www.haleyaldrich.com

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BOTTOM ASH SETTLING AREA/BOTTOM ASH LANDFILL JEFFREY ENERGY CENTER ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

File No. 129778-041 January 2023

Table of Contents

Page

1.	Introduction								
	1.1	40 CFR § 257.90(E)(6) SUMMARY	1						
		1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program	1						
		1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program	1						
		1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases	1						
		1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels	2						
		1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy	3						
		1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities	3						
2.	40 C	CFR § 257.90 Applicability	4						
	2.1	40 CFR § 257.90(A)	4						
	2.2	40 CFR § 257.90(E) – SUMMARY	4						
		2.2.1 Status of the Groundwater Monitoring Program	4						
		2.2.2 Key Actions Completed	4						
		2.2.3 Problems Encountered	5						
		2.2.4 Actions to Resolve Problems	5						
		2.2.5 Project Key Activities for Upcoming Year	5						
	2.3	40 CFR § 257.90(E) – INFORMATION	5						
		2.3.1 40 CFR § 257.90(e)(1)	5						
		2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes	6						
		2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events	6						
		2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative	6						
		2.3.5 40 CFR § 257.90(e)(5) – Other Requirements	6						

Revision No.	Date	Notes

List of Tables

Table No.	Title
I	Summary of Analytical Results – 2022 Detection Monitoring

List of Figures

Figure No.	Title
1	Bottom Ash Settling Area/Bottom Ash Landfill Monitoring Well Location Map
2	Bottom Ash Settling Area/Bottom Ash Landfill Groundwater Potentiometric Elevation Contour Map – March 09, 2022
3	Bottom Ash Settling Area/Bottom Ash Landfill Groundwater Potentiometric Elevation Contour Map – September 08, 2022

List of Attachments

Attachment 1 – Statistical Analyses

- 1-1 September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation
- 1-2 March 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

- 2-1 March 2022 Semi-Annual Sampling Event Laboratory Analytical Report
- 2-2 September 2022 Annual Assessment Sampling Event Laboratory Analytical Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Jeffrey Energy Center (JEC) Bottom Ash Settling Area/Bottom Ash Landfill (BASA/BAL) consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2022) and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the JEC BASA/BAL is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Kansas License No.: Title: Company: Mark Nicholls Professional Geologist No. 881 Technical Expert 2 Haley & Aldrich, Inc.

1. Introduction

This 2022 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the Bottom Ash Settling Area/Bottom Ash Landfill (BASA/BAL) at the Jeffrey Energy Center (JEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the BASA/BAL consistent with applicable sections of 257.90 through 257.98, and describes activities conducted in the prior calendar year (2022) and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in bold italic font, followed by a narrative describing how each Rule requirement has been met.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (January 1, 2022), the BASA/BAL was operating under a detection monitoring program in compliance with 40 CFR § 257.94.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (December 31, 2022), the BASA/BAL was operating under a detection monitoring program in compliance with 40 CFR § 257.94.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a) – Statistically Significant Increase Constituents

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

No statistically significant increases (SSI) over background were identified during the previous calendar year (2022). The statistical evaluation reports for semi-annual assessment monitoring sampling events from September 2021 and March 2022 were completed in January 2022 and July 2022, respectively, and are included in Attachment 1.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b) – Initiation of Assessment Monitoring

Provide the date when the assessment monitoring program was initiated for the CCR unit.

No SSIs over background were identified during the previous calendar year (2022); therefore, an assessment monitoring program was not initiated for the BASA/BAL in 2022.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

The BASA/BAL remains in detection monitoring, and no appendix IV constituents were collected or analyzed in 2022. Therefore, no statistically significant levels above the groundwater protection standard were identified for the BASA/BAL.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated in 2022 for this unit. The BASA/BAL remained in detection monitoring during 2022.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the BASA/BAL in 2022; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated in 2022 for this unit. The BASA/BAL remained in detection monitoring during 2022.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The BASA/BAL remains in detection monitoring, and no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required in 2022.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) [Suspension of groundwater monitoring requirements] of this section.

Evergy has installed and certified a groundwater monitoring system at the JEC BASA/BAL. The BASA/BAL is a multi-unit system subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the JEC BASA/BAL as required by the Rule. Groundwater sampling and analysis was conducted in accordance with requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 is provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year 2022.

2.2.1 Status of the Groundwater Monitoring Program

The BASA/BAL remained in the detection monitoring program during 2022.

2.2.2 Key Actions Completed

The 2021 Annual Groundwater Monitoring and Corrective Action Report was completed in January 2022. Statistical evaluation was completed in January 2022 on analytical data from the

September 2021 semi-annual detection monitoring sampling event. Semi-annual detection monitoring events were completed in March and September of 2022. Statistical evaluation was completed in July 2022 on analytical data from the March 2022 semi-annual detection monitoring sampling event. Statistical evaluation of the results from the September 2022 semi-annual detection monitoring sampling event are due to be completed in January 2023 and will be reported in the next annual report.

2.2.3 Problems Encountered

One problem encountered during groundwater monitoring activities in 2022 consisted of a laboratory analytical error that required the laboratory to reanalyze select analytical results. Calcium was reanalyzed for monitoring wells BAA-3 and BAA-6 in the March 2022 semi-annual detection monitoring sampling event. The analytical result was revised accordingly. This was the only issue that needed to be addressed at the BASA/BAL in 2022.

2.2.4 Actions to Resolve Problems

The resolution to problems encountered in 2022 included additional laboratory analyses, as described above. The analytical results were revised accordingly. No other problems were encountered at the BASA/BAL in 2022; therefore, no actions to resolve problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for 2023 include completion of the 2022 Annual Groundwater Monitoring and Corrective Action Report, statistical evaluation of semi-annual detection monitoring analytical data collected in September 2022, and semi-annual detection monitoring and subsequent statistical evaluations.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the BASA/BAL is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned in 2022.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.94(b), two independent detection monitoring samples from each background and downgradient monitoring well were collected during 2022. A summary including the sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the BASA/BAL is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in 2022 are provided in Figures 2 and 3.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2022. Only detection monitoring was conducted in 2022.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with § 257.90 through § 257.94 of the Rule. It is understood that there are supplemental references in § 257.90 through § 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for the activities completed in calendar year 2022.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the

permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No alternate source demonstration or certification was required in 2022; therefore, no demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The BASA/BAL remains in detection monitoring and an alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

The BASA/BAL remains in detection monitoring, and no assessment monitoring samples were collected or analyzed in 2022. Consequently, Evergy is not required to establish groundwater protection standards for this CCR unit, and this criterion is not applicable.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval for the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring alternate source demonstration or certification was required in 2022. The BASA/BAL remained in detection monitoring during 2022.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also

include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated in 2022; therefore, no demonstration or certification is applicable for this unit.

TABLE

TABLE I

SUMMARY OF ANALYTICAL RESULTS - 2022 DETECTION MONITORING

EVERGY KANSAS CENTRAL, INC.

JEFFREY ENERGY CENTER, BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL

ST. MARYS, KANSAS

Location	Upgradient MW-BAA-6		Downgradient										
Location			MW-BAA-2				MW-BAA-3	MW-BAA-7					
Measure Point (TOC)	130	1.81		1226.56			1222.00		121	3.15			
Sample Name	BAA-6-030922	BAA-6-090822	BAA-2-030922	BAA-2-090822	DUP-BAA-090822	BAA-3-030922	DUP-BAA-030922	BAA-3-090822	BAA-7-030922	BAA-7-090822			
Sample Date	3/9/2022	9/8/2022	3/9/2022	9/8/2022	9/8/2022	3/9/2022	3/9/2022	9/8/2022	3/9/2022	9/8/2022			
Final Lab Report Date	3/21/2022	9/23/2022	3/21/2022	9/23/2022	9/23/2022	3/21/2022	3/21/2022	9/23/2022	3/21/2022	9/23/2022			
Final Lab Report Revision Date	5/4/2022	10/19/2022	5/4/2022	10/19/2022	10/19/2022	5/4/2022	5/4/2022	10/19/2022	5/4/2022	10/19/2022			
Lab Data Reviewed and Accepted	5/9/2022	11/4/2022	5/9/2022	11/4/2022	11/4/2022	5/9/2022	5/9/2022	11/4/2022	5/9/2022	11/4/2022			
Depth to Water (ft btoc)	81.58	81.41	20.87	19.97	19.97	19.33	19.33	15.90	21.91	23.31			
Temperature (Deg C)	12.29	20.57	14.28	16.58	-	12.55	-	18.94	14.06	16.58			
Conductivity (µS/cm)	5130	4010	1900	1420	-	4180	-	3600	2620	2480			
Turbidity (NTU)	4.7	0.0	0.0	0.0	-	8.3	-	0.0	14	0.0			
Boron, Total (mg/L)	5.1	5.8	1.1	1.1	1.0	2.3	2.4	2.1	0.65	0.70			
Calcium, Total (mg/L)	526	477	178	170	166	541	557	493	267	259			
Chloride (mg/L)	268	306	129	131	161	147	144	138	146	137			
Fluoride (mg/L)	0.85	< 0.20	0.40	0.25	< 0.20	0.47	0.61	< 0.20	0.51	< 0.20			
Sulfate (mg/L)	1130	2090	598	652	626	2020	2010	1780	906	986			
pH (su)	7.0	7.5	7.4	7.1	7.5	7.0	7.6	7.0	7.6	7.6			
TDS (mg/L)	3250	4530	1280	1170	1260	2970	3170	3610	1780	1970			

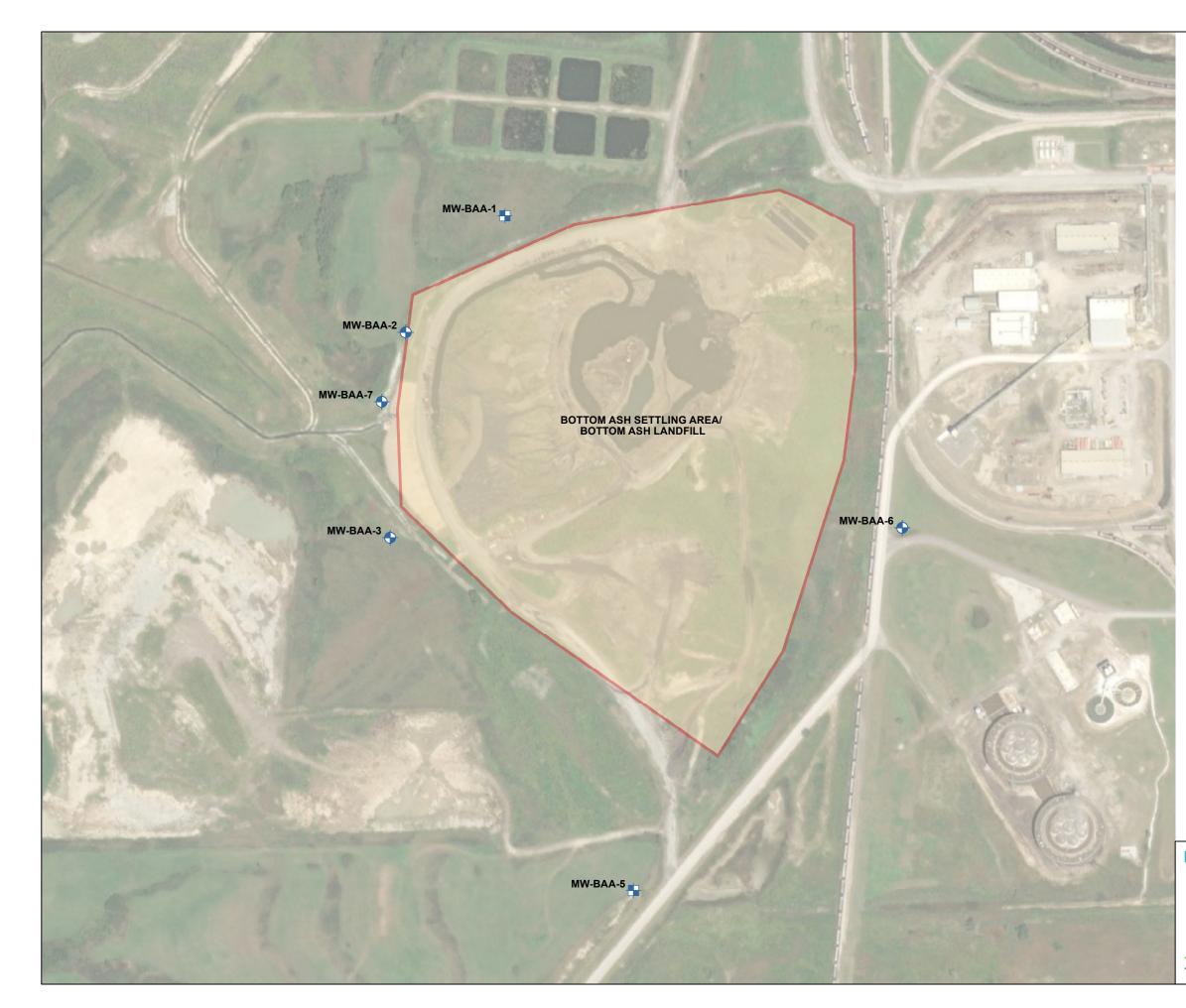
Notes and Abbreviations:

Bold value: Detection above laboratory reporting limit.

 μ S/cm = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing


mg/L = milligrams per liter NTU = Nephelometric Turbidity Unit

su = standard unit

TDS = total dissolved solids

TOC = top of casing

FIGURES

LEGEND

MONITORING WELL

PIEZOMETER OBSERVATION ONLY

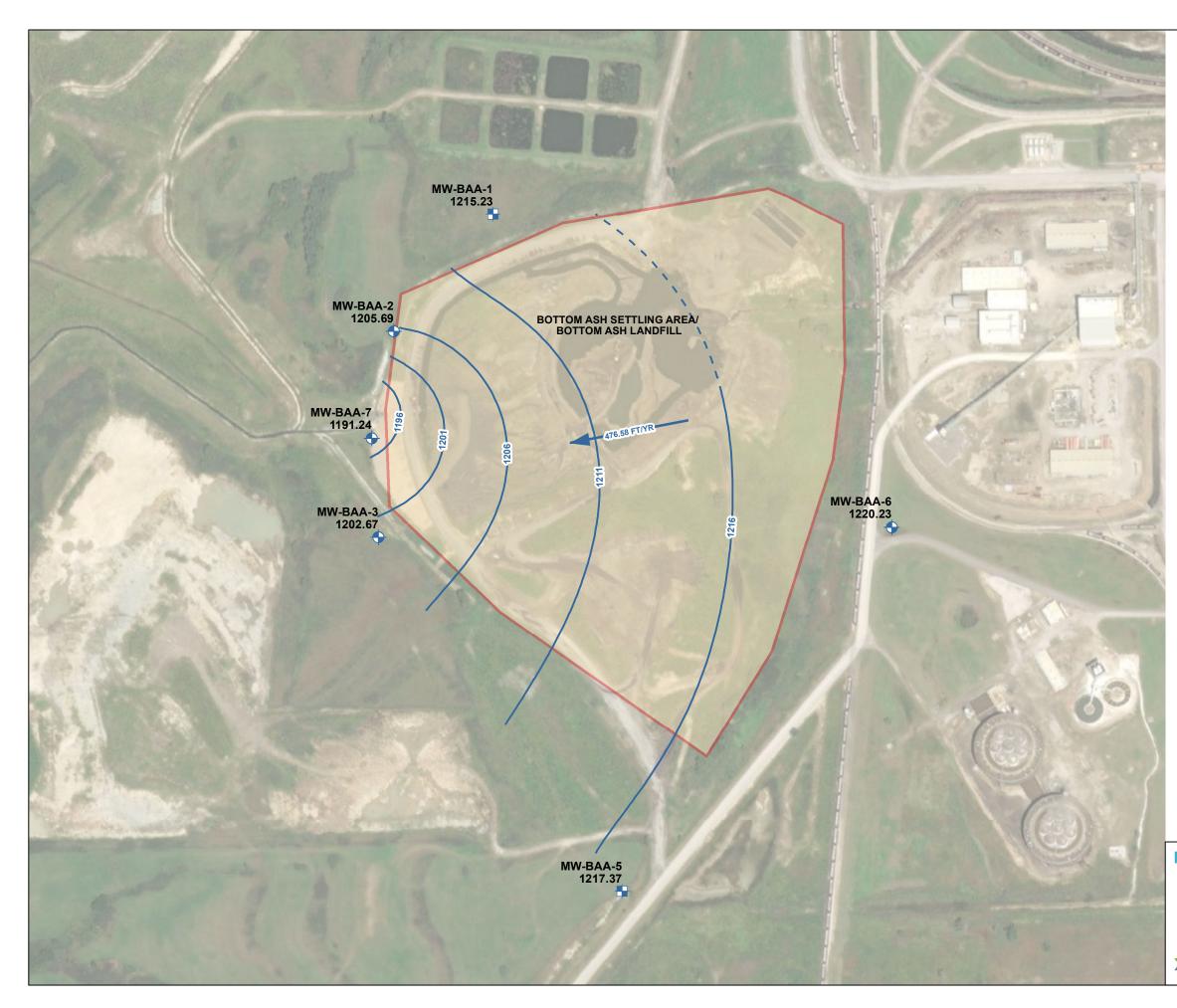
BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 4. AERIAL IMAGERY SOURCE: ESRI, SEPTEMBER 3, 2019

300

600


SCALE IN FEET

HALEY ALDRICH EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARY'S, KANSAS

BOTTOM ASH SETTLING AREA/BOTTOM ASH LANDFILL MONITORING WELL LOCATION MAP

Severgy JANUARY 2023

FIGURE 1

LEGEND	
MW-BAA-1 1219.84	WELL NAME AND GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL), MARCH 2022
•	MONITORING WELL
-	PIEZOMETER OBSERVATION ONLY
	ESTIMATED GROUNDWATER POTENTIOMETRIC DBSERVATION ELEVATION CONTOUR, 5-FT INTERVAL (AMSL), DASHED WHERE INFERRED
	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

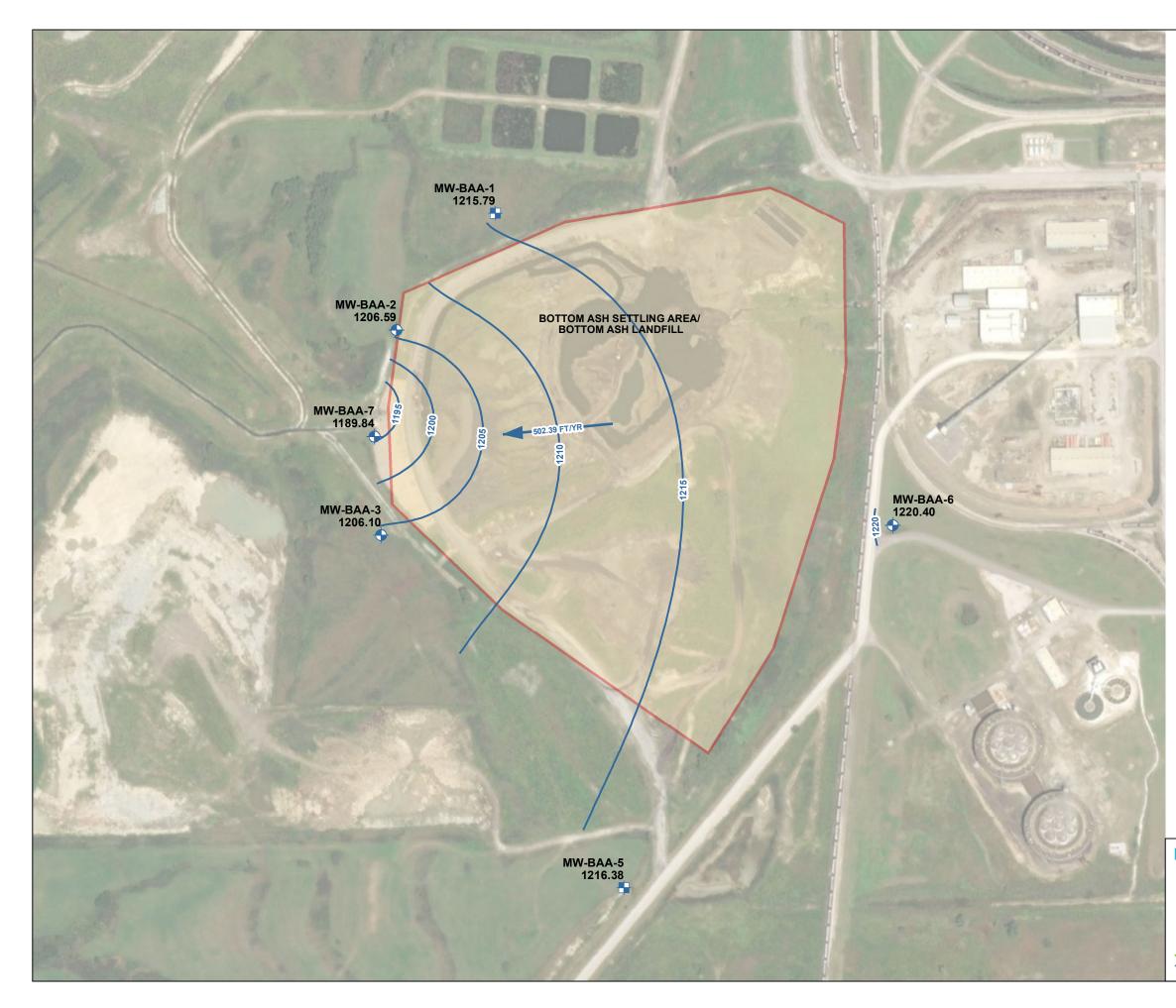
2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 09 MARCH 2022.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 09 MARCH 2022 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED APRIL 2016.

4. AERIAL IMAGERY SOURCE: ESRI, 3 SEPTEMBER 2019

300

600


SCALE IN FEET

BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP MARCH 09, 2022

Severgy JANUARY 2023

FIGURE 2

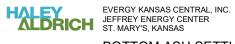
LEGEND	
MW-BAA-1 1219.84	WELL NAME AND GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL), SEPTEMBER 2022
•	MONITORING WELL
+	PIEZOMETER OBSERVATION ONLY
_	ESTIMATED GROUNDWATER POTENTIOMETRIC DBSERVATION ELEVATION CONTOUR, 5-FT INTERVAL (AMSL)
	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 08 SEPTEMBER 2022.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETRIC ELEVATIONS MEASURED 08 SEPTEMBER 2022 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED APRIL 2016.


4. AERIAL IMAGERY SOURCE: ESRI, 3 SEPTEMBER 2019

300

600

SCALE IN FEET

BOTTOM ASH SETTLING AREA / BOTTOM ASH LANDFILL GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP SEPTEMBER 08, 2022

FIGURE 3

ATTACHMENT 1 Statistical Analyses ATTACHMENT 1-1 September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2023 File No. 129778-035

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	September 2021 Semi-Annual Groundwater Detection Monitoring Data Statistical Evaluation Completed January 18, 2022 Jeffrey Energy Center Bottom Ash Settling Area/Bottom Ash Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2021** semi-annual detection monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Settling Area/Bottom Ash Landfill (BASA/BAL). This semi-annual detection monitoring groundwater sampling event **14**, **2021**, with laboratory results received and validated on **December 10**, **2021**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f) (1-4)). The two statistical methods used for these evaluations, prediction limits (PL) and Parametric Analysis of Variance, were certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if a SSI existed.

Evergy Kansas Central, Inc. January 31, 2023 Page 2

STATISTICAL EVALUATION

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-BAA-6). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location (MW-BAA-6) were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2021**.

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the Appendix III constituents from the **September 2021** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in September 2021, no SSIs above background PLs occurred at the JEC BASA/BAL.**

Tables:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I

SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

SEPTEMBER 2021 SAMPLING EVENT

JEFFREY ENERGY CENTER BOTTOM ASH SETTLING AREA/BOTTOM ASH LANDFILL

ST. MARYS, KANSAS

ST. MARYS, KANSAS													Interwel	l Analysis
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non-Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2021 Concentration (mg/L)	Background limits ¹ (UPL) mg/L	SSI
							CCR Appendix	-III: Boron, To	tal (mg/L)					
MW-BAA-6 (upgradient)	16/16	0%	-	5.92	1.639	1.28	0.336	No	No	Stable		3.8	9.08	
MW-BAA-2	16/16	0%	-	1.4	0.03727	0.193	0.178	No	No	Stable	Normal	1.4		No
MW-BAA-3	16/16	0%	-	2.5	0.0096	0.09798	0.04297	No	No	Stable	Normal	2.3		No
MW-BAA-7	16/16	0%	-	1.3	0.101	0.3179	0.3422	No	No	Stable	Normal	0.56		No
		•				•	CCR Appendix-	II: Calcium, To	otal (mg/L)	•	•	•		
MW-BAA-6 (upgradient)	16/16	0%	-	557	3441	58.66	0.1169	Yes	No	Increase		557	557	
MW-BAA-2	16/16	0%	-	224	558.7	23.64	0.1327	No	No	Stable	Normal	190		No
MW-BAA-3	17/17	0%	-	559	708.4	26.62	0.05152	No	No	Stable	Normal	542		No
MW-BAA-7	16/16	0%	-	260	308.3	17.56	0.07778	No	No	Decrease	Normal	242		No
		<u>.</u>					CCR Append	ix-III: Chloride	e (mg/L)		-			
MW-BAA-6 (upgradient)	16/16	0%	-	314	1900	43.59	0.1796	No	No	Stable		310	422	
MW-BAA-2	16/16	0%	-	220	1833	42.81	0.3285	No	No	Stable	Normal	162		No
MW-BAA-3	16/16	0%	-	189	129.6	11.38	0.07093	Yes	No	Increase	Normal	189		No
MW-BAA-7	16/16	0%	-	211	649.3	25.48	0.1353	Yes	No	Increase	Non-parametric	174		No
		<u>.</u>					CCR Append	ix-III: Fluoride	e (mg/L)		-			
MW-BAA-6 (upgradient)	14/16	12%	0.2-0.2	0.88	0.04293	0.2072	0.3798	No	No	Stable		0.71	1.398	
MW-BAA-2	16/16	0%	-	0.63	0.003123	0.05588	0.1071	No	No	Stable	Normal	0.47		No
MW-BAA-3	15/16	6%	0.2-0.2	1	0.04177	0.2044	0.2446	Yes	No	Stable	Normal	0.99		No
MW-BAA-7	16/16	0%	-	0.9	0.00675	0.08216	0.1098	No	No	Stable	Normal	0.61		No
		<u>.</u>					CCR Appen	dix-III: pH (lal	b) (SU)		-			
MW-BAA-6 (upgradient)	16/16	0%	-	7.3	0.02262	0.1504	0.02132	No	No	Stable		7.3	7.71	
MW-BAA-2	16/16	0%	-	8.5	0.09329	0.3054	0.04103	Yes	No	Stable	Non-parametric	7.3		No
MW-BAA-3	16/16	0%	-	7.6	0.03533	0.188	0.02638	Yes	No	Stable	Normal	7.1		No
MW-BAA-7	16/16	0%	-	7.5	0.018	0.1342	0.01832	Yes	No	Stable	Normal	7.2		No
							CCR Append	dix-III: Sulfate	(mg/L)					
MW-BAA-6 (upgradient)	16/16	0%	-	2190	99790	315.9	0.1735	Yes	No	Stable		1870	2190	
MW-BAA-2	16/16	0%	-	983	34010	184.4	0.2843	No	No	Stable	Normal	654		No
MW-BAA-3	16/16	0%	-	2290	13080	114.4	0.05662	No	No	Stable	Normal	1850		No
MW-BAA-7	16/16	0%	-	958	2698	51.94	0.05774	Yes	No	Stable	Normal	756		No
						CCR Ap	opendix-III: Tota	al Dissolved So	olids (TDS) (mg	;/L)				
MW-BAA-6 (upgradient)	16/16	0%	-	3670	152600	390.6	0.1213	Yes	No	Stable		3060	3670	
MW-BAA-2	16/16	0%	-	1790	49760	223.1	0.1745	No	No	Stable	Normal	1410		No
MW-BAA-3	16/16	0%	-	3780	54500	233.5	0.07046	No	No	Stable	Normal	3330		No
MW-BAA-7	16/16	0%	-	1990	7476	86.47	0.04812	Yes	No	Stable	Normal	1670		No

Notes and Abbreviations:

¹ Based on background data collected from 08/25/2016 through 09/14/2021.

CCR = coal combustion residual

mg/L = milligrams per liter

SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limit

ATTACHMENT 1-2 March 2022 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

January 31, 2023 File No. 129778-050

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	March 2022 Semi-Annual Groundwater Detection Monitoring Data Statistical Evaluation Completed July 18, 2022 Jeffrey Energy Center Bottom Ash Settling Area/Bottom Ash Landfill

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.94 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2022** semi-annual detection monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Settling Area/Bottom Ash Landfill (BASA/BAL). This semi-annual detection monitoring groundwater sampling event was completed on **March 9, 2022**, with laboratory results received and validated on **May 9, 2022**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix III groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background or upgradient wells consistent with the requirements in 40 CFR § 257.94.

Statistical Evaluation of Appendix III Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The two statistical methods used for these evaluations, prediction limits (PL) and Parametric Analysis of Variance, were certified by Haley & Aldrich, Inc. on April 17, 2019. The PL method, as determined applicable for this sampling event, was used to evaluate potential SSIs above background. Background levels for each constituent listed in Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) were computed as upper prediction limits (UPL), considering one future observation, and a minimum 95 percent confidence coefficient. The most recent groundwater sampling event from each compliance well was compared to the corresponding background PL to determine if an SSI existed.

Evergy Kansas Central, Inc. January 31, 2023 Page 2

STATISTICAL EVALUATION

An interwell evaluation using the PL method was used to complete the statistical evaluation of the referenced dataset. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data (MW-BAA-6). A PL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the UPL. Depending on the background data distribution, parametric or non-parametric PL procedures are used to evaluate groundwater monitoring data using this method. Parametric PLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the PL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UPL.

The statistical evaluation was conducted using the background dataset for all Appendix III constituents. The UPLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location MW-BAA-6 were combined to calculate the UPL for each Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **September 2021**.

RESULTS OF APPENDIX III DOWNGRADIENT STATISTICAL COMPARISONS

Sample concentrations from the downgradient wells for each of the Appendix III constituents from the **March 2022** semi-annual detection monitoring sampling event were compared to their respective background UPLs (Table I). A sample concentration greater than the background UPL is considered to represent a SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation of groundwater sampling data collected in March 2022**, **no SSIs above background PLs occurred at the JEC BASA/BAL.**

Attachments:

Table I – Summary of Semi-Annual Detection Groundwater Monitoring Statistical Evaluation

TABLE

TABLE I

SUMMARY OF SEMI-ANNUAL DETECTION GROUNDWATER MONITORING STATISTICAL EVALUATION

MARCH 2022 SAMPLING EVENT

JEFFREY ENERGY CENTER BOTTOM ASH SETTLING AREA/BOTTOM ASH LANDFILL

ST. MARYS, KANSAS

ST. MARYS, KANSAS													Interwe	ll Analysis
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non- Detect	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2022 Concentration (mg/L)	Background Limits ¹ (UPL) mg/L	SSI
							CCR Appendix-I	II: Boron, Total	(mg/L)					
MW-BAA-6 (upgradient)	17/17	0%	-	5.92	1.634	1.278	0.3289	No	No	Stable		5.1	9.08	
MW-BAA-2	17/17	0%	-	1.4	0.03495	0.187	0.1723	No	No	Stable	Normal	1.1		No
MW-BAA-3	17/17	0%	-	2.5	0.009024	0.09499	0.04164	Yes	No	Stable	Non-parametric	2.3		No
MW-BAA-7	17/17	0%	-	1.3	0.0993	0.3151	0.3453	No	No	Decreasing	Non-parametric	0.65		No
							CCR Appendix-III	: Calcium, Tota	l (mg/L)					
MW-BAA-6 (upgradient)	17/17	0%	-	557	3260	57.1	0.1135	Yes	No	Increase		526	557	
MW-BAA-2	17/17	0%	-	224	523.8	22.89	0.1285	No	No	Stable	Normal	178		No
MW-BAA-3	18/18	0%	-	559	699.6	26.45	0.05106	No	No	Stable	Normal	541		No
MW-BAA-7	17/17	0%	-	267	389.2	19.73	0.08646	No	No	Decrease	Normal	267		No
							CCR Appendix	-III: Chloride (r	ng/L)					
MW-BAA-6 (upgradient)	17/17	0%	-	314	1819	42.65	0.1747	No	No	Stable		268	422	
MW-BAA-2	17/17	0%	-	220	1718	41.45	0.3183	No	No	Stable	Normal	129		No
MW-BAA-3	17/17	0%	-	189	132.2	11.5	0.072	No	No	Increase	Normal	147		No
MW-BAA-7	17/17	0%	-	211	714.2	26.72	0.1438	Yes	No	Stable	Non-parametric	146		No
							CCR Appendix	(-III: Fluoride (n	ng/L)					
MW-BAA-6 (upgradient)	15/17	12%	0.2-0.2	0.88	0.0457	0.2138	0.3793	No	No	Stable		0.85	1.398	
MW-BAA-2	17/17	0%	-	0.63	0.003801	0.06166	0.1198	No	No	Stable	Normal	0.40		No
MW-BAA-3	16/17	6%	0.2-0.2	1	0.04703	0.2169	0.2664	Yes	No	Stable	Non-parametric	0.47		No
MW-BAA-7	17/17	0%	-	0.9	0.009663	0.0983	0.1339	No	No	Decrease	Normal	0.51		No
							CCR Append	ix-III: pH (lab) (SU)		•			
MW-BAA-6 (upgradient)	17/17	0%	-	7.3	0.0214	0.1463	0.02074	No	No	Stable		7.0	7.71	
MW-BAA-2	17/17	0%	-	8.5	0.08757	0.2959	0.03977	Yes	No	Stable	Non-parametric	7.4		No
MW-BAA-3	17/17	0%	-	7.6	0.03404	0.1845	0.02592	Yes	No	Decrease	Normal	7.0		No
MW-BAA-7	17/17	0%	-	7.6	0.02132	0.146	0.01989	No	No	Stable	Normal	7.6		No
							CCR Appendi	x-III: Sulfate (m	ng/L)	•				
MW-BAA-6 (upgradient)	17/17	0%	-	2190	121600	348.7	0.1959	Yes	No	Stable		1130	2190	
MW-BAA-2	17/17	0%	-	983	32040	179	0.2772	No	No	Stable	Normal	598		No
MW-BAA-3	17/17	0%	-	2290	12260	110.7	0.05482	No	No	Stable	Normal	2020		No
MW-BAA-7	17/17	0%	-	958	2532	50.32	0.05591	No	No	Stable	Non-parametric	906		No
						CCR A	ppendix-III: Total	Dissolved Solid	ls (TDS) (mg/L)					
MW-BAA-6 (upgradient)	17/17	0%	-	3670	143100	378.3	0.1174	Yes	No	Stable		3250	3670	
MW-BAA-2	17/17	0%	-	1790	46650	216	0.1689	No	No	Stable	Normal	1280		No
MW-BAA-3	17/17	0%	-	3780	58020	240.9	0.07315	No	No	Stable	Normal	2970		No
MW-BAA-7	17/17	0%	-	1990	7026	83.82	0.04667	Yes	No	Stable	Normal	1780		No

Notes and Abbreviations:

¹ Based on background data collected from 08/25/2016 through 09/14/2021.

CCR = coal combustion residual

mg/L = milligrams per liter

SSI = statistically significant increase

SU = standard unit

UPL = upper prediction limit

ATTACHMENT 2 Laboratory Analytical Reports ATTACHMENT 2-1 March 2022 Semi-Annual Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

May 04, 2022

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC BASA/BALCCR Pace Project No.: 60394853

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 10, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

REVISED 5/3/22 report reanalysis of calcium per client request.

REVISISED_2 5/4/22 report results from re-analysis, removed original results.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc. JD Schlegel, Evergy, Inc. Jacob Will, Evergy Kansas Central, Jeffrey Energy Center

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60394853001	BAA-2-030922	Water	03/09/22 09:25	03/10/22 15:00
60394853002	BAA-3-030922	Water	03/09/22 10:10	03/10/22 15:00
60394853003	BAA-6-030922	Water	03/09/22 11:55	03/10/22 15:00
60394853004	BAA-7-030922	Water	03/09/22 11:05	03/10/22 15:00
60394853005	DUP-BAA-030922	Water	03/09/22 10:10	03/10/22 15:00

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60394853001	BAA-2-030922	EPA 200.7	JLH	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394853002	BAA-3-030922	EPA 200.7	JLH, MA1	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394853003	BAA-6-030922	EPA 200.7	JLH, MA1	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394853004	BAA-7-030922	EPA 200.7	JLH	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394853005	DUP-BAA-030922	EPA 200.7	JLH	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	CRN	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

REPORT OF LABORATORY ANALYSIS

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:May 04, 2022

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 775828

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394834001,60394852001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3096624)
 - Calcium
 - MS (Lab ID: 3096626)
 - Calcium
 - MSD (Lab ID: 3096625)
- Calcium

QC Batch: 783772

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394853002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3125433)
 - Calcium
 - MSD (Lab ID: 3125434)
 - Calcium

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Method:EPA 200.7Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:May 04, 2022

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:May 04, 2022

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:May 04, 2022

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- BAA-2-030922 (Lab ID: 60394853001)
- BAA-3-030922 (Lab ID: 60394853002)
- BAA-6-030922 (Lab ID: 60394853003)
- BAA-7-030922 (Lab ID: 60394853004)
- DUP-BAA-030922 (Lab ID: 60394853005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:May 04, 2022

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 776631

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394893005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3099253)
 - Chloride
 - Fluoride
 - Sulfate

R1: RPD value was outside control limits.

- MSD (Lab ID: 3099254)
 - Chloride
 - Fluoride
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 775525

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - MS (Lab ID: 3095467)
 - Chloride
 - MSD (Lab ID: 3095468)
 - Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Sample: BAA-2-030922	Lab ID: 603	94853001	Collected: 03/09	/22 09:25	5 Received: 03	/10/22 15:00 M	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	ethod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	1.1	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:39	7440-42-8	
Calcium, Total Recoverable	178	mg/L	0.60	3	03/16/22 14:38	03/18/22 19:41	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1280	mg/L	13.3	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		03/16/22 13:01		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	129	mg/L	50.0	50		03/16/22 12:54	16887-00-6	
Fluoride	0.40	mg/L	0.20	1		03/15/22 21:40	16984-48-8	
Sulfate	598	mg/L	50.0	50		03/16/22 12:54	14808-79-8	

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Sample: BAA-3-030922	Lab ID: 603	394853002	Collected: 03/09	/22 10:1	0 Received: 03	B/10/22 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Me	thod: EPA 20	0.7 Preparation N	ethod: E	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	2.3	mg/L	0.10) 1	03/16/22 14:38	03/18/22 20:41	7440-42-8	
Calcium, Total Recoverable	541	mg/L	2.0) 10	04/28/22 10:05	04/29/22 17:52	7440-70-2	M1
2540C Total Dissolved Solids	Analytical Me	thod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	2970	mg/L	66.7	′ 1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Me	thod: SM 45	00-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	0.10) 1		03/16/22 13:12		H6
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	147	mg/L	50.0	50		03/16/22 13:08	16887-00-6	
Fluoride	0.47	mg/L	0.20) 1		03/15/22 22:34	16984-48-8	
Sulfate	2020	mg/L	200	200		03/15/22 22:47	14808-79-8	

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Sample: BAA-6-030922	Lab ID: 603	94853003	Collected: 03/09/	22 11:55	Received: 03	/10/22 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	00.7 Preparation Me	ethod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	5.1	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:43	7440-42-8	
Calcium, Total Recoverable	526	mg/L	2.0	10	04/28/22 10:05	04/29/22 18:03	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	3250	mg/L	66.7	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.0	Std. Units	.10	1		03/17/22 09:16		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	268	mg/L	50.0	50		03/16/22 13:21	16887-00-6	
Fluoride	0.85	mg/L	0.20	1		03/15/22 23:00	16984-48-8	
Sulfate	1130	mg/L	200	200		03/15/22 23:14	14808-79-8	

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Sample: BAA-7-030922	Lab ID: 603	94853004	Collected: 03/09/2	22 11:05	Received: 03	8/10/22 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	0.65	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:45	7440-42-8	
Calcium, Total Recoverable	267	mg/L	1.0	5	03/16/22 14:38	03/18/22 19:48	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1780	mg/L	20.0	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
-	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.6	Std. Units	0.10	1		03/17/22 12:18		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	146	mg/L	50.0	50		03/16/22 13:35	16887-00-6	
Fluoride	0.51	mg/L	0.20	1		03/15/22 23:27	16984-48-8	
Sulfate	906	mg/L	50.0	50		03/16/22 13:35	14808-79-8	

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

Sample: DUP-BAA-030922	Lab ID: 603	94853005	Collected: 03/09/	22 10:10) Received: 03	8/10/22 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Me	thod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	2.4	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:55	7440-42-8	
Calcium, Total Recoverable	557	mg/L	2.0	10	03/16/22 14:38	03/18/22 19:50	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	3170	mg/L	66.7	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.6	Std. Units	0.10	1		03/17/22 12:13		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	144	mg/L	20.0	20		03/21/22 09:55	16887-00-6	
Fluoride	0.61	mg/L	0.20	1		03/21/22 09:41	16984-48-8	
Sulfate	2010	mg/L	400	400		03/21/22 10:09	14808-79-8	

Project:	JEC BASA/BALC	CR										
Pace Project No.:	60394853											
QC Batch:	775828		Anal	ysis Metho	d: E	PA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descri	ption: 2	200.7 Metal	s, Total					
			Labo	oratory:	F	Pace Analyt	ical Servic	es - Kansa	s City			
Associated Lab San	nples: 6039485	3001, 6039485300	02, 603948	53003, 603		-						
METHOD BLANK:	3096622			Matrix: W	ater							
Associated Lab San	nples: 6039485	3001, 6039485300	02, 6039485	53003, 603	94853004, 6	6039485300	05					
			Bla	nk	Reporting							
Paran	neter	Units	Res	ult	Limit	Analy	zed	Qualifiers	S			
Boron		mg/L		<0.10	0.10	03/21/22	2 12:42					
Calcium		mg/L		<0.20	0.20							
		Ū										
LABORATORY COM	NTROL SAMPLE:	3096623										
			Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Res	sult	% Rec	Lim	its (Qualifiers			
Boron		mg/L		1	0.97	97	7	85-115		_		
Calcium		mg/L		10	10.4	104	1	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 3096	624		3096625							
			MS	MSD								
		60394852001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/	L 0.38	1	1	1.4	1.4	98	98	70-130	1	20	
Calcium	mg/	L 318	10	10	323	320	56	25	70-130	1	20	M1
MATRIX SPIKE SAM		3096626										
	***	000020	60394	1834001	Spike	MS		MS	% Rec			
Paran	neter	Units		esult	Conc.	Result	9	% Rec	Limits		Quali	fiers
Boron		mg/L		0.40	1		1.4	101	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEC BASA/	BALCCR										
Pace Project No.: 60394853											
QC Batch: 783772		Analy	/sis Metho	d: E	PA 200.7						
QC Batch Method: EPA 200.7	,	Analy	/sis Descri	ption: 2	00.7 Metal	s, Total					
		Labo	ratory:	F	Pace Analyt	tical Servic	es - Kansas	s City			
Associated Lab Samples: 603	94853002, 6039485300	3									
METHOD BLANK: 3125431			Matrix: W	ater							
Associated Lab Samples: 603	94853002, 6039485300	3									
		Blar	nk	Reporting							
Parameter	Units	Res		Limit	Anal	yzed	Qualifiers	6			
Calcium	mg/L		<0.20	0.20	04/29/2	2 10:31					
LABORATORY CONTROL SAM	PLE: 3125432										
		Spike	LC	s	LCS	% R	ec				
Parameter	Units	Conc.	Res	sult	% Rec	Limi	its C	Qualifiers			
Calcium	mg/L	1	0	9.7	9	7	85-115				
MATRIX SPIKE & MATRIX SPIK	E DUPLICATE: 3125	122		3125434							
MATRIX SFIRE & MATRIX SFIR	E DUFLICATE. 5125	433 MS	MSD	5125454							
	60394853002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Мах	
Parameter	Units Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L 541	10	10	535	532	-55	-87	70-130	1	20	M1
	18										
SAMPLE DUPLICATE: 312703	00										
		603987		Dup			Max				
SAMPLE DUPLICATE: 312703 Parameter	Units	603987 Res		Dup Result	RPE)	Max RPD	Qualif	iers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC BASA/BALC	CR						
Pace Project No.:	60394853							
QC Batch:	775868		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	scription:	2540C Total Dis	ssolved Solids		
			Laboratory:		Pace Analytical	Services - Ka	nsas C	City
Associated Lab Sar	nples: 60394853	8001, 6039485300	2, 60394853003,	60394853004,	60394853005			
METHOD BLANK:	3096796		Matrix	: Water				
Associated Lab Sar	nples: 60394853	8001, 6039485300	2, 60394853003,	60394853004,	60394853005			
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	d Quali	fiers	_
Total Dissolved Soli	ds	mg/L	<5.0	5.	0 03/16/22 15	5:16		
LABORATORY CO	NTROL SAMPLE:	3096797						
_			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Total Dissolved Soli	ds	mg/L	1000	996	100	80-120		
SAMPLE DUPLICA	TE: 3096798			_				
Parar	notor	Units	60394853005	Dup Result	RPD	Max RPD		Qualifiers
			Result					Quaimers
Total Dissolved Soli	ds	mg/L	3170	300	0	6	10	
SAMPLE DUPLICA	TE: 3096799			_				
Parar	notor	Units	60394939004 Recult	Dup	RPD	Max RPD		Qualifiers
			Result	Result				Qualifiers
Total Dissolved Soli	ds	mg/L	17600	1760	0	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC BASA/BALCO	CR						
Pace Project No.:	60394853							
QC Batch:	775734		Analysis Meth	iod:	SM 4500-H+	В		
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH	l		
			Laboratory:		Pace Analytic	cal Serv	vices - Kans	sas City
Associated Lab Sar	mples: 60394853	001, 60394853002						
SAMPLE DUPLICA	TE: 3096123							
			60393936001	Dup			Max	
Doron		I Indian	Deeult	Deeult	חחח			o ""
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC BASA/BALCCF	र						
Pace Project No.:	60394853							
QC Batch:	775990		Analysis Meth	nod:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH			
			Laboratory:	Pace Analytica	I Services -	Kansa	s Citv	
			======;					,
Associated Lab Sam	nples: 6039485300	03			,, , ,			
Associated Lab Sam	•	03						
	•	03	60394768001	Dup			ax	
	ГЕ: 3097134	03 Units		Dup Result	RPD	М		Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC BASA/BALCCF	२						
Pace Project No.:	60394853							
QC Batch:	776035		Analysis Meth	iod:	SM 4500-H+B	3		
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH			
			l charatarı "		Pace Analytica	al Sani	ooo Kon	ana City
			Laboratory:		I ace Analytica		ces - Kan	sas City
Associated Lab Sam	nples: 603948530	04, 60394853005	,				ces - Kan	Sas City
Associated Lab Sam	•	04, 60394853005	,					
	•	04, 60394853005	,	Dup			Max	Sas City
	FE: 3097276	04, 60394853005 Units		Dup Result	RPD			Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	775505		A									
	775525		-	sis Metho		EPA 300.0						
QC Batch Method:	EPA 300.0		-	sis Descri		300.0 IC Ani		. Kanaa	0.1			
Associated Lab Sample	ec 603048530	01, 6039485300		ratory:		Pace Analyti	cal Service	es - Kansa	s City			
		01,0039403300	2,0009400	5005, 005,	94033004							
METHOD BLANK: 30				Matrix: W								
Associated Lab Sample	es: 603948530	01, 6039485300										
Paramete	or	Units	Blar Resi		Reporting Limit	Analy	zod	Qualifier	· C			
								Quaimer	<u> </u>			
Chloride		mg/L		<1.0	1.0							
Fluoride Sulfate		mg/L		<0.20 <1.0	0.20 1.0							
Sullate		mg/L		<1.0	1.0	5 03/13/22	17.15					
METHOD BLANK: 30	97419			Matrix: W	ater							
Associated Lab Sample		01, 6039485300	2, 6039485									
		, 	Blar	,	Reporting							
Paramete	ər	Units	Res		Limit	Analy	zed	Qualifier	S			
Chloride		mg/L		<1.0	1.(03/16/22	08:52					
Fluoride		mg/L		<0.20	0.20	03/16/22	08:52					
Sulfate		mg/L		<1.0	1.(0 03/16/22	08:52					
LABORATORY CONTR		3095466										
			Spike	LC	S	LCS	% Re	ec				
Paramete	ər	Units	Conc.	Res	ult	% Rec	Limit	S	Qualifiers			
Chloride		mg/L		5	5.2	105	9	0-110		_		
Fluoride		mg/L	2.	5	2.4	97	9	0-110				
Sulfate		mg/L		5	5.1	103	9	0-110				
		3097420				LCS	% Re	ec				
LABORATORY CONTR	ROL SAMPLE:	3097420	Spike	LC	S							
LABORATORY CONTF		3097420 Units	Spike Conc.	LC Res		% Rec	Limit	S	Qualifiers			
Paramete		Units	Conc.	Res	ult	% Rec	Limit		Qualifiers	_		
Paramete		Units mg/L	Conc.				Limit	0-110	Qualifiers	_		
LABORATORY CONTR Paramete Chloride Fluoride Sulfate		Units	Conc2.		ult 4.7	% Rec 95	Limit 9 9		Qualifiers	_		
Paramete Chloride Fluoride Sulfate	er	Units mg/L mg/L mg/L	Conc2.	Res 5 5	ult 4.7 2.7 5.1	% Rec 95 108 102	Limit 9 9	00-110 00-110	Qualifiers	_		
Paramete Chloride Fluoride	er	Units mg/L mg/L mg/L	2.	Res 5 5 5	ult 4.7 2.7	% Rec 95 108 102	Limit 9 9	00-110 00-110	Qualifiers	_		
Paramete Chloride Fluoride Sulfate	er	Units mg/L mg/L mg/L	Conc2.	Res 5 5	ult 4.7 2.7 5.1	% Rec 95 108 102	Limit 9 9	00-110 00-110	Qualifiers % Rec	_	Мах	
Paramete Chloride Fluoride Sulfate	er	Units mg/L mg/L mg/L	2. 467 MS	Res 5 5 5 5 MSD	ult 4.7 2.7 5.1 3095468	% Rec 95 108 102	 	0-110 0-110 00-110 00-110		RPD	Max RPD	Qual
Paramete Chloride Sulfate MATRIX SPIKE & MAT Parameter	er RIX SPIKE DUPL	Units mg/L mg/L mg/L LICATE: 3095- 60390971001	Conc. 2. 467 MS Spike	Res 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ult 4.7 2.7 5.1 3095468 MS	% Rec 95 108 102 MSD		00-110 00-110 00-110 00-110 MSD	% Rec Limits	 RPD0	RPD	Qual E,H1
Paramete Chloride Sulfate MATRIX SPIKE & MAT	er RIX SPIKE DUPL Units	Units mg/L mg/L mg/L LICATE: 3095 60390971001 Result	467 MS Spike Conc.	Res 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ult 4.7 2.7 5.1 3095468 MS Result	% Rec 95 108 102 MSD Result	MS % Rec	00-110 00-110 00-110 00-110 MSD % Rec	% Rec Limits 80-120		RPD	E,H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Pace Project No.:	JEC B/ 603948	ASA/BALCC 853	R										
QC Batch:	7766	31		Anal	ysis Metho	d: E	PA 300.0						
QC Batch Method:	EPA :	300.0		Anal	ysis Descri	ption: 3	00.0 IC An	ions					
				Labo	oratory:	P	ace Analyt	tical Servic	es - Kansa	s City			
Associated Lab Sar	mples:	603948530	05										
METHOD BLANK:	309925	51			Matrix: W	ater							
Associated Lab Sar	mples:	603948530	05										
				Bla	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Chloride			mg/L		<1.0	1.0	03/21/2	2 07:11					
Fluoride			mg/L		<0.20	0.20							
Sulfate			mg/L		<1.0	1.0	03/21/2	2 07:11					
LABORATORY CO	NTROL	SAMPLE:	3099252										
				Spike	LC	S	LCS	% R					
Parar	neter		Units	Conc.	Res	sult	% Rec	Lim	its .	Qualifiers	_		
Chloride			mg/L		5	4.5	9	1	90-110				
Fluoride			mg/L	2	.5	2.4	9		90-110				
Sulfate			mg/L		5	4.9	9.	7	90-110				
MATRIX SPIKE & N	/ATRIX :	SPIKE DUPL	_ICATE: 3099	253		3099254							
				MS	MSD								
			60394893005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Chloride		mg/L	ND	5	5	6.3	4.6	126		80-120	32		M1,R
Fluoride		mg/L	ND	2.5	2.5	3.7	2.6	147			33		M1,R
Sulfate		mg/L	ND	5	5	7.3	5.0	146	100	80-120	37	15	M1,R
SAMPLE DUPLICA	TE: 30	99255											
				603948	93005	Dup			Max				
Parar	meter		Units	Res	ult	Result	RPE	D	RPD	Qualif	iers		
Chloride			mg/L		ND	<1.0			1:	5			
Fluoride			mg/L		ND	<0.20			1	5			
			mg/L		ND	<1.0			1	5			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: JEC BASA/BALCCR

Pace Project No.: 60394853

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H1 Analysis conducted outside the EPA method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC BASA/BALCCR Pace Project No.: 60394853

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60394853001	BAA-2-030922	EPA 200.7	775828	EPA 200.7	776011
60394853002	BAA-3-030922	EPA 200.7	775828	EPA 200.7	776011
60394853002	BAA-3-030922	EPA 200.7	783772	EPA 200.7	783860
60394853003	BAA-6-030922	EPA 200.7	775828	EPA 200.7	776011
60394853003	BAA-6-030922	EPA 200.7	783772	EPA 200.7	783860
60394853004	BAA-7-030922	EPA 200.7	775828	EPA 200.7	776011
60394853005	DUP-BAA-030922	EPA 200.7	775828	EPA 200.7	776011
60394853001	BAA-2-030922	SM 2540C	775868		
60394853002	BAA-3-030922	SM 2540C	775868		
60394853003	BAA-6-030922	SM 2540C	775868		
60394853004	BAA-7-030922	SM 2540C	775868		
60394853005	DUP-BAA-030922	SM 2540C	775868		
60394853001	BAA-2-030922	SM 4500-H+B	775734		
60394853002	BAA-3-030922	SM 4500-H+B	775734		
60394853003	BAA-6-030922	SM 4500-H+B	775990		
60394853004	BAA-7-030922	SM 4500-H+B	776035		
60394853005	DUP-BAA-030922	SM 4500-H+B	776035		
60394853001	BAA-2-030922	EPA 300.0	775525		
60394853002	BAA-3-030922	EPA 300.0	775525		
60394853003	BAA-6-030922	EPA 300.0	775525		
60394853004	BAA-7-030922	EPA 300.0	775525		
60394853005	DUP-BAA-030922	EPA 300.0	776631		

		WO#:60394853
Pace DC#_Title: ENV-FI	RM-LENE-0009_Sample	
AMALITICAL SERVICES Revision: 2	Effective Date: 01/12/2022	Issued By: Lenexa
Client Name: JVery		
Courier: FedEx UPS UPS Clay	PEX 🗆 ECI 🗆 Pa	ace 🗆 Xroads 🗆 Client 🗖 Other 🗆
Tracking #:	Pace Shipping Label Used?	Yes 🗆 No 🗹
Custody Seal on Cooler/Box Present: Yes V No I		No 🗆
Packing Material: Bubble Wrap Bubble B		None D Other
10	pe of Ice: Wet Blue None	Date and initials of personal 3/11/2
	Factor 0. 2 Corrected	(· / examining contents: VILB 311/2
Temperature should be above freezing to 6°C	_ /	
Chain of Custody present:		
Chain of Custody relinquished:		
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes □No □N/A	
Rush Turn Around Time requested:	□Yes ØNo □N/A	
Sufficient volume:	/ ØYes □No □N/A	
Correct containers used:	∕ Ø¥es □No □N/A	
Pace containers used:	∕ □∕Yes □No □N/A	
	/Yes □No □N/A	
Containers intact:		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs		
Filtered volume received for dissolved tests?		
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix: W	□Yes □Yo □N/A	
Containers requiring pH preservation in compliance?		t sample IDs, volumes, lot #'s of preservative and the te/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	LOT#: 55792	
Cyanide water sample checks:	~ .,	
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)		
	Yes □No	
Trip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the		
	COC to Client? Y // N	Field Data Required? Y / N
	ate/Time:	_
Comments/ Resolution:		
Project Manager Review:	Date:	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	d Client Information:	Section B Required P		t Inform	nation:						tion C ce Info		ion:														Pa	age:	1	of	1	
Company	EVERGY KANSAS CENTRAL, INC.	Report To:	Meli	ssa N	Aichels, S	Samantha	a Kaney, I	Danielle	Obei	Atten	tion:	1	\cco	unts	Pay	able											_					
Address:		Сору То:	Jare	ed Mo	mison, Ja	ake Humj	phrey, Lau	ira Hines		Comp	oany N	Varne	E	VER	GYI	KANS	SAS	CEN	NTR/	AL, I	NOR	EGU	LATO	ORY	AGE	ENC	Y					
	818 Kansas Ave, Topeka, KS 66612									Addre	ess:	ę	SEE	SEC	TIOI	NΑ					T	- N	PDES	- F	G	ROU	ND V	VATER	2 1	DRINKIN	IG WAT	ER
Email To		Purchase O	order N	No.:						Pace Refere											1	- U	ST	Г	R	CRA			Г	OT⊢ER	_	
Phone:	785-575-8113 Fax:	Project Nam	ne:	JEC	BASA/B	AL CCR				Pace I Manag	Project ger:	t 🖌	Alice	Spill	er 9	13-56	63-1 ₄	403				Site L	ocati	on					Care.	100	1.21-01-0	
Request	ed Due Date/TAT: 7 day	Project Num	nber:							Pacel	Profile	#: Q	9657	, 4								;	STAT	E:	-	KS	\$	- 1				
																	Т	f	Requ	Jeste	ed Ar	alys	is Fil	tere	d (Y/	N)			374	24218	enu eine	
	Section D Valid Matrix Required Client Information MATRIX	CODE	to left)	(dWD)		COLL	ECTED					P	rese	rvati	ves		INY	N	N	N	N											
ITEM #	DRINKING WATE WATER WASTE WATER PRODUCT SOIL/SOLID OIL (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE TISSUE	WT	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G=GRAB C=COMP)	COMPOSTA		COMPOS END/GR		SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HINU3	NaOH	Na ₂ S ₂ O ₃	Methanol	is Test	»*	H	300: CI, F, SO4	2540C TDS							Residual Chlorine (Y/N)	A Pace	ojU (Project	53 No/La	ib 1.D.
1	BAA-2-030922		wr	G	343		03/09/22	9:25		4	3		1				Г	X			x	1										
2	BAA-3-030922		wr	G			03/09/22	10:10		4	3		1					x	x		x						П					
3	BAA-6-030922		WT	G			03/09/22	11:55		4	3		1					X	x	x	x											
4	BAA-7-030922		WT	G	2		03/09/22	11:05		4	3		1					X	x	x	x						П					
5	DUP-BAA-030922		wт	G	353		03/09/22	10:10		4	3		1				1	X	x	x	x											
6																												T				
7											Π																П					
8																										1						
9											Π						1										Π					
10											Π																П					
11											Π																					
12																												T				
	ADDITIONAL COMMENTS		RELI	INQUI	SHED BY /	AFFILIATI	ON	DATI		י	TIME		,		ACC	EPTE	D BY		FILIA				DATE		TIN	1E	Γ		SAMP	LE COND	TIONS	
200.7 To	tal Metals*: B, Ca			Jaso	n R. Frank	s/SCS		3/10/2	2	1	5:00	X	I.	đ	10	7	7	b	-	-K	ha	3	10/2	21	501	0	15	1	V	Y	1 J	·
																	C	7		T		17	T	1				1	\neg	1	17	
																											1					
Pag						SAMPLE	R NAME A	ND SIGN	ATUR	RE														_			, c	, †	ہ _	alect N)		tact
Page 26 of							PRINT Name		_		on R!	Fra	nks	7-	1	1	,			Signe			_				Temn in "C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)		Samples Intact (Y/N)
f 27										(Ja	~~	14	1	1	-l	a	10	MM/D	D/YY):		3/1	0/22	2				<u>~</u>	30		Š

	DC# Revi	_Title: I sion: 3	ENV-FRI	M-LENE e Date: Client:	E-0001 Issued	Sample d by: Le	Contair nexa	ner Cour	nt										ł	Profile #		94	25	7,0	ł							
				Site:		fe	<u> </u>			SA	18	AI	<u> </u>	ĊĊ	R	-				Notes												
COC Line Item		NG9H	DG9H	DG9Q	VG9U	DG9U 2	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG3S	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	BP3C	BP3Z	WPDU	ZPLC	Other		
	Wf	<u> </u>																	1		9											
2			_															_	+		1		1		_							
3	-																		+												_	
5	V																		V		1		V								_	
6																																
7																																
8									<u> </u>																							
9					· · · · ·											-				_					-	_						
10 11				1					-				-	-								-			-	_						
12															-										1							
Container	Codes																												h			
								GI	ass											Pla	stic							Mi	SC.			

		Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	1L NAOH plastic	1	Wipe/Swab
DG9H	40mL HCI amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AGOU	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCI amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
/G9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
/G9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
3G1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Watrix
3G1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
3G3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
3G3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
NGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		*

BP4S

WPDU

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

20394853

ATTACHMENT 2-2 September 2022 Annual Assessment Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 19, 2022

Jake Humphrey Evergy, Inc. 818 S Kansas Avenue Topeka, KS 66612

RE: Project: JEC BASA/BAL CCR Pace Project No.: 60410000

Dear Jake Humphrey:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

REVISION_1 10/4/22

REVISION_2 10/14/22

REVISION_3 10/19/22 repackaged

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Samantha Kaney, Haley & Aldrich Melissa Michels, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich

CERTIFICATIONS

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60410000001	BAA-2-090822	Water	09/08/22 09:30	09/09/22 17:00
60410000002	BAA-3-090822	Water	09/08/22 13:30	09/09/22 17:00
60410000003	BAA-6-090822	Water	09/08/22 10:50	09/09/22 17:00
60410000004	BAA-7-090822	Water	09/08/22 10:00	09/09/22 17:00
60410000005	DUP-BAA-090822	Water	09/08/22 09:35	09/09/22 17:00

SAMPLE ANALYTE COUNT

Project: JEC BASA/BAL CCR

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60410000001	BAA-2-090822	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2, RKA	3	PASI-K
60410000002	BAA-3-090822	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	RKA	3	PASI-K
60410000003	BAA-6-090822	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2, RKA	3	PASI-K
60410000004	BAA-7-090822	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2, RKA	3	PASI-K
60410000005	DUP-BAA-090822	EPA 200.7	MRV	2	PASI-K
		SM 2540C	TML	1	PASI-K
		SM 4500-H+B	ET	1	PASI-K
		EPA 300.0	CRN2, RKA	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Date: October 19, 2022

Amended 10/14/22 to report data from review/reanalysis of fluoride due to intereferences on original run, new data has been reported. Amended 10/4/22 to include sulfate re-analysis data.

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:October 19, 2022

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 807547

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60410000001,60410030001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3212528)
 - Calcium
- MSD (Lab ID: 3212529)
 - Calcium

Additional Comments:

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:October 19, 2022

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Method: SM 4500-H+B

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:October 19, 2022

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- BAA-2-090822 (Lab ID: 60410000001)
- BAA-3-090822 (Lab ID: 6041000002)
- BAA-6-090822 (Lab ID: 6041000003)
- BAA-7-090822 (Lab ID: 60410000004)
- DUP-BAA-090822 (Lab ID: 6041000005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:October 19, 2022

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 807422

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60409918001,60409979002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3212225)
 - Fluoride

QC Batch: 808515

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60410000004,60410030004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3216066)
 - Chloride
- MSD (Lab ID: 3216067)
 - Chloride

QC Batch: 809890

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60410000002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3221176)
 - Sulfate

QC Batch: 811017

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60409975001,60409979004

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 3225334)
 - Fluoride
 - MS (Lab ID: 3225336)
 - Fluoride

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Method:	EPA 300.0
Description:	300.0 IC Anions 28 Days
Client:	Evergy Kansas Central, Inc.
Date:	October 19, 2022

Additional Comments:

Analyte Comments:

QC Batch: 808515

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 3216066)
 - Chloride
- MS (Lab ID: 3216068) • Sulfate
- MSD (Lab ID: 3216067)
 - Chloride

QC Batch: 809890

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 3221176)
- Sulfate
- MSD (Lab ID: 3221177)
 - Sulfate

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Sample: BAA-2-090822	Lab ID: 604	10000001	Collected: 09/08	/22 09:3	0 Received: 09)/09/22 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation M	ethod: E	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	1.1	mg/L	0.10	1	09/14/22 09:42	09/19/22 10:58	7440-42-8	
Calcium, Total Recoverable	170	mg/L	0.20	1	09/14/22 09:42	09/19/22 10:58	7440-70-2	M1
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	l0C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1170	mg/L	13.3	1		09/15/22 11:21		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/12/22 11:28		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	131	mg/L	20.0	20		09/15/22 17:56	16887-00-6	
Fluoride	0.25	mg/L	0.20	1		10/05/22 15:53	16984-48-8	
Sulfate	652	mg/L	50.0	50		09/14/22 17:41	14808-79-8	

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Sample: BAA-3-090822	Lab ID: 60	410000002	Collected:	09/08/2	2 13:30	Received: 09	/09/22 17:00 N	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	2		0.7 Preparati	ion Met	hod: EP	A 200.7			
	Pace Analytic	al Services -	Kansas City						
Boron, Total Recoverable	2.1	mg/L		0.10	1	09/14/22 09:42	09/19/22 11:04	7440-42-8	
Calcium, Total Recoverable	493	mg/L		0.20	1	09/14/22 09:42	09/19/22 11:04	7440-70-2	
2540C Total Dissolved Solids	Analytical Me	thod: SM 254	40C						
	Pace Analytic	al Services -	Kansas City						
Total Dissolved Solids	3610	mg/L		125	1		09/15/22 11:21		
4500H+ pH, Electrometric	Analytical Me	thod: SM 450	00-H+B						
	Pace Analytic	al Services -	Kansas City						
pH at 25 Degrees C	7.0	Std. Units		0.10	1		09/12/22 11:30		H6
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0						
-	Pace Analytic	al Services -	Kansas City						
Chloride	138	mg/L		10.0	10		09/14/22 18:39	16887-00-6	
Fluoride	<0.20	mg/L		0.20	1		09/14/22 17:55	16984-48-8	
Sulfate	1780	mg/L		200	200		09/28/22 10:35	14808-79-8	M1

ANALYTICAL RESULTS

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Sample: BAA-6-090822	Lab ID: 604	10000003	Collected: 09/0	8/22 10:50	0 Received: 09)/09/22 17:00 N	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation N	lethod: El	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Boron, Total Recoverable	5.8	mg/L	0.1	0 1	09/14/22 09:42	09/19/22 11:06	7440-42-8	
Calcium, Total Recoverable	477	mg/L	0.2	0 1	09/14/22 09:42	09/19/22 11:06	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	4530	mg/L	14	31		09/15/22 11:21		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.5	Std. Units	.1	0 1		09/12/22 11:28		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	306	mg/L	50.	0 50		09/14/22 19:38	16887-00-6	
Fluoride	<0.20	mg/L	0.2	0 1		10/05/22 16:31	16984-48-8	
Sulfate	2090	mg/L	50	0 500		09/15/22 18:21	14808-79-8	

ANALYTICAL RESULTS

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Sample: BAA-7-090822	Lab ID: 604	10000004	Collected: 09/08	/22 10:00	0 Received: 09	9/09/22 17:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation M	ethod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Boron, Total Recoverable	0.70	mg/L	0.10	1	09/14/22 09:42	09/19/22 11:14	7440-42-8	
Calcium, Total Recoverable	259	mg/L	0.20	1	09/14/22 09:42	09/19/22 11:14	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1970	mg/L	66.7	1		09/15/22 11:21		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.6	Std. Units	0.10	1		09/12/22 11:28		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytic	al Services -	Kansas City					
Chloride	137	mg/L	10.0	10		09/20/22 11:28	16887-00-6	M1
Fluoride	<0.20	mg/L	0.20	1		10/05/22 16:43	16984-48-8	
Sulfate	986	mg/L	100	100		09/21/22 14:59	14808-79-8	

ANALYTICAL RESULTS

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

Sample: DUP-BAA-090822	Lab ID: 604	10000005	Collected:	09/08/2	2 09:35	Received: 09)/09/22 17:00 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met		•	ion Met	hod: EP	A 200.7			
	Pace Analytic	al Services -	Kansas City						
Boron, Total Recoverable	1.0	mg/L		0.10	1	09/14/22 09:42	09/19/22 11:16	7440-42-8	
Calcium, Total Recoverable	166	mg/L		0.20	1	09/14/22 09:42	09/19/22 11:16	7440-70-2	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C						
	Pace Analytic	al Services -	Kansas City						
Total Dissolved Solids	1260	mg/L		40.0	1		09/15/22 11:21		
4500H+ pH, Electrometric	Analytical Met	hod: SM 45	00-H+B						
-	Pace Analytic	al Services -	Kansas City						
pH at 25 Degrees C	7.5	Std. Units	;	0.10	1		09/12/22 11:28	1	H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0						
-	Pace Analytic	al Services -	Kansas City						
Chloride	161	mg/L		10.0	10		09/20/22 13:22	16887-00-6	
Fluoride	<0.20	mg/L		0.20	1		10/05/22 16:56	6 16984-48-8	
Sulfate	626	mg/L		50.0	50		09/20/22 13:34	14808-79-8	

Project:	JEC BASA/BAL C	CR										
Pace Project No .:	60410000											
QC Batch:	807547		Analy	ysis Method	d: E	PA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descrij	otion: 2	00.7 Metal	s, Total					
			Labo	Laboratory: Pace Analytical Services - Kansas Cit								
Associated Lab Sam	nples: 60410000	0001, 6041000000	2, 6041000	00003, 604	10000004, 6	604100000	05					
METHOD BLANK:	3212526			Matrix: W	ater							
Associated Lab Sam	ples: 6041000	0001, 604100000	2, 6041000	00003, 604 ⁻	10000004, 6	604100000	05					
			Blai	nk l	Reporting							
Param	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Boron		mg/L		<0.10	0.10	09/19/22	2 10:56					
Calcium		mg/L		<0.20	0.20	09/19/22	2 10:56					
LABORATORY CON	ITROL SAMPLE:	3212527										
			Spike	LC	S	LCS	% F	Rec				
Param	neter	Units	Conc.	Res	ult	% Rec	Lim	nits (Qualifiers			
Boron		mg/L		1	0.93	93	3	85-115		_		
Calcium		mg/L	1	10	9.6	96	6	85-115				
MATRIX SPIKE & M	ATRIX SPIKE DUI	PLICATE: 3212	528		3212529							
			MS	MSD								
		60410000001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/l	_ 1.1	1	1	1.9	2.0	87	92	70-130	3	20	
Calcium	mg/l	_ 170	10	10	169	175	-6	6 45	70-130	3	20	M1
MATRIX SPIKE SAM	/PLE:	3212530										
			60410	030001	Spike	MS		MS	% Rec			
Param	neter	Units	Re	esult	Conc.	Result	C	% Rec	Limits		Quali	ifiers
				4 7				00	70	400		
Boron		mg/L		1.7	1		2.6	93	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC BASA/BAL C	CCR							
Pace Project No.:	60410000								
QC Batch:	807819		Analysis M	ethod:	SM 2540C				
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids			
			Laboratory	:	Pace Analytical	Services - Ka	nsas C	ity	
Associated Lab San	nples: 6041000	0001, 604100000	02, 60410000003,	60410000004,	60410000005				
METHOD BLANK:	3213723		Matrix	x: Water					
Associated Lab San	nples: 6041000	0001, 604100000	02, 60410000003,	60410000004,	60410000005				
			Blank	Reporting					
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers		
Total Dissolved Soli	ds	mg/L		5	.0 09/15/22 12	l:19		-	
LABORATORY COM	NTROL SAMPLE:	3213724							
			Spike	LCS	LCS	% Rec			
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qua	alifiers	
Total Dissolved Soli	ds	mg/L	1000	1040	104	80-120			
SAMPLE DUPLICA	TE: 3213725								
			60409826001	Dup		Max			
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Total Dissolved Soli	ds	mg/L	571	55	52	3	10		
SAMPLE DUPLICA	TE: 3213726								
			60410000001	Dup		Max			
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Total Dissolved Soli		mg/L	1170) 120		3	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Pace Project No.:	JEC BASA/BAL C 60410000	CR						
QC Batch:	807086		Analysis Meth	iod:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	ription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kar	isas City	
Associated Lab Sa	mples: 60410000	001, 6041000000	2, 6041000003, 60	410000004,	, 60410000005			
SAMPLE DUPLICA	ATE: 3210910							
			60409717001	Dup		Max		
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees (C	Std. Units	9.0	9	0.0	0	5 H6	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	Analysis M	ethod:	EF	PA 300.0		
	-		30	0.0 IC Anions	6	
	Laboratory	:	Pa	ace Analytical	Services - Kan	isas City
001, 6041000002	2, 60410000003			-		-
	Matri	x: Water				
001, 60410000002	2, 6041000003					
	Blank	•	ng			
				-		iers
mg/L			1.0			
-						
mg/L	<1.0	J	1.0	09/13/22 10):15	
	Matri	x: Water				
001, 6041000002	2, 6041000003					
	Blank	Reportir	ng			
Units	Result	Limit		Analyze	d Qualif	iers
mg/L	<1.(0	1.0	09/14/22 08	3:49	
mg/L	<0.20	C	0.20	09/14/22 08	3:49	
mg/L	<1.0	0	1.0	09/14/22 08	3:49	
	Matri	x: Water				
001,6041000002						
	Blank	Reportir	ng			
Units	Result	Limit		Analyze	d Qualif	iers
mg/L	<1.()	1.0	09/15/22 08	3:54	
mg/L	<0.20	C	0.20	09/15/22 08	3:54	
mg/L	<1.(0	1.0	09/15/22 08	3:54	
3212222						
	Spike	LCS		LCS	% Rec	
Units	Conc.	Result	ç	% Rec	Limits	Qualifie
mg/L	5	4.7		95	90-110	
mg/L	2.5	2.3		94	90-110	
mg/L	5	4.9		98	90-110	
3213162						
	Spike	LCS		LCS	% Rec	
Units	Conc	Result		% Rec	Limits	Qualifier
mg/L	5	4.9		97	90-110	
mg/L	2.5	2.5		99	90-110	
	001, 60410000002 Units mg/L mg/L 001, 60410000002 Units mg/L mg/L 001, 60410000002 Units mg/L mg/L 3212222 Units mg/L mg/L mg/L mg/L 3213162 Units mg/L	Analysis D Laboratory 001, 60410000002, 60410000003 Matri 001, 60410000002, 60410000003 Blank Units Result mg/L <1.0 Matri 001, 60410000002, 60410000003 Blank Units Result mg/L <1.0 Matri 001, 60410000002, 60410000003 Blank Units Result mg/L <1.0 Matri 001, 60410000002, 60410000003 Blank Units Result mg/L <1.0 Matri 001, 6041000002, 60410000003 Blank Units Result 1001, 6041000002, 60410000003 Blank Units Conce mg/L <1.0 3212222 Spike Units 5 mg/L 2.5 mg/L 5 Matri 001, 55 Matri	Matrix: Water Matrix: Water 001, 6041000002, 6041000003 Blank Reportin Units Result Limit mg/L <1.0 Matrix: Water 001, 6041000002, 6041000003 Blank Reportin Units Result Limit Units Result Limit Units Result Limit Mg/L <1.0	Analysis Description: 30 Laboratory: 92 001, 60410000002, 60410000003 Matrix: Water 001, 60410000002, 60410000003 Matrix: Water 001, 60410000002, 60410000003 Blank Result Reporting Limit Limit mg/L <1.0	Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical 001, 60410000002, 60410000003 Matrix: Water 001, 60410000002, 60410000003 Blank Reporting Units Result Limit Analyzed mg/L <1.0	Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Kar Date Analytical Services - Kar Matrix: Water O01, 60410000003 Matrix: Water O01, 60410000002, 60410000003 Blank Reporting Qualif Minits Result Limit Analyzed Qualif mg/L <1.0

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

LABORATORY CONTROL SAMPLE:	3214383					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Fluoride	mg/L	2.5	2.4	96	90-110	
Sulfate	mg/L	5	4.8	97	90-110	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3212	223		3212224							
			MS	MSD								
	6	0409918001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.6J	25	25	24.2	25.4	82	87	80-120	5	15	
Fluoride	mg/L	ND	12.5	12.5	11.6	12.0	93	96	80-120	3	15	
Sulfate	mg/L	27.5	25	25	49.2	51.2	87	95	80-120	4	15	

MATRIX SPIKE SAMPLE:	3212225						
		60409979002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	69.8	50	119	98	80-120	
Fluoride	mg/L	<0.20		1.2		I	M1
Sulfate	mg/L	376	250	655	112	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 80	8515		Δnal	/sis Method	4.	FF	PA 300.0						
	PA 300.0			/sis Netrio /sis Descrij			0.0 IC An	ions					
	A 000.0			ratory:	puon.				ices - Kansa	s Citv			
Associated Lab Samples	60410000	004, 6041000000					,						
METHOD BLANK: 321	6064			Matrix: W	ater								
Associated Lab Samples	60410000	004, 6041000000	5										
-			Blai		Reportin	g			o ""				
Parameter		Units	Res		Limit		Analy		Qualifier	S			
Chloride		mg/L		<1.0		1.0	09/20/22						
Sulfate		mg/L		<1.0		1.0	09/20/22	2 09:08					
METHOD BLANK: 321	8088			Matrix: W	ater								
Associated Lab Samples	60410000	004, 6041000000	5										
			Blai	nk l	Reportin	g							
Parameter		Units	Res	ult	Limit		Analy	/zed	Qualifier	S			
Chloride		mg/L		<1.0		1.0	09/21/22						
Sulfate		mg/L		<1.0		1.0	09/21/22	2 08:57					
LABORATORY CONTR	DL SAMPLE:	3216065											
			Spike	LC			LCS		Rec				
Parameter		Units	Conc.	Res	sult	Ċ	% Rec	Lir	nits	Qualifiers	_		
Chloride		mg/L		5	4.7		94		90-110				
Sulfate		mg/L		5	4.9		9	7	90-110				
LABORATORY CONTR	DL SAMPLE:	3218089											
			Spike	LC			LCS		Rec				
Parameter		Units	Conc.	Res	sult	Ċ	% Rec	Lir	nits	Qualifiers	_		
Chloride		mg/L		5	4.7		94		90-110				
Sulfate		mg/L		5	4.8		90	6	90-110				
MATRIX SPIKE & MATR	IX SPIKE DUP	LICATE: 32160)66		32160)67							
			MS	MSD									
	11.5	60410000004	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	<u> </u>
Parameter	Units		Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride Sulfate	mg/L	137	50	50	22 150		207 1510	179 104			9 0		E,M1
	mg/L	986	500	500						80-120	~ ~ ~	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC BASA/BAL CCR Pace Project No.: 60410000

MATRIX SPIKE SAMPLE:	3216068						
		60410030004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	248	250	484	94	80-120	
Sulfate	mg/L	1600	500	2070	93	80-120 E	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEC B	ASA/BAL CC	R										
Pace Project No.: 60410	000											
QC Batch: 8098	390		Analy	ysis Metho	d: I	EPA 300.0						
QC Batch Method: EPA	300.0		Anal	ysis Descri	ption:	300.0 IC An	ions					
			Labo	oratory:	I	Pace Analyt	ical Servic	es - Kansa	s City			
Associated Lab Samples:	604100000	02										
METHOD BLANK: 32211	74			Matrix: W	ater							
Associated Lab Samples:	604100000	02										
			Blai	nk	Reporting							
Parameter		Units	Res	sult	Limit	Analy	yzed	Qualifier	S			
Falameter												
Sulfate		mg/L		<1.0	1.	0 09/28/2	2 08:49					
		mg/L		<1.0	1.	0 09/28/2	2 08:49					
	SAMPLE:	mg/L 3221175		<1.0	1.	0 09/28/2	2 08:49					
Sulfate	SAMPLE:		Spike			0 09/28/2 LCS	2 08:49 % R	ec				
Sulfate	SAMPLE:		Spike Conc.	LC	S				Qualifiers			
Sulfate	SAMPLE:	3221175		LC	S	LCS	% R Limi		Qualifiers			
Sulfate LABORATORY CONTROL Parameter	SAMPLE:	3221175 Units		LC Res	S sult	LCS % Rec	% R Limi	its	Qualifiers	_		
Sulfate LABORATORY CONTROL Parameter		3221175 Units mg/L	Conc.	LC Res 5	S sult	LCS % Rec	% R Limi	its	Qualifiers	_		
Sulfate LABORATORY CONTROL Parameter Sulfate		3221175 Units mg/L .ICATE: 3221	Conc. 176 MS	LC Res 5 MSD	S sult 4.9 3221177	LCS % Rec 9	% R 	90-110		_		
Sulfate LABORATORY CONTROL Parameter Sulfate MATRIX SPIKE & MATRIX	SPIKE DUPL	3221175 Units mg/L ICATE: 3221 60410000002	Conc. 176 MS Spike	LC Res 5 MSD Spike	S Sult 4.9 3221177 MS	LCS % Rec 9: MSD	9 % R Limi 9 %	its 90-110 MSD	% Rec	_	Max	
Sulfate LABORATORY CONTROL Parameter Sulfate		3221175 Units mg/L .ICATE: 3221	Conc. 176 MS	LC Res 5 MSD	S sult 4.9 3221177	LCS % Rec 9	% R 	90-110		RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: J	EC BASA/BAL C	CR										
Pace Project No.: 6	0410000											
QC Batch:	811017		Anal	ysis Method	d:	EPA 300.0						
QC Batch Method:	EPA 300.0		Anal	ysis Descrip	otion:	300.0 IC An	ions					
			Labo	oratory:		Pace Analyt	ical Service	es - Kansas	s City			
Associated Lab Samp	les: 60410000	001, 604100000	3, 6041000	00004, 604 ⁻	10000005							
METHOD BLANK: 3	225332			Matrix: Wa	ater							
Associated Lab Samp	les: 60410000	001, 604100000	3, 6041000)0004, 604 [,]	10000005							
			Bla	nk l	Reporting							
Parame	ter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	5			
Fluoride		mg/L		<0.20	0.2	10/05/22	2 11:28					
LABORATORY CONT	ROL SAMPLE:	3225333										
			Spike	LC	S	LCS	% R	ес				
Parame	ter	Units	Conc.	Res	ult	% Rec	Limi	ts (Qualifiers			
Fluoride		mg/L	2	.5	2.5	100) (90-110		_		
MATRIX SPIKE & MA	TRIX SPIKE DUF	LICATE: 3225	334		3225335	5						
			MS	MSD								
		60409975001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	<0.20	2.5	2.5	2.1	2.2	77	81	80-120	5	15	M1
MATRIX SPIKE SAM		3225336										
	LL.	0220000	60409	979004	Spike	MS		MS	% Rec			
Parame	ter	Units		sult	Conc.	Result		Rec	Limits		Qual	ifiers
Fluoride		mg/L		<0.20	2.5		1.0	37	80	-120 M	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC BASA/BAL CCR

Pace Project No.: 60410000

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC BASA/BAL CCR Pace Project No.: 60410000

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60410000001	BAA-2-090822	EPA 200.7	807547	EPA 200.7	807606
60410000002	BAA-3-090822	EPA 200.7	807547	EPA 200.7	807606
60410000003	BAA-6-090822	EPA 200.7	807547	EPA 200.7	807606
60410000004	BAA-7-090822	EPA 200.7	807547	EPA 200.7	807606
60410000005	DUP-BAA-090822	EPA 200.7	807547	EPA 200.7	807606
60410000001	BAA-2-090822	SM 2540C	807819		
60410000002	BAA-3-090822	SM 2540C	807819		
60410000003	BAA-6-090822	SM 2540C	807819		
60410000004	BAA-7-090822	SM 2540C	807819		
60410000005	DUP-BAA-090822	SM 2540C	807819		
60410000001	BAA-2-090822	SM 4500-H+B	807086		
60410000002	BAA-3-090822	SM 4500-H+B	807086		
60410000003	BAA-6-090822	SM 4500-H+B	807086		
60410000004	BAA-7-090822	SM 4500-H+B	807086		
60410000005	DUP-BAA-090822	SM 4500-H+B	807086		
60410000001	BAA-2-090822	EPA 300.0	807422		
60410000001	BAA-2-090822	EPA 300.0	811017		
60410000002	BAA-3-090822	EPA 300.0	807422		
60410000002	BAA-3-090822	EPA 300.0	809890		
60410000003	BAA-6-090822	EPA 300.0	807422		
60410000003	BAA-6-090822	EPA 300.0	811017		
60410000004	BAA-7-090822	EPA 300.0	808515		
60410000004	BAA-7-090822	EPA 300.0	811017		
60410000005	DUP-BAA-090822	EPA 300.0	808515		
60410000005	DUP-BAA-090822	EPA 300.0	811017		

	0			_ W0#:60410000
	Pace	_	RM-LENE-0009_Samp	
	ANALYTICAL SERVICES	Revision: 2	Effective Date: 01/12/20	022 6041000 0
Client Nar	ne: Eve	erall Central		
Courier:	FedEx 🗆 UPS	01		Pace 🗆 Xroads 🗆 Client 🖄 Other 🗆
Tracking #:	8		Pace Shipping Label Use	d? Yes 🗆 No 🕱
Custody Sea	l on Cooler/Box	Present: Yes 🗆 No	□ Seals intact: Yes ¥	1 No 🗆
Packing Mate		e Wrap □ Bubble I	Č –	None 🛛 Other 🗆
Thermomete			ype of Ice Wet Blue No	Date and initials of person
Cooler Temp	erature (°C):	As-read <u>0,6</u> Corr	r. Factor Correc	ted OIG examining contents: BC 9/10
Temperature st	hould be above free	zing to 6°C		
Chain of Cust	tody present:		Yes No N/A	
Chain of Cust	tody relinquished	ř	¥Yes □No □N/A	
Samples arriv	/ed within holding	time:	₩Yes □No □N/A	
Short Hold T	ime analyses (<	72hr):	□Yes 🖄No □N/A	
Rush Turn A	round Time requ	uested: 7Dall	□Yes ⊠No □N/A	
Sufficient volu			DyYes □No □N/A	
Correct conta			Yes 🗆 No 🗆 N/A	
Pace containe			Yes □No □N/A	
Containers in			IZYes □No □N/A	
		1006 soils frozen in 48hr		
	ne received for di		□Yes ÈNo □N/A	
		te / time / ID / analyses	Øryes □No □N/A	
	tain multiple phas			
		vation in compliance?		List sample IDs, volumes, lot #'s of preservative and the
1°		ulfide, NaOH>10 Cyanide)		date/time added.
	OA, Micro, O&G, K r sample checks:	S TPH, OK-DRO)	LOT#: (10(000)	
	strip turns dark?	(Record only)	□Yes □No	
1		s blue/purple? (Preserve	e) 🛛 Yes 🗆 No	
Trip Blank pre	esent:		□Yes 💆 No □N/A	
Headspace in	ı VOA vials (>6m	m):	□Yes XNo □N/A	
Samples from	uSDA Regulate	d Area: State:	□Yes ⊉No □N/A	
)35A / TX1005 vials in th	e field? □Yes ⊠No □N/A	
211	ation/ Resolutio		COC to Client? Y / N	Field Data Required? Y / N
Person Conta	cted:		Date/Time:	
Comments/ R	esolution:			
Project Manad	ner Review:		Dat	۵.

Qualtrax Document ID: 30468

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Section A Section B Required Client Information: Required Project Information:											tion (ce Info		on:														P	age:	1	of	1	
Compan	EVERGY KANSAS CENTRAL, INC.	Report To:	Meli	issa l	Michels, S	Samanth	a Kaney,	Danielle	Obe			_	_	unts	Paya	able											-	_	_			
Address		Сору То:	Jare	ed Mo	orrison, Ja	ake Hum	phrey, La	ura Hines	3	Com	pany N	Name:	E١	VER	GY	(AN	SAS	CEI	NTR	AL, I		EGU	LAT	DRY	AGE	NC	1					_
	818 Kansas Ave, Topeka, KS 66612									Addr			_	SEC	_						-	_	PDES		_	_	_	WATF	ER 🗆	DRINKI		र
Email To	indicide and a second s	Purchase O)rder	No.:						Pace Refer	Quote ence:		_				-	-				Γ u	IST			CRA			Г	OTHER		
Phone:	785-575-8113 Fax	Project Nam	ne:	JEC	BASA/B	AL CCR					Project	t A	lice	Spill	er 9	13-5	63-1	403				Site L	.ocati	on	-			I				
Request	ted Due Date/TAT: 7 day	Project Num	nber:							Pace	Profile	#: g	657,	4				_					STAT	E:	_	KS	5	_				
										-							Т	F	Requ	uest	ed Ai	nalys	is Fil	tere	d (Y/	'N)						
	Section D Valid Matrix C		left)	(d					Γ								TNIA	1					П		T	Ť	П					
		CODE DW	es to	C=COMP)	-	COLL	ECTED		z		H		rese	rvativ	ves		1>	N	N	N	N		┝╌┝		_	-						
ITEM #	WASTE WATER PRODUCT SOIL/SOLID OIL OIL SAMPLE ID AIR	WT WW SL OL WP AR OT TS	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G=GRAB C=	COMPO		CO JPO: END/GF		SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI	NaOH	Va ₂ S ₂ O ₃	Other	Analysis Test	200.7 Total Metals*	H+B p	300: CI, F, SO4	540C TDS							Residual Chlorine (Y/N)		SCI LOX		
1	BAA-2-090822		wт		- Di (i E	TIVE	09/08/22	9:30	-	4	3		1		-		F	X	-	м х			+	+	+	+	+	H	Face	FIOJECI	NU./ Lab	I.D.
2	BAA-3-090822		wτ		- <u>-</u>	1.00	09/08/22	13:30	1	4	3		1			+		Îx	-		x	+	+	+	+	+	\vdash	H				
3	BAA-6-090822		wτ	G	2	1.61	09/08/22	10:50	1	4	3	1	1				1	X	-		x		Ħ					H				
4	BAA-7-090822		WT	G			09/08/22	10:00		4	3		1				1	X			x		H	1		1		H				
5	DUP-BAA-090822		WT	G	÷		09/08/22	9:35		4	3		1				1	X	x	x	x											
6																												Π				
7																												Π				
8																	1					1						Π				
9											Π						1											Π				
10								_			П																	Π				
11																												Π				
12																																
	ADDITIONAL COMMENTS		RELINQUISHED BY / AFFILIATION DATE													EPTE					1		DATE		TIN	ΛE			SAME	PLE CONDI	TIONS	
200.7 To	tal Metals*: B, Ca			Jaso	n R. Frank	s / SCS		9/9/2	2	1	7:00	Т	9	N	\sim	5		1p	5	6		9	19/2	2	170	20	D.	d.	Y	N	I V	1
																						1	-4	1				-	-		1	
																											1.1					
																															1	
Ра						SAMPL	R NAME A	ND SIGN	ATUF	RE												- <u>-</u>						5	5 -	ler	fact	
Page 28 of							PRINT Nam				on R.	. Fra	nks		A			1.5	ATE .	Ples								lemp in 'C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact	(N/)
of 30			SIGNATURE of SAMPLER: DATE Signed (MM/DD/YY):													9/	9/22			[}]	-	В –	See	Sarr								

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

	TCVR	лоп. о	LIECIV	Client:	Lasuer	- - 	60V	k	(anto AS)	05 1	Conf	tra.							F	Profile #	C	1 66	72	1							
							01		C.C.																						
				Site:		SE	٢	B	AS.	AIE	SAL	, CC	R							Notes											
							1							1	-	-															
COC Line Item	Matrix	NG9H	DG9H	DG9Q	VG9U	DG9U	DG9M	DG9B	BG1U	AG1H	AG1U	AG2U	AG35	AG4U	AG5U	JGFU	WGKU	WGDU	BP1U	BP2U	BP3U	BP1N	BP3N	BP3F	BP3S	BP3C	BP3Z	WPDU	ZPLC	Other	
1	w																		T		2		ī								
2	WT																		1		2		1								
3	LT																		1		2		1								
4	uT		- I											_					1		2		1								
5	LIT																		1		2		1								
6																															
7																															
8																														-	
9								_																							
10				4												E.										-					
11																															
12																						. 0	- F						_		

Container Codes

	and the second se	Glass			Plastic		Misc.
DG9B	40mL bisulfate clear vial	WGKU	8oz clear soil ja-	BP1C	1L NAOH plastic	11	Wipe/Swab
DG9H	40mL HCI amber voa vial	WGFU	4oz clear soil ja-	BP1N	1L HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate
DG9M	40mL MeOH clear vial	WG2U	2oz clear soil ja-	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Bag
DG9Q	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG0U	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	С	Air Cassettes
DG9T	40mL Na Thio amber vial	AG1H	1L HCI amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
DG9U	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	U	Summa Can
VG9H	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
VG9T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		
VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		Matrix
BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matila
BG1U	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	WT	Water
BG3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
BG3U	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OL	OIL
		AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
				BP4U	125mL unpreserved plastic	DW	Drinking Water
				BP4N	125mL HNO3 plastic		

BP4S

WPDU

125mL H2SO4 plastic

16oz unpresserved plstic

Work Order Number:

60410000

Pace

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf.

Section /	A	Section B Section C																																
Required	Client Information:	Required Project Information: Invoice Information:																			_			Pa	ige :		1	Of	1					
Company		Report To:			mphrey						ntion:																							
Address:	400 E Van Buren St	Copy To:				antha Kan	ey, Meliss	a Michels				Name	e:																					
	Phoenix, AZ 85004	Danielle O			ng						ress:														_				Regu	ulatory	y Ageno	;y		
	doberbroeckling@haleyaldrich.com	Purchase (e Quo																					_	_	
Phone:	507-251-2232 Fax: d Due Date:	Project Na	ne:	JE	C BASA/B	AL						ect M file #:					oiller@	2pace	elabs	.com	,								Sta		ocation			
Requeste	d Due Dale.	Project #:								Face	FIU	lie #.	9	657,	line	5						- 1 - 1	Analy			1.00			_	K	5			
	Wate Wast Produ	ng Water DW WT Water WW ct P	(see valid codes to left)	(G=GRAB C=COMP)		COLLI	ECTED		OLLECTION			F	Pres	serva	ative	es		st Y/N	Γ									+		(N/)				
	SAMPLE ID Soil/S	olid SL OL	see	(G=	ST	ART	E	ND	Ŭ E	ŝ								Test	Ca	Щ,	Sol) 00) eu				
ITEM #	One Character per box. Wipe (A-Z, 0-9 / , -) Air Other Other Sample Ids must be unique Tissu	WP AR OT	MATRIX CODE (TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2SO4	HNO3	HCI		Methanol	Other	Analyses	200.7 Metals B,Ca	300.0 Anions CI	Total Dissolved Solids (TDS)	Hd							Residual Chlorine (V/N)	Residual Union				
1																																		
2														╈	╎	T																		1
3																Τ																		1
4]
5																																		
6																																		
7																																		
8																																		
9			⊥											\downarrow		\perp						$ \downarrow$	\downarrow					\downarrow						
10																						\square	$ \downarrow$											
11			╇	_								_		+		+						$ \rightarrow$	\downarrow	+	\downarrow	-		\downarrow						
12		_				<u> </u>						-											_					_					_	
	ADDITIONAL COMMENTS		RELI	NQUIS	SHED BY /	AFFILIATIO	DN	DATE			TIME	-			A	CCEP	TED B	Y / AF	FILIA	TION			+	DA	TE	-	TIME	-		S/	AMPLE C		s	
									_			+											+			+		+						
												+											╈			+		╡						
																																		1
							RNAME			RE																			U	uo				
						PRI	NT Name	of SAMPI	LER:																				, in C	ved		yd y	les	
			SIGNATURE of SAMPLER:																DAT	E Sig	ned:							TEMP in	Receiv	lce (Y/N)	Custo Sealec Coole	Samples Intact Ø//N)	ge 30 of 30	