www.haleyaldrich.com

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT FLUE GAS DESULFURIZATION LANDFILL JEFFREY ENERGY CENTER ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-041 January 2024

Table of Contents

Page

1.	Intr	oductio	n	1
	1.1	40 CFF	R § 257.90(e)(6) SUMMARY	1
		1.1.1	40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1
		1.1.2	40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1
		1.1.3	40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	1
		1.1.4	40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2
		1.1.5	40 CFR § 257.90(e)(6)(v) – Selection of Remedy	3
		1.1.6	40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3
2.	40 C	CFR § 25	57.90 Applicability	4
	2.1	40 CFF	R § 257.90(a)	4
	2.2	40 CFF	R § 257.90(e) – SUMMARY	4
		2.2.1	Status of the Groundwater Monitoring Program	4
		2.2.2	Key Actions Completed	4
		2.2.3	Problems Encountered	5
		2.2.4	Actions to Resolve Problems	5
		2.2.5	Projected Key Activities for Upcoming Year	5
	2.3	40 CFF	R § 257.90(e) – INFORMATION	5
		2.3.1	40 CFR § 257.90(e)(1)	5
		2.3.2	40 CFR § 257.90(e)(2) – Monitoring System Changes	5
		2.3.3	40 CFR § 257.90(e)(3) – Summary of Sampling Events	5
		2.3.4	40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	6
		2.3.5	40 CFR § 257.90(e)(5) – Other Requirements	6

Revision No.	Date	Notes

2023 Annual Groundwater Monitoring and Corrective Action Report

List of Tables

Table No.	Title
I	Summary of Analytical Results – 2023 Detection Monitoring

List of Figures

Figure No.	Title
1	FGD Landfill Monitoring Well Location Map
2	FGD Landfill Groundwater Potentiometric Elevation Contour Map – March 14, 2023
3	FGD Landfill Groundwater Potentiometric Elevation Contour Map – September 6, 2023

List of Attachments

Attachment 1 – Statistical Analyses

 September 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation
 March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

- 2-1 March 2023 Semi-Annual Sampling Event Laboratory Analytical Report
- 2-2 September 2023 Semi-Annual Assessment Sampling Event Laboratory Analytical Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Jeffrey Energy Center Flue Gas Desulfurization (FGD) Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2023) and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2023 Annual Groundwater Monitoring and Corrective Action Report for the FGD Landfill is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Kansas License No.: Title: Company: Mark Nicholls Professional Geologist No. 881 Principal Consultant Haley & Aldrich, Inc.

1. Introduction

This 2023 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Flue Gas Desulfurization (FGD) Landfill at the Jeffrey Energy Center (JEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Title 40 Code of Federal Regulations (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the FGD Landfill consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2023) and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(E)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2023), the FGD Landfill was operating under a detection monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2023), the FGD Landfill was operating under a detection monitoring program in compliance with 40 CFR § 257.94.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a) – Statistically Significant Increase Constituents

Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

No statistically significant increases (SSI) over background were identified during the previous calendar year (2023). The statistical evaluation reports for semi-annual assessment monitoring sampling events from September 2022 and March 2023 were completed in February 2023 and July 2023, respectively, and are included in Attachment 1.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b) – Initiation of Assessment Monitoring

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on July 17, 2018 for the FGD Landfill with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. The FGD Landfill returned to a detection monitoring program on August 14, 2020.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

The FGD Landfill remains in detection monitoring, and no Appendix IV constituents were collected or analyzed in 2023. Therefore, no statistically significant levels above the groundwater protection standard were identified for the FGD Landfill.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated in 2023 for this unit. The FGD Landfill remained in detection monitoring during 2023.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the FGD Landfill in 2023; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated in 2023 for this unit. The FGD Landfill remained in detection monitoring during 2023.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The FGD Landfill remains in detection monitoring, and no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required in 2023.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the JEC FGD Landfill. The FGD Landfill is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the FGD Landfill as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 is provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2023.

2.2.1 Status of the Groundwater Monitoring Program

The FGD Landfill remained in the detection monitoring program during 2023.

2.2.2 Key Actions Completed

The 2022 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2023. Statistical evaluation was completed in February 2023 on analytical data from the September 2022 semi-annual detection monitoring sampling event. Semi-annual detection monitoring sampling events were completed in March and September of 2023. Statistical evaluation was completed in July 2023 on analytical data from the March 2023 semi-annual detection monitoring sampling event.

Statistical evaluation of the results from the September 2023 semi-annual detection monitoring sampling event are due to be completed in January 2024 and will be reported in the next annual report.

2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, or problems with analytical analysis) were encountered at the FGD in 2023.

2.2.4 Actions to Resolve Problems

No problems were encountered at the FGD in 2023, therefore, no additional actions to resolve problems were required.

2.2.5 Projected Key Activities for Upcoming Year

Key activities planned for 2024 include completion of the 2023 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual detection monitoring analytical data collected in September 2023, and semi-annual detection monitoring and subsequent statistical evaluations.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the FGD Landfill is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned in 2023.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.94(b), two independent detection monitoring samples from each background and downgradient monitoring well were collected in 2023. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the JEC FGD Landfill is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in 2023 are provided in Figures 2 and 3.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2023. Only detection monitoring was conducted in 2023.

An assessment monitoring program was initiated on July 17, 2018 with a notification establishing assessment monitoring provided on August 15, 2018 to meet the requirements of 40 CFR § 257.95. In accordance with 40 CFR § 257.95(e), the concentrations of Appendix III and detected Appendix IV constituents at the FGD Landfill were shown to be at or below background values for two consecutive sampling events; therefore, the CCR unit returned to detection monitoring on August 14, 2020.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.94 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed in calendar year 2023.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from EPA where EPA is the permitting authority.

No alternate source demonstration or certification was required in 2023; therefore, no demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alterative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The FGD Landfill remains in detection monitoring and an alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The FGD Landfill remains in detection monitoring, and no assessment monitoring samples were collected or analyzed in 2023. Consequently, Evergy is not required to establish groundwater protection standards for this CCR unit, and this criterion is not applicable.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA is the permitting authority.

No assessment monitoring alternate source demonstration or certification was required in 2023. The FGD Landfill remained in detection monitoring during 2023.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in Appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective molecular deadline to complete the assessment of corrective molecular deadline to complete the assessment of corrective molecular from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated in 2023; therefore, no demonstration or certification is applicable for this unit.

TABLE

TABLE ISUMMARY OF ANALYTICAL RESULTS - 2023 DETECTION MONITORINGEVERGY KANSAS CENTRAL, INC.JEFFREY ENERGY CENTER, FLUE GAS DESULFURIZATION LANDFILLST. MARYS, KANSAS

Location			Upgra	adient						Downg	radient			
Location -		MW-F	GD-1		MW-	FGD-6	MW-	FGD-2	MW-	FGD-3	MW-	FGD-4	MW-	FGD-9
Measure Point (TOC)		1239	9.05		127	7.52	118	4.20	118	6.26	118	8.43	117	5.51
Sample Name	FGD-1-031423	DUP-FGD-031423	FGD-1-090623	FGD-DUP-090623	FGD-6-031423	FGD-6-090623	FGD-2-031423	FGD-2-090623	FGD-3-031423	FGD-3-090623	FGD-4-031423	FGD-4-090623	FGD-9-031423	FGD-9-090623
Sample Date	3/14/2023	3/14/2023	9/6/2023	9/6/2023	3/14/2023	9/6/2023	3/14/2023	9/6/2023	3/14/2023	9/6/2023	3/14/2023	9/6/2023	3/14/2023	9/6/2023
Final Lab Report Date	3/24/2023	3/24/2023	9/22/2023	9/22/2023	3/24/2023	9/22/2023	3/24/2023	9/22/2023	3/24/2023	9/22/2023	3/24/2023	9/22/2023	3/24/2023	9/22/2023
Final Lab Report Revision Date	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lab Data Reviewed and Accepted	6/8/2023	6/8/2023	12/13/2023	12/13/2023	6/8/2023	12/13/2023	6/8/2023	12/13/2023	6/8/2023	12/13/2023	6/8/2023	12/13/2023	6/8/2023	12/13/2023
Depth to Water (ft btoc)	71.78	-	75.74	75.74	100.60	100.70	21.46	24.89	22.80	26.61	30.90	33.46	8.38	13.53
Temperature (Deg C)	13.08	-	16.40	-	12.00	20.64	13.11	18.71	13.16	19.94	12.95	17.95	12.96	16.65
Conductivity (µS/cm)	890	-	845	-	9,650	8,100	1,240	1,130	992	856	2,210	2,130	1,070	1,030
Turbidity (NTU)	0.0	-	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dissolved Oxygen, Field (mg/L)	0.83	-	0.00	-	1.90	0.00	0.00	0.00	0.00	1.49	0.00	0.00	2.68	0.00
ORP, Field (mV)	-5	-	-29	-	-70	-89	84	63	84	89	86	84	99	74
pH, Field (su)	7.39	-	7.42	-	7.02	7.22	7.05	7.11	7.17	7.31	7.00	7.00	7.30	7.22
Boron, Total (mg/L)	< 0.10	< 0.10	< 0.10	< 0.10	10.6	10.8	0.19	0.19	< 0.10	< 0.10	0.40	0.40	0.44	0.44
Calcium, Total (mg/L)	94.3	99.0	101	103	575	620	169	180	123	131	306	316	131	144
Chloride (mg/L)	74.5	74.9	75.5	76.1	2,900	1,950	57.6	59.7	60.4	60.1	198	186	46.3	49.0
Fluoride (mg/L)	< 0.20	< 0.20	0.22	0.25	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Sulfate (mg/L)	81.2	79.0	90.8	92.0	2,780	2,500	295	308	164	162	773	544	310	299
pH (su)	7.4	7.2	7.3	7.3	7.1	6.7	7.1	7.0	7.2	7.2	6.9	7.0	7.1	7.2
TDS (mg/L)	515	531	559	594	8,120	8,240	850	896	630	652	1,900	1,980	716	796

Notes:

Bold value: Detection above laboratory reporting limit.

μS/cm = micro Siemens per centimeter

Deg C = degrees Celsius

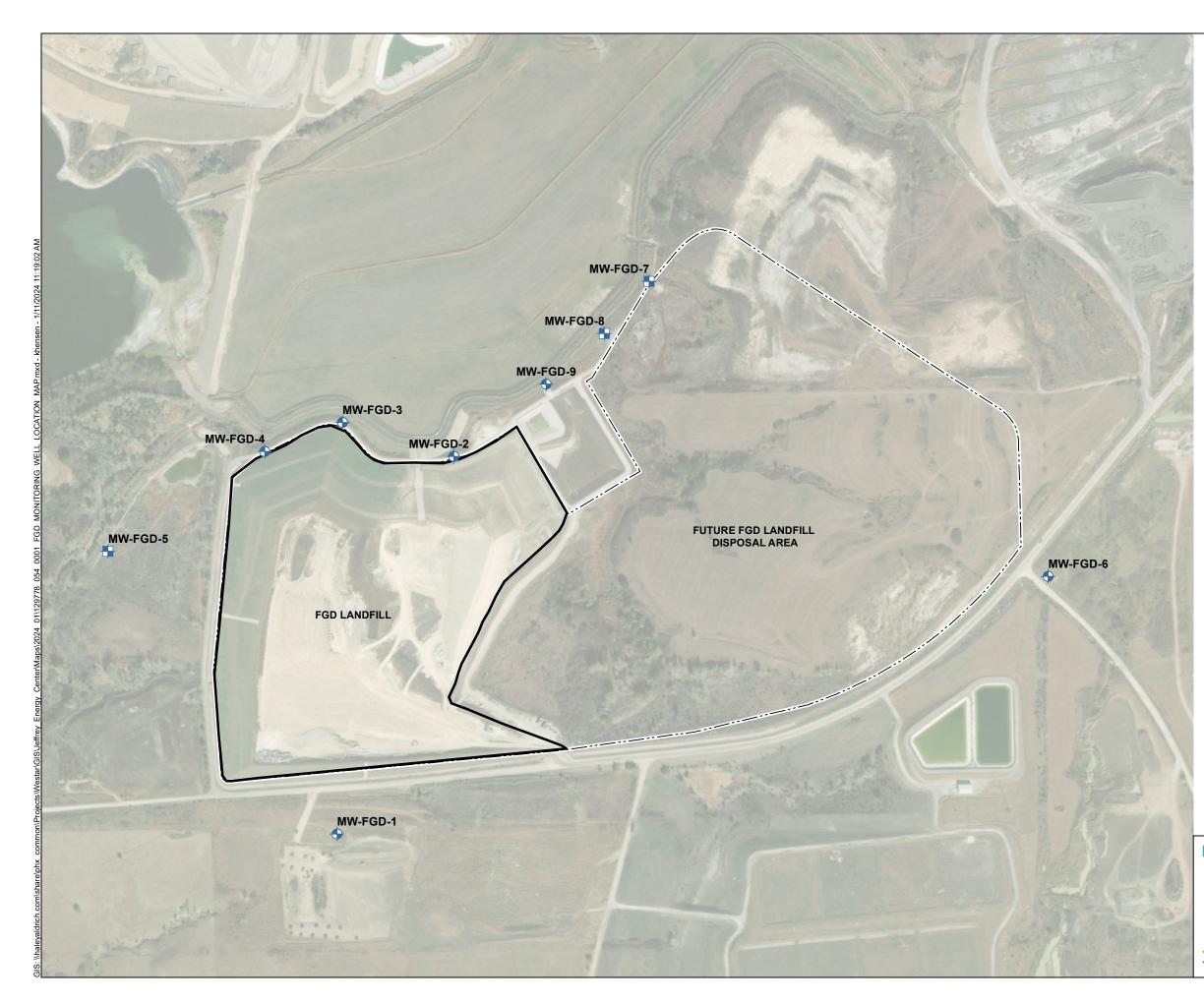
ft btoc = feet below top of casing

mg/L = milligrams per liter

mV = millivolt

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit


ORP = oxidation reduction potential

su = standard unit

TDS = total dissolved solids

TOC = top of casing

FIGURES

LEGEND

MONITORING WELL

PIEZOMETER

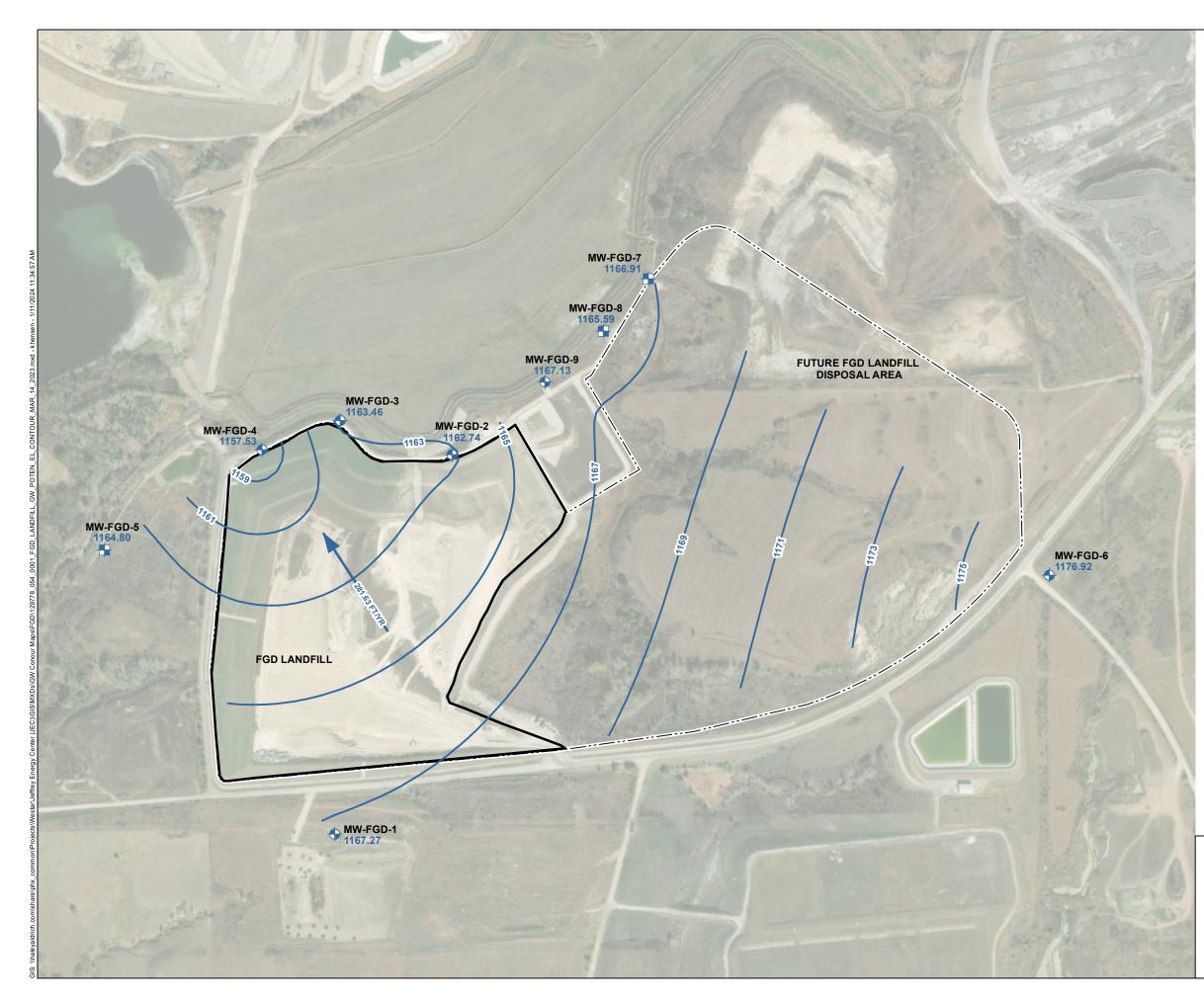
FGD LANDFILL BOUNDARY

FUTURE FGD LANDFILL DISPOSAL

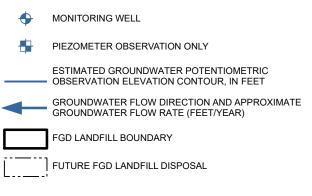
NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. AERIAL IMAGERY SOURCE: ESRI, 20 OCTOBER 2022

900


450 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARYS, KANSAS



Severgy JANUARY 2024

FIGURE 1

LEGEND

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

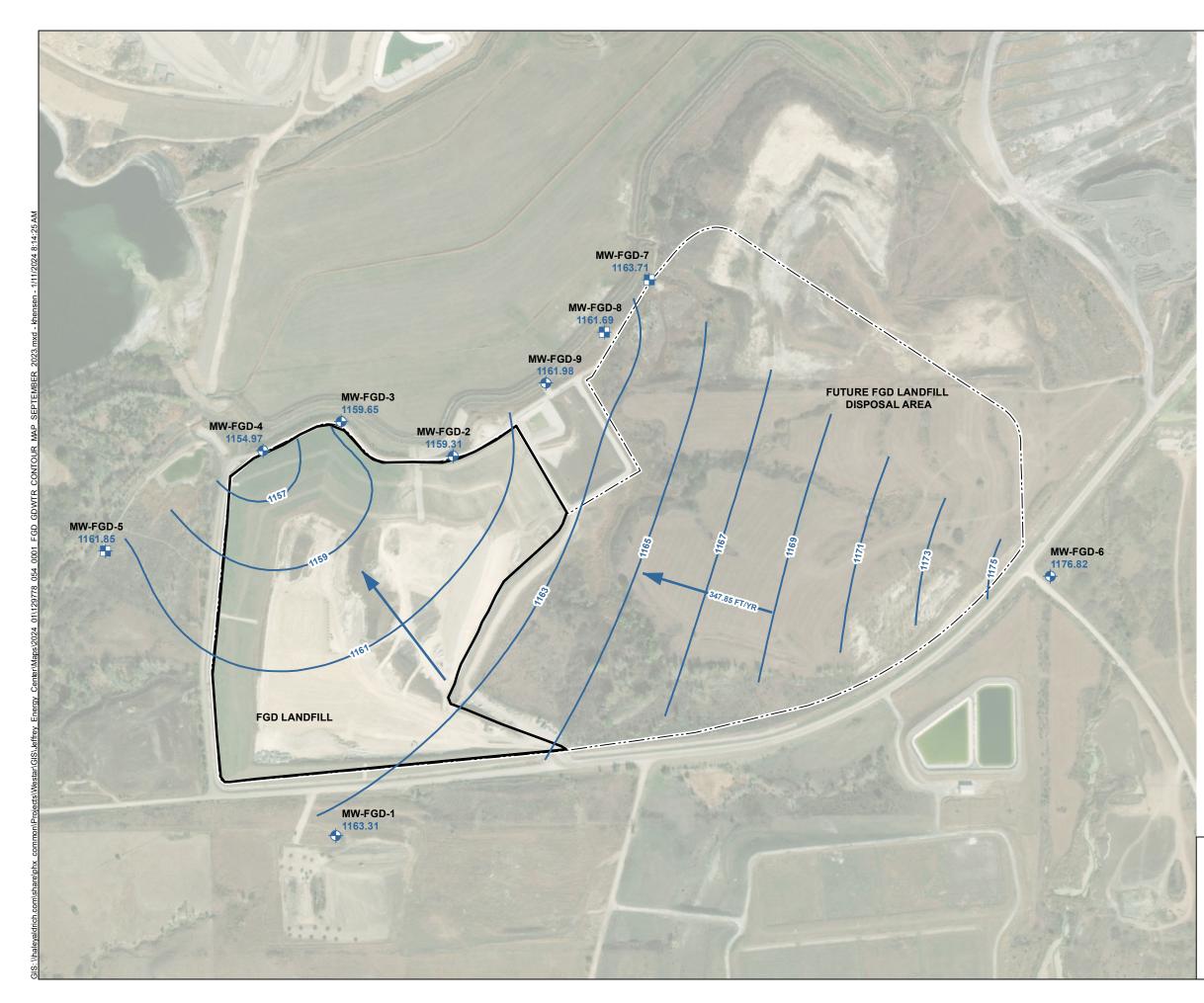
2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 14 MARCH 2023.

3. GROUNDWATER ELEVATION IN BOLD BLUE TEXT AND IN FEET ABOVE MEAN SEA LEVEL (AMSL).

4. FGD LANDFILL BOUNDARY REPRESENTATIVE OF ACTIVE UNIT OPERATIONS, AS OUTLINE IN THE OCTOBER 2021 GROUNDWATER SAMPLING AND ANALYSIS PLAN.

5. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 14 MARCH 2023 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN AUGUST 2016 AND SEPTEMBER 2018.

6. AERIAL IMAGERY SOURCE: ESRI, OCTOBER 20, 2022.


450 900 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARY'S, KANSAS

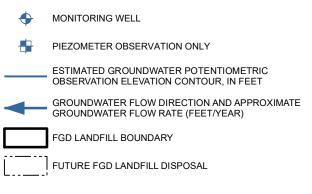

FGD LANDFILL **GROUNDWATER POTENTIOMETRIC** ELEVATION CONTOUR MAP MARCH 14, 2023

FIGURE 2

LEGEND

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 6 SEPTEMBER 2023.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 6 SEPTEMBER 2023 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM PUBLISHED SOURCES AND GROUNDWATER ELEVATION DATA MEASURED BETWEEN AUGUST 2016 AND SEPTEMBER 2018.

4. FGD LANDFILL BOUNDARY REPRESENTATIVE OF ACTIVE UNIT OPERATIONS, AS OUTLINED IN THE OCTOBER 2021 GROUNDWATER SAMPLING AND ANALYSIS PLAN.

5. GROUNDWATER ELEVATION IN BOLD BLUE TEXT AND IN FEET ABOVE MEAN SEA LEVEL (AMSL).

6. AERIAL IMAGERY SOURCE: ESRI, 20 OCTOBER 2022

450

900

SCALE IN FEET

HALEY ALDRICH EVERGY KANSAS CENTRAL, JEFFREY ENERGY CENTER ST. MARYS, KANSAS EVERGY KANSAS CENTRAL, INC.

> FGD LANDFILL **GROUNDWATER POTENTIOMETRIC** ELEVATION CONTOUR MAP SEPTEMBER 6, 2023

FIGURE 3

ATTACHMENT 1 Statistical Analyses ATTACHMENT 1-1 September 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2024 File No. 129778-050

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	September 2022 Semi-Annual Groundwater Detection Monitoring Data Statistical Evaluation Completed February 1, 2023 Jeffrey Energy Center Flue Gas Desulfurization Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2022** semi-annual detection monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Flue Gas Desulfurization (FGD) Landfill. This semi-annual detection monitoring groundwater sampling event was completed on **September 8, 2022**, with laboratory results received and validated on **November 7, 2022**.

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The two statistical methods used for these evaluations, prediction limits (PL) and Parametric Analysis of Variance, were certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2024 Page 2

STATISTICAL EVALUATION

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-FGD-1 and MW-FGD-6). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations (MW-FGD-1 and MW-FGD-6) were combined to calculate the UPL for each detected Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2022.**

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the **September 2022** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation of groundwater sampling data collected in September 2022, no SSIs above background PLs occurred at the JEC FGD Landfill.**

Attachments:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION SEPTEMBER 2022 SAMPLING EVENT

JEFFREY ENERGY CENTER FLUE GAS DESULFURIZATION LANDFILL

ST. MARYS, KANSAS

													Interw	ell Analysis
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2022 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI
							CCR Appendix	III: Boron, Tot	al (mg/L)	1				
MW-FGD-1 (upgradient)	7/18	61%	0.1-0.1	0.13	0.00007353	0.008575	0.08167	Yes	No	Stable	Non noromotric	< 0.10	11.400	
MW-FGD-6 (upgradient)	16/16	0%	-	11.4	2.84	1.685	0.1702	No	No	Increasing	Non-parametric	11.1	11.400	
MW-FGD-2	18/18	0%	-	0.26	0.0003028	0.0174	0.07492	No	No	Decreasing	Normal	0.21		No
MW-FGD-3	16/18	11%	0.1-0.1	0.18	0.0004987	0.02233	0.1625	No	No	Stable	Normal	0.10		No
MW-FGD-4	18/18	0%	-	0.45	0.003935	0.06273	0.1983	No	No	Increasing	Normal	0.39		No
MW-FGD-9	16/16	0%	-	0.59	0.002913	0.05397	0.1078	No	No	Stable	Normal	0.45		No
							CCR Appendix-I	II: Calcium, To	tal (mg/L)					
MW-FGD-1 (upgradient)	18/18	0%	-	111	25.09	5.009	0.05222	Yes	No	Increasing	Non-parametric	93.3	695	
MW-FGD-6 (upgradient)	16/16	0%	-	695	1601	40.01	0.06603	No	No	Increasing	Non-parametric	584	095	
MW-FGD-2	18/18	0%	-	236	1644	40.54	0.244	No	No	Increasing	Normal	191		No
MW-FGD-3	18/18	0%	-	228	778.6	27.9	0.1732	No	No	Stable	Normal	126		No
MW-FGD-4	18/18	0%	-	376	6313	79.46	0.3401	No	No	Increasing	Normal	310		No
MW-FGD-9	16/16	0%	-	137	215.7	14.69	0.1296	No	No	Increasing	Normal	129		No
							CCR Append	ix-III: Chloride	(mg/L)	•				
MW-FGD-1 (upgradient)	18/18	0%	-	75.4	121.1	11.01	0.1851	No	No	Increasing	Non noromotric	73.4	2440	
MW-FGD-6 (upgradient)	16/16	0%	-	2440	200200	447.4	0.2322	Yes	No	Increasing	Non-parametric	2,310	2440	
MW-FGD-2	18/18	0%	-	85.1	332.2	18.23	0.3681	No	No	Increasing	Normal	69.8		No
MW-FGD-3	18/18	0%	-	132	691	26.29	0.3574	No	No	Increasing	Normal	62.5		No
MW-FGD-4	18/18	0%	-	246	3290	57.36	0.4501	No	No	Increasing	Normal	197		No
MW-FGD-9	16/16	0%	-	42.5	31.81	5.64	0.1502	Yes	No	Decreasing	Normal	19.0		No
							CCR Append	ix-III: Fluoride	(mg/L)					
MW-FGD-1 (upgradient)	21/21	0%	-	0.44	0.002213	0.04704	0.1389	No	No	Stable	No	0.25	3,400	
MW-FGD-6 (upgradient)	17/19	11%	0.2-0.2	3.4	0.4882	0.6987	0.5488	Yes	No	Stable	Non-parametric	< 0.20	3.400	
MW-FGD-2	18/21	14%	0.2-0.2	0.41	0.004753	0.06894	0.2132	No	No	Decreasing	Normal	< 0.20		No
MW-FGD-3	17/21	19%	0.2-0.2	0.53	0.005805	0.07619	0.2662	Yes	No	Stable	Normal	< 0.20		No
MW-FGD-4	18/21	14%	0.2-0.2	0.46	0.005379	0.07334	0.2275	No	No	Stable	Non-parametric	< 0.20		No
MW-FGD-9	17/18	6%	0.2-0.2	0.56	0.009583	0.09789	0.2073	Yes	No	Stable	Normal	0.25		No
	· · ·						CCR Appen	dix-III: pH (lab) (SU)					
MW-FGD-1 (upgradient)	18/18	0%	-	7.8	0.04065	0.2016	0.02733	No	No	Stable		7.5		
MW-FGD-6 (upgradient)	16/16	0%	-	7.5	0.04096	0.2024	0.02799	No	No	Stable	Normal	7.2	8.1	
MW-FGD-2	18/18	0%	-	7.8	0.04644	0.2155	0.02954	No	No	Decreasing	Normal	7.6		No
MW-FGD-3	18/18	0%	-	7.6	0.04	0.2	0.02765	No	No	Stable	Normal	7.5		No
MW-FGD-4	18/18	0%	-	7.6	0.025	0.1581	0.02201	Yes	No	Decreasing	Normal	7.0		No
MW-FGD-9	16/16	0%	-	7.8	0.03329	0.1825	0.02485	No	No	Stable	Normal	7.1		No
							1	lix-III: Sulfate	<u></u>				, !	
MW-FGD-1 (upgradient)	18/18	0%	-	106	41.05	6.407	0.07021	Yes	No	Stable		94.2		
MW-FGD-6 (upgradient)	16/16	0%	-	3190	110300	332.1	0.1193	Yes	No	Stable	Non-parametric	2,950	3190	
MW-FGD-2	18/18	0%	-	528	11500	107.3	0.3448	No	No	Increasing	Normal	376		No
MW-FGD-3	18/18	0%	-	479	9079	95.29	0.3052	No	No	Stable	Normal	200		No
MW-FGD-4	18/18	0%	-	899	42650	206.5	0.3669	No	No	Increasing	Normal	875		No
MW-FGD-9	16/16	0%	_	303	2595	50.94	0.2363	No	No	Increasing	Normal	290		No
		070			2000		ppendix-III: Tota			U				
MW-FGD-1 (upgradient)	18/18	0%	-	552	386.3	19.65	0.03746	No	No	Increaseing		544		
MW-FGD-6 (upgradient)	16/16	0%		9100	1935000	13.05	0.1906	Yes	No	Stable	Non-parametric	8,780	9100	
MW-FGD-2	18/18	0%		1280	43780	209.2	0.2499	No	No	Increasing	Normal	1060		No
	18/18	0%	-	1310	33590	183.3	0.2499	No	No	Stable	Normal	733		No
MW-FGD-3		0/0		1010	33330	100.0		110	110	JUDIC	normai	, , , , , , , , , , , , , , , , , , , ,		NU
MW-FGD-3 MW-FGD-4	18/18	0%	-	2150	209300	457.5	0.3367	No	No	Increasing	Normal	1,950		No

Notes:

¹ Based on background data collected from 08/24/2016 through 03/09/2022

CCR = coal combustion residual mg/L = milligrams per liter

SSI = statistically significant increase SU = standard unit

UPL = upper prediction limit

JANUARY 2024

ATTACHMENT 1-2 March 2023 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2024 File No. 129778-050

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	March 2023 Semi-Annual Groundwater Detection Monitoring Data Statistical Evaluation Completed July 21, 2023 Jeffrey Energy Center Flue Gas Desulfurization Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2023** semi-annual detection monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Flue Gas Desulfurization (FGD) Landfill. This semi-annual detection monitoring groundwater sampling event was completed on **March 14, 2023**, with laboratory results received and validated on **June 8, 2023**.

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The two statistical methods used for these evaluations, prediction limits (PL) and Parametric Analysis of Variance, were certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2024 Page 2

STATISTICAL EVALUATION

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-FGD-1 and MW-FGD-6). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations (MW-FGD-1 and MW-FGD-6) were combined to calculate the UPL for each detected Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **March 2023.**

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the **March 2023** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation of groundwater sampling data collected in March 2023**, **no SSIs above background PLs occurred at the JEC FGD Landfill.**

Attachments:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE ISUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATIONMARCH 2023 SAMPLING EVENTJEFFREY ENERGY CENTER FLUE GAS DESULFURIZATION LANDFILLST. MARYS, KANSAS

March 2023 Frequency of Percent Range of Maximum Standard **Coefficient of** Outlier Outlier Location Id Variance Distribution Well Concentration Trend Detection Non-Detects Non-Detect Detect Deviation Variance Presence Removed (mg/L) CCR Appendix-III: Boron, Total (mg/L) MW-FGD-1 (upgradient) 7/19 63% 0.1-0.1 0.13 0.00007076 0.008412 0.08031 No Stable Yes < 0.10 Non-parametric MW-FGD-6 (upgradient) 17/17 0% 11.4 2.691 1.641 0.165 No No Increasing 10.6 -MW-FGD-2 19/19 0% 0.26 0.0003801 0.01949 0.08474 No No -Decreasing Normal 0.19 16/19 MW-FGD-3 0.1-0.1 0.18 0.0005448 0.02334 0.1723 No 16% No < 0.10 Stable Normal 19/19 MW-FGD-4 0% 0.45 0.004084 0.06391 0.1992 No No 0.40 -Increasing Normal MW-FGD-9 17/17 0.59 0% 0.002947 0.05429 0.1092 0.44 No No Stable -Normal CCR Appendix-III: Calcium, Total (mg/L) MW-FGD-1 (upgradient) 19/19 0% 111 23.83 4.882 0.05094 Yes No Stable 94.3 -Non-parametric 17/17 MW-FGD-6 (upgradient) 0% -695 1557 39.45 0.06531 No No Stable 575 MW-FGD-2 19/19 0% 236 1553 39.41 0.2369 No No Increasing Normal 169 -19/19 MW-FGD-3 228 0% 811.8 28.49 0.1791 No No Stable Normal 123 -MW-FGD-4 19/19 0% 376 6238 78.98 0.3327 No No 306 -Increasing Normal 17/17 137 220.5 MW-FGD-9 0% 14.85 0.1298 No No 131 -Increasing Normal CCR Appendix-III: Chloride (mg/L) 19/19 MW-FGD-1 (upgradient) 0% -75.4 126.3 11.24 0.1866 No No Increasing 74.5 Non-parametric 17/17 MW-FGD-6 (upgradient) 2900 243400 493.3 0.2487 No 2,900 0% -Yes Increasing 19/19 85.1 317.2 17.81 0.3566 MW-FGD-2 0% No 57.6 No Increasing Normal -MW-FGD-3 19/19 132 25.72 0.3531 60.4 0% 661.7 No No Increasing Normal -MW-FGD-4 19/19 58.04 0.4426 0% 246 3369 No No 198 -Increasing Normal MW-FGD-9 17/17 0% 46.3 34.32 5.859 0.1539 Yes No Decreasing Normal 46.3 -CCR Appendix-III: Fluoride (mg/L) 21/22 0.2-0.2 MW-FGD-1 (upgradient) 5% 0.44 0.00298 0.05459 0.1643 No No Stable < 0.20 Non-parametric MW-FGD-6 (upgradient) 17/20 15% 0.2-0.2 3.4 0.7212 0.5913 No 0.5201 Yes Stable < 0.20 18/22 MW-FGD-2 18% 0.2-0.2 0.41 0.005218 0.07224 0.2274 < 0.20 No No Decreasing Normal MW-FGD-3 17/22 23% 0.2-0.2 0.53 0.005866 0.07659 0.2713 Yes No Stable Normal < 0.20 MW-FGD-4 18/22 18% 0.2-0.2 0.46 0.005804 0.07618 0.2405 No No Stable Non-parametric < 0.20 17/19 MW-FGD-9 11% 0.2-0.2 0.56 0.01295 0.1138 0.2485 Yes No Stable Normal < 0.20 CCR Appendix-III: pH (lab) (SU) 19/19 MW-FGD-1 (upgradient) 0% 7.8 0.03842 0.196 0.02656 No Stable 7.4 -No Normal MW-FGD-6 (upgradient) 17/17 7.5 0.1985 0.02748 0% 0.03941 No No Decreasing 7.1 -19/19 MW-FGD-2 7.8 0.2141 0% -0.04585 0.0294 No No Decreasing Normal 7.1 MW-FGD-3 19/19 7.6 0.03784 0.1945 0.0269 7.2 0% No No Stable Normal -19/19 7.6 6.9 MW-FGD-4 0% -0.02784 0.1668 0.02327 Yes No Decreasing Normal MW-FGD-9 17/17 7.8 0% -0.03471 0.1863 0.02542 No No Stable Normal 7.1

Interwell	Analysis
Background Limits ¹ (UPL) mg/L	SSI
11.400	
	No
	No
	No
	No
	110
605	
695	
	No
	No
	No
	No
2900	
	No
	No
	No
	No
3.400	
	No
	No
	No
	No
•	
8.1	
0.1	
	No
	No
	No
	No

TABLE ISUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATIONMARCH 2023 SAMPLING EVENTJEFFREY ENERGY CENTER FLUE GAS DESULFURIZATION LANDFILLST. MARYS, KANSAS

													Interwell A	Analysis
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2023 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI
						CCR Ap	opendix-III: Sulf	ate (mg/L)			•			
MW-FGD-1 (upgradient)	19/19	0%	-	106	44.09	6.64	0.07319	Yes	No	Stable	Non parametric	81.2	3190	
MW-FGD-6 (upgradient)	17/17	0%	-	3190	103400	321.5	0.1155	Yes	No	Stable	Non-parametric 2,780	2,780	5190	
MW-FGD-2	19/19	0%	-	528	10880	104.3	0.3362	No	No	Increasing	Normal	295		No
MW-FGD-3	19/19	0%	-	479	9730	98.64	0.3241	No	No	Stable	Normal	164		No
MW-FGD-4	19/19	0%	-	899	42610	206.4	0.3597	No	No	Increasing	Normal	773		No
MW-FGD-9	17/17	0%	-	310	2957	54.38	0.2459	No	No	Increasing	Normal	310		No
					CC	R Appendix-III	: Total Dissolve	d Solids (TDS)	(mg/L)					
MW-FGD-1 (upgradient)	19/19	0%	-	552	369.7	19.23	0.03668	No	No	Increaseing	Non-parametric	515	9100	
MW-FGD-6 (upgradient)	17/17	0%	-	9100	1854000	1362	0.1853	Yes	No	Stable	Non-parametric	8,120	5100	
MW-FGD-2	19/19	0%	-	1280	41360	203.4	0.2427	No	No	Increasing	Normal	850		No
MW-FGD-3	19/19	0%	-	1310	35310	187.9	0.2141	No	No	Stable	Normal	630		No
MW-FGD-4	19/19	0%	-	2150	213100	461.6	0.3328	No	No	Increasing	Normal	1,900		No
MW-FGD-9	17/17	0%	-	759	5639	75.1	0.1161	No	No	Increasing	Normal	716		No

Notes:

¹ Based on background data collected from 08/24/2016 through 03/14/2023.

CCR = coal combustion residual

mg/L = milligrams per liter

SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limit

ATTACHMENT 2 Laboratory Analytical Reports ATTACHMENT 2-1 March 2023 Semi-Annual Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

March 24, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC FGD CCR Pace Project No.: 60423972

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on March 15, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy Laura Hines, Evergy, Inc. Shannon Hughes, Evergy Adam Irvin, Evergy Samantha Kaney, Haley & Aldrich Adriana Sosa, Haley & Aldrich, Inc. Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: JEC FGD CCR Pace Project No.: 60423972

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC FGD CCR Pace Project No.: 60423972

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60423972001	FGD-1-031423	Water	03/14/23 13:45	03/15/23 12:40
60423972002	FGD-2-031423	Water	03/14/23 15:30	03/15/23 12:40
60423972003	FGD-3-031423	Water	03/14/23 14:55	03/15/23 12:40
60423972004	FGD-4-031423	Water	03/14/23 14:30	03/15/23 12:40
60423972005	FGD-6-031423	Water	03/14/23 13:10	03/15/23 12:40
60423972006	FGD-9-031423	Water	03/14/23 16:00	03/15/23 12:40
60423972007	DUP-FGD-031423	Water	03/14/23 13:45	03/15/23 12:40

SAMPLE ANALYTE COUNT

Project: JEC FGD CCR Pace Project No.: 60423972

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60423972001	FGD-1-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	BLA	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423972002	FGD-2-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	BLA	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423972003	FGD-3-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	BLA	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
0423972004	FGD-4-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	BLA	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423972005	FGD-6-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	CRN2	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423972006	FGD-9-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	RB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60423972007	DUP-FGD-031423	EPA 200.7	ALH	2	PASI-K
		SM 2540C	MLD	1	PASI-K
		SM 4500-H+B	CRN2	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: JEC FGD CCR

Pace Project No.: 60423972

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:March 24, 2023

General Information:

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60423972

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:March 24, 2023

General Information:

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60423972

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:March 24, 2023

General Information:

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-FGD-031423 (Lab ID: 60423972007)
- FGD-1-031423 (Lab ID: 60423972001)
- FGD-2-031423 (Lab ID: 60423972002)
- FGD-3-031423 (Lab ID: 60423972003)
- FGD-4-031423 (Lab ID: 60423972004)
- FGD-6-031423 (Lab ID: 60423972005)
- FGD-9-031423 (Lab ID: 60423972006)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60423972

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:March 24, 2023

General Information:

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-1-031423	Lab ID: 604	23972001	Collected: 03/14/2	23 13:45	Received: 03	B/15/23 12:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:18	7440-42-8	
Calcium, Total Recoverable	94.3	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:18	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	ł0C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	515	mg/L	10.0	1		03/21/23 10:43		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		03/16/23 09:29		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	74.5	mg/L	20.0	20		03/20/23 11:22	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 10:42	16984-48-8	
Sulfate	81.2	mg/L	20.0	20		03/20/23 11:22	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-2-031423	Lab ID: 60	423972002	Collected: 03/14/	23 15:30	Received: 03	8/15/23 12:40	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Me	thod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytic	cal Services -	Kansas City					
Boron, Total Recoverable	0.19	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:24	7440-42-8	
Calcium, Total Recoverable	169	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:24	7440-70-2	
2540C Total Dissolved Solids	Analytical Me	ethod: SM 254	l0C					
	Pace Analytic	cal Services -	Kansas City					
Total Dissolved Solids	850	mg/L	10.0	1		03/21/23 10:43	i	
4500H+ pH, Electrometric	Analytical Me	ethod: SM 450	00-H+B					
	Pace Analytic	cal Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		03/16/23 09:30)	H6
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 30	0.0					
-	Pace Analytic	cal Services -	Kansas City					
Chloride	57.6	mg/L	20.0	20		03/20/23 12:15	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 12:02	16984-48-8	
Sulfate	295	mg/L	20.0	20		03/20/23 12:15	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-3-031423	Lab ID: 604	423972003	Collected: 03/14/	23 14:55	5 Received: 03	B/15/23 12:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total			0.7 Preparation Me	ethod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:26	7440-42-8	
Calcium, Total Recoverable	123	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:26	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	thod: SM 254	10C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	630	mg/L	10.0	1		03/21/23 10:44		
4500H+ pH, Electrometric	Analytical Met	thod: SM 450)0-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/16/23 09:32		H6
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 30	0.0					
-	Pace Analytic	al Services -	Kansas City					
Chloride	60.4	mg/L	20.0	20		03/20/23 13:09	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 12:55	16984-48-8	
Sulfate	164	mg/L	20.0	20		03/20/23 13:09	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-4-031423	Lab ID: 604	423972004	Collected: 03/14/	23 14:30	Received: 03	B/15/23 12:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total			0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	0.40	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:28	7440-42-8	
Calcium, Total Recoverable	306	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:28	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	thod: SM 254	10C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1900	mg/L	20.0	1		03/21/23 10:44		
4500H+ pH, Electrometric	Analytical Met	thod: SM 450)0-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	6.9	Std. Units	0.10	1		03/16/23 09:35		H6
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 30	0.0					
-	Pace Analytic	al Services -	Kansas City					
Chloride	198	mg/L	20.0	20		03/20/23 13:36	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 13:22	16984-48-8	
Sulfate	773	mg/L	200	200		03/22/23 00:32	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-6-031423	Lab ID: 604	23972005	Collected: 03/14/	23 13:10	Received: 03	B/15/23 12:40	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	10.6	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:30	7440-42-8	
Calcium, Total Recoverable	575	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:30	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	8120	mg/L	167	1		03/21/23 10:44		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		03/16/23 10:38		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	2900	mg/L	2000	2000		03/22/23 00:46	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 13:49	16984-48-8	
Sulfate	2780	mg/L	2000	2000		03/22/23 00:46	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: FGD-9-031423	Lab ID: 60	0423972006	Collected: 03/1	4/23 16:	00 Received: 03	B/15/23 12:40 N	latrix: Water	
Parameters	Results	Units	Report Limi	t DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical M	ethod: EPA 20	0.7 Preparation I	Method: I	EPA 200.7			
	Pace Analyti	cal Services -	Kansas City					
Boron, Total Recoverable	0.44	mg/L	0.1	0 1	03/17/23 06:51	03/22/23 14:38	7440-42-8	
Calcium, Total Recoverable	131	mg/L	0.2	20 1	03/17/23 06:51	03/22/23 14:38	7440-70-2	
2540C Total Dissolved Solids	Analytical M	ethod: SM 254	10C					
	Pace Analyti	cal Services -	Kansas City					
Total Dissolved Solids	716	mg/L	10	.0 1		03/21/23 10:44		
4500H+ pH, Electrometric	Analytical M	ethod: SM 450	00-H+B					
	Pace Analyti	cal Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.1	0 1		03/20/23 15:17		H6
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 30	0.0					
-	Pace Analyti	cal Services -	Kansas City					
Chloride	46.3	mg/L	20	.0 20		03/20/23 14:29	16887-00-6	
Fluoride	<0.20	mg/L	0.2	20 1		03/20/23 14:16	16984-48-8	
Sulfate	310	mg/L	20	.0 20		03/20/23 14:29	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60423972

Sample: DUP-FGD-031423	Lab ID: 604	23972007	Collected: 03/14/2	23 13:45	Received: 03	B/15/23 12:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	<0.10	mg/L	0.10	1	03/17/23 06:51	03/22/23 14:40	7440-42-8	
Calcium, Total Recoverable	99.0	mg/L	0.20	1	03/17/23 06:51	03/22/23 14:40	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	531	mg/L	10.0	1		03/21/23 10:44		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/16/23 10:38		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	74.9	mg/L	20.0	20		03/20/23 14:56	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		03/20/23 14:42	16984-48-8	
Sulfate	79.0	mg/L	20.0	20		03/20/23 14:56	14808-79-8	

-)	JEC FGD CCR 60423972											
QC Batch:	837110		Analy	sis Metho	d: E	EPA 200.7						
QC Batch Method:	EPA 200.7			sis Descri		200.7 Metal	s, Total					
			Labo	ratory:	F	Pace Analyt	ical Servic	es - Kansa	s City			
Associated Lab Sam	oles: 60423972	2001, 6042397200	2, 6042397	2003, 604	23972004, 6	604239720	05, 604239	972006, 60	423972007	•		
METHOD BLANK:	3319894			Matrix: W	ater							
Associated Lab Sam	oles: 60423972	2001, 6042397200	2, 6042397	2003, 604	23972004, 6	604239720	05, 604239	972006, 60	423972007	,		
			Blar	ik 🛛	Reporting							
Parame	eter	Units	Resu	ult	Limit	Analy	/zed	Qualifier	s			
Boron		mg/L		<0.10	0.10	03/22/2	3 14:14					
Calcium		mg/L		<0.20	0.20	03/22/23	3 14:14					
LABORATORY CON	TROL SAMPLE:	3319895	Spike	LC	.c	LCS	% R	00				
Paramo	eter	Units	Conc.	Res	-	% Rec	Lim		Qualifiers			
Boron		mg/L		2	1.9	96	 6	85-115		_		
Calcium		mg/L	2	0	19.9	99	9	85-115				
MATRIX SPIKE & MA	ATRIX SPIKE DUP	PLICATE: 3319	396 MS	MSD	3319897							
		60423972001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L		2	2	1.9	1.9	93	92	70-130	0	20	
Calcium	mg/L	94.3	20	20	111	113	81	91	70-130	2	20	
MATRIX SPIKE SAM	PLE:	3319898										
			60424	017002	Spike	MS		MS	% Rec			
Paramo	eter	Units	Re	sult	Conc.	Result	%	6 Rec	Limits		Qualif	iers
Boron		mg/L		193 ug/L	2		2.1	94		-130		
Calcium		mg/L	128	3000 ug/L	20		151	118	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR							
Pace Project No.:	60423972							
QC Batch:	837624		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
			Laboratory:		Pace Analytica	l Services - Kai	nsas City	
Associated Lab San	nples: 60423972	2001, 6042397200	02, 60423972003,	60423972004	, 60423972005,	60423972006,	60423972007	
METHOD BLANK:	3321463		Matrix	: Water				
Associated Lab San	nples: 60423972	2001, 6042397200	02, 60423972003,	60423972004	, 60423972005,	60423972006,	60423972007	
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solid	ds	mg/L	<5.0) 5	5.0 03/21/23 1	0:43		
LABORATORY CON	NTROL SAMPLE:	3321464						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Solid	ds	mg/L	1000	998	100	80-120		
SAMPLE DUPLICA	TE: 3321465							
_			60423972001	Dup		Max	0	
Paran		Units	Result	Result	RPD	RPD	Qualifiers	_
Total Dissolved Solid	ds	mg/L	515	5 52	23	2	10	
SAMPLE DUPLICA	TE: 3321466							
-			60423984003	Dup		Max	0	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	_
Total Dissolved Solid	ds	mg/L	1130	12:	30	8	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR							
Pace Project No.:	60423972							
QC Batch:	836668		Analysis Meth	nod:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kai	nsas City	
Associated Lab Sat	mples: 604239720	001, 6042397200	2, 60423972003, 60	0423972004				
SAMPLE DUPLICA	TE: 3318093							
			60423512001	Dup		Max		
Para	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees (>	Std. Units	7.1	7	·.1	0	5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC FGD CCR								
Pace Project No.:	60423972								
QC Batch:	836964		Analysis Meth	iod:	SM 4500-H+B				
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH				
			Laboratory:		Pace Analytica	al Servi	ices - Kan	sas City	
Associated Lab Sa	mples: 60423972	005, 60423972007							
SAMPLE DUPLICA	ATE: 3319334								
			60423985001	Dup			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees (C	Std. Units	6.7	(6.7	1		5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR							
Pace Project No.:	60423972							
QC Batch:	837514		Analysis Meth	od:	SM 4500-H+E	3		
QC Batch Method:	SM 4500-H+B		Analysis Desc	ription:	4500H+B pH			
			Laboratory:		Pace Analytic	al Servic	es - Kans	sas City
Associated Lab Sa	amples: 604239720	06						
SAMPLE DUPLIC	ATE: 3321224							
			60423972006	Dup			Max	
Para	ameter	Units	Result	Result	RPD		RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Pace Project No.: 604239	72											
QC Batch: 83729	0		Analy	sis Metho	d:	EPA 300.0						
QC Batch Method: EPA 3	00.0		Analy	sis Descri	ption:	300.0 IC A	nions					
			Labo	ratory:		Pace Ana	ytical Ser	vices - Kans	as City			
Associated Lab Samples:	604239720	01, 6042397200	2, 6042397	2003, 604	23972004	, 60423972	005, 604	23972006, 6	0423972007	•		
METHOD BLANK: 332064	3			Matrix: W	ater							
Associated Lab Samples:	604239720	01, 6042397200	2, 6042397	2003, 604	23972004	, 60423972	005, 604	23972006, 6	0423972007	,		
			Blar	nk	Reporting							
Parameter		Units	Res	ult	Limit	An	alyzed	Qualifie	ers			
Chloride		mg/L		<1.0	1	.0 03/20/	23 09:33					
Fluoride		mg/L		<0.20	0.		23 09:33					
Sulfate		mg/L		<1.0	1	.0 03/20/	23 09:33					
METHOD BLANK: 332266	8			Matrix: W	ater							
Associated Lab Samples:	604239720	01, 6042397200	2, 6042397	2003, 604	23972004	, 60423972	005, 6042	23972006, 6	0423972007	,		
-			Blar		Reporting			. .				
Parameter		Units	Res	ult	Limit	An:	alyzed	Qualifie	ers			
Chloride		mg/L		<1.0	1		23 12:58					
Fluoride		mg/L		<0.20	0.		23 12:58					
Sulfate		ma/l		4.0		0 00/04	23 12:58					
		mg/L		<1.0		1.0 03/21	23 12:56					
	AMPLE:	3320644		<1.0		1.0 03/21/	23 12.36					
LABORATORY CONTROL S	AMPLE:	3320644	Spike	LC	S	LCS	%	Rec				
	AMPLE:		Spike Conc.		S		%	o Rec imits	Qualifiers			
LABORATORY CONTROL S Parameter	AMPLE:	3320644	Conc.	LC Res 5	S	LCS % Rec	%		Qualifiers	_		
LABORATORY CONTROL S Parameter Chloride Fluoride	AMPLE:	3320644 Units mg/L mg/L	Conc2.	LC 	S sult 4.7 2.6	LCS % Rec	% L 94 03	imits	Qualifiers			
LABORATORY CONTROL S Parameter Chloride Fluoride	AMPLE:	3320644 Units mg/L	Conc2.	LC Res 5	S sult 4.7	LCS % Rec	% L 94	imits 90-110	Qualifiers	_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate		3320644 Units mg/L mg/L	Conc2.	LC 	S sult 4.7 2.6	LCS % Rec	% L 94 03	imits 90-110 90-110	Qualifiers	_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate		3320644 Units mg/L mg/L mg/L	Conc2.	LC 	S sult 4.7 2.6 4.9	LCS % Rec	% L 94 03 99	imits 90-110 90-110	Qualifiers	_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate		3320644 Units mg/L mg/L mg/L	Conc. 2.	LC Res 5 5 5 5	S sult 4.7 2.6 4.9	LCS % Rec	% <u>94</u> 03 99 %	imits 90-110 90-110 90-110	Qualifiers	_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate LABORATORY CONTROL S Parameter		3320644 Units mg/L mg/L mg/L 3322669	Conc.	LC Res 5 5 5 5	S sult 4.7 2.6 4.9	LCS % Rec 1 LCS % Rec	% <u>94</u> 03 99 %	imits 90-110 90-110 90-110 5 Rec		_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate LABORATORY CONTROL S Parameter Chloride		3320644 Units mg/L mg/L 3322669 Units	Conc.	LC Res 5 5 5 5 LC Res 5	S sult	LCS % Rec 1 LCS % Rec	94 03 99 %	imits 90-110 90-110 90-110 5 Rec imits				
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride		3320644 Units mg/L mg/L 3322669 Units mg/L	Conc. 2. Spike Conc. 2.	LC Res 5 5 5 5 LC Res 5	S sult	LCS % Rec 1 LCS % Rec	94 03 99 <u>%</u> % %	imits 90-110 90-110 90-110 5 Rec imits 90-110				
LABORATORY CONTROL S Parameter Chloride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate	AMPLE:	3320644 Units mg/L mg/L mg/L 3322669 Units mg/L mg/L mg/L		LC Res 5 5 5 5 5 5 5 5 5 5	S sult 4.7 2.6 4.9 S S sult 4.9 4.9 2.4	LCS % Rec 1 LCS % Rec	94 03 99 <u>%</u> <u>88</u> 98	imits 90-110 90-110 90-110 5 Rec imits 90-110 90-110		_		
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate LABORATORY CONTROL S	AMPLE:	3320644 Units mg/L mg/L mg/L 3322669 Units mg/L mg/L mg/L		LC Res 5 5 5 5 5 5 5 5 5 5	S sult 4.7 2.6 4.9 S S sult 4.9 2.4 4.8	LCS % Rec 1 LCS % Rec	94 03 99 <u>%</u> <u>88</u> 98	imits 90-110 90-110 90-110 5 Rec imits 90-110 90-110				
LABORATORY CONTROL S Parameter Chloride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate	AMPLE:	3320644 Units mg/L mg/L mg/L 3322669 Units mg/L mg/L mg/L	Conc. 2. Spike Conc. 2. 645	LC Res 5 5 5 5 5 5 5 5 5 5	S sult 4.7 2.6 4.9 S S sult 4.9 2.4 4.8	LCS % Rec 1 LCS % Rec	94 03 99 99 99 98 97 MS	imits 90-110 90-110 90-110 90-110 90-110 90-110 90-110 90-110	Qualifiers % Rec	_	Max	
LABORATORY CONTROL S Parameter Chloride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate	AMPLE:	3320644 Units mg/L mg/L 3322669 Units mg/L mg/L mg/L mg/L	Conc. 2. Spike Conc. 2. 645 MS	LC Res 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S Sult 4.7 2.6 4.9 S S Sult 4.9 2.4 4.8 332064	LCS % Rec 1 LCS % Rec	% 94 03 99 % 1 98 98 97	imits 90-110 90-110 90-110 90-110 90-110 90-110 90-110 90-110	Qualifiers	RPD	Max RPD	Qual
LABORATORY CONTROL S Parameter Chloride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX S Parameter	AMPLE:	3320644 Units mg/L mg/L 3322669 Units mg/L mg/L mg/L mg/L mg/L 0423972001	Conc. 2. Spike Conc. 2. 645 MS Spike	LC Res 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S Sult 4.7 2.6 4.9 S Sult 4.9 2.4 4.8 332064 MS	LCS % Rec 1 LCS % Rec 6 MSD Result	94 03 99 99 98 98 97 MS % Rec	imits 90-110 90-110 90-110 90-110 90-110 90-110 90-110 90-110	Qualifiers % Rec Limits		RPD	Qual
LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate LABORATORY CONTROL S Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX S	AMPLE:	3320644 Units mg/L mg/L 3322669 Units mg/L mg/L mg/L clCATE: 33200 60423972001 Result	Conc. 2. Spike Conc. 2. 645 MS Spike Conc.	LC Res 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S sult 4.7 2.6 4.9 S sult 4.9 2.4 4.8 332064 MS Result	LCS % Rec 1 LCS % Rec 6 MSD Result	94 03 99 99 98 98 97 MS % Rec	imits 90-110 90-10 9	Qualifiers % Rec Limits		RPD 15	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: JEC FGD CCR

Pace Project No.: 60423972

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	JEC FGD CCR
Pace Project No .:	60423972

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60423972001	FGD-1-031423	EPA 200.7	837110	EPA 200.7	837132
60423972002	FGD-2-031423	EPA 200.7	837110	EPA 200.7	837132
60423972003	FGD-3-031423	EPA 200.7	837110	EPA 200.7	837132
60423972004	FGD-4-031423	EPA 200.7	837110	EPA 200.7	837132
60423972005	FGD-6-031423	EPA 200.7	837110	EPA 200.7	837132
60423972006	FGD-9-031423	EPA 200.7	837110	EPA 200.7	837132
60423972007	DUP-FGD-031423	EPA 200.7	837110	EPA 200.7	837132
60423972001	FGD-1-031423	SM 2540C	837624		
60423972002	FGD-2-031423	SM 2540C	837624		
60423972003	FGD-3-031423	SM 2540C	837624		
60423972004	FGD-4-031423	SM 2540C	837624		
60423972005	FGD-6-031423	SM 2540C	837624		
60423972006	FGD-9-031423	SM 2540C	837624		
60423972007	DUP-FGD-031423	SM 2540C	837624		
60423972001	FGD-1-031423	SM 4500-H+B	836668		
60423972002	FGD-2-031423	SM 4500-H+B	836668		
60423972003	FGD-3-031423	SM 4500-H+B	836668		
60423972004	FGD-4-031423	SM 4500-H+B	836668		
60423972005	FGD-6-031423	SM 4500-H+B	836964		
60423972006	FGD-9-031423	SM 4500-H+B	837514		
60423972007	DUP-FGD-031423	SM 4500-H+B	836964		
60423972001	FGD-1-031423	EPA 300.0	837290		
60423972002	FGD-2-031423	EPA 300.0	837290		
60423972003	FGD-3-031423	EPA 300.0	837290		
60423972004	FGD-4-031423	EPA 300.0	837290		
60423972005	FGD-6-031423	EPA 300.0	837290		
60423972006	FGD-9-031423	EPA 300.0	837290		
60423972007	DUP-FGD-031423	EPA 300.0	837290		

							1.10# . 604220	70
							WO#:604239	(2
	Pace	DC#_Title: El	NV-FRM-L	.ENE-0009	9_Samp	ole Co	on(60423972	
	ANALYTICAL SERVICES	Revision: 2	592	ctive Date: ()1/12/20	022	Issued By: Lenexa	
Client Name	: In	aray KANSa	5 Centro	vl.			_	1
Courier: Fe			Clay 🗆 🛛 F	PEX 🗆 E	CI 🗆	Pace	Xroads Client Other	
Tracking #:			Pac	e Shipping L	abel Use	d? Y	es 🗗 No 🗆	
Custody Seal o	n Cooler/Box	Present: Yes 🗆	No 🖢	Seals inta	ct: Yes D	⊐ N		
Packing Materia		N 1	bble Bags 🗆	-	oam □		None 🗹 🛛 Other 🗆	
Thermometer U	Ised: 12	10 , 0		Ice: Wet			Date and initials of per	1500
Cooler Tempera	ature (°C): A	s-read	Corr. Facto	or $\mathcal{O}_1/$	Correc	ted 💋	examining contents:	
Temperature shou	Id be above free:	zing to 6°C					AF 3/15	
Chain of Custod	y present:				D □N/A			
Chain of Custod	y relinquished:				o □N/A		(ooler 2 - 2.2°	
Samples arrived	within holding	time:			D □N/A			
Short Hold Time	e analyses (<7	'2hr):			o □n/a			
Rush Turn Arou	und Time requ	ested:		□Yes 🛃	o □n/a			
Sufficient volume	e:							
Correct containe	rs used:				⊳ □n/A			
Pace containers	used:			In the set of the set	⊳ □n/A			
Containers intact	t:				D □N/A			
Unpreserved 503	35A / TX1005/1	006 soils frozen in	48hrs?	Yes No				1.00
Filtered volume r	received for dis	solved tests?		□Yes □N				
Sample labels m	atch COC: Dat	e / time / ID / analy	ses		D □N/A			
Samples contain	multiple phase	es? Matrix: V	VT				- A	
	I<2; NaOH>9 Su , Micro, O&G, KS	vation in complianc lfide, NaOH>10 Cyar 3 TPH, OK-DRO)		1279es [] No 6204001	D □N/A		ample IDs, volumes, lot #'s of preservativ time added.	e and the
Lead acetate stri	•	• •	0	□Yes □No				
Potassium iodide	e test strip turns	s blue/purple? (Pre	serve)	□Yes □No)			
Trip Blank preser	nt:			□Yes □No				
Headspace in VC	DA vials (>6mr	n):		□Yes □No				
Samples from US	SDA Regulated	Area: State:		□Yes □No	NIA			
Additional labels	attached to 50	35A / TX1005 vials	in the field?	Yes No				
Client Notificatio	on/ Resolutior	1:	Copy COC to	Client? Y	/ N	F	Field Data Required? Y / N	
Person Contacte			Date/Ti	ime:				
Comments/ Reso	olution:							
Project Manager	Boviour				Date			
rojectivanayer					Dale	·		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

-	Client Information:	Section B Required Pr	roject							Invoi	tion	forma	ation:														[Pa	ige:	1	of	1	
Company	EVERGY KANSAS CENTRAL, INC.	Report To:	Melis	isa N	Michels, S	Samanth	a Kaney, I	Danielle	Obei							yable						1											
Address:	Jeffrey Energy Center (JEC)	Copy To:	Jare	d Mo	orrison, Ja	ake Hum	phrey, Lau	ura Hines	5	Com	ipany	Nam	ne:	EVEF	RGY	KAN	ISAS	S CE	INT	RAL	., IN	REC	GULA	TO	RY A	GEN	ICY						
	818 Kansas Ave, Topeka, KS 66612									Addr	ress:		SEE	E SE(CTIC	DN A						Г	NPD	ES		GR	OUN	N DI	VATE	RГ	DRINKI	NG W	ATER
Email To:	melissa.michels@evergy.com	Purchase O	rder N	0.:							Quote											1							-				
Phone:	785-575-8113 Fax:	Project Nam	ie:	JEC	FGD CC	R				Pace Mana	Proje	ct	Alic	e Spi	ller 9	913-	563-	140	3			Sit	e Loc	atio	n			_					
Request	ed Due Date/TAT: 7 day	Project Num	iber:							Pace	Profile	e #:	965	7, 1					_			1	ST	ATE			KS		- 1				
																	Т		Re	que	sted	Anal	ysis	Filte	ered	(Y/N)						
	Section D Valid Matrix C Required Client Information MATRIX	odes CODE	o left)	MP)		COLI	ECTED		Γ		Γ		Pres	erva	tivos	,	V. N								Τ								
ITEM #	DRINKING WATER	DW WT WW P SL OL WP	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G=GRAB C=COMP)	COMPOSTA	DSITE	COMPO: END/GF		SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved			NaOH			e Toet		Sibility		+								Residual Chlorine (Y/N)		YZ 7		
1	FGD-1-031423		WΤ	G	~	1.20	03/14/23	13:45		4	3				11		+	÷						+	1	\square		Ť	-+-	1 400	110/000		2001.0.
2	FGD-2-031423		WT	G	÷	14	03/14/23	15:30		4	-	-	1				1		x)	+	_	+ +		+	+	\square					_		-
3	FGD-3-031423		WT	G	-		03/14/23	14:55		4	-	+	1							+-	-	+ +	-	╈	+				+				
4	FGD-4-031423		WT	G			03/14/23	14:30		4	+-	+			+				x)	+-		+ +	-	+	1	\square			╈				
5	FGD-6-031423		WT	G	4	726	03/14/23	13:10	<u>_</u>	4	3	\square	1		\square		1		×)			+-+		1	1	\square							
6	FGD-9-031423		WT	G			03/14/23	16:00		4	3	-	1						×)			+ +		1	1								
7	DUP-FGD-031423		wт	G		16	03/14/23	13:45		4	3		1							+-		+ +			1				+				
8									\square		T	П						F	1	1	1				1	\square							
9												Π						F	+	+	+			1	+	\square							
10												\square	\square		\square			F	1	+		\square	+		1				╈				
11												\square	\square					F			1		1	1	1								
12													\square					F		+				1	1	\square							
	ADDITIONAL COMMENTS		RELI	QUI	SHED BY /	AFFILIAT	ION	DATI		Ī	TIME				AC	CEPI	50.0	10	FFTL	IATIO	ON	51	DA	TE	1	TIME				SAMF	LE CONDI	TIONS	
200.7 Tot	tal Metals*: B, Ca		M	att V	anderPutt	en / SCS		3/14/2	2	1	10:00	,				2		1	2	\geq	\leq		31	14	17	スチ	5	0,0	91	V	ΠV	Τ	
								0/14/2		t-	10.00	_		~			-						T		1			-	+	1		1	
												-		-		_			_								+		+			1	
											_							-							1				+			T	
Pa						SAMPLI	ER NAME A	ND SIGN/	TUR	RE												-			-			Ų	, - †-	Б (oler	1	tact
Page 25 of 26		R					PRINT Name SIGNATURI					nde E	rPut	ten la	d	No	H			E Sig /DD/ [•]	gned YY):			3/14	/23			Temp in "C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

client: <u>Evergy Kansas (entru</u> site: JEC FGD (CR

9657-1 Profile #

Notes

		г	т	σ	5	5	Σ		5	т	5	_	S	-	-	_	Ð	Ŋ	_	_	_	7	7			0		þ	0		
COC Line Item	Matrix	VG9H	DG9H	DG9Q	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	MGDU	BP1U	BP2U	N BP3U	BP1N	BP3N	BP3F	BP3S	врас	BP3Z	WPDU	ZPLC	Other	
1	M																		1		2						I				
2																			1		2										
3																			1		22		1								
4																			1		2		1								
5					í														1		2		1								
6												i i							1		2		1								
7																			1		2										
8															J																
9																															
10																															
11																															
12																															

Container Codes

		Glass			Plastic	Misc.			
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	4	Wipe/Swab		
DG9H	40mL HCI amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate		
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag		
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter		
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes		
DG9T	40mL Na Thio amber vial	AG1H	1L HCI amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit		
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can		
VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic				
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic				
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix		
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matila		
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water		
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid		
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid		
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL		
	•	AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe		
				BP4U	125mL unpreserved plastic	DW	Drinking Water		

BP4N

BP4S

WPDU

125mL HNO3 plastic

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

60423972

ATTACHMENT 2-2 September 2023 Semi-Annual Sampling Event Laboratory Analytical Report

September 22, 2023

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC FGD CCR Pace Project No.: 60437062

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 07, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Shelly Gomez, Evergy Laura Hines, Evergy, Inc. Shannon Hughes, Evergy Adam Irvin, Evergy Samantha Kaney, Haley & Aldrich Melanie Satanek, Haley Aldrich Adriana Sosa, Haley & Aldrich, Inc. Andrew Watson, Haley & Aldrich

CERTIFICATIONS

Project: JEC FGD CCR Pace Project No.: 60437062

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-22-16 Utah Certification #: KS000212022-12 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC FGD CCR Pace Project No.: 60437062

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60437062001	FGD-1-090623	Water	09/06/23 13:10	09/07/23 16:30
60437062002	FGD-2-090623	Water	09/06/23 14:50	09/07/23 16:30
60437062003	FGD-3-090623	Water	09/06/23 14:20	09/07/23 16:30
60437062004	FGD-4-090623	Water	09/06/23 13:55	09/07/23 16:30
60437062005	FGD-6-090623	Water	09/06/23 12:30	09/07/23 16:30
60437062006	FGD-9-090623	Water	09/06/23 15:15	09/07/23 16:30
60437062007	FGD-DUP-090623	Water	09/06/23 13:10	09/07/23 16:30

SAMPLE ANALYTE COUNT

Project:JEC FGD CCRPace Project No.:60437062

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60437062001		EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437062002	FGD-2-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437062003	FGD-3-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437062004	FGD-4-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437062005	FGD-6-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
60437062006	FGD-9-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K
0437062007	FGD-DUP-090623	EPA 200.7	JXD	2	PASI-K
		SM 2540C	BDH1	1	PASI-K
		SM 4500-H+B	RKA	1	PASI-K
		EPA 300.0	MLD	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: JEC FGD CCR

Pace Project No.: 60437062

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:September 22, 2023

General Information:

7 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60437062

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:September 22, 2023

General Information:

7 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60437062

Description:	4500H+ pH, Electrometric
Client:	Evergy Kansas Central, Inc.
Date:	September 22, 2023

General Information:

7 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- FGD-1-090623 (Lab ID: 60437062001)
- FGD-2-090623 (Lab ID: 60437062002)
- FGD-3-090623 (Lab ID: 60437062003)
- FGD-4-090623 (Lab ID: 60437062004)
- FGD-6-090623 (Lab ID: 60437062005)
- FGD-9-090623 (Lab ID: 60437062006)
- FGD-DUP-090623 (Lab ID: 60437062007)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC FGD CCR

Pace Project No.: 60437062

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:September 22, 2023

General Information:

7 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 865021

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60437054003,60437056002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3425432)
 - Chloride
 - Fluoride
 - Sulfate
 - MSD (Lab ID: 3425431)

Sulfate

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 3425431)
 - Sulfate

Additional Comments:

Analyte Comments:

QC Batch: 865021

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - MS (Lab ID: 3425430)
 - Sulfate
 - MS (Lab ID: 3425432)
 - Chloride
 - Sulfate
 - MSD (Lab ID: 3425431)
 - Sulfate

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC FGD CCR

Pace Project No.: 60437062

Sample: FGD-1-090623	Lab ID: 604	37062001	Collected: 09/06/2	23 13:10) Received: 09)/07/23 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:29	7440-42-8	
Calcium, Total Recoverable	101	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:29	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	559	mg/L	10.0	1		09/13/23 10:34		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		09/09/23 13:43		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	75.5	mg/L	20.0	20		09/20/23 19:18	16887-00-6	
Fluoride	0.22	mg/L	0.20	1		09/20/23 19:05	16984-48-8	
Sulfate	90.8	mg/L	20.0	20		09/20/23 19:18	14808-79-8	

Project: JEC FGD CCR

Pace Project No.: 60437062

Sample: FGD-2-090623	Lab ID: 604	37062002	Collected: 09/06/2	23 14:50) Received: 09	0/07/23 16:30 N	latrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7					
	Pace Analytical Services - Kansas City									
Boron, Total Recoverable	0.19	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:33	7440-42-8			
Calcium, Total Recoverable	180	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:33	7440-70-2			
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
	Pace Analytic	al Services -	Kansas City							
Total Dissolved Solids	896	mg/L	10.0	1		09/13/23 10:35				
4500H+ pH, Electrometric	Analytical Method: SM 4500-H+B									
	Pace Analytic	al Services -	Kansas City							
pH at 25 Degrees C	7.0	Std. Units	0.10	1		09/12/23 15:05		H6		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0							
-	Pace Analytic	al Services -	Kansas City							
Chloride	59.7	mg/L	20.0	20		09/20/23 20:25	16887-00-6			
Fluoride	<0.20	mg/L	0.20	1		09/20/23 20:12	16984-48-8			
Sulfate	308	mg/L	20.0	20		09/20/23 20:25	14808-79-8			

Project: JEC FGD CCR

Pace Project No.:	60437062
-------------------	----------

Sample: FGD-3-090623	Lab ID: 604	37062003	Collected: 09/06/2	23 14:20) Received: 09	/07/23 16:30 M	latrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7					
	Pace Analytical Services - Kansas City									
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:35	7440-42-8			
Calcium, Total Recoverable	131	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:35	7440-70-2			
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
	Pace Analytica	al Services -	Kansas City							
Total Dissolved Solids	652	mg/L	10.0	1		09/13/23 10:35				
4500H+ pH, Electrometric	Analytical Method: SM 4500-H+B									
	Pace Analytica	al Services -	Kansas City							
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/12/23 15:01		H6		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0							
-	Pace Analytica	al Services -	Kansas City							
Chloride	60.1	mg/L	20.0	20		09/20/23 21:05	16887-00-6			
Fluoride	<0.20	mg/L	0.20	1		09/20/23 20:52	16984-48-8			
Sulfate	162	mg/L	20.0	20		09/20/23 21:05	14808-79-8			

Project: JEC FGD CCR

Pace Project No.: 60437062

Sample: FGD-4-090623	Lab ID: 604	37062004	Collected: 09/06/2	23 13:55	5 Received: 09	0/07/23 16:30 N	latrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7					
	Pace Analytical Services - Kansas City									
Boron, Total Recoverable	0.40	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:37	7440-42-8			
Calcium, Total Recoverable	316	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:37	7440-70-2			
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
	Pace Analytical Services - Kansas City									
Total Dissolved Solids	1980	mg/L	20.0	1		09/13/23 10:36				
4500H+ pH, Electrometric	Analytical Method: SM 4500-H+B									
	Pace Analytica	al Services -	Kansas City							
pH at 25 Degrees C	7.0	Std. Units	0.10	1		09/09/23 13:47		H6		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0							
·	Pace Analytica	al Services -	Kansas City							
Chloride	186	mg/L	20.0	20		09/20/23 21:45	16887-00-6			
Fluoride	<0.20	mg/L	0.20	1		09/20/23 21:32	16984-48-8			
Sulfate	544	mg/L	400	400		09/20/23 21:59	14808-79-8			

Project: JEC FGD CCR

Pace Project No.:	60437062
-------------------	----------

Sample: FGD-6-090623	Lab ID: 60	437062005	Collected: 0)9/06/2	23 12:30	Received: 09	/07/23 16:30 N	latrix: Water		
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total			0.7 Preparatio	on Met	hod: EP	A 200.7				
	Pace Analytical Services - Kansas City									
Boron, Total Recoverable	10.8	mg/L		0.10	1	09/14/23 12:10	09/18/23 13:39	7440-42-8		
Calcium, Total Recoverable	620	mg/L		0.20	1	09/14/23 12:10	09/18/23 13:39	7440-70-2		
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
	Pace Analytic	al Services -	Kansas City							
Total Dissolved Solids	8240	mg/L		200	1		09/13/23 10:36			
4500H+ pH, Electrometric	Analytical Method: SM 4500-H+B									
	Pace Analytic	al Services -	Kansas City							
pH at 25 Degrees C	6.7	Std. Units		0.10	1		09/09/23 13:38		H6	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0							
-	Pace Analytic	al Services -	Kansas City							
Chloride	1950	mg/L		400	400		09/20/23 23:08	16887-00-6		
Fluoride	<0.20	mg/L		0.20	1		09/20/23 22:41	16984-48-8		
Sulfate	2500	mg/L		400	400		09/20/23 23:08	14808-79-8		

ANALYTICAL RESULTS

Project: JEC FGD CCR

Pace Project No.: 60437062

Sample: FGD-9-090623	Lab ID: 604	37062006	Collected: 09/06/2	23 15:15	5 Received: 09	0/07/23 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	0.44	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:41	7440-42-8	
Calcium, Total Recoverable	144	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:41	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	0C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	796	mg/L	10.0	1		09/13/23 10:36		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		09/12/23 15:08		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	49.0	mg/L	20.0	20		09/20/23 23:35	16887-00-6	
Fluoride	<0.20	mg/L	0.20	1		09/20/23 23:21	16984-48-8	
Sulfate	299	mg/L	20.0	20		09/20/23 23:35	14808-79-8	

ANALYTICAL RESULTS

Project: JEC FGD CCR

Pace Project No.: 60437062

Sample: FGD-DUP-090623	Lab ID: 604	37062007	Collected: 09/06/2	23 13:10) Received: 09	0/07/23 16:30 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	<0.10	mg/L	0.10	1	09/14/23 12:10	09/18/23 13:43	7440-42-8	
Calcium, Total Recoverable	103	mg/L	0.20	1	09/14/23 12:10	09/18/23 13:43	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	594	mg/L	10.0	1		09/13/23 10:36		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		09/09/23 13:44		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	76.1	mg/L	20.0	20		09/21/23 00:15	16887-00-6	
Fluoride	0.25	mg/L	0.20	1		09/21/23 00:02	16984-48-8	
Sulfate	92.0	mg/L	20.0	20		09/21/23 00:15	14808-79-8	

Project: Pace Project No.:	JEC FGD CCR 60437062											
QC Batch:	864481		Analy	sis Method	1: F	PA 200.7						
QC Batch Method:	EPA 200.7			sis Descrip		00.7 Metal	s. Total					
				ratory:			-	es - Kansas	s Citv			
Associated Lab Sam	ples: 60437062	001, 6043706200				,				,		
METHOD BLANK:	3422951			Matrix: Wa	ater							
Associated Lab Sam	ples: 60437062	001, 6043706200	2, 6043706	2003, 6043	37062004, 6	04370620	05, 604370	062006, 604	437062007	,		
			Blar	ık I	Reporting							
Param	ieter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	S			
Boron		mg/L		<0.10	0.10	09/18/23	3 13:03					
Calcium		mg/L		<0.20	0.20	09/18/23	3 13:03					
LABORATORY CON	ITROL SAMPLE:	3422952										
_			Spike	LC	-	LCS	% R					
Param	ieter	Units	Conc.	Res	ult	% Rec	Lim	its (Qualifiers	_		
Boron		mg/L		1	0.95	95		85-115				
Calcium		mg/L	1	0	10.4	104	4	85-115				
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 3422	953 MS	MSD	3422954							
		60437056001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L	0.50	1	1	1.5	1.5	97	97	70-130	0	20	
Calcium	mg/L	232	10	10	242	242	102	102	70-130	0	20	
MATRIX SPIKE SAM	IPLE:	3422955										
			60437	062001	Spike	MS		MS	% Rec			
Param	neter	Units	Re	sult	Conc.	Result	%	6 Rec	Limits		Qualif	iers
Boron		mg/L		<0.10	1		1.0	95	70	-130		
Calcium		mg/L		101	10		111	97	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR							
Pace Project No.:	60437062							
QC Batch:	864208		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
			Laboratory:		Pace Analytica	l Services - Kai	nsas Ci	ity
Associated Lab Sar	nples: 60437062	2001, 6043706200	02, 60437062003,	60437062004,	60437062005,	60437062006,	60437	062007
METHOD BLANK:	3421941		Matrix	: Water				
Associated Lab Sar	mples: 60437062	2001, 6043706200	2, 60437062003,	60437062004,	60437062005,	60437062006,	60437	062007
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Soli	ds	mg/L	<5.0	5	09/13/23 1	0:33		-
LABORATORY CO	NTROL SAMPLE:	3421942						
_			Spike	LCS	LCS	% Rec	_	
Parar	neter	Units	Conc	Result	% Rec	Limits	Qua	lifiers
Total Dissolved Soli	ds	mg/L	1000	996	100	80-120		
SAMPLE DUPLICA	TE: 3421943							
_			60437056004	Dup		Max		0 11/1
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	1320	137	70	4	10	
SAMPLE DUPLICA	TE: 3421944							
			60436986003	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	24500	2500	00	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR							
Pace Project No.:	60437062							
QC Batch:	863862		Analysis Meth	iod:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kar	nsas City	
Associated Lab Sa	mples: 604370620	001, 60437062004	l, 60437062005, 60	437062007				
SAMPLE DUPLICA	TE: 3420733							
			60437058001	Dup		Max		
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees (Std. Units	6.7	6	6.8	0	5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC FGD CCR								
Pace Project No.:	60437062								
QC Batch:	863911		Analysis Meth	iod:	SM 4500-H+B	3			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH				
			Laboratory:		Pace Analytica	al Serv	vices - Kan	sas City	
Associated Lab Sa	mples: 60437062	002, 60437062003	3, 60437062006						
SAMPLE DUPLICA	ATE: 3421007								
			60437056001	Dup			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees (0	Std. Units	6.9		7.0	1		5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project No.:	60437									
QC Batch:	8650)21		Analysis Me	ethod:	EPA	A 300.0			
QC Batch Method	I: EPA	300.0		Analysis De	escription:	300	0.0 IC Anions			
				Laboratory:		Pac	ce Analytical S	ervices - Kar	nsas City	
Associated Lab S	amples:	604370620	01, 6043706200	2, 60437062003,	60437062004	, 604	437062005, 60	437062006,	60437062	2007
METHOD BLANK	: 34254	28		Matrix	: Water					
Associated Lab S	amples:	604370620	01, 6043706200	2, 60437062003,	60437062004	, 604	437062005, 60	437062006,	60437062	2007
				Blank	Reporting					
Par	ameter		Units	Result	Limit		Analyzed	Quali	fiers	
Chloride			mg/L	<1.0	1	.0	09/19/23 20:4	2		
Fluoride			mg/L	<0.20	0.	20	09/19/23 20:4	2		
Sulfate			mg/L	<1.0	1	0.1	09/19/23 20:4	2		
METHOD BLANK	: 34279	34		Matrix	: Water					
Associated Lab S			01 6043706200	2, 60437062003,		604	437062005 60	437062006	60437063	2007
	p.00.	00-010020	01,00-0700200	Blank	Reporting	, 004	+51 002003, 00		00-01002	
Par	ameter		Units	Result	Limit		Analyzed	Quali	fiers	
Chloride			mg/L			.0	09/21/23 09:4	0		
Chionde			mg/∟	<1.0						
Fluoride			ma/l	~0.20	0	20	na/21/22 na·/			
			mg/L mg/L	<0.20 <1.0			09/21/23 09:4 09/21/23 09:4			
Sulfate	: 34285	39	•	<1.0						
Sulfate METHOD BLANK			mg/L	<1.0	1 :: Water	.0	09/21/23 09:4	9	60437062	2007
Sulfate METHOD BLANK			mg/L	<1.0	1 :: Water	.0	09/21/23 09:4	9	60437062	2007
Fluoride Sulfate METHOD BLANK Associated Lab S Par			mg/L	<1.0 Matrix 2, 60437062003,	1 :: Water 60437062004	.0	09/21/23 09:4	9		2007
Sulfate METHOD BLANK Associated Lab S	amples:		mg/L 01, 6043706200	<1.0 Matrix 12, 60437062003, Blank	:: Water 60437062004 Reporting Limit	I.0 , 604	09/21/23 09:4	9 0437062006, Quali		2007
Sulfate METHOD BLANK Associated Lab S Par Chloride	amples:		mg/L 01, 6043706200 Units	<1.0 Matrix 12, 60437062003, Blank Result	:: Water 60437062004 Reporting Limit	, 604 	09/21/23 09:4 437062005, 60 Analyzed	9 0437062006, Quali 8		2007
Sulfate METHOD BLANK Associated Lab S Par	amples:		mg/L 01, 6043706200 Units mg/L	<1.0 Matrix 02, 60437062003, Blank Result <1.0	:: Water 60437062004 Reporting Limit	, 604 , 604 .0 20	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3	9 0437062006, Quali .8 .8		2007
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride	amples: ameter	604370620	mg/L 01, 6043706200 Units mg/L mg/L	<1.0 Matrix 2, 60437062003, Blank Result <1.0 <0.20 <1.0	:: Water 60437062004 Reporting Limit	, 604 , 604 .0 20	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3	9 0437062006, Quali .8 .8		2007
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate	amples: ameter	604370620	mg/L 01, 6043706200 Units mg/L mg/L mg/L	<1.0 Matrix 2, 60437062003, Blank Result <1.0 <0.20 <1.0	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water	, 604 	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3	9 0437062006, Quali 8 8 8 8	fiers	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK	amples: ameter	604370620	mg/L 01, 6043706200 Units mg/L mg/L mg/L	<1.0 Matrix 2, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water	, 604 	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3	9 0437062006, Quali 8 8 8 8	fiers	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK Associated Lab S	amples: ameter	604370620	mg/L 01, 6043706200 Units mg/L mg/L mg/L	<1.0 Matrix 12, 60437062003, Blank Result <1.0 <0.20 <1.0 <1.0 Matrix 12, 60437062003,	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004	, 604 	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3	9 0437062006, Quali 8 8 8 8	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK Associated Lab S	amples: ameter : 34286 amples:	604370620	mg/L 01, 6043706200 Units mg/L mg/L mg/L 01, 6043706200	<1.0 Matrix 2, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix 2, 60437062003, Blank	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit	1.0 , 604 1.0 20 1.0 , 604	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3	9 0437062006, Quali 18 18 18 18 18 18 18 19 1437062006, Quali	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK Associated Lab S Par Chloride	amples: ameter : 34286 amples:	604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units mg/L	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 <1.0 <2, 60437062003, Blank Result	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit	, 604 0 0 0 , 604	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 437062005, 60 Analyzed	9 0437062006, Quali 8 8 8 9 437062006, Quali 2	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK Associated Lab S Par	amples: ameter : 34286 amples:	604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 <1.0 <2.0 <1.0 Matrix 22, 60437062003, Blank Result <1.0	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit 1 0.	, 604 , 604 1.0 , 604 , 604	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 437062005, 60 Analyzed 09/19/23 20:4	9 0437062006, Quali 8 8 8 9 437062006, Quali 2 2	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate	amples: ameter : 34286 amples: ameter	604370620 77 604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units mg/L mg/L mg/L mg/L	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit 1 0.	, 604 , 604 1.0 , 604 , 604	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 20:4	9 0437062006, Quali 8 8 8 9 437062006, Quali 2 2	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride	amples: ameter : 34286 amples: ameter	604370620 77 604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units mg/L mg/L	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit 1 0. 1	1.0 , 604 1.0 1.0 , 604 1.0 20 1.0 20 1.0	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 20:4 437062005, 60 Analyzed 09/19/23 20:4	9 0437062006, Quali 8 8 8 9437062006, Quali 2 2 2 2	fiers 60437062	
Sulfate METHOD BLANK Associated Lab S Par Chloride Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate LABORATORY C	amples: ameter : 34286 amples: ameter	604370620 77 604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units mg/L mg/L mg/L mg/L	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20	:: Water 60437062004 Reporting Limit 1 0. 1 :: Water 60437062004 Reporting Limit 1 0.	1.0 , 604 1.0 1.0 , 604 1.0 20 1.0 20 1.0	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 20:4	9 0437062006, Quali 8 8 8 9 437062006, Quali 2 2	fiers 60437062	2007
Sulfate METHOD BLANK Associated Lab S Par Chloride Sulfate METHOD BLANK Associated Lab S Par Chloride Fluoride Sulfate LABORATORY C	amples: ameter : 34286 amples: ameter ONTROL	604370620 77 604370620	mg/L 01, 6043706200 Units mg/L mg/L 01, 6043706200 Units mg/L mg/L mg/L mg/L	<1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 Matrix 22, 60437062003, Blank Result <1.0 <0.20 <1.0 <1.0 <1.0 <1.0 <0.20 <1.0 Spike	:: Water 60437062004 Reporting Limit 0. 1 :: Water 60437062004 Reporting Limit 1 0. 1 1 0. 1	1.0 , 604 1.0 1.0 , 604 1.0 20 1.0 20 1.0	09/21/23 09:4 437062005, 60 Analyzed 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 16:3 09/20/23 20:4 437062005, 60 Analyzed 09/19/23 20:4 09/19/23 20:4	9 0437062006, Quali 8 8 8 9437062006, Quali 2 2 2 2 2 2 % Rec	fiers 60437062 fiers	2007

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC FGD CCR
Pace Project No.:	60437062

LABORATORY C	ONTROL SAMPLE:	3425429											
_			Spike	LC		LCS		% Rec	_				
Pa	rameter	Units	Conc.	Res		% Rec		_imits	Q	ualifiers	_		
Sulfate		mg/L		5	5.1	103	3	90-110					
LABORATORY C	ONTROL SAMPLE:	3427935											
Pa	rameter	Units	Spike Conc.	LC Res		LCS % Rec		6 Rec ₋imits	Q	ualifiers			
Chloride		mg/L		5	4.7	94	 	90-110			_		
Fluoride		mg/L	2.	.5	2.5	99)	90-110					
Sulfate		mg/L		5	4.9	98	}	90-110					
LABORATORY C	ONTROL SAMPLE:	3428540											
			Spike	LC	S	LCS	9	% Rec					
Pa	rameter	Units	Conc.	Res	ult	% Rec	l	_imits	Q	ualifiers	_		
Chloride		mg/L		5	4.8	96	;	90-110			-		
Fluoride		mg/L	2.	.5	2.4	97	,	90-110					
Sulfate		mg/L		5	5.1	103	3	90-110					
LABORATORY C	ONTROL SAMPLE:	3428678											
			Spike	LC	S	LCS	%	% Rec					
Pa	rameter	Units	Conc.	Res	ult	% Rec	l	_imits	Q	ualifiers	_		
Chloride		mg/L		5	4.9	98	3	90-110					
Fluoride		mg/L	2.	.5	2.5	99)	90-110					
Sulfate		mg/L		5	5.3	105	5	90-110					
MATRIX SPIKE 8	MATRIX SPIKE DU	PLICATE: 3425	430		3425431								
			MS	MSD									
		60437054003	Spike	Spike	MS	MSD	MS	MSD		% Rec		Max	
Parame	eter Units	s Result	Conc.	Conc.	Result	Result	% Re	c % Ree	С	Limits	RPD	RPD	Qual
Chloride	mg/l	109	100	100	203	206		94	97	80-120	2	15	
Fluoride	mg/L		2.5	2.5	2.5	2.5	1	01	99	80-120	2	15	
Sulfate	mg/L		250	250	1290	1020	1	116	9	80-120	23	15	E,M1, R1
	SAMPLE:	3425432											
			60437	056002	Spike	MS		MS		% Rec			
			00101										
	rameter	Units		sult	Conc.	Result		% Rec		Limits		Quali	fiers
	rameter			esult 147			150		 50		-120 E.		fiers
Pa	rameter	Units mg/L mg/L			Conc. 5 2.5		150 1.8	6	 60 70	80-	-120 E, -120 M	M1	fiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: JEC FGD CCR Pace Project No.: 60437062

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	JEC FGD CCR
Pace Project No .:	60437062

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60437062001	FGD-1-090623	EPA 200.7	864481	EPA 200.7	864587
60437062002	FGD-2-090623	EPA 200.7	864481	EPA 200.7	864587
60437062003	FGD-3-090623	EPA 200.7	864481	EPA 200.7	864587
60437062004	FGD-4-090623	EPA 200.7	864481	EPA 200.7	864587
60437062005	FGD-6-090623	EPA 200.7	864481	EPA 200.7	864587
60437062006	FGD-9-090623	EPA 200.7	864481	EPA 200.7	864587
60437062007	FGD-DUP-090623	EPA 200.7	864481	EPA 200.7	864587
60437062001	FGD-1-090623	SM 2540C	864208		
60437062002	FGD-2-090623	SM 2540C	864208		
60437062003	FGD-3-090623	SM 2540C	864208		
60437062004	FGD-4-090623	SM 2540C	864208		
60437062005	FGD-6-090623	SM 2540C	864208		
60437062006	FGD-9-090623	SM 2540C	864208		
60437062007	FGD-DUP-090623	SM 2540C	864208		
60437062001	FGD-1-090623	SM 4500-H+B	863862		
60437062002	FGD-2-090623	SM 4500-H+B	863911		
60437062003	FGD-3-090623	SM 4500-H+B	863911		
60437062004	FGD-4-090623	SM 4500-H+B	863862		
60437062005	FGD-6-090623	SM 4500-H+B	863862		
60437062006	FGD-9-090623	SM 4500-H+B	863911		
60437062007	FGD-DUP-090623	SM 4500-H+B	863862		
60437062001	FGD-1-090623	EPA 300.0	865021		
60437062002	FGD-2-090623	EPA 300.0	865021		
60437062003	FGD-3-090623	EPA 300.0	865021		
60437062004	FGD-4-090623	EPA 300.0	865021		
60437062005	FGD-6-090623	EPA 300.0	865021		
60437062006	FGD-9-090623	EPA 300.0	865021		
60437062007	FGD-DUP-090623	EPA 300.0	865021		

:								: 604	3706	2
(F		DC#_Title: El	NV-FRM-L	ENE-000	9_Sam	ple C	60437062			
0.4	ALYTICAL SERVICES	Revision: 2	Effe	ctive Date: 0	1/12/2	022 l	sued By: L	enexa		
Client Name:	E	EVergy KS	Centr	ral						1
Courier: FedEx		/			CI 🗆	Pace 🗆	Xroads		Other 🗆	
Tracking #:			Pac	e Shipping L	abel Use	d? Yes		•		
Custody Seal on Co	oler/Box	Present: Yes 🗆	No 📶	Seals intac	t: Yes l	□ No	1			
Packing Material:			bble Bags 🗆		oam 🗆			Other □		
Thermometer Used:		-18		Ice: Net I			,	10		
Cooler Temperature	e (°C): A	s-read 5.2/2.1	Corr. Facto	or <u>~0:3</u>	Соггес	ted <u></u>	9/1-8		initials of period of the second s	son
Temperature should be	above free;	zing to 6°C				1		pv	9/8/	3
Chain of Custody pre	sent:				□N/A			/		
Chain of Custody relin	nquished:		/		□n/A					
Samples arrived withi	in holding	time:		Øres □No	⊡n/A					
Short Hold Time ana	alyses (<7	2hr):								
Rush Turn Around T										
Sufficient volume:	into roqu			11						
	• 10			AYes INO		_				
Correct containers use	ed:			ZYes □No			_			
Pace containers used				Yes INO	□n/A					
Containers intact:				Yes DNo	□n/A					
Inpreserved 5035A /	TX1005/1	006 soils frozen in	48hrs?	□Yes □No						
iltered volume receiv	ed for diss	solved tests?								
ample labels match (COC: Date	e / time / ID / analys	ses		□n/A					
amples contain multi			1.17	□Yes 📈	□n/A					
ontainers requiring pl		Č.	2			List same	ole IDs. volu	mes lot #'s o	f preservative	and the
1NO3, H2SO4, HCI<2; Na				1010		date/time	added.	100, 101 / 0 0		
xceptions: VOA, Micro yanide water sample		TPH, OK-DRO)	LOT#:	6118	7					
ead acetate strip turn		Record only)		□Yes □No						
otassium iodide test s	strip turns	blue/purple? (Pres	erve)	□Yes □No						
rip Blank present:				□Yes □No						
eadspace in VOA via	ls (>6mm):		□Yes □No	I N/A					
amples from USDA R										
to mark					LIN/A					
dditional labels attach			n the field? Copy COC to (N N	Fiold	Data Require	d? Y /	N	
erson Contacted:		C C	Date/Tin			Field	Data Require	ur Y/I		
omments/ Resolution;	:		Batorin							
oject Manager Reviev	w:				Date					

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

_	d Client Information:	Section B Required Project Information:									Section C													P	Page: 1 of 1					
Compan	EVERGY KANSAS CENTRAL, INC.	Report To: Samantha Kaney									Attention: Accounts Payable														-	-				
Address	control Energy control (dEc)	Сору То: Ја	ke H	umphrey,	Laura Hi	nes			Com	npany	Nam	ie: E	VEF	RGY	KAN	SAS	CE	NTR	AL,	INC	REGL	JLAT	ORY	AGE	ENC	Y				
	818 Kansas Ave, Topeka, KS 66612									Company Name: EVERGY KANSAS CENTRAL, INC Address: SEE SECTION A											IPDES	_	_	_	_	WAT	ER 🗆	DRINKIN	IG WATER	
Email To	station of station station	Purchase Order No.:								Pace Quote Reference:										r i	JST		R				r	OTHER		
Phone:	507-251-2232 Fax:	Project Name: JEC FGD CCR								Pace Project Alice Spiller 913-563-1403										t	Site Location									
Request	ed Due Date/TAT:	Project Numb	er:							Profile	e #:	965	7, 8			-	-	-		-		STAT	E:		K	S	_			
																Т		Req	uest	ed A	nalys	sis Fil	tere	d (Y/	/N)					
	Section D Valid Matrix C Required Client Information MATRIX DRINKING WATER	CODE DW	C=COMP1		COLI	LECTED		COLLECTION				Pres	erval	ives		TN IA	N	N	N	N										
	WATER WASTE WATER PRODUCT SOLUSOLID OIL OIL WIPE AIR	P SL OL WP	(G=GRAB	CONF	POSITE	COMPO END/GI	POSITE IGRAB		NERS							Test	Aetals*		04								orine (Y/N)			
ITEM #	Sample IDs MUST BE UNIQUE TISSUE		SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP.	# OF CONTAINERS	Unpreserved	H₂SO₄	HNO3	NaOH	Na ₂ S ₂ O ₃	Methanol	lysis		4500 H+B pH	300: CI, F, SO4	2540C TDS							Residual Chlorine (Y/N)		US 7 Project I	062 No./ Lab I.D.
1	FGD-1-090623	N	тG		2	09/06/23	13:10	<u></u>	4	3		1				Г	X	X	X	x										
2	FGD-2-090623	N	тG	_ ×_	-	09/06/23	14:50		4	3		1					×	X	X	x										
3	FGD-3-090623	N	T G	*		09/06/23	14:20		4	3		1					X	X	x	x										
4	FGD-4-090623	N	T G		-	09/06/23	13:55	-	4	3		1					X	X	x	x										
5	FGD-6-090623	N	T G		- 2	09/06/23	12:30		4	3		1					X	X	x	x										
6	FGD-9-090623	v	T G		•7	09/06/23	15:15		4	3		1					X	x	x	x										
7	FGD-DUP-090623	N	T G		+	09/06/23	13:10	14	4	3		1				1	X	X	x	x										
8			_											Π												921				
9	l																													
10																1														
11_													T	Π		1														
12			_													1														
	ADDITIONAL COMMENTS	RI	LINQ	JISHED BY	/ AFFILIAT	AFFILIATION DA			1	TIME				ACC	EPTE	D BY	′ / AF	FILIA	TION			DATE	1	TIN	1E	Γ		SAMPLE CONDITIONS		
200 7 To	tal Metals*: B, Ca		Jas	on R. Fran	iks / SCS		9/7/2	3	1	16:00				5	A	Po	الو	2			9	17/2	3	163	•	Ψ,	9	٢	N	· v
																										1.	8	4	N	Ý
																										1		-/	1	/
Pag						ER NAME A																			ļ	,	ы (oler	llact	
Page 25						PRINT Nam	e of SAMP	LER:	Jaso	on R	Fra	anks														Temn in "C	1	Received or Ice (Y/N)	ustod) nd Coi Y/N)	les In Y/N)
5 of 2			SIGNATURI				2		e	<	1	_	2			Signe D/YY			9/	7/23					Rece	Custody Sealed Cool (Y/N)	Samples Intact (Y/N)			

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

Site

Evergy KS (entral Client:

9657-8 Profile #

												1		r	r			_	_	-	1	r			-						
OC e Item	Matrix	VG9H	DG9H	DG9Q	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	BP3C	BP3Z	WPDU	ZPLC	Other	
1	WY													-				->	1	<u> </u>	2	ш		<u> </u>	<u> </u>			5	N	0	_
2	I.			-															1		-	-									
3																							+								
4														1000		-			-												
5																															
6																				-		-		-							
7	+																		\mathbf{t}		L		1								
8																												-	-		
9				l I																						_	_				
10																							1							-	
11																					-										-
12																											-				

Glass Plastic Misc. DG9B 40mL bisulfate clear vial WGKU 8oz clear soil jar BP1C 1L NAOH plastic Wipe/Swab DG9H 40mL HCI amber voa vial WGFU 4oz clear soil jar BP1N 1L HNO3 plastic SP5T 120mL Coliform Na Thiosulfate DG9M 40mL MeOH clear vial WG2U BP1S 2oz clear soil jar 1L H2SO4 plastic ZPLC Ziploc Bag DG9Q 40mL TSP amber vial JGFU 4oz unpreserved amber wide BP1U 1L unpreserved plastic AF Air Filter DG9S 40mL H2SO4 amber vial AGOU 100mL unores amber glass BP1Z 1L NaOH, Zn Acetate С Air Cassettes DG9T 40mL Na Thio amber vial AG1H 1L HCI amber glass BP2C 500mL NAOH plastic R Terracore Kit DG9U 40mL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic П Summa Can VG9H 40mL HCI clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic VG9T 40mL Na Thio, clear vial AG1U 1liter unpres amber glass BP2U 500mL unpreserved plastic VG9U 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate Matrix BG1S 1liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic BG1U 1liter unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT Water BG3H 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL Solid BG3U 250mL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL Non-aqueous Liquid WGDU 16oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL OIL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP Wipe

BP4U

BP4N

BP4S

WPDU

125mL unpreserved plastic

125mL HNO3 plastic

125mL H2SO4 plastic

16oz unpresserved plstic

DW

Drinking Water

Work Order Number:

0477062