Dat	te	Time	Cntrs	alciu	NLF	1					Shipped Via:	12000		
1W-902	Grab	GW	-	110	118	11:50	1	0	vi v		10.94		110	1223	Remarks	Sample # (lab only)		
1W-805	11	GW	-	11	110	12:45	1	v	^		1634	-				-01		
		1-51594				16.1	-	~	1	-		-			-	- 02		
							-		1	10		-	1211					
									1 1		1000	-						
				1				-		100	0.275	-		2.23	-	1000		
							1	100	1	-	1000			100				
					-								24. (A. 1997) Martines	155				
										100	1000					C. 51671-28		
									- 22	199	161367	-		200				
fatrix:	Remarks:			1			1	-	-	- 11	1.3.6		1975		Complex Decode a s	0		
V - Groundwater B - Bioassay W - WasteWater							1				pH Temp				Sample Receipt Checklist COC Seal Present/Intact: NP V N COC Signed/Accurate: V N Bottles arrive intact: V N			
- Other	UPSFed	ed via: ExCour	ier XSU	NA	Trac	king #	-40	112		1.151				Suffici	ient volume sent:			
Relinquished by : (Signature)				me: 13:30	Rece	eived by: (Signati	uro)	F:	ol	Trip	Blank Recei	ved; Y		VOA Zez Preserv	If Applicable VOA Zero Headspace:YN Preservation Correct/Checked:YN			
linquefied by : (Signature)		Date:	Ti	me:	Rece	fived by: (Signatu	ref	- Ar		Ten	9.9 h *	C Bott	TBA les Received: 2	If preserv	vation required by Lo	ogin: Date/Time		
inquished by : (Signature)		Date:	Tir	me:	Rece	elved for lab by: (Schatu	ire)	44	Dat	10.10	TIM	416	Hold:		Condition:		

ATTACHMENT 1-2 May 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L996942 05/25/2018 27217233.18 KCPL - LaCygne Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jubb land

Jeff Carr Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ AI	

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-901 L996942-01	5
MW-902 L996942-02	6
MW-903 L996942-03	7
MW-904 L996942-04	8
MW-905 L996942-05	9
DUPLICATE 1 L996942-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SDG: L996942

DATE/TIME: 06/04/18 12:30

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

₩

			Collected by	Collected date/time	Received date/time
MW-901 L996942-01 GW			Bryan Ross	05/23/18 13:40	05/25/18 10:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1117283	1	05/30/18 15:41	05/30/18 16:06	MMF
Wet Chemistry by Method 9056A	WG1117200	1	05/29/18 13:53	05/29/18 13:53	DR
Metals (ICP) by Method 6010B	WG1117056	1	05/30/18 18:08	05/31/18 16:48	TRB
MW-902 1996942-02 GW			Collected by Bryan Ross	Collected date/time 05/23/18 12:40	Received date/time 05/25/18 10:00
Method	Batch	Dilution	Prenaration	Analysis	Δnalvst
	Daten	Dilution	date/time	date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1117283	1	05/30/18 15:41	05/30/18 16:06	MMF
Wet Chemistry by Method 9056A	WG1117200	1	05/29/18 14:26	05/29/18 14:26	DR
Vetals (ICP) by Method 6010B	WG1117056	1	05/30/18 18:08	05/31/18 16:51	TRB
			Collected by	Collected date/time	Received date/time
MW-903 L996942-03 GW			Bryan Ross	05/23/18 10:45	05/25/18 10:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1117283	1	05/30/18 15:41	05/30/18 16:06	MMF
Net Chemistry by Method 9056A	WG1117200	1	05/29/18 14:43	05/29/18 14:43	DR
Vet Chemistry by Method 9056A	WG1117779	20	05/31/18 05:03	05/31/18 05:03	MAJ
Ietals (ICP) by Method 6010B	WG1117056	1	05/30/18 18:08	05/31/18 16:35	TRB
			Collected by	Collected date/time	Received date/time
MW-904 L996942-04 GW			Bryan Ross	05/23/18 09:35	05/25/18 10:00
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1117283	1	05/30/18 15:41	05/30/18 16:06	MMF
Vet Chemistry by Method 9056A	WG1117779	1	05/31/18 05:18	05/31/18 05:18	MAJ
Aetals (ICP) by Method 6010B	WG1117056	1	05/30/18 18:08	05/31/18 16:55	TRB
			Collected by	Collected date/time	Received date/time
MW-905 L996942-05 GW			Bryan Ross	05/23/18 14:45	05/25/18 10:00
Vethod	Batch	Dilution	Preparation	Analysis	Analyst
ravimatric Applycic by Mathad 2540 C 2011	W/C1117202	1			
Dravineuric Analysis by Method 2040 C-2011	WG111/283	1	05/30/18 15:41	05/30/18 10:06	
Wel Chemistry by Method 9056A	WG111///9	1	05/31/18 06:04	05/31/18 06:04	MAJ
vietais (ICP) by Method 6010B	WG111/056	1	05/30/18 18:08	05/31/18 1/:04	IKB
			Collected by	Collected date/time	Received date/time
DUPLICATE1 L996942-06 GW			Bryan Ross	05/23/18 10:50	05/25/18 10:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1117283	1	05/30/18 15:41	05/30/18 16:06	MMF
Wet Chemistry by Method 9056A	WG1117779	1	05/31/18 06:19	05/31/18 06:19	MAJ
	11101110001	20	00/01/10 10:00	05/21/10 10.20	MAL
Wet Chemistry by Method 9056A	WG1118331	20	05/31/18 18:20	03/31/10 10.20	IVIAJ

PROJECT: 27217233.18

SDG: L996942

DATE/TIME: 06/04/18 12:30

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb an

Jeff Carr Technical Service Representative

SDG: L996942 DA 06/0 PAGE: 4 of 19

SAMPLE RESULTS - 01 L996942

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	520000		10000	1	05/30/2018 16:06	<u>WG1117283</u>	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
Result Qualifier RDL Dilution Analysis Batch									
Analyte	ug/l		ug/l		date / time		4	⁴ Cn	
Chloride	22600		1000	1	05/29/2018 13:53	WG1117200		CII	
Fluoride	547		100	1	05/29/2018 13:53	WG1117200		5	
Sulfate	17900		5000	1	05/29/2018 13:53	WG1117200		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1140		200	1	05/31/2018 16:48	WG1117056
Calcium	57100		1000	1	05/31/2018 16:48	WG1117056

SDG: L996942

SAMPLE RESULTS - 02 L996942

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	511000		10000	1	05/30/2018 16:06	WG1117283	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time			4 Cn	
Chloride	33900		1000	1	05/29/2018 14:26	WG1117200		СП	
Fluoride	541		100	1	05/29/2018 14:26	WG1117200		5	
Sulfate	32500		5000	1	05/29/2018 14:26	WG1117200		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1220		200	1	05/31/2018 16:51	WG1117056
Calcium	70900		1000	1	05/31/2018 16:51	WG1117056

SAMPLE RESULTS - 03 L996942

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ct
Analyte	ug/l		ug/l		date / time		2	>
Dissolved Solids	1920000		10000	1	05/30/2018 16:06	<u>WG1117283</u>		Тс

Wet Chemistry by Method 9056A

Wet Chemistry by	y Method 9056A	A					³ Ss	5
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time		4	
Chloride	25600		1000	1	05/29/2018 14:43	WG1117200		1
Fluoride	ND		100	1	05/29/2018 14:43	<u>WG1117200</u>	5	
Sulfate	896000		100000	20	05/31/2018 05:03	WG1117779	Šr	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	428		200	1	05/31/2018 16:35	WG1117056
Calcium	368000	\vee	1000	1	05/31/2018 16:35	WG1117056

SDG: L996942

SAMPLE RESULTS - 04 L996942

.

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

						C
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		 2
Dissolved Solids	677000	10000	1	05/30/2018 16:06	WG1117283	Τc

Wet Chemistry by Method 9056A

	Result	Quanner	RDE	Dilution	Andrysis	Bateri	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	677000		10000	1	05/30/2018 16:06	<u>WG1117283</u>	Tc
Wet Chemistry by Metho	d 9056A						³Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cn
Chloride	33800		1000	1	05/31/2018 05:18	WG1117779	CII
Fluoride	444		100	1	05/31/2018 05:18	WG1117779	5
Sulfate	80700		5000	1	05/31/2018 05.18	WG1117779	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1100		200	1	05/31/2018 16:55	WG1117056
Calcium	72200		1000	1	05/31/2018 16:55	WG1117056

SAMPLE RESULTS - 05 L996942

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	602000		10000	1	05/30/2018 16:06	WG1117283	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time			4 Cn	
Chloride	51900		1000	1	05/31/2018 06:04	WG1117779			
Fluoride	581		100	1	05/31/2018 06:04	WG1117779		5	
Sulfate	27500		5000	1	05/31/2018 06:04	WG1117779		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1780		200	1	05/31/2018 17:04	WG1117056
Calcium	47800		1000	1	05/31/2018 17:04	WG1117056

SAMPLE RESULTS - 06 L996942

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1980000		10000	1	05/30/2018 16:06	<u>WG1117283</u>	² Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time		⁴ Cn	
Chloride	25600		1000	1	05/31/2018 06:19	WG1117779		
Fluoride	ND		100	1	05/31/2018 06:19	WG1117779	5	
Sulfate	100000		100000	20	05/31/2018 18:20	WG1118331	Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	426		200	1	05/31/2018 17:08	WG1117056
Calcium	370000		1000	1	05/31/2018 17:08	WG1117056

SDG: L996942

WG1117283

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L996942-01,02,03,04,05,06

Method Blank (MB)

(MB) R3314627-1 05/30/18 16:06						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Dissolved Solids	U		2820	10000		

L996942-01 Original Sample (OS) • Duplicate (DUP)

L996942-01 Original Sample (OS) • Duplicate (DUP)										
(OS) L996942-01 05/30/18 16:06 • (DUP) R3314627-4 05/30/18 16:06										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁵ Sr		
Analyte	ug/l	ug/l		%		%		51		
Dissolved Solids	520000	522000	1	0.384		5		⁶ Qc		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314627-2 05/30/18 16:06 • (LCSD) R3314627-3 05/30/18 16:06										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Dissolved Solids	8800000	8610000	8580000	97.8	97.5	85.0-115			0.349	5

DATE/TIME: 06/04/18 12:30 GI

Â

Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

(MB) R3313649-1	05/29/18 11:50

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	18.9	J	9.90	100
Sulfate	U		77.4	5000

L996942-01 Original Sample (OS) • Duplicate (DUP)

OS) L996942-01 05/29/18 13:53 • (DUP) R3313649-4 05/29/18 14:10											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	22600	22500	1	0.595		15					
Fluoride	547	557	1	1.83		15					
Sulfate	17900	18000	1	0.432		15					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3313649-2 05/29/18 12:06 • (LCSD) R3313649-3 05/29/18 12:22										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	40200	40200	101	100	80.0-120			0.193	15
Fluoride	8000	8040	8010	100	100	80.0-120			0.312	15
Sulfate	40000	40500	40500	101	101	80.0-120			0.0148	15

L996942-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L996942-03 05/29/18 14:43 • (MS) R3313649-5 05/29/18 14:59 • (MSD) R3313649-6 05/29/18 15:15												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	25600	74100	75200	97.1	99.2	1	80.0-120			1.44	15
Fluoride	5000	ND	4770	4860	93.6	95.5	1	80.0-120			1.99	15

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L996942 DATE/TIME: 06/04/18 12:30

PAGE: 12 of 19

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3314154-1	05/30/18 22:54

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	112	J	51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L996368-01 Original Sample (OS) • Duplicate (DUP)

(OS) L996368-01	05/31/18 01:11	• (DUP) R3314154-4	05/31/18 01:27
(00) 200000 01	00/01/10 01.11		00/01/10 01.27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	45600	45900	1	0.742		15
Fluoride	ND	33.3	1	1.51	J	15
Sulfate	28300	28300	1	0.190		15

L996467-05 Original Sample (OS) • Duplicate (DUP)

(OS) L996467-05 05/31/18	03:46 • (DUP)	R3314154-7 05	5/31/18 04	:01		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	un DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	3220	3360	1	4.23		15
Fluoride	ND	22.7	1	0.000		15
Sulfate	ND	3120	1	0.000		15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314154-2 05/30/18 23:09 • (LCSD) R3314154-3 05/30/18 23:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	39500	39400	98.7	98.6	80.0-120			0.140	15
Fluoride	8000	7940	7940	99.2	99.3	80.0-120			0.0164	15
Sulfate	40000	39700	39700	99.3	99.1	80.0-120			0.133	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L996942	06/04/18 12:30	13 of 19

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L996368-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

SS) L996368-01 05/31/18 01:11 • (MS) R3314154-5 05/31/18 01:42 • (MSD) R3314154-6 05/31/18 01:58												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	45600	96000	93000	101	94.9	1	80.0-120			3.16	15
Fluoride	5000	ND	5030	5040	100	100	1	80.0-120			0.141	15
Sulfate	50000	28300	75300	76100	93.9	95.5	1	80.0-120			1.08	15

L996467-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L996467-05 05/31/1	JS) L996467-05 05/31/18 03:46 • (MS) R3314154-8 05/31/18 04:16											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	ug/l	ug/l	ug/l	%		%						
Chloride	50000	3220	59000	112	1	80.0-120						
Fluoride	5000	ND	5360	107	1	80.0-120						
Sulfate	50000	ND	53700	101	1	80.0-120						

DATE/TIME: 06/04/18 12:30 Sc

WG1118331

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L996942-06

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3314570-1 05/31/18 11:45								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Sulfate	U		77.4	5000				

L996949-07 Original Sample (OS) • Duplicate (DUP)

(OS) L996949-07 05/31/18	20:11 • (DUP) F	3314570-6 05	5/31/18 20	:29		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	166000	167000	5	0.316		15

L997865-01 Original Sample (OS) • Duplicate (DUP)

L997865-01 Origin	L997865-01 Original Sample (OS) • Duplicate (DUP)												
(OS) L997865-01 05/31/18	JS) L997865-01 05/31/18 22:02 • (DUP) R3314570-7 05/31/18 22:58												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al						
Analyte	ug/l	ug/l		%		%							
Sulfate	59100	59200	1	0.233		15	⁹ Sc						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3314570-2 05/31/18 12:03 • (LCSD) R3314570-3 05/31/18 12:22										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Sulfate	40000	39400	37900	98.5	94.8	80.0-120			3.81	15

L997865-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L997865-01 05/31/18	DS) L997865-01 05/31/18 22:02 • (MS) R3314570-8 05/31/18 23:17										
Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier											
Analyte	ug/l	ug/l	ug/l	%		%					
Sulfate	50000	59100	106000	94.5	1	80.0-120	E				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L996942	06/04/18 12:30	15 of 19

WG1117056

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Method Blank (MB)

Mictiliou Diuli					Cn l
(MB) R3314442-1	05/31/18 16:25				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	⁻Tc
Boron	U		12.6	200	
Calcium	U		46.3	1000	³ Ss
					00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314442-2 05/31/18 16:29 • (LCSD) R3314442-3 05/31/18 16:32										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	947	938	94.7	93.8	80.0-120			0.966	20
Calcium	10000	9790	9690	97.9	96.9	80.0-120			1.03	20

L996942-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Loodo 12 de origin	a campie	(00) 11144	in opine (ii		opine Dup								
)S) L996942-03 05/31/18 16:35 • (MS) R3314442-5 05/31/18 16:42 • (MSD) R3314442-6 05/31/18 16:45												⁸ AI	
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits													
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	428	1380	1380	95.2	95.3	1	75.0-125			0.128	20	Sc
Calcium	10000	368000	372000	373000	45.8	53.5	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.207	20	

ACCOUNT:	
SCS Engineers - KS	S

PROJECT: 27217233.18

SDG: L996942 DATE/TIME: 06/04/18 12:30

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27217233.18

SDG: L996942 DATE/TIME: 06/04/18 12:30

PAGE: 17 of 19

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NEI
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

27217233.18

L996942

PAGE: 18 of 19

06/04/18 12:30

Τс Ss Cn Sr Qc Gl AI Sc

Contraction of the second	36.2	1	Billing Inform	nation:	7-1-1-1	T	1	10.00	Ana	alysis / Cont	lainer / I	Preservative	e	2.3	Chain of Cust	tody Page of	
CS Engineers - KS 311 West 130th Street, Ste. 100 overland Park, KS 66213			Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213					2							2		
port to: Ison Franks	10		Email To: Jfr jay.martin@	s.com;		oPres								12065 Lebant Mount Juliet, Phone: 615-7 Phone: 800-7 Fax: 615-758-	TN 37122 58-5858 67-5859 5859		
roject	erating Static	n		Collected: K	>		N-B-D	m							Le Ge	76942	
hone: 913-681-0030	Client Project 4 27217233.1	8		Lab Project # AQUAOPKS-LACYGNE			IdHimi	E-HNO	5	9					T. N	1221	
collected by (print):	Site/Facility ID	#		P.O. #			04) 125	mIHDP	NoPre						Acctnum: Template	AQUAOPKS T136292	
collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #	1.1		r, 50	250	DPE						Prelogin: P653938		
15-62 Immediately	Same Di Next Da Two Day	Five	Day y (Rad Only) ay (Rad Only)	Doly) Date Results Ne I Only)		No	(Cld,	6010	SomiH						TSR: 206 PB:	- Jeff Carr	
Packed on Ice N Y Y	Three D	ay	Denth	Date	Time	Cnt	nion	Ca -	05.2				123		Shipped	via: rks Sample # (lab only)	
Sample ID	Comp/Grab	Matrix *	Depth	Tr haus	1 12410	1	A A	A B,	F							ol	
MW-901	Grab	GW		5120/19	1340	+	3 X	X	X	1			1.0			02	
MW-902		GW		5/13/10	1240	-	3 4	X	X						S. Par	67	
MW-903		GW	-	5/12/10	1045		3 4	X	X				1-1-4		24	04	
MW-904		GW	1.2.2.1	5/20/18	1000	-	3 4	X	X	198					6	05	
MW-905	1000	GW	-	5122	2 1000	2	3 4	X	X			100	1		A State	07	
MS 903		GW	-	5/20/10	2 1100	2	3 4	X	X				-			03	
MSD 903	1	GW	1	3/23/11			3)	X	X				100			06	
DUPLICATE 1	V	GW	10.29	5/23/1	8 1050	1							1995				
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	MS,	IMSI) coher	ted fre	-mc	90	3		pH _		Temp		COC S COC S Bottl Corre Suffi	Sample Rect eal Present/ igned/Accura es arrive in of bottles u cient volume If Ar	eipt Checklet Intact: hp y te: tact: sed: sent: y plicable	
DW - Drinking Water OT - Other	UPS	Samples returned via: UPSFedExCourier				Tracking # Received by: (Signature)				Trip Blank Received: Yes / No			VOA Zero Headspace: Preservation Correct/Checked: Z				
Relinquished by : (Signature) Buy Act Relinquished by : (Signature)		S/, Date:	24/18	1415 Time:	Received by: (S	lignatu	re)	100	1	Temp:	m	C Bottles F	teceived:	If pre	servation requir	ed by Login: Date/Time	
Relinquished by : (Signature)	1000	Date:	1	Time:	Received for la	b/by: (!	Signator		,	Date:	2	Time:		Hold:		Condition NCF / Q	

ATTACHMENT 1-3 July 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group:	L1008819
Samples Received:	07/12/2018
Project Number:	27217233.18
Description:	KCPL - LaCygne Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al

Sc

Cp: Cover Page	1			
Tc: Table of Contents	2			
Ss: Sample Summary	3			
Cn: Case Narrative	5			
Sr: Sample Results	6			
MW-11 L1008819-01	6			
MW-13 L1008819-02	7			
MW-804 L1008819-03	8			
DUPLICATE 1 L1008819-04	9			
MW-902 L1008819-05	10			
MW-903 L1008819-06	11			
DUPLICATE 2 L1008819-07	12			
MW-704 L1008819-08	13			
DUPLICATE 3 L1008819-09	14			
Qc: Quality Control Summary	15			
Wet Chemistry by Method 9056A	15			
Metals (ICP) by Method 6010B	18			
GI: Glossary of Terms	19			
Al: Accreditations & Locations				
Sc: Sample Chain of Custody	21			

SDG: L1008819 DATE/TIME: 07/19/18 13:45
SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Peceived date/time
MW-11 L1008819-01 GW			Gabby Penaflok	07/11/18 10:40	07/12/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Net Chemistry by Method 9056A	WG1138084	1	07/16/18 23:15	07/16/18 23:15	MCG
Aetals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 17:40	WBD
			Collected by	Collected date/time	Received date/time
MW-13 L1008819-02 GW			Cabby Fenaliok	07/11/18 15:05	07/12/10 00:45
<i>l</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Vet Chemistry by Method 9056A	WG1138084	1	07/17/18 00:17	07/17/18 00:17	MCG
Ietals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 18:21	WBD
			Collected by	Collected date/time	Received date/time
MW-804 L1008819-03 GW			Gabby Penaflok	07/11/18 12:35	07/12/18 08:45
fethod	Batch	Dilution	Preparation	Analysis date/time	Analyst
Net Chemistry by Method 9056A	WC1128081	1	07/17/18 01:05	07/17/12 01:05	MCC
Atals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 18:24	WBD
			Collected by	Collocted data/time	Received data/tim
DUPLICATE 1 L1008819-04 GW			Gabby Penaflok	07/11/18 10:40	07/12/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Vet Chemistry by Method 9056A	WG1138084	1	07/17/18 01:20	07/17/18 01:20	MCG
Aetals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 18:26	WBD
			Collected by	Collected date/time	Received date/time
MW-902 L1008819-05 GW			Gabby Penaflok	07/11/18 11:15	07/12/18 08:45
/lethod	Batch	Dilution	Preparation	Analysis date/time	Analyst
Aetals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 18:29	WBD
			Collocated by	Collected date /time	Dopoired data /time
MW-903 L1008819-06 GW			Gabby Penaflok	07/11/18 10:25	07/12/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Aetals (ICP) by Method 6010B	WG1137343	1	07/13/18 09:49	07/14/18 17:51	WBD
			Collected by	Collected date/time	Received date/time
DUPLICATE 2 L1008819-07 GW			Gabby Penaflok	07/11/18 10:20	07/12/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Actals (ICP) by Mathod 6010P	\\/ <u>C</u> 11272 <i>1</i> 2	1			W/DD
אפנוסט וויפנוסט ססוסם	WG1137343	I	07/13/16 09:49	U//14/10 10.3/	WDD
			Collected by	Collected date/time	Received date/time
MW-704 L1008819-08 GW			Gabby Penatlok	07/11/18 11:30	07/12/18 08:45
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
			3310, 1110	outor anno	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 27217233.18
 L1008819
 07/19/18 13:45
 3 of 22

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

DUPLICATE 3 L1008819-09 GW			Collected by Gabby Penaflok	Collected date/time 07/11/18 11:30	Received date/time 07/12/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1137214	5	07/14/18 21:49	07/14/18 21:49	MCG

[∠] Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

*

Ср

ACCOUNT: SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1008819 DATE/TIME: 07/19/18 13:45

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

SDG: L1008819 DATE/TIME: 07/19/18 13:45 Analyte

Boron

SAMPLE RESULTS - 01

*

Cn

Qc

Gl

Â

Sc

Wet Chemistry by Method 9056A

ug/l

1170

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	532		100	1	07/16/2018 23:15	WG1138084	² Tc
Metals (ICP) by N	Vethod 6010B						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	

1

date / time

07/14/2018 17:40

WG1137343

ug/l

200

Boron

SAMPLE RESULTS - 02

*

Qc

Gl

Â

Sc

Wet Chemistry by Method 9056A

533

Collected date/time: 07/11/18 13:05

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Cp	
Analyte	ug/l		ug/l		date / time			2	
Fluoride	181		100	1	07/17/2018 00:17	WG1138084		Tc	
Metals (ICP) by N	Vethod 6010B							³ Ss	
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time			4 Cn	
-									

1

07/14/2018 18:21

WG1137343

200

ACCOUNT:

SCS Engineers - KS

SDG: L1008819 Boron

SAMPLE RESULTS - 03

*

Qc

Gl

Â

Sc

Wet Chemistry by Method 9056A

1670

,	·						L'Co
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	449		100	1	07/17/2018 01:05	WG1138084	Tc
Metals (ICP) by N	lethod 6010B						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cn
2	1070		000		07/14/00/00 40 04	1000070.00	

1

07/14/2018 18:24

WG1137343

200

Boron

SAMPLE RESULTS - 04

Qc

Gl

Â

Sc

Wet Chemistry by Method 9056A

1170

	Pocult	Qualifior	וחפ	Dilution	Analysis	Batch	 Ср
A	Kesuit	Qualifier		Dilution	Analysis	Daten	
Analyte	ug/i		ug/i		date / time		2
Fluoride	530		100	1	07/17/2018 01:20	WG1138084	Тс
Metals (ICP) by N	Vlethod 6010B						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		 ⁴ Cn

1

07/14/2018 18:26

WG1137343

200

SAMPLE RESULTS - 05 L1008819

Ср

Ss

Cn

Qc

GI

ΆI

Sc

Metals (ICP) by Method 6010B

							1 Cm
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Calcium	69100		1000	1	07/14/2018 18:29	WG1137343	Tc

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45

Collected date/time: 07/11/18 10:25

Τс

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	371000	$\underline{\vee}$	1000	1	07/14/2018 17:51	WG1137343

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

ACCOUNT: SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45 PAGE: 11 of 22

SAMPLE RESULTS - 07

Metals (ICP) by Method 6010B

							1°Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ch
Analyte	ug/l		ug/l		date / time		2
Calcium	373000		1000	1	07/14/2018 18:37	WG1137343	Tc

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
a
Sc

ACCOUNT: SCS Engineers - KS PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45 PAGE: 12 of 22

SAMPLE RESULTS - 08 L1008819

¥

Ср

Ss

Cn

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

							1°Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Chloride	87100		1000	1	07/14/2018 01:05	WG1137760	Tc

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45

PAGE: 13 of 22

SAMPLE RESULTS - 09

*

Τс

Wet Chemistry by Method 9056A

							11
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		Б
Chloride	82800		5000	5	07/14/2018 21:49	WG1137214	

SDG: L1008819 DATE/TIME: 07/19/18 13:45

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1008819-09

Τс

Ss

GI

Method Blank (MB)

(MB) R3325628-1 07/14/18 12:48										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Chloride	U		51.9	1000						

L1008561-01 Original Sample (OS) • Duplicate (DUP)

LIUU8561-UT Original Sample (OS) • Duplicate (DUP)										
(OS) L1008561-01 07/14/18 17:42 • (DUP) R3325628-4 07/14/18 17:57										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁵ Sr		
Analyte	ug/l	ug/l		%		%				
Chloride	8250	8260	1	0.176		15		⁶ Qc		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325628-2 07/14/18 13:03 • (LCSD) R3325628-3 07/14/18 13:18											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	8
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	AI
Chloride	40000	38100	38100	95.1	95.2	80.0-120			0.0993	15	⁹ Sc

L1008561-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1008561-01 07/14/18	JS) L1008561-01 07/14/18 17:42 • (MS) R3325628-5 07/14/18 18:13												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte	ug/l	ug/l	ug/l	%		%							

PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45

PAGE: 15 of 22

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1008819-08

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3325510-1 07/13/18 20:40								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Chloride	U		51.9	1000				

L1008471-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1008471-01 07/13/18	DS) L1008471-01 07/13/18 23:00 • (DUP) R3325510-4 07/13/18 23:42										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	4400	4400	1	0.116		15					

L1008819-08 Original Sample (OS) • Duplicate (DUP)

L1008819-08 Original Sample (OS) • Duplicate (DUP)											
(OS) L1008819-08 07/14/18 01:05 • (DUP) R3325510-6 07/14/18 01:19											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al				
Analyte	ug/l	ug/l		%		%					
Chloride	87100	87000	1	0.148		15	Sc				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325510-2 07/13/18 20:54 • (LCSD) R3325510-3 07/13/18 21:08											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Chloride	40000	39100	39100	97.8	97.8	80.0-120			0.00256	15	

L1008471-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1008471-01 07/13/18 23:00 • (MS) R3325510-5 07/13/18 23:56											
	Sp	pike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug	g/l	ug/l	ug/l	%		%				
Chloride	50	0000	4400	55800	103	1	80.0-120				

L1008819-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1008819-08 07/14/18 01:05 • (MS) R3325510-7 07/14/18 01:33 • (MSD) R3325510-8 07/14/18 01:47													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	87100	134000	134000	92.9	93.4	1	80.0-120	Ē	Ē	0.202	15	
AC	CCOUNT:			PRO.	JECT:			SDG:		DATE/	TIME:		PAGE:
SCS Engineers - KS				27217233.18			L1008819			07/19/18 13:45			16 of 22

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1008819-01,02,03,04

Ср

Тс

Ss

Cn

Sr

⁶Qc

Method Blank (MB)

(MB) R3326123-1 07/16/18 16:38								
	MB Resu	lt	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l			ug/l	ug/l			
Fluoride	U			9.90	100			

L1008819-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1008819-01 07/16/18	OS) L1008819-01 07/16/18 23:15 • (DUP) R3326123-4 07/16/18 23:30										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Fluoride	532	600	1	11.9		15					

L1009414-07 Original Sample (OS) • Duplicate (DUP)

L1009414-07 Original Sample (OS) • Duplicate (DUP)												
(OS) L1009414-07 07/17/18 04:40 • (DUP) R3326123-7 07/17/18 04:55												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al					
Analyte	ug/l	ug/l		%		%						
Fluoride	ND	0.000	1	0.000		15	⁹ Sc					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3326123-2 07/16/18 16:53 • (LCSD) R3326123-3 07/16/18 17:09											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Fluoride	8000	8180	8170	102	102	80.0-120			0.0807	15	

L1008819-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1008819-01 07/16/18 23:15 • (MS) R3326123-5 07/16/18 23:46 • (MSD) R3326123-6 07/17/18 00:01												
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Fluoride	5000	532	5450	5610	98.4	101	1	80.0-120			2.77	15

L1009414-07 Original Sample (OS) • Matrix Spike (MS)

(OS) L1009414-07 07/17/18 04:40 • (MS) R3326123-8 07/17/18 05:11										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Fluoride	5000	ND	5110	102	1	80.0-120				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L1008819	07/19/18 13:45	17 of 22

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1008819-01,02,03,04,05,06,07

Тс

Ss Cn

Sc

Method Blank (MB)

	()			
(MB) R3325573-1 0	7/14/18 17:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	П		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325573-2 07/14/18 17:35 • (LCSD) R3325573-3 07/14/18 17:38										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	971	969	97.1	96.9	80.0-120			0.228	20
Calcium	10000	10000	10000	100	100	80.0-120			0.195	20

L1008819-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1008819-01 07/14/18 17:40 • (MS) R3325573-5 07/14/18 17:46 • (MSD) R3325573-6 07/14/18 17:48												
Spike Amount Original Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	1170	2110	2110	93.9	94.3	1	75.0-125			0.164	20
Calcium	10000	56200	65600	65800	94.1	96.6	1	75.0-125			0.378	20

L1008819-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

DS) L1008819-06 07/14/18 17:51 • (MS) R3325573-7 07/14/18 17:54 • (MSD) R3325573-8 07/14/18 17:56												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	489	1480	1460	98.9	97.5	1	75.0-125			0.974	20
Calcium	10000	371000	376000	377000	53.6	63.5	1	75.0-125	$\underline{\vee}$	V	0.262	20

PROJECT: 27217233.18

SDG: L1008819

DATE/TIME: 07/19/18 13:45

PAGE: 18 of 22

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL M ND N RDL R Rec. R RPD R SDG S U N Analyte T	Method Detection Limit. Not detected at the Reporting Limit (or MDL where applicable). Reported Detection Limit. Recovery. Relative Percent Difference. Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
ND N RDL R Rec. R RPD R SDG Si U N Analyte T	Not detected at the Reporting Limit (or MDL where applicable). Reported Detection Limit. Recovery. Relative Percent Difference. Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
RDL R Rec. R RPD R SDG S U N Analyte T	Reported Detection Limit. Recovery. Relative Percent Difference. Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
Rec.RRPDRSDGSUNAnalyteT	Recovery. Relative Percent Difference. Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
RPDRSDGSUNAnalyteT	Relative Percent Difference. Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
SDG Si U N Analyte T	Sample Delivery Group. Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
U N Analyte	Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
Analyte TI	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes eported. f the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
	f the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the
Dilution If Ia	standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the aboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the esult reported has already been corrected for this factor.
Limits fc di	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal or the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample Ti	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier re po	This column provides a letter and/or number designation that corresponds to additional information concerning the result eported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result (E (N (N or	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" Below Detectable Levels). The information in the results column should always be accompanied by either an MDL Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn) A bb	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
TI Sample Chain of da Custody (Sc) ct sa	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss) Ti	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and imes of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27217233.18

SDG: L1008819 DATE/TIME: 07/19/18 13:45 PAGE: 19 of 22

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nobraska
Aldudilid	4060	Neuldska
Alaska	1/-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NEL
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27217233.18

L1008819

PAGE: 20 of 22

07/19/18 13:45

SCS Engineers - KS Ac 73		Billing Infor	mation:			1	An	alysis / Cont	ainer / Prese	vative		Chain of Custody Page 1 of 2			
		Accounts 7311 We Overland	Accounts Payable 7311 West 130th Street, Ste. 100			22	22						<u>E A</u> F	ISC	
Overland Park, KS 66213					10,300		1	1		-		1 2.1			and planet
teport to: ason Franks			Email To: Jf	ranks@scsenginee @kcpl.com;	ers.com;									12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58 Phone: 800.762-58	
roject Description: KCPL - LaCygne Ge	nerating Statio	on		City/State LA Collected:	CYGNE, K	S	03	NO3						Fax: 615-758-5859	200
Phone: 913-681-0030 ax: 913-681-0012	Client Project 27217233.1	# .8		Lab Project # AQUAOPKS-L	ACYGNE		PE-HNG	IDPE-HI	DPE-NoPres	oPres				A00	03
Collected by (print):	Site/Facility ID	#	add	P.O. #			DHIM	SomIH		DPE-N				Acctnum: AQ	UAOPKS
Collected by (signature):	Rush? (L Same Da	ab MUST Be	Notified) Day	Quote #			0 250	010 2	SmiH	Smith				Prelogin: P65	9524
mmediately Packed on Ice N Y X	Next Day 5 Da Two Day 10 D Three Day		y (Rad Only) wy (Rad Only)	Date Resu	TD No.		n - 60	9 - mn	ide 12	ide 12			-	PB:	carr
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Boro	alci	Chlor	Fluor				Remarks	Sample # (lab only)
MW-11	Gene	GW	1	7111110	1040	2	X			X				State of	-01
MW-13	DFAD	GW		1/11/10	1305	2	X	1923	123	x					-02
MW-25		GW	12.	18	1235	2	X	1.52	1	x		1			-03
DUPLICATE 1	15 5	GW		1	1040	2	X	17.66		x				A. B. Martin	-04
MS/MSD		GW	and per		1040	2	X	12.7		x				6	
MW-902		GW		1	1115	1		X						6	-05
MW-903		GW			1025	1		X						0	-06
DUPLICATE 2		GW			1020	1		X				14		100	-07
MS/MSD	1	GW			1020	1		X		1		25		1	
MW-704		GW		V	1130	1			x		1	15-1-2		1. 1. 1. 1.	-08
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater	Remarks:	Remarks:								pH	Temp Othe	r	COC Sea COC Sig Bottles Correct	ample Receipt 1 Present/Inta- ned/Accurate: arrive intact bottles used:	CheckLifet st:NP ¥ NY +
DW - Drinking Water OT - Other	Samples retu UPSF	rned via: edExCo	ourier	T				मुड	3	58720			Sufficient volume sent: Y If Applicable VOA Zero Headspace: Y Preservation Correct/Checked: Y		
Religquishedte : (Signature)		Date: 7-/1	1-18	1502	econed by film	A	the	il	/	Thp Blank	neceived: Y	HCL / MeoH	If proton	ration required by	Login: Date/Time
Relinquished by : (Signature)		Date:	1	Time:	Eceived by: (Sign	atilire)	E			Temp: 3.415	C pour	17	in preserv	action required by	
Relinquished by : (Signature) Date:			Time: F	leceived for lab b	eceived for lab by: (Sign				Date:	Tim /14	e: 8:45	Hold:	and the	Condition: NCF / OI	

			Billing Infor	mation:		T	1		Analysis / Container / Preservative Chain							n of Custody	Page or						
CS Engineers - KS		Accounts Payable 7311 West 130th Street, Ste. 100					10	27				_			_		ŻЕ	SC					
11 West 130th Street, Ste. 1	100		Overland	Park, KS 0021	3	-	-		-	-	-	-	-	-	-	-			and fit was				
erland Park, KS 66213				L C unadana			43		-1		- 1		- 1				1206	is Lebanon Rd					
port to:			Email To: Jf	ranks@scsenginee @kcpl.com;	ers.com,				DPE-HNO3								Phot	ne: 615-758-5858	2000				
son Franks			L	City/State LA	CYGNE K	C	-									Fax:	615-758-5859	B SKSW					
oject seriation: KCPL - LaCygne Gen	erating Statio	n		Collected:	1.	-	_ 0	6							1		LI	10095	215				
one: 913-681-0030	Client Project # 27217233.1	8	1.00	Lab Project # AQUAOPKS-	ACYGNE		1111	PE-HN		DPE-H	loPres	VoPres					Table #		010				
ollected by (print):	Site/Facility ID	#	P.O. #						OmlH	SomIH	um - 6010 250mlH	DPE-N	DPE-N				1	Acctnum: AQUAC		AOPKS			
allected by (signature)	Rush? (La	ab MUST Be	Notified)	Quote #				0 250	Smith	Smith							Prelogin: P659524						
Sall Mole	Same Day Next Day Two Day	y Five 5 Da 10 D	y (Rad Only) ay (Rad Only)	Date Res	ults Needed		No. 001		nm - 6(nm - 6(nm - 6(nm - 6(nm - 6(ide 12	ide 12						PB: Shipped Via:	
Packed on Ice N Y A	Inter of	Natrix *	Death	Date	Time	C	ntrs	oroi	alciu	hlor	Inor					20		Remarks	Sample # (lab only)				
Sample ID	Comp/Grab	Matrix	Depen			-		â	0	0	<u></u>		1.2.				-		-09				
DUPLICATE 3	GRAB	GW	1	7/11/18	1/30		1	-	1	~	-	-	-				1						
MS/MSD	GRAB	GW		7/11/18	1130		1	-	-	X	-	-	-		-			-	S. Standing				
and the second second					22.3.					-	14	-	-	-	1			10.00					
	10.00		1.23.43		24	-	1		_	-		-	-	-	110		-						
				in the second				- 24	-5	120	-	-											
2011	-							30		154	1		-				+						
	-			1.1.2	1.12	1					1				-		-						
	-	-	-		122	22					1						-						
	-			-	1			hite		16		-					-						
		-	-					115		125				12:50			-						
* Matrix: SS - Soli AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:		-	pH Temp Flow Other 6							COC Sec COC Sig Bottle Correct	Sample Receipt Checklist N COC Seal Present/Intact: NP N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: N											
WW - WasteWater DW - Drinking Water	Samples ret	urned via:			Teaching #	43	6	de	93	3	872	20		15 18		VOA Ze	ro He	If Applica	ible _Y_N				
OT - Other	_UPS _	Date:	ourier	Time:	Received by (S	Signat	urel	#I	D	2	Trip B	lank Re	eceived:	Yes AN	меон	Preser	vatio	n Correct/(Thecked:N				
Ballupel	In	7-1 Date:	1-18	1502 Time:	Received by: (!	Signat	ure)	×	e		Temp	15	°C	TBR Bottles Re	celved:	If prese	rvation	required by	Login: Date/Time				
Kenudnauen nk : (alleuarme)				-			Internet	turn)		-	3,C	14		Time:	1.411	Hold:			Condition:				
Relinquished by : (Signature)		Date:		Time:	Received for la	ab by:	(Signa	(ure)			71	112	118	8	45			MAL !	NCF OK				

1

ATTACHMENT 1-4 August 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

August 27, 2018

SCS Engineers - KS

Sample Delivery Group:	L1019102
Samples Received:	08/18/2018
Project Number:	27217233.18
Description:	KCPL - LaCygne Generating Station

Report To:

Jason Franks 7311 West 130th Street, Ste. 100 Overland Park, KS 66213

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*
¹ Cp
² Tc
^³ Ss
⁴ Cn
⁵ Sr
⁶ Qc

GI

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-13 L1019102-01	5
MW-804 L1019102-02	6
DUPLICATE 1 L1019102-03	7
MW-704 L1019102-04	8
DUPLICATE 2 L1019102-05	9
MW-903 L1019102-06	10
DUPLICATE 3 L1019102-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SDG: L1019102 DATE/TIME: 08/27/18 13:36 PAGE: 2 of 16

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

					D
MW-13 L1019102-01 GW			Gabby Penaflor	08/16/18 10:50	Received date/time 08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG1155538	1	08/23/18 12:53	08/24/18 00:34	TRB
			Collected by	Collected date/time	Received date/time
MW-804 L1019102-02 GW			Gabby Penaflor	08/16/18 12:22	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG1155538	1	08/23/18 12:53	08/23/18 23:34	TRB
			Collected by	Collected date/time	Received date/time
DUPLICATE 1 L1019102-03 GW			Gabby Penaflor	08/16/18 12:27	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG1155538	1	08/23/18 12:53	08/24/18 00:37	TRB
			Collected by	Collected date/time	Received date/time
MW-704 L1019102-04 GW			Gabby Penaflor	08/16/18 13:26	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1154936	1	08/21/18 01:40	08/21/18 01:40	ELN
			Collected by	Collected date/time	Received date/time
DUPLICATE 2 L1019102-05 GW			Gabby Penaflor	08/16/18 13:31	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1154936	5	08/21/18 02:58	08/21/18 02:58	ELN
			Collected by	Collected date/time	Received date/time
MW-903 L1019102-06 GW			Gabby Penaflor	08/16/18 14:03	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG1155538	1	08/23/18 12:53	08/23/18 23:44	TRB
			Collected by	Collected date/time	Received date/time
DUPLICATE 3 L1019102-07 GW			Gabby Penaflor	08/16/18 14:08	08/18/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG1155538	1	08/23/18 12:53	08/24/18 00:39	TRB

PROJECT: 27217233.18

SDG: L1019102 DATE/TIME: 08/27/18 13:36 PAGE:

3 of 16

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27217233.18

SDG: L1019102 DATE/TIME: 08/27/18 13:36 PAGE: 4 of 16

SAMPLE RESULTS - 01

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср	
Analyte	ug/l		ug/l		date / time		2	
Boron	513		200	1	08/24/2018 00:34	WG1155538	⁻Tc	

SAMPLE RESULTS - 02 L1019102

Ср

Ss

Cn

Qc

GI

ΆI

Sc

Metals (ICP) by Method 6010B

							1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Boron	1760		200	1	08/23/2018 23:34	WG1155538	Tc

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1019102

SAMPLE RESULTS - 03

Тс

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Boron	1770		200	1	08/24/2018 00:37	WG1155538	

SDG: L1019102

SAMPLE RESULTS - 04

*

Ss

Cn

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

							 l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ch
Analyte	ug/l		ug/l		date / time		2
Chloride	83300		1000	1	08/21/2018 01:40	WG1154936	Tc

DUPLICATE 2 Collected date/time: 08/16/18 13:31

SAMPLE RESULTS - 05

*

Ср

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Chloride	83200		5000	5	08/21/2018 02:58	WG1154936	-

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
[°] Al
0

Sc

SAMPLE RESULTS - 06 L1019102

Ср

Metals (ICP) by Method 6010B

							l' Ch
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ch
Analyte	ug/l		ug/l		date / time		2
Calcium	382000	$\underline{\vee}$	1000	1	08/23/2018 23:44	<u>WG1155538</u>	Tc

³Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

SAMPLE RESULTS - 07

Τс

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		-
Calcium	381000		1000	1	08/24/2018 00:39	WG1155538	Ĩ

³ Ss
⁴Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT: SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1019102 DATE/TIME: 08/27/18 13:36

PAGE: 11 of 16

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1019102-04,05

ONE LAB. NATIONWIDE.

Ss

Cn

Sr

⁶Qc

Method Blank (MB)

(MB) R3335357-1 08/20/	/18 19:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	128	J	51.9	1000

L1019087-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1019087-09 08/20/1	S) L1019087-09 08/20/18 23:06 • (DUP) R3335357-4 08/20/18 23:22								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Chloride	1680	1630	1	2.96		15			

L1019138-01 Original Sample (OS) • Duplicate (DUP)

L1019138-01 Origina	I Sample (OS) • Dupli	icate (D	OUP)			⁷ Gl								
(OS) L1019138-01 08/21/18	05:16 • (DUP) F	3335357-7 0	8/21/18 05	5:32											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al								
Analyte	ug/l	ug/l		%		%									
Chloride	42900	43000	1	0.284		15	⁹ Sc								

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3335357-2 08/20/18 20:07 • (LCSD) R3335357-3 08/20/18 20:22										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	38300	38300	95.7	95.7	80.0-120			0.0136	15

L1019102-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

JS) L1019102-04 08/21/18 01:40 • (MS) R3335357-5 08/21/18 01:56 • (MSD) R3335357-6 08/21/18 02:11												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	83300	129000	129000	91.2	91.5	1	80.0-120	E	E	0.118	15

L1019136-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1019136-01 08/21/1	8 06:18 • (MS) R3	335357-8 08/	21/18 06:34 •	(MSD) R333535	57-9 08/21/18	8 06:49							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	46300	92000	93000	91.4	93.4	1	80.0-120			1.10	15	
	ACCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
SCS	Engineers - KS			27217	23318		11	1019102		08/27/1	8 13:36		12 of 16

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1019102-01,02,03,06,07

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blan	ik (IVID)				1 Cn
(MB) R3336323-1	08/23/18 23:26				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Boron	U		12.6	200	
Calcium	U		46.3	1000	³ Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3336323-2 08/23/	(LCS) R3336323-2 08/23/18 23:28 • (LCSD) R3336323-3 08/23/18 23:31										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Boron	1000	991	963	99.1	96.3	80.0-120			2.87	20	
Calcium	10000	10200	10100	102	101	80.0-120			0.623	20	

L1019102-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1019102-02 08/23/18 23:34 • (MS) R3336323-5 08/23/18 23:39 • (MSD) R3336323-6 08/23/18 23:42												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	1760	2700	2730	93.5	97.0	1	75.0-125			1.27	20
Calcium	10000	68600	78500	78200	98.9	95.3	1	75.0-125			0.461	20

L1019102-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1019102-06 08/23/18 23:44 • (MS) R3336323-7 08/23/18 23:47 • (MSD) R3336323-8 08/23/18 23:49												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	469	1480	1490	101	102	1	75.0-125			0.802	20
Calcium	10000	382000	386000	384000	31.2	15.3	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.414	20

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1019102

DATE/TIME: 08/27/18 13:36

PAGE: 13 of 16

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

J

V

The identification of the analyte is acceptable; the reported value is an estimate.

The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1019102

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Neva
Arizona	AZ0612	New
Arkansas	88-0469	New
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
ldaho	TN00003	Ohio-
Illinois	200008	Oklał
Indiana	C-TN-01	Oreg
lowa	364	Penn
Kansas	E-10277	Rhod
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgir
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyon

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27217233.18

L1019102

PAGE: 15 of 16

08/27/18 13:36

			Billing Information:				1		Analysis / Container / Preservative					Chain of Custody Page of					
CS Engineers - KS 311 West 130th Street, Ste. Overland Park, KS 66213	100	0 Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213 Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;			Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213			G					Prosection		<u>Azijini"</u>				
ason Franks					To: jfranks@scsengineers.com; irtin@kcpl.com;							12065 Lebanon Ro Mount Juliet, TN 3	12065 Lebanon Rd Mount Juliet, TN 37122						
Project Description: KCPL - LaCygne Gen	erating Stati	on		City/State Collected:	City/State Collected:		m	03						Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-5855					
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27217233.	# 18		Lab Project # AQUAOPKS	-LACYGNE	1	PE-HNO	DPE-HN	oPres	2	100			L# [0]	9/02				
Hally all	Site/Facility ID	Site/Facility ID #		Facility ID # P.O. #		23	MIHDP	HIMO	N-BAC					T Acctnum: AQUAOPKS					
Collected by (signature): Gabby Penaflor Immediately Packed on Ice N_YX	Rush? (I Same Di Next Da Two Da Three D	ab MUST Be ry Five I y 5 Day / 10 Da	Notified) Day (Rad Only) Iy (Rad Only)	ed) Quote # Date Results Needed Only) Standard		oniv) Date Results Nee g Oniv) Date Results Nee		Quote # Date Results Needed		No, of	1-6010 250	um - 6010 25	ide 125mlHI					Template: T1 Prelogin: P66 TSR: 206 - Jeff PB:	36292 57527 Carr
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	oror	alciu	hlor				1	Shipped Via:	1				
MW-13	GRAD	GW	1	8/16/18	1050	1	x	0	0				-	Remarks	Sample # (tab only)				
MW-804	1 I	GW		51.01.0	1222	1	x			1					01				
DUPLICATE 1		GW			1227	1	x						-		070				
MS/MSD		GW			1232	1	x								or				
MW-704		GW			1326	1			x						V				
DUPLICATE 2		GW			1331	1	123		x						0.1				
MS/MSD		GW			1336	1			x						- V				
MW-903		GW		1	1403	1		x							al al				
DUPLICATE 3		GW			1408	1		x							in				
MS/MSD		GW		1	1413	1		x							OF				
* Matrix: SS - Soll AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	*								pH		_ Temp	Sa COC Seal COC Signe Bottles a Correct h	nple Receipt C Present/Intact d/Accurate: prive intact: ottles used:					
OT - Other		ned via: dExCou	rier		Tracking#	361	6	937	81	855	5(Sufficien	t volume sent: If Applicat					
Bally all	in .	Date:	18	lime:	Received by: (Signi	elar	28	-12.	18 1	Trip Blank I	Receiv	ved: Yes No HCL/MeoH TBR	VOA Zero Preservat L. S.M.	ion Correct/Ch	ecked: $\mathbb{Z}_{Y} \subseteq_{\mathbb{N}}^{\mathbb{N}}$				
Relinquished by : (Signature)		Date:	1	ime:	Received by: (Signa	ature)			T	Color	e "	C Bottles Received:	If preservat	ion required by Lo	gin: Date/Time				
Relinquished by : (Signature)		Date:	1	lime:	Received for lab by	/: (Signat	ure)		2	Date: 8/18/1	8	Time 0745	Hold:		Condition: NCF / OK				

ATTACHMENT 1-5 November 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

December 07, 2018

SCS Engineers - KS

L1049235
12/04/2018
27217233.18
KCPL - LaCygne Generating Station

Report To:

Jason Franks 8575 West 110th Street Suite 100 Overland Park, KS 66210

Entire Report Reviewed By:

Jubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
⁹ Sc	

1
2
3
4
5
5
6
7
8
9
10
11
11
12
14
15
16
17

SDG: L1049235 DATE/TIME: 12/07/18 14:23

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW 901 1049225 01 CW			Collected by G. Penaflor	Collected date/time 11/29/18 13:35	Received date/time 12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	AEC
Wet Chemistry by Method 9056A	WG1205005	1	12/06/18 05:18	12/06/18 05:18	ELN
Metals (ICP) by Method 6010B	WG1205321	1	12/04/18 22:53	12/05/18 09:04	TRB
			Collected by	Collected date/time	Received date/time
MW-902 L1049235-02 GW			G. Penaflor	11/29/18 12:55	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	AEC
Wet Chemistry by Method 9056A	WG1205005	1	12/06/18 05:33	12/06/18 05:33	ELN
Metals (ICP) by Method 6010B	WG1205321	1	12/04/18 22:53	12/05/18 09:11	TRB
			Collected by	Collected date/time	Received date/time
			G Penaflor	11/29/18 11·55	12/04/18 08·00
MW-903 L1049235-03 GW				1/2J/10 11.JJ	
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	AEC
Wet Chemistry by Method 9056A	WG1205005	1	12/06/18 10:17	12/06/18 10:17	ELN
Wet Chemistry by Method 9056A	WG1205005	20	12/06/18 10:32	12/06/18 10:32	ELN
Metals (ICP) by Method 6010B	WG1205321	1	12/04/18 22:53	12/05/18 08:48	TRB
			Collected by	Collected date/time	Received date/time
MW-904 L1049235-04 GW			G. Penatior	11/29/18 11:15	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	AEC
Wet Chemistry by Method 9056A	WG1205005	1	12/06/18 06:51	12/06/18 06:51	ELN
Metals (ICP) by Method 6010B	WG1205321	1	12/04/18 22:53	12/05/18 09:14	TRB
			Collected by	Collected date/time	Received date/time
MW-905 11049235-05 GW			G. Penaflor	11/29/18 14:16	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
inculu	Baten	Bliddon	date/time	date/time	, maryse
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	ΔΕC
Wat Chamistry by Mathad 2056	WG1205005	1	12/06/18 07:06	12/06/18 07:06	ELN
Metals (ICP) by Method 6010B	WC1205005	1	12/00/18 22.52	12/05/18 00.17	TDR
	W01203321	I	12/04/10 22.33	12/03/10 03.17	DAT
			Collected by	Collected date/time	Received date/time
DUPLICATE1 L1049235-06 GW			G. Penaflor	11/29/18 12:00	12/04/18 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1205180	1	12/05/18 15:27	12/05/18 15:57	AEC
Wet Chemistry by Method 9056A	WG1205005	1	12/06/18 07:21	12/06/18 07:21	ELN
Wet Chemistry by Method 9056A	WG1205005	20	12/06/18 11:03	12/06/18 11:03	ELN
Matals (ICP) by Mathod 6010B	WC1205321	1	12/04/18 22:53	12/05/18 09.19	TRB

PROJECT: 27217233.18

SDG: L1049235 DATE/TIME: 12/07/18 14:23

PAGE: 3 of 17

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27217233.18

SDG: L1049235 DATE/TIME: 12/07/18 14:23

PAGE: 4 of 17

SAMPLE RESULTS - 01 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

· · · · · · · · · · · · · · · · · · ·	,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	487000	<u>J3</u>	10000	1	12/05/2018 15:57	WG1205180	⁻Tc

Wet Chemistry by Method 9056A

	Result	Quanner	NDL	Dilution	Allalysis	Datch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	487000	<u>13</u>	10000	1	12/05/2018 15:57	<u>WG1205180</u>	⁻Tc
Wet Chemistry by Metho	d 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	Result ug/l	<u>Qualifier</u>	RDL ug/l	Dilution	Analysis date / time	Batch	4 (n
Analyte Chloride	Result ug/l 23000	Qualifier	RDL ug/l 1000	Dilution 1	Analysis date / time 12/06/2018 05:18	Batch WG1205005	⁴ Cn
Analyte Chloride Fluoride	Result ug/l 23000 517	<u>Qualifier</u>	RDL ug/l 1000 100	Dilution 1 1	Analysis date / time 12/06/2018 05:18 12/06/2018 05:18	Batch WG1205005 WG1205005	⁴ Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1160		200	1	12/05/2018 09:04	WG1205321
Calcium	56400		1000	1	12/05/2018 09:04	WG1205321

SAMPLE RESULTS - 02 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

							1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	796000		10000	1	12/05/2018 15:57	WG1205180	Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/29/18 12:55

Wet Chemistry by Method 9056A								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			4 Cn
Chloride	32100		1000	1	12/06/2018 05:33	WG1205005		CII
Fluoride	488		100	1	12/06/2018 05:33	WG1205005		5
Sulfate	28600		5000	1	12/06/2018 05:33	WG1205005		Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1250		200	1	12/05/2018 09:11	WG1205321
Calcium	70400		1000	1	12/05/2018 09:11	WG1205321

SAMPLE RESULTS - 03 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1230000		25000	1	12/05/2018 15:57	<u>WG1205180</u>	Tc

Wet Chemistry by Method 9056A

Wet Chemistry b	y Method 9056A	ι.					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	24700		1000	1	12/06/2018 10:17	<u>WG1205005</u>	
Fluoride	104	<u>J3</u>	100	1	12/06/2018 10:17	<u>WG1205005</u>	5
Sulfate	1120000		100000	20	12/06/2018 10:32	WG1205005	ِ Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	493		200	1	12/05/2018 08:48	WG1205321
Calcium	375000	\vee	1000	1	12/05/2018 08:48	WG1205321

SAMPLE RESULTS - 04 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	604000		13300	1	12/05/2018 15:57	WG1205180	Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/29/18 11:15

	Result	Quanner	RDL	Dilution	Allalysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	604000		13300	1	12/05/2018 15:57	WG1205180	Tc
Wet Chemistry by Metho	d 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	Result ug/l	<u>Qualifier</u>	RDL ug/l	Dilution	Analysis date / time	Batch	4 (Cn
Analyte Chloride	Result ug/l 33500	Qualifier	RDL ug/l 1000	Dilution 1	Analysis date / time 12/06/2018 06:51	Batch WG1205005	⁴ Cn
Analyte Chloride Fluoride	Result ug/l 33500 406	<u>Qualifier</u>	RDL ug/l 1000 100	Dilution 1 1	Analysis date / time 12/06/2018 06:51 12/06/2018 06:51	Batch WG1205005 WG1205005	⁴ Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1110		200	1	12/05/2018 09:14	WG1205321
Calcium	72100		1000	1	12/05/2018 09:14	WG1205321

SAMPLE RESULTS - 05 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	619000		13300	1	12/05/2018 15:57	WG1205180	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Meth	od 9056A	A					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	52400		1000	1	12/06/2018 07:06	WG1205005	
Fluoride	520		100	1	12/06/2018 07:06	<u>WG1205005</u>	5
Sulfate	29000		5000	1	12/06/2018 07:06	WG1205005	Šr ا

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	1890		200	1	12/05/2018 09:17	WG1205321
Calcium	46900		1000	1	12/05/2018 09:17	WG1205321

SAMPLE RESULTS - 06 L1049235

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	,						 1'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1940000		25000	1	12/05/2018 15:57	WG1205180	Tc

Wet Chemistry by Method 9056A

	Result	Quanner	NDE	Dilution	Analysis	baten	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	1940000		25000	1	12/05/2018 15:57	<u>WG1205180</u>	Tc
Wet Chemistry by Metho	d 9056A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cn
Chloride	25000		1000	1	12/06/2018 07:21	WG1205005	CII
Fluoride	ND		100	1	12/06/2018 07:21	WG1205005	5
Sulfate	1110000		100000	20	12/06/2018 11:03	WG1205005	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	524		200	1	12/05/2018 09:19	WG1205321
Calcium	374000		1000	1	12/05/2018 09:19	WG1205321

SDG: L1049235

DATE/TIME: 12/07/18 14:23

WG1205180

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3366005-1 12/05/1	8 15:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1049235-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1049235-01 12/05/	18 15:57 • (DUP)	R3366005-3	12/05/18 1	5:57		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	487000	452000	1	7.45	J3	5

Laboratory Control Sample (LCS)

(LCS) R3366005-2 12/05/18 15:57								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Dissolved Solids	8800000	8660000	98.4	85.0-115				

DATE/TIME: 12/07/18 14:23

GI

Â

Sc

WG1205005

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1049235-01,02,03,04,05,06

Method Blank (MB)

(MB) R3365803-1	12/05/18 23:08

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1049122-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	108000	108000	1	0.539	E	15
Fluoride	ND	63.2	1	60.6	<u>J P1</u>	15
Sulfate	42200	42100	1	0.186		15

L1049235-03 Original Sample (OS) • Duplicate (DUP)

OS) L1049235-03 12/06/18 10:17 • (DUP) R3365803-5 12/06/18 06:04											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits					
Analyte	ug/l	ug/l		%		,					
Chloride	24700	25000	1	1.19		5					
Fluoride	104	107	1	2.27							

L1049235-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1049235-03 12/06/1	8 10:32 • (DUP)	R3365803-8	12/06/18 1	10:47		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	1120000	1100000	20	1.60		15

Laboratory Control Sample (LCS) 00) 50005000 0 40/05 40 00 00

LC5) K3365803-2 12/05/18 23:23										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Chloride	40000	39200	98.1	80.0-120						
Fluoride	8000	7940	99.3	80.0-120						
Sulfate	40000	40200	100	80.0-120						

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27217233.18	L1049235	12/07/18 14:23	12 of 17

Sr

°Qc

Sc

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

A

Sc

L1049122-02 Original Sample (OS) • Matrix Spike (MS)

OS) L1049122-02 12/06/18 01:57 • (MS) R3365803-4 12/06/18 02:28											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	ug/l	ug/l	ug/l	%		%					
Chloride	50000	108000	152000	88.8	1	80.0-120	E				
Fluoride	5000	ND	4820	95.7	1	80.0-120					
Sulfate	50000	42200	87300	90.3	1	80.0-120					

L1049235-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1049235-03 12/06/18 10:17 • (MS) R3365803-6 12/06/18 06:20 • (MSD) R3365803-7 12/06/18 06:35													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	24700	73100	74200	96.8	98.9	1	80.0-120			1.46	15	
Fluoride	5000	104	4270	5110	83.4	100	1	80.0-120		<u>J3</u>	17.9	15	
Sulfate	50000	1030000	1020000	1040000	0.000	31.3	1	80.0-120	ΕV	EV	2.05	15	

ACCOUNT: SCS Engineers - KS PROJECT: 27217233.18

SDG: L1049235 DATE/TIME: 12/07/18 14:23

PAGE: 13 of 17

WG1205321

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1049235-01,02,03,04,05,06

Cn

Sr

Qc

GI

Method Blank (MB)

Method Blank (N	ЛB)					
(MB) R3365429-1 12/0	5/18 08:41					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l		Тс
Boron	U		12.6	200		
Calcium	U		46.3	1000	3	³ Ss
						~ ~

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3365429-2 12/05/1	18 08:43 • (LCS	D) R3365429-3	3 12/05/18 08:4	46						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	1020	969	102	96.9	80.0-120			4.91	20
Calcium	10000	10100	9960	101	99.6	80.0-120			1.55	20

L1049235-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1049235-03 12/05/18	8 08:48 • (MS) F	23365429-5 1	2/05/18 08:53	• (MSD) R3365	429-6 12/05/18	3 08:56							Â
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	493	1500	1500	101	100	1	75.0-125			0.480	20	Sc
Calcium	10000	375000	382000	384000	64.3	88.2	1	75.0-125	$\underline{\vee}$		0.624	20	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27217233.18

SDG: L1049235

DATE/TIME: 12/07/18 14:23

PAGE: 14 of 17

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ND Not detected at the Reporting Limit (or MDL where applicable). RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have	e multiple analytes
RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have	e multiple analytes
Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have reported.	e multiple analytes
RPD Relative Percent Difference. SDG Sample Delivery Group. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have	e multiple analytes
SDG Sample Delivery Group. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have reported.	e multiple analytes
U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have reported.	e multiple analytes
Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have	e multiple analytes
reporteu.	
Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values standard, or if concentrations of analytes in the sample are higher than the highest limit of concentra laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is a result reported has already been corrected for this factor.	s differ from the ation that the used in this field, the
Limits These are the target % recovery ranges or % difference value that the laboratory has historically determines for the method and analyte being reported. Successful QC Sample analysis will target all analytes reduplicated within these ranges.	ermined as normal ecovered or
Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) fr sample. The Original Sample may not be included within the reported SDG.	rom a quality control
Qualifier This column provides a letter and/or number designation that corresponds to additional information Qualifier reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definit potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.	concerning the result tions page and
The actual analytical final result (corrected for any sample specific characteristics) reported for your s no measurable result returned for a specific analyte, the result in this column may state "ND" (Not De Result (Below Detectable Levels). The information in the results column should always be accompanied by (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the lab or report for this analyte.	sample. If there was etected) or "BDL" either an MDL poratory could detect
Case Narrative (Cn) A brief discussion about the included sample results, including a discussion of any non-conformance observed either at sample receipt by the laboratory from the field or during the analytical process. If be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.	es to protocol present, there will
Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by p analytical methods to assist in evaluating the validity of the results reported for your samples. These being performed on your samples typically, but on laboratory generated material.	procedure or analyses are not
Sample Chain of Custody (Sc) This is the document created in the field when your samples were initially collected. This is used to v date of collection, the person collecting the samples, and the analyses that the laboratory is request chain of custody also documents all persons (excluding commercial shippers) that have had control samples from the time of collection until delivery to the laboratory for analysis.	verify the time and ted to perform. This or possession of the
Sample Results (Sr) This section of your report will provide the results of all testing performed on your samples. These results (Sr) by sample ID and are separated by the analyses performed on each sample. The header line of each sample will provide the name and method number for the analysis reported.	esults are provided ch analysis section for
Sample Summary (Ss) This section of the Analytical Report defines the specific analyses performed for each sample ID, include times of preparation and/or analysis.	cluding the dates and

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27217233.18

SDG: L1049235 DATE/TIME: 12/07/18 14:23

PAGE: 15 of 17

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebr
Alaska	17-026	Neva
Arizona	AZ0612	New
Arkansas	88-0469	New
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
ldaho	TN00003	Ohio
Illinois	200008	Okla
Indiana	C-TN-01	Oreg
lowa	364	Penn
Kansas	E-10277	Rhod
Kentucky ¹⁶	90010	Sout
Kentucky ²	16	Sout
Louisiana	AI30792	Tenn
Louisiana ¹	LA180010	Texa
Maine	TN0002	Texa
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgi
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisc
Montana	CERT0086	Wvor

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27217233.18

L1049235

PAGE: 16 of 17

12/07/18 14:23

			Billing Info	ormation:					1	_	Analysis /	Contai	iner / Pre	serva	tive	_		Chain of Cu	stody	Pageof
8575 West 110th Street			Account 8575 W	ts Payable est 110th	Stree	rt	Pres Chk		-									P.	7 109/	addad"
Suite 100			Overlan	d Park KS	6621	10		100		133						1		1		ie he dallig Liazaita
Overland Park KS 66210							-	1	11							The second				
Jason Franks			jay.martir	franks@scsi @kcpl.com;	enginea ;	ers.com;		es	0									12065 Leband	in Rd	
Project			Desidentia.	City/State		- tests teasternet.	-1	oPi	11	13					100	11/25		Phone: 615-79	58-5858	四朝
Description: KCPL - LaCygne Ger	nerating Stat	ion		Collected				E-N		1						1100		Fax: 615-758-	5859	问题的
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27217233.	# 18		Lab Project	PKS-L	ACYGNE		MIHDP	-HNO3									L# L C	D4	19235
Collected by (print): G. Pengflok	Site/Facility II	#		P.O. #			1	4) 1251	HDPE	loPres					3	- 2		Acctnum:	AQU	AOPKS
Collected by (signature)	Rush? (I	ab MUST Be	Notified) Day	Quote #		-		F, SO	250m	DPE-N								Template:	T136	276
Immediately Packed on Ice N Y	Next Da	y 5 Day y 10 Da	(Rad Only) ay (Rad Only)	Dat S7	e Resul	Its Needed	No. of	is (Cld,	- 6010	SomiHi								Prelogin: P TSR: 206 - J PB:	leff Ca	012 1rr
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	lior	Ca	IS 2					100	1		Shipped Via	a:	
MIN/-901	CRAD	CHI	1	111100	Line	1224		Ā	â	12		_		1	-	1		Remarks		Sample # (lab only)
MIN/ 902	GRAD	GW		11/29	(18	1335	3	X	X	X					_				-	21
NIN 002	1	GW	-	1		1255	3	X	X	X								1.111	1	02
IVIV-903		GW			-	1155	3	X	X	X						-				03
MW-904		GW			_	1115	3	X	X	X		-			1.5					04
MW-905		GW	13		_	1416	3	х	X	X										5
903 MS	16	GW			-	1205	3	х	X	x	12.01									
903 MSD		GW				1210	3	х	х	X						1.000				
DUPLICATE 1	V	GW	-	V		1200	3	X	x	x									-	06
									-										-	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WastoWater	Remarks:						1	1			pH_		_ Temp		-	COC SI	Samp cal Pr igned/	le Receipt esent/Inta Accurate:	Cher ict:	cklist _NP_Y_N _ZY_N
DW - Drinking Water OT - Other	Samples return UPS Fee	ed via: IExCour	ier		Trac	king #				27	Flow		Other		_	Suffic	es arr ct bot cient	volume ser	it it: table	
Relinquished by : (Signature)	4	Date:	, n	me: 1342	Rece	elved by: (Signat	ture)				Trip Blank	Receiv	ved: Ye H) AeoH	Preses R	ero He rvatio	CREEN	check	ked: $\underline{\xrightarrow{Y}}_{N}$
Relinquished by : (Signature)		Date:	TI	me:	Rete	sived by: (Signat	ture)			-	Temp:	°(Bottle	s Recei	ived:	If prese	arvation	required by	Login	: Date/Time
Relinquished by : (Signature)		Date:	Ti	me:	Rece	eived for lab by:	(Signatu	ire)			Date: 12/4	lik	Time	100	,	Hold:			T	Condition NCF / OK

Jared Morrison December 16, 2022

ATTACHMENT 2 Statistical Analyses

Jared Morrison December 16, 2022

ATTACHMENT 2-1

Fall 2017 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

January 22, 2018

To: La Cygne Generating Station 25166 East 2200 Road La Cygne, Kansas 66040 Kansas City Power & Light Company

From: SCS Engineers

RE: Revision to January 15, 2018 Memorandum Determination of Statistically Significant Increases – Bottom Ash Impoundment

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification By A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a statistically significant increase over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

The completed statistical evaluation identified an Appendix III constituent, pH, below its lower prediction limit in monitoring well MW-901. The lower prediction limit for pH in monitoring well MW-901 is 6.95 standard units (S.U.). The detection monitoring sample was reported at 6.77 S.U. The first verification re-sample was collected on January 9, 2018 with a result of 6.84 S.U., which is still below the lower prediction limit. Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for pH from monitoring well MW-901 is below its lower prediction limit and is a confirmed statistically significant decrease below background; unless, a second verification re-sample is collected and is above the lower prediction limit.

Additionally, the completed statistical evaluation identified an Appendix III constituent, sulfate, above its prediction limit in monitoring well MW-902. The prediction limit for sulfate in monitoring well MW-902 is 36 mg/L. The detection monitoring sample was reported at 36.5 mg/L. The first verification re-sample was collected on December 12, 2017 with a result of 36.1 mg/L. The second verification re-sample was collected on January 9, 2018 with a result of 37.9 mg/L. Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-901 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1st verification re-sample result (when applicable), 2nd verification re-sample result (when

applicable), extra sample result for quality control (if applicable), and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions
1	1/22/2018	Cover letter	Revision table added. No changes to text regarding statistical analyses. Attachment 1 description was revised to match the revisions made in the attachment.
1	1/22/2018	1	Some samples previously identified as verification re-samples are now more appropriately identified as "extra samples". These samples were taken as part of the quality control process, and were not required as part of verification re-sampling.

La Cygne Generating Station Determination of Statistically Significant Increases Bottom Ash Impoundment January 22, 2018

ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: BORON Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

l/gr

Background Data Summary: Mean=1.25, Std. Dev.=0.0436, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.893, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: BORON Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

Background Data Summary: Mean=0.435, Std. Dev.=0.046, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.876, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.28, Std. Dev.=0.0841, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.924, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: BORON (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	1.18	
8/11/2016	1.9	
10/14/2016	1.18	
12/12/2016	1.17	
2/9/2017	1.23	
4/4/2017	1.18	
6/16/2017	1.2	
8/11/2017	1.22	
10/3/2017		1.19

Constituent: BORON (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	1.2	
8/11/2016	1.2	
10/13/2016	1.26	
12/12/2016	1.22	
2/10/2017	1.31	
4/4/2017	1.24	
6/15/2017	1.25	
8/11/2017	1.31	
10/3/2017		1.26

Constituent: BORON (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-903	MW-903
6/8/2016	0.487	
8/11/2016	0.427	
10/13/2016	0.401	
12/9/2016	0.386	
2/10/2017	0.432	
4/4/2017	0.423	
6/16/2017	0.404	
8/10/2017	0.521	
10/3/2017		0.416

Constituent: BORON (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	1.4	
5/24/2017	1.34	
6/12/2017	1.37	
6/30/2017	1.28	
7/21/2017	1.26	
8/7/2017	1.21	
9/1/2017	1.18	
9/22/2017	1.19	
10/5/2017		1.13

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary (based on x⁴ transformation): Mean=10.9, Std. Dev.=3.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.754, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=55.8, Std. Dev.=1.87, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.87, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

> Constituent: CALCIUM Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Limit = 70.7

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=336, Std. Dev.=12.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.871, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Background Data Summary: Mean=66.9, Std. Dev.=2.13, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.812, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: BORON (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	1.79	
8/12/2016	1.24	
10/14/2016	1.87	
12/9/2016	1.84	
2/8/2017	1.92	
4/4/2017	1.84	
6/14/2017	1.85	
8/9/2017	1.95	
10/3/2017		1.89

Constituent: CALCIUM (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	57.2	
8/11/2016	53.9	
10/14/2016	52.1	
12/12/2016	56.9	
2/9/2017	55.7	
4/4/2017	57.6	
6/16/2017	56.7	
8/11/2017	56	
10/3/2017		58.2

Constituent: CALCIUM (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	71.3	
8/11/2016	64.9	
10/13/2016	65.7	
12/12/2016	66.3	
2/10/2017	66.2	
4/4/2017	68.8	
6/15/2017	65.4	
8/11/2017	66.4	
10/3/2017		69.2

Constituent: CALCIUM (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-903	MW-903
6/8/2016	362	
8/11/2016	342	
10/13/2016	333	
12/9/2016	331	
2/10/2017	321	
4/4/2017	339	
6/16/2017	331	
8/10/2017	330	
10/3/2017		344

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=79.3, Std. Dev.=4.06, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit

Background Data Summary: Mean=52.1, Std. Dev.=3.69, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.828, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CALCIUM Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data Constituent: CALCIUM Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized. Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

Background Data Summary: Mean=33.1, Std. Dev.=1.17, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CALCIUM (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	82.4	
5/24/2017	79.8	
6/12/2017	86.2	
6/30/2017	82.3	
7/21/2017	76.5	
8/7/2017	74.1	
9/1/2017	76.3	
9/22/2017	77.1	
10/5/2017		71.8
Constituent: CALCIUM (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	59.9	
8/12/2016	54.6	
10/14/2016	52.7	
12/9/2016	49.7	
2/8/2017	49.8	
4/4/2017	51.8	
6/14/2017	49.6	
8/9/2017	48.9	
10/3/2017		52.3

Constituent: CHLORIDE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	23.3	
8/11/2016	51.5	
10/14/2016	21.8	
12/12/2016	20.9	
2/9/2017	22.6	
4/4/2017	23.1	
6/16/2017	22.6	
8/11/2017	22.6	
10/3/2017		22.9

Constituent: CHLORIDE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	32.8	
8/11/2016	32	
10/13/2016	32.9	
12/12/2016	31	
2/10/2017	34.4	
4/4/2017	34.2	
6/15/2017	33	
8/11/2017	34.1	
10/3/2017		34.6

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=25.7, Std. Dev.=0.761, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.91, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit

Background Data Summary: Mean=37.6, Std. Dev.=1.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.873, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CHLORIDE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data Constituent: CHLORIDE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: CHLORIDE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-903	MW-903
6/8/2016	25.9	
8/11/2016	25.8	
10/13/2016	24.8	
12/9/2016	24.3	
2/10/2017	26	
4/4/2017	26.7	
6/16/2017	25.7	
8/10/2017	26.1	
10/3/2017		26.3

Constituent: CHLORIDE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	39.6	
5/24/2017	39.1	
6/12/2017	39.5	
6/30/2017	38	
7/21/2017	36.7	
8/7/2017	36	
9/1/2017	35.7	
9/22/2017	36.4	
10/5/2017		34.1

Constituent: CHLORIDE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905	
6/9/2016	51.5		
8/12/2016	22.4		
10/14/2016	50.7		
12/9/2016	48.6		
2/8/2017	52.5		
4/4/2017	52.5		
6/14/2017	52.7		
8/9/2017	52.1		
10/3/2017		53.6	
12/12/2017		52 1st verifi	ication re-sample

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	561	
8/11/2016	701	
10/14/2016	516	
12/12/2016	524	
2/9/2017	552	
4/4/2017	546	
6/16/2017	536	
8/11/2017	510	
10/3/2017		544

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=536, Std. Dev,=15.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.924, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: DISSOLVED SOLIDS Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

0

6/8/16

Within Limit

l/gr

Prediction Limit Intrawell Parametric 200 1760 1320 880 440 440

Background Data Summary: Mean=2016, Std. Dev.=89.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha=0.01, calculated = 0.922, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

9/12/16 12/17/16 3/24/17 6/28/17 10/3/17

Constituent: DISSOLVED SOLIDS Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=697, Std. Dev.=61.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.888, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Droc

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=598, Std. Dev.=48.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.921, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	526	
8/11/2016	565	
10/13/2016	537	
12/12/2016	517	
2/10/2017	552	
4/4/2017	533	
6/15/2017	533	
8/11/2017	522	
10/3/2017		541

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-903	MW-903
6/8/2016	2070	
8/11/2016	2040	
10/13/2016	2120	
12/9/2016	2110	
2/10/2017	1880	
4/4/2017	1990	
6/16/2017	2020	
8/10/2017	1900	
10/3/2017		2070

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	704	
5/24/2017	771	
6/12/2017	571	
6/30/2017	732	
7/21/2017	697	
8/7/2017	728	
9/1/2017	723	
9/22/2017	652	
10/5/2017		727

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	696	
8/12/2016	557	
10/14/2016	603	
12/9/2016	584	
2/8/2017	580	
4/4/2017	618	
6/14/2017	536	
8/9/2017	608	
10/3/2017		662

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.5, Std. Dev.=0.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.859, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

0.6

l/gr

Prediction Limit

MW-902 background

Background Data Summary: Mean=0.493, Std. Dev.=0.0437, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.862, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Constituent: FLUORIDE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.395, Std. Dev.=0.0314, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.935, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: FLUORIDE (mg/I) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	0.543	
8/11/2016	0.533	
10/14/2016	0.497	
12/12/2016	0.413	
2/9/2017	0.52	
4/4/2017	0.493	
6/16/2017	0.489	
8/11/2017	0.511	
10/3/2017		0.483

Constituent: FLUORIDE (mg/I) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

6 0.532
16 0.531
016 0.49
016 0.404
17 0.51
7 0.481
17 0.467
17 0.53
17 0.466
016 0.49 016 0.404 17 0.51 7 0.481 17 0.467 17 0.53 17 0.53

Constituent: FLUORIDE (mg/I) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

5/8/2016 <0.1 8/11/2016 <0.1 10/13/2016 <0.1	<0.1 <0.1 6 <0.1
8/11/2016 <0.1 10/13/2016 <0.1	<0.1 6 <0.1
10/13/2016 <0.1	6 <0.1
12/9/2016 0.104	0.104
2/10/2017 <0.1	<0.1
4/4/2017 <0.1	<0.1
6/16/2017 0.132	0.132
8/10/2017 0.114	0.114
10/3/2017	<0
I/4/2017 <0.1	<0.1 0.132 0.114

Constituent: FLUORIDE (mg/I) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

7 0.375 117 0.411 117 0.366	0.375 0.411 0.366
0.411 0.366	0.411 0.366
0.366	0.366
0.385	0.385
0.43	0.43
7 0.432	0.432
7 0.346	0.346
0.412	0.412
17	0.29
7 0.432 7 0.346 117 0.412 117	0.432 0.346 0.412

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.533, Std. Dev.=0.0435, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=7.37, Std. Dev.=0.232, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.872, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: FLUORIDE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.12, Std. Dev.=0.275, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.849, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.78, Std. Dev.=0.329, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Constituent: FLUORIDE (mg/I) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	0.542	
8/12/2016	0.506	
10/14/2016	0.535	
12/9/2016	0.444	
2/8/2017	0.562	
4/4/2017	0.522	
6/14/2017	0.567	
8/9/2017	0.582	
10/3/2017		0.569

Constituent: pH (SU) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

M	IW-901	MW-901
6/8/2016 7.	.46	
8/11/2016 7.	.35	
10/14/2016 7.	.43	
12/12/2016 7.	.57	
2/9/2017 7.	.62	
4/4/2017 7.	.39	
6/16/2017 7.	.26	
8/11/2017 6.	.87	
10/3/2017		6.77
1/9/2018		6.84 1st v

Constituent: pH (SU) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

6/7/2016 7 8/11/2016 7 10/13/2016 7 12/12/2016 7 2/10/2017 7 6/15/2017 7 8/11/2017 6	6/7/2016		
8/11/2016 7 10/13/2016 7 12/12/2016 7 2/10/2017 7 4/4/2017 7 6/15/2017 7 8/11/2017 6	02010	7.24	
10/13/2016 7 12/12/2016 7 2/10/2017 7 4/4/2017 7 6/15/2017 7 8/11/2017 6	8/11/2016	7.11	
12/12/2016 7 2/10/2017 7 4/4/2017 7 6/15/2017 7 8/11/2017 6	10/13/2016	7.16	
2/10/2017 7 4/4/2017 7 6/15/2017 7 8/11/2017 6	12/12/2016	7.1	
4/4/2017 7 6/15/2017 7 8/11/2017 6	2/10/2017	7.48	
6/15/2017 7 8/11/2017 6	4/4/2017	7.27	
8/11/2017 6	6/15/2017	7.07	
10/2/2017	8/11/2017	6.52	
10/3/2017	10/3/2017		6.53
12/12/2017	12/12/2017		7.21 1st verification re-s
1/9/2018	1/9/2018		6.99 extra sample

Constituent: pH (SU) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

IVI	W-903	MW-903
6/8/2016 6.	83	
8/11/2016 6.	7	
10/13/2016 6.	72	
12/9/2016 7.	46	
2/10/2017 6.	97	
4/4/2017 6.	42	
6/15/2017 6.	48	
8/10/2017 6.	62	
10/3/2017		6
1/9/2018		6.87 1st v

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.0236. Individual comparison alpha = 0.0118 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit

Background Data Summary: Mean=7.49, Std. Dev.=0.487, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.997, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=31.4, Std. Dev.=2.54, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH (SU) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

5/3/2017 7.09	
5/24/2017 7.08	
6/12/2017 7.37	
6/30/2017 7.07	
7/21/2017 7.06	
8/7/2017 7.13	
9/1/2017 7.08	
9/22/2017 7.11	
10/5/2017	6.85
12/12/2017	7.18 1st verification re-s

Constituent: pH (SU) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-
6/9/2016	7.11	
8/12/2016	7.26	
10/14/2016	6.68	
12/9/2016	7.75	
2/8/2017	8.26	
4/4/2017	7.54	
6/14/2017	7.87	
8/9/2017	7.44	
10/3/2017		6.98
12/12/2017		7.46 extra sample

Constituent: SULFATE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-901	MW-90 ⁻
6/8/2016	19.5	
8/11/2016	33.8	
10/14/2016	15.6	
12/12/2016	14.5	
2/9/2017	17.1	
4/4/2017	18.4	
6/16/2017	15.6	
8/11/2017	15.1	
10/3/2017		14.9

Constituent: SULFATE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	33.4	
8/11/2016	29.6	
10/13/2016	29.2	
12/12/2016	27.4	
2/10/2017	34.5	
4/4/2017	33.1	
6/15/2017	30.4	
8/11/2017	33.3	
10/3/2017		36.5
12/12/2017		36.1 1st verification re-samp
1/9/2018		37.9 2nd verification re-same

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1006, Std. Dev.=81.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.5.32 Sanitas software licensed to SCS Engineers. UG

l/gm

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=118, Std. Dev.=11.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.954, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: SULFATE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data Constituent: SULFATE Analysis Run 1/14/2018 7:07 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric • MW-905 background • MW-905 compliance Limit = 59.7

Background Data Summary (based on cube root transformation): Mean=3.13, Std. Dev.=0.431, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: SULFATE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-903	MW-90
6/8/2016	1130	
8/11/2016	1030	
10/13/2016	1030	
12/9/2016	899	
2/10/2017	1000	
4/4/2017	1090	
6/16/2017	913	
8/10/2017	954	
10/3/2017		1010
10/3/2017		

Constituent: SULFATE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	134	
5/24/2017	132	
6/12/2017	113	
6/30/2017	119	
7/21/2017	121	
8/7/2017	115	
9/1/2017	101	
9/22/2017	105	
10/5/2017		100

Constituent: SULFATE (mg/l) Analysis Run 1/14/2018 7:18 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	68.5	
8/12/2016	16.6	
10/14/2016	29.5	
12/9/2016	28.5	
2/8/2017	31.2	
4/4/2017	28.6	
6/14/2017	27.6	
8/9/2017	27	
10/3/2017		26.6

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 1/14/2018, 7:18 PM

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
BORON (mg/l)	MW-901	1.9	n/a	10/3/2017	1.19	No	8	0	n/a	0.00591	NP Intra (normality)
BORON (mg/l)	MW-902	1.33	n/a	10/3/2017	1.26	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-903	0.518	n/a	10/3/2017	0.416	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-904	1.43	n/a	10/5/2017	1.13	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-905	2.05	n/a	10/3/2017	1.89	No	8	0	x^4	0.00188	Param Intra 1 of 3
CALCIUM (mg/I)	MW-901	59.2	n/a	10/3/2017	58.2	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-902	70.7	n/a	10/3/2017	69.2	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-903	358	n/a	10/3/2017	344	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/I)	MW-904	86.7	n/a	10/5/2017	71.8	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-905	58.8	n/a	10/3/2017	52.3	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-901	51.5	n/a	10/3/2017	22.9	No	8	0	n/a	0.00591	NP Intra (normality)
CHLORIDE (mg/I)	MW-902	35.2	n/a	10/3/2017	34.6	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-903	27	n/a	10/3/2017	26.3	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/I)	MW-904	40.6	n/a	10/5/2017	34.1	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-905	52.7	n/a	12/12/2017	52	No	8	0	n/a	0.00591	NP Intra (normality)
DISSOLVED SOLIDS (mg/l)	MW-901	701	n/a	10/3/2017	544	No	8	0	n/a	0.00591	NP Intra (normality)
DISSOLVED SOLIDS (mg/l)	MW-902	564	n/a	10/3/2017	541	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-903	2178	n/a	10/3/2017	2070	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-904	808	n/a	10/5/2017	727	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-905	685	n/a	10/3/2017	662	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/l)	MW-901	0.572	n/a	10/3/2017	0.483	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/I)	MW-902	0.572	n/a	10/3/2017	0.466	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/l)	MW-903	0.132	n/a	10/3/2017	0.05ND	No	8	62.5	n/a	0.00591	NP Intra (NDs) 1 of 3
FLUORIDE (mg/I)	MW-904	0.451	n/a	10/5/2017	0.29	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/l)	MW-905	0.611	n/a	10/3/2017	0.569	No	8	0	No	0.00188	Param Intra 1 of 3
pH (SU)	MW-901	7.79	6.95	1/9/2018	6.84	Yes	8	0	No	0.00094	Param Intra 1 of 3
pH (SU)	MW-902	7.62	6.62	1/9/2018	6.99	No	8	0	No	0.00094	Param Intra 1 of 3
pH (SU)	MW-903	7.37	6.18	1/9/2018	6.87	No	8	0	No	0.00094	Param Intra 1 of 3
pH (SU)	MW-904	7.37	7.06	12/12/2017	7.18	No	8	0	n/a	0.0118	NP Intra (normality)
pH (SU)	MW-905	8.37	6.61	12/12/2017	7.46	No	8	0	No	0.00094	Param Intra 1 of 3
SULFATE (mg/l)	MW-901	33.8	n/a	10/3/2017	14.9	No	8	0	n/a	0.00591	NP Intra (normality)
SULFATE (mg/l)	MW-902	36	n/a	1/9/2018	37.9	Yes	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/l)	MW-903	1153	n/a	10/3/2017	1010	No	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/l)	MW-904	139	n/a	10/5/2017	100	No	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/l)	MW-905	59.7	n/a	10/3/2017	26.6	No	8	0	x^(1/3)	0.00188	Param Intra 1 of 3

La Cygne Generating Station Determination of Statistically Significant Increases Bottom Ash Impoundment January 22, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Options											
Data	Output	Trend Te:	st Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
Exclud	le data flac	ns:									
Data	D										
	neading C	puons									
() In	dividual O	bservations	_								
O M	lean of Ea	ch:	O Month								
OM	ledian of E	lach:	🔘 Seaso	n							
	/ T	11 16									
Non-L	Detect / II	race Handlır	ng								
Setup	Seasons.										
	omatically	Process Re	samples								
	OK	Cancel	Save Settin	gs As Load	Saved Settings	. Defaults	Edit	INI File	4		

Options										
Data Outpu	t Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests Black and White Output Four Plots Per Page Aways Combine Data Pages Include Tick Marks on Data Page Use Constituent Name for Graph Title Draw Border Around Text Reports and Data Pages Enlarge/Reduce Fonts (Graphs): 100% Wide Margins (on reports without explicit setting) Use CAS## (Not Const. Name) Truncate File Names to 20 Characters Include Limit Lines when found in Database Show Deselected Data on all Data Pages Show Deselected Data on all Data Pages Setup Symbols and Colors 										
Printer: Adobe PDF Vinters										
ОК	Cancel	Save Settin	gs As Load	Saved Settings	. Defaults	Edit	INI File	8		
Options

Data Output Trend Test Control Cht Prediction Lim	olerance Lim Conf/To	ol Int ANOVA	Welchs Other Tests
✓ Test for Normality using Shapiro-Wilk/Francia a ✓ Use Non-Parametric Test when Non-Detects Percent > 50 Use Aitchison's Adjustment when Non-Detects Percent > ○ Optional Further Refinement: Use when □ Use Poisson Prediction Limit when Non-Detects Percent > []	t Alpha = 0.01 ~ 15 en NDs % > 50 0	Transformation	r of Powers or No Transformation sform c Transformation: Natural Log / Statistic ormed Values
Deseasonalize (Intra- and InterWell) ● If Seasonality Is Detected ● If Seasonality Is Detected Or Insufficient to Test ● Always (When Sufficient Data) ● Never ■ Always Use Non-Parametric Facility α Statistical Evaluations per Year: 2 Constituents Analyzed: 7 Downgradient (Compliance) Wells: 4 Sampling Plan ✓ Comparing Individual Observations ○ 1 of 1 ○ 1 of 2 ● 1 of 3 ○ 1 of 4	Intra Well Other	Ind Trend Detect Data Deviation: Override Kap move Backgroun de d Data Lighter = Highest Backgro when 100% Non Highest Backgro L if available, or b ckground Value (ed at Alpha = 0.05 > ppa: d Outliers kground Value > -Detects: pund Value MDL (subst. method)
OK Cancel Save Settings As Load Sa	ved Settings Defa	ults Edit	INI File 🚑

tions
Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney
Use Modified Alpha 2-Tailed Test Mode
Outlier Tests
O EPA 1989 Outlier Screening (fixed alpha of 0.05)
• Dixon's at $\alpha = 0.05 \lor$ or if n > 22 \lor Rosner's at $\alpha = 0.01 \lor$ Use EPA Screening to establish Suspected Outliers
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat
Test For Normality using Shapiro-Wilk/Francia
Stop if Non-Normal
O Continue with Parametric Test if Non-Normal
Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat
No Outlier If Less Than 3.0 Times Median
Apply Rules found in Ohio Guidance Document 0715
Combine Background Wells on the Outlier Report
Piper, Stiff Diagram
Combine Wells
Combine Dates Label Axes
Use Default Constituent Names
OK Cancel Save Settings As Load Saved Settings Defaults Edit INI File

Jared Morrison December 16, 2022

ATTACHMENT 2-2

Spring 2018 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

September 12, 2018

To: La Cygne Generating Station 25166 East 2200 Road La Cygne, Kansas 66040 Kansas City Power & Light Company

From: SCS Engineers

RE: Determination of Statistically Significant Increases – Bottom Ash Impoundment Spring 2018 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the Bottom Ash Impoundment at the La Cygne Generating Station has been completed in substantial compliance with the "Statistical Method Certification b y A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 23, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 15, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 11, 2018 and August 16, 2018.

The completed statistical evaluation identified Appendix III constituent, calcium, above its prediction limit in monitoring well MW-903. The prediction limit for calcium in monitoring well MW-903 is 358 mg/L. The detection monitoring sample was reported at 368 mg/L. The first verification re-sample was collected on July 11, 2018 with a result of 371 mg/L. The second verification re-sample was collected on August 16, 2018 with a result of 382 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring wells MW-903 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified one SSI above the background prediction limit for calcium in monitor well MW-903.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

La Cygne Generating Station Determination of Statistically Significant Increases (May 2018 Event) Bottom Ash Impoundment September 12, 2018 Page 2 of 2

Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1st verification re-sample result (when applicable), 2nd verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

La Cygne Generating Station Determination of Statistically Significant Increases (May 2018 Event) Bottom Ash Impoundment September 12, 2018

ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: BORON Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Prediction Limit

Background Data Summary: Mean=1.25, Std. Dev.=0.0436, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.893, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

> Constituent: BORON Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.28, Std. Dev.=0.0841, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.924, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Background Data Summary: Mean=0.435, Std. Dev.=0.046, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.876, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: BORON (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-90
6/8/2016	1.18	
8/11/2016	1.9	
10/14/2016	1.18	
12/12/2016	1.17	
2/9/2017	1.23	
4/4/2017	1.18	
6/16/2017	1.2	
8/11/2017	1.22	
5/23/2018		1.14

Constituent: BORON (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	1.2	
8/11/2016	1.2	
10/13/2016	1.26	
12/12/2016	1.22	
2/10/2017	1.31	
4/4/2017	1.24	
6/15/2017	1.25	
8/11/2017	1.31	
5/23/2018		1.22
6/15/2017 8/11/2017 5/23/2018	1.25 1.31	

Constituent: BORON (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

6/8/2016 0.487 8/11/2016 0.427 10/12/2016 0.401	0.487
8/11/2016 0.427	
10/12/2016 0.401	0.427
10/13/2010 0.401	0.401
12/9/2016 0.386	0.386
2/10/2017 0.432	0.432
4/4/2017 0.423	0.423
6/16/2017 0.404	0.404
8/10/2017 0.521	0.521
5/23/2018	0.428

Constituent: BORON (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	1.4	
5/24/2017	1.34	
6/12/2017	1.37	
6/30/2017	1.28	
7/21/2017	1.26	
8/7/2017	1.21	
9/1/2017	1.18	
9/22/2017	1.19	
5/23/2018		1.1

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary (based on x⁴ transformation): Mean=10.9, Std. Dev.=3.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.754, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

l/gr

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=55.8, Std. Dev.=1.87, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.87, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CALCIUM Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=66.9, Std. Dev.=2.13, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.812, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

0

∥gr

Prediction Limit

6/8/16 11/14/16 4/23/17 9/30/17 3/9/18 8/16/18

Background Data Summary: Mean=336, Std. Dev.=12.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.871, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: BORON (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	1.79	
8/12/2016	1.24	
10/14/2016	1.87	
12/9/2016	1.84	
2/8/2017	1.92	
4/4/2017	1.84	
6/14/2017	1.85	
8/9/2017	1.95	
5/23/2018		1.78

Constituent: CALCIUM (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	57.2	
8/11/2016	53.9	
10/14/2016	52.1	
12/12/2016	56.9	
2/9/2017	55.7	
4/4/2017	57.6	
6/16/2017	56.7	
8/11/2017	56	
5/23/2018		57.1

Constituent: CALCIUM (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

			-
6/7/2016	71.3		
8/11/2016	64.9		
10/13/2016	65.7		
12/12/2016	66.3		
2/10/2017	66.2		
4/4/2017	68.8		
6/15/2017	65.4		
8/11/2017	66.4		
5/23/2018		70.9	
7/11/2018		69.1	1st verification re-sample

Constituent: CALCIUM (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-903	MW-903	
6/8/2016	362		
8/11/2016	342		
10/13/2016	333		
12/9/2016	331		
2/10/2017	321		
4/4/2017	339		
6/16/2017	331		
8/10/2017	330		
5/23/2018		368	
7/11/2018		371	1st verification re-sample
8/16/2018		382	2nd verification re-sample
			2nd venification re-sample

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=79.3, Std. Dev.=4.06, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=52.1, Std. Dev.=3.69, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.828, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CALCIUM Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Limit = 51.5

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=33.1, Std. Dev.=1.17, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: CALCIUM (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	82.4	
5/24/2017	79.8	
6/12/2017	86.2	
6/30/2017	82.3	
7/21/2017	76.5	
8/7/2017	74.1	
9/1/2017	76.3	
9/22/2017	77.1	
5/23/2018		72.2

Constituent: CALCIUM (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	59.9	
8/12/2016	54.6	
10/14/2016	52.7	
12/9/2016	49.7	
2/8/2017	49.8	
4/4/2017	51.8	
6/14/2017	49.6	
8/9/2017	48.9	
5/23/2018		47.8

Constituent: CHLORIDE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	23.3	
8/11/2016	51.5	
10/14/2016	21.8	
12/12/2016	20.9	
2/9/2017	22.6	
4/4/2017	23.1	
6/16/2017	22.6	
8/11/2017	22.6	
5/23/2018		22.6

Constituent: CHLORIDE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	32.8	
8/11/2016	32	
10/13/2016	32.9	
12/12/2016	31	
2/10/2017	34.4	
4/4/2017	34.2	
6/15/2017	33	
8/11/2017	34.1	
5/23/2018		33.9

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=25.7, Std. Dev.=0.761, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.91, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=37.6, Std. Dev.=1.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.873, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: CHLORIDE Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Constituent: CHLORIDE Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

Limit = 52.7

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: CHLORIDE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-903	MW-903
6/8/2016	25.9	
8/11/2016	25.8	
10/13/2016	24.8	
12/9/2016	24.3	
2/10/2017	26	
4/4/2017	26.7	
6/16/2017	25.7	
8/10/2017	26.1	
5/23/2018		25.6

Constituent: CHLORIDE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	39.6	
5/24/2017	39.1	
6/12/2017	39.5	
6/30/2017	38	
7/21/2017	36.7	
8/7/2017	36	
9/1/2017	35.7	
9/22/2017	36.4	
5/23/2018		33.8

Constituent: CHLORIDE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	51.5	
8/12/2016	22.4	
10/14/2016	50.7	
12/9/2016	48.6	
2/8/2017	52.5	
4/4/2017	52.5	
6/14/2017	52.7	
8/9/2017	52.1	
5/23/2018		51.9

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	561	
8/11/2016	701	
10/14/2016	516	
12/12/2016	524	
2/9/2017	552	
4/4/2017	546	
6/16/2017	536	
8/11/2017	510	
5/23/2018		520

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=536, Std. Dev,=15.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.924, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

l/gr

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=2016, Std. Dev.=89.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.922, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: DISSOLVED SOLIDS Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

Background Data Summary: Mean=697, Std. Dev.=61.3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.888, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=598, Std. Dev.=48.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.921, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	526	
8/11/2016	565	
10/13/2016	537	
12/12/2016	517	
2/10/2017	552	
4/4/2017	533	
6/15/2017	533	
8/11/2017	522	
5/23/2018		511

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-903	MW-90
6/8/2016	2070	
8/11/2016	2040	
10/13/2016	2120	
12/9/2016	2110	
2/10/2017	1880	
4/4/2017	1990	
6/16/2017	2020	
8/10/2017	1900	
5/23/2018		1920

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	704	
5/24/2017	771	
6/12/2017	571	
6/30/2017	732	
7/21/2017	697	
8/7/2017	728	
9/1/2017	723	
9/22/2017	652	
5/23/2018		677

Constituent: DISSOLVED SOLIDS (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	696	
8/12/2016	557	
10/14/2016	603	
12/9/2016	584	
2/8/2017	580	
4/4/2017	618	
6/14/2017	536	
8/9/2017	608	
5/23/2018		602

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.5, Std. Dev.=0.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.859, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.493, Std. Dev.=0.0437, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.862, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: FLUORIDE Analysis Run 8/27/2018 3:43 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas^w v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

tric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highes

Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=0.395, Std. Dev.=0.0314, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.935, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: FLUORIDE (mg/I) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	0.543	
8/11/2016	0.533	
10/14/2016	0.497	
12/12/2016	0.413	
2/9/2017	0.52	
4/4/2017	0.493	
6/16/2017	0.489	
8/11/2017	0.511	
5/23/2018		0.547
0/20/2010		0.017

Constituent: FLUORIDE (mg/I) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	0.532	
8/11/2016	0.531	
10/13/2016	0.49	
12/12/2016	0.404	
2/10/2017	0.51	
4/4/2017	0.481	
6/15/2017	0.467	
8/11/2017	0.53	
5/23/2018		0.541
0/20/2010		0.011

Constituent: FLUORIDE (mg/I) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-903	MW-90
6/8/2016	<0.1	
8/11/2016	<0.1	
10/13/2016	<0.1	
12/9/2016	0.104	
2/10/2017	<0.1	
4/4/2017	<0.1	
6/16/2017	0.132	
8/10/2017	0.114	
5/23/2018		<0.1
8/10/2017 5/23/2018	0.114	

Constituent: FLUORIDE (mg/I) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	0.375	
5/24/2017	0.411	
6/12/2017	0.366	
6/30/2017	0.385	
7/21/2017	0.43	
8/7/2017	0.432	
9/1/2017	0.346	
9/22/2017	0.412	
5/23/2018		0.444
Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.533, Std. Dev.=0.0435, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit

Background Data Summary: Mean=7.37, Std. Dev.=0.232, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.872, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: FLUORIDE Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.12, Std. Dev.=0.275, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.849, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Background Data Summary: Mean=6.78, Std. Dev.=0.329, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: pH Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Constituent: FLUORIDE (mg/I) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	0.542	
8/12/2016	0.506	
10/14/2016	0.535	
12/9/2016	0.444	
2/8/2017	0.562	
4/4/2017	0.522	
6/14/2017	0.567	
8/9/2017	0.582	
5/23/2018		0.581
5/23/2018		0.58

Constituent: pH (S.U.) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-901
6/8/2016	7.46	
8/11/2016	7.35	
10/14/2016	7.43	
12/12/2016	7.57	
2/9/2017	7.62	
4/4/2017	7.39	
6/16/2017	7.26	
8/11/2017	6.87	
5/23/2018		7.53

Constituent: pH (S.U.) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902	2
6/7/2016	7.24		
8/11/2016	7.11		
10/13/2016	7.16		
12/12/2016	7.1		
2/10/2017	7.48		
4/4/2017	7.27		
6/15/2017	7.07		
8/11/2017	6.52		
5/23/2018		7.35	
7/11/2010		7.00	autro aominio

Constituent: pH (S.U.) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-903	MW-903	
6/8/2016	6.83		
8/11/2016	6.7		
10/13/2016	6.72		
12/9/2016	7.46		
2/10/2017	6.97		
4/4/2017	6.42		
6/15/2017	6.48		
8/10/2017	6.62		
5/23/2018		6.89	
7/11/2018		6.84	extra sample
8/16/2018		6.65	extra sample

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.0236. Individual comparison alpha = 0.0118 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: pH Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.49, Std. Dev.=0.487, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.997, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

> Constituent: pH Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCvone Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

MW-901 compliance

Limit = 33.8

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=31.4, Std. Dev.=2.54, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH (S.U.) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904	
5/3/2017	7.09		
5/24/2017	7.08		
6/12/2017	7.37		
6/30/2017	7.07		
7/21/2017	7.06		
8/7/2017	7.13		
9/1/2017	7.08		
9/22/2017	7.11		
5/23/2018		7.38	
7/11/2018		7.1	1st verification re-sample

Constituent: pH (S.U.) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	7.11	
8/12/2016	7.26	
10/14/2016	6.68	
12/9/2016	7.75	
2/8/2017	8.26	
4/4/2017	7.54	
6/14/2017	7.87	
8/9/2017	7.44	
5/23/2018		7.68

Constituent: SULFATE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-901	MW-90 ⁻
6/8/2016	19.5	
8/11/2016	33.8	
10/14/2016	15.6	
12/12/2016	14.5	
2/9/2017	17.1	
4/4/2017	18.4	
6/16/2017	15.6	
8/11/2017	15.1	
5/23/2018		17.9
0/20/2010		17.5

Constituent: SULFATE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-902	MW-902
6/7/2016	33.4	
8/11/2016	29.6	
10/13/2016	29.2	
12/12/2016	27.4	
2/10/2017	34.5	
4/4/2017	33.1	
6/15/2017	30.4	
8/11/2017	33.3	
5/23/2018		32.5

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1006, Std. Dev.=81.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Sanitas[™] v.9.6.09 Sanitas software licensed to SCS Engineers. UG

l/gm

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=118, Std. Dev.=11.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.954, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: SULFATE Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Prediction Limit

Constituent: SULFATE Analysis Run 8/27/2018 3:44 PM View: Bottom Ash III LaCygne Client: SCS Engineers Data: LaC GW Data

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Background Data Summary (based on cube root transformation): Mean=3.13, Std. Dev.=0.431, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 1.81 (c=7, w=4, 1 of 3, event alpha = 0.0513). Report alpha = 0.00188.

Constituent: SULFATE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

16 1130
016 1030
2016 1030
016 899
017 1000
17 1090
017 913
017 954
018 896
010 000 117 1000 117 1090 0117 913 0117 954 018 018

Constituent: SULFATE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-904	MW-904
5/3/2017	134	
5/24/2017	132	
6/12/2017	113	
6/30/2017	119	
7/21/2017	121	
8/7/2017	115	
9/1/2017	101	
9/22/2017	105	
5/23/2018		80.7

Constituent: SULFATE (mg/l) Analysis Run 8/27/2018 3:49 PM View: Bottom Ash III

	MW-905	MW-905
6/9/2016	68.5	
8/12/2016	16.6	
10/14/2016	29.5	
12/9/2016	28.5	
2/8/2017	31.2	
4/4/2017	28.6	
6/14/2017	27.6	
8/9/2017	27	
5/23/2018		27.5

LaCygne Client: SCS Engineers Data: LaC GW Data Printed 8/27/2018, 3:49 PM

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
BORON (mg/l)	MW-901	1.9	n/a	5/23/2018	1.14	No	8	0	n/a	0.00591	NP Intra (normality)
BORON (mg/l)	MW-902	1.33	n/a	5/23/2018	1.22	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-903	0.518	n/a	5/23/2018	0.428	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-904	1.43	n/a	5/23/2018	1.1	No	8	0	No	0.00188	Param Intra 1 of 3
BORON (mg/l)	MW-905	2.05	n/a	5/23/2018	1.78	No	8	0	x^4	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-901	59.2	n/a	5/23/2018	57.1	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-902	70.7	n/a	7/11/2018	69.1	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-903	358	n/a	8/16/2018	382	Yes	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-904	86.7	n/a	5/23/2018	72.2	No	8	0	No	0.00188	Param Intra 1 of 3
CALCIUM (mg/l)	MW-905	58.8	n/a	5/23/2018	47.8	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-901	51.5	n/a	5/23/2018	22.6	No	8	0	n/a	0.00591	NP Intra (normality)
CHLORIDE (mg/l)	MW-902	35.2	n/a	5/23/2018	33.9	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-903	27	n/a	5/23/2018	25.6	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-904	40.6	n/a	5/23/2018	33.8	No	8	0	No	0.00188	Param Intra 1 of 3
CHLORIDE (mg/l)	MW-905	52.7	n/a	5/23/2018	51.9	No	8	0	n/a	0.00591	NP Intra (normality)
DISSOLVED SOLIDS (mg/l)	MW-901	701	n/a	5/23/2018	520	No	8	0	n/a	0.00591	NP Intra (normality)
DISSOLVED SOLIDS (mg/l)	MW-902	564	n/a	5/23/2018	511	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-903	2178	n/a	5/23/2018	1920	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-904	808	n/a	5/23/2018	677	No	8	0	No	0.00188	Param Intra 1 of 3
DISSOLVED SOLIDS (mg/l)	MW-905	685	n/a	5/23/2018	602	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/I)	MW-901	0.572	n/a	5/23/2018	0.547	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/I)	MW-902	0.572	n/a	5/23/2018	0.541	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/I)	MW-903	0.132	n/a	5/23/2018	0.05ND	No	8	62.5	n/a	0.00591	NP Intra (NDs) 1 of 3
FLUORIDE (mg/I)	MW-904	0.451	n/a	5/23/2018	0.444	No	8	0	No	0.00188	Param Intra 1 of 3
FLUORIDE (mg/I)	MW-905	0.611	n/a	5/23/2018	0.581	No	8	0	No	0.00188	Param Intra 1 of 3
pH (S.U.)	MW-901	7.79	6.95	5/23/2018	7.53	No	8	0	No	0.00094	Param Intra 1 of 3
pH (S.U.)	MW-902	7.62	6.62	7/11/2018	7.28	No	8	0	No	0.00094	Param Intra 1 of 3
pH (S.U.)	MW-903	7.37	6.18	8/16/2018	6.65	No	8	0	No	0.00094	Param Intra 1 of 3
pH (S.U.)	MW-904	7.37	7.06	7/11/2018	7.1	No	8	0	n/a	0.0118	NP Intra (normality)
pH (S.U.)	MW-905	8.37	6.61	5/23/2018	7.68	No	8	0	No	0.00094	Param Intra 1 of 3
SULFATE (mg/l)	MW-901	33.8	n/a	5/23/2018	17.9	No	8	0	n/a	0.00591	NP Intra (normality)
SULFATE (mg/l)	MW-902	36	n/a	5/23/2018	32.5	No	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/I)	MW-903	1153	n/a	5/23/2018	896	No	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/l)	MW-904	139	n/a	5/23/2018	80.7	No	8	0	No	0.00188	Param Intra 1 of 3
SULFATE (mg/l)	MW-905	59.7	n/a	5/23/2018	27.5	No	8	0	x^(1/3)	0.00188	Param Intra 1 of 3

La Cygne Generating Station Determination of Statistically Significant Increases (May 2018 Event) Bottom Ash Impoundment September 12, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s:							
Data	Reading O	ptions							
In 🔘	ndividual Ob	oservations							
OM	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	n					
Non-I Setup	Detect / Tri Seasons omatically F	ace Handling. Process Resa	 mples						

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
 Bla Fou Fou Fou Fou Tou Dra Dra Dra Dra Enl Enl Enl Enl Enl Enl Incl Sho Setup 	ck and Whi ur Plots Per Always Con Include Tic Use Constit aw Border A arge/Reduc de Margins e CAS# (No incate File N lude Limit Li ow Deselec ow Deselec ow Deselec	te Output Page abine Data Pa k Marks on D uent Name fo round Text Re ce Fonts (Graj ce Fonts (Graj ce Fonts (Data (on reports with t Const. Name Names to 20 ines when fou ted Data on a ted Data on a nd Colors	iges ata Page r Graph Title eports and Da ohs): a/Text Report thout explicit s e) Characters ind in Databas fime Series L Il Data Pages	ta Pages 100% s): 100% etting) se ighter ✓ Lighter ✓	 ✓ Proi Rou Use ✓ Indi Sho This Zoo Output ● Les No Mo 	mpt to Overwrit und Limits to 2 er-Set Scale icate Backgrou ow Exact Dates ck Plot Lines om Factor: 20 Decimal Precision mal Precision re Precision	e/Append S Sig. Digits nd Data	Summary Ta (when not	ables set in data file)
Printer:	Printer: Adobe PDF							Printers	
	1.000010								1111000

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
✓ Tes	t for Norma Non-Parar	lity using Sh	apiro-Wilk/Fra nen Non-Deter	incia ∽ cts Percent > [5	at Alpha = 0.01	Transformation ● Use Ladder of Powers ○ Natural Log or No Transformation ○ Never Transform					
Use Ait	chison's Ad onal Furthe	ljustment r Refinement:	when Non-De	etects Percent >	15 hen NDs % >	50	 ◯ Use Specific Transformation: Natural Log ◯ Use Best W Statistic 				
Use	Poisson Pr	ediction Limit	when Non-De	etects Percent >	0	0 Plot Transformed Values					
Desea If If A Facility Statist Consti Down	asonalize (Ir Seasonality Seasonality Iways (Whe Iways Use γ α ical Evalua tuents Anal gradient (Co	ntra- and Inter y Is Detected y Is Detected en Sufficient I Non-Parametr tions per Year lyzed: ompliance) W	Well) Or Insufficient Data) ic :: ells:	to Test Never	IntraWell Ot Stop if I Plot Ba Ovenide St Ovenide DI Automa 2-Taileo Show D	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation: Override DF: Override DF: Override Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Uighter					
Sampli Comp 0 1 0 2	ing Plan paring Ind of 1 C of 4 ("Mod	ividual Obsen) 1 of 2 (ified California	vations 1 of 3 ")	 ✓ 1 of 4 	Non-Paramo Non-Paramo O Highest O Most R O Most R	Non-Parametric Limit = Highest Background Value Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)					

Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney								
Use Modified Alpha 2-Tailed Test Mode								
Outlier Tests								
C EPA 1989 Outlier Screening (fixed alpha of 0.05)								
• Dixon's at $\alpha = 0.05 \lor$ or if n > 22 \lor Rosner's at $\alpha = 0.01 \lor$ Use EPA Screening to establish Suspected Outliers								
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat								
Test For Normality using Shapiro-Wilk/Francia \checkmark at Alpha = 0.1 \checkmark								
Stop if Non-Normal								
O Continue with Parametric Test if Non-Normal								
◯ Tukey's if Non-Normal, with IQR Multiplier = 3.0 ☑ Use Ladder of Powers to achieve Best W Stat								
No Outlier If Less Than 3.0 Times Median								
Apply Rules found in Ohio Guidance Document 0715								
Combine Background Wells on the Outlier Report								
Piper, Stiff Diagram								
Combine Wells								
Combine Dates 🗹 Label Axes								
Use Default Constituent Names Note Cation-Anion Balance (Piper only)								
O Use Constituent Definition File Edit								

Jared Morrison December 16, 2022

ATTACHMENT 3

Groundwater Potentiometric Surface Maps

100 SCALE

100 SCALE

