

2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT FLY ASH LANDFILL JEFFREY ENERGY CENTER ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. (f/k/a Westar Energy, Inc.) Topeka, Kansas

File No. 129778-030 January 2020

Table of Contents

			Page
1.	Intro	oduction	1
2.	40 C	FR § 257.90 Applicability	2
	2.1	40 CFR § 257.90(A)	2
	2.2	40 CFR § 257.90(E) – SUMMARY	2
		2.2.1 Status of the Groundwater Monitoring Program	2
		2.2.2 Key Actions Completed	2
		2.2.3 Problems Encountered	3
		2.2.4 Actions to Resolve Problems	3
		2.2.5 Project Key Activities for Upcoming Year	3
	2.3	40 CFR § 257.90(E) – INFORMATION	3
		2.3.1 40 CFR § 257.90(e)(1)	3
		2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes	4
		2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events	4
		2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	4
		2 3 5 40 CFR § 257 90(e)(5) – Other Requirements	4

Revision No.	Date	Notes
0	1/31/2020	Original

List of Tables

Table No. Title

I Summary of Analytical Results – Assessment Monitoring

II Annual Assessment Groundwater Monitoring – Detected Appendix IV GWPS

List of Figures

Figure No. Title

1 Fly Ash Landfill, Monitoring Well Location Map

List of Attachments

Attachment No. Title

1 Appendix IV SSL Alternate Source Demonstration for Fly Ash Landfill Area I,

September 2018 Sampling Event

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Jeffrey Energy Center Fly Ash Landfill (FAL) consistent with applicable sections of § 257.90 through 257.98, and describes activities conducted in the prior calendar year (2019) and documents compliance with the United States Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the FAL is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Mark Nicholls

Kansas License No.: Professional Geologist No. {

Title: Technical Expert 2
Company: Haley & Aldrich, Inc.

1. Introduction

This 2019 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Fly Ash Landfill (FAL) at the Jeffrey Energy Center (JEC), operated by Evergy Kansas Central, Inc. (Evergy; f/k/a Westar Energy, Inc.). This Annual Report was developed in accordance with the United States Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective 19 October 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection § 257.90(e). The Annual Report documents the groundwater monitoring system for the FAL consistent with applicable sections of § 257.90 through 257.98, and describes activities conducted in the prior calendar year (2019) and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e)(1)-(5) of the Rule are provided in Section 2 of this Annual Report and are in bold italic font, followed by a short narrative describing how each Rule requirement has been met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the JEC FAL. The FAL is subject to the groundwater monitoring and corrective action requirements described under 40 CFR § 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the JEC FAL as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2019.

2.2.1 Status of the Groundwater Monitoring Program

The FAL remained in the assessment monitoring program during 2019.

2.2.2 Key Actions Completed

The 2018 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2019. Statistical evaluation was completed in January 2019 on analytical data from the

September 2018 assessment monitoring sampling event. A successful alternate source demonstration (ASD) was completed and certified for the September 2018 sampling event.

A semi-annual assessment monitoring sampling event was completed in March 2019 for detected Appendix IV constituents identified from the June 2018 annual assessment monitoring sampling event. Statistical evaluation was completed in July 2019 on analytical data from the March 2019 assessment monitoring sampling event.

An annual assessment monitoring sampling event was completed in June 2019 to identify detected Appendix IV constituents for subsequent semi-annual sampling events in September 2019 and planned for March 2020. Groundwater protection standards for detected Appendix IV constituents were established or updated at that time. Semi-annual assessment monitoring sampling was completed in September 2019 for detected Appendix IV constituents identified during the June 2019 annual monitoring event. Statistical evaluation of the results from the September 2019 semi-annual assessment monitoring sampling event are due to be completed in January 2020 and will be reported in the next annual report.

2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, and problems with analytical analysis) were encountered at the FAL in 2019.

2.2.4 Actions to Resolve Problems

No problems were encountered at the FAL in 2019, therefore, no actions to resolve problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2020 include the completion of the 2019 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual assessment monitoring analytical data collected in September 2019, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the FAL is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned during 2019.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), three independent assessment monitoring samples from each background and downgradient monitoring well were collected in 2019. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the FAL is presented in Table I of this report.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was established in June 2018 to meet the requirements of 40 CFR § 257.95. The FAL remained in assessment monitoring during 2019.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in §257.90 through §257.98.

This Annual Report documents activities conducted to comply with § 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in § 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed in calendar year 2019.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and

the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternative source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater

protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

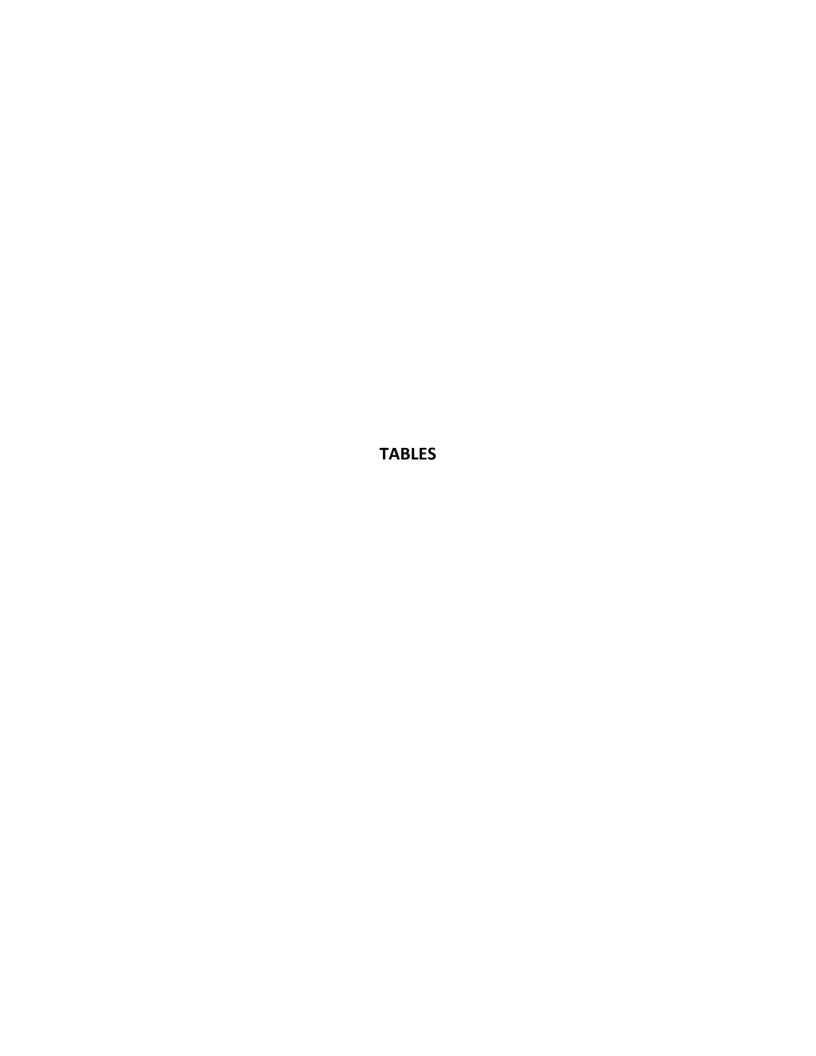
An assessment monitoring program has been implemented at the CCR unit since June 2018. Three rounds of assessment monitoring sampling were completed in 2019. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the FAL are included in Table II. The background concentrations and groundwater protection standards provided in Table II were utilized for the statistical evaluations completed in 2019 for September 2018 and March 2019 semi-annual assessment monitoring sampling events.

2.3.5.5 40 CFR § 257.95(q)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

A successful assessment monitoring ASD is included in this report as Attachment 1. The FAL remained in assessment monitoring during 2019.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures


Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also

include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated in 2019; therefore, no demonstration or certification is applicable for this unit.

TABLE I

SUMMARY OF ANALYTICAL RESULTS - ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC.
JEFFREY ENERGY CENTER
FLY ASH LANDFILL
ST. MARYS, KANSAS

Location	Upgradient			Downgradient								
Location	MW-FAA-5 1250.8		MW-FAA-3 1165.66		MW-FAA-4 1213.81			MW-FAA-6				
Measure Point (TOC)									1162.76			
Sample Name	FAA-5-032619	FAA-5_062319	MW-FAA-5	FAA-3-032619	FAA-3_062319	MW-FAA-3	FAA-4-032619	FAA-4_062319	MW-FAA-4	FAA-6-032619	FAA-6_062319	MW-FAA-6
Sample Date	3/26/2019	6/23/2019	9/12/2019	3/26/2019	6/23/2019	9/12/209	3/26/2019	6/23/2019	9/12/2019	3/26/2019	6/23/2019	9/12/2019
Final Lab Report Date	4/8/2019	7/5/2019	9/23/2019	4/8/2019	7/5/2019	9/23/2019	4/8/2019	7/5/2019	9/23/2019	4/8/2019	7/5/2019	9/23/2019
Final Lab Report Revision Date	N/A	N/A	10/22/2019	N/A	N/A	10/22/2019	N/A	N/A	10/22/2019	N/A	N/A	10/22/2019
Final Radiation Lab Report Date	4/8/2019	7/16/2019	10/8/2019	4/8/2019	7/16/2019	10/8/2019	4/8/2019	7/16/2019	10/8/2019	4/8/2019	7/16/2019	10/8/2019
Final Radiation Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lab Data Reviewed and Accepted	4/15/2019	7/23/2019	10/22/2019	4/15/2019	7/23/2019	10/22/2019	4/15/2019	7/23/2019	10/22/2019	4/15/2019	7/23/2019	10/22/2019
Depth to Water (ft btoc)	86.78	85.66	85.96	12.79	10.95	11.58	55.32	53.39	53.96	14.70	12.70	13.66
Temperature (Deg C)	12.2	15.61	15.64	14.5	16.90	15.30	13.1	14.65	15.50	15.0	16.38	16.50
Conductivity (μS/cm)	2395	3500	2788	2488	1920	1551	1561	1430	1140	1593	3070	2641
Turbidity (NTU)	0.62	0.43	0.24	1.37	5.62	0.05	0.41	0.41	0.27	0.62	0.77	0.57
Boron, Total (mg/L)	1.1		1.5	0.54		0.93	0.88		0.62	1.5		3.5
Calcium, Total (mg/L)	294		313	366		204	180		154	147		121
Chloride (mg/L)	127		105	176		79.3	68.5		75.7	80.4		73.2
Fluoride (mg/L)	0.53		<0.20	0.37		<0.20	0.33		0.32	0.62		0.97
Sulfate (mg/L)	900		1560	1090		809	479		414	972		1720
pH (su)	7.1		7.1	7.2		7.4	7.3		7.3	7.4		7.7
TDS (mg/L)	1770		2840	1990		1570	1110		1090	1560		3100
Antimony, Total (mg/L)	<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010	
Arsenic (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0037	0.0043	0.0073
Barium, Total (mg/L)	<0.0050	0.0072	<0.0050	0.036	0.033	0.032	0.051	0.052	0.051	0.033	0.026	0.024
Beryllium, Total (mg/L)	<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010	
Cadmium, Total (mg/L)	<0.00050	<0.00050		<0.00050	<0.00050		<0.00050	<0.00050		<0.00050	<0.00050	
Chromium, Total (mg/L)	<0.0050	<0.0050		<0.0050	<0.0050		<0.0050	<0.0050		<0.0050	<0.0050	
Cobalt, Total (mg/L)	0.0022	0.0056	0.0040	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0017	0.0012	0.0015
Lead, Total (mg/L)	<0.010	<0.010		<0.010	<0.010		<0.010	<0.010		<0.010	<0.010	
Lithium, Total (mg/L)	0.082	0.11	0.11	0.014	<0.010	0.015	0.019	0.017	0.020	0.014	<0.010	0.012
Molybdenum, Total (mg/L)	0.024	0.053	0.034	0.0039	0.011	0.013	0.0072	0.0065	0.0054	0.22	0.34	0.58
Selenium, Total (mg/L)	0.0027	0.0011	0.0033	<0.0010	<0.0010	<0.0010	0.0013	0.0019	0.0016	<0.0010	0.014	0.0013
Thallium, Total (mg/L)	<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010		<0.0010	<0.0010	
Mercury, Total (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Fluoride (mg/L)	0.53	1.6	<0.20	0.37	0.43	<0.20	0.33	0.44	0.32	0.62	1.2	0.97
Radium-226 & 228 Combined (pCi/L)	1.00 +/- 0.975 (1.80)	2.43 +/- 1.12 (1.34)	0.794 +/- 0.854 (1.48)	0.352 +/- 0.782 (1.66)	0.453 +/- 0.790 (1.53)	0.857 +/- 0.932 (1.81)	1.40 +/ 1.18 (2.02)	1.54 +/- 0.959 (1.46)	0.335 +/- 0.858 (1.69)	1.43 +/- 1.12 (1.82)	1.43 +/- 0.932 (1.49)	0.136 +/- 0.750 (1.62)

Note:

The June 2019 sampling event was for Appendix IV constituents only. The September 2019 sampling event included Appendix IV constituents detected in the June 2019 sampling event, and all of the Appendix III constituents.

 $Radiological\ results\ are\ presented\ as\ activity\ plus\ or\ minus\ uncertainty\ with\ minimum\ detectable\ concentration\ (MDC).$

 $\textit{Bold value:} \ \ \textit{Detection above laboratory reporting limit or MDC} \ .$

 $\mu S/cm$ = micro Siemens per centimeter

ft btoc = feet below top of casing

Deg C = degrees Celsius

mg/L = milligrams per liter

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit

 $TDS = total\ dissolved\ solids$

TOC = top of casing

TABLE II ANNUAL ASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPS JUNE 2019 SAMPLING EVENT JEFFREY ENERGY CENTER FLY ASH LANDFILL

Well #	Background Value*	GWPS
	CCR Appendix-IV Arsenic, Total	(mg/L)
MW-FAA-5 (upgradient)	0.0037	NA
MW-FAA-3		0.010
MW-FAA-4		0.010
MW-FAA-6		0.010
	CCR Appendix-IV Barium, Total ((mg/L)
MW-FAA-5 (upgradient)	0.0136	NA
MW-FAA-3		2
MW-FAA-4		2
MW-FAA-6		2
	CCR Appendix-IV Cobalt, Total (mg/L)
MW-FAA-5 (upgradient)	0.0036	NA
MW-FAA-3		0.006
MW-FAA-4		0.006
MW-FAA-6		0.006
	CCR Appendix-IV Fluoride, Total	(mg/L)
MW-FAA-5 (upgradient)	1.261	NA
MW-FAA-3		4.0
MW-FAA-4		4.0
MW-FAA-6		4.0
	CCR Appendix-IV Lithium, Total	(mg/L)
MW-FAA-5 (upgradient)	0.183	NA
MW-FAA-3		0.183
MW-FAA-4		0.183
MW-FAA-6		0.183
	CCR Appendix-IV Molybdenum, Tot	al (mg/L)
MW-FAA-5 (upgradient)	0.0699	NA
MW-FAA-3		0.1
MW-FAA-4		0.1
MW-FAA-6		0.929**
CCR /	Appendix-IV Radium-226 & 228 Cor	nbined (pCi/L)
MW-FAA-5 (upgradient)	1.3	NA
MW-FAA-3		5
MW-FAA-4		5
MW-FAA-6		5
	CCR Appendix-IV Selenium, Total	
MW-FAA-5 (upgradient)	0.0037	NA
MW-FAA-3		0.050
MW-FAA-4		0.050
MW-FAA-6		0.050

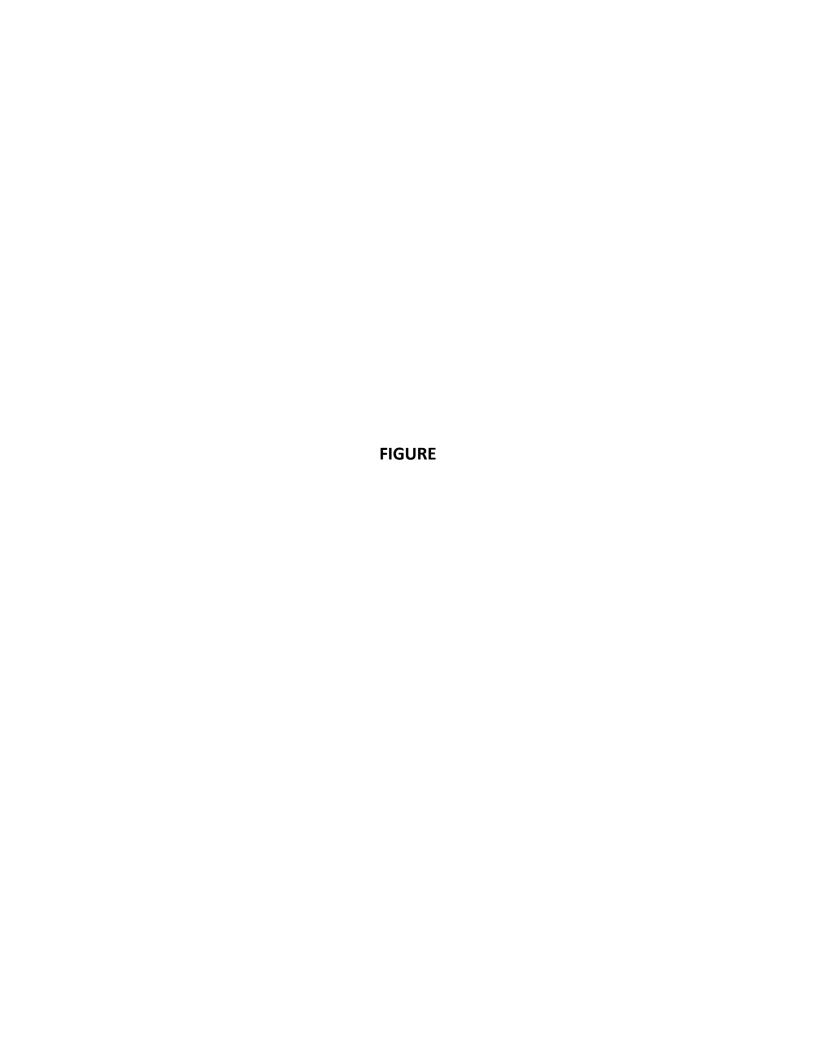
Notes and Abbreviations:

- * Background value for interwell evaluation based on data collected through June 2018.
- ** GWPS based on background value using intrawell evaluation based on data collected through June 2018.

CCR = Coal Combustion Residuals

GWPS = Groundwater Protection Standard

MCL = Maximum Contaminant Level


mg/L = milligrams per Liter

NA = Not Applicable

pCi/L = picoCuries per Liter

RSL = Regional Screening Level

ATTACHMENT 1

Appendix IV SSL Alternate Source Demonstration for Fly Ash Landfill Area I, September 2018 Sampling Event

REPORT ON

APPENDIX IV STATISTICALLY SIGNIFICANT LEVEL
ALTERNATE SOURCE DEMONSTRATION
FOR THE FLY ASH LANDFILL AREA 1
SEPTEMBER 2018 SAMPLING EVENT
JEFFREY ENERGY CENTER
ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Westar Energy, Inc. Topeka, Kansas

File No. 129778-023 Updated May 2019

Table of Contents

			Page
List	of Tab of Figu of App		ii ii ii
1.	Intro	oduction	1
	1.1		1
	1.2		2
	1.3 1.4	SITE SETTING SITE DESCRIPTION	2
2.	Site	Geology, Hydrogeology, Geochemistry, and Regional Conditions	3
	2.1	SITE GEOLOGY	3
	2.2	SITE HYDROGEOLOGY AND HYDROLOGY	3
	2.3	NATURALLY-OCCURRING SOURCES OF MOLYBDENUM	4
3.	Alte	rnative Source Demonstration	5
	3.1	REVIEW OF FIELD SAMPLING, LABORATORY ANALYSIS, AND STATISTICAL PROCEDUR	
		3.1.1 Field Sampling Procedures	5
		3.1.2 Laboratory Analysis and Quality Control Documentation	5
	3.2	3.1.3 Statistical Evaluation	6
	3.2	POTENTIAL SOURCES OTHER THAN THE FAL 3.2.1 Point Sources	6
		3.2.2 Non-Point Sources	6 6
	3.3	HISTORICAL LAND USE REVIEW	7
	3.3	3.3.1 Historical Aerial Photographs	7
		3.3.2 Historical Topographic Maps	7
	3.4	NATURAL VARIABILITY OF MOLYBDENUM OCCURENCE	7
	0	3.4.1 Natural Bedrock Variability	7
		3.4.2 Natural Groundwater Quality Variability	8
4.	Find	lings and Conclusions	9
	4.1	FINDINGS	9
	4.2	CONCLUSIONS	10
5.	Cert	ification	11
6.	Refe	erences	12

List of Tables

Table No.	Title
1	Historical Aerial Photograph Review Summary
II	Historical Topographic Map Review Summary
III	Summary of Shale Sample Analysis for Total Metals and SPLP Results
IV	Summary of Field Parameter Monitoring from the Initial Assessment Monitoring Sampling Event

List of Figures

Figure No.	Title
1	Site Location
2	Fly Ash Landfill Monitoring Well Location Map
3	Fly Ash Landfill Generalized Cross-Section A-A'

List of Appendices

Appendix	Title
A	Aerial Photographs
В	Topographic Maps
С	Laboratory Reports
D	Well Construction Details

1. Introduction

Haley & Aldrich, Inc. (Haley & Aldrich) was retained by Westar Energy Inc. (Westar) to perform an evaluation of groundwater quality at Area 1 of the Fly Ash Landfill (FAL; Site/Unit) at the Jeffrey Energy Center (JEC) located in St. Marys, Kansas. The evaluation was performed in support of the coal combustion residuals (CCR) Rule, specifically §257.95(g)(3)(ii), groundwater assessment monitoring program, to evaluate a statistically significant level (SSL) of molybdenum identified during the September 2018 assessment monitoring sampling event at monitoring well MW-FAA-6 which is installed down gradient of the FAL. This report provides an overview of the site conditions and investigation activities, the results of the investigation activities conducted as part of the evaluation, and an alternative source demonstration (ASD) for the Appendix IV constituent, molybdenum. This report does not address Area 2 of the FAL, which is under construction as of the date of this report.

Summary & Conclusions

Based on the finding and evaluation of available information discussed in this report, it has been concluded that the SSL for molybdenum identified at MW-FAA-6 is due to the presence of interbedded shale and limestone deposits within the Grenola limestone, and geochemical conditions (pH) promoting the localized mobilization of molybdenum from that formation. Consequently, the alternate source of molybdenum at the FAL monitoring well MW-FAA-6 is natural groundwater quality variability associated with the presence of interbedded shale and limestone deposits within the Grenola limestone, and localized mobilization of molybdenum from that formation into groundwater.

1.1 BACKGROUND

Consistent with Code of Federal Regulations Title 40 (40 CFR) §257.90 through §257.95, Westar has installed and certified a groundwater monitoring network at the FAL, has completed detection monitoring program activities including identifying statistically significant increases in Appendix III constituent concentrations, and established an assessment monitoring program. Westar conducted statistical analyses of the down gradient groundwater quality results from the September 2018 assessment monitoring sampling event to determine if any Appendix IV constituents are present at concentrations that exceed groundwater protection standards set for the Unit. The analysis of the Appendix IV constituents resulted in a calculated SSL above the groundwater protection standard of 0.1 milligrams per liter (mg/L) for molybdenum down gradient of the FAL at monitoring well MW-FAA-6. The analyses described in this report were conducted to determine if alternate sources existed for the SSL.

Pursuant to 40 CFR §257.95(g)(3)(ii), "...the owner or operator must...demonstrate that a source other than the CCR unit 1 caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality." The CCR Rule provides 90 days from determination of an SSL to complete an ASD for applicable Appendix IV constituents 2. If a successful ASD is completed and certified by a qualified professional engineer, the CCR unit may continue in assessment monitoring. If, however, an alternate source of the

¹ Referred to in this document as an "alternate source," and the demonstration for such is referred to as an ASD.

² For simplicity, this report utilizes the term ASD to account for any of the three possible explanations (allowed for in the CCR Rule) for why a calculated SSL is not related to the CCR unit being evaluated. Those include: 1) The source for the SSL originates from something other than the CCR unit in question; 2) the SSL resulted from an error in sampling, analysis, or statistical evaluation; or 3) the SSL resulted from a natural variation in groundwater quality.

Appendix IV SSL is not identified, the owner or operator must initiate an assessment of corrective measures and nature and extent evaluation. This report documents the findings and conclusions of an investigation of the molybdenum SSL at MW-FAA-6.

1.2 PURPOSE AND SCOPE

The purpose of this ASD is to determine whether the concentrations of molybdenum detected in groundwater at MW-FAA-6 are from sources other than the Unit. The scope of the demonstration includes a review of the current regional geochemical and geologic conditions, a comparison of the groundwater quality at MW-FAA-6 and the other monitoring well locations, and analysis of the bedrock matrix for sources of molybdenum. This evaluation was completed using existing information describing the regional and site-specific geology and groundwater monitoring data collected during detection and assessment monitoring activities. This analysis included:

- Review of well installation logs for the presence of shale and limestone in the groundwater monitoring well screened intervals;
- Review of low flow groundwater sampling field forms including specific conductance, turbidity, and pH measurements; and
- Collection and analysis of representative bedrock samples obtained during the installation of groundwater monitoring wells up gradient and down gradient of the unit.

1.3 SITE SETTING

The JEC is located approximately 7 miles northwest of St. Marys in Pottawatomie County, Kansas. The location of the JEC is shown on Figure 1. The Site is located within the Central Lowland physiographic province which includes rolling hills with substantial topographic relief and the relatively horizontal orientation of the thin alternating shale and limestone beds. The FAL is a CCR landfill that encompasses approximately 55 acres and is located approximately 1 mile west of the JEC plant site. The JEC plant site and the FAL are relatively flat; however, the area between the JEC plant and the FAL consists of rolling hills and natural drainages with natural ground surface elevations varying between 1,100 and 1,300 feet above mean sea level (amsl).

1.4 SITE DESCRIPTION

The FAL CCR management unit was permitted as a combined Industrial Waste Landfill in 1980 under the Kansas Department of Health and Environment (KDHE) Solid Waste Disposal Area Operating Permit No. 359 (KDHE Permit No. 359). Fly ash is collected at the JEC power plant via an electrostatic precipitator and is conveyed by truck to the FAL where it is deposited behind an embankment in the FAL, graded, hydrated to support grading and dust suppression, and disposed in Area 1 of the FAL. The FAL and associated groundwater monitoring well network is shown on Figure 2.

2. Site Geology, Hydrogeology, Geochemistry, and Regional Conditions

Geologic and hydrogeologic conditions beneath the FAL have been characterized based on information obtained during installation and sampling of the monitoring wells installed pursuant to the Solid Waste Disposal Area Operating Permit (KDHE Permit No. 359) and wells installed for the CCR groundwater monitoring network.

2.1 SITE GEOLOGY

The JEC site and the FAL are located within the southern extent of Pleistocene glacial activity in the Dissected till plains region of the Central Lowlands geomorphic province. The Site is underlain by multiple sequences of marine sedimentary rocks (interbedded shales and limestones) that are roughly horizontal. The principal hydrogeologic units that underlie the FAL, in order of increasing depth, include the Stearns shale, Beattie limestone, Eskridge shale, Grenola limestone, Roca shale, Red Eagle limestone, Johnson shale, and Foraker limestone formations. The fundamental properties of these formations are described below. Figure 3 shows the stratigraphic units located beneath the JEC site encountered during the installation of the FAL CCR monitoring well network.

Surficial geologic materials in the vicinity of and beneath the FAL include thin deposits of Pleistocene glacial till and Holocene alluvium. The natural surficial materials prior to construction of the FAL include the poorly sorted glacial deposits composed of Kansan and Nebraskan age clays, silts, and sands. Locally, the till may yield minor quantities of water, but occurrence of water is discontinuous, and the Unit does not constitute an aquifer.

The Pleistocene glacial deposits are underlain by strata representing transgressions and regressions of marine and near-shore depositional environments. The shale units represent deposition of fine grain silt and clay materials in an off-shore marine environment. The silt and clay were later buried at depth and compressed to form the relatively hard and impermeable shale observed underlying the FAL. The limestone units represent deposition of chemically precipitated calcium carbonate in an environment further from shore in comparison with the shale depositional environment. After deposition, the chemically precipitated calcium carbonate was also buried at depth and compressed to form the limestone units observed underlying the FAL. The alternating sequences of shale and limestone were created by sequential rising and falling of the relative sea level which caused the shale and limestone depositional environments to repeatedly transgress and regress over one another.

The alternating shale and limestone units range in thickness between approximately 8 and 42 feet. The limestone units are generally water-bearing and the shale units generally are not. The nearly horizontal shale units have formed barriers to vertical groundwater flow. The Stearns shale, the Beattie limestone, and the Eskridge shale are unsaturated beneath the FAL and overlie the principle hydrogeologic units consisting of the Grenola limestone and the Roca shale.

2.2 SITE HYDROGEOLOGY AND HYDROLOGY

Given the alternating sequences of shale and limestone, many of the water-bearing units are confined and preclude the vertical migration of groundwater. The limestone formations have variable permeability but are generally characterized as low permeability but have higher permeability than the shale units. Shale permeability decreases with depth and while the upper shale units beneath the CCR

management units have a low permeability, the deeper shale units are considered relatively impermeable.

The uppermost water-bearing geologic formation at the FAL is the Grenola limestone. Based on observations made by Haley & Aldrich during drilling conducted at the FAL in March 2016 and June 2017, the saturated thickness of the Grenola formation is approximately 12 to 42 feet below ground surface (bgs). The saturated Grenola limestone is underlain by the low permeability Roca shale which acts as an aquitard, inhibiting downward groundwater flow. The uppermost aquifer does not appear to be hydraulically interconnected with the underlying aquifers within the JEC facility boundary.

Based on groundwater elevation data collected as part of the detection and assessment monitoring programs, the groundwater flow direction has been consistently observed toward the south. Available groundwater elevation data indicate that seasonal groundwater elevation variation does not have a significant effect on groundwater flow direction at the JEC site.

Based on slug test results conducted by Haley & Aldrich and others, the hydraulic conductivity of the Grenola limestone at FAL was calculated to range between 3.97x10⁻³ and 2.33x10⁻³ centimeters per second (cm/sec). The Roca shale underlying the uppermost aquifer at FAL is between 7 to 34 feet thick, and results of packer tests conducted during previous studies indicate that the hydraulic conductivity is 3.55x10⁻⁵ cm/sec (Burns & McDonnell, 2009). Based on these observations, the Roca shale is characterized as an aquitard beneath the Grenola limestone at the FAL.

During installation of the groundwater monitoring well network at the FAL, discontinuous thin layers of black shale were observed interbedded with limestone within the bedrock formation. Black shale was observed interbedded within the water-bearing Grenola limestone in wells at the FAL.

2.3 NATURALLY-OCCURRING SOURCES OF MOLYBDENUM

Black shale deposits identified in the region have been documented to contain elevated molybdenum content and typically occur in thin layers generally less than 3 feet thick. The shale layers with elevated molybdenum are believed to have been formed near ancient deltaic shorelines enriched in terrestrial organic matter and can be associated with coal seams. These types of shale deposits have been identified from Indiana to Oklahoma and from Kentucky to Iowa. In general, the further from the boundary of the ancient shoreline, the lower the molybdenum concentration observed in the shale (Coveney and Glascock, 1989).

The dissolution and mobility of molybdenum is affected by the oxidation conditions in the water-bearing unit, the presence of adsorption sites within the soil and bedrock matrix, and groundwater pH conditions. Generally, molybdenum adsorption to soils and bedrock matrices is lower under anaerobic groundwater conditions (dissolved oxygen less than 0.5 mg/L) and at neutral to basic pH (6 to 8 standard units [S.U.]). These groundwater conditions induce the dissolution of molybdenum adsorbed to iron oxide minerals (Smedley and Kinniburgh, 2012) and inhibit the adsorption of molybdenum to the soil matrix due to competition with the elevated hydroxide concentrations (Barrow, 1977), thus, increasing dissolved phase concentrations in groundwater.

3. Alternative Source Demonstration

Haley & Aldrich conducted an evaluation of molybdenum concentration detected at MW-FAA-6 that included review of the three possible alternative sources (allowed for in the CCR Rule) for the apparent SSL determined by statistical analyses completed in January 2019 for the September 2018 assessment monitoring sampling event. The molybdenum concentration observed for the September 2018 assessment monitoring sampling event is 0.416 mg/L.

These possible alternative sources include:

- 1. The SSL resulted from an error in sampling, analysis, or statistical evaluation;
- 2. The source for the SSL originates from something other than the CCR unit in question; or
- 3. The SSL resulted from a natural variation in groundwater quality.

As part of that evaluation, Haley & Aldrich evaluated potential point and non-point sources of molybdenum in the vicinity of the FAL and evaluated natural geologic conditions and the effect of those conditions on native groundwater chemistry. Each of these analyses and the resulting findings are described below.

3.1 REVIEW OF FIELD SAMPLING, LABORATORY ANALYSIS, AND STATISTICAL PROCEDURES

3.1.1 Field Sampling Procedures

Westar conducted field sampling activities in accordance with the Groundwater Sampling and Analysis Plan (SAP; Haley & Aldrich, 2017) that was prepared in accordance with §257.93 of the CCR Rule. The SAP prescribes the site-specific activities and methods for groundwater sampling and included procedures for field data collection, sample collection, sample preservation and shipment, interpretation, laboratory analytical methods, and reporting for groundwater sampling for the FAL. The administrative procedures and frequency for collection of groundwater elevation measurements, determination of flow directions, and gradients were also provided in the SAP.

Haley & Aldrich reviewed the field sampling and equipment calibration logs and the field indicator parameters and did not identify any apparent deviations or errors in sampling that would result in a potential SSL down gradient of the FAL.

3.1.2 Laboratory Analysis and Quality Control Documentation

The groundwater samples collected down gradient of the FAL were analyzed by Pace Analytical Services (Pace) using promulgated U.S. Environmental Protection Agency (USEPA) analytical methods in accordance with the SAP (Haley & Aldrich, 2017) that was prepared in accordance with §257.93 of the CCR Rule. The data generated from these laboratory analyses are stored in a project database that incorporates hydrogeologic and groundwater quality data and was established to allow efficient management of chemical and physical data collected in the field and produced in the laboratory.

Haley & Aldrich conducted a quality assurance/quality control review of each groundwater quality dataset generated for the FAL and has not identified any apparent errors that would result in a potential SSL down gradient of the FAL.

3.1.3 Statistical Evaluation

Westar collected the initial assessment monitoring groundwater sample in June 2018, and a second assessment monitoring groundwater sample in September 2018, from each of the up gradient (MW-FAA-5) and down gradient (MW-FAA-3, MW-FAA-4, and MW-FAA-6) monitoring wells at the FAL. Baseline sampling was previously completed over a period spanning from August 2016 through June 2017, as required by the CCR Rule. Statistical analysis of the analytical results was completed and reported as documented in the 2018 Annual Groundwater Monitoring and Corrective Action Report (Haley & Aldrich, 2019).

Haley & Aldrich has reviewed the statistical analysis of groundwater quality data from monitoring wells at the FAL and has not identified any laboratory or statistical calculation errors that would result in the apparent molybdenum SSL at MW-FAA-6. The statistical test method used met the performance standard established in the CCR Rule, and the statistical procedure complies with the requirements of the CCR Rule.

3.2 POTENTIAL SOURCES OTHER THAN THE FAL

Haley & Aldrich conducted a review of potential sources (both point and non-point) of molybdenum in the vicinity of the FAL to determine if previous or adjacent site activities, land uses, or practices might have caused, or are currently causing, elevated concentrations of molybdenum in groundwater down gradient of the FAL. Potential point sources would include discharging activities or other activities occurring at a discrete location that may be a source of molybdenum. Non-point sources would include diffuse discharging activities or practices that may result in a low level but wide-spread increase in molybdenum concentrations detected at the down gradient side of the FAL.

3.2.1 Point Sources

Prior to construction of the FAL, the landfill site and surrounding vicinity was undeveloped land. Review of historical United States Geological Survey (USGS) topographic maps shows undeveloped land prior to the construction of the FAL. No known industrial, agricultural, mining, or other activities were conducted at the FAL site prior to construction of the landfill that would potentially constitute a point source for molybdenum. No point sources have been identified as a potential alternative source for molybdenum at the FAL.

3.2.2 Non-Point Sources

No mining, industrial, or other activities have been documented in the vicinity of the FAL that might constitute a non-point source of molybdenum in the vicinity of MW-FAA-6. Agricultural land use was observed approximately 0.8 mile to the southwest and down gradient of the FAL.

No agricultural activities have been identified up gradient of the FAL. Records reviewed included historical aerial photographs and historical topographic maps. No non-point sources have been identified as a potential alternative source for molybdenum at the FAL.

3.3 HISTORICAL LAND USE REVIEW

Haley & Aldrich assessed past usage of the Site and adjoining properties through a review of the following records:

- Environmental Risk Information Services (ERIS) Aerial Photographs, dated 1950, 1954, 1977, 1981, 1991, 2002, 2003, 2004, 2005, 2006, 2008, 2010, 2012, 2014, 2015, and 2017 (Appendix A); and
- ERIS Topographic Maps, dated 1964, 1978, and 2012 (Appendix B).

Unless otherwise noted below, sources were reviewed dating back to 1940 or first developed use, whichever is earlier, and at 5-year intervals if the use of the property had changed within the time period.

3.3.1 Historical Aerial Photographs

Haley & Aldrich reviewed aerial photographs depicting the development of the Site and vicinity as summarized in Table I. The historical aerial photograph search includes photographs from the Army Mapping Service, USGS, National High-Altitude Photography, and the National Agriculture Information Program (ERIS, 2018) and are included in Appendix A.

Photographs show that the Site was undeveloped up until at least 1977. By 1981, the FAL embankment was constructed and the landfill had begun accepting fly ash up gradient of the current location of MW-FAA-6. Aerial photos from 1981 through 2017 show the progression of fill at the FAL. An historical aerial photograph review summary is included as Table I. No activities constituting potential sources of molybdenum have been identified based on aerial photograph review.

3.3.2 Historical Topographic Maps

Haley & Aldrich reviewed historical topographic maps depicting the development of the site and vicinity, as summarized in Table II. The topographic maps were provided for review by ERIS. Copies of the topographic maps are included in Appendix B. No historical development of other features constituting potential sources of molybdenum have been identified based on topographic map review.

3.4 NATURAL VARIABILITY OF MOLYBDENUM OCCURENCE

Haley & Aldrich conducted an evaluation of the natural variability of molybdenum occurrence in formation material and groundwater at the FAL based on site-specific data; the analyses and observations are described in the following sections.

3.4.1 Natural Bedrock Variability

As described above, published information indicates that on a regional scale black shale is known to contain elevated levels of molybdenum. Based on this fact and the observed occurrence of black shales at the FAL, samples of shale deposits encountered during the installation of monitoring wells at the FAL lateral expansion were collected for laboratory analysis of molybdenum concentrations. Seven shale samples were submitted under a chain of custody (COC) to Pace laboratory in Lenexa, Kansas for the analysis of total molybdenum in accordance with USEPA Test Method 6020 and leachable molybdenum using USEPA Method 1312 Synthetic Precipitation Leaching Procedure (SPLP) extraction fluids and deionized (DI) water.

The results of total molybdenum analysis ranged from less than the laboratory reporting limit of 3.9 milligrams per kilogram (mg/kg) to 13.6 mg/kg. Concentrations of leachable molybdenum produced through SPLP ranged from 0.0024 to 0.25 mg/L. Concentrations of leachable molybdenum produced through DI leach ranged from 0.003 to 0.225 mg/L. These data confirm that the shale deposits at the JEC site exhibit a range of molybdenum concentrations that are leachable within the same concentration range as observed at MW-FAA-6. A summary of the shale deposit sample analyses and the SPLP and DI leachate are provided in Table III attached to this report, and a copy of the laboratory report with the completed COC are provided in Appendix C.

3.4.2 Natural Groundwater Quality Variability

Field parameter values collected during the collection of representative assessment monitoring groundwater samples using low-flow, low stress techniques in June and September 2018 indicate that the current groundwater conditions at MW-FAA-6 are basic with pH ranging from 7.98 to 8.59 S.U. Field pH measurements at the other monitoring wells during the assessment monitoring program generally range from 1 to 2 pH S.U. lower than MW-FAA-6. All of the FAL monitoring wells have been constructed with screened intervals in the Grenola limestone, which include alternating layers of limestone and shale. The higher pH observed at MW-FAA-6 is consistent with a well screened in limestone. The difference in pH between the FAL monitoring wells illustrates a degree of geochemical variability within that formation. The lithologic log for MW-FAA-6 indicates thin alternating layers of shale and limestone. The elevated pH conditions observed at MW-FAA-6 would induce a higher dissolution of molybdenum from the shale deposits within the groundwater monitoring interval. Groundwater parameters collected at the FAL groundwater monitoring network during the June and September 2018 assessment monitoring sampling events are provided in Table IV.

Molybdenum has also been detected in an up gradient monitoring well (MW-FGD-6) completed in the Grenola limestone at a separate JEC CCR unit at a concentration similar to that observed at MW-FAA-6. The molybdenum concentration at MW-FGD-6 is 0.52 mg/L, which is higher than the molybdenum concentrations of 0.33 and 0.416 mg/L observed in MW-FAA-6 during both the June and September 2018 assessment monitoring events, respectively. Monitoring well FGD-6 is constructed in the Grenola limestone in an area that is unimpacted by CCR material and where no recorded historical development has taken place.

These data indicate that sufficient natural geochemical variability exists within the Grenola limestone to locally mobilize molybdenum where present in the formation. This variability has resulted in concentrations of molybdenum in areas unimpacted by CCR material that range higher than those concentrations observed at MW-FAA-6.

Well construction details for the FAL monitoring wells (MW-FAA-3, MW-FAA-4, MW-FAA-5, and MW-FAA-6) are provided in Appendix D.

4. Findings and Conclusions

Haley & Aldrich conducted a geochemical evaluation of groundwater quality information and site geology to identify potential alternative sources of the elevated molybdenum concentrations detected down gradient of the FAL in groundwater samples collected from MW-FAA-6. The geochemical evaluation included review of oxidation conditions in the uppermost aquifer, groundwater quality observed at the FAL and elsewhere, and geochemical composition of formation materials. These data were evaluated in conjunction with published information regarding the occurrence of molybdenum in black shales on a regional scale to identify naturally occurring sources of molybdenum that might affect groundwater at MW-FAA-6.

The evaluation included review of sampling procedures, laboratory procedures, and statistical analyses to determine if potential errors may have been made that would have resulted in the false identification of an SSL for molybdenum at this monitoring well location. The evaluation also included consideration of historical site activities based on aerial photograph and historical topographic map review, and consideration of potential point and non-point sources of molybdenum based on those activities.

4.1 FINDINGS

Haley & Aldrich found no apparent errors in sampling, laboratory analysis, data management, or statistical analysis that would result in the apparent SSL for molybdenum at MW-FAA-6. Haley & Aldrich also found no evidence of historical point or non-point sources of molybdenum, or historical activities that might have concentrated molybdenum in the vicinity of the FAL.

Haley & Aldrich evaluated field data and information to better understand the potential for natural variability of groundwater quality in the uppermost aquifer beneath the FAL. Key findings regarding the depositional characteristics of the bedrock formation and the associated natural variability of groundwater quality in the uppermost aquifer include:

- The uppermost water-bearing unit beneath the FAL is located within an interbedded sequence
 of shale and limestone bedrock.
- The monitoring well screen installed at down gradient well location MW-FAA-6 transects layers of shale and limestone deposits within the Grenola limestone formation.
- The pH measured during the assessment monitoring program indicates that the groundwater conditions at MW-FAA-6 could promote the dissolution of molybdenum from the bedrock formation.
- Samples of shale deposits collected during the installation of new monitoring wells located up gradient from the FAL exhibited elevated concentrations of total and leachable molybdenum.
- Leachate created from the shale samples collected up and down gradient from the FAL and analyzed using USEPA Test Method 1312 SPLP and laboratory pure DI exhibited similar concentrations of dissolved molybdenum as identified at MW-FAA-6.
- Another monitoring well (FGD-6) located up gradient of another CCR unit at the JEC in an area known to be unimpacted by CCR material has exhibited molybdenum concentrations higher than molybdenum concentrations observed in MW-FAA-6.

4.2 **CONCLUSIONS**

Based on these findings, the SSL for molybdenum identified at MW-FAA-6 is due to the presence of interbedded shale and limestone deposits within the Grenola limestone, and geochemical conditions (pH) promoting the localized mobilization of molybdenum from that formation. Consequently, the alternate source of molybdenum at the FAL monitoring well MW-FAA-6 is natural groundwater quality variability associated with the presence of interbedded shale and limestone deposits within the Grenola limestone, and localized mobilization of molybdenum from that formation into groundwater.

5. Certification

This statement certifies that the demonstration that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality is complete in accordance with 40 CFR 257.95(g)(3)(ii). The certification submitted is, to the best of my knowledge, accurate and complete.

Signed:

Print Name:

Steven F. Putrich, P.E.

Kansas PE License No.:

24363

Title:

Principal Consultant

Company:

Haley & Aldrich, Inc.

Print Name:

Mark D. Nicholls, P.G.

Kansas PG License No.:

881

Title:

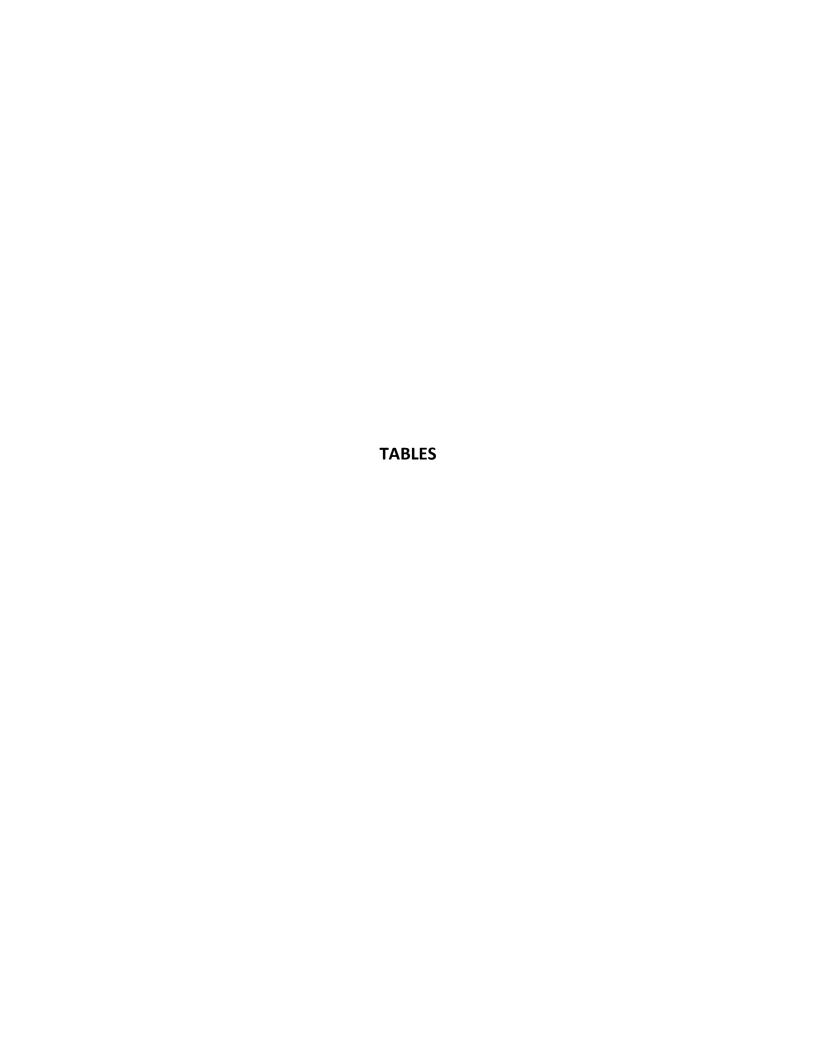
Lead Hydrogeologist

Company: Haley & Aldrich, Inc. Steve

Digitally signed by Steve Putrich Date:

Putrich 2019.05.22 08:26:41 -07'00'

Mark


Digitally signed by Mark Nicholls Nicholls Date: 2019.05.22 08:27:23 -07'00'

6. References

- 1. Coveney, Raymond and Glascock M., 1989. A review of the origins of metal-rich Pennsylvania black shales, central U.S.A., with an inferred role for basinal brines, Journal of Applied Geochemistry, Vol. 4, pp 347-367.
- 2. Barrow, N.J., 1977. Factors Affecting Molybdenum Status in Soils, Volume 2. The Geochemistry, Cycling and Industrial Uses of Molybdenum, proceedings from the International Symposium on Molybdenum in the Environment, Denver, CO.
- 3. Burns & McDonnell, 2009. *Final Phase II Hydrogeologic Investigation and Bottom Ash Pond Characterization*. January 2008 (Revised August 2009).
- 4. Environmental Risk Information Services, 2018. Database Report, March.
- 5. Haley & Aldrich, 2017. *Groundwater Sampling and Analysis Plan, Jeffrey Energy Center.*October.
- 6. Haley & Aldrich, 2019. 2018 Annual Groundwater Monitoring and Corrective Action Report, Fly Ash Landfill, Jeffrey Energy Center. January.
- 7. Smedley, Pauline and Kinniburgh, D., 2012. *Molybdenum in natural waters: A review of occurrence, distributions and controls,* Journal of Applied Geochemistry, January 2017, pp 389-425.
- 8. United States Geological Survey (USGS), 1964. Topographic Map, Laclede, 7.5-minute series.
- 9. USGS, 1978. Topographic Map, Laclede, 7.5-minute series.
- 10. USGS, 2012. Topographic Map, Laclede, 7.5-minute series.

TABLE I

HISTORICAL AERIAL PHOTOGRAPH REVIEW SUMMARY WESTAR ENERGY, INC.
FLY ASH LANDFILL, JEFFREY ENERGY CENTER

ST. MARYS, KANSAS

Dates	Description of Site and Adjacent Properties	Sources
1950 – 1954	Undeveloped; some road use in the vicinity of the Site. Agricultural land use southwest of the Fly Ash Landfill.	Aerial photos – AMS
1977	Development of the plant site and road development south of the Fly Ash Area 1 Landfill. Agricultural land use southwest of the Fly Ash Landfill.	Aerial photos – USGS
1981	First appearance of Tower Hill Lake and Fly Ash Landfill. Agricultural land use southwest of the Fly Ash Landfill.	Aerial photos – NHAP
1991 – 2017	Growth of Fly Ash Landfill. Agricultural land use southwest of the Fly Ash Landfill.	Aerial photos – USGS; NAIP

Notes:

AMS = American Meteorological Society

NAIP = National Agriculture Imagery Program

NHAP = National High Altitude Photography

USGS = U.S. Geological Survey

TABLE II HISTORICAL TOPOGRAPHIC MAP REVIEW SUMMARY

WESTAR ENERGY, INC. FLY ASH LANDFILL, JEFFREY ENERGY CENTER ST. MARYS, KANSAS

Dates	Description of Site and Adjacent Properties	Map Name	
1964	The map shows undeveloped rolling hills incised by natural drainages. One road and one trail are shown within the Site vicinity.	7.5-Minute Series, Laclede, Kansas Quadrangle	
1978	Several roads leading to areas depicted as "Dam Under Construction" are shown on the map. The plant site is depicted as Power Plant and Substation. However, the Fly Ash Landfill does not appear on this map.	7.5-Minute Series, Laclede, Kansas Quadrangle	
2012	Tower Hill Road and other un-named roads lead to the two reservoirs. The plant site and Fly Ash Landfill are not depicted on the map.	7.5-Minute Series, Laclede, Kansas Quadrangle	

TABLE III

SUMMARY OF SHALE SAMPLE ANALYSIS FOR TOTAL METALS AND SPLP RESULTS

WESTAR ENERGY, INC.

FLY ASH LANDFILL, JEFFREY ENERGY CENTER

ST. MARYS, KANSAS

Field Sample Name	MW-FAA-7 117.5-120	MW-FAA-7 102-104	MW-FAA-8 31.5-34	MW-FAA-9 24-25	MW-FAA-10 28-29.5	MW-FAA-11 78.5-79	MW-FAA-11 61-61.5
Location	n MW-B-1		MW-FAA-7	MW-FAA-8	MW-FAA-9	MW-FAA-10	
Total Molybdenum ¹ (mg/kg)	<3.9	9.4	8.3	13.6	11.0	<3.9	8.8
SPLP Molybdenum (mg/L)	0.0024	0.24	0.061	0.067	0.038	0.016	0.25
DI Leach Molybdenum (mg/L)	0.003	0.15	0.0547	0.0583	0.0309	0.0119	0.225

Notes:

All samples analyzed by Pace Analytical Services, Lenexa KS

Total Metals determined using U.S. Environmental Protection Agency (USEPA) Method 200.8

DI = Deionized Water

mg/kg = milligrams per kilogram dry weight;

mg/L = milligrams per liter

TABLE IV

SUMMARY OF FIELD PARAMETER MONITORING FROM THE INITIAL ASSESSMENT MONITORING SAMPLING EVENT

WESTAR ENERGY, INC.

FLY ASH LANDFILL, JEFFREY ENERGY CENTER

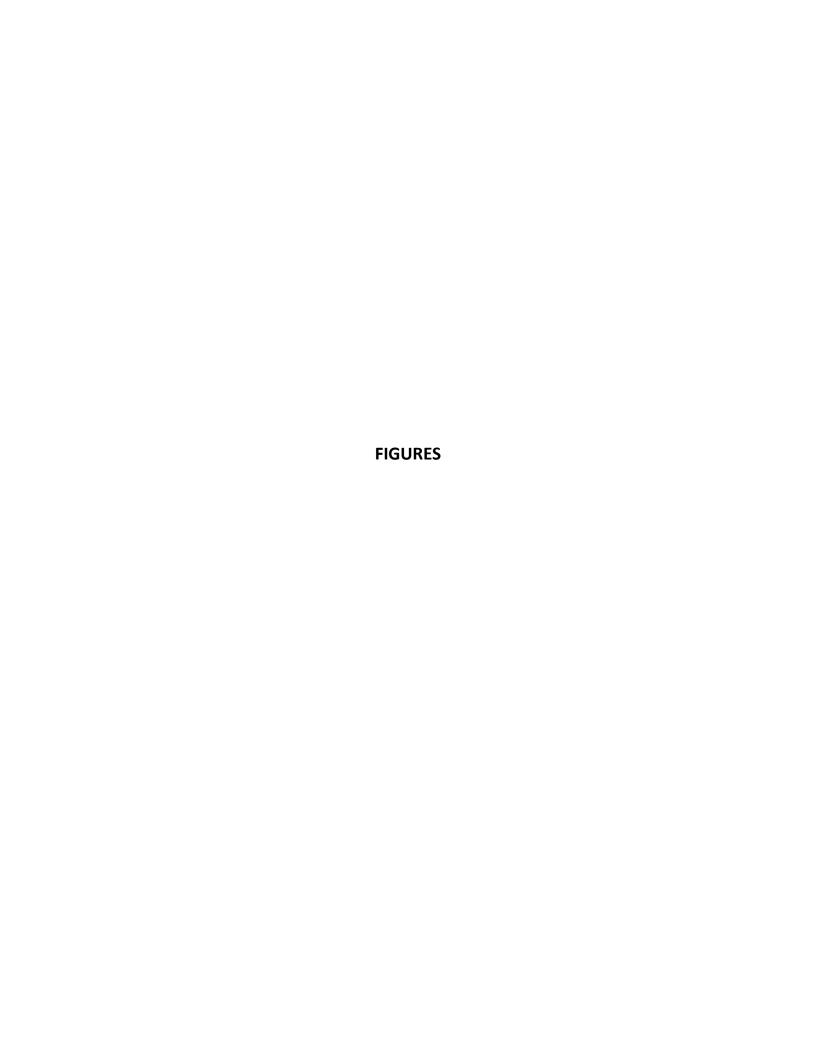
ST. MARYS, KANSAS

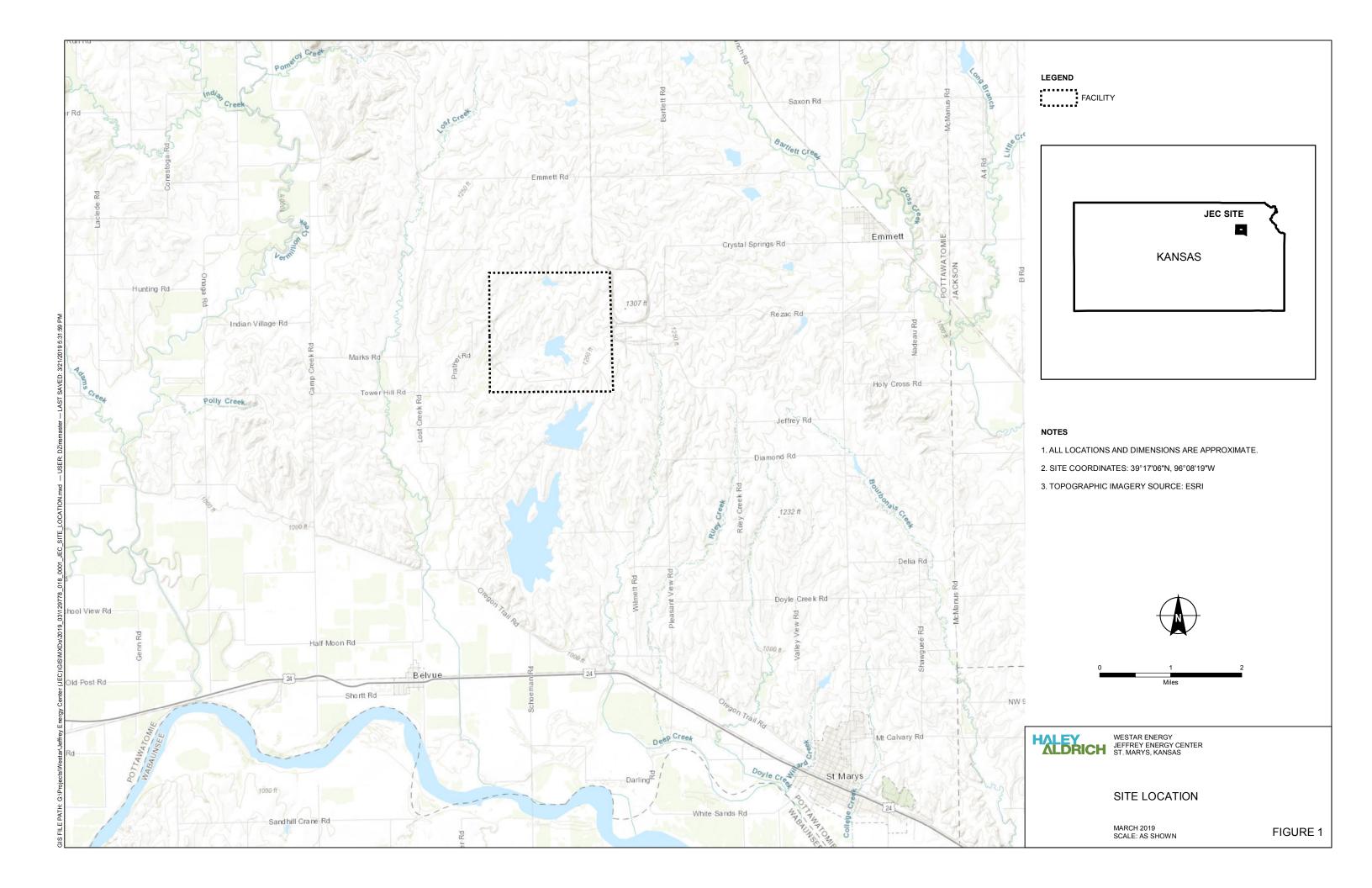
					Groundwater Field Parameters			ters	rs	
Location	Sample Name	Sample Date	Event	Depth to Water (btoc)	Elevation (ft amsl)	Temperature (Deg C)	Conductivity (μS/cm)	Turbidity (NTU)	pH (su)	
MW-FAA-5	FAA-5-0650518	6/5/2018	June 2018	87.15	1163.65	17.8	3340	0.21	6.91	
MW-FAA-3	FAA-3-060518	6/6/2018	June 2018	14.38	1151.28	16.9	1630	2.24	7.17	
MW-FAA-4	FAA-4-060518	6/5/2018	June 2018	58.71	1155.10	16.9	1360	0.05	7.23	
MW-FAA-6	FAA-6-060518	6/6/2018	June 2018	14.90	1147.86	17.7	2780	1.51	8.57	
	FAA-6-091318	9/13/2018	Sept 2018	14.94	1147.82	18.5	3170	0.44	8.27	

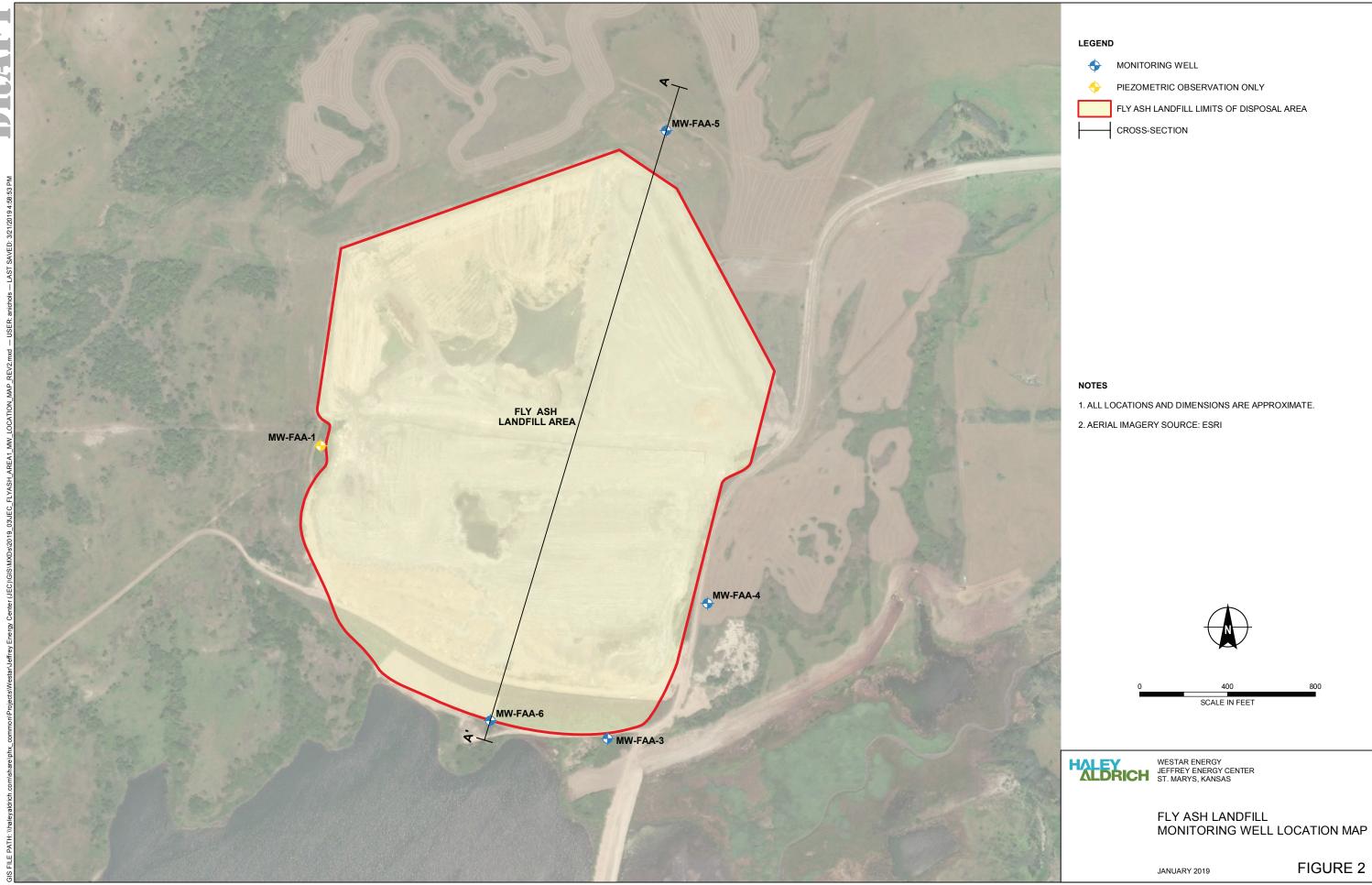
Notes:

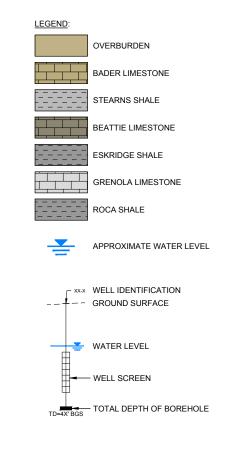
USEPA, 2016. Final Rule: Disposal of Coal Combustion Residuals from Electric Utilities. July 26. 40 CFR Part 257. https://www.epa.gov/coalash/coal-ash-rule μ S/cm = microSiemen per centimeter

btoc - below top of casing


Deg C = degrees Celsius


ft amsl = feet above mean sea level


NTU = Nephelometric Turbidity Units


su = standard units

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

FLY ASH LANDFILL
GENERALIZED CROSS-SECTION A-A'

SCALE: AS SHOWN MARCH 2019

FIGURE 3

APPENDIX A

Aerial Photographs

HISTORICAL AERIAL REPORT

for the site:

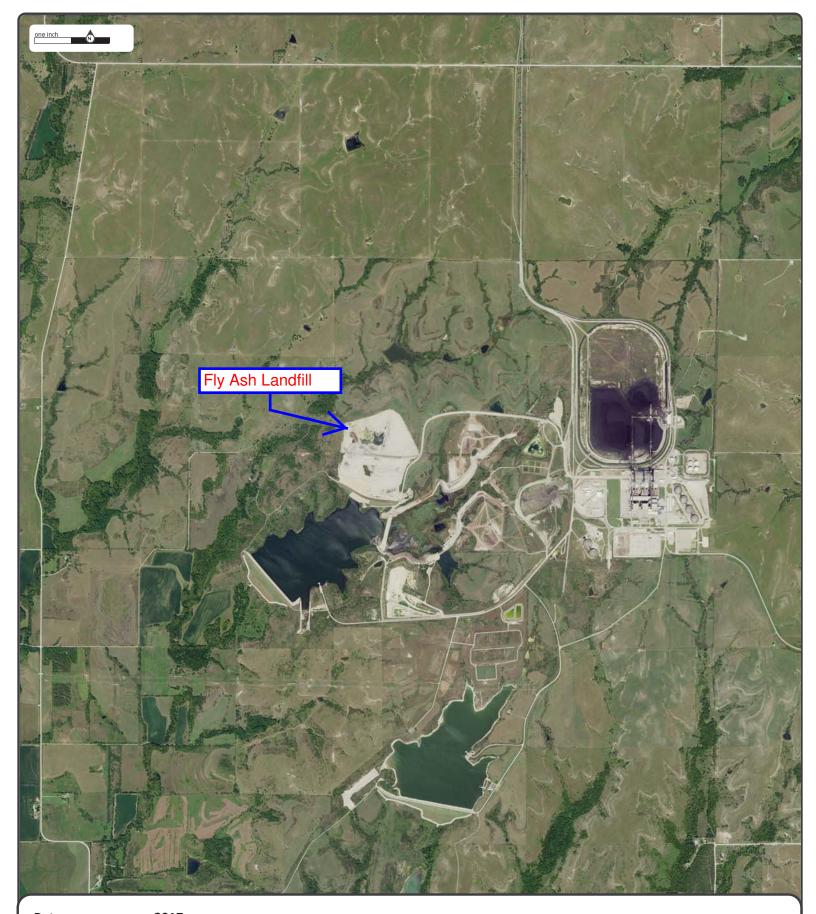
JEC

25905 Jeffrey Road St. Marys, KS 66536 PO #:

ι Ο π.

Report ID: 20180302344 Completed: 3/13/2018 **ERIS Information Inc.**

Environmental Risk Information Services (ERIS)


A division of Glacier Media Inc.

T: 1.866.517.5204 E: info@erisinfo.com

www.erisinfo.com

Search Results Summary

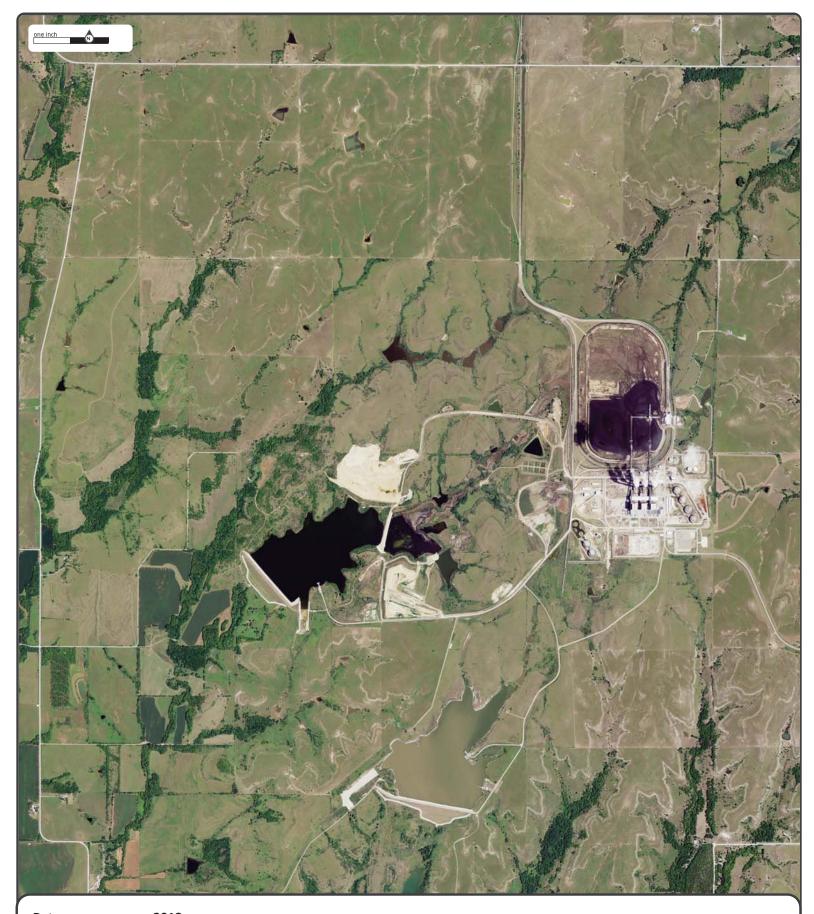
Date	Source	Scale Comment	
2017	NAIP - National Agriculture Information Program	1"=2500'	
2015	NAIP - National Agriculture Information Program	1"=2500'	
2014	NAIP - National Agriculture Information Program	1"=2500'	
2012	NAIP - National Agriculture Information Program	1"=2500'	
2010	NAIP - National Agriculture Information Program	1"=2500'	
2008	NAIP - National Agriculture Information Program	1"=2500'	
2006	NAIP - National Agriculture Information Program	1"=2500'	
2005	NAIP - National Agriculture Information Program	1"=2500'	
2004	NAIP - National Agriculture Information Program	1"=2500'	
2003	NAIP - National Agriculture Information Program	1"=2500'	
2002	USGS - US Geological Survey	1"=2500'	
1991	USGS - US Geological Survey	1"=2500'	
1981	NHAP - National High Altitude Photography	1"=2500'	
1977	USGS - US Geological Survey	1"=2500'	
1954	AMS - Army Mapping Service	1"=2500'	
1950	AMS - Army Mapping Service	1"=2500'	

Date: 2017 Source: NAIP Scale: 1" to 2500'

Comments:

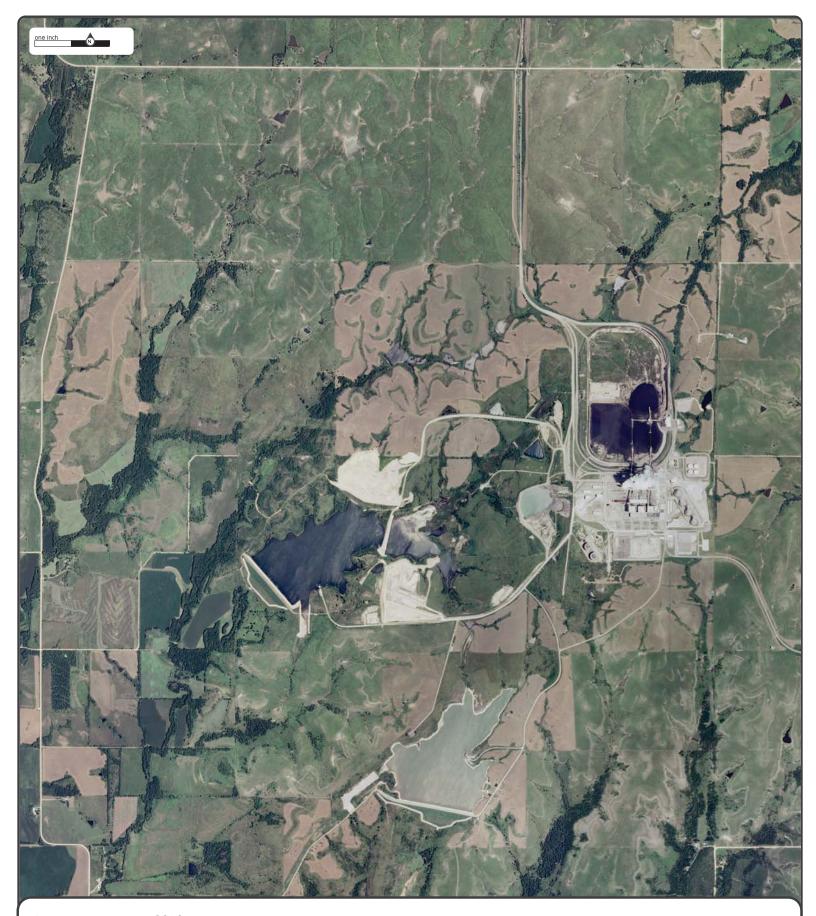
Date: 2015 Source: NAIP Scale: 1" to 2500'

Comments:



Date: 2014 Source: NAIP Scale: 1" to 2500'

Comments:



Date: 2012
Source: NAIP
Scale: 1" to 2500'
Comments:

Date: 2010 Source: NAIP Scale: 1" to 2500'

Comments:

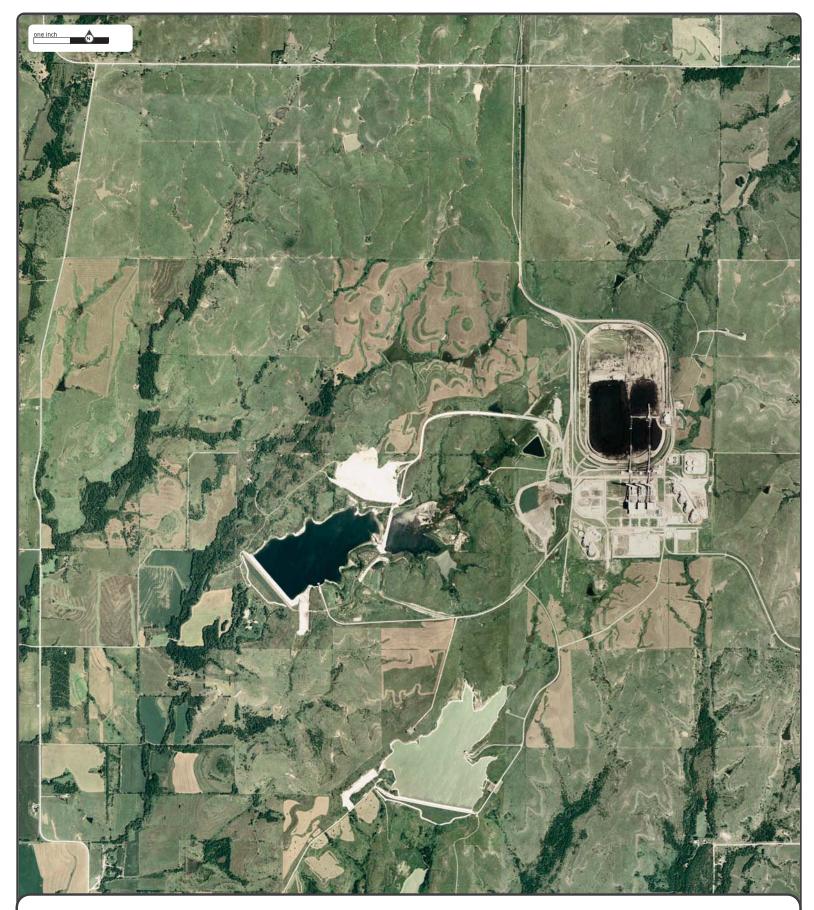


Date: 2008 Source: NAIP Scale: 1" to 2500'

Comments:

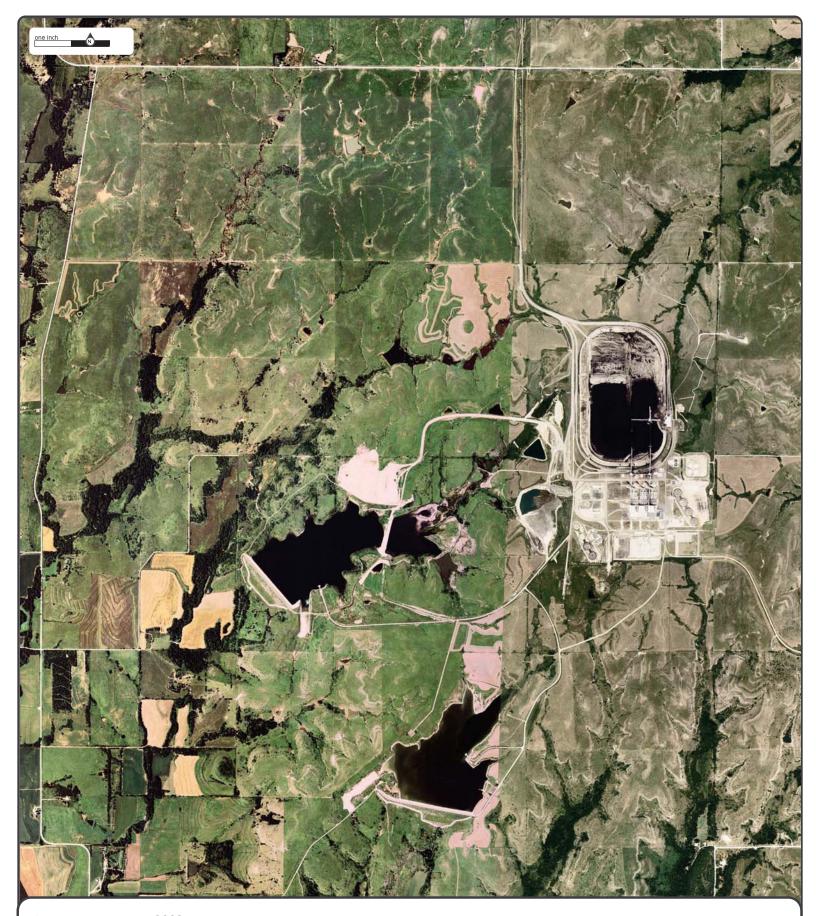
Date: 2006 Source: NAIP Scale: 1" to 2500'

Comments:



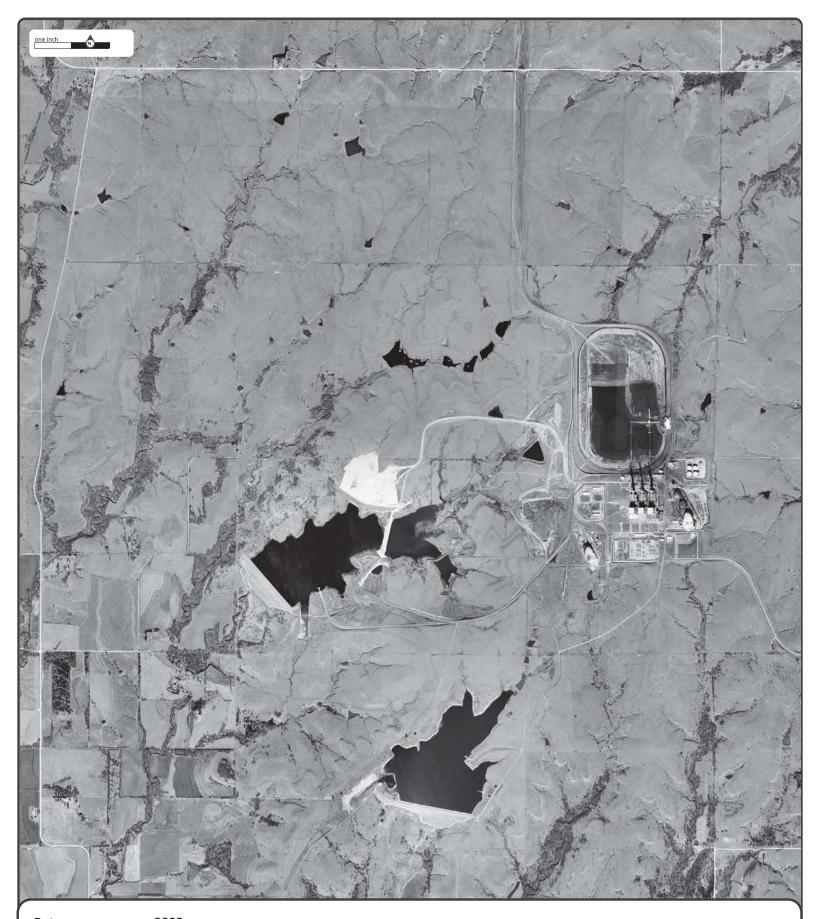
Date: 2005 Source: NAIP Scale: 1" to 2500'

Comments:



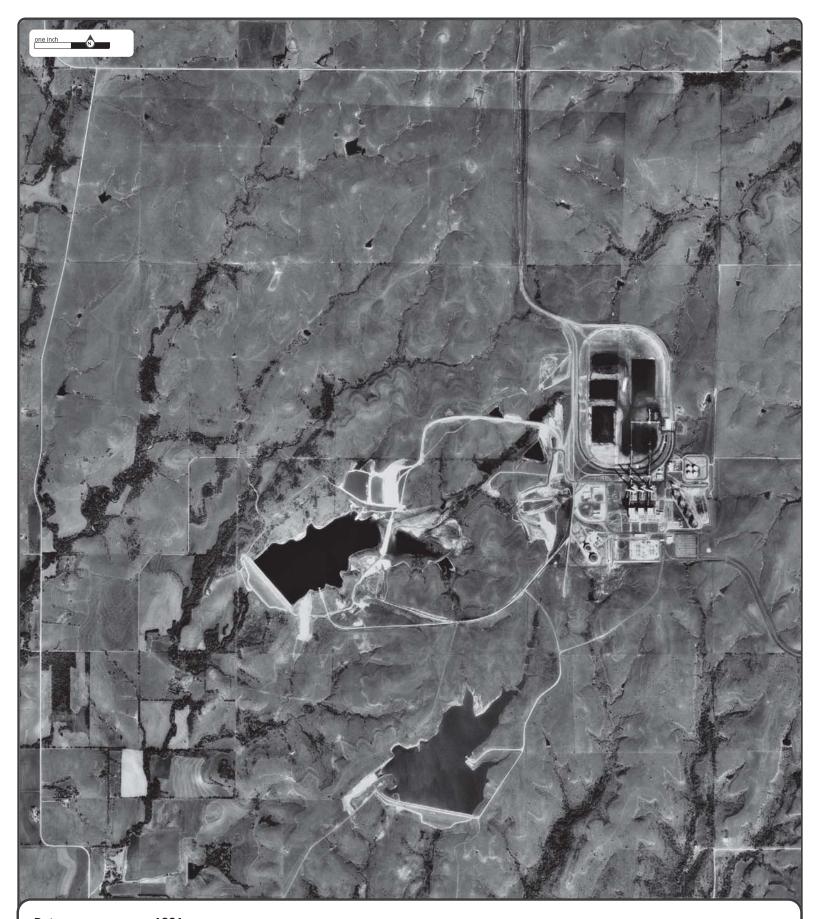
Date: 2004 Source: NAIP Scale: 1" to 2500'

Comments:



Date: 2003 Source: NAIP Scale: 1" to 2500'

Comments:



Date: 2002 Source: USGS Scale: 1" to 2500'

Comments:

Date: 1991 Source: USGS Scale: 1" to 2500'

Comments:

Date: 1981 Source: NHAP Scale: 1" to 2500'

Comments:

Date: 1977
Source: USGS
Scale: 1" to 2500'

Comments:

Date: 1954 Source: AMS Scale: 1" to 2500'

Comments:

Date: 1950 Source: AMS Scale: 1" to 2500'

Comments:

APPENDIX B

Topographic Maps

TOPOGRAPHIC MAP RESEARCH RESULTS

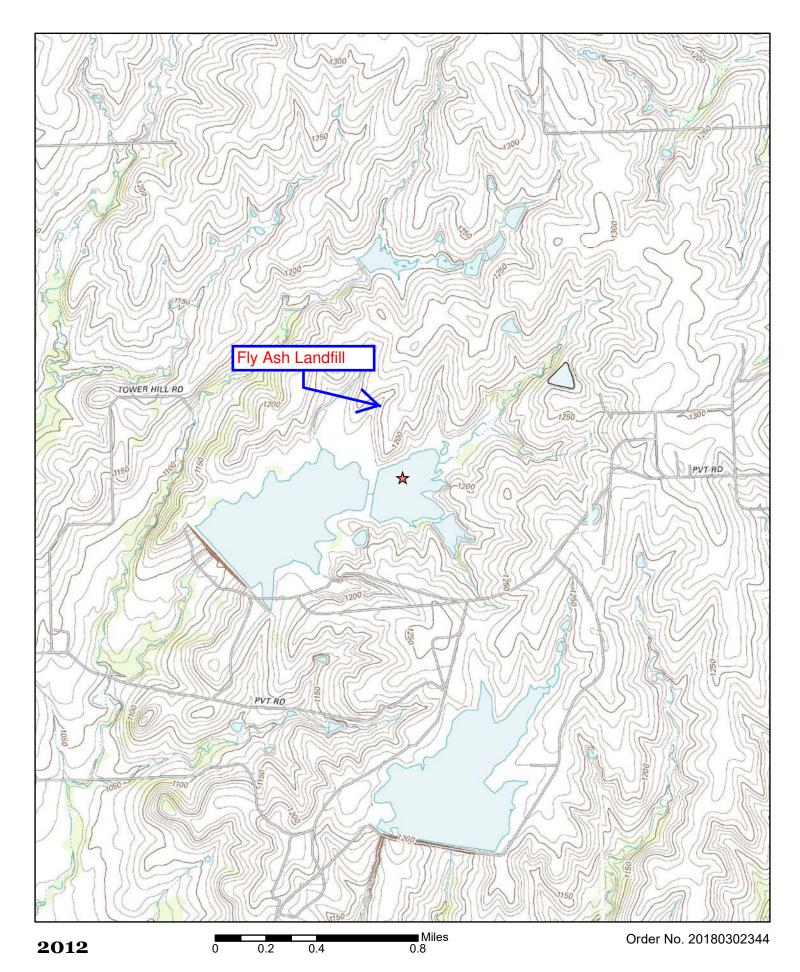
Date: 2018-03-02

Project Property: 25905 Jeffrey Road, St. Marys, KS

ERIS Order Number: 20180302344

We have searched USGS collections of current topographic maps and historical topographic maps for the project property. Below is a list of maps found for the project property and adjacent area. Maps are from 7.5 and 15 minute topographic map series, if available.

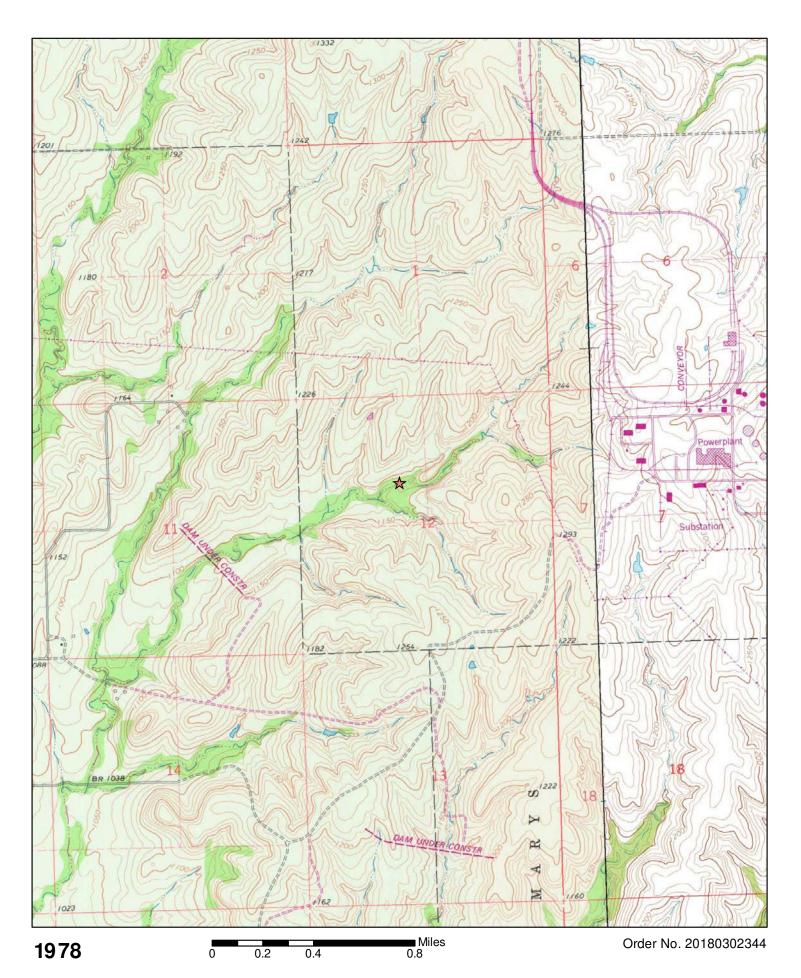
Year	Map Series
2012	7.5
1978	7.5
1964	7.5


Topographic Maps included in this report are produced by the USGS and are to be used for research purposes including a phase I report. Maps are not to be resold as commercial property.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc. (in the US) and ERIS Information Limited Partnership (in Canada), both doing business as 'ERIS', using Topographic Maps produced by the USGS. This maps contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein. Although ERIS has endeavored to present you with information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

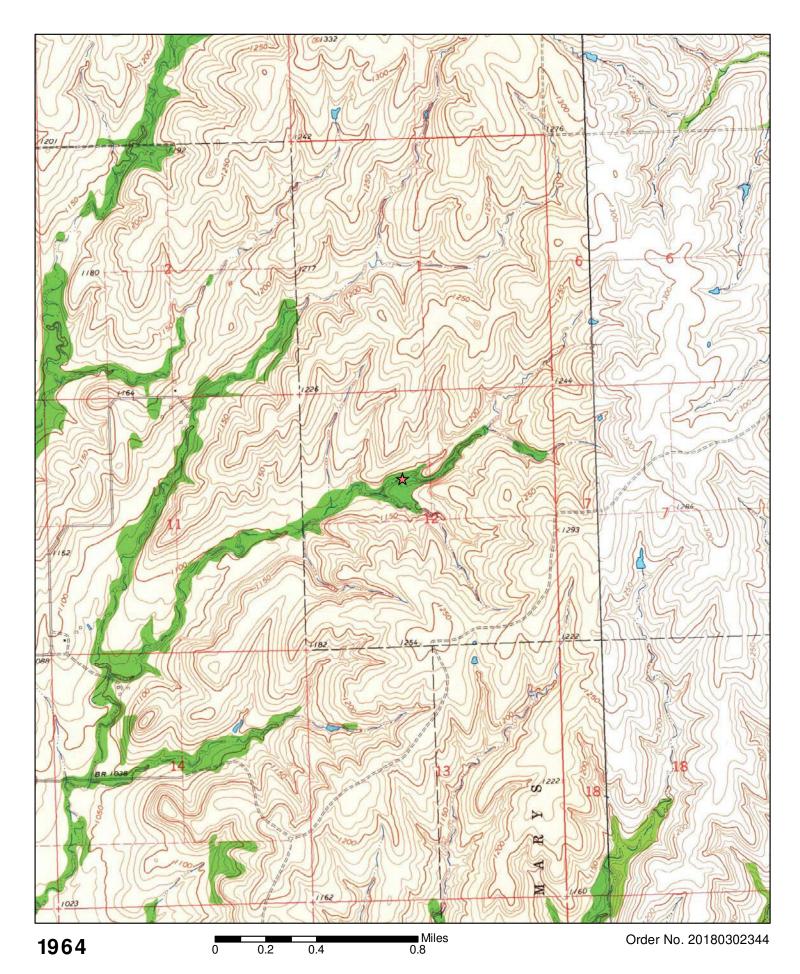
Address: 38 Lesmill Road Unit 2, Toronto, ON M3B 2T5

Phone: 1-866-517-5204 Fax: 416-447-7658


info@erisinfo.com www.erisinfo.com

Quadrangle(s): Laclede,KS

Source: USGS 7.5 Minute Topographic Map



Quadrangle(s): Laclede,KS

Source: USGS 7.5 Minute Topographic Map

Quadrangle(s): Laclede,KS

Source: USGS 7.5 Minute Topographic Map

APPENDIX C

Laboratory Reports

December 28, 2018

Brandon Griffin Westar Energy 818 S. Kansas Ave Topeka, KS 66612

RE: Project: JEC-FA2 LANDFILL Pace Project No.: 60284822

Dear Brandon Griffin:

Enclosed are the analytical results for sample(s) received by the laboratory between October 24, 2018 and October 25, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revised Report rev.1 Per the client's request, DI Leachate metals were added to the samples.

If you have any guestions concerning this report, please feel free to contact me.

Sincerely,

Charles M. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: HEATH HORYNA, WESTAR ENERGY
Andrew Hare, Westar Energy
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, WESTAR ENERGY
Melissa Michels, Westar Energy
JD Schlegel, KCP&L & Westar

CERTIFICATIONS

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0

Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055
Nevada Certification #: KS000212018-1
Oklahoma Certification #: 9205/9935
Texas Certification #: T104704407-18-11
Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60284822001	MW-FAA-7 (B-1) 117.5'-120'	Solid	10/23/18 12:00	10/25/18 15:00
60284822002	MW-FAA-8 (B-2) 31.5'-34'	Solid	10/23/18 12:00	10/25/18 15:00
60284822003	MW-FAA-9 (B-3) 24'-25'	Solid	10/23/18 12:00	10/25/18 15:00
60284822004	MW-FAA-10 (B-4) 28'-29.5'	Solid	10/23/18 12:00	10/25/18 15:00
60284822005	MW-FAA-11 (B-6) 78.5'-79'	Solid	10/23/18 12:00	10/25/18 15:00
60284822007	MW-FAA-7 102'-104'	Solid	10/23/18 12:00	10/25/18 15:00
60284822009	MW-FAA-11 61'-61.5	Solid	10/23/18 12:00	10/25/18 15:00
60284822010	MW-FAA-7 (B-1) 117.5'-120'	Water	10/23/18 12:00	10/24/18 15:00
60284822011	MW-FAA-8 (B-2) 31.5'-34'	Water	10/23/18 12:00	10/24/18 15:00
60284822012	MW-FAA-9 (B-3) 24'-25'	Water	10/23/18 12:00	10/24/18 15:00
60284822013	MW-FAA-10 (B-4) 28'-29.5'	Water	10/23/18 12:00	10/24/18 15:00
60284822014	MW-FAA-11 (B-6) 78.5'-79'	Water	10/23/18 12:00	10/24/18 15:00
60284822015	MW-FAA-7 102'-104'	Water	10/23/18 12:00	10/24/18 15:00
60284822016	MW-FAA-11 61'-61.5'	Water	10/23/18 12:00	10/24/18 15:00

SAMPLE ANALYTE COUNT

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60284822001	MW-FAA-7 (B-1) 117.5'-120'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822002	MW-FAA-8 (B-2) 31.5'-34'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822003	MW-FAA-9 (B-3) 24'-25'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822004	MW-FAA-10 (B-4) 28'-29.5'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822005	MW-FAA-11 (B-6) 78.5'-79'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822007	MW-FAA-7 102'-104'	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822009	MW-FAA-11 61'-61.5	EPA 6010	EMR	2	PASI-K
		EPA 6010	EMR	2	PASI-K
		EPA 6020	JGP	1	PASI-K
		EPA 6020	JGP	1	PASI-K
		ASTM D2974	DWC	1	PASI-K
60284822010	MW-FAA-7 (B-1) 117.5'-120'	EPA 6020	JGP	1	PASI-K
60284822011	MW-FAA-8 (B-2) 31.5'-34'	EPA 6020	JGP	1	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(913)599-5665

SAMPLE ANALYTE COUNT

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60284822012	MW-FAA-9 (B-3) 24'-25'	EPA 6020	JGP	1	PASI-K
60284822013	MW-FAA-10 (B-4) 28'-29.5'	EPA 6020	JGP	1	PASI-K
60284822014	MW-FAA-11 (B-6) 78.5'-79'	EPA 6020	JGP	1	PASI-K
60284822015	MW-FAA-7 102'-104'	EPA 6020	JGP	1	PASI-K
60284822016	MW-FAA-11 61'-61.5'	EPA 6020	JGP	1	PASI-K

(913)599-5665

PROJECT NARRATIVE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Method: EPA 6010

Description: 6010 MET ICP Red. Interference

Client: WESTAR ENERGY
Date: December 28, 2018

General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 560051

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60289313002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2298530)
 - Calcium

R1: RPD value was outside control limits.

- MSD (Lab ID: 2298531)
 - Boron

Additional Comments:

PROJECT NARRATIVE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Method: EPA 6010

Description: 6010 MET ICP, SPLP
Client: WESTAR ENERGY
Date: December 28, 2018

General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- MW-FAA-10 (B-4) 28'-29.5' (Lab ID: 60284822004)
- MW-FAA-11 (B-6) 78.5'-79' (Lab ID: 60284822005)
- MW-FAA-11 61'-61.5 (Lab ID: 60284822009)
- MW-FAA-7 (B-1) 117.5'-120' (Lab ID: 60284822001)
- MW-FAA-7 102'-104' (Lab ID: 60284822007)
- MW-FAA-8 (B-2) 31.5'-34' (Lab ID: 60284822002)
- MW-FAA-9 (B-3) 24'-25' (Lab ID: 60284822003)

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 560655

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60289490006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2301393)
 - Calcium
- MSD (Lab ID: 2301394)
 - Calcium

Additional Comments:

(913)599-5665

PROJECT NARRATIVE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Method: EPA 6020

Description: 6020 MET ICPMS
Client: WESTAR ENERGY
Date: December 28, 2018

General Information:

14 samples were analyzed for EPA 6020. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: 561774

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 561774 [MPRP/486 (Lab ID: 2306167)
 - Molybdenum

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 560713

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60284822001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2301591)
 - Molybdenum
- MSD (Lab ID: 2301592)
 - Molybdenum

PROJECT NARRATIVE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Method: EPA 6020

Description: 6020 MET ICPMS
Client: WESTAR ENERGY
Date: December 28, 2018

QC Batch: 561774

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60284822010,60284822016

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 2306171)

• Molybdenum

• MSD (Lab ID: 2306172)

• Molybdenum

Additional Comments:

(913)599-5665

PROJECT NARRATIVE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Method: EPA 6020

Description: 6020 MET ICPM, SPLP
Client: WESTAR ENERGY
Date: December 28, 2018

General Information:

7 samples were analyzed for EPA 6020. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- MW-FAA-10 (B-4) 28'-29.5' (Lab ID: 60284822004)
- MW-FAA-11 (B-6) 78.5'-79' (Lab ID: 60284822005)
- MW-FAA-11 61'-61.5 (Lab ID: 60284822009)
- MW-FAA-7 (B-1) 117.5'-120' (Lab ID: 60284822001)
- MW-FAA-7 102'-104' (Lab ID: 60284822007)
- MW-FAA-8 (B-2) 31.5'-34' (Lab ID: 60284822002)
- MW-FAA-9 (B-3) 24'-25' (Lab ID: 60284822003)

Sample Preparation:

The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-7 (B-1) 117.5'-120'	Lab ID: 602	84822001	Collected: 10/23/	18 12:00	Received: 10)/25/18 15:00 I	Matrix: Solid	
Results reported on a "dry weight" ba	sis and are ad	justed for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3050			
Boron	49.7	mg/kg	10.2	1	12/14/18 08:16	12/18/18 13:18	7440-42-8	
Calcium	7290	mg/kg	10.2	1	12/14/18 08:16	12/18/18 13:18	7440-70-2	
6010 MET ICP, SPLP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3010			
	Leachate Met	nod/Date: E	PA 1312; 12/16/18 00	0:00				
Boron	0.22	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:27	7440-42-8	
Calcium	112	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:27	7440-70-2	
6020 MET ICPMS	Analytical Met	hod: EPA 60	20 Preparation Met	hod: EP	A 3010			
Molybdenum	<3.9	mg/kg	3.9	1	12/18/18 15:29	12/19/18 15:38	7439-98-7	M1
6020 MET ICPM, SPLP	•		020 Preparation Met PA 1312; 12/16/18 00		A 3020			
Molybdenum	0.0024	mg/L	0.0010	1	12/18/18 10:47	12/18/18 17:45	7439-98-7	
Percent Moisture	Analytical Met	hod: ASTM	D2974					
Percent Moisture	13.7	%	0.50	1		12/14/18 12:05	j	H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-8 (B-2) 31.5'-34'	Lab ID: 602	84822002	Collected: 10/23/	18 12:00	Received: 10	/25/18 15:00 N	//atrix: Solid	
Results reported on a "dry weight" l	basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3050			
Boron	38.8	mg/kg	8.6	1	12/14/18 08:16	12/18/18 13:20	7440-42-8	
Calcium	83200	mg/kg	8.6	1	12/14/18 08:16	12/18/18 13:20	7440-70-2	
6010 MET ICP, SPLP	•		10 Preparation Met PA 1312; 12/16/18 00		A 3010			
Boron	<0.10	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:30	7440-42-8	
Calcium	21.0	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:30	7440-70-2	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Met	hod: EP	A 3010			
Molybdenum	8.3	mg/kg	4.8	1	12/18/18 15:29	12/19/18 15:41	7439-98-7	
6020 MET ICPM, SPLP	•		20 Preparation Met PA 1312; 12/16/18 00		A 3020			
Molybdenum	0.061	mg/L	0.0010	1	12/18/18 10:47	12/18/18 17:46	7439-98-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	6.7	%	0.50	1		12/14/18 12:05		H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-9 (B-3) 24'-25'	Lab ID: 602	84822003	Collected: 10/23/1	18 12:00	Received: 10)/25/18 15:00 N	//atrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	ample s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3050			
Boron	30.4	mg/kg	9.2	1	12/14/18 08:16	12/18/18 13:22	7440-42-8	
Calcium	50600	mg/kg	9.2	1	12/14/18 08:16	12/18/18 13:22	7440-70-2	
6010 MET ICP, SPLP	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Leachate Meth	od/Date: EF	PA 1312; 12/16/18 00	0:00				
Boron	<0.10	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:32	7440-42-8	
Calcium	36.2	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:32	7440-70-2	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Met	hod: EP	A 3010			
Molybdenum	13.6	mg/kg	4.0	1	12/18/18 15:29	12/19/18 15:42	7439-98-7	
6020 MET ICPM, SPLP	Analytical Meth	nod: EPA 60	20 Preparation Met	hod: EP	A 3020			
	Leachate Meth	od/Date: EF	PA 1312; 12/16/18 00	0:00				
Molybdenum	0.067	mg/L	0.0010	1	12/18/18 10:47	12/18/18 17:47	7439-98-7	
Percent Moisture	Analytical Meth	nod: ASTM [D2974					
Percent Moisture	10.9	%	0.50	1		12/14/18 12:05		H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-10 (B-4) 28'-29.5'	Lab ID: 602	84822004	Collected: 10/2	3/18 12:0	00 Received: 10	0/25/18 15:00	Matrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for p	ercent moisture	sample	size and any dilu	tions.		
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Meth	nod: EPA 60	110 Preparation N	lethod: E	PA 3050			
Boron	33.4	mg/kg	8	.4 1	12/14/18 08:16	12/18/18 13:24	7440-42-8	
Calcium	47800	mg/kg	8	.4 1	12/14/18 08:16	12/18/18 13:24	7440-70-2	
6010 MET ICP, SPLP	Analytical Meth	nod: EPA 60	110 Preparation N	lethod: E	PA 3010			
	Leachate Meth	od/Date: El	PA 1312; 12/16/18	00:00				
Boron	<0.10	mg/L	0.	0 1	12/17/18 17:30	12/18/18 15:34	7440-42-8	
Calcium	28.9	mg/L	0.	0 1	12/17/18 17:30	12/18/18 15:34	7440-70-2	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation N	lethod: E	PA 3010			
Molybdenum	11.0	mg/kg	5	.5 1	12/18/18 15:29	12/19/18 15:43	7439-98-7	
6020 MET ICPM, SPLP	Analytical Meth	nod: EPA 60	20 Preparation N	lethod: E	PA 3020			
	Leachate Meth	od/Date: El	PA 1312; 12/16/18	00:00				
Molybdenum	0.038	mg/L	0.00	0 1	12/18/18 10:47	12/18/18 17:48	7439-98-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	11.0	%	0.8	50 1		12/14/18 12:05	5	H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-11 (B-6) 78.5'-79'	Lab ID: 602	284822005	Collected: 10/23/1	18 12:00	Received: 10	/25/18 15:00 N	//atrix: Solid	
Results reported on a "dry weight" b	asis and are ac	ljusted for p	ercent moisture, sa	ample si	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Me	thod: EPA 60	10 Preparation Met	hod: EP/	A 3050			
Boron	<82.6	mg/kg	82.6	10	,	12/18/18 14:07		
Calcium	119000	mg/kg	82.6	10	12/14/18 08:16	12/18/18 14:07	7440-70-2	
6010 MET ICP, SPLP	Analytical Me	thod: EPA 60	10 Preparation Met	hod: EP/	A 3010			
	Leachate Met	thod/Date: EF	PA 1312; 12/16/18 00	0:00				
Boron	<0.10	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:41	7440-42-8	
Calcium	16.0	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:41	7440-70-2	
6020 MET ICPMS	Analytical Me	thod: EPA 60	20 Preparation Met	hod: EP/	A 3010			
Molybdenum	<3.9	mg/kg	3.9	1	12/18/18 15:29	12/19/18 15:44	7439-98-7	
6020 MET ICPM, SPLP	Analytical Me	thod: EPA 60	20 Preparation Met	hod: EP/	A 3020			
	Leachate Met	thod/Date: EF	PA 1312; 12/16/18 00	0:00				
Molybdenum	0.016	mg/L	0.0010	1	12/18/18 10:47	12/18/18 17:49	7439-98-7	
Percent Moisture	Analytical Me	thod: ASTM [02974					
Percent Moisture	11.0	%	0.50	1		12/14/18 12:05		H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-7 102'-104'	Lab ID: 602	84822007	Collected: 10/23	/18 12:00	Received: 10)/25/18 15:00	Matrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture,	sample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Meth	nod: EPA 60	110 Preparation Me	ethod: EP	A 3050			
Boron	45.4	mg/kg	10.6	1	12/14/18 08:16	12/18/18 13:28	3 7440-42-8	
Calcium	101000	mg/kg	10.6	1	12/14/18 08:16	12/18/18 13:28	3 7440-70-2	
6010 MET ICP, SPLP	Analytical Meth	nod: EPA 60	10 Preparation Me	thod: EP	A 3010			
	Leachate Meth	od/Date: El	PA 1312; 12/16/18	00:00				
Boron	0.15	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:43	3 7440-42-8	
Calcium	35.2	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:43	3 7440-70-2	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Me	ethod: EP	A 3010			
Molybdenum	9.4	mg/kg	4.1	1	12/18/18 15:29	12/19/18 15:48	7439-98-7	
6020 MET ICPM, SPLP	Analytical Meth	nod: EPA 60	20 Preparation Me	thod: EP	A 3020			
	Leachate Meth	od/Date: El	PA 1312; 12/16/18	00:00				
Molybdenum	0.24	mg/L	0.0010	1	12/18/18 10:47	12/18/18 17:55	7439-98-7	
Percent Moisture	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	9.3	%	0.50	1		12/14/18 12:05	5	H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-11 61'-61.5	Lab ID: 602	84822009	Collected: 10/23/	18 12:00	Received: 10)/25/18 15:00 N	Matrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP Red. Interference	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3050			
Boron	40.9	mg/kg	8.5	1	,,	12/18/18 13:31		
Calcium	83600	mg/kg	8.5	1	12/14/18 08:16	12/18/18 13:31	7440-70-2	
6010 MET ICP, SPLP	•		10 Preparation Met PA 1312; 12/16/18 00		A 3010			
Boron	0.10	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:45	7440-42-8	
Calcium	30.1	mg/L	0.10	1	12/17/18 17:30	12/18/18 15:45	7440-70-2	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Met	hod: EP	A 3010			
Molybdenum	8.8	mg/kg	3.8	1	12/18/18 15:29	12/19/18 15:49	7439-98-7	
6020 MET ICPM, SPLP	•		20 Preparation Met PA 1312; 12/16/18 00		A 3020			
Molybdenum	0.25	mg/L	0.0010	1	12/18/18 10:47	12/19/18 11:10	7439-98-7	
Percent Moisture	Analytical Meth	nod: ASTM I	D2974					
Percent Moisture	8.3	%	0.50	1		12/14/18 12:05		H1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-7 (B-1) 117.5'-120' Lab ID: 60284822010 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6020 Preparation Method: EPA 3010 **6020 MET ICPMS** 12/26/18 08:16 12/28/18 10:17 7439-98-7 Molybdenum 3.0 ug/L 1.0

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-8 (B-2) 31.5'-34' Lab ID: 60284822011 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum **54.7** ug/L 1.0 1 12/26/18 08:16 12/28/18 10:23 7439-98-7

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-9 (B-3) 24'-25' Lab ID: 60284822012 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum 58.3 ug/L 1.0 1 12/26/18 08:16 12/28/18 10:27 7439-98-7

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-10 (B-4) 28'-29.5' Lab ID: 60284822013 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum 30.9 ug/L 1.0 1 12/26/18 08:16 12/28/18 10:29 7439-98-7

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-11 (B-6) 78.5'-79' Lab ID: 60284822014 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum 11.9 ug/L 1.0 1 12/26/18 08:16 12/28/18 10:31 7439-98-7

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-7 102'-104' Lab ID: 60284822015 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum 150 ug/L 1.0 1 12/26/18 08:16 12/28/18 10:33 7439-98-7

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

Sample: MW-FAA-11 61'-61.5' Lab ID: 60284822016 Collected: 10/23/18 12:00 Received: 10/24/18 15:00 Matrix: Water

Comments: • The analyses completed on this sample are a DI Leachate.

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

6020 MET ICPMS Analytical Method: EPA 6020 Preparation Method: EPA 3010

Molybdenum **225** ug/L 1.0 1 12/26/18 08:16 12/28/18 10:35 7439-98-7 M1

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Boron

Calcium

Date: 12/28/2018 02:06 PM

QC Batch: 560051 Analysis Method: EPA 6010
QC Batch Method: EPA 3050 Analysis Description: 6010 MET

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

METHOD BLANK: 2298528 Matrix: Solid

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

Blank Reporting eter Units Result Limit

ParameterUnitsResultLimitAnalyzedQualifiersBoronmg/kg<10.0</td>10.012/17/18 16:18

Calcium mg/kg <10.0 10.0 12/18/18 13:14

LABORATORY CONTROL SAMPLE: 2298529

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 100 91.9 92 80-120 mg/kg 1000 971 97 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2298530 2298531 MSD MS 60289313002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron mg/kg ND 77.8 76.8 96.2 78.7 117 96 75-125 20 20 R1 Calcium mg/kg 11700 778 768 6640 4390 -644 -946 75-125 41 20 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Calcium

Date: 12/28/2018 02:06 PM

QC Batch: 560655 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET SPLP

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

METHOD BLANK: 2301391 Matrix: Water

mg/L

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

Blank Reporting
Parameter Units Result Limit Analyzed

Boron mg/L <0.10 0.10 12/18/18 15:25 Calcium mg/L 0.63 0.10 12/18/18 15:25

300

LABORATORY CONTROL SAMPLE: 2301392

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 0.98 98 80-120 mg/L Calcium 10 10.4 104 80-120 mg/L

10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2301393 2301394 MSD MS 60289490006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron mg/L 3.7 4.7 4.7 97 98 75-125 0 20

10

301

295

8

-50

75-125

2

20 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

QC Batch: 560713 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

METHOD BLANK: 2301589 Matrix: Solid

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersMolybdenummg/kg<5.0</td>5.012/19/18 15:36

LABORATORY CONTROL SAMPLE: 2301590

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Molybdenum mg/kg 100 97.8 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2301591 2301592

MS MSD MS 60284822001 Spike Spike MS MSD MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Molybdenum 79.3 52.5 58.8 66 75-125 20 M1 mg/kg <3.9 77.3 72 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

QC Batch: 560745 Analysis Method: EPA 6020
QC Batch Method: EPA 3020 Analysis Description: 6020 MET SPLP

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

METHOD BLANK: 2301699 Matrix: Water

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Molybdenum
 mg/L
 <0.0010</td>
 0.0010
 12/18/18 17:43

,

LABORATORY CONTROL SAMPLE: 2301700

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Molybdenum mg/L 0.04 0.039 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2301701 2301702

MS MSD 60284822005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Molybdenum 0.016 0.057 0.056 75-125 2 20 mg/L 0.04 0.04 101 99

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

Date: 12/28/2018 02:06 PM

QC Batch: 561774 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Associated Lab Samples: 60284822010, 60284822011, 60284822012, 60284822013, 60284822014, 60284822015, 60284822016

METHOD BLANK: 2306167 Matrix: Water

Associated Lab Samples: 60284822010, 60284822011, 60284822012, 60284822013, 60284822014, 60284822015, 60284822016

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersMolybdenumug/L1.11.012/28/18 10:15

LABORATORY CONTROL SAMPLE: 2306168

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Molybdenum ug/L 40 41.1 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2306169 2306170

MS MSD 60284822010 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Molybdenum 40 43.8 102 75-125 0 20 ug/L 3.0 40 43.7 102

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2306171 2306172

MS MSD 60284822016 MS MSD MS MSD Spike Spike % Rec Max Parameter Conc. % Rec % Rec RPD Qual Units Result Conc. Result Result Limits **RPD** 225 75-125 Molybdenum ug/L 40 40 230 231 12 15 20 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

QC Batch: 560153 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

METHOD BLANK: 2298990 Matrix: Solid

Associated Lab Samples: 60284822001, 60284822002, 60284822003, 60284822004, 60284822005, 60284822007, 60284822009

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Percent Moisture
 %
 <0.50</td>
 0.50
 12/14/18 12:05

SAMPLE DUPLICATE: 2298991

Date: 12/28/2018 02:06 PM

Parameter	Units	60289462009 Result	Dup Result	RPD	Max RPD	Qualifiers
Percent Moisture	%	17.0	17.5	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 12/28/2018 02:06 PM

- B Analyte was detected in the associated method blank.
- H1 Analysis conducted outside the EPA method holding time.
- H2 Extraction or preparation conducted outside EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC-FA2 LANDFILL

Pace Project No.: 60284822

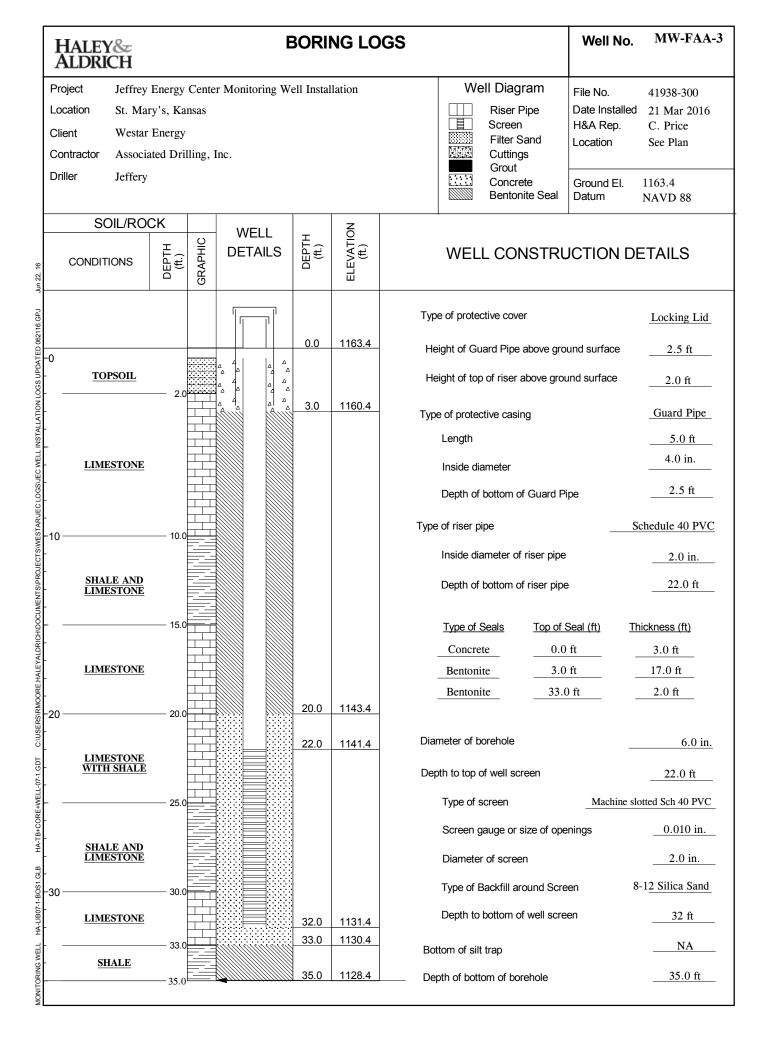
Date: 12/28/2018 02:06 PM

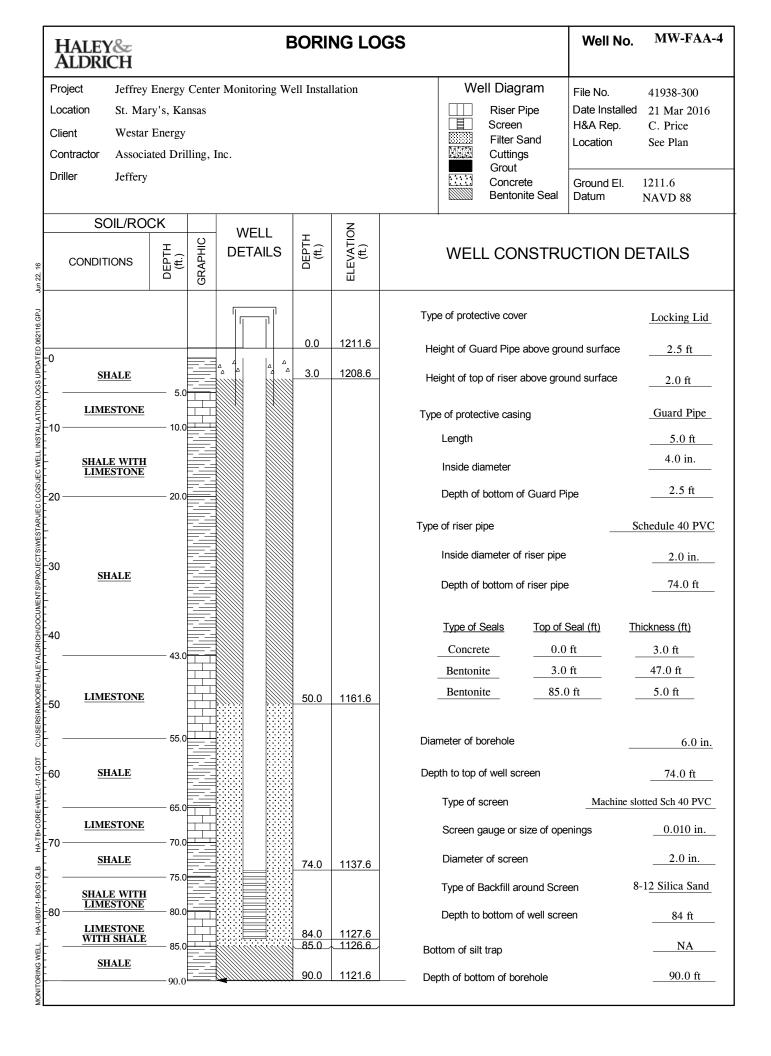
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60284822001	MW-FAA-7 (B-1) 117.5'-120'	EPA 3050	560051	EPA 6010	560287
60284822002	MW-FAA-8 (B-2) 31.5'-34'	EPA 3050	560051	EPA 6010	560287
0284822003	MW-FAA-9 (B-3) 24'-25'	EPA 3050	560051	EPA 6010	560287
0284822004	MW-FAA-10 (B-4) 28'-29.5'	EPA 3050	560051	EPA 6010	560287
0284822005	MW-FAA-11 (B-6) 78.5'-79'	EPA 3050	560051	EPA 6010	560287
0284822007	MW-FAA-7 102'-104'	EPA 3050	560051	EPA 6010	560287
0284822009	MW-FAA-11 61'-61.5	EPA 3050	560051	EPA 6010	560287
0284822001	MW-FAA-7 (B-1) 117.5'-120'	EPA 3010	560655	EPA 6010	560723
0284822002	MW-FAA-8 (B-2) 31.5'-34'	EPA 3010	560655	EPA 6010	560723
0284822003	MW-FAA-9 (B-3) 24'-25'	EPA 3010	560655	EPA 6010	560723
0284822004	MW-FAA-10 (B-4) 28'-29.5'	EPA 3010	560655	EPA 6010	560723
0284822005	MW-FAA-11 (B-6) 78.5'-79'	EPA 3010	560655	EPA 6010	560723
0284822007	MW-FAA-7 102'-104'	EPA 3010	560655	EPA 6010	560723
0284822009	MW-FAA-11 61'-61.5	EPA 3010	560655	EPA 6010	560723
0284822001	MW-FAA-7 (B-1) 117.5'-120'	EPA 3010	560713	EPA 6020	561103
0284822002	MW-FAA-8 (B-2) 31.5'-34'	EPA 3010	560713	EPA 6020	561103
0284822003	MW-FAA-9 (B-3) 24'-25'	EPA 3010	560713	EPA 6020	561103
0284822004	MW-FAA-10 (B-4) 28'-29.5'	EPA 3010	560713	EPA 6020	561103
0284822005	MW-FAA-11 (B-6) 78.5'-79'	EPA 3010	560713	EPA 6020	561103
0284822007	MW-FAA-7 102'-104'	EPA 3010	560713	EPA 6020	561103
0284822009	MW-FAA-11 61'-61.5	EPA 3010	560713	EPA 6020	561103
0284822001	MW-FAA-7 (B-1) 117.5'-120'	EPA 3020	560745	EPA 6020	560909
0284822002	MW-FAA-8 (B-2) 31.5'-34'	EPA 3020	560745	EPA 6020	560909
0284822003	MW-FAA-9 (B-3) 24'-25'	EPA 3020	560745	EPA 6020	560909
0284822004	MW-FAA-10 (B-4) 28'-29.5'	EPA 3020	560745	EPA 6020	560909
0284822005	MW-FAA-11 (B-6) 78.5'-79'	EPA 3020	560745	EPA 6020	560909
0284822007	MW-FAA-7 102'-104'	EPA 3020	560745	EPA 6020	560909
0284822009	MW-FAA-11 61'-61.5	EPA 3020	560745	EPA 6020	560909
0284822010	MW-FAA-7 (B-1) 117.5'-120'	EPA 3010	561774	EPA 6020	562038
0284822011	MW-FAA-8 (B-2) 31.5'-34'	EPA 3010	561774	EPA 6020	562038
0284822012	MW-FAA-9 (B-3) 24'-25'	EPA 3010	561774	EPA 6020	562038
0284822013	MW-FAA-10 (B-4) 28'-29.5'	EPA 3010	561774	EPA 6020	562038
0284822014	MW-FAA-11 (B-6) 78.5'-79'	EPA 3010	561774	EPA 6020	562038
0284822015	MW-FAA-7 102'-104'	EPA 3010	561774	EPA 6020	562038
0284822016	MW-FAA-11 61'-61.5'	EPA 3010	561774	EPA 6020	562038
0284822001	MW-FAA-7 (B-1) 117.5'-120'	ASTM D2974	560153		
0284822002	MW-FAA-8 (B-2) 31.5'-34'	ASTM D2974	560153		
0284822003	MW-FAA-9 (B-3) 24'-25'	ASTM D2974	560153		
0284822004	MW-FAA-10 (B-4) 28'-29.5'	ASTM D2974	560153		
0284822005	MW-FAA-11 (B-6) 78.5'-79'	ASTM D2974	560153		
0284822007	MW-FAA-7 102'-104'	ASTM D2974	560153		
60284822009	MW-FAA-11 61'-61.5	ASTM D2974	560153		

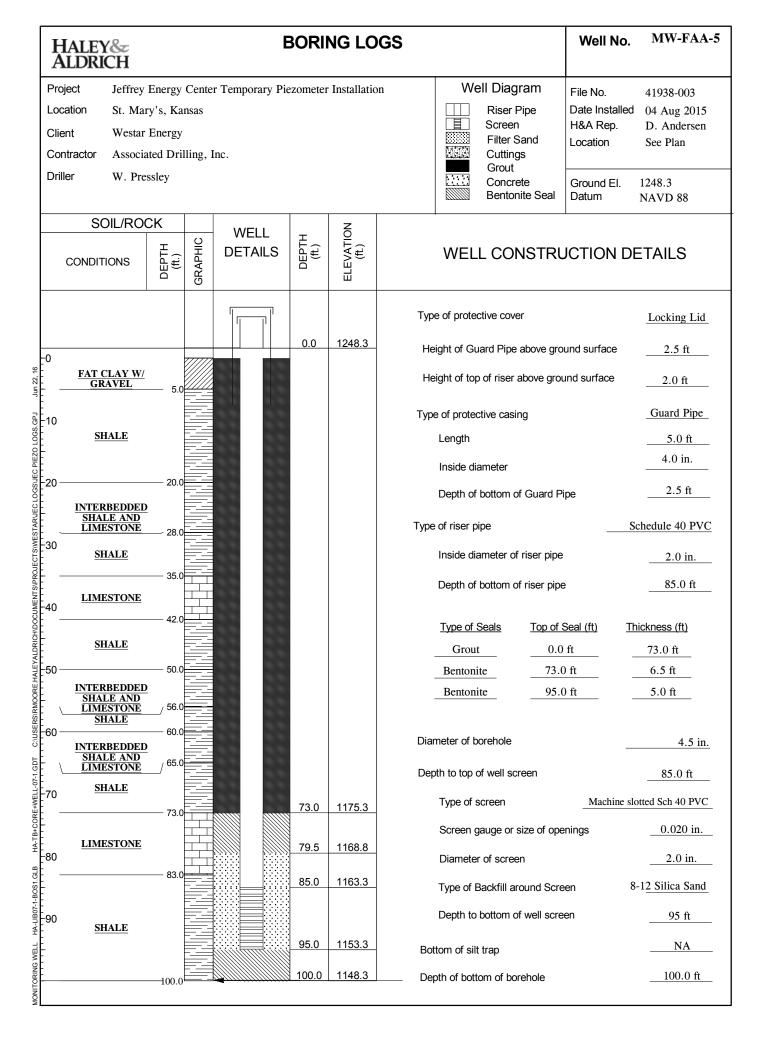
Sample Condition Upon Receipt

Client Name: Wester Energy	
Courier: FedEx UPS VIA Clay PEX ECI	□ Pace □ Xroads □ Client □ Other □
Tracking #: Pace Shipping Lab	pel Used? Yes □ No ☑
Custody Seal on Cooler/Box Present: Yes Notice Seals intact:	Yes No.
Packing Material: Bubble Wrap □ Bubble Bags □ For	am □ None □ Other □
Thermometer Used: <u>T-298</u> Type of Ice: We Blo	ue None
Cooler Temperature (°C): As-read 14 Corr. Factor 0.0	Corrected / 4 Date and initials of person examining contents:
Temperature should be above freezing to 6°C	N10/25/18
Chain of Custody present: Yes □No	□N/A
Chain of Custody relinquished: ☐Yes ☐No	□N/A
Samples arrived within holding time: ✓ Yes □No	□N/A
Short Hold Time analyses (<72hr):	□N/A
Rush Turn Around Time requested: □Yes ☑No	□N/A
Sufficient volume: ✓ Yes □No	□N/A
Correct containers used:	□N/A
Pace containers used:	DNIA
Containers intact:	□N/A
	MNIA
Filtered volume received for dissolved tests?	Inia
Sample labels match COC: Date / time / ID / analyses	
Samples contain multiple phases? Matrix: \$\(\sum_{Yes} \leftilde{\substack} \) No	
Containers requiring pH preservation in compliance?	
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	
Cyanide water sample checks: Lead acetate strip turns dark? (Record only) □Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	
Trip Blank present: □Yes □No	DAVIA
Headspace in VOA vials (>6mm): □Yes □No '	TANIA .
Samples from USDA Regulated Area: State: KS □Yes No	DNA
Additional labels attached to 5035A / TX1005 vials in the field? ☐Yes ☐No	MINIA
Client Notification/ Resolution: Copy COC to Client? Y	N Field Data Required? Y / N
Person Contacted: Date/Time:	
Comments/ Resolution:	
,	
Project Manager Review:	Date:

By hwilson at 10:33 am, 10/26/18


CHAIN-OF-CUSTODY / Analytical Request Document


The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.


Required Client Information: Company: WESTAR ENERGY	Report To: Brandon Griffin		Attention:	Jared Morrison		Ī						
Address: 818 Kanşas Ave	Copy To: Adam Kn	oe lina	Company Na	ne: WESTAR ENERGY		REGULATOR	Y AGENCY		10	42 3		
Topeka, KS 66612	i loosin Kii	e i g	Address:	SEE SECTION A		✓ NPDES ☐ GROUND WATER ☐ DRINKING WATER					ATER	
Email To: brandon.l.griffin@westarenergy.com	Purchase Order No.: 10JEC-0	0000033150	Pace Quote Reference:			□ UST	RCRA		Г от	HER		
Phone: (785) 575-8135 Fax:	Project Name: TEL-FI	12 Landfill	Pace Project Manager:	Heather Wilson, 913-563	3-1407	Site Location	VC.	115		11.50		
Requested Due Date/TAT: 7 DAY	Project Number: 12977	8-022	Pace Profile #:	9657, 2		STATE:	KS	- 8		1		
					Requested	Analysis Filter	ed (Y/N)				33. 21	
WATER	Codes (U = 0 (A WO) = 0 (A WO	COLLECTED		Preservatives >	-200-8							
SOLUSOUD OIL WIFE AR OHER TISSUE	(G=GRAB	AT COLLECT	🗓	Test	Dentim-by-			Residual Chlorine (Y/N)				
Sample IDs MUST BE UNIQUE	MATRIX CODE SAMPLE TYPE	AMPINE DATE TIME OAMPINE DATE	# OF CONTAINERS Unpreserved H2SO4	HN03 HCI NaOH Na2S203 Methanol Other	rotal Molybdenum by Read-Molybdenum by Bend-Molybdenum by				Pace Pr	_848 roject No.	22 / Lab I.D.	
1 MW-FAA- 7 (B-1) 117.5-1		1200	1		* * 1			1 2	eplo		001	
2 MW-KAA-8 (B-2) 31.5'-	J SL G	× //	11		×××			1	1-		our	
3 MW-FAA-9 (B-3) 24-2	- 5 SL G		F .		× × ×			\vdash	1		003	
100 1 (00 11 mg) 755		× 17	i i		XII X XIII			\vdash	+		005	
		× 11	1		A L W			+			00%	
, MW-FAA- 7 107'-1		10 11			424						007	
8 MU-FAA-11 33'-33	3.5 BLG" "	P 11	77		4 * *						0U8	
, MW-FAA-11 61-61	1,5 546 "	v. 11	1		XXX			\perp	V_		009	
10								11				
11			+++			+++		\vdash				
ADDITIONAL COMMENTS	RELINQUISHED BY /	AFFILIATION DATE	TIME	ACCEPTED BY / A	FFILIATION	DATE	TIME		SAMPLE	CONDITION	NS .	
Hold remaining sample for possible additional total/SPLP	Eli Fredrickson		1500		9	10/25/18		.4	VIA	JT	Y	
A			1,000		- /-	1. 10			1	_	4	
1 1	47)											
at present. Hold			-									
samples pending		SAMPLER NAME AND SIGNATUR	F		The Volume of		15.55	. +	83	p _G	5	
Review	8	PRINT Name of SAMPLER	7.	Fredrickson	Y			S u d	(V/N)	Seal, er (Y/N	(Y/N)	
		SIGNATURE of SAMPLER	-			10/24/18	3	Temp In °	Receive (Y	Custody Sealed Cooler (Y/N)	Sample (Y,	

APPENDIX D

Well Construction Details

HALEY& ALDRICH	Well No. MW-FAA					
Project Jeffrey	ry's, Kansas Energy	ter Monitoring W	ell Insta	ıllation	Riser Pipe Screen Filter Sand Cuttings Grout	File No. 41938-110 Date Installed 16 Jun 2017 H&A Rep. K. Ford Location See Plan Ground El. 1159.7
					C1111112	Datum NAVD 88
SOIL/ROO CONDITIONS	DEPTH X (ft.) GRAPHIC	WELL DETAILS	DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTRU	CTION DETAILS
					Type of protective cover	Locking Lid
)			0.0	1159.7	Height of Guard Pipe above gro	ound surface 3.0 ft
			1.5	1158.2	Height of top of riser above gro	und surface 2.5 ft
					Type of protective casing	Guard Pipe
FILL					Length	5.0 ft
<u> 11111</u>					Inside diameter	4.0 in.
0					Depth of bottom of Guard P	
					Type of riser pipe	Schedule 40 PV
LIMESTONE	13.0				Inside diameter of riser pipe	2.0 in.
SHALE					Depth of bottom of riser pipe	30.3 ft
20 <u>LIMESTONE</u>	18.0				Type of Seals Top of Seals Concrete 0.0 f Bentonite 1.5 f Bentonite 24.0 f	1.5 ft 22.5 ft
			25.0	1134.7	Diameter of houshale	
SHALE	26.5				Diameter of borehole Depth to top of well screen	6.0 in 30.3 ft
0	29.0		30.3	1129.4	Type of screen	Machine slotted Sch 40 PVC
LIMESTONE	32.0				Screen gauge or size of ope	
SHALE					Diameter of screen	2.0 in.
LIMESTONE	35.0				Type of Backfill around Scre	een 8-1 <u>2 Silica Sand</u>
LIMESTONE	37.0				Depth to bottom of well scre	een40.3 ft
WITH SHALE	40.0		40.3	1119.4	Bottom of silt trap	NA
LIMESTONE	41.0		41.0	1118.7	Depth of bottom of borehole	41.0 ft

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Senior Associate – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum

Evergy Kansas Central, Inc. Jeffrey Energy Center Fly Ash Landfill

The Evergy Kansas Central, Inc. (Evergy) Fly Ash Landfill (FAL) at the Jeffrey Energy Center (JEC) is subject to the groundwater monitoring and corrective action requirements described under Code of Federal Regulations Title 40 (40 CFR) §257.90 through §257.98 (Rule). An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting the activities completed in 2019 for the FAL was completed and placed in the facility's operating record on January 31, 2020, as required by the Rule. The Annual GWMCA Report contained the specific information listed in 40 CFR §257.90(e).

This report addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR §257.90(e), the USEPA indicated in their comments that the GWMCA Report should contain:

- Results of laboratory analysis of groundwater or other environmental media samples for the
 presence of constituents of Appendices III and IV to 40 CFR part 257 (or of other constituents,
 such as those supporting characterization of site conditions that may ultimately affect a
 remedy);
- Required statistical analyses performed on those [laboratory analysis] results;
- Measured groundwater elevations; and
- Calculated groundwater flow rate and direction.

While this information is not specifically referred to in 40 CFR §257.90(e) for inclusion in the GWMCA Report, it has been routinely collected and maintained in Evergy's files and is being provided in the attachments to this addendum. The applicable laboratory analysis reports for 2019 sampling events are included in Attachment 1, and a discussion of the applicable statistical analyses completed in 2019 are included in Attachment 2 of this addendum. For each of the 2019 sampling events, the measured groundwater elevations, with calculated groundwater flow rates and directions, have been included in Attachment 3.

Evergy Kansas Central, Inc. November 4, 2022 Page 2

The Attachments to this addendum are described below:

- Attachment 1 Laboratory Analytical Reports: Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the sampling events completed in March, June, and September 2019 are provided.
- Attachment 2 Statistical Analyses: Includes a discussion of the statistical analyses utilized along
 with a table summarizing the statistical outputs (e.g., frequency of detection, maximum
 detection, variance, standard deviation, coefficient of variance, outlier tests, trends, upper and
 lower confidence limits, and comparison against Groundwater Protection Standards), and
 supporting backup for statistical analyses completed in 2019. Statistical analyses completed in
 2019 included:
 - Overview of the January 2019 statistical analyses for data obtained in the September 2018 sampling event; and
 - Overview of the July 2019 statistical analyses for data obtained in the March 2019 sampling event.
- Attachment 3 Revised Groundwater Potentiometric Maps: Includes the measured groundwater elevations at each well and the generalized groundwater flow direction and calculated flow rate. Maps for the sampling events completed in March, June, and September 2019 are provided.

ATTACHMENT 1 Laboratory Analytical Reports

ATTACHMENT 1-1
March 2019 Sampling Event
Laboratory Analytical Report

April 08, 2019

Brandon Griffin Westar Energy 818 S. Kansas Ave Topeka, KS 66612

RE: Project: JEC FAA CCR

Pace Project No.: 60298176

Dear Brandon Griffin:

Enclosed are the analytical results for sample(s) received by the laboratory on March 28, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

diator m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: HEATH HORYNA, WESTAR ENERGY
Andrew Hare, Westar Energy
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, WESTAR ENERGY
Melissa Michels, Westar Energy
JD Schlegel, KCP&L & Westar

CERTIFICATIONS

Project: JEC FAA CCR
Pace Project No.: 60298176

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0 Arkansas Drinking Water

Arkansas Drinking Water
Illinois Certification #: 004455
Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055
Nevada Certification #: KS000212018-1
Oklahoma Certification #: 9205/9935
Texas Certification #: T104704407-18-11
Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: JEC FAA CCR
Pace Project No.: 60298176

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60298176001	FAA-5-032619	Water	03/26/19 09:00	03/28/19 06:15	
60298176002	FAA-4-032619	Water	03/26/19 10:21	03/28/19 06:15	
60298176003	FAA-3-032619	Water	03/26/19 11:17	03/28/19 06:15	
60298176004	FAA-6-032619	Water	03/26/19 12:21	03/28/19 06:15	

SAMPLE ANALYTE COUNT

Project: JEC FAA CCR
Pace Project No.: 60298176

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60298176001	FAA-5-032619	EPA 200.7	EMR	7	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	LRS	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	ZMH	1	PASI-K
		EPA 300.0	MGS, WNM	3	PASI-K
0298176002	FAA-4-032619	EPA 200.7	EMR	7	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	LRS	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	ZMH	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
0298176003	FAA-3-032619	EPA 200.7	EMR	7	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	LRS	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	ZMH	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
0298176004	FAA-6-032619	EPA 200.7	EMR	7	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	LRS	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	ZMH	1	PASI-K
		EPA 300.0	MGS	3	PASI-K

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60298176

Method: EPA 200.7

Description: 200.7 Metals, Total
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for EPA 200.7. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60298176

Method: EPA 200.8

Description: 200.8 MET ICPMS
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for EPA 200.8. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60298176

Method:EPA 245.1Description:245.1 MercuryClient:WESTAR ENERGYDate:April 08, 2019

General Information:

4 samples were analyzed for EPA 245.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60298176

Method: SM 2540C

Description: 2540C Total Dissolved Solids

Client: WESTAR ENERGY

Date: April 08, 2019

General Information:

4 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60298176

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for SM 4500-H+B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

FAA-3-032619 (Lab ID: 60298176003)
FAA-4-032619 (Lab ID: 60298176002)
FAA-5-032619 (Lab ID: 60298176001)
FAA-6-032619 (Lab ID: 60298176004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60298176

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 577463

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60297982001,60298451001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2369464)
 - Sulfate
- MSD (Lab ID: 2369465)
 - Sulfate

QC Batch: 577678

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60298156001,60298258008

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2370637)
 - Chloride
- MS (Lab ID: 2370639)
 - Fluoride
- MSD (Lab ID: 2370638)
 - Chloride

QC Batch: 577711

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60298176003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2370962)
 - Sulfate
- MSD (Lab ID: 2370963)
 - Sulfate

Additional Comments:

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60298176

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: WESTAR ENERGY
Date: April 08, 2019

Analyte Comments:

QC Batch: 577463

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 2369464)

Sulfate

QC Batch: 577678

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 2370637)

• Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FAA CCR
Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

Sample: FAA-5-032619	Lab ID: 602	298176001	Collected: 03/26/1	9 09:00	Received: 03	8/28/19 06:15 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Me	thod: EPA 200	.7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	<0.0050	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:31	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 10:11	04/04/19 10:31	7440-41-7	
Boron, Total Recoverable	1.1	mg/L	0.10	1	04/03/19 10:11	04/04/19 10:31	7440-42-8	
Calcium, Total Recoverable	294	mg/L	0.20	1	04/03/19 10:11	04/04/19 10:31	7440-70-2	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:31	7440-47-3	
_ead, Total Recoverable	<0.010	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:31	7439-92-1	
ithium	0.082	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:31	7439-93-2	
200.8 MET ICPMS	Analytical Me	thod: EPA 200	.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	04/03/19 12:09	04/04/19 16:38	7440-43-9	
Cobalt, Total Recoverable	0.0022	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7440-48-4	
Molybdenum, Total Recoverable	0.024	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7439-98-7	
Selenium, Total Recoverable	0.0027	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:38	7440-28-0	
45.1 Mercury	Analytical Me	thod: EPA 245	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.00020	mg/L	0.00020	1	03/29/19 10:48	04/01/19 10:22	7439-97-6	
2540C Total Dissolved Solids	Analytical Me	thod: SM 2540	OC					
Total Dissolved Solids	1770	mg/L	5.0	1		04/01/19 11:06		
1500H+ pH, Electrometric	Analytical Me	thod: SM 4500)-H+B					
oH at 25 Degrees C	7.1	Std. Units	0.10	1		04/04/19 09:59		H6
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 300	0.0					
Chloride	127	mg/L	10.0	10		04/06/19 15:18	16887-00-6	
Fluoride	0.53	mg/L	0.20	1		04/06/19 05:27	16984-48-8	
Sulfate	900	mg/L	100	100		04/06/19 15:34		

Project: JEC FAA CCR
Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

Sample: FAA-4-032619	Lab ID: 602	98176002	Collected: 03/26/1	9 10:21	Received: 03	8/28/19 06:15 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Metl	hod: EPA 200	0.7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	0.051	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:33	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 10:11	04/04/19 10:33	7440-41-7	
Boron, Total Recoverable	0.88	mg/L	0.10	1	04/03/19 10:11	04/04/19 10:33	7440-42-8	
Calcium, Total Recoverable	180	mg/L	0.20	1	04/03/19 10:11	04/04/19 10:33	7440-70-2	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:33	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:33	7439-92-1	
Lithium	0.019	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:33	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 200	0.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	04/03/19 12:09	04/04/19 16:41	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7440-48-4	
Molybdenum, Total Recoverable	0.0072	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7439-98-7	
Selenium, Total Recoverable	0.0013	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:41	7440-28-0	
245.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.00020	mg/L	0.00020	1	03/29/19 10:48	04/01/19 10:24	7439-97-6	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	1110	mg/L	5.0	1		04/01/19 11:06		
4500H+ pH, Electrometric	Analytical Meth	hod: SM 450	0-H+B					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		04/04/19 10:01		H6
300.0 IC Anions 28 Days	Analytical Meth	hod: EPA 300	0.0					
Chloride	68.5	mg/L	10.0	10		04/06/19 16:05	16887-00-6	
Fluoride	0.33	mg/L	0.20	1		04/06/19 15:49	16984-48-8	
Sulfate	479	mg/L	50.0	50		04/06/19 16:21	14808-79-8	

Project: JEC FAA CCR
Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

Sample: FAA-3-032619	Lab ID: 602	298176003	Collected: 03/26/1	9 11:17	Received: 03	3/28/19 06:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Me	thod: EPA 200).7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	0.036	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:35	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 10:11	04/04/19 10:35	7440-41-7	
Boron, Total Recoverable	0.54	mg/L	0.10	1	04/03/19 10:11	04/04/19 10:35	7440-42-8	
Calcium, Total Recoverable	366	mg/L	0.20	1	04/03/19 10:11	04/04/19 10:35	7440-70-2	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:35	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	04/03/19 10:11			
Lithium	0.014	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:35	7439-93-2	
200.8 MET ICPMS	Analytical Me	thod: EPA 200	0.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	04/03/19 12:09	04/04/19 16:44	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7440-48-4	
Molybdenum, Total Recoverable	0.0039	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:44	7440-28-0	
245.1 Mercury	Analytical Me	thod: EPA 245	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.00020	mg/L	0.00020	1	03/29/19 10:48	04/01/19 10:26	7439-97-6	
2540C Total Dissolved Solids	Analytical Me	thod: SM 2540	OC					
Total Dissolved Solids	1990	mg/L	5.0	1		04/01/19 11:06	;	
1500H+ pH, Electrometric	Analytical Me	thod: SM 4500	O-H+B					
oH at 25 Degrees C	7.2	Std. Units	0.10	1		04/04/19 10:02	2	H6
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 300	0.0					
Chloride	176	mg/L	10.0	10		04/06/19 16:53	3 16887-00-6	
Fluoride	0.37	mg/L	0.20	1		04/06/19 16:37	16984-48-8	
Sulfate	1090	mg/L	100	100		04/07/19 15:20	14808-79-8	M1

Project: JEC FAA CCR
Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

Sample: FAA-6-032619	Lab ID: 602	298176004	Collected: 03/26/1	9 12:21	Received: 03	/28/19 06:15 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Me	thod: EPA 200).7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	0.033	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:42	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 10:11	04/04/19 10:42	7440-41-7	
Boron, Total Recoverable	1.5	mg/L	0.10	1	04/03/19 10:11	04/04/19 10:42	7440-42-8	
Calcium, Total Recoverable	147	mg/L	0.20	1	04/03/19 10:11	04/04/19 10:42	7440-70-2	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	04/03/19 10:11	04/04/19 10:42	7440-47-3	
_ead, Total Recoverable	<0.010	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:42	7439-92-1	
ithium	0.014	mg/L	0.010	1	04/03/19 10:11	04/04/19 10:42	7439-93-2	
200.8 MET ICPMS	Analytical Me	thod: EPA 200	0.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7440-36-0	
Arsenic, Total Recoverable	0.0037	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	04/03/19 12:09	04/04/19 16:50	7440-43-9	
Cobalt, Total Recoverable	0.0017	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7440-48-4	
Molybdenum, Total Recoverable	0.22	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7782-49-2	
Гhallium, Total Recoverable	<0.0010	mg/L	0.0010	1	04/03/19 12:09	04/04/19 16:50	7440-28-0	
45.1 Mercury	Analytical Me	thod: EPA 245	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.00020	mg/L	0.00020	1	03/29/19 10:48	04/01/19 10:28	7439-97-6	
2540C Total Dissolved Solids	Analytical Me	thod: SM 2540	OC					
Total Dissolved Solids	1560	mg/L	5.0	1		04/01/19 11:06		
1500H+ pH, Electrometric	Analytical Me	thod: SM 4500	0-H+B					
oH at 25 Degrees C	7.4	Std. Units	0.10	1		04/04/19 10:03	;	H6
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 300	0.0					
Chloride	80.4	mg/L	10.0	10		04/05/19 18:36	16887-00-6	
Fluoride	0.62	mg/L	0.20	1		04/05/19 18:23	16984-48-8	
Sulfate	972	mg/L	50.0	50		04/05/19 18:49	14808-79-8	

Project: JEC FAA CCR Pace Project No.: 60298176

QC Batch: 576271 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

METHOD BLANK: 2364322 Matrix: Water
Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.00020 0.00020 04/01/19 10:06

LABORATORY CONTROL SAMPLE: 2364323

Date: 04/08/2019 11:34 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L 0.005 0.0050 100 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2364324 2364325 MS MSD

60298157005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 0.005 0.0045 70-130 5 20 Mercury mg/L < 0.00020 0.005 0.0047 93 88

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

QC Batch: 576952 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

METHOD BLANK: 2367278 Matrix: Water
Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	04/04/19 10:08	
Beryllium	mg/L	< 0.0010	0.0010	04/04/19 10:08	
Boron	mg/L	< 0.10	0.10	04/04/19 10:08	
Calcium	mg/L	< 0.20	0.20	04/04/19 10:08	
Chromium	mg/L	< 0.0050	0.0050	04/04/19 10:08	
Lead	mg/L	< 0.010	0.010	04/04/19 10:08	
Lithium	mg/L	< 0.010	0.010	04/04/19 10:08	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		1.0	105	85-115	
Beryllium	mg/L	1	1.1	105	85-115	
Boron	mg/L	1	0.99	99	85-115	
Calcium	mg/L	10	10.7	107	85-115	
Chromium	mg/L	1	1.0	102	85-115	
Lead	mg/L	1	1.0	102	85-115	
Lithium	mg/L	1	1.0	102	85-115	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 236728	30		2367281							
Parameter	Units	60298157004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	mg/L	0.091	1	1	1.1	1.1	102	105	70-130	2	20	
Beryllium	mg/L	< 0.0010	1	1	1.0	1.0	102	105	70-130	2	20	
Boron	mg/L	0.39	1	1	1.4	1.4	99	102	70-130	3	20	
Calcium	mg/L	112	10	10	122	125	97	123	70-130	2	20	
Chromium	mg/L	< 0.0050	1	1	0.98	1.0	98	101	70-130	2	20	
Lead	mg/L	< 0.010	1	1	0.96	0.98	96	98	70-130	2	20	
Lithium	mg/L	< 0.010	1	1	1.0	1.0	101	104	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

QC Batch: 577038 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

METHOD BLANK: 2367515 Matrix: Water
Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	< 0.0010	0.0010	04/04/19 16:35	
Arsenic	mg/L	< 0.0010	0.0010	04/04/19 16:35	
Cadmium	mg/L	< 0.00050	0.00050	04/04/19 16:35	
Cobalt	mg/L	< 0.0010	0.0010	04/04/19 16:35	
Molybdenum	mg/L	< 0.0010	0.0010	04/04/19 16:35	
Selenium	mg/L	< 0.0010	0.0010	04/04/19 16:35	
Thallium	mg/L	< 0.0010	0.0010	04/04/19 16:35	

LABORATORY CONTROL SAMPLE:	2367516					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.038	95	85-115	
Arsenic	mg/L	0.04	0.037	91	85-115	
Cadmium	mg/L	0.04	0.038	96	85-115	
Cobalt	mg/L	0.04	0.038	95	85-115	
Molybdenum	mg/L	0.04	0.036	89	85-115	
Selenium	mg/L	0.04	0.037	92	85-115	
Thallium	mg/L	0.04	0.038	95	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPLICA	ATE: 23675	17		2367518							
			MS	MSD								
	6	0298176004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	<0.0010	0.04	0.04	0.038	0.038	94	94	70-130	0	20	
Arsenic	mg/L	0.0037	0.04	0.04	0.041	0.042	94	95	70-130	1	20	
Cadmium	mg/L	< 0.00050	0.04	0.04	0.035	0.036	89	89	70-130	0	20	
Cobalt	mg/L	0.0017	0.04	0.04	0.041	0.042	99	100	70-130	1	20	
Molybdenum	mg/L	0.22	0.04	0.04	0.26	0.26	100	104	70-130	1	20	
Selenium	mg/L	< 0.0010	0.04	0.04	0.035	0.034	85	85	70-130	0	20	
Thallium	mg/L	< 0.0010	0.04	0.04	0.035	0.035	87	87	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

QC Batch: 576564 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

METHOD BLANK: 2365975 Matrix: Water
Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/01/19 11:06

LABORATORY CONTROL SAMPLE: 2365976

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1060 106 80-120

SAMPLE DUPLICATE: 2365977

60298071006 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 3680 4 **Total Dissolved Solids** 3820 10 mg/L

SAMPLE DUPLICATE: 2365978

Date: 04/08/2019 11:34 AM

60298176004 Dup Max RPD RPD Parameter Units Result Result Qualifiers 1560 **Total Dissolved Solids** mg/L 1650 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

QC Batch: 577185 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Associated Lab Samples: 60298176001, 60298176002, 60298176003, 60298176004

SAMPLE DUPLICATE: 2368168

Date: 04/08/2019 11:34 AM

 Parameter
 Units
 60298156001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.6
 6.6
 1
 5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

QC Batch: 577463 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60298176004

METHOD BLANK: 2369462 Matrix: Water

Associated Lab Samples: 60298176003, 60298176004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	04/05/19 14:25	
Fluoride	mg/L	<0.20	0.20	04/05/19 14:25	
Sulfate	mg/L	<1.0	1.0	04/05/19 14:25	

LABORATORY CONTROL SAMPLE:	2369463					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.0	100	90-110	
Fluoride	mg/L	2.5	2.6	105	90-110	
Sulfate	mg/L	5	5.2	105	90-110	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICA	ATE: 23694	64		2369465							
			MS	MSD								
	6	0297982001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	18.9J	250	250	258	260	96	96	90-110	1	15	
Fluoride	mg/L	4.5J	125	125	136	137	106	106	90-110	1	15	
Sulfate	mg/L	704	250	250	1060	993	143	116	90-110	7	15	E,M1

MATRIX SPIKE SAMPLE:	2369466	60298451001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	24.4	10	34.6	102	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

QC Batch: 577497 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60298176001

METHOD BLANK: 2369586 Matrix: Water

Associated Lab Samples: 60298176001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Fluoride mg/L <0.20 0.20 04/05/19 18:04

LABORATORY CONTROL SAMPLE: 2369587

Date: 04/08/2019 11:34 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Fluoride	mg/L	2.5	2.4	97	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

QC Batch: 577678 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60298176001, 60298176002, 60298176003

METHOD BLANK: 2370635 Matrix: Water

Associated Lab Samples: 60298176001, 60298176002, 60298176003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	04/06/19 10:51	
Fluoride	mg/L	< 0.20	0.20	04/06/19 10:51	
Sulfate	mg/L	<1.0	1.0	04/06/19 10:51	

LABORATORY CONTROL SAMPLE:	2370636					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.8	95	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	5.1	101	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 23706	37		2370638							
			MS	MSD								
	60	0298156001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	70000	25000	25000	101000	91400	123	86	90-110	10	15	E,M1

MATRIX SPIKE SAMPLE:	2370639						
		60298258008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	ND	5	5.3	93	90-110	
Fluoride	mg/L	ND	2.5	2.9	115	90-110 I	Л1
Sulfate	mg/L	ND	5	5.5	110	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60298176

QC Batch: 577711 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60298176003

METHOD BLANK: 2370960 Matrix: Water

Associated Lab Samples: 60298176003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L <1.0 1.0 04/07/19 14:54

LABORATORY CONTROL SAMPLE: 2370961

Date: 04/08/2019 11:34 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.3 106 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2370962 2370963

MS MSD

60298176003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 500 90-110 15 M1 mg/L 1090 500 1680 1720 116 126 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAA CCR Pace Project No.: 60298176

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 04/08/2019 11:34 AM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAA CCR
Pace Project No.: 60298176

Date: 04/08/2019 11:34 AM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60298176001	FAA-5-032619	EPA 200.7	576952	EPA 200.7	577108
60298176002	FAA-4-032619	EPA 200.7	576952	EPA 200.7	577108
60298176003	FAA-3-032619	EPA 200.7	576952	EPA 200.7	577108
0298176004	FAA-6-032619	EPA 200.7	576952	EPA 200.7	577108
0298176001	FAA-5-032619	EPA 200.8	577038	EPA 200.8	577120
60298176002	FAA-4-032619	EPA 200.8	577038	EPA 200.8	577120
60298176003	FAA-3-032619	EPA 200.8	577038	EPA 200.8	577120
60298176004	FAA-6-032619	EPA 200.8	577038	EPA 200.8	577120
0298176001	FAA-5-032619	EPA 245.1	576271	EPA 245.1	576458
0298176002	FAA-4-032619	EPA 245.1	576271	EPA 245.1	576458
60298176003	FAA-3-032619	EPA 245.1	576271	EPA 245.1	576458
0298176004	FAA-6-032619	EPA 245.1	576271	EPA 245.1	576458
0298176001	FAA-5-032619	SM 2540C	576564		
0298176002	FAA-4-032619	SM 2540C	576564		
60298176003	FAA-3-032619	SM 2540C	576564		
0298176004	FAA-6-032619	SM 2540C	576564		
0298176001	FAA-5-032619	SM 4500-H+B	577185		
0298176002	FAA-4-032619	SM 4500-H+B	577185		
0298176003	FAA-3-032619	SM 4500-H+B	577185		
0298176004	FAA-6-032619	SM 4500-H+B	577185		
60298176001	FAA-5-032619	EPA 300.0	577497		
0298176001	FAA-5-032619	EPA 300.0	577678		
0298176002	FAA-4-032619	EPA 300.0	577678		
0298176003	FAA-3-032619	EPA 300.0	577678		
60298176003	FAA-3-032619	EPA 300.0	577711		
60298176004	FAA-6-032619	EPA 300.0	577463		

Sample Condition Upon Receipt

Client Name: WES TAP		
Courier: FedEx □ UPS □ VIA Clay □ F	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pace	e Shipping Label Used	? Yes □ No -□
Custody Seal on Cooler/Box Present: Yes∕☐ No □	Seals intact: Yes	No □
Packing Material: Bubble Wrap □ Bubble Bags □] Foam □	None □ Other□ZPLC
Thermometer Used: T-298 Type of	Ice: Wet Blue Nor	Date and initials of person
Cooler Temperature (°C): As-read 6.5 Corr. Factor	or0. / Correct	ed 0.4 examining contents: 3-28-19
Temperature should be above freezing to 6°C		
Chain of Custody present:	ÆYes □No □N/A	
Chain of Custody relinquished:	ØYes □No □N/A	
Samples arrived within holding time:	ØYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes ∕ No □N/A	
Sufficient volume:	∕ Yes □No □N/A	
Correct containers used:	∠EYes □No □N/A	
Pace containers used:	∕□Yes □No □N/A	
Containers intact:	ÆYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ÆN/A	
Filtered volume received for dissolved tests?	□Yes □No ÆN/A	
Sample labels match COC: Date / time / ID / analyses	₽Yes □No □N/A	
Samples contain multiple phases? Matrix: wT	□Yes ØNo □N/A	
Containers requiring pH preservation in compliance?	ZYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		daterime added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes ☑No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ∠N/A	
Samples from USDA Regulated Area: State:	□Yes □No ÆN/A	
Additional labels attached to 5035A / TX1005 vials in the field. Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/	Гіте:	
Comments/ Resolution:		
Project Manager Review:	Date	e

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:		Section B Required Proj	ect Infor	mation:					Section Invoice	Infor	mation	i.								_						Pa	age:	1		of	
Company: WESTAR E	NERGY	Report To: B	randon	Griffin					Attentio											_				_							
Address: 818 Kansas	Ave	Copy To: Ja	ared M	orrison					Compa		ime:									RE	EGU	LATC	RY	AGE	NCY	_				5 88	
Topeka, KS	66612								Addres	ss:										_ _	N	PDES	Г	GROUND WATER							
Email To: <u>brandon.l.gr</u>	iffin@westarenergy.com	Purchase Ord	er No :	10JEC-0	0000408	19			Pace Qi Referen												U	ST	Г	RC	RCRA OTHER						
Phone: 785-575-8135	Fax:	Project Name:	JEC	FAA CC	R				Pace Pr Manage		He	athe	r Wil	lson	913	-563	-140)7		S	ite L	ocatio	on		KS						
Requested Due Date/TAT:	7 day	Project Number	er:						Pace Pr	rofile #:	96	57, 1								1		STAT	E:	Н	100		- 1				
																	Re	eque	este	d An	alys	is Filt	tere	l(Y)	N)						
Section D	Valid Matrix	Codes	(P)		COLL	ECTED					Pre	eserv	ative	25		N/A	П		T												
Required Client Inform	DRINKING WATER WASTE WASTE WASTE PRODUCT SOIL/SOLID OIL LE ID AIR	SL OL WP	(G=GRAB C=COMP)	COMP(STAI	OSITE	COMPO END/G	SITE RAB	AT COLLECTION	INERS	7						Test	Total Metals*	Metals**	F 20	400							Residual Chlorine (Y/N)	407	. M ⁴	2171	O.
(A-Z, 0- Sample IDs MUS	T BE UNIQUE TISSUE		SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP		Unpreserved	HNO ₃	IZ P	NaOH Na-S-O-	Methanol	Other	# Analysis	200.7 Total	- 200.8 Total Metals**	245.1 Total Hg	2540C TDS	4500 H+B		26		20	***	Residual Ch				o./ Lab I.D.
1 FAA-5-			x 6			3/26	0900		2	l	1	\vdash	4	+	1	13	Н	+	H			1	3A/	M	BPI	u	H				100
2 FAA-4-	032619		T 6			3/26	1021		2	4	+ ;	\vdash	-	+	+		Н	-	H	₩	+	H	-#-	+	H	H	H		_		002
3 FAA-3-			76			3/25	1117		2		1	Н	+	+	H	- 3	H		+	+		+	₩	+	J		\vdash				003
4 FAA-6-	052619	1/	T 6	-		3/26	122	-	1	1		++	+	+	-		H	-	+	1	+	+	4	+	V		H				<u> </u>
5			+			-	-	-		\vdash	+	Н	+	+	+	1 3	H		+	+		+	+	+	+		\vdash				
6			-		-	-	-			H	+	H	+	+		1	Н	\dashv	+	+	+	H	\dashv	+	+		Н				
7			_	-	-			-		\vdash	+	Н	+	+	-	1.3	H		+		+	\forall	7	+	+	T	H				
8			+	-	-	-	-			\vdash	+	H	+	+	+	1	H		+	\top	+	\Box	1	\top			Ħ				
9			+			-				\vdash			7	+	1	13	П				1	\Box	\exists								
10			+							\vdash		П	\neg																		
11 12										Ħ	\top																				
	NAL COMMENTS		RELINQ	JISHED BY	/ AFFILIAT	ION	DATE		T	пме			1	ACCE	PTE	D BY	/ AFF	FILIAT	пои	1 5		DATE		TIA	/E			SAN	VIPLE (CONDITI	ONS
200 7 Total Metals*: B, Ca, B	a, Be, Cr, Pb, Li	13/	2	1/4	Jesh	V	03/27	7	14	00		1	K	itt	if	F	Z	rac	e		3.	28. l	9	Olal	5	0.	4	y		y	Y
200.8 Total Metals**: Sb, As,	Ca, Co, Mo, Se, II																														
Page																					1								_	De .	to
ge 2					SAMPL		AND SIGNA	_	_		_			_	-7	^										-	ပ္	o pe		Seal (Y/N)	s Inta
28 of							ne of SAMP		_	far.	rde	n	(91	H	73	D	ATE S	Signe	d	1		/			-	Temp in °C	Received on Ice (Y/N)		Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
28						SIGNATU	RE of SAMP	LER	1	1	1	1					(1)	MM/DI	D/YY)	: 03	3/2	-6/	19					LE.	(ತ 🖳	Š

April 08, 2019

Brandon Griffin Westar Energy 818 S. Kansas Ave Topeka, KS 66612

RE: Project: JEC FAA CCR

Pace Project No.: 60297981

Dear Brandon Griffin:

Enclosed are the analytical results for sample(s) received by the laboratory on March 27, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Stanton M. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: HEATH HORYNA, WESTAR ENERGY
Andrew Hare, Westar Energy
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, WESTAR ENERGY
Melissa Michels, Westar Energy
JD Schlegel, KCP&L & Westar

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: JEC FAA CCR Pace Project No.: 60297981

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Texas/TNI Certification #: T104704188-17-3

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: JEC FAA CCR
Pace Project No.: 60297981

Lab ID	Sample ID	Matrix	Date Collected	Date Received	eived	
60297981001	FAA-5-032619	Water	03/26/19 09:00	03/27/19 09:30		
60297981002	FAA-4-032619	Water	03/26/19 10:21	03/27/19 09:30		
60297981003	FAA-3-032619	Water	03/26/19 11:17	03/27/19 09:30		
60297981004	FAA-6-032619	Water	03/26/19 12:21	03/27/19 09:30		

SAMPLE ANALYTE COUNT

Project: JEC FAA CCR
Pace Project No.: 60297981

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60297981001	FAA-5-032619	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60297981002	FAA-4-032619	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60297981003	FAA-3-032619	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60297981004	FAA-6-032619	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60297981

Method: EPA 903.1

Description: 903.1 Radium 226
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60297981

Method: EPA 904.0

Description: 904.0 Radium 228
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60297981

Method: Total Radium Calculation
Description: Total Radium 228+226
Client: WESTAR ENERGY
Date: April 08, 2019

General Information:

4 samples were analyzed for Total Radium Calculation. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

Sample: FAA-5-032619 PWS:	Lab ID: 6029798 ⁴ Site ID:	1001 Collected: 03/26/19 09:00 Sample Type:	Received:	03/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.261 ± 0.469 (0.801) C:NA T:98%	pCi/L	04/05/19 11:09	13982-63-3	
Radium-228	EPA 904.0	0.742 ± 0.506 (0.999) C:74% T:88%	pCi/L	04/04/19 13:1	15262-20-1	
Total Radium	Total Radium Calculation	1.00 ± 0.975 (1.80)	pCi/L	04/08/19 11:52	2 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

Sample: FAA-4-032619 PWS:	Lab ID: 602979 Site ID:	81002 Collected: 03/26/19 10:21 Sample Type:	Received:	03/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.640 ± 0.667 (1.01) C:NA T:80%	pCi/L	04/05/19 11:09	13982-63-3	
Radium-228	EPA 904.0	0.761 ± 0.517 (1.01) C:73% T:77%	pCi/L	04/04/19 13:1	15262-20-1	
Total Radium	Total Radium Calculation	1.40 ± 1.18 (2.02)	pCi/L	04/08/19 11:52	2 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

Sample: FAA-3-032619 PWS:	Lab ID: 60297981 Site ID:	003 Collected: 03/26/19 11:17 Sample Type:	Received:	03/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.0421 ± 0.336 (0.696) C:NA T:94%	pCi/L	04/05/19 11:09	13982-63-3	
Radium-228		0.310 ± 0.446 (0.961) C:74% T:82%	pCi/L	04/04/19 13:1	15262-20-1	
Total Radium	Total Radium Calculation	0.352 ± 0.782 (1.66)	pCi/L	04/08/19 11:52	2 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

Sample: FAA-6-032619 PWS:	Lab ID: 60297981 Site ID:	004 Collected: 03/26/19 12:21 Sample Type:	Received:	03/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.873 ± 0.630 (0.812) C:NA T:92%	pCi/L	04/05/19 11:09	13982-63-3	
Radium-228	EPA 904.0	0.555 ± 0.492 (1.01) C:74% T:83%	pCi/L	04/04/19 13:1	15262-20-1	
Total Radium	Total Radium Calculation	1.43 ± 1.12 (1.82)	pCi/L	04/08/19 11:52	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

QC Batch: 335759 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60297981001, 60297981002, 60297981003, 60297981004

METHOD BLANK: 1633714 Matrix: Water
Associated Lab Samples: 60297981001, 60297981002, 60297981003, 60297981004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.170 ± 0.319 (0.701) C:76% T:81% pCi/L 04/04/19 13:09

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60297981

QC Batch: 336036 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60297981001, 60297981002, 60297981003, 60297981004

METHOD BLANK: 1634873 Matrix: Water

Associated Lab Samples: 60297981001, 60297981002, 60297981003, 60297981004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 -0.0135 ± 0.322 (0.525) C:NA T:96% pCi/L 04/05/19 10:31

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAA CCR Pace Project No.: 60297981

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 04/08/2019 01:07 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAA CCR
Pace Project No.: 60297981

Date: 04/08/2019 01:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60297981001	FAA-5-032619	EPA 903.1	336036		
60297981002	FAA-4-032619	EPA 903.1	336036		
60297981003	FAA-3-032619	EPA 903.1	336036		
60297981004	FAA-6-032619	EPA 903.1	336036		
60297981001	FAA-5-032619	EPA 904.0	335759		
60297981002	FAA-4-032619	EPA 904.0	335759		
60297981003	FAA-3-032619	EPA 904.0	335759		
60297981004	FAA-6-032619	EPA 904.0	335759		
60297981001	FAA-5-032619	Total Radium Calculation	337303		
60297981002	FAA-4-032619	Total Radium Calculation	337303		
60297981003	FAA-3-032619	Total Radium Calculation	337303		
60297981004	FAA-6-032619	Total Radium Calculation	337303		

C	hain	of Custody											
	X S	Samples were sent dire	ectly to the	ne Subcontracti	ng Laboratory	r .			State C Cert. N		_		Yes No
		r: 60297981 Worl	korder N	lame: JEC FA/)wner				
	ort To			Subcontra	ct To			n de de verd	(2,76)) (35,4)	ésteálhozá	n Inge		Requested Analysis
Pac 960 Len)8 Loiret iexa, KS	iical Kansas Blvd.		1638 Suites Greer	Analytical Pittst Roseytown Roa 5 2,3, & 4 isburg, PA 1566 6 (724)850-5600	ad [*] 01		?reserved	(Contai	ners	-226 & Total Radium	Radium-228	WO#: 30286238
ltem	Sample	, n	Sample	Collect			Other				Radium-		
1	FAA-5-03		Type PS	Date/Time 3/26/2019 09:00	Lab ID	Matrix					↓_		LAB USE ONLY
2	FAA-4-03		PS	3/26/2019 09:00	60297981001 60297981002	Water Water	1	 			X	X	
3	FAA-3-03	2619	PS	3/26/2019 11:17	60297981002	Water	1	<u> </u>		-	X	X	002
4	FAA-6-03	2619	PS	3/26/2019 12:21	60297981004	Water	+		╀┼	╢	 	X	
5							H	 	╁╼┾╴		+^	 ^	900
210123	-	I											Comments
-	sfers	Released By		Date/Time	Received B				Da	ate/Tin	ne		
1					En	Wy-T-			3	-27-	19]09	930
2						0 .]	
3	T											b	<u> </u>
Coc	oler Ten	nperature on Receipt	ادلاه	<u>°C</u> Cus	tody Seal (Y	or N		F	Receiv	ed or	lce	Y	or N Samples Intact V or N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

30286238

Sectio Require Compar	d Client Information;	Section B Required Pr	oject Info							ion C		ed Mo	^i-												Pa	ge:	1	of		
Address	818 Kansas Ave	Сору То:			leath Ho	กงล		-		any Na					<u></u>	21/													′	
 	Topeka, KS 66612					iiiye.										·Υ			<u> </u> F	REGU	LATC	RY	AGE	NCY	7	1 15			in ereti.	
Email To		Purchase Or	der No :	40 150 /	3000040	242			Addre			SEE :	SEC	TIOI	N A				╝	₹ N	PDES	Г	G	ROUN	ND W.	ATER	Г	DRINKIN	G WATER	
Phone;	(785) 575-8135 Fax:	Project Name				819			Pace (Refere	nce:										Γ υ	ST	Γ	R	CRA			Γ	OTHER		
	, ,			C FAA CC	K .				Pace F Manag	Project jer:	He	ather	Wil:	son, 9	913-	-563	-1407	7	Т	Site L	ocatio	n		140						
	ted Due Date/TAT: 18 00) 4/12/19	Project Numb	er:						Pace F	Profile #	965	7, 2							\neg	٠	STATE	≘:		KS		- 🅢				
J*************************************	L			T						,					I		Rec	uest	ed A	nalys	is Filt	ered	(Y/I	N) ::						
	Section D Valid Matrix C Required Client Information MATRIX DRINKING WATER	Odes CODE DW	codes to feft) C=COMP)		COLI	ECTED					Pre:	serva	tive	\$		↑N / A					William Co.									
	WATER WASTE WATER PRODUCT SOIL/SOLIO Oil.	WT WW P SL OL	(see valid codes to left) (G=GRAB C=COMP)	COMP STA		COMPC END/G	SITE RAB	COLLECTION	S				THE RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN 1		_										1 470	Î	,			
# W.	SAMPLE ID WIPE (A-Z, 0-9 / ,-) AR OTHER Sample IDS MUST BE UNIQUE TISSUE	AR OT TS	MATRIX CODE (SAMPLE TYPE (G					SAMPLE TEMP AT C	# OF CONTAINERS	Unpreserved	HNO ₃	Į	, So	Methanol	- 11	↓Analysis Test↓	Radium-226 Radium-228	Total Radium			NAME OF THE PROPERTY OF			***************************************		Residual Chlorine (Y/N)				
ITEM			SAM	DATE	TIME	DATE	TIME	SAM	# OF			기울	a ₂ S	Veth		Ϋ́	adii adi	otal				ĺ				SE CEST	6	D		
1	FAA-5-032619	v	JT G			3/26	0900	┪	2		2	=	1		╁			- I	┪	+-	-	+	+	+ +	+		Pace	Project i	No./ Lab I.D	
2	PAA-4 -032619	~	WT 6			3/28	1021	7	2		2		t		\dashv	Н			-	_		╁		\vdash	+	-				
3	F44-3-032619	¥	JT 6			3/26	1117	1	2		12	+	1	1	1	Н		+ + +	+		╁	-	_		-+	+				
. 4	FAA-6-032619		16			3/26		7	2		2	_	-	++	٦.	Н	H		_			+	+	+	┰	+				
- 5								┪	a.com			+	╁	\vdash	┪	F		+*-	+		-	+	+	++		+				
6								7			 	_		\vdash	-	H			-			+-		+	_					
7								1			11	+	+	\Box	1	-		++	-	-		+	 	+	-					
8					<u> </u>			┪			++	-	†		┥.	-	+-	+	+	+		+	+	╁╾┼	+					
9								┪			+-+		╁	\vdash	- -	-	-	1	+	+	-		╁	\vdash	-	+				
10					<u> </u>			┪				_	╁┈	 	┥`	-		 	-	-		+	┼	\dashv	\dashv	-				
11					<u> </u>			7		\vdash	 		+	 	٦,	╂		1 1	-	-		+	+	+		╫				
12			\top					7		\vdash	+ +	-	┼─		1	ŀ	-	++	-	+	-	+	 	\vdash	+					
<u> A</u>	ADDITIONAL COMMENTS	F	RELINQU	ISHED BY /	AFFILIAT	ON	DATE	7	∵TI	ME			. AC	CEPT	ED 8	Y/A	LEFILI/	ATION			DATE		TIME		Ļ_		CAMO	E CONDIT	2010	
*200.7 T	otal Metals: Ba, Be, Cr, Pb, Li	187	$\overline{\nu}$	- /0	vestar		3/26	\dashv	1000	<u>. (.</u> e-1			* .				7	-									SAMP		·····	
**200.8	Total Metals: Co, As, Se, Mo, Cd, Sb, Ti	1.7/			-37		3/26	+	160	<u> </u>		Ev	<u> </u>		NX		+			<u> </u>	27-11	4 C)이	<u>50</u>	ادلو	2 `	7	Ч	<u> </u>	
								1			1									+-		\dagger		_					1	
										•	 									 										
9					SAMPL	R NAME A	ND SIGNAT	ŲR	E																	١.		pel (t	<u>ğ</u>	
2							e of SAMPLE E of SAMPLE		BI	(nno	len VV	6	1	FA	Ly.		DATE	Signed	d	2 /2	6/1	15,	·· .		Temp in °C	- Devision of	Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)	
7	. 4									<i></i>	- 5"						factory F		• 🗸	1 1 160	· */ (Ę						೮	σ	

Pittsburgh Lab Sample Condit	ion (Jpor	ı Re	ceipt
Pace Analytical Client Name:	<u> N</u>	<u>est</u>	CV	Every Project # 30286238
Courier: Fed Ex UPS USPS Client Tracking #: 47 40 8742 53	48 18	omme	rcial	Lims Login
Custody Seal on Cooler/Box Present: Ves	<u></u> □ n-	0	Seals	intact: yes no
Thermometer Used	Туре	of Ice:	Wet	Blue None
Cooler Temperature Observed Temp 1, 1	<u>.l</u>	° C	Corre	ection Factor: O C Final Temp: \\ \Q °C
Comments:	Yes	No	N/A	pH paper Lot# Date and Initials of person examining contents: ET 3-27-19
Chain of Custody Present:		<u> </u>		1.
Chain of Custody Filled Out:			<u> </u>	2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:				4.
Sample Labels match COC:				5.
-Includes date/time/ID Matrix:	W	<u>T</u>		
Samples Arrived within Hold Time:				6,
Short Hold Time Analysis (<72hr remaining):				7.
Rush Turn Around Time Requested:				8.
Sufficient Volume:				9.
Correct Containers Used:				10.
-Pace Containers Used:				
Containers Intact:				11.
Orthophosphate field filtered				12.
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.				16.
All containers needing preservation are found to be in compliance with EPA recommendation.				PHLE
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when Completed ET Date/time of preservation Lot # of added preservative
Headspace in VOA Vials (>6mm):				17.
Trip Blank Present:				18.
Trip Blank Custody Seals Present				
Rad Samples Screened < 0.5 mrem/hr		,		Initial when completed: ET Date: 3-2, 7, 1,9
Client Notification/ Resolution:				compact. Of page 3 6 1 1
Person Contacted:			Date/	Fime: Contacted By:
Comments/ Resolution:				
,				

 \square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

ATTACHMENT 1-2

June 2019 Sampling Event

Laboratory Analytical Report

July 05, 2019

JD Schlegel KCP&L & Westar 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC FAA CCR

Pace Project No.: 60306862

Dear JD Schlegel:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

diano m. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: HEATH HORYNA, WESTAR ENERGY
Andrew Hare, Westar Energy
Jake Humphrey, KCP&L & Westar, Evergy Companies
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, WESTAR ENERGY
Melissa Michels, Westar Energy

CERTIFICATIONS

Project: JEC FAA CCR
Pace Project No.: 60306862

Kansas Certification IDs

Iowa Certification #: 118

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1
Oklahoma Certification #: 9205/9935
Missouri SEKS Micro Certification: 10070
Florida: Cert E871149 SEKS WET
Texas Certification #: T104704407-18-11
Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: JEC FAA CCR
Pace Project No.: 60306862

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60306862001	FAA-3-062319	Water	06/23/19 18:18	06/25/19 12:25
60306862002	FAA-6-062319	Water	06/23/19 19:17	06/25/19 12:25
60306862003	FAA-4-062319	Water	06/24/19 07:50	06/25/19 12:25
60306862004	FAA-5-062319	Water	06/24/19 08:55	06/25/19 12:25

SAMPLE ANALYTE COUNT

Project: JEC FAA CCR
Pace Project No.: 60306862

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60306862001	FAA-3-062319	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	TDS	1	PASI-K
		EPA 300.0	MGS	1	PASI-K
60306862002	FAA-6-062319	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	TDS	1	PASI-K
		EPA 300.0	MGS	1	PASI-K
60306862003	FAA-4-062319	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	TDS	1	PASI-K
		EPA 300.0	MGS	1	PASI-K
60306862004	FAA-5-062319	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	JGP	7	PASI-K
		EPA 245.1	TDS	1	PASI-K
		EPA 300.0	MGS	1	PASI-K

Project: JEC FAA CCR Pace Project No.: 60306862

Method: EPA 200.7

Description: 200.7 Metals, Total **Client:** WESTAR ENERGY **Date:** July 05, 2019

General Information:

4 samples were analyzed for EPA 200.7. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FAA CCR Pace Project No.: 60306862

Method: EPA 200.8

Description: 200.8 MET ICPMS
Client: WESTAR ENERGY
Date: July 05, 2019

General Information:

4 samples were analyzed for EPA 200.8. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 593775

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60306862002,60306864002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2434174)
 - Molybdenum
 - Selenium

Additional Comments:

Project: JEC FAA CCR Pace Project No.: 60306862

Method: EPA 245.1
Description: 245.1 Mercury
Client: WESTAR ENERGY
Date: July 05, 2019

General Information:

4 samples were analyzed for EPA 245.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FAA CCR Pace Project No.: 60306862

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: WESTAR ENERGY
Date: July 05, 2019

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 594228

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60306862001,60306864004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2435440)
 - Fluoride

R1: RPD value was outside control limits.

- MSD (Lab ID: 2435441)
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FAA CCR
Pace Project No.: 60306862

Sample: FAA-3-062319	Lab ID: 6030	06862001	Collected: 06/23/1	9 18:18	Received: 06	i/25/19 12:25 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	0.033	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:17	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 10:26	07/01/19 18:17	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:17	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:17	7439-92-1	
Lithium	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:17	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	07/01/19 12:18	07/02/19 11:18	7440-43-9	
Cobalt, Total Recoverable	< 0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7440-48-4	
Molybdenum, Total Recoverable	0.011	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7439-98-7	
Selenium, Total Recoverable	< 0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7782-49-2	
Гhallium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:18	7440-28-0	
245.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.20	ug/L	0.20	1	07/02/19 10:30	07/05/19 14:28	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Fluoride	0.43	mg/L	0.20	1		07/03/19 15:09	16984-48-8	M1,R1

Project: JEC FAA CCR
Pace Project No.: 60306862

Sample: FAA-6-062319	Lab ID: 6030	06862002	Collected: 06/23/1	9 19:17	Received: 06	5/25/19 12:25 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EF	PA 200.7			
Barium, Total Recoverable	0.026	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:20	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 10:26	07/01/19 18:20	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:20	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:20	7439-92-1	
Lithium	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:20	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	00.8 Preparation Met	hod: EF	PA 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7440-36-0	
Arsenic, Total Recoverable	0.0043	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	07/01/19 12:18	07/02/19 11:21	7440-43-9	
Cobalt, Total Recoverable	0.0012	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7440-48-4	
Molybdenum, Total Recoverable	0.34	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7439-98-7	M1
Selenium, Total Recoverable	0.014	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7782-49-2	M1
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:21	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EF	PA 245.1			
Mercury	<0.20	ug/L	0.20	1	07/02/19 10:30	07/05/19 14:32	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
Fluoride	1.2	mg/L	0.20	1		07/03/19 15:53	16984-48-8	

Project: JEC FAA CCR
Pace Project No.: 60306862

Sample: FAA-4-062319	Lab ID: 6030	06862003	Collected: 06/24/1	9 07:50	Received: 06	/25/19 12:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Meth	nod: EPA 20	0.7 Preparation Met	hod: EF	A 200.7			
Barium, Total Recoverable	0.052	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:23	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 10:26	07/01/19 18:23	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:23	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:23	7439-92-1	
Lithium	0.017	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:23	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	0.8 Preparation Met	hod: EF	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7440-38-2	
Cadmium, Total Recoverable	< 0.00050	mg/L	0.00050	1	07/01/19 12:18	07/02/19 11:28	7440-43-9	
Cobalt, Total Recoverable	< 0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7440-48-4	
Molybdenum, Total Recoverable	0.0065	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7439-98-7	
Selenium, Total Recoverable	0.0019	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 11:28	7440-28-0	
245.1 Mercury	Analytical Meth	nod: EPA 24	5.1 Preparation Met	hod: EF	A 245.1			
Mercury	<0.20	ug/L	0.20	1	07/02/19 10:30	07/05/19 14:35	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Fluoride	0.44	mg/L	0.20	1		07/03/19 16:07	16984-48-8	

Project: JEC FAA CCR
Pace Project No.: 60306862

Sample: FAA-5-062319	Lab ID: 6030	06862004	Collected: 06/24/1	9 08:55	Received: 06	i/25/19 12:25 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	0.0072	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:25	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 10:26	07/01/19 18:25	7440-41-7	
Chromium, Total Recoverable	< 0.0050	mg/L	0.0050	1	07/01/19 10:26	07/01/19 18:25	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:25	7439-92-1	
Lithium	0.11	mg/L	0.010	1	07/01/19 10:26	07/01/19 18:25	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	00.8 Preparation Met	hod: EP	A 200.8			
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	07/01/19 12:18	07/02/19 12:15	7440-43-9	
Cobalt, Total Recoverable	0.0056	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7440-48-4	
Molybdenum, Total Recoverable	0.053	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7439-98-7	
Selenium, Total Recoverable	0.0011	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	07/01/19 12:18	07/02/19 12:15	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.20	ug/L	0.20	1	07/02/19 10:30	07/05/19 14:37	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
Fluoride	1.6	mg/L	0.20	1		07/03/19 16:52	16984-48-8	

Project: JEC FAA CCR Pace Project No.: 60306862

QC Batch: 594114 Analysis Method: EPA 245.1

QC Batch Method: EPA 245.1 Analysis Description: 245.1 Mercury

Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

METHOD BLANK: 2435087 Matrix: Water
Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 07/05/19 14:16

LABORATORY CONTROL SAMPLE: 2435088

Date: 07/05/2019 04:53 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.9 98 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2435089 2435090

MS MSD MSD 60306905001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 5 5 4.7 70-130 3 20 Mercury ug/L < 0.20 4.8 96 93

ParameterUnitsResultConc.Result% RecLimitsQualifiersMercuryug/L<0.20</td>54.28370-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60306862

QC Batch: 593768 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

60306862001, 60306862002, 60306862003, 60306862004 Associated Lab Samples:

METHOD BLANK: 2434147 Matrix: Water Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	07/01/19 18:15	
Beryllium	mg/L	< 0.0010	0.0010	07/01/19 18:15	
Chromium	mg/L	< 0.0050	0.0050	07/01/19 18:15	
Lead	mg/L	< 0.010	0.010	07/01/19 18:15	
Lithium	mg/L	<0.010	0.010	07/01/19 18:15	

LABORATORY CONTROL SAMPLE: 243	4148
--------------------------------	------

Date: 07/05/2019 04:53 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Barium	mg/L	1	0.99	99	85-115	
Beryllium	mg/L	1	0.99	99	85-115	
Chromium	mg/L	1	1.0	100	85-115	
Lead	mg/L	1	0.97	97	85-115	
Lithium	mg/L	1	1.0	102	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 2434	149		2434150							
	6	0306862004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	Qual
Barium	mg/L	0.0072	1	1	0.99	1.0	98	101	70-130	3		
Beryllium	mg/L	<0.0072	1	1	0.99	1.0	99	101	70-130	4	_	
Chromium	mg/L	< 0.0050	1	1	0.99	0.99	99	99	70-130	0	20	
Lead	mg/L	< 0.010	1	1	0.91	0.92	91	92	70-130	1	20	
Lithium	mg/L	0.11	1	1	1.2	1.2	110	113	70-130	3	20	

MATRIX SPIKE SAMPLE:	2434151						
		60306864004	Spike	MS	MS	% Rec	0 11/1
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	0.31	1	1.3	101	70-130	
Beryllium	mg/L	< 0.0010	1	0.95	95	70-130	
Chromium	mg/L	< 0.0050	1	1.0	102	70-130	
Lead	mg/L	< 0.010	1	0.94	94	70-130	
Lithium	mg/L	0.013	1	1.1	110	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60306862

Date: 07/05/2019 04:53 PM

QC Batch: 593775 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

METHOD BLANK: 2434170 Matrix: Water
Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	< 0.0010	0.0010	07/02/19 11:14	
Arsenic	mg/L	< 0.0010	0.0010	07/02/19 11:14	
Cadmium	mg/L	< 0.00050	0.00050	07/02/19 11:14	
Cobalt	mg/L	< 0.0010	0.0010	07/02/19 11:14	
Molybdenum	mg/L	< 0.0010	0.0010	07/02/19 11:14	
Selenium	mg/L	< 0.0010	0.0010	07/02/19 11:14	
Thallium	mg/L	< 0.0010	0.0010	07/02/19 11:14	

LABORATORY CONTROL SAMPLE:	2434171					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.040	100	85-115	
Arsenic	mg/L	0.04	0.039	97	85-115	
Cadmium	mg/L	0.04	0.041	101	85-115	
Cobalt	mg/L	0.04	0.041	102	85-115	
Molybdenum	mg/L	0.04	0.038	94	85-115	
Selenium	mg/L	0.04	0.039	98	85-115	
Thallium	mg/L	0.04	0.039	97	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2434	172 MS	MSD	2434173							
	6	0306864002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	<0.0010	0.04	0.04	0.039	0.039	97	97	70-130	0	20	
Arsenic	mg/L	< 0.0010	0.04	0.04	0.042	0.042	102	103	70-130	0	20	
Cadmium	mg/L	< 0.00050	0.04	0.04	0.037	0.038	94	95	70-130	1	20	
Cobalt	mg/L	< 0.0010	0.04	0.04	0.043	0.044	108	109	70-130	0	20	
Molybdenum	mg/L	0.0059	0.04	0.04	0.047	0.047	102	103	70-130	1	20	
Selenium	mg/L	< 0.0010	0.04	0.04	0.038	0.039	94	96	70-130	2	20	
Thallium	mg/L	< 0.0010	0.04	0.04	0.037	0.037	93	93	70-130	0	20	

MATRIX SPIKE SAMPLE:	2434174						
		60306862002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	<0.0010	0.04	0.039	96	70-130	
Arsenic	mg/L	0.0043	0.04	0.040	90	70-130	
Cadmium	mg/L	<0.00050	0.04	0.038	95	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR
Pace Project No.: 60306862

Date: 07/05/2019 04:53 PM

MATRIX SPIKE SAMPLE:	2434174						
Parameter	Units	60306862002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Cobalt	mg/L	0.0012	0.04	0.043	104	70-130	
Molybdenum	mg/L	0.34	0.04	0.045	-739	70-130	M1
Selenium	mg/L	0.014	0.04	0.038	60	70-130	M1
Thallium	mg/L	< 0.0010	0.04	0.038	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAA CCR Pace Project No.: 60306862

QC Batch: 594228 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

METHOD BLANK: 2435438 Matrix: Water
Associated Lab Samples: 60306862001, 60306862002, 60306862003, 60306862004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Fluoride mg/L <0.20 0.20 07/03/19 12:31

LABORATORY CONTROL SAMPLE: 2435439

Date: 07/05/2019 04:53 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 2.5 2.5 100 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2435440 2435441

MS MSD MSD 60306862001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Fluoride 15 M1,R1 mg/L 0.43 2.5 2.5 2.1 3.1 67 108 80-120 40

ParameterUnitsResultConc.Result% RecLimitsQualifiersFluoridemg/L0.362.53.010480-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAA CCR Pace Project No.: 60306862

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 07/05/2019 04:53 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAA CCR
Pace Project No.: 60306862

Date: 07/05/2019 04:53 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60306862001	FAA-3-062319	EPA 200.7	593768	EPA 200.7	 594015
60306862002	FAA-6-062319	EPA 200.7	593768	EPA 200.7	594015
60306862003	FAA-4-062319	EPA 200.7	593768	EPA 200.7	594015
60306862004	FAA-5-062319	EPA 200.7	593768	EPA 200.7	594015
60306862001	FAA-3-062319	EPA 200.8	593775	EPA 200.8	593896
60306862002	FAA-6-062319	EPA 200.8	593775	EPA 200.8	593896
60306862003	FAA-4-062319	EPA 200.8	593775	EPA 200.8	593896
60306862004	FAA-5-062319	EPA 200.8	593775	EPA 200.8	593896
60306862001	FAA-3-062319	EPA 245.1	594114	EPA 245.1	594130
60306862002	FAA-6-062319	EPA 245.1	594114	EPA 245.1	594130
60306862003	FAA-4-062319	EPA 245.1	594114	EPA 245.1	594130
60306862004	FAA-5-062319	EPA 245.1	594114	EPA 245.1	594130
60306862001	FAA-3-062319	EPA 300.0	594228		
60306862002	FAA-6-062319	EPA 300.0	594228		
60306862003	FAA-4-062319	EPA 300.0	594228		
60306862004	FAA-5-062319	EPA 300.0	594228		

Sample Condition Upon Receipt

Client Name:		,	
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗆	Pace Xroads 🗆 (Client □ Other □
Tracking #: Pac	ce Shipping Label Use	d? Yes□ No⊅	
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals intact: Yes	No □	
Packing Material: Bubble Wrap □ Bubble Bags	Foam 🗆	None □ Othe	er 🗆
Thermometer Used: \(\sigma 24\) Type o	of Ice: Wet Blue No	ne	
Cooler Temperature (°C): As-read Corr. Fact	tor <u>10</u> Correc	ted <u>0.9</u>	Date and initials of person examining contents: 1, /25/19
Temperature should be above freezing to 6°C		17	, , , , , , , , , , , , , , , , , , ,
Chain of Custody present:	Yes No N/A		
Chain of Custody relinquished	ΔYes □No □N/A		
Samples arrived within holding time:	Yes No N/A		
Short Hold Time analyses (<72hr):	Yes No N/A		
Rush Turn Around Time requested:	□Yes No □N/A		
Sufficient volume:	Yes ONO ON/A		
Correct containers used;	AYes ONO ON/A		-0
Pace containers used:	Yes ONO ON/A		
Containers intact:	DYes □No □N/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ☑N/A		
Filtered volume received for dissolved tests?	□Yes □No ZN/A		
Sample labels match COC: Date / time / ID / analyses	Yes ONO ONIA		
Samples contain multiple phases? Matrix: 🍑	Yes No DN/A		
Containers requiring pH preservation in compliance?	ØYes □No □N/A	List sample IDs, volumes date/time added.	s, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		date/time added.	
Cyanide water sample checks:			
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	□Yes □No □N/A		
Headspace in VOA vials (>6mm):	□Yes □No ☑N/A		
Samples from USDA Regulated Area: State:	□Yes □No □N/A		
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ☑N/A		
Client Notification/ Resolution: Copy COC to		Field Data Required?	Y / N
Person Contacted: Date/	Гіте:		
Comments/ Resolution: Due to an IT glitch the COC did	In't get updated in the	bottle order. So this CO	C isn't accurate. Please see the
attached corrected chain. HMW 6/27/19			
Project Manager Review:	Date	<u>}</u>	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Informat				Section C Invoice Information:															Page: of																																
	AR ENERGY	Required P							Invoice Information: Attention																	_																									
Address: 818 Ka	nsas Ave	Сору То:	Jared N	forrison					Company Name:											111 A	TOP	V AC	ENCY	,																											
Topeka, KS 66612									Addres	ss:								-	REGULATORY AGENCY NPDES GROUND WATER DRINKING WATER																																
Email To: <u>brandon.l.griffin@westarenergy.com</u> Purchase Order No.: 10JEC-0						819		-	Pace Quote												-																														
Phone: 785-575-8135 Fax: Project Name: JEC FAA CCI								-	Reference: Pace Project Heather Wilson 913-563-1407												A	_	CKA	OTHER																											
Requested Due Date/TAT: 7 day Project Number:									Manager: Pace Profile #: 9657, 1											e Loc			KS	3																											
								_			5001	' '	_	- 7		D		4-4			ATE:		(0.1)	P7	<i>XIIII</i>	444			44																						
Section D	Valid Matrix	Codes			+						_	_		-	- T	Ret	ques	Ted /	Anai	ysis I	Inter	ea (T	/N)	-0																											
Required Client I	nformation MATRIX	CODE	to laf		COLI	ECTED					Pres	ervati	ves .		N/A																																				
SAM	DRINKING WATER WATER WASTE WATER PRODUCT SOILSOLID OIL WIPE	WT	(See valid codes to left)	COMPO		COMPO END/G	OSITE RAB	COLLECTION	RS						st !	tals*								(N/V) or	(1114)			2.																							
(A-	AJR -Z, 0-9 / ,-) OTHER TISSUE	AR OT TS	MATRIX CODE SAMPLE TYPE (SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved H ₂ SO ₄	HNO3	NaOH	Na ₂ S ₂ O ₃ Methanol	Other	Analysis Test	200.7 Total Metals*	245.1 Total Hg	Щ.	2540C TDS	4500 H+B				Residual Chlorine (V/N)	U U			62																							
	-3_062319			DATE	TIME	DATE		Ś	_	_			_	+	\rightarrow		2 2	8		4	\vdash	-	+	<u> a</u>	: Pa	ice Pr	roject N	o./ Lab I.	D.																						
1 FAA-	7		UT G			06/23	1818	-	2	35	Pro	13	73		-	<u> </u>	<u> </u>	X	X	X	+1	+	+	+	+-																										
[1]1	4-062419		JI 6		06/24 750																										2	+	₩	+			1	XX	- X	X	/-	<u> </u>	+	+		+	+			002	2
7	5-062419		256			06/24		7	2	^	1	+	T/	H		X		V	~	_	H	\forall	+	+	+-			00/	i																						
5						000		7			H	\forall	- V	П	ľ						П			+	1			إكلايا																							
6											П	T	T	П		T		П	\exists	1	Ħ	T	77		1																										
7												\Box		П						\top																															
8																																																			
9																																																			
10														Ш		4		Ш			Ш																														
11			_					_		_		\perp	Щ	Ц	-	_				1					1																										
12	TOUR COMMENTS				2			_			Ш			Ш			1	Ш	4		Щ																														
ADDI 200 7 Total Metals*: B, Ca	a Ba Ba Cr Ph Li		RELINQU	ISHED BY /	AFFILIATI	ION	DATE			ME	3		ACCE	PTED	BY//	AFFILI	ATIOI	N		DAT		_	ME		SA	MPLE	CONDITIO	ONS																							
200 8 Total Metals**: Sb,				200	77	A	6/25	100	20	SER	1	2	1) 24)	<u>u</u>	人	(_	_	-	-	125	15		5	1.9	2/	+	·/	-/																							
											-				_				ľ								6	*																							
Page					SAMPLI	ER NAME A	AND SIGNAT	TUR	É	П									_		-1			O		+	pale (2	act																							
e 21 of							e of SAMPLE	-	Y.	an	1	w	7	20	T	DATE	Sign	ed						Temp in °(Received on Ice (Y/N)		Custody Sealed Cooler (Y/N)	Samples Intact																							
f 22						SIGNATUR	E of SAMPLE	ER:		K	1	2		2		(MM/	DD/Y	r):	6	1/5	5	19		ř	_ & _		Sugar Suga Sugar Suga Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Suga Sugar Sugar Sugar Sugar Sugar Suga S Sugar Sugar Sugar Suga S S	San																							

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Section B Required Client Information: Required Project Information:											Section C Invoice Information:																			of			
Company: WESTAR ENERGY Report To: Brandon Griffin							Attention:									лтацоп.											<u> </u>						
Address: 818 Kansas Ave Copy To: Jared Morrison											Com	npany l	Name):							DECIII ATORY ACENCY												
Topeka, KS 66612										ress:									REGULATORY AGENCY NPDES GROUND WATER DRINKING WATER														
					0000400	10				Quote										_					DUND WATER								
						19			Refer	rence:					0.4	0.50	0.44	107			UST			RCR	A		 _	OTHER	, , , , , , , , , , , , , , , , , , , 	_			
Phone: 785-575-8135 Fax: Project Name: JEC FAA CC			FAA CC	K				Pace Project Heather Wilson 913-563-1407												e Loc	ation	1	K	ks /////////									
Request	ed Due Date/TAT:	7 day		Project Nur	mber:							Pace	Profile	#: (9657	, 2									ATE:	_			_	<i>22</i>	<u> </u>		<u> </u>
																			→ N/A		Requ	ested	Anal	ysis	Filte	red (Y/N)		//				//
Section D Valid Matrix Co Required Client Information MATRIX		N D Valid Matrix Codes Ad Client Information MATRIX DRINKING WATER WATER WATER WATER WATER WATER WATER WATER WWATER WWATER								COLLECTED						Preservatives																	//
	noqui ou onom mormano	DRINKING WATER				C=COMP)	_	OOLL	LOTED	z				ΙÍ	1 1 1 1 1					t									M	<u> </u>	<u> </u>		
		WAS PROI	WT WW P	id coc	3 8	COMPOSITE START COM		COMPO END/GI	COMPOSITE END/GRAB																			î					
		SOIL/SOLID SL VE							START COMPOSITE END/GRAB									\rightarrow	*s	si *s								(Y/N)					
	SAMPL	7 111 1		WP AR OT		(G=					AT C	CONTAINERS							Test	Metals*	/eta	g.							Chlorine				
	(A-Z, 0-9 / Sample IDs MUST	, ,	UE	TS	CODE	TYPE					MP,	TAIN	ved						is T	la Ia	tal	Total Hg							Chlc				
#					×	E T					H	NO.	eser	4	_	_	ဝို့	anol .	alys	Total	To	Tol	3						lual				
ITEM					MATRIX (SAMPLE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# 0F	Unpr	H ₂ SO ₄	Š S	NaOH	$Na_2S_2O_3$	Methanol	↓ Analysis	200.7	200.8 Total Metals	245.1 Total Hç							Residual	Pace	Project N	lo./ Lab I.D	<u>. </u>
1																																	
2																																	
3																																	
4																																	
5																				L													
6																																	
7																																	
8																			4	_													
9																			4	_													
10																			_														
11												1							-	_													
12											 								Ш					Ш									
200 7 To	tal Metals*: Ba, Be, Cr,	L COMMENTS			REL	INQUI	SHED BY /	AFFILIATI	ON	DATI			TIME				ACC	EPTE	D BY	/ AF	FILIA	TION		DA	TE		ГІМЕ			SAMPI	LE CONDITI	ONS	
200.8 10	tal Metals**: Sb, As, Cd,	Co, Mo, Se, II																															
																																	_
								SAMPLE	SAMPLER NAME AND SIGNATURE																		9	ပ္	uo (r	N)	(N/X) ambles lutact 22 of 202		
							PRINT Nam	ne of SAMF	LER:																		Temp in °C	Received on Ice (Y/N)	dy S∉ Ier (Y	oles Ir			
						SIGNATUR	RE of SAME	LER:											Signed D/YY):						ŀ	Je.	Rec	g Bage	22 of 262				

July 16, 2019

JD Schlegel KCP&L & Westar 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC FAA CCR

Pace Project No.: 60307780

Dear JD Schlegel:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Starton M. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: HEATH HORYNA, WESTAR ENERGY
Andrew Hare, Westar Energy
Jake Humphrey, KCP&L & Westar, Evergy Companies
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, WESTAR ENERGY
Melissa Michels, Westar Energy

CERTIFICATIONS

Project: JEC FAA CCR Pace Project No.: 60307780

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Missouri Certification #: 235

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: JEC FAA CCR
Pace Project No.: 60307780

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60307780001	FAA-3_062319	Water	06/23/19 18:18	06/27/19 09:30	
60307780002	FAA-6_062319	Water	06/23/19 19:17	06/27/19 09:30	
60307780003	FAA-4_062319	Water	06/24/19 07:50	06/27/19 09:30	
60307780004	FAA-5 062319	Water	06/24/19 08:55	06/27/19 09:30	

SAMPLE ANALYTE COUNT

Project: JEC FAA CCR
Pace Project No.: 60307780

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
60307780001	FAA-3_062319	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	JLW	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
60307780002	FAA-6_062319	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	JLW	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
60307780003	FAA-4_062319	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	JLW	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
60307780004	FAA-5_062319	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	JLW	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60307780

Method: EPA 903.1

Description: 903.1 Radium 226 **Client:** WESTAR ENERGY **Date:** July 16, 2019

General Information:

4 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAA CCR
Pace Project No.: 60307780

Method: EPA 904.0

Description: 904.0 Radium 228 **Client:** WESTAR ENERGY **Date:** July 16, 2019

General Information:

4 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: JEC FAA CCR Pace Project No.: 60307780

Method:Total Radium CalculationDescription:Total Radium 228+226Client:WESTAR ENERGYDate:July 16, 2019

General Information:

4 samples were analyzed for Total Radium Calculation. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FAA CCR
Pace Project No.: 60307780

Sample: FAA-3_062319 Lab ID: 6030778 PWS: Site ID:		O001 Collected: 06/23/19 18:18 Sample Type:	Received:	06/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.245 ± 0.481 (0.864) C:NA T:96%	pCi/L	07/15/19 12:40	13982-63-3	
Radium-228	EPA 904.0	0.208 ± 0.309 (0.666) C:81% T:86%	pCi/L	07/11/19 15:15	5 15262-20-1	
Total Radium	Total Radium Calculation	$0.453 \pm 0.790 (1.53)$	pCi/L	07/15/19 14:49	9 7440-14-4	

Project: JEC FAA CCR
Pace Project No.: 60307780

Sample: FAA-6_062319 PWS:	Lab ID : 603077 Site ID:	80002 Collected: 06/23/19 19:17 Sample Type:	Received:	06/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.607 ± 0.481 (0.653) C:NA T:92%	pCi/L	07/15/19 12:40	13982-63-3	
Radium-228	EPA 904.0	0.823 ± 0.451 (0.833) C:81% T:84%	pCi/L	07/11/19 15:15	5 15262-20-1	
Total Radium	Total Radium Calculation	1.43 ± 0.932 (1.49)	pCi/L	07/15/19 14:49	9 7440-14-4	

Project: JEC FAA CCR
Pace Project No.: 60307780

Sample: FAA-4_062319 PWS:	Lab ID : 603077 Site ID:	80003 Collected: 06/24/19 07:50 Sample Type:	Received:	06/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.674 ± 0.534 (0.725) C:NA T:85%	pCi/L	07/15/19 12:40	13982-63-3	
Radium-228	EPA 904.0	0.863 ± 0.425 (0.736) C:81% T:77%	pCi/L	07/11/19 15:15	5 15262-20-1	
Total Radium	Total Radium Calculation	1.54 ± 0.959 (1.46)	pCi/L	07/15/19 14:49	7440-14-4	

Project: JEC FAA CCR
Pace Project No.: 60307780

Sample: FAA-5_062319 Lab ID: 60307780 PWS: Site ID:		OO4 Collected: 06/24/19 08:55 Sample Type:	Received:	06/27/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		1.79 ± 0.700 (0.535) C:NA T:96%	pCi/L	07/15/19 12:40	13982-63-3	
Radium-228		0.643 ± 0.419 (0.805) C:83% T:80%	pCi/L	07/11/19 15:15	5 15262-20-1	
Total Radium	Total Radium Calculation	2.43 ± 1.12 (1.34)	pCi/L	07/15/19 14:49	9 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60307780

QC Batch: 350656 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60307780001, 60307780002, 60307780003, 60307780004

METHOD BLANK: 1704591 Matrix: Water

Associated Lab Samples: 60307780001, 60307780002, 60307780003, 60307780004

Parameter Act \pm Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.561 \pm 0.441 (0.613) C:NA T:89% pCi/L 07/15/19 12:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAA CCR
Pace Project No.: 60307780

QC Batch: 350657 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60307780001, 60307780002, 60307780003, 60307780004

METHOD BLANK: 1704592 Matrix: Water

Associated Lab Samples: 60307780001, 60307780002, 60307780003, 60307780004

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.0658 ± 0.313 (0.715) C:82% T:76% pCi/L 07/11/19 15:13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAA CCR Pace Project No.: 60307780

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 07/16/2019 03:13 PM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAA CCR
Pace Project No.: 60307780

Date: 07/16/2019 03:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch				
60307780001	FAA-3_062319	EPA 903.1	350656	350656					
60307780002	FAA-6_062319	EPA 903.1	350656						
60307780003	FAA-4_062319	EPA 903.1	350656						
60307780004	FAA-5_062319	EPA 903.1	350656						
60307780001	FAA-3_062319	EPA 904.0	350657						
60307780002	FAA-6_062319	EPA 904.0	350657						
60307780003	FAA-4_062319	EPA 904.0	350657						
60307780004	FAA-5_062319	EPA 904.0	350657						
60307780001	FAA-3_062319	Total Radium Calculation	351806						
60307780002	FAA-6_062319	Total Radium Calculation	351806						
60307780003	FAA-4_062319	Total Radium Calculation	351806						
60307780004	FAA-5_062319	Total Radium Calculation	351806						

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ł										
Section A Required Client Information:	Section B Required Project Information:		Section C	Page: of						
Company: WESTAR ENERGY	Report To: Brandon Criffin	Adam knoelina	Invoice Information: Attention: Jared Morrison		7					
Address: 818 Kansas Ave	Copy To: Jared Morrison, F		Company Name: WESTAR ENER	GY	DEOLU ATONY AOTHO	N				
Topeka, KS 66612			Address: SEE SECTION A		REGULATORY AGENC					
· · ·	Purchase Order No.: 10.1EC-0	202024024	Pace Quote		NPDES F GROU					
3,		0000040819	Reference;		UST RCRA	OTHER				
Phone: (785) 575-8135 Fax:	Project Name: JEC FAA CC	CR	Pace Project Heather Wilson, 913 Manager:	3-563-1407	Site Location K					
Requested Due Date/TAT: 15 Day	Project Number:		Pace Profile #: 9657, 2		STATE:					
					Analysis Filtered (Y/N)					
Section D Valid Matrix Co	odes e Q	COLLECTED	Preservatives	T N /A						
DRINKING WATER	Odes CODE DW WT WT WW COMF		Preservatives	^	 					
WASTE WATER	Odes CODE DW WT V WW P P COMF P STA OL WP P STA OL WP P STA OL WP	POSITE COMPOSITE END/GRAB								
SOIUSOLID	(G=GRAB	3 July 2		→		Residual Chlorine (Y/N) Pace Project No./ Lab				
SAMPLE ID WIPE	;;; S	AI O	# OF CONTAINERS Unpreserved H2SO ₄ HNO ₃ HCI NaOH Na2S ₂ O ₃ Methanol	Test#		ine l				
(A-Z, 0-9 / ,-) OTHER		TEMP /	# OF CONTAIN Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol	alysis To Jm-226 Jm-228 Radium		oldC				
*	× ±	五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五		- m - 2 3ad 3ad		naj (
ITEM #	MATRIX CODI SAMPLE TYPE	TIME DATE TIME S	# OF CON Unpresen H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	#Analysis Radium-226 Radium-228 Total Radiun		ssidt				
			<u>. , , , , , , , , , , , , , , , , , , ,</u>	<u>→ % % % 5 </u>		Pace Project No./ Lab	ı I-D.			
1 FAQ-3-062319	w16	06/23 1818	2				(0)			
2 FAR-6-062319 3 FAR-4-062419 4 FAR-5-062419	WT G	06/23 1917	2	XXX			22			
3 FAA- 4- 06 2419	<u> </u>	06/24 750	2	XXX			25			
4 FAA-3 - 062419	w 6	06/24 855	7	XXX		+1	204			
5										
6				<u> </u>		 				
7				<u> </u>						
8										
9						 				
10										
11										
12 ADDITIONAL COMMENTS	RELINQUISHED BY	/ AFFILIATION DATE	TIME ACCEPTED	EV (AFFILIATION	DATE TIME	SAMPLE CONDITIONS				
*200.7 Total Metals: Ba, Be, Cr, Pb, Li			<u> </u>	BY / AFFILIATION	1000 000	SAMPLE CONDITIONS				
	Eli Fredri	UKSan 06/26	1800 V//WWW	n vaci	MA 119 930	NA N X				
**200.8 Total Metals: Co, As, Se, Mo, Cd, Sb, Tl										
L		SAMPLER NAME AND SIGNATUL	1				<u></u>			
Page 16	•	PRINT Name of SAMPLER		1		ed or (Y/N)	<u>.</u> 2			
16 c			- () () () () () () () () () (Temp in °C Received on loe (Y/N) Custody Sealed Cooler (Y/N)	Samples intact (Y/N)					
of 20	SIGNATURE of SAMPLER	Eli Jen	DATE Signed (MM/DD/YY):	06/26/19	L R 90 8	Ö				

Pittsburgh Lab Sample Con	idition l	Jpon	Red	ceipt	
Pace Analytical Client Name:	, 	ÐÚ	U	Project #	
Courier: Fed Ex UPS USPS CI	lient 🗅	ommei	rcial	Pace Other Label LiMS Login	
Custody Seal on Cooler/Box Present; //ye	es [n	0	Seals	intact: yes no	
Thermometer Used	_		Wet		
Cooler Temperature Observed Temp		°C		oction Factor: °C Final Temp: °C	
Temp should be above freezing to 6°C					_
				pH paper Lot# Date and Initials of person examining contents:	
Comments:	Yes	No	N/A	101)4201 Someway	
Chain of Custody Present:				1.	
Chain of Custody Filled Out:				2.	
Chain of Custody Relinquished:	1/			3.	-
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:				5.	
-Includes date/time/ID Matrix:	WT_				
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):				7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:				9.	
Correct Containers Used:				10.	
-Pace Containers Used:					
Containers Intact:				11.	
Orthophosphate field filtered				12.	·
Hex Cr Aqueous sample field filtered				13.	
Organic Samples checked for dechlorination	n:			14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation,				16.	-
exceptions: VOA, coliform, TOC, O&G, Phenoli Non-aqueous matrix	cs, Ŕadon, 			ph (2	: :
All containers meet method preservation requirements.				Initial when Date/time of completed preservation	
requirements	, L _			Lot # of added preservative	:
Headspace in VOA Vials (>6mm):				17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present					•
Rad Samples Screened < 0.5 mrem/hr				Initial when completed: NA Date: A31/9	
Client Notification/ Resolution:		!		ouriplesed. If (0) Date. If (1)	
Person-Contacted:			Date/T	ime: Contacted By:	
Comments/ Resolution:					

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen,

Chain	of Custody															_		フ		
	Samples were sent dir	ectly to th	ne Subcontractii	ng Laboratory				State Of Origin: KS Cert. Needed: Yes No								P Analyti www.pacelab				
Workord	er: 60307780 Wo r	korder N	lame: JEC FAA	CCR				ner R					27/2019		Result	s Rea	luest	ed Bv	r: 7/9/201	9
Report To			Subcontrac	ct To	k od jednik ji	lingsysisi.		300000000000000000000000000000000000000	Ø(6(180))		AV (60 m)		Reques							igióficana a co
Heather Wilson Pace Analytical Pittsburgh 1638 Roseytown Road 9608 Loiret Blvd. Lenexa, KS 66219 Phone 1(913)563-1407 Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600										RADIUM 226 / 288	TOTAL RADIUM		10# 					21		
			1 // 400 Ahrs mass all transports and a		C 1500 - 00 1500 150	F	reserved C	ontaine	rs T	RAL	ĭ									
Item Samp	e ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HN03													LAB USE O	NLY,
1 FAA-3_	062319	PS	6/23/2019 18:18	60307780001	Water	2				Х	Х				1 1	1	1	T		7/
2 FAA-6_	062319	P\$	6/23/2019 19:17	60307780002	Water	2		\top		Χ	Х						1	I		12
3 FAA-4_	062319	PS	6/24/2019 07:50	60307780003	Water	2				Χ	Х								0	3
4 FAA-5_	062319	PS	6/24/2019 08:55	60307780004	Water	2			Π	Х	Х				T			1 1		4
5	operatification operation pressor office																			
Transfers	Belonged By		la.c.	L				0.000,000,0			6 (1019) (10		(6, 65), (6)	100 1927	Co	mmen	is,			
Transfers 1 2 3	Released By		Date/Time	Received B	is (M//// MG	1/1 1/2	full 3/19	Date	e/Time	• 7 <i>G</i>	9	30							\neg	
Cooler Te	mperature on Receip	t Aff	°C Cus	tody Seal Y	or N	<u> </u>	Re	ceive	d on	lce	Υ	or(N)		Sa	mple	s Inta	ict(Y	or N	

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section A Required Client Information:	Section I Required	B Project Informati	ion:					ection (tion;												Page:		of		
Company: WESTAR ENERGY	Report To:	Brandon Gr	iffin -	Adan	n Ka	reelina	Ątt	ention:	,	Jared	Mor	risor	1				7									
Address: 818 Kansas Ave	Сору То:	Jared Morri	ison, Heat	h Horny			Çá	Company Name: WESTAR ENERGY							REGULATORY AGENCY											
Topeka, KS 66612							Address: SEE SECTION A							✓ NPDES ☐ GROUND WATER ☐ DRINKING WATER						R						
Email To: brandon.i.griffin@westarene	gy.eem Purchase	Order No.: 10	DJEC-0000	0040819	9			Pace Quote Reference:							1-	UST	Γ	RCF	RA.		\vdash	OTHER				
Phone: (785) 575-8135 Fax:	Project Na	me; JEC F	AA CCR				Pace Project Heather Wilson, 913-563-1407 Manager:								Si	te Loca	tion							/////		
Requested Due Date/TAT: 15 Day	Project Nu	mber:						ce Profile	#; ;	9657	, 2						_	STA	TE:		KS					
															Re	queste	d Ana	lysis f	iltere	d (Y/N))	V//				
Required Client Information MDF WWW.WW.PF	IIII Matrix Codes ATRIX CODE INKING WATER DW ATRIC STE WATER WW ODUCT P	(see vaild codes to left) 3=GRAB C=COMP)	COMPOSITE START	COLLEC	CTED COMPOS END/GR	ITE AB			F	Prese	rvati	ves		↑N /A				***************************************				(N)				
SAMPLE ID W (A-Z, 0-9 /)	PE WP	ATRIX CODE	DATE	TIME	DATE	TIME	T V T V T V	# OF CONTAINERS Unpreserved	H ₂ SO ₄	HNO ₃	NaOH	Na ₂ S ₂ O ₃	Methanol	↓Analysis Test↓	Radium-226	Kadıum-228 Total Radium	autora Helinanovi Wester	makey-r-denistrate formers		Per History		Residual Chlorine (Y/N)	Pace	e Project	. No./ Lat	b I . D.
1 FAD-3-062319		WT 6		ε	6/23	1818	7	2					丅	П	XX											001
2 FAA-6-062319	(WI G		0	6/23	1917	7	Z] [<u>火</u> り	< X										Ma
3 FAA-4-062416		U1 6		c	06/24	750		2							K	4 X						Ш				<u> 103</u>
4 FAB-5-062419		WT 6		0	76/24	855	7	2						11	X	41										DY_
5					·									1 1												******
6																				$\perp \perp \perp$						
. 7]												
8																										
9]]												
10							\perp													$\perp \perp \perp$						
11																		<u>.</u>								
12														100												
ADDITIONAL COMMENTS		RELINQUISH	IED BY / AF	FILIATIO	N .	DATE		TIME	- 1	/.		ACC	EPTE	D BY	AFFI	LIATION		DA	ΤΕ	TIME			SAM	PLE CONE	ITIONS	
*200.7 Total Metals: Ba, Be, Cr, Pb, Li	F	li Fre	eds: U	CSW		06/26	j	800	7	1/		4/0	M	n	L	100	1	03	1/9	93	7/	VH	N	X		
**200.8 Total Metals: Co, As, Se, Mo, Cd, Sb, Tl							Т				•					(
U			١	AMPLES	S NAME A	ND SIGNAT	URF																-	P C		
a ge			Ľ						(<u> </u>	. 0	1	م دا	<u> </u>							ë	ved o	Sea	1	<u>‡</u> €
Page 19 of 20			-			e of SAMPLE E of SAMPLE		F	10	<u>-</u>	200		<u>~'c</u>	KS	DA	ΓE Signe M/DD/YY)	d : <i>Ø</i>	6/2	6/	19		Тетр in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)

Pittsburgh Lab Sample Condit	ion l	Jpor	ı Re	ceipt # 3031212	1
Pace Analytical Client Name:		#U	U		
Courier: Fed Ex UPS USPS Client		comme	rcial	Label Lims Login	
Custody Seal on Cooler/Box Present; Vyes	r	10	Seals	intact: yes no	
Thermometer Used	Туре	of Ice:	Wet	Blue None	
Cooler Temperature Observed Temp		° C	Corre	ection Factor: °C Final Temp: °C	
Temp should be above freezing to 6°C					
				pH paper Lot# Date and Initials of person examining contents:	
Comments:	Yes	No	N/A	101)4201	
Chain of Custody Present:	// ,			1.	
Chain of Custody Filled Out:	14			2.	
Chain of Custody Relinquished:	$\not\downarrow \downarrow$	<u> </u>		3.	
Sampler Name & Signature on COC:	<u> </u>	_		4.	
Sample Labels match COC:			<u></u>	5.	
-Includes date/time/ID Matrix:V	<u>VT</u>	T	T		
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):	<u> </u>			7.	
Rush Turn Around Time Requested:	ļ			8.	
Sufficient Volume:				9.	
Correct Containers Used:				10.	
-Pace Containers Used:					
Containers Intact:				11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.				16.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Ŕadon,			PH<2	
All containers meet method preservation requirements.	1/			Initial when Date/time of	
oquioneno.	<u>K</u>			completed // // preservation Lot # of added	
Headspace in VOA Vials (>6mm):				preservative 17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present					
Rad Samples Screened < 0.5 mrem/hr				Initial when completed: MA Date: A 31/9	
Client Notification/ Resolution:	<u> </u>			Completed. IV (V) Date. (V V) 1 ()	
Person-Gontacted:			-Date/I	Firme: Contacted-By:	
Comments/ Resolution:				Contacted by:	

 \square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

ATTACHMENT 1-3
September 2019 Sampling Event
Laboratory Analytical Report

October 22, 2019

JD Schlegel KCP&L and Westar, Evergy Companies 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC FAL CCR

Pace Project No.: 60314889

Dear JD Schlegel:

Enclosed are the analytical results for sample(s) received by the laboratory on September 13, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revised Report_rev.1 The sample containers were mislabeled by the lab on arrival for the samples 60314889-003 & -004. Therefore, the results were switched to reflect the correct results for the samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

diamon Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company HEATH HORYNA, WESTAR ENERGY Andrew Hare, KCP&L and Westar, Evergy Companies Jake Humphrey, KCP&L and Westar, Evergy Companies Adam Kneeling, Haley & Aldrich, Inc. JARED MORRISON, KCP&L and Westar, Evergy Companies Melissa Michels, KCP&L and Westar, Evergy Companies Danielle Zinmaster, Haley & Aldrich

CERTIFICATIONS

Project: JEC FAL CCR
Pace Project No.: 60314889

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455

Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC FAL CCR
Pace Project No.: 60314889

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60314889001	MW-FAA-3	Water	09/12/19 12:58	09/13/19 16:20	
60314889002	MW-FAA-4	Water	09/12/19 14:59	09/13/19 16:20	
60314889003	MW-FAA-6	Water	09/12/19 11:05	09/13/19 16:20	
60314889004	MW-FAA-5	Water	09/12/19 16:55	09/13/19 16:20	
60314889005	DUPLICATE	Water	09/12/19 11:05	09/13/19 16:20	

SAMPLE ANALYTE COUNT

Project: JEC FAL CCR
Pace Project No.: 60314889

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60314889001	MW-FAA-3	EPA 200.7	JDE	4	PASI-K
		EPA 200.8	EMR	4	PASI-K
		EPA 245.1	HKC	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	AJS2	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60314889002	MW-FAA-4	EPA 200.7	JDE	4	PASI-K
		EPA 200.8	EMR	4	PASI-K
		EPA 245.1	HKC	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	AJS2	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60314889003	MW-FAA-6	EPA 200.7	JDE	4	PASI-K
		EPA 200.8	EMR	4	PASI-K
		EPA 245.1	HKC	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	AJS2	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60314889004	MW-FAA-5	EPA 200.7	JDE	4	PASI-K
		EPA 200.8	EMR	4	PASI-K
		EPA 245.1	HKC	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	AJS2	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60314889005	DUPLICATE	EPA 200.7	JDE	4	PASI-K
		EPA 200.8	EMR	4	PASI-K
		EPA 245.1	HKC	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		SM 4500-H+B	AJS2	1	PASI-K
		EPA 300.0	MJK	3	PASI-K

PROJECT NARRATIVE

Project: JEC FAL CCR Pace Project No.: 60314889

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for EPA 200.7. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 609870

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60314889001,60314889004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2491452)
 - Calcium
- MSD (Lab ID: 2491453)
 - Calcium

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314889

Method: EPA 200.8

Description: 200.8 MET ICPMS

Client: Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for EPA 200.8. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAL CCR Pace Project No.: 60314889

Method: EPA 245.1 Description: 245.1 Mercury

Client: Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for EPA 245.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314889

Method: SM 2540C

Description: 2540C Total Dissolved Solids **Client:** Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: JEC FAL CCR Pace Project No.: 60314889

Method: SM 4500-H+B

Description: 4500H+ pH, Electrometric **Client:** Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for SM 4500-H+B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUPLICATE (Lab ID: 60314889005)
- MW-FAA-3 (Lab ID: 60314889001)
- MW-FAA-4 (Lab ID: 60314889002)
- MW-FAA-5 (Lab ID: 60314889004)
- MW-FAA-6 (Lab ID: 60314889003)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 610915

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

DUP (Lab ID: 2495720)
 pH at 25 Degrees C

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314889

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** Evergy Kansas Central, Inc.

Date: October 22, 2019

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 609891

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60314427001,60314889005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2491579)
 - Chloride
- MSD (Lab ID: 2491578)
 - Chloride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Sample: MW-FAA-3	Lab ID: 603	314889001	Collected: 09/12/1	9 12:58	Received: 09	/13/19 16:20 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 200	.7 Preparation Met	hod: EF	PA 200.7			
Barium, Total Recoverable	0.032	mg/L	0.0050	1	09/17/19 12:39	09/18/19 10:37	7440-39-3	
Boron, Total Recoverable	0.93	mg/L	0.10	1	09/17/19 12:39	09/18/19 10:37	7440-42-8	
Calcium, Total Recoverable	204	mg/L	0.20	1	09/17/19 12:39	09/18/19 10:37	7440-70-2	M1
Lithium	0.015	mg/L	0.010	1	09/17/19 12:39	09/18/19 10:37	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 200	.8 Preparation Met	hod: EF	PA 200.8			
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:39	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:39	7440-48-4	
Molybdenum, Total Recoverable	0.013	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:39	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:39	7782-49-2	
245.1 Mercury	Analytical Met	hod: EPA 245	.1 Preparation Met	hod: EF	PA 245.1			
Mercury	<0.20	ug/L	0.20	1	09/17/19 09:36	09/17/19 13:02	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 2540	OC .					
Total Dissolved Solids	1570	mg/L	13.3	1		09/17/19 09:50		
4500H+ pH, Electrometric	Analytical Met	hod: SM 4500)-H+B					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		09/23/19 11:06		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	.0					
Chloride	79.3	mg/L	20.0	20		09/17/19 19:05	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/17/19 18:50	16984-48-8	
Sulfate	809	mg/L	100	100		09/17/19 19:20	14808-79-8	

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Sample: MW-FAA-4	Lab ID: 603	314889002	Collected: 09/12/1	19 14:59	Received: 09	/13/19 16:20 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	hod: EPA 200	0.7 Preparation Met	thod: EF	PA 200.7			
Barium, Total Recoverable	0.051	mg/L	0.0050	1	09/17/19 12:39	09/18/19 10:44	7440-39-3	
Boron, Total Recoverable	0.62	mg/L	0.10	1	09/17/19 12:39	09/18/19 10:44	7440-42-8	
Calcium, Total Recoverable	154	mg/L	0.20	1	09/17/19 12:39	09/18/19 10:44	7440-70-2	
Lithium	0.020	mg/L	0.010	1	09/17/19 12:39	09/18/19 10:44	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 200	0.8 Preparation Met	thod: EF	PA 200.8			
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:41	7440-38-2	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:41	7440-48-4	
Molybdenum, Total Recoverable	0.0054	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:41	7439-98-7	
Selenium, Total Recoverable	0.0016	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:41	7782-49-2	
245.1 Mercury	Analytical Met	hod: EPA 245	5.1 Preparation Met	thod: EF	PA 245.1			
Mercury	<0.20	ug/L	0.20	1	09/17/19 09:36	09/17/19 13:04	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	0C					
Total Dissolved Solids	1090	mg/L	10.0	1		09/17/19 09:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		09/17/19 16:13		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
Chloride	75.7	mg/L	20.0	20		09/17/19 20:20	16887-00-6	
Fluoride	0.32	mg/L	0.20	1		09/17/19 20:05	16984-48-8	
Sulfate	414	mg/L	100	100		09/17/19 20:35	14808-79-8	

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Sample: MW-FAA-6	Lab ID: 603	314889003	Collected: 09/12/1	19 11:05	Received: 09	/13/19 16:20 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 200	.7 Preparation Met	thod: EF	PA 200.7			
Barium, Total Recoverable	0.024	mg/L	0.0050	1	09/17/19 12:39	09/18/19 10:46	7440-39-3	
Boron, Total Recoverable	3.5	mg/L	0.10	1	09/17/19 12:39	09/18/19 10:46	7440-42-8	
Calcium, Total Recoverable	121	mg/L	0.20	1	09/17/19 12:39	09/18/19 10:46	7440-70-2	
Lithium	0.012	mg/L	0.010	1	09/17/19 12:39	09/18/19 10:46	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 200	.8 Preparation Met	thod: EF	PA 200.8			
Arsenic, Total Recoverable	0.0073	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:43	7440-38-2	
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:43	7440-48-4	
Molybdenum, Total Recoverable	0.58	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:43	7439-98-7	
Selenium, Total Recoverable	0.0013	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:43	7782-49-2	
245.1 Mercury	Analytical Met	hod: EPA 245	5.1 Preparation Met	thod: EF	PA 245.1			
Mercury	<0.20	ug/L	0.20	1	09/17/19 09:36	09/17/19 13:06	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 2540	oC .					
Total Dissolved Solids	3100	mg/L	40.0	1		09/17/19 09:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 4500)-H+B					
pH at 25 Degrees C	7.7	Std. Units	0.10	1		09/17/19 16:17		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
Chloride	73.2	mg/L	20.0	20		09/17/19 21:05	16887-00-6	
Fluoride	0.97	mg/L	0.20	1		09/17/19 20:50	16984-48-8	
Sulfate	1720	mg/L	100	100		09/17/19 21:19	14808-79-8	

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Sample: MW-FAA-5	Lab ID: 603	314889004	Collected: 09/12/1	9 16:55	Received: 09	/13/19 16:20 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Met	thod: EPA 200	0.7 Preparation Met	hod: EP	A 200.7			
Barium, Total Recoverable	<0.0050	mg/L	0.0050	1	09/17/19 12:39	09/18/19 10:49	7440-39-3	
Boron, Total Recoverable	1.5	mg/L	0.10	1	09/17/19 12:39	09/18/19 10:49	7440-42-8	
Calcium, Total Recoverable	313	mg/L	0.20	1	09/17/19 12:39	09/18/19 10:49	7440-70-2	
_ithium	0.11	mg/L	0.010	1	09/17/19 12:39	09/18/19 10:49	7439-93-2	
200.8 MET ICPMS	Analytical Met	thod: EPA 200	0.8 Preparation Met	hod: EP	A 200.8			
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:45	7440-38-2	
Cobalt, Total Recoverable	0.0040	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:45	7440-48-4	
Molybdenum, Total Recoverable	0.034	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:45	7439-98-7	
Selenium, Total Recoverable	0.0033	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:45	7782-49-2	
245.1 Mercury	Analytical Met	thod: EPA 245	5.1 Preparation Met	hod: EP	A 245.1			
Mercury	<0.20	ug/L	0.20	1	09/17/19 09:36	09/17/19 13:08	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	thod: SM 2540	oc					
Total Dissolved Solids	2840	mg/L	20.0	1		09/17/19 09:51		
4500H+ pH, Electrometric	Analytical Met	thod: SM 4500	O-H+B					
oH at 25 Degrees C	7.1	Std. Units	0.10	1		09/17/19 16:18		H6
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300	0.0					
Chloride	105	mg/L	20.0	20		09/17/19 21:49	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/17/19 21:34	16984-48-8	
Sulfate	1560	mg/L	100	100		09/17/19 22:04		

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Sample: DUPLICATE	Lab ID: 603	314889005	Collected: 09/12/1	19 11:05	Received: 09	/13/19 16:20 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 200	.7 Preparation Met	thod: EF	PA 200.7			
Barium, Total Recoverable	0.024	mg/L	0.0050	1	09/17/19 12:39	09/18/19 10:54	7440-39-3	
Boron, Total Recoverable	3.7	mg/L	0.10	1	09/17/19 12:39	09/18/19 10:54	7440-42-8	
Calcium, Total Recoverable	118	mg/L	0.20	1	09/17/19 12:39	09/18/19 10:54	7440-70-2	
Lithium	0.011	mg/L	0.010	1	09/17/19 12:39	09/18/19 10:54	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 200	.8 Preparation Met	thod: EF	PA 200.8			
Arsenic, Total Recoverable	0.0079	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:52	7440-38-2	
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:52	7440-48-4	
Molybdenum, Total Recoverable	0.62	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:52	7439-98-7	
Selenium, Total Recoverable	0.0013	mg/L	0.0010	1	09/17/19 13:00	09/18/19 13:52	7782-49-2	
245.1 Mercury	Analytical Met	hod: EPA 245	.1 Preparation Met	thod: EF	PA 245.1			
Mercury	<0.20	ug/L	0.20	1	09/17/19 09:36	09/17/19 13:11	7439-97-6	
2540C Total Dissolved Solids	Analytical Met	hod: SM 2540	OC					
Total Dissolved Solids	2900	mg/L	40.0	1		09/17/19 09:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 4500)-H+B					
pH at 25 Degrees C	7.8	Std. Units	0.10	1		09/17/19 16:20		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	.0					
Chloride	<1.0	mg/L	1.0	1		09/17/19 23:19	16887-00-6	M1
Fluoride	<0.20	mg/L	0.20	1		09/17/19 23:19	16984-48-8	
Sulfate	17.5	mg/L	1.0	1		09/17/19 23:19	14808-79-8	

QUALITY CONTROL DATA

Project: JEC FAL CCR
Pace Project No.: 60314889

 QC Batch:
 609743
 Analysis Method:
 EPA 245.1

 QC Batch Method:
 EPA 245.1
 Analysis Description:
 245.1 Mercury

 Associated Lab Samples:
 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

METHOD BLANK: 2490975 Matrix: Water

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 0.20
 09/17/19 12:50

LABORATORY CONTROL SAMPLE: 2490976

Date: 10/22/2019 10:34 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.9 98 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2490977 2490978

MS MSD MSD 60314773001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual ND 5 5 4.7 95 70-130 20 Mercury ug/L 4.8 94 0

 MATRIX SPIKE SAMPLE:
 2490979

 60314889001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Mercury ug/L <0.20 5 4.7 94 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: JEC FAL CCR Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

QC Batch: 609870 Analysis Method: EPA 200.7 QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

METHOD BLANK: 2491450 Matrix: Water

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Barium	mg/L	<0.0050	0.0050	09/18/19 10:32	
Boron	mg/L	< 0.10	0.10	09/18/19 10:32	
Calcium	mg/L	< 0.20	0.20	09/18/19 10:32	
Lithium	mg/L	< 0.010	0.010	09/18/19 10:32	

LABORATORY CONTROL SAMPLE:	2491451					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		0.98	98	85-115	
Boron	mg/L	1	0.93	93	85-115	
Calcium	mg/L	10	10	100	85-115	
Lithium	mg/L	1	0.93	93	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2491452 2491453												
		00044000004	MS	MSD	140	MOD		MOD	0/ D			
_		60314889001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qua	_
Barium	mg/L	0.032	1	1	1.1	1.0	103	101	70-130	1	20	
Boron	mg/L	0.93	1	1	2.0	2.0	104	103	70-130	1	20	
Calcium	mg/L	204	10	10	223	220	194	158	70-130	2	20 M1	
Lithium	mg/L	0.015	1	1	1.0	1.0	102	101	70-130	1	20	

MATRIX SPIKE SAMPLE:	2491454						
		60314889004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L	<0.0050	1	0.99	99	70-130	
Boron	mg/L	1.5	1	2.4	94	70-130	
Calcium	mg/L	313	10	323	97	70-130	
Lithium	mg/L	0.11	1	1.1	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

 QC Batch:
 609880
 Analysis Method:
 EPA 200.8

 QC Batch Method:
 EPA 200.8
 Analysis Description:
 200.8 MET

 Associated Lab Samples:
 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

METHOD BLANK: 2491507 Matrix: Water

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0010	0.0010	09/18/19 13:26	
Cobalt	mg/L	< 0.0010	0.0010	09/18/19 13:26	
Molybdenum	mg/L	< 0.0010	0.0010	09/18/19 13:26	
Selenium	mg/L	< 0.0010	0.0010	09/18/19 13:26	

LABORATORY CONTROL SAMPLE:	2491508					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.04	0.039	98	85-115	
Cobalt	mg/L	0.04	0.038	95	85-115	
Molybdenum	mg/L	0.04	0.039	98	85-115	
Selenium	mg/L	0.04	0.040	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2491509					2491510							
		60314536001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	ND	0.04	0.04	0.042	0.041	103	102	70-130	1	20	
Cobalt	mg/L	ND	0.04	0.04	0.041	0.041	102	102	70-130	1	20	
Molybdenum	mg/L	2.4 ug/L	0.04	0.04	0.045	0.045	107	106	70-130	1	20	
Selenium	mg/L	ND	0.04	0.04	0.039	0.039	97	96	70-130	1	20	

MATRIX SPIKE SAMPLE:	2491511						
		60314621001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	ND	0.04	0.041	101	70-130	
Cobalt	mg/L	ND	0.04	0.039	96	70-130	
Molybdenum	mg/L	1.6 ug/L	0.04	0.042	101	70-130	
Selenium	mg/L	ND	0.04	0.039	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAL CCR Pace Project No.: 60314889

QC Batch: 609756 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

METHOD BLANK: 2491030 Matrix: Water

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 09/17/19 09:49

LABORATORY CONTROL SAMPLE: 2491031

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1040 104 80-120

SAMPLE DUPLICATE: 2491032

60314889001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1570 10 **Total Dissolved Solids** 1550 1 mg/L

SAMPLE DUPLICATE: 2491033

Date: 10/22/2019 10:34 AM

60314890001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 1450 **Total Dissolved Solids** mg/L 1480 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAL CCR
Pace Project No.: 60314889

QC Batch: 609905 Analysis Method: SM 4500-H+B
QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH

Associated Lab Samples: 60314889002, 60314889003, 60314889004, 60314889005

SAMPLE DUPLICATE: 2491637

Date: 10/22/2019 10:34 AM

 Parameter
 Units
 60314260003 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 8.9
 9.0
 1
 5 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM 4500-H+B

4500H+B pH

Project: JEC FAL CCR
Pace Project No.: 60314889

QC Batch: 610915

QC Batch Method: SM 4500-H+B

Associated Lab Samples: 60314889001

SAMPLE DUPLICATE: 2495720

Date: 10/22/2019 10:34 AM

60314466001 Dup Max
Parameter Units Result RepD RPD

Parameter Units Result Result RPD RPD Qualifiers
pH at 25 Degrees C Std. Units 7.2 7.7 6 5 D6,H6

Analysis Method:

Analysis Description:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

 QC Batch:
 609891
 Analysis Method:
 EPA 300.0

 QC Batch Method:
 EPA 300.0
 Analysis Description:
 300.0 IC Anions

 Associated Lab Samples:
 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

METHOD BLANK: 2491575 Matrix: Water

Associated Lab Samples: 60314889001, 60314889002, 60314889003, 60314889004, 60314889005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<1.0	1.0	09/17/19 10:36	
Fluoride	mg/L	< 0.20	0.20	09/17/19 10:36	
Sulfate	mg/L	<1.0	1.0	09/17/19 10:36	

LABORATORY CONTROL SAMPLE:	2491576					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.0	99	90-110	
Fluoride	mg/L	2.5	2.6	105	90-110	
Sulfate	mg/L	5	5.5	110	90-110	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2491	577		2491578							
			MS	MSD								
	6	0314427001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	381	250	250	594	551	85	68	80-120	7	15	M1
Fluoride	mg/L	ND	125	125	140	132	110	104	80-120	6	15	
Sulfate	mg/L	ND	250	250	292	275	109	103	80-120	6	15	

MATRIX SPIKE SAMPLE:	2491579						
Parameter	Units	60314889005 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	<1.0	250	449	179	80-120	M1
Fluoride	mg/L	<0.20	125	132	105	80-120	
Sulfate	mg/L	17.5	250	310	117	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAL CCR
Pace Project No.: 60314889

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 10/22/2019 10:34 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAL CCR
Pace Project No.: 60314889

Date: 10/22/2019 10:34 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60314889001	MW-FAA-3	EPA 200.7	609870	EPA 200.7	609918
60314889002	MW-FAA-4	EPA 200.7	609870	EPA 200.7	609918
60314889003	MW-FAA-6	EPA 200.7	609870	EPA 200.7	609918
60314889004	MW-FAA-5	EPA 200.7	609870	EPA 200.7	609918
60314889005	DUPLICATE	EPA 200.7	609870	EPA 200.7	609918
60314889001	MW-FAA-3	EPA 200.8	609880	EPA 200.8	609910
60314889002	MW-FAA-4	EPA 200.8	609880	EPA 200.8	609910
60314889003	MW-FAA-6	EPA 200.8	609880	EPA 200.8	609910
60314889004	MW-FAA-5	EPA 200.8	609880	EPA 200.8	609910
60314889005	DUPLICATE	EPA 200.8	609880	EPA 200.8	609910
60314889001	MW-FAA-3	EPA 245.1	609743	EPA 245.1	609790
60314889002	MW-FAA-4	EPA 245.1	609743	EPA 245.1	609790
60314889003	MW-FAA-6	EPA 245.1	609743	EPA 245.1	609790
60314889004	MW-FAA-5	EPA 245.1	609743	EPA 245.1	609790
60314889005	DUPLICATE	EPA 245.1	609743	EPA 245.1	609790
60314889001	MW-FAA-3	SM 2540C	609756		
60314889002	MW-FAA-4	SM 2540C	609756		
60314889003	MW-FAA-6	SM 2540C	609756		
60314889004	MW-FAA-5	SM 2540C	609756		
60314889005	DUPLICATE	SM 2540C	609756		
60314889001	MW-FAA-3	SM 4500-H+B	610915		
60314889002	MW-FAA-4	SM 4500-H+B	609905		
60314889003	MW-FAA-6	SM 4500-H+B	609905		
60314889004	MW-FAA-5	SM 4500-H+B	609905		
60314889005	DUPLICATE	SM 4500-H+B	609905		
60314889001	MW-FAA-3	EPA 300.0	609891		
60314889002	MW-FAA-4	EPA 300.0	609891		
60314889003	MW-FAA-6	EPA 300.0	609891		
60314889004	MW-FAA-5	EPA 300.0	609891		
60314889005	DUPLICATE	EPA 300.0	609891		

Sample Condition Upon Receipt

Client Name: Westar energy			
Courier: FedEx □ UPS □ VIA □ Clay □ PE	X 🗆 E	ECI 🗆	Pace Xroads Client Other
Tracking #: Pace S	Shipping I	Label Use	ed? Yes 🗆 No 🗹
Custody Seal on Cooler/Box Present: Yes □ No □	Seals inta	act: Yes	□ No Ø
Packing Material: Bubble Wrap ☐ Bubble Bags ☐		Foam 🗆	None Ø Other □
Thermometer Used: T-300 Type of Ic	ce: We	Blue N	
Cooler Temperature (°C): As-read <u>0.2</u> Corr. Factor	0.0	Corre	Date and initials of person examining contents:
Temperature should be above freezing to 6°C			PV 9/13/19
Chain of Custody present:	Yes 🗆	No □N/A	'
Chain of Custody relinquished:	Yes 🗆	No □N/A	
Samples arrived within holding time:	Yes 🗆	No □N/A	
Short Hold Time analyses (<72hr):	□Yes ✓	Ño □N/A	
Rush Turn Around Time requested:	□Yes	No DN/A	
Sufficient volume:	ZYes □	No □N/A	
Correct containers used:	∠Yes □	No □N/A	
Pace containers used:	∕dYes □	No □N/A	
Containers intact:	ZYes □	No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □	No ZN/A	
Filtered volume received for dissolved tests?	□Yes □	No DN/A	
Sample labels match COC: Date / time / ID / analyses	Yes 🗆	No DN/A	
Samples contain multiple phases? Matrix: WT	□Yes	No □N/A	
	Yes 🗆	No 🗆 N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)			dato/arme added.
Cyanide water sample checks:			
Lead acetate strip turns dark? (Record only)	□Yes □	No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □	lNo	
Trip Blank present:	□Yes □	INO DINIA	
Headspace in VOA vials (>6mm):	□Yes □	No DN/A	
Samples from USDA Regulated Area: State:	□Yes □	Ino Ini	x
Additional labels attached to 5035A / TX1005 vials in the field?		-	
Client Notification/ Resolution: Copy COC to C		Y / N	Field Data Required? Y / N
Person Contacted: Date/Tin	me:		
Comments/ Resolution:			
Project Manager Review:		D.	ate:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Section Required	A Client Information:		Section B Required Proje	ect Inform	nation:					Section Invoice	Informa	ation:								E					Pag	je:		of		
Company		ERGY	Report To: Br	andon	Griffin				[Attention										_						_				
Address	818 Kansas A	ve	Copy To: Ja	red Mo	rrison					Compar	ny Nam	ie:								REC	SUL/	ATOR		ENCY	_					4
	Topeka, KS 6	6612								Address										ĺ.	NPE	ES		GROUN	ND WA	ATER		ORINKING	WATER	-1
Email To:		fin@westarenergy.com	Purchase Orde	er No.:	10JEC-0	0000408	19			Pace Qu Referenc	0										UST		F	RCRA		177	(THER	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_
	785-575-8135	Fax	Project Name:	JEC	FAL2 CC	CR				Pace Pro Manager	oject	Heat	her V	Vilso	n 913	-563-	1407			Sit	e Lo	cation		KS						M
	ed Due Date/TAT:	7 day	Project Number	er:						Pace Pro		9657	, 1								S	TATE:	1	- 110						//
	December 201																Red	ques	ted	Anal	ysis	Filte	red (\	(/N)						
	Section D Required Client Informati SAMPL (A-Z, 0-9 Sample IDs MUST	DRINKING WATER WATER WASTE WASTE WASTE WASTE PRODUCT SOIL/SOLID OIL E ID WIPE AIR OTHER	P SL OL WP	MATRIX CODE (see valid codes to tent) SAMPLE TYPE (G=GRAB C=COMP)	COMPP	DSITE	ECTED COMPOS END/GR	SITE AB	E TEMP AT COLLECTION	# OF CONTAINERS	served	Presi		03	lou	. Analysis Test. Yru↓		Total Ha	CI, F, SO4		H+B					Residual Chlorine (Y/N)	(00)	31489	24 a	
ITEM #				SAMPLE					SAMPLE	OF C	Unpres H ₂ SO ₄	HNO	NaOH	Na ₂ S ₂ O ₃	Methanol Other	Ana	200.7	245.1	300:	5400	4500 H+B					Resid			o./ Lab I.D.	
E				_	DATE	TIME	9 IZLIG	TIME 1258	-	-	2	1	-			Ē	X	KX	X	10	X		\Box		\sqcap	1		1 BP		>1
1	MW-F	-AA-3		5 TG	-	-	9/12/19				2	tit	+			1	X	KK	X	X	X						F		00	2
2		= AA-4		2T G	-		9/12/19	1655	1		2	1		Ħ		1	KY	< X	X		K								00	03
3		AA-6		UT 6			9/12/19				Z	1				1	XX	X		100	X								00	34
4				07 6			alizia		1		2	1					47		X		Y						+_	+	00	e5
5	Dupi	cate		VC Q			ou ou		T			\top															j.			
6																														
7																														
8					1							\top	T	T																
9									Т																					
10																														
11					1																									
12	ADDITION	AL COMMENTS		RELINQU	JISHED BY	/ AFFILIA	TION	DAT	E	Т	IME			AC	CEPTE	D BY	/ AFFI	LIATI	ON	1 1	1	DATE		TIME			SAMP	LE CONDIT	ONS	
	otal Metals*: B, Ca, Ba	Be, Cr. Pb, Li	1	en	agen	Se/		9/13/	19	16	20	H	2	6	21	مد	— (Po	uce		9-1	3.19	16	,20	0.1	2	Y	N	\rightarrow	-
200.8 T	Total Metals**: Sb, As, C	d, Co, Mo, Se, Ti	1		9	0		-							-												.141			
7290																												R	ਰ	
ge 26 01 27						SAMP	PRINT Na		PLEF		4	34	ny e		Tight.	17		TE SI		9	10	119			T ci cmat		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)	
		By signing this form you are accep	ting Pace's NET 30) day payn	nent terms an	d agreeing to			7		nvaices	not paid	within	30 pay	,	1	I (M	WI DU	115	·	(160	111			F- <i>A</i>	ALL-Q	-020rev.l)8, 12-Oct-		

Page 27 of 27

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

Section	n A of Controllation	Section B Required Pro	ect Infor	mation						on C e inform	nation					-21										Page:	63	qf		
20.00	NESTAR ENERGY	Report to B	randon	Griffin					Attent	ian									П						_					
430 Y 53	\$18 Kansas Ave	Copy To Ja	red M	orrison					Сотгр	any Nar	me				•				寸	REG	ULA	TOR	Y A	GEN	CY					
	Topeka, KS 66612								Appre	\$\$									\neg	_	NPD	ES	ī	GRO	מאט	WAT	ER .	DRINKII	NG WAT	ER
5 ** 34 7 7	brandon i gnifin@westarenergy.com	Purchase Onc	er No	10JEC-0	000040	519	1/		Pase C Refere										╗	-	UST		-	RCR	Α		-	OTHER	_	
300,00	785-575-\$135 Fax	Project Name	JEC	EAC2 CO	CR			-	Pace F	rojest	Hea	ather	Wils	on 91	3-56	3-14	07		寸	Site	Loc	ation			_	_	//////			min
Sequest	ed Due Date/TAT: Floay	Project Number	r.	FAL				_	Page 6	idine E	965	7, 1							一	-		ATE:	١.	ŧ	(S					
ــــا			- 20	L. offer	_			_	}		_	_		100	1		Zeni	1041	ed A	nah			red (Y/N)		<i>V//</i>				
	Section D Valid Matrix C			T				Т	ā			_			╁═	_	104.	1		1	7	T			\top	- 1///				
ì	Personal Designment Benepal Personal Pe	COCE	O PAPE		COLL	ECTED		1			Pre.	serva	ives		I E	\perp						上			\perp					
ITEM #	SAMPLE ID N°S (AZ 097.4) OTHER Sample IDS MUST BE UNIQUE TOSSE	N's	SAMPLE TYPE (G=CRAB C=COMP)	CCWP STA	STESTS	cavos Enorgi	S.TE	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved H ₂ SO ₄	HNO	HCI	Na ₂ S ₂ O ₃	Methanot	Analysis Test	200.7 Total Metals*	200.8 Total Metals**	Tola	300: CI, F, SO4	2540C TDS	4200 IA+13					Residual Chlorine (Y/N)	Paci	e Project	No./ L:	ab LD.
1	_ MW-FAA-3	ia	76		<u> </u>	1911214		✝	3	2	1	Ť	1		+	幪	K		×κ			†	П	十	+	┪			-	-
2	MW-FAA-4		त्तं			9/12/19		t		2	li	_	T		1	反	X	ĸ	÷	<u>(Y</u>				_	+	†=†				$\neg \neg$
3	MW-FAA-5	_	m G			91249	1655	-		2	1	+	T	+	1	K	×	V	\rightarrow	× ×	-	\vdash		十	+	\top				
1	MW-FAA-6		16			9/12/14	1105	1	3	Z	İΠ	_ <u>†</u> _		_	1	×	X	×			X	Ť		\top	1	\sqcap				
5	Duplicate	u	16			PISIP		T	3	2	T	\top	П		1	1	4	У	X	<i></i>	+			\top	\top					$\overline{}$
6						1		\vdash			П				1							I			1	П				
7			1					\vdash			$\dagger \dagger$	Ť			1				\neg	1	\top				1					
8				1				Г			\sqcap	丅	\sqcap	\top	1	Г			-	\top	Ť		\Box	Ť	十	1				
9								П			П	\neg	П		7					Т	Т		П		1	П			•	
10						T		П			П	\top	П		7	Г	П			T	T	П			\top	П				
11								Г					П]					T				T		П			-	
12								Γ							1_						\perp			T	T					
	ADDITIONAL COMMENTS	R	ELINOU	SHEO BY	AFFILIAT	ION	DAT	Ē	T	ME		_	ACC	EPTE	D BY	/ AFI	FILIA	TION	_		DAT	E	T	IME	Τ		SAMI	PLE COND	TIONS	$\neg \neg$
200 7 To	tal Meta's*, B, Ca, Sa, Ba, Si, So, Li	17	1. Y	Both	Jo. /	-	912	19	16	20	ħ	Z	ماد				1 P	<u>a.</u>	. ,	a	.13.	19	16	20	0.	.2	V	N		/
200 B Ta	rai Melais**: 50, As, Cd. Co. Mo. Se, T	1			X		1.~	-,	1								•			1	.,,,,	•••			Ť		7		1	\Box
		 		Y									_				_	_		+	_				+	\dashv		\vdash	 	-
\vdash		le i							\vdash		+					_	_			+			-		+	\dashv			+-	
<u> </u>				_	Caren	ED MANS A	NO CICN		<u></u>											•					+	_		<u> </u>	╫	,
					JAMPL	ER NAME A				<u></u>	15	t		<u>.</u>			_	_							4	ပ္	g (Seat (YAN)		15 S
						PRINT Nam SIGNATUR			_	32	\ \ \ \	~ <u>`</u>	<u>n</u>	#	(T)	<u> </u>	ATE :	Signi	id (à la	2/19	-			1	Tomp in 'C	Received on Ice (Y/N)	Custody Sealer Cocier (YAN)		Samples Intact (Y/N)
								<				- 77	ተ	٧٤	<i>*</i> -	- "		J. 1 4	*	-1-		•				_		<u> </u>		

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any envises not paid within 20 pays.

F-ALL-Q-020rev 08, 12-Oct-2007

October 08, 2019

JD Schlegel KCP&L and Westar, Evergy Companies 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC FAL CCR

Pace Project No.: 60314891

Dear JD Schlegel:

Enclosed are the analytical results for sample(s) received by the laboratory on September 13, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Datos M. Wilson

Heather Wilson heather.wilson@pacelabs.com 1(913)563-1407 Project Manager

Enclosures

cc: Bob Beck, Kansas City Power & Light Company
HEATH HORYNA, WESTAR ENERGY
Andrew Hare, KCP&L and Westar, Evergy Companies
Jake Humphrey, KCP&L and Westar, Evergy Companies
Adam Kneeling, Haley & Aldrich, Inc.
JARED MORRISON, KCP&L and Westar, Evergy
Companies
Melissa Michels, Westar Energy
Danielle Zinmaster, Haley & Aldrich

CERTIFICATIONS

Project: JEC FAL CCR
Pace Project No.: 60314891

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: JEC FAL CCR
Pace Project No.: 60314891

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60314891001	MW-FAA-3	Water	09/12/19 12:58	09/13/19 16:20
60314891002	MW-FAA-4	Water	09/12/19 14:59	09/13/19 16:20
60314891003	MW-FAA-5	Water	09/12/19 16:55	09/13/19 16:20
60314891004	MW-FAA-6	Water	09/12/19 11:05	09/13/19 16:20
60314891005	DUPLICATE	Water	09/12/19 11:05	09/13/19 16:20

SAMPLE ANALYTE COUNT

Project: JEC FAL CCR
Pace Project No.: 60314891

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60314891001	MW-FAA-3	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60314891002	MW-FAA-4	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60314891003	MW-FAA-5	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60314891004	MW-FAA-6	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
60314891005	DUPLICATE	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314891

Method: EPA 903.1

Description: 903.1 Radium 226

Client: Evergy Kansas Central, Inc.

Date: October 08, 2019

General Information:

5 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

(913)599-5665

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314891

Method: EPA 904.0

Description: 904.0 Radium 228

Client: Evergy Kansas Central, Inc.

Date: October 08, 2019

General Information:

5 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: JEC FAL CCR
Pace Project No.: 60314891

Method:Total Radium CalculationDescription:Total Radium 228+226Client:Evergy Kansas Central, Inc.

Date: October 08, 2019

General Information:

5 samples were analyzed for Total Radium Calculation. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FAL CCR
Pace Project No.: 60314891

Sample: MW-FAA-3 PWS:	Lab ID: 60314891 Site ID:	001 Collected: 09/12/19 12:58 Sample Type:	Received:	09/13/19 16:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.218 ± 0.378 (0.675) C:NA T:75%	pCi/L	10/01/19 11:13	13982-63-3	
Radium-228		0.639 ± 0.554 (1.13) C:78% T:67%	pCi/L	10/01/19 14:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.857 ± 0.932 (1.81)	pCi/L	10/03/19 11:53	3 7440-14-4	

Project: JEC FAL CCR
Pace Project No.: 60314891

Sample: MW-FAA-4 PWS:	Lab ID: 6031489 1 Site ID:	1002 Collected: 09/12/19 14:59 Sample Type:	Received:	09/13/19 16:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.335 ± 0.437 (0.721) C:NA T:83%	pCi/L	10/01/19 11:13	13982-63-3	
Radium-228	EPA 904.0	-0.00384 ± 0.421 (0.972) C:76% T:80%	pCi/L	10/01/19 14:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.335 ± 0.858 (1.69)	pCi/L	10/03/19 11:53	3 7440-14-4	

Project: JEC FAL CCR
Pace Project No.: 60314891

Sample: MW-FAA-5 PWS:	Lab ID: 603148 9 Site ID:	91003 Collected: 09/12/19 16:55 Sample Type:	Received:	09/13/19 16:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.656 ± 0.541 (0.781) C:NA T:92%	pCi/L	10/01/19 11:13	13982-63-3	
Radium-228	EPA 904.0	0.138 ± 0.313 (0.694) C:78% T:85%	pCi/L	10/01/19 14:0	5 15262-20-1	
Total Radium	Total Radium Calculation	0.794 ± 0.854 (1.48)	pCi/L	10/03/19 11:53	3 7440-14-4	

Project: JEC FAL CCR
Pace Project No.: 60314891

Sample: MW-FAA-6 PWS:	Lab ID: 60314891 Site ID:	OO4 Collected: 09/12/19 11:05 Sample Type:	Received:	09/13/19 16:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		0.136 ± 0.327 (0.632) C:NA T:89%	pCi/L	10/01/19 11:13	13982-63-3	
Radium-228		-0.0595 ± 0.423 (0.985) C:77% T:78%	pCi/L	10/01/19 14:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.136 ± 0.750 (1.62)	pCi/L	10/03/19 11:53	3 7440-14-4	

Project: JEC FAL CCR
Pace Project No.: 60314891

Sample: DUPLICATE PWS:	Lab ID: 6031489 Site ID:	1005 Collected: 09/12/19 11:05 Sample Type:	Received:	09/13/19 16:20	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.734 ± 0.479 (0.491) C:NA T:87%	pCi/L	10/01/19 11:13	13982-63-3	
Radium-228	EPA 904.0	0.196 ± 0.432 (0.956) C:75% T:75%	pCi/L	10/01/19 14:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.930 ± 0.911 (1.45)	pCi/L	10/03/19 11:53	3 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAL CCR
Pace Project No.: 60314891

 QC Batch:
 362051
 Analysis Method:
 EPA 904.0

 QC Batch Method:
 EPA 904.0
 Analysis Description:
 904.0 Radium 228

 Associated Lab Samples:
 60314891001, 60314891002, 60314891003, 60314891004, 60314891005

METHOD BLANK: 1756639 Matrix: Water

Associated Lab Samples: 60314891001, 60314891002, 60314891003, 60314891004, 60314891005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.307 ± 0.370 (0.779) C:77% T:74%
 pCi/L
 10/01/19 14:05

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: JEC FAL CCR
Pace Project No.: 60314891

QC Batch: 362052 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226 Associated Lab Samples: 60314891001, 60314891002, 60314891003, 60314891004, 60314891005

METHOD BLANK: 1756645 Matrix: Water

Associated Lab Samples: 60314891001, 60314891002, 60314891003, 60314891004, 60314891005

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 0.277 ± 0.393 (0.665) C:NA T:81% pCi/L 10/01/19 10:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC FAL CCR
Pace Project No.: 60314891

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 10/08/2019 11:31 AM

PASI-PA Pace Analytical Services - Greensburg

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC FAL CCR
Pace Project No.: 60314891

Date: 10/08/2019 11:31 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60314891001	MW-FAA-3	EPA 903.1	362052		
60314891002	MW-FAA-4	EPA 903.1	362052		
60314891003	MW-FAA-5	EPA 903.1	362052		
60314891004	MW-FAA-6	EPA 903.1	362052		
60314891005	DUPLICATE	EPA 903.1	362052		
60314891001	MW-FAA-3	EPA 904.0	362051		
60314891002	MW-FAA-4	EPA 904.0	362051		
60314891003	MW-FAA-5	EPA 904.0	362051		
60314891004	MW-FAA-6	EPA 904.0	362051		
60314891005	DUPLICATE	EPA 904.0	362051		
60314891001	MW-FAA-3	Total Radium Calculation	364467		
60314891002	MW-FAA-4	Total Radium Calculation	364467		
60314891003	MW-FAA-5	Total Radium Calculation	364467		
60314891004	MW-FAA-6	Total Radium Calculation	364467		
60314891005	DUPLICATE	Total Radium Calculation	364467		

Sample Condition Upon Receipt

Client Name: Wester Energy		
Courier: FedEx 🗆 UPS 🗆 VIA 🗀 Clay 🗆 PE	EX 🗆 ECI 🗆	
Tracking #: Pace	Shipping Label Used	1? Yes □ No Ø
Custody Seal on Cooler/Box Present: Yes No No	Seals intact: Yes □	No
Packing Material: Bubble Wrap ☐ Bubble Bags ☐	Foam □	None ☐ Other ☐
Thermometer Used: 7-300 Type of I	ce: Web Blue Nor	Date and initials of person
Cooler Temperature (°C): As-read / Corr. Factor	r_0.0 Correct	ed 1.8 examining contents:
Temperature should be above freezing to 6°C		pv9/13/19
Chain of Custody present:	Yes No N/A	,
Chain of Custody relinquished:	ØYes □No □N/A	
Samples arrived within holding time:	Yes ONO ON/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	Yes ONO ON/A	
Correct containers used:	Ziyes 🗆 No 🗆 N/A	
Pace containers used:	Yes ONO ON/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	☐Yes ☐No ☐N/A	
Samples contain multiple phases? Matrix: WT	□Yes No □N/A	
Containers requiring pH preservation in compliance?	☐Yes ☐No ☐N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	/	
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Ti	ime:	×
Comments/ Resolution:		
Project Manager Review:	Dat	te:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section Requires	A d Client Information:	Section B Required Pro	oject Infor	mation:					Secti Invoic	on C e Inforn	nation:								=:					Page:		of	
Company		Report To: B	randon	Griffin				7	Attenti	on:	Jare	ed M	orris	on													
Address:	818 Kansas Ave	Copy To: J.	ared M	orrison, He	eath Hor	nya			Comp	any Na	me:	WES	TAF	ENE	RGY	1			REG	SULA'	TORY	AGE	NCY		8		
	Topeka, KS 66612							7	Addre	55	,	SEE	SEC	TION	Α				V	NPDE	S	- GI	ROUN	D WATI	ER [DRINKING	WATER
Email To		Purchase Ord	der No,:	10JEC-0	0000408	19			Pace C										1-	UST		R	CRA		<u></u>	OTHER	
24/0/22/20	(785) 575-8135 Fax:	Project Name	: JEC	FAL CC	R				Refere Pace P	roject	Hea	ather	Wils	on, 9	13-5	63-1	407		Site	e Loca	tion						
	(1.00)	Project Numb							Manag Pace P	er: rofile #:		7, 2	C C C								TE:		KS				
Request	ed Due Date/TAT: 15 Day	T TOJOCE TVOITE										10			T		Pegi	ostac	l Anal			d (Y/	N)	VII			
								_			-	-		-	╁	_	Tequ	CSICC		75151	T	(),(TT	-(//			
	Section D Valid Matrix C Required Client Information MATRIX	codes CODE	o left)		COLL	ECTED		- 1			Pres	serva	itives	5	Y/ N												
	DRINKING WATER WATER WASTE WASTE WATER PRODUCT SOILSOLID OIL SAMPLE ID (A-Z, 0-9 / ,-) OTHER	P SL OL WP	DE (see valid codes to left) E (G=GRAB C=COMP)	COMPO		COMPOS END/GF	SITE PAB	IP AT COLLECTION	CONTAINERS	pe					Test		28	шn						Residual Chlorine (Y/N)			
ITEM #	Sample IDs MUST BE UNIQUE TISSUE	TS	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONT,	Unpreserved	HNO ₃	HCI	Na ₂ S ₂ O ₃	Methanol	I Analysis	Radium-226	Radium-228	Total Radium						Residual C	Pace	/469/ Project N	o./ Lab I.D.
1	MW-FAA-3	V	UT G	1		9/12/19	1258		2		2					7	X									F 281	110 DOI
2	MW-FAA-4		WT G			Glizlia	1459		2		2					Y	X								709/1	3 1	002
3	MW-FAA-S		NUT G			9/12/19	1655		2		2					_	XX		\perp				\perp	_			003
4	MW-FAA-6	l	UT G	-		9/12/19	1105		2		2						XX										004
5	Duplicate		WT G	5		9/2/9	1105		2		2						XX							\perp		V	005
6																						\perp					
7															_												
8															4				\perp								
9																											
10																											
11																					Ш						
12															it.									$\sqcup \! \! \! \! \! \perp$			
	ADDITIONAL COMMENTS	(RELING	JISHED BY	AFFILIAT	TION	DATE			TIME			A	CCEPT	ED B	Y/A	FFILIA	TION		DA	TE	TIP	ME		SAME	LE CONDITI	ONS
	Total Metals: Ba, Be, Cr, Pb, Li			witch			9li3l	((6	20)	K	1/	مك	Œ	ند	,_	1	ace		9.13	.19	162	0	1.8	Y	N	Y
200.8	Total Metals: Co, As, Se, Mo, Cd, Sb, Tl	1		1	0																				7		57
	0																									5	t = 1
-	100 100 100 100 100 100 100 100 100 100				SAMPL	ER NAME	AND SIGNA	_	-	lal	m	Z i	791	ith	A)									Temp in °C	Received on Ice (Y/N)	dy Sealed ler (Y/N)	Samples Intact (Y/N)
9	of S					SIGNATUI	RE of SAMP	LER:		A A	h	Zs	7	Tyl	Ly		DATE (MM/	Signed DD/YY)	el.	1211	9			Теп	Rece	Custody	Samp (
	"Important Note: By signing this form you are accepti	ng Pace's NET 30	0 day payr	nent lerms and	d agreeing to	late charges	of 1,5% per mo	onth fo	or any i	nvoices	not pai	d within	30 da	ıys.	X									F-ALL	-Q-020rev	08, 12-Oct-2	007

	Samples were sent direct								Ce	rt. Ne	f Orig edec Recei	l: [X Y		 9/13/2	No 019	Resu	Its Re			Analy ************************************	<i>tical</i>	/ ·
	rkorder: 60314891 Work ort To	order Na	ame: JEC l	ntract To			3 49 15		/Mise			78.0	1150772 <u>1</u> 5				Analys		(\$100 N 100 N	1890/83/14 <u>(</u>)	leggi Salahan (s	8980 (\$10)	
Hea Pace 9608 Lene	ther Wilson e Analytical Kansas 3 Loiret Blvd. exa, KS 66219 ne 1(913)563-1407		16 St Gi	38 Rose uites 2,3 reensbu	ytical Pittsb eytown Roa , & 4 rg, PA 1560 4)850-5600	d)1	1828 3 0		ved (c ontai)	1013	m-226 & Total Sum	Radium-228			Ш	303 			 5			
70 i.v. (84V)		Sample	Collect				HN03					Radium		No.									
ltem	Sample ID	Туре	Date/Time	La	b ID	Matrix	Ī														LAB US		<u>_</u>
1	MW-FAA-3	PS	9/12/2019 12	2:58 60	314891001	Water	2					Х	Х					_		11	$-\infty$		_
2	MW-FAA-4	PS	9/12/2019 14	1:59 60	314891002	Water	2					X	Х		_	_				+	<i>S</i>		
3	MW-FAA-5	PS	9/12/2019 16		314891003	Water	2_					X	X			-				+-+	Q	7	_
4	MW-FAA-6	PS	9/12/2019 11		314891004	Water	2					X	X		\dashv					┼┼	<u>ce</u>		
5	DUPLICATE	PS	9/12/2019 11	:05 60	314891005	Water	2	1,024,000	ALANSIA KASE	1156 (176)		<u> X</u>	<u> X</u>	ASSESSED S	SUCCESSION	s contra		Comme	ents		عن		
Trar	nsfers Released By	ace	Date/T	ime 19 180	Received I	Ву				1	ate/Tir /7/9			lease	provid	e QC	sheets						
3						Y or N	$\overline{}$				red o	n loo	1	or/	NI NI	<u> </u>		Samn	les inf	act	Y or N		_
***//	oler Temperature on Receip order to maintain client confi This chain of custody is consid	dentiality	/, location/n	ame of	dy Seal `the sampl	ing site, s	samp	oler's ble ii	nan	ne an	d sigr	ature	e ma			ovide							
` —	onday, September 16, 2019 10:19:10	AM	:				·····					·····		FM	1T-ALL	-C-002	rev.00 2	4March2	2009		Paç	ge 1 of	1

المرادة Pittsburgh Lab Sample Cond		No. march 1000
Face Analytical Client Name:		1.3
		p ^{ezz} n,
Courier: Fed Ex UPS USPS UClier	nt Dommercial Dace Other Label DU	
Tracking #:)219 2978, 9779	LIMS Login M	
Custody Seal on Cooler/Box Present:	no Seals intact: yes no	
Thermometer Used	Type of ice: Wet Blue None	
Cooler Temperature Observed Temp	°C Correction Factor: C Final Temp: C	
Temp should be above freezing to 6°C		
	pH paper Lott# Date and Initials of person examining contents: 194, 9~17~19	
Comments:	Yes No N/A 004287 contents: 174, 4-17-18	
Chain of Custody Present:	1.	
Chain of Custody Filled Out:	2.	
Chain of Custody Relinquished:	3.	
Sampler Name & Signature on COC:	4.	
Sample Labels match COC:	5.	
-Includes date/time/ID Matrix:	WI	
Samples Arrived within Hold Time:	6.	
Short Hold Time Analysis (<72hr remaining):	7.	
Rush Turn Around Time Requested:	8.	
Sufficient Volume:	9.	
Correct Containers Used:	10.	
-Pace Containers Used:		
Containers Intact:	11.	
Orthophosphate field filtered	12.	
Hex Cr Aqueous sample field filtered	13.	•
Organic Samples checked for dechlorination:	14.	
Filtered volume received for Dissolved tests All containers have been checked for preservation.	15.	•
·	16. NYLZ	
exceptions: VOA, collform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon,	
All containers meet method preservation	Initial when D// Date/time of	
requirements.	completed preservation	
	Lot#of added preservative	
Headspace in VOA Vials (>6mm):	17.	
Trip Blank Present:	18.	
Trip Blank Custody Seals Present		•
Rad Samples Screened < 0.5 mrem/hr	Initial when put Date: 9-17-19	·
Client Notification/ Resolution:		
Person-Gontacted:	Date/Time:Contacted By:	w
Comments/ Resolution:		
A cneck in this dox indicates that addit	tional information has been stored in ereports.	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Pace Analytical

Quality Control Sample Performance Assessment

Test: Ra-226 Analyst: MK1 Date:

Pass

Batch ID: 49912 Matrix: DW

Method Blank Assessment MB Sample ID 1756645 MB concentration: 0.277 M/B Counting Uncertainty: 0.391 MB MDC: 0.665 MB Numerical Performance Indicator: 1.39 MB Status vs Numerical Indicator: N/A

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS49912	LCSD49912
Count Date:	10/1/2019	
Spike I.D.:	19-022	
Spike Concentration (pCi/mL):	32.118	
Volume Used (mL):	0.10	J
Aliquot Volume (L, g, F):	0.661	1
Target Conc. (pCi/L, g, F):	4.857	
Uncertainty (Calculated):	0.228	
Result (pCi/L, g, F):		
LCS/LCSD Counting Uncertainty (pCi/L, g, F):		
Numerical Performance Indicator:	0.97	
Percent Recovery:	110.58%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:		
Lower % Recovery Limits:	73%	

MB Status vs. MDC:

Duplicate Sample Assessment		
Sample I.D.: Duplicate Sample I.D.: Sample Result (pCi/L, g, F): Sample Result (pCi/L, g, F): Sample Duplicate Result (pCi/L, g, F): Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):	35497727002DUP 0.438 0.442 0.857	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.
Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator:		35497727002
Duplicate RPD:	64.78%	35497727002DUP
Duplicate Status vs Numerical Indicator:		
Duplicate Status vs RPD: % RPD Limit;		•

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	9/11/2019	
Sample I.D.	35497727003	
Sample MS I.D.		
Sample MSD I.D.		
Spike I.D.:	19-022	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	32.119	
Spike Volume Used in MS (mL):		
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):	0.654	
MS Target Conc.(pCi/L, g, F):	9.820	
MSD Aliquot (L, g, F):		
MSD Target Conc. (pCi/L, g, F):		i
MS Spike Uncertainty (calculated):	0.462	
MSD Spike Uncertainty (calculated):		
Sample Result:	0.207	ļ
Sample Result Counting Uncertainty (pCi/L, g, F):	0.248	
Sample Matrix Spike Result:	9.909	
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	1.464	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
MS Numerical Performance Indicator:	-0.148	
MSD Numerical Performance Indicator:		
MS Percent Recovery:	98.81%	
MSD Percent Recovery:	NI/A	
MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator:	N/A	
MS Status vs Numerical indicator: MS Status vs Recovery:	Pass	
MSD Status vs Recovery:	Fass	
MS/MSD Upper % Recovery Limits:	136%	
MS/MSD Lower % Recovery Limits:	71%	

Matrix Spike/Matrix Spike Duplicate Sample Assessment		
Sample I.D.		
Sample MS I.D.		
Sample MSD I.D.		
Sample Matrix Spike Result:		
Matrix Spike Result Counting Uncertainty (pCi/L, g, F):		
Sample Matrix Spike Duplicate Result:	1	
Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):		
Duplicate Numerical Performance Indicator:		
(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	i	
MS/ MSD Duplicate Status vs Numerical Indicator:		
MS/ MSD Duplicate Status vs RPD:		
% RPD Limit:		

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Batch must be re-prepped due to unacceptable precision.

OK City//h

Granoff 1/10

ιM

Ra-226 NELAC QC Printed: 10/1/2019 11:56 AM

1 of 1

Pace Analytical*

Quality Control Sample Performance Assessment

Test: Ra-228 Analyst: VAL

Date: 9/25/2019 Worklist: 49911 Matrix: WT

 Method Blank Assessment
 MB Sample ID
 1756639

 MB concentration:
 0.307

 M/B 2 Sigma CSU:
 0.370

 MB MDC:
 0.779

 MB Numerical Performance Indicator:
 1.63

 MB Status vs Numerical Indicator:
 Pass

 MB Status vs. MDC:
 Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	N
	LCS49911	LCSD49911
Count Date:	10/1/2019	
Spike I.D.:	19-026	
Decay Corrected Spike Concentration (pCi/mL):	35.224	
Volume Used (mL):	0.10	
Aliquot Volume (L, g, F):	808,0	
Target Conc. (pCi/L, g, F):	4.361	
Uncertainty (Calculated):	0.214	1
Result (pCi/L, g, F):	2.866	
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.800	
Numerical Performance Indicator:	-3.54	
Percent Recovery:	65.72%	
Status vs Numerical Indicator:	N/A	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	135%	
Lower % Recovery Limits:	60%	

Duplicate Sample Assessment		
Sample I.D.:	30325065002	Enter Duplicate
Duplicate Sample t.D.	30325065002DUP	sample IDs if
Sample Result (pCi/L, g, F):	0.572	other than
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.415	LCS/LCSD in
Sample Duplicate Result (pCi/L, g, F):	0,616	the space below.
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	0.377	
Are sample and/or duplicate results below RL?	See Below ##	
Duplicate Numerical Performance Indicator:	-0.153	30325065002
Duplicate RPD:	7,38%	30325065002DUP
Duplicate Status vs Numerical Indicator:	Pass	
Duplicate Status vs RPD:	Pass	
% RPD Limit:	36%	

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Sample Collection Date:	9/17/2019	
Sample I.D.	30325118001	
Sample MS I.D.	30325118001MS	
Sample MSD I.D.		
Spike I.D.:	19-026	
MS/MSD Decay Corrected Spike Concentration (pCi/mL):	35.389	
Spike Volume Used in MS (mL):	0.20	1
Spike Volume Used in MSD (mL):		
MS Aliquot (L, g, F):		
MS Target Conc.(pCi/L, g, F):	8.617	
MSD Aliquot (l, g, F):		
MSD Target Conc. (pCi/L, g, F):		İ
MS Spike Uncertainty (calculated):	0.422	
MSD Spike Uncertainty (calculated):		
Sample Result:		
Sample Result 2 Sigma CSU (pCi/L, g, F):	0.830	
Sample Matrix Spike Result:		
Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):	2.024	
Sample Matrix Spike Duplicate Result:		
Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
MS Numerical Performance Indicator:	-1.221	
MSD Numerical Performance Indicator:	92.000/	
MS Percent Recovery:	63.90%	
MSD Percent Recovery: MS Status vs Numerical Indicator:	Pass	
MSD Status vs Numerical Indicator:	rd55	
MS Status vs Recovery:	Pass	
MSD Status vs Recovery:	r ass	
MS/MSD Upper % Recovery Limits:	135%	
MS/MSD Lower % Recovery Limits:	60%	
MIGHNOD LOWER A RECOVERY LINES.	2070	L

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Page 22 of 22

Ra-228 NELAC DW2 Printed: 10/3/2019 9:18 AM 10-5-19

Ra-228_49911_DW_W Ra-228 (R086-8 04Sep2019).xls

ATTACHMENT 2 Statistical Analyses

ATTACHMENT 2-1 September 2018 Statistical Analyses

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

November 4, 2022 File No. 129778

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

Steven F. Putrich, P.E., Senior Associate – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: September 2018 Semi-Annual Groundwater Assessment Monitoring Data

Statistical Evaluation

Completed January 14, 2019

Jeffrey Energy Center Fly Ash Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2018** semi-annual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Fly Ash Landfill (FAL). This semi-annual assessment monitoring groundwater sampling event was completed on **September 13, 2018**. All laboratory results were received and accepted on **October 15, 2018**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant level (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or background concentration.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The

Evergy Kansas Central, Inc. November 4, 2022 Page 2

most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if an SSL existed.

STATISTICAL ANALYSIS

An interwell evaluation was used to determine the SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2018** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-FAA-5 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2018.**

Evergy Kansas Central, Inc. November 4, 2022 Page 3

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2018** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent a SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation of groundwater sampling data collected in September 2018**, a SSL above the GWPS occurred at the JEC FAL for molybdenum at MW-FAA-6.

Enclosures:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLES

TABLE I

SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2018 SAMPLING EVENT

JEFFREY ENERGY CENTER FLY ASH LANDFILL

ST. MARYS, KANSAS

											MCL Comparison							Interwel	l Analysis	Groundwater Protect	tion Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL	Report Result Unit	Detection Exceedances (Y/N)		Number of Non- Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2018 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	GWPS (Higher of MCL/ RSL or UTL) (mg/L)	SSL
				T	1	1				CCI	R Appendix-IV:	Arsenic, Total	(μg/L)	1		1					
MW-FAA-5 (Upgradient)	9/10	10%	1-1	3.5	1.098	1.048	0.6157	0.010	mg/L	N	0	0	No	No	Stable	Normal	0.00071	0.00372		0.010	
MW-FAA-3	3/10	70%	1-1	1.1	0.002054	0.04533	0.04537	0.010	mg/L	N	0	0	Yes	No	NA	Non-parametric	0.00091		No		No
MW-FAA-4	0/10	100%	0.5-1	-	0.025	0.1581	0.1664	0.010	mg/L	N	0	0	NA	NA	NA	NA	<0.0005		No		No
MW-FAA-6	10/10	0%	-	8.6	1.732	1.316	0.214	0.010	mg/L	N	0	0	No	No	Stable	Non-parametric	0.0085		Yes		No
				T	1	1				CC	R Appendix-IV:	Barium, Total	(μg/L)	1		1					
MW-FAA-5 (Upgradient)	3/10	70%	5-10	13	9.563	3.092	0.4048	2	mg/L	N	0	0	No	No	NA	Normal	<0.0050	0.0136		2	
MW-FAA-3	10/10	0%	-	47	37.83	6.151	0.1836	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.027		Yes		No
MW-FAA-4	10/10	0%	-	53	4.678	2.163	0.043	2	mg/L	N	0	0	No	No	Stable	Normal	0.053		Yes		No
MW-FAA-6	10/10	0%	-	67	185.8	13.63	0.233	2	mg/L	N	0	0	No	No	Stable	Non-parametric	0.032		Yes		No
				,						cc	R Appendix-IV	Cobalt, Total	(μg/L)								
MW-FAA-5 (Upgradient)	6/10	40%	1-1	3.6	1.02	1.01	0.6742	0.006	mg/L	N	0	0	No	No	Stable	Non-parametric	0.0013	0.0036		0.006	
MW-FAA-3	2/10	80%	1-1	0.58	0.0362	0.1903	0.2091	0.006	mg/L	N	0	0	No	No	NA	Non-parametric	0.00058		No		No
MW-FAA-4	0/10	100%	0.5-1		0.025	0.1581	0.1664	0.006	mg/L	N	0	0	NA	NA	NA	NA	<0.0005		No		No
MW-FAA-6	9/10	10%	1-1	1.8	0.06354	0.2521	0.2059	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.00094		No		No
				,						CCF	R Appendix-IV:	Fluoride, Tota	l (μg/L)								
MW-FAA-5 (Upgradient)	11/11	0%	-	1300	51590	227.1	0.2734	4.0	mg/L	N	0	0	No	No	Stable	Normal	1.3	1.261		4.0	
MW-FAA-3	11/11	0%	-	400	1296	36.01	0.1097	4.0	mg/L	N	0	0	No	No	Increasing	Normal	0.40		No		No
MW-FAA-4	11/11	0%	-	400	1316	36.28	0.1061	4.0	mg/L	N	0	0	No	No	Increasing	Normal	0.40		No		No
MW-FAA-6	12/12	0%	-	1100	21730	147.4	0.1798	4.0	mg/L	N	0	0	No	No	Stable	Normal	1.1		No		No
										CCI	R Appendix-IV:	Lithium, Total	l (μg/L)								
MW-FAA-5 (Upgradient)	10/10	0%	-	160	1145	33.84	0.288	0.040	mg/L	Υ	10	0	No	No	Stable	Normal	0.11	0.183		0.183	
MW-FAA-3	9/10	10%	20-20	19	7.211	2.685	0.1668	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.014		No		No
MW-FAA-4	8/10	20%	10-20	18	8.4	2.898	0.1907	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.018		No		No
MW-FAA-6	7/10	30%	10-20	16	10.27	3.204	0.2584	0.040	mg/L	N	0	0	No	No	Stable	Non-parametric	<0.010		No		No
										CCR A	ppendix-IV: M	olybdenum, To	otal (μg/L)								
MW-FAA-5 (Upgradient)	10/10	0%	-	67	360.6	18.99	0.5686	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0267	0.0699		0.100	
MW-FAA-3	10/10	0%	-	14	5.14	2.267	0.2143	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0064		No		No
MW-FAA-4	10/10	0%	-	3.7	0.201	0.4483	0.1499	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0037		No		No
MW-FAA-6	10/10	0%	-	590	10350	101.8	0.2095	0.100	mg/L	Υ	10	0	No	No	Stable	Normal	0.416		Yes		Yes
										CCR Appe	endix-IV: Radiu	m-226 & 228,	Total (pCi/L)							
MW-FAA-5 (Upgradient)	10/10	0%	-	1.22	0.1209	0.3477	0.5473	5	mg/L	N	0	0	No	No	Stable	Normal	0.617	1.3		5	
MW-FAA-3	10/10	0%	-	1.22	0.2349	0.4847	1.062	5	mg/L	N	0	0	No	No	Stable	Normal	0.653		No		No
MW-FAA-4	10/10	0%	-	0.644	0.04153	0.2038	0.5926	5	mg/L	N	0	0	No	No	Stable	Normal	1.030		No		No
MW-FAA-6	10/10	0%	-	0.71	0.1491	0.3861	2.657	5	mg/L	N	0	0	No	No	Stable	Normal	0.720		No		No
										CCR	Appendix-IV:	Selenium, Tota	al (μg/L)								
MW-FAA-5 (Upgradient)	4/10	60%	0.5-1	3.9	1.162	1.078	0.6653	0.05	mg/L	N	0	0	No	No	NA	Normal	<0.00050	0.00369		0.05	
MW-FAA-3	0/10	100%	0.5-1	-	0.025	0.1581	0.1664	0.05	mg/L	N	0	0	NA	NA	NA	NA	<0.00050		No		No
MW-FAA-4	2/10	80%	1-1	1.2	0.007111	0.08433	0.08108	0.05	mg/L	N	0	0	No	No	NA	Non-parametric	0.0012		No		No
MW-FAA-6	1/10	90%	0.5-1	1.1	0.02711	0.1647	0.1715	0.05	mg/L	N	0	0	Yes	No	NA	Non-parametric	<0.00050		No		No

Notes and Abbreviations:

¹ Based on background data collected from 08/19/2016 through 09/13/2018

μg/L = micrograms per liter

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per Liter

NA = not analyzed

pCi/L = picoCuries per Liter

RSL = regional screening level

SSI = statistically significant increase

SSL = statistically significant level
UTL = upper tolerance limits

HALEY....

ATTACHMENT 2-2 March 2019 Statistical Analyses

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

November 4, 2022 File No. 129778-050

TO: Evergy Kansas Central, Inc.

Jared Morrison – Director, Water and Waste Programs

FROM: Haley & Aldrich, Inc.

> Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist

SUBJECT: March 2019 Semi-Annual Groundwater Assessment Monitoring Data

> Statistical Evaluation Completed July 15, 2019 Jeffrey Energy Center Fly Ash Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the March 2019 semi-annual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Fly Ash Landfill (FAL). This semi-annual assessment monitoring groundwater sampling event was completed on March 26, 2019. All laboratory results were received and validated on April 15, 2019.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant level (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or background concentration.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on January 14, 2019. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSL existed.

Evergy Kansas Central, Inc. November 4, 2022 Page 2

STATISTICAL ANALYSIS

Either an interwell or intrawell evaluation was used to determine SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data, and the intrawell evaluation compares the most recent values from each compliance well against a background dataset composed of its own historical data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2019** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if a SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-FAA-5 (for interwell evaluation) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2018** for **interwell evaluation**. Background concentrations were updated through **August 2017** for **intrawell evaluation**.

Evergy Kansas Central, Inc. November 4, 2022 Page 3

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the March 2019 semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent a SSI. A sample concentration greater than the GWPS is considered to represent a SSL. Based on previous compliance sampling events, statistical evaluations, and associated alternative source demonstrations, an intrawell comparison is utilized for FAA-6 for molybdenum statistical evaluations. Interwell comparisons are being utilized for all other well and constituent evaluations. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation of groundwater sampling data collected in March 2019, no SSLs above GWPS occurred at the JEC FAL.

Attachments:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I

SUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2019 SAMPLING EVENT JEFFREY ENERGY CENTER FLY ASH LANDFILL

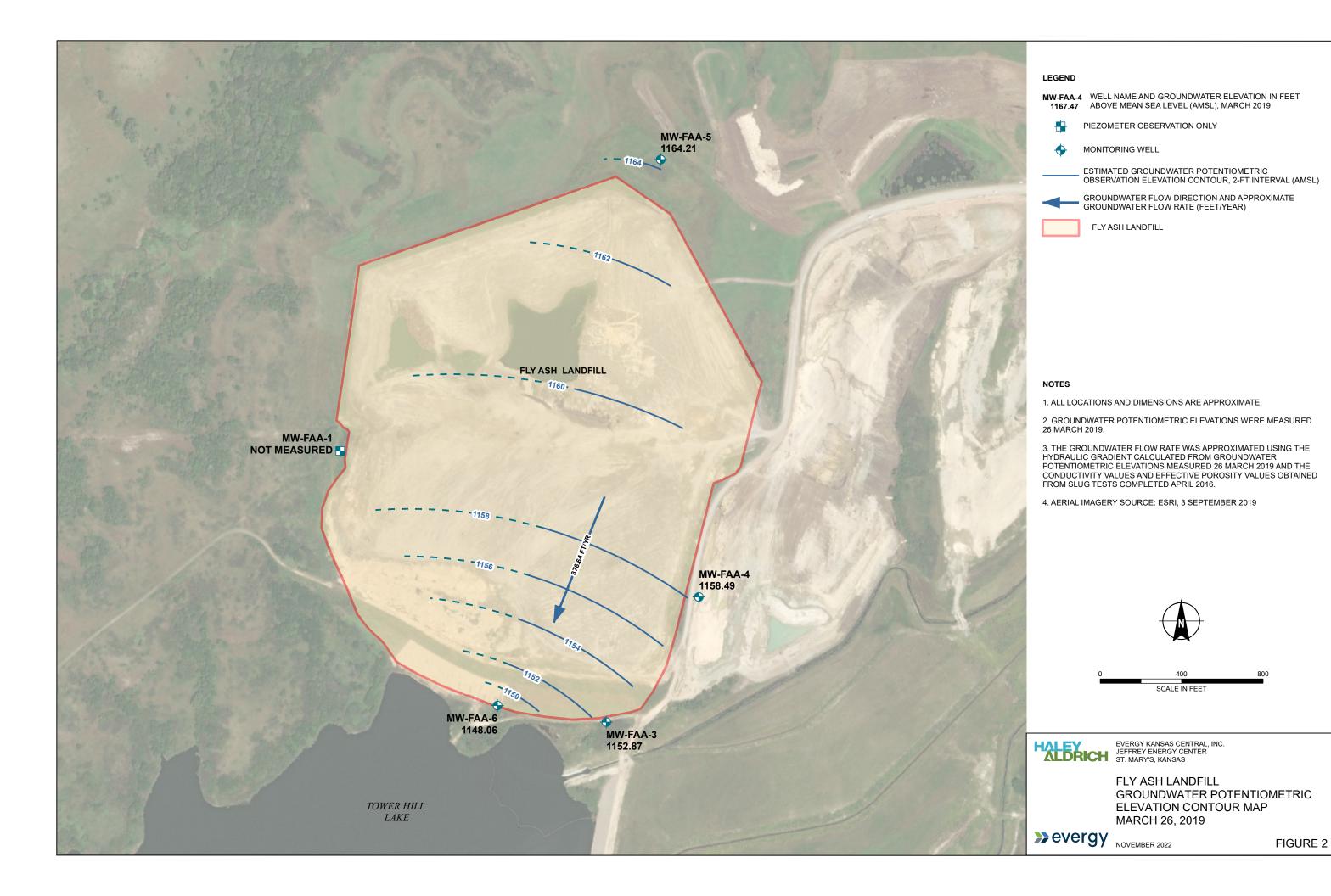
ST. MARYS, KANSAS

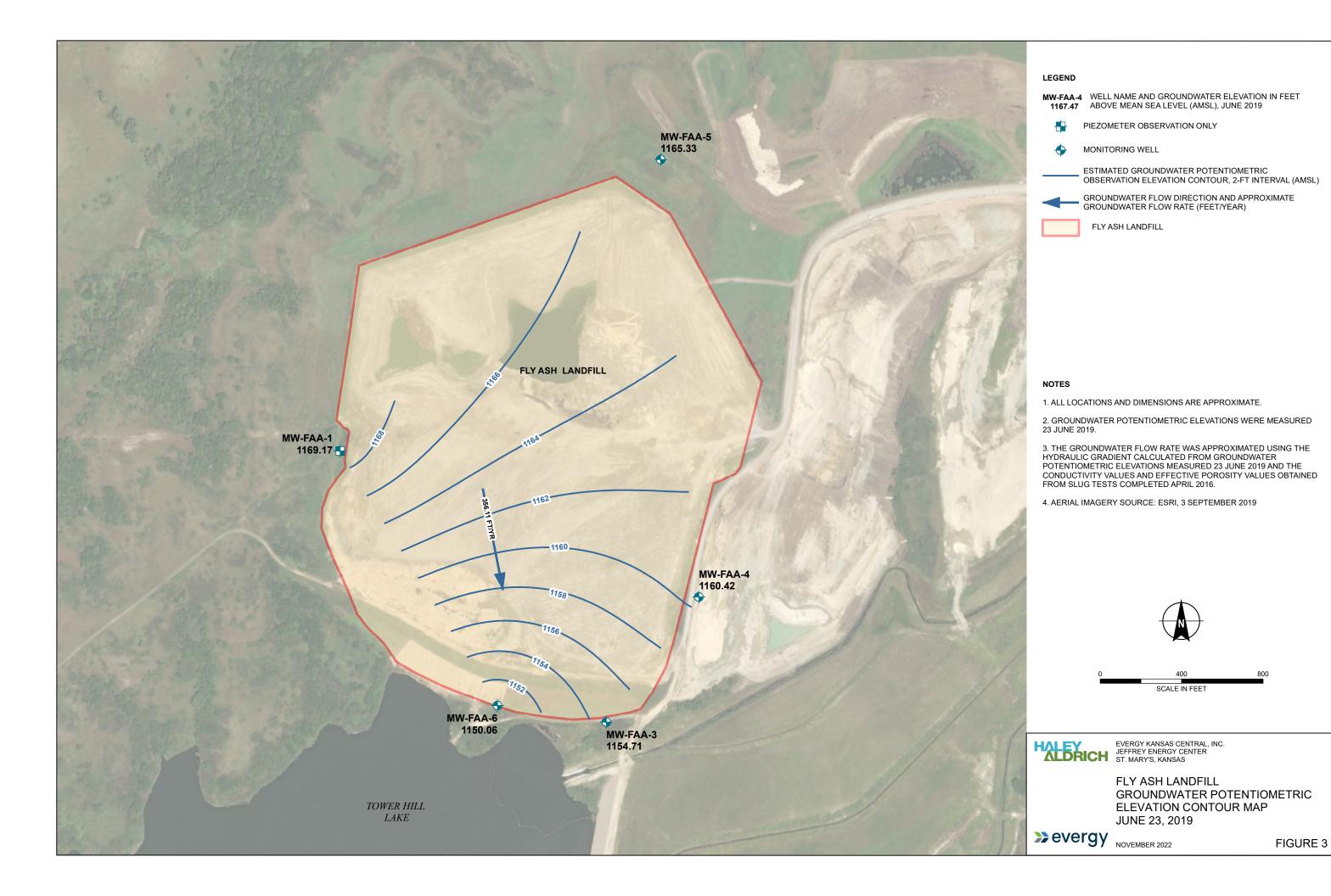
											MCL Cor	nparison						Interwel	ll Analysis	Intrawe	ell Analysis	Groundwater Prote	ection Standard
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non- Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2019 Concentration (mg/L)	Background Limits ¹ (UTL) mg/L	SSI	Background Limits ² (UTL) mg/L	SSI	GWPS (Higher of MCL/ RSL or UTL) (mg/L)	SSL
				1		<u> </u>					CCR A	ppendix-IV: Ar	senic, Total	(mg/L)									
MW-FAA-5 (upgradient)	10/12	17%	0.001-0.001	0.0035	9.413E-07	0.0009702	0.5874	0.010	mg/L	N	0	0	No	No	Stable	Normal	<0.0010	0.0037				0.01	
MW-FAA-3	3/11	73%	0.001-0.001	0.0011	1.849E-09	0.000043	0.04304	0.010	mg/L	N	0	0	Yes	No	NT	Non-parametric	<0.0010		No				No
MW-FAA-4	0/12	100%	0.0005-0.001		2.083E-08	0.0001443	0.1506	0.010	mg/L	N	0	0	NA	NA	NA	NA	<0.0010		No				No
MW-FAA-6	11/11	0%	-	0.0086	2.104E-06	0.001451	0.2447	0.010	mg/L	N	0	0	No	No	Stable	Non-parametric	0.0037		No				No
											CCR A	Appendix-IV: Ba	rium, Total	(mg/L)									
MW-FAA-5 (upgradient)	3/12	75%	0.005-0.01	0.013	0.00000888	0.00298	0.4139	2	mg/L	N	0	0	No	No	NT	Normal	<0.0050	0.0136				2	
MW-FAA-3	11/11	0%	-	0.047	0.00003462	0.005884	0.1744	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.036		Yes				No
MW-FAA-4	12/12	0%	-	0.053	4.023E-06	0.002006	0.03991	2	mg/L	N	0	0	No	No	Stable	Normal	0.051		Yes				No
MW-FAA-6	11/11	0%	-	0.067	0.0002264	0.01505	0.2678	2	mg/L	N	0	0	No	No	Stable	Non-parametric	0.033		Yes				No
											CCR A	Appendix-IV: Co	balt, Total ((mg/L)									
MW-FAA-5 (upgradient)	8/12	33%	0.001-0.001	0.0036	8.862E-07	0.0009414	0.6146	0.006	mg/L	N	0	0	No	No	Stable	Non-parametric	0.0022	0.0036				0.006	
MW-FAA-3	2/11	82%	0.001-0.001	0.00058	3.332E-08	0.0001825	0.1988	0.006	mg/L	N	0	0	No	No	NT	Non-parametric	<0.0010		No				No
MW-FAA-4	0/12	100%	0.0005-0.001		2.083E-08	0.0001443	0.1506	0.006	mg/L	N	0	0	NA	NA	NA	NA	<0.0010		No				No
MW-FAA-6	10/11	9%	0.001-0.001	0.0018	7.778E-08	0.0002789	0.2201	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0017		No				No
											CCR A	ppendix-IV: Flu	oride, Total	(mg/L)									
MW-FAA-5 (upgradient)	13/13	0%	-	1.3	0.04995	0.2235	0.2767	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.53	1.261				4.0	
MW-FAA-3	12/12	0%	-	0.4	0.001324	0.03639	0.1097	4.0	mg/L	N	0	0	No	No	Increasing	Normal	0.37		No				No
MW-FAA-4	13/13	0%	-	0.4	0.001141	0.03378	0.09958	4.0	mg/L	N	0	0	No	No	Increasing	Normal	0.33		No				No
MW-FAA-6	13/13	0%	-	1.1	0.02299	0.1516	0.1885	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.62		No				No
												ppendix-IV: Lit	nium, Total	(mg/L)									
MW-FAA-5 (upgradient)	12/12	0%	-	0.16	0.001096	0.03311	0.2844	0.040	mg/L	Υ	12	0	No	No	Stable	Normal	0.082	0.183				0.183	
MW-FAA-3	10/11	9%	0.02-0.02	0.019	6.891E-06	0.002625	0.165	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.014		No				No
MW-FAA-4	9/12	25%	0.01-0.02	0.019	0.00001063	0.00326	0.2161	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.019		No				No
MW-FAA-6	8/11	27%	0.01-0.02	0.016	9.473E-06	0.003078	0.2453	0.040	mg/L	N	0	0	No	No	Stable	Non-parametric	0.014		No				No
											CCR App	endix-IV: Molyl	denum, To										
MW-FAA-5 (upgradient)	12/12	0%	-	0.067	0.0003083	0.01756	0.5281	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.024	0.0699				0.100	
MW-FAA-3	11/11	0%	-	0.014	8.682E-06	0.002947	0.2955	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0039		No				No
MW-FAA-4	12/12	0%	-	0.0072	1.667E-06	0.001291	0.3893	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0072		No	2.222		2 222	No
MW-FAA-6	11/11	0%	-	0.59	0.01573	0.1254	0.2718	0.100	mg/L	Y	11	0	No	No	Stable	Normal	0.22			0.928	No	0.928	No
	10/10			T	1	T			/-			dix-IV: Radium-						1				1 -	
MW-FAA-5 (upgradient)	12/12	0%	-	1.907	0.2377	0.4876	0.6318	5	pCi/L	N	0	0	No	No	Stable	Normal	1.00	1.3				5	
MW-FAA-3	11/11	0%	-	1.22	0.2124	0.4609	1.031	5	pCi/L	N	0	0	No	No	Stable	Normal	0.352		No				No
MW-FAA-4 MW-FAA-6	12/12	0%	-	1.4	0.1555	0.3943	0.8058	5	pCi/L	N	0	0	No	No No	Stable	Normal	1.40		Yes				No No
IVIVV-FAA-b	11/11	0%	-	1.43	0.2965	0.5446	1.914	5	pCi/L	N	CCD A	pendix-IV: Sele	No No	No I (mg/I)	Stable	Normal	1.43		Yes				No
AA)A/ EAA E /	F /4.2	F00/	0.0005 0.004	1 0 0020	0.00000100	0.001044	0.6305	0.05	/1			penaix-iv: Sele			NIT	No	0.0027	0.0027				0.05	
MW-FAA-5 (upgradient) MW-FAA-3	5/12 0/11	58%	0.0005-0.001 0.0005-0.001	0.0039	0.00000109		0.6295	0.05	mg/L	N	0	0	No	No	NT NA	Normal NA	0.0027	0.0037	No			0.05	N-
MW-FAA-4	3/12	100% 75%	0.0005-0.001	0.0013	2.273E-08 1.174E-08	0.0001508 0.0001084	0.1579 0.1024	0.05 0.05	mg/L	N N	0	0	NA No	NA Na	NA NT		<0.0010 0.0013		No No				No No
MW-FAA-4 MW-FAA-6	3/12 1/11	91%	0.001-0.001	0.0013	2.455E-08	0.0001084	0.1024	0.05	mg/L mg/L	N N	0	0	No Yes	No No	NT NT	Non-parametric Non-parametric	<0.0013		No No				No No
Notes and Abbreviations:	1/11	J1/0	0.0003-0.001	0.0011	2.4JJL-00	0.0001307	0.1020	0.03	IIIg/ L	IN			163	NU	INI	ivon-parametric	VU.UUIU		INU				INU

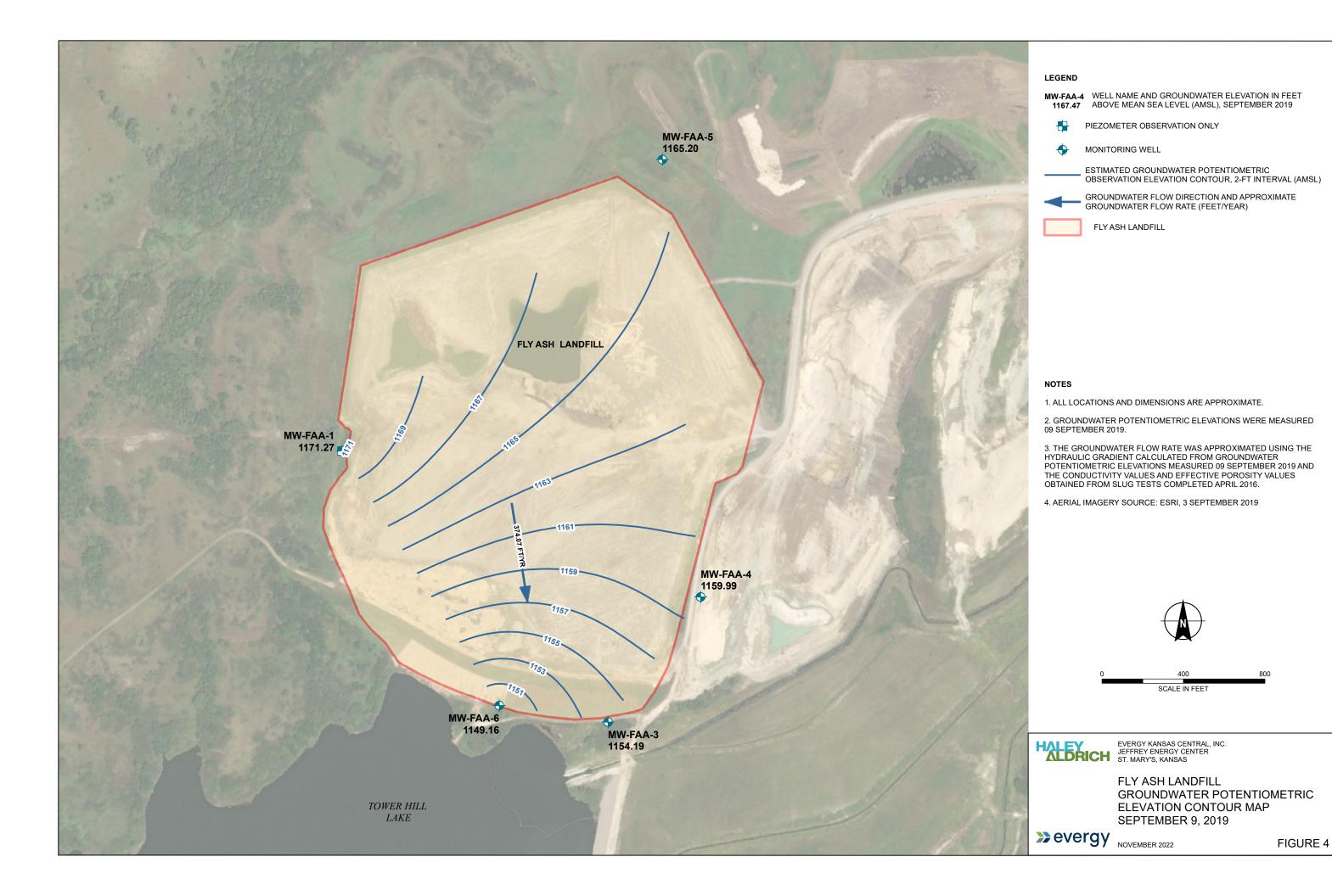
Notes and Abbreviations:

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard MCL = maximum contaminant level


MCL = maximum contaminant level mg/L = milligrams per Liter
NA = not analyzed pCi/L = picoCuries per Liter
RSL = regional screening level
SSI = statistically significant increase
SSL = statistically significant level
UTL = upper tolerance limits




¹ Based on background data collected from 08/19/2016 through 09/13/2018

² Based on background data collected from 08/19/2016 through 08/28/2017

ATTACHMENT 3 Groundwater Potentiometric Maps

