www.haleyaldrich.com

2021 – 2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

BOTTOM ASH POND JEFFREY ENERGY CENTER ST. MARYS, KANSAS

by Haley & Aldrich, Inc. Cleveland, Ohio

for Evergy Kansas Central, Inc. Topeka, Kansas

Table of Contents Page ii List of Tables ii **List of Figures List of Attachments** ii 1. Introduction 1 40 CFR § 257.90(E)(6) SUMMARY 1 1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program 1.1.1 1 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program 1.1.2 1 2 1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases 1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels 2 40 CFR § 257.90(e)(6)(v) – Selection of Remedy 3 1.1.5 1.1.6 40 CFR § 257.90(e)(6)(vi) - Remedial Activities 3 2. 4 40 CFR § 257.90 Applicability 2.1 40 CFR § 257.90(A) 4 2.2 40 CFR § 257.90(E) - SUMMARY 4 Status of the Groundwater Monitoring Program 4 2.2.1 **Key Actions Completed** 4 2.2.2 2.2.3 5 **Problems Encountered** 5 2.2.4 Actions to Resolve Problems 5 2.2.5 Project Key Activities for Upcoming Year 5 2.3 40 CFR § 257.90(E) - INFORMATION 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network 2.3.1 5 6 2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes 6 2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events 2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative 6 2.3.5 40 CFR § 257.90(e)(5) – Other Requirements 6

Revision No.	Date	Notes

List of Tables

Table No.	Title
I	Summary of Analytical Results – Assessment Monitoring
II	Assessment Groundwater Monitoring – Detected Appendix IV GWPS – March and September 2021 Sampling Event

List of Figures

Figure No.	Title
1	Bottom Ash Pond (Inactive) Location Map
2	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map – September 14, 2021
3	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map – December 6, 2021
4	Bottom Ash Pond (Inactive) Groundwater Potentiometric Elevation Contour Map – March 9, 2022

List of Attachments

Attachment 1 – Statistical Analyses

- 1-1 March 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation
- 1-2 September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

Attachment 2 – Laboratory Analytical Reports

- 2-1 September 2021 Semi-Annual Sampling Event Laboratory Analytical Report
- 2-2 December 2021 Annual Assessment Sampling Event Laboratory Analytical Report
- 2-3 March 2022 Semi-Annual Sampling Event Laboratory Analytical Report

2021 – 2022 Annual Groundwater Monitoring and Corrective Action Report

This Annual Groundwater Monitoring and Corrective Action Report documents the groundwater monitoring program for the Jeffrey Energy Center (JEC) inactive Bottom Ash Pond (BAP) consistent with applicable sections of Code of Federal Regulations Title 40 §§ 257.90 through 257.98, and describes activities conducted from July 2021 through June 2022 and documents compliance with the U.S. Environmental Protection Agency Coal Combustion Residual Rule. I certify that the 2021 – 2022 Annual Groundwater Monitoring and Corrective Action Report for the JEC BAP is, to the best of my knowledge, accurate and complete.

Signed:

Professional Geologist

Print Name: Kansas License No.: Title: Company:

Mark Nicholls Professional Geologist No. 881 Technical Expert 2 Haley & Aldrich, Inc.

1. Introduction

This 2021 – 2022 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) addresses the inactive Bottom Ash Pond (BAP) at the Jeffrey Energy Center (JEC), operated by Evergy Kansas Central, Inc. (Evergy). This Annual Report was developed in accordance with the U.S. Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (Rule) effective October 19, 2015, including subsequent revisions, specifically Code of Federal Regulations Title 40 (40 CFR), subsection 257.90(e). The Annual Report documents the groundwater monitoring system for the BAP consistent with applicable sections of § 257.90 through § 257.98, describes activities conducted in the prior calendar year (July 2021 through June 2022), and documents compliance with the Rule. The specific requirements for the Annual Report listed in § 257.90(e) of the Rule are provided in Sections 1 and 2 of this Annual Report and are in **bold italic font**, followed by a narrative describing how each Rule requirement has been met.

Evergy prepared and placed in the facility's operating record a notification of intent to initiate closure of the BAP by December 17, 2015. Due to the USEPA Extension of Compliance Deadlines for Certain Inactive Surface Impoundments, Response to Partial Vacatur effective October 4, 2016, in accordance with the requirement under § 257.100(e)(1), the alternative reporting timeframes specified in § 257.100(e)(2) through (6) are applicable for the BAP.

1.1 40 CFR § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 40 CFR § 257.90(e)(6)(i) – Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period (July 1, 2021), the BAP was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.2 40 CFR § 257.90(e)(6)(ii) – Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period (June 30, 2022), the BAP was operating under an assessment monitoring program in compliance with 40 CFR § 257.95.

1.1.3 40 CFR § 257.90(e)(6)(iii) – Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e):

1.1.3.1 40 CFR § 257.90(e)(6)(iii)(a)

Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and

• The BAP is operating under an assessment monitoring program; therefore, no statistical evaluations were completed on Appendix III constituents from July 2021 through June 2022.

1.1.3.2 40 CFR § 257.90(e)(6)(iii)(b)

Provide the date when the assessment monitoring program was initiated for the CCR unit.

An assessment monitoring program was initiated on January 13, 2020 for the BAP with a notification establishing assessment monitoring provided February 12, 2020 to meet the requirements of 40 CFR § 257.95. The BAP remained in assessment monitoring from July 2021 through June 2022.

1.1.4 40 CFR § 257.90(e)(6)(iv) – Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:

1.1.4.1 40 CFR § 257.90(e)(6)(iv)(A) – Statistically Significant Level Constituents

Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;

No statistically significant levels were identified above the groundwater protection standard for those constituents listed in Appendix IV to this part from July 2021 through June 2022 for the BAP. The statistical evaluation reports for semi-annual assessment monitoring sampling events from March 2021 and September 2021 were completed in July 2021 and January 2021, respectively, and are included in Attachment 1.

1.1.4.2 40 CFR § 257.90(e)(6)(iv)(B) – Initiation of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was initiated for the CCR unit;

No assessment of corrective measures was required to be initiated from July 2021 through June 2022 for this unit. The BAP remained in assessment monitoring during this annual period.

1.1.4.3 40 CFR § 257.90(e)(6)(iv)(C) – Assessment of Corrective Measures Public Meeting

Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

An assessment of corrective measures was not required for the BAP from July 2021 through June 2022; therefore, a public meeting was not held.

1.1.4.4 40 CFR § 257.90(e)(6)(iv)(D) – Completion of the Assessment of Corrective Measures

Provide the date when the assessment of corrective measures was completed for the CCR unit.

No assessment of corrective measures was required to be initiated from July 2021 through June 2022 for this unit. The BAP remained in assessment monitoring during this annual period.

1.1.5 40 CFR § 257.90(e)(6)(v) – Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

The BAP remains in assessment monitoring; no remedy was required to be selected.

1.1.6 40 CFR § 257.90(e)(6)(vi) – Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

No remedial activities were required from July 2021 through June 2022.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under §§ 257.90 through 257.99, except as provided in paragraph (g) of this section.

Evergy has installed and certified a groundwater monitoring system at the JEC BAP. The BAP is subject to the groundwater monitoring and corrective action requirements described under 40 CFR §§ 257.90 through 257.98. This document addresses the requirement for the Owner/Operator to prepare an Annual Report per § 257.90(e).

2.2 40 CFR § 257.90(e) – SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report describes monitoring completed and actions taken for the groundwater monitoring system at the JEC BAP as required by the Rule. Groundwater sampling and analysis was conducted in accordance with the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 and § 257.95 is also provided in this report. This Annual Report documents the applicable groundwater-related activities completed in the calendar year from July 2021 through June 2022.

2.2.1 Status of the Groundwater Monitoring Program

The BAP remained in the assessment monitoring program through June 2022.

2.2.2 Key Actions Completed

The 2020 – 2021 Annual Groundwater Monitoring and Corrective Action Report was completed in July 2021 for the time period July 2020 through June 2021. Statistical evaluation was completed in July 2021 on analytical data from the March 2021 assessment monitoring sampling event.

A semi-annual assessment monitoring sampling event was completed in September 2021 for detected Appendix IV constituents identified from the December 2020 annual assessment monitoring sampling event. Statistical evaluation was completed in January 2022 on analytical data from the September 2021 semi-annual assessment monitoring sampling event.

An annual assessment monitoring sampling event was completed on December 6, 2021 to identify detected Appendix IV constituents for subsequent semi-annual sampling events planned for March 2022 and September 2022. Semi-annual assessment monitoring sampling was completed in March 2022 for detected Appendix IV constituents identified during the December 2021 annual monitoring event. Statistical evaluation of the results from the March 2022 semi-annual assessment monitoring sampling event are due to be completed in July 2022 and will be reported in the next annual report.

2.2.3 Problems Encountered

No noteworthy problems (i.e., problems could include damaged wells, issues with sample collection or lack of sampling, or problems with analytical analysis) were encountered at the BAP from July 2021 through June 2022.

2.2.4 Actions to Resolve Problems

No problems were encountered at the BAP from July 2021 through June 2022; therefore, no actions to resolve the problems were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities planned for July 2022 through June 2023 include the 2022 – 2023 Annual Groundwater Monitoring and Corrective Action Report, statistical analysis of assessment monitoring analytical data collected in March 2022, semi-annual assessment monitoring and subsequent statistical evaluations, and annual assessment monitoring.

2.3 40 CFR § 257.90(e) – INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1) – CCR Unit and Monitoring Well Network

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the JEC BAP is included in this report as Figure 1.

2.3.2 40 CFR § 257.90(e)(2) – Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned from July 2021 to June 2022.

2.3.3 40 CFR § 257.90(e)(3) – Summary of Sampling Events

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b), three independent assessment monitoring samples from each background and downgradient monitoring well were collected from July 2021 through June 2022. A summary including sample names, dates of sample collection, field parameters, and monitoring data obtained for the groundwater monitoring program for the BAP is presented in Table I of this report, with corresponding laboratory analytical reports provided in Attachment 2. Groundwater potentiometric elevation contour maps, along with calculated groundwater flow rates and directions, associated with each groundwater monitoring sampling event in July 2021 through June 2022 are provided in Figures 2 through 4.

2.3.4 40 CFR § 257.90(e)(4) – Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The assessment monitoring program was initiated on January 13, 2020 with a notification establishing assessment monitoring provided on February 12, 2020 to meet the requirements of 40 CFR § 257.95. The BAP remained in assessment monitoring from July 2021 through June 2022.

2.3.5 40 CFR § 257.90(e)(5) – Other Requirements

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with §§ 257.90 through 257.95 of the Rule. It is understood that there are supplemental references in §§ 257.90 through 257.98 that must be placed in the Annual Report. The following requirements include relevant and required information in the Annual Report for activities completed from July 2021 through June 2022.

2.3.5.1 40 CFR § 257.94(d)(3) – Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater detection monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.2 40 CFR § 257.94(e)(2) – Detection Monitoring Alternate Source Demonstration

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under this section. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit may continue for a sequence under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or approval from EPA where EPA is the permitting authority.

This unit is in assessment monitoring; therefore, no detection monitoring alternative source demonstration or certification is applicable.

2.3.5.3 40 CFR § 257.95(c)(3) – Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An alternative groundwater assessment monitoring sampling and analysis frequency has not been established for this CCR unit; therefore, no demonstration or certification is applicable.

2.3.5.4 40 CFR § 257.95(d)(3) – Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

An assessment monitoring program has been implemented at the CCR unit since January 13, 2020. Three rounds of assessment monitoring sampling were completed from July 2021 through June 2022. Analytical results for both downgradient and upgradient wells are provided in Table I. The background concentrations (upper tolerance limits) and groundwater protection standards established for detected Appendix IV constituents for the BAP are included in Table II. The background concentrations and groundwater protection standards provided in Table II were utilized for the statistical evaluations completed from July 2021 through June 2022 for the March 2021 and September 2021 semi-annual assessment monitoring sampling events.

2.3.5.5 40 CFR § 257.95(g)(3)(ii) – Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from EPA where EPA is the permitting State Director or approval from EPA is the permitting attraction to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting attraction to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment monitoring alternative source demonstration or certification was required from July 2021 through June 2022. The BAP remained in assessment monitoring during this annual period.

2.3.5.6 40 CFR § 257.96(a) – Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer or approval from

the Participating State Director or approval from EPA where EPA is the permitting authority attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

No assessment of corrective measures was required to be initiated from July 2021 through June 2022; therefore, no demonstration or certification is applicable for this unit.

TABLES

SUMMARY OF ANALYTICAL RESULTS - ASSESSMENT MONITORING

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER BOTTOM ASH POND (INACTIVE) ST. MARYS, KANSAS

TABLE I

Location		Upgradient							Downg	radient						
Location		IBA-4			IBA-1				IBA-2				IBA	\-3		
Measure Point (TOC)		1201.86			1171.65				1171.66		1164.95					
Sample Name	IBA-4-091421	IBA-4-120621	IBA-4-030922	IBA-1-091421	IBA-1-120621	IBA-1-030922	IBA-2-091421	IBA-2-120621	JEC-IBA-DUP-120621	IBA-2-030922	DUP-IBA-030922	IBA-3-091421	JEC-IBA-DUP-091421	IBA-3-120621	IBA-3-030922	
Sample Date	9/14/2021	12/6/2021	3/9/2022	9/14/2021	12/6/2021	3/9/2022	9/14/2021	12/6/2021	12/6/2021	3/9/2022	3/9/2022	9/14/2021	9/14/2021	12/6/2021	3/9/2022	
Final Lab Report Date	10/12/2021	2/1/2022	3/25/2022	10/12/2021	2/1/2022	3/25/2022	10/12/2021	2/1/2022	2/1/2022	3/25/2022	3/25/2022	10/12/2021	10/12/2021	2/1/2022	3/25/2022	
Final Lab Report Revision Date	N/A	2/17/2022	3/29/2022	N/A	2/17/2022	3/29/2022	N/A	2/17/2022	2/17/2022	3/29/2022	3/29/2022	N/A	N/A	2/17/2022	3/29/2022	
Final Radiation Lab Report Date	N/A	2/2/2022	N/A	N/A	2/2/2022	N/A	N/A	2/2/2022	2/2/2022	N/A	N/A	N/A	N/A	2/2/2022	N/A	
Final Radiation Lab Report Revision Date	Radiation Lab Report Revision Date N/A N/A N/A N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Lab Data Reviewed and Accepted	12/10/2021	2/21/2022	4/27/2022	12/10/2021	2/21/2022	4/27/2022	12/10/2021	2/21/2022	2/21/2022	4/27/2022	4/27/2022	12/10/2021	12/10/2021	2/21/2022	4/27/2022	
Depth to Water (ft btoc)	54.75	56.00	55.91	28.60	28.98	28.27	29.85	30.00	-	29.88	-	32.79	-	33.90	33.18	
Temperature (Deg C)	17.76	13.34	11.14	17.56	12.21	11.55	17.37	12.08	-	12.75	-	16.90	-	12.74	12.00	
Conductivity (μS/cm)	511	984	965	2260	2110	2120	1731	1790	-	2100	-	2140	-	1990	2390	
Turbidity (NTU)	4.3	31.4	9.6	0.0	30.6	8.6	0.0	14.0	-	19.6	-	0.0	-	0.0	16.2	
Boron, Total (mg/L)	0.24	-	0.23	0.37	-	0.38	0.20	-	-	0.21	0.21	0.30	0.29	-	0.28	
Calcium, Total (mg/L)	112	-	107	298	-	318	216	-	-	232	234	270	274	-	269	
Chloride (mg/L)	18.5	-	18.2	122	-	128	114	-	-	110	106	122	121	-	115	
Fluoride (mg/L)	0.55	-	0.64	0.31	-	0.23	0.32	-	-	0.30	0.31	0.29	0.29	-	0.22	
Sulfate (mg/L)	163	-	159	766	-	950	527	-	-	577	537	672	671	-	709	
pH (su)	7.4	-	7.3	7.1	-	7.2	7.4	-	-	7.3	7.3	7.4	7.3	-	7.3	
TDS (mg/L)	634	-	623	1680	-	1460	1340	-	-	1240	1510	1570	1590	-	1410	
Antimony, Total (mg/L)	-	<0.0010	-	-	<0.0010	-	-	<0.0010	<0.0010	-	-	-	-	<0.0010	i -	
Arsenic (mg/L)	-	<0.0010	-	-	<0.0010	-	-	<0.0010	<0.0010	-	-	-	-	<0.0010	i -	
Barium, Total (mg/L)	0.022	0.020	0.021	0.030	0.033	0.033	0.026	0.027	0.029	0.027	0.028	0.019	0.019	0.019	0.019	
Beryllium, Total (mg/L)	-	<0.0010	-	-	<0.0010	-	-	<0.0010	<0.0010	-	-	-	-	<0.0010	-	
Cadmium, Total (mg/L)	-	<0.00050	-	-	<0.00050	-	-	<0.00050	<0.00050	-	-	-	-	<0.00050		
Chromium, Total (mg/L)	-	<0.0050	-	-	<0.0050	-	-	<0.0050	<0.0050	-	-	-	-	<0.0050	<u> </u>	
Cobalt, Total (mg/L)	< 0.0010	<0.0010	< 0.0010	0.0018	0.0018	0.0015	0.0010	<0.0010	<0.0010	< 0.0010	< 0.0010	0.0015	0.0015	0.0014	0.0012	
Lead, Total (mg/L)	-	<0.010	-	-	<0.010	-	-	<0.010	<0.010	-	-	-	-	<0.010	<u> </u>	
Lithium, Total (mg/L)	0.034	0.038	0.033	0.014	0.019	< 0.030	0.020	0.023	0.027	< 0.030	< 0.030	0.021	0.018	0.023	< 0.030	
Molybdenum, Total (mg/L)	0.0018	0.0018	0.0018	0.0081	0.0083	0.0075	0.0023	0.0022	0.0023	0.0020	0.0020	0.0022	0.0022	0.0022	0.0020	
Selenium, Total (mg/L)	-	<0.0010	-	-	<0.0010	-	-	<0.0010	<0.0010	-	-	-	-	<0.0010	-	
Thallium, Total (mg/L)	-	<0.0010	-	-	<0.0010	-	-	<0.0010	<0.0010	-	-	-	-	<0.0010		
Mercury, Total (mg/L)	-	<0.00020	-	-	<0.00020	-	-	<0.00020	<0.00020	-	-	-	-	<0.00020	-	
Fluoride (mg/L)	0.55	0.49	0.64	0.31	<0.20	0.23	0.32	<0.20	0.26	0.30	0.31	0.29	0.29	<0.20	0.22	
Radium-226 & 228 Combined (pCi/L)	-	1.87 ± 1.30 (2.09)	-	-	1.66 ± 1.19 (2.00)	-	-	0.749 ± 0.860 (1.70)	1.22 ± 0.898 (1.50)	-	-	-	-	0.000 ± 0.855 (1.99)	-	

Notes & Abbreviations:

Radiological results are presented as activity plus or minus uncertainty with minimum detectable concentration (MDC).

Bold value: Detection above laboratory reporting limit or MDC.

µS/cm = micro Siemens per centimeter

Deg C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

N/A = Not Applicable

NTU = Nephelometric Turbidity Unit

pCi/L = picoCuries per liter

su = standard unit

TDS = total dissolved solids

TOC = top of casing

TABLE IIASSESSMENT GROUNDWATER MONITORING - DETECTED APPENDIX IV GWPSMARCH AND SEPTEMBER 2021 SAMPLING EVENTSJEFFREY ENERGY CENTERBOTTOM ASH POND (INACTIVE)

Well Number	Background Value ¹	GWPS										
	CCR Appendix-IV Barium, Total (mg	/L)										
MW-IBA-4 (upgradient)	0.0221	NA										
MW-IBA-1		2										
MW-IBA-2		2										
MW-IBA-3		2										
CCR Appendix-IV Cobalt, Total (mg/L)												
MW-IBA-4 (upgradient)	0.001	NA										
MW-IBA-1		0.006										
MW-IBA-2		0.006										
MW-IBA-3		0.006										
	CCR Appendix-IV Fluoride, Total (mg	;/L)										
MW-IBA-4 (upgradient)	0.632 ²	NA										
MW-IBA-1		4.0										
MW-IBA-2		4.0										
MW-IBA-3		4.0										
	CCR Appendix-IV Lithium, Total (mg	/L)										
MW-IBA-4 (upgradient)	0.0402	NA										
MW-IBA-1		0.040										
MW-IBA-2		0.040										
MW-IBA-3		0.040										
	CCR Appendix-IV Molybdenum, Total (mg/L)										
MW-IBA-4 (upgradient)	0.0024	NA										
MW-IBA-1		0.100										
MW-IBA-2		0.100										
MW-IBA-3		0.100										

Notes and Abbreviations:

¹ Interwell background value based on background data collected through November 2020.

² Interwell background value based on background data collected through September 2020.

CCR = Coal Combustion Residuals

GWPS = *Groundwater Protection Standard*

mg/L = milligrams per Liter

NA = Not Applicable

LEGEND

 \bullet **#**

MONITORING WELL PIEZOMETER OBSERVATION ONLY BOTTOM ASH POND (INACTIVE)

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE. 2. AERIAL IMAGERY SOURCE: ESRI, SEPTEMBER 3, 2019.

330 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARY'S, KANSAS

BOTTOM ASH POND (INACTIVE) LOCATION MAP

>evergy

LEGEND	
IBA-3 1132.75	WELL NAME AND GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL), SEPTEMBER 2021
•	MONITORING WELL
	PIEZOMETER OBSERVATION ONLY
	ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 2-FT INTERVAL (AMSL), DASHED WHERE INFERRED
-	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	BOTTOM ASH POND

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 14 SEPTEMBER 2021.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETIRIC ELEVATIONS MEASURED 14 SEPTEMBER 2021 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED APRIL 2016.

4. AERIAL IMAGERY SOURCE: ESRI, 3 SEPTEMBER 2019

300 SCALE IN FEET

BOTTOM ASH POND (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP SEPTEMBER 14, 2021

600

>> evergy

)
IBA-3 1132.75	WELL NAME AND GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL), DECEMBER 2021
•	MONITORING WELL
	PIEZOMETER OBSERVATION ONLY
	ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 2-FT INTERVAL (AMSL), DASHED WHERE INFERRED
-	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	BOTTOM ASH POND

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 06 DECEMBER 2021.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETIRIC ELEVATIONS MEASURED 06 DECEMBER 2021 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED APRIL 2016.

4. AERIAL IMAGERY SOURCE: ESRI, 3 SEPTEMBER 2019

300 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARY'S, KANSAS

> BOTTOM ASH POND (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP DECEMBER 06, 2021

600

>>evergy

)
IBA-3 1132.75	WELL NAME AND GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (AMSL), MARCH 2022
•	MONITORING WELL
	PIEZOMETER OBSERVATION ONLY
	ESTIMATED GROUNDWATER POTENTIOMETRIC OBSERVATION ELEVATION CONTOUR, 2-FT INTERVAL (AMSL), DASHED WHERE INFERRED
-	GROUNDWATER FLOW DIRECTION AND APPROXIMATE GROUNDWATER FLOW RATE (FEET/YEAR)
	BOTTOM ASH POND

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. GROUNDWATER POTENTIOMETRIC ELEVATIONS WERE MEASURED 09 MARCH 2022.

3. THE GROUNDWATER FLOW RATE WAS APPROXIMATED USING THE HYDRAULIC GRADIENT CALCULATED FROM GROUNDWATER POTENTIOMETIRIC ELEVATIONS MEASURED 09 MARCH 2022 AND THE CONDUCTIVITY VALUES AND EFFECTIVE POROSITY VALUES OBTAINED FROM SLUG TESTS COMPLETED APRIL 2016.

4. AERIAL IMAGERY SOURCE: ESRI, 3 SEPTEMBER 2019

300 600 SCALE IN FEET

EVERGY KANSAS CENTRAL, INC. JEFFREY ENERGY CENTER ST. MARY'S, KANSAS

BOTTOM ASH POND (INACTIVE) GROUNDWATER POTENTIOMETRIC ELEVATION CONTOUR MAP MARCH 09, 2022

ATTACHMENT 1 Statistical Analyses

Attachment 1-1

March 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

July 31, 2022 File No. 129778-045

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	March 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation Completed July 15, 2021 Jeffrey Energy Center Bottom Ash Pond (inactive)

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **March 2021** semi-annual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Pond (BAP; inactive). This semi-annual assessment monitoring groundwater sampling event was completed on **March 4, 2021**, with laboratory results received and validated on **April 16, 2021**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]), was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method, as determined applicable for this sampling event, was used to evaluate potential SSLs above

Evergy Kansas Central, Inc. July 31, 2022 Page 2

background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if an SSL existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine the SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The parametric TL methods were used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **March 2021** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if an SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location IBA-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the

Evergy Kansas Central, Inc. July 31, 2022 Page 3

document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,* March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **November 2020** for all constituents except fluoride, which was updated through **September 2020**.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **March 2021** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. **Based on this statistical evaluation on groundwater sampling data collected in March 2021, no SSLs above GWPS occurred at the JEC BAP (inactive).**

Enclosure:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE ISUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATIONMARCH 2021 SAMPLING EVENTJEFFREY ENERGY CENTERBOTTOM ASH POND (INACTIVE)

										MCL Co	mparison					Inter-well Analysis				Groundwater Protection Standard			
Location Id	Frequency of Detection	Percent Non-Detects	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	March 2021 Concentration (mg/L)	Detect?	Upper Tolerance Limit (UTL) (mg/L) ¹	SSI (exceedance above Background at Individual Well)	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL) mg/L	Exceedance above GWPS at Individual Well	SSL	
										•	CCR Appendix-IV: Barium, Total (mg/L)												
MW-IBA-4	13/13	0%	0.022	0.00000241	0.001553	0.08138	2	mg/L	Ν	0	0	No	No	Stable	Normal	0.019	Y	0.0221		2			
MW-IBA-1	13/13	0%	0.039	0.00001269	0.003563	0.10870	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.030	Y		Y		N	No	
MW-IBA-2	13/13	0%	0.036	0.00000659	0.002567	0.08385	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.028	Y		Y		N	No	
MW-IBA-3	13/13	0%	0.021	0.00000153	0.001235	0.06581	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.019	Y		Ν		N	No	
CCR Appendix-IV: Cobalt, Total (mg/L)																							
MW-IBA-4	0/13	100%	-	0	0	0	0.006	mg/L	N	0	0	NA	NA	NA	NA	<0.0010	Ν	0.001		0.006			
MW-IBA-1	13/13	0%	0.0027	8.436E-08	0.0002904	0.1293	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0020	Y		Y		N	No	
MW-IBA-2	12/13	8%	0.0013	6.41E-09	0.00008006	0.0718	0.006	mg/L	N	0	0	Yes	No	Stable	Normal	0.0011	Y		Y		N	No	
MW-IBA-3	13/13	0%	0.0021	8.808E-08	0.0002968	0.1635	0.006	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.0017	Y		Y		N	No	
											CCR	Appendix-IV: F	luoride (mg/L)										
MW-IBA-4	14/14	0%	0.64	0.003503	0.05919	0.1105	4.0	mg/L	Ν	0	0	No	No	Stable	Normal	0.52	Y	0.632 ²		4.0			
MW-IBA-1	10/14	29%	0.63	0.014790	0.12160	0.3960	4.0	mg/L	Ν	0	0	Yes	No	Stable	Normal	<0.20	Ν		N		N	No	
MW-IBA-2	10/14	29%	0.40	0.005948	0.07712	0.2720	4.0	mg/L	Ν	0	0	No	No	Stable	Normal	<0.20	Ν		Ν		N	No	
MW-IBA-3	10/14	29%	0.37	0.004392	0.06627	0.2461	4.0	mg/L	Ν	0	0	No	No	Stable	Normal	<0.20	Ν		Ν		N	No	
											CCR Ap	pendix-IV: Lith	ium, Total (mg/	′L)									
MW-IBA-4	13/13	0%	0.040	0.000007641	0.002764	0.0793	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.035	Y	0.0402		0.040			
MW-IBA-1	13/13	0%	0.026	0.000012530	0.003539	0.2054	0.040	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.015	Y		N		N	No	
MW-IBA-2	13/13	0%	0.028	0.000010810	0.003288	0.1577	0.040	mg/L	Ν	0	0	Yes	No	Stable	Normal	0.019	Y		Ν		N	No	
MW-IBA-3	13/13	0%	0.028	0.000009077	0.003013	0.1440	0.040	mg/L	Ν	0	0	Yes	No	Stable	Normal	0.021	Y		N		N	No	
											CCR Appe	ndix-IV: Molyb	denum, Total (n	ng/L)									
MW-IBA-4	13/13	0%	0.0024	2.641E-08	0.0001625	0.08485	0.100	mg/L	Ν	0	0	Yes	No	Stable	Non-parametric	0.0018	Y	0.0024		0.100			
MW-IBA-1	13/13	0%	0.0081	1.058E-07	0.0003252	0.04450	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0073	Y		Y		N	No	
MW-IBA-2	13/13	0%	0.0024	7.692E-09	0.00008771	0.03905	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0023	Y		N		N	No	
MW-IBA-3	13/13	0%	0.0025	1.756E-08	0.0001325	0.06197	0.100	mg/L	Ν	0	0	Yes	No	Stable	Non-parametric	0.0022	Y		N		N	No	

Notes and Abbreviations:

¹ Based on background data collected from 03/13/2018 through 11/30/2020, unless otherwise noted.

² Based on background data collected from 03/13/2018 through 09/14/2020.

* Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per liter

NA = not analyzed

RSL = regional screening level

SSI = statistically significant increase

SSL = statistically significant level

Attachment 1-2

September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

TECHNICAL MEMORANDUM

July 31, 2022 File No. 129778-035

TO:	Evergy Kansas Central, Inc. Jared Morrison – Director, Water and Waste Programs
FROM:	Haley & Aldrich, Inc. Steven F. Putrich, P.E., Principal Consultant – Engineering Principal Mark Nicholls, P.G., Senior Associate – Senior Hydrogeologist
SUBJECT:	September 2021 Semi-Annual Groundwater Assessment Monitoring Data Statistical Evaluation Completed January 18, 2022 Jeffrey Energy Center Bottom Ash Pond (inactive)

Pursuant to Code of Federal Regulations Title 40 (40 CFR) §§ 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the **September 2021** semi-annual assessment monitoring groundwater sampling event for the Jeffrey Energy Center (JEC) Bottom Ash Pond (BAP; inactive). This semi-annual assessment monitoring groundwater sampling event was completed on **September 14, 2021**, with laboratory results received and validated on **December 10, 2021**.

The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents have been detected in downgradient wells at concentrations that represent a statistically significant increase (SSI) above background values and if one or more of the constituents have been detected at statistically significant levels (SSL) above the groundwater protection standard (GWPS) consistent with the requirements of the Rule. GWPSs for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level, levels provided in 40 CFR § 257.95(h)(2) (from regional screening levels), or background concentrations.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR § 257.93(f)(1-4)). The statistical method used for these evaluations (tolerance limit [TL]) was certified by Haley & Aldrich, Inc. on July 14, 2020. The TL method,

Evergy Kansas Central, Inc. July 31, 2022 Page 2

as determined applicable for this sampling event, was used to evaluate potential SSLs above background. Background levels for each constituent listed in Appendix IV were computed as upper tolerance limits (UTLs), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling event from each compliance well was compared to the corresponding background UTL to determine if a SSL existed.

STATISTICAL EVALUATION

An interwell evaluation was used to determine the SSIs. Interwell evaluation compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or normalized data via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using a background dataset for all Appendix IV constituents that were detected in the annual assessment monitoring sample event using parametric TLs. If an Appendix IV constituent concentration from the **September 2021** sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent will be used to evaluate if an SSI is present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample location IBA-4 were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UTL calculation. Per the document, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance,*

Evergy Kansas Central, Inc. July 31, 2022 Page 3

March 2009, background concentrations were updated based on statistical evaluation of analytical results collected through **November 2020** for all constituents except fluoride, which was updated through **September 2020**.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the **September 2021** semi-annual assessment monitoring event were compared to their respective background UTLs and GWPSs (Table I). A sample concentration greater than the background UTL is considered to represent an SSI. A sample concentration greater than the GWPS is considered to represent an SSL. The results of the groundwater assessment monitoring statistical evaluation are provided in Table I. Based on this statistical evaluation on groundwater sampling data collected in September 2021, no SSLs above GWPS occurred at the JEC BAP (inactive).

Enclosure:

Table I – Summary of Semi-Annual Assessment Groundwater Monitoring Statistical Evaluation

TABLE

TABLE ISUMMARY OF SEMI-ANNUAL ASSESSMENT GROUNDWATER MONITORING STATISTICAL EVALUATIONSEPTEMBER 2021 SAMPLING EVENTJEFFREY ENERGY CENTERBOTTOM ASH POND (INACTIVE)

										MCL Co	omparison						Inte	r-well Analysis		Groundwater Protection Standard		
Location Id	Frequency of Detection	Percent Non-Detects	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL or CFR § 257.95(h)(2)*	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	Outlier Removed	Trend	Distribution Well	September 2021 Concentration (mg/L)	Detect?	Upper Tolerance Limit (mg/L) ¹	SSI (exceedance above Background at Individual Well)	GWPS (Higher of MCL/ 40 CFR § 257.95(h)(2) or UTL) mg/L	Exceedance above GWPS at Individual Well	SSL
		•		•		•	•		•	•	CCR Appendix-	IV: Barium, T	otal (mg/L)		*	•				·	•	
MW-IBA-4	14/14	0%	0.022	0.00002835	0.001684	0.08731	2	mg/L	N	0	0	No	No	Stable	Normal	0.022	Y	0.0221		2		
MW-IBA-1	14/14	0%	0.039	0.000012260	0.003502	0.10750	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.030	Y		Y		N	No
MW-IBA-2	14/14	0%	0.036	0.00007604	0.002758	0.09105	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.026	Y		Y		N	No
MW-IBA-3	14/14	0%	0.021	0.000001412	0.001188	0.06326	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.019	Y		N		N	No
	CCR Appendix-IV: Cobalt, Total (mg/L)																					
MW-IBA-4	0/14	100%	-	0	0	0	0.006	mg/L	N	0	0	NA	NA	NA	NA	<0.0010	Ν	0.001		0.006		
MW-IBA-1	14/14	0%	0.0027	9.209E-08	0.0003035	0.1370	0.006	mg/L	N	0	0	No	No	Stable	Normal	0.0018	Y		Y		N	No
MW-IBA-2	13/14	7%	0.0013	6.868E-09	0.0000829	0.0749	0.006	mg/L	N	0	0	Yes	No	Stable	Normal	0.0010	Y		N		N	No
MW-IBA-3	14/14	0%	0.0021	8.841E-08	0.0002973	0.1658	0.006	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.0015	Y		Y		N	No
									-	-	CCR Append	ix-IV: Fluorid	e (mg/L)			_						
MW-IBA-4	15/15	0%	0.64	0.003267	0.05715	0.1065	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.55	Y	0.632 ²		4.0		
MW-IBA-1	11/15	27%	0.63	0.013740	0.11720	0.3813	4.0	mg/L	N	0	0	Yes	No	Stable	Normal	0.31	Y		N		N	No
MW-IBA-2	11/15	27%	0.40	0.005611	0.07491	0.2619	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.32	Y		N		N	No
MW-IBA-3	11/15	27%	0.37	0.004107	0.06408	0.2368	4.0	mg/L	N	0	0	No	No	Stable	Normal	0.29	Y		N		N	No
		•				-					CCR Appendix-	IV: Lithium, T	otal (mg/L)									
MW-IBA-4	14/14	0%	0.040	0.000007104	0.002665	0.0766	0.040	mg/L	N	0	0	No	No	Stable	Normal	0.034	Y	0.0402		0.040		
MW-IBA-1	14/14	0%	0.026	0.000012310	0.003508	0.2064	0.040	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.014	Y		N		N	No
MW-IBA-2	14/14	0%	0.028	0.000010030	0.003167	0.1523	0.040	mg/L	N	0	0	Yes	No	Stable	Normal	0.020	Y		N		N	No
MW-IBA-3	14/14	0%	0.028	0.00008379	0.002895	0.1383	0.040	mg/L	N	0	0	Yes	No	Stable	Normal	0.021	Y		N		N	No
		•				-				0	CR Appendix-IV:	Molybdenun	n, Total (mg/L)								
MW-IBA-4	14/14	0%	0.0024	2.533E-08	0.0001592	0.08345	0.100	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.0018	Y	0.0024		0.100		
MW-IBA-1	14/14	0%	0.0081	1.425E-07	0.0003775	0.05125	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0081	Y		Y		N	No
MW-IBA-2	14/14	0%	0.0024	7.308E-09	0.0000855	0.03799	0.100	mg/L	N	0	0	No	No	Stable	Normal	0.0023	Y		N		N	No
MW-IBA-3	14/14	0%	0.0025	1.648E-08	0.0001284	0.05991	0.100	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.0022	Y		N		N	No

Notes and Abbreviations:

¹ Based on background data collected from 03/13/2018 through 11/30/2020, unless otherwise noted.

² Based on background data collected from 03/13/2018 through 09/14/2020.

* Values obtained from U.S. Environmental Protection Agency Federal CCR Rule Title 40 Code of Federal Regulations (CFR) § 257.95(h)(2).

CCR = coal combustion residuals

GWPS = Groundwater Protection Standard

MCL = maximum contaminant level

mg/L = milligrams per liter

NA = not analyzed

RSL = regional screening level

SSI = statistically significant increase

SSL = statistically significant level

ATTACHMENT 2 Laboratory Analytical Reports

Attachment 2-1

September 2021 Semi-Annual Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 12, 2021

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC Inactive Bottom Ash CCR Pace Project No.: 60380625

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on September 17, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

AA

Hank Kapka hank.kapka@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc. JD Schlegel, Evergy, Inc. Jacob Will, Evergy Kansas Central, Jeffrey Energy Center

CERTIFICATIONS

Project: JEC Inactive Bottom Ash CCR Pace Project No.: 60380625

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60380625001	IBA-1-091421	Water	09/14/21 14:40	09/17/21 00:00
60380625002	IBA-2-091421	Water	09/14/21 14:50	09/17/21 00:00
60380625003	IBA-3-091421	Water	09/14/21 15:30	09/17/21 00:00
60380625004	IBA-4-091421	Water	09/14/21 16:50	09/17/21 00:00
60380625005	JEC-IBA-DUP-091421	Water	09/14/21 15:30	09/17/21 00:00

SAMPLE ANALYTE COUNT

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60380625001		EPA 200.7	MRV	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BLA	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	ALH, LDB	3	PASI-K
60380625002	IBA-2-091421	EPA 200.7	MRV	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BLA	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
60380625003	IBA-3-091421	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BLA	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	ALH, LDB	3	PASI-K
60380625004	IBA-4-091421	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BLA	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
60380625005	JEC-IBA-DUP-091421	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	BLA	1	PASI-K
		SM 4500-H+B	KB	1	PASI-K
		EPA 300.0	ALH, LDB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: JEC Inactive Bottom Ash CCR 60380625

Pace Project No.:

October 12, 2021 Date:

REV. 1

Report revised to include Ba, B, and Ca by 200.7

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:October 12, 2021

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 745486

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60380536001,60380625003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2986093)
 - Calcium

Additional Comments:

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method: EPA 6010

Description:6010 MET ICPClient:Evergy Kansas Central, Inc.Date:October 12, 2021

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:October 12, 2021

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:October 12, 2021

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method:	SM 4500-H+B
Description:	4500H+ pH, Electrometric
Client:	Evergy Kansas Central, Inc.
Date:	October 12, 2021

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- IBA-1-091421 (Lab ID: 60380625001)
- IBA-2-091421 (Lab ID: 60380625002)
- IBA-3-091421 (Lab ID: 60380625003)
- IBA-4-091421 (Lab ID: 60380625004)
- JEC-IBA-DUP-091421 (Lab ID: 60380625005)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:October 12, 2021

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 744818

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60380084003,60380536003

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 2983692)
 - Chloride
 - Fluoride
 - MSD (Lab ID: 2983693)
 - Chloride
 - Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Sample: IBA-1-091421	Lab ID: 603	80625001	Collected: 09/14/2	1 14:40	Received: 09	/17/21 00:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	nod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.030	mg/L	0.0050	1	09/24/21 16:00	10/07/21 13:54	7440-39-3	
Boron, Total Recoverable	0.37	mg/L	0.10	1	09/24/21 16:00	10/07/21 13:54	7440-42-8	
Calcium, Total Recoverable	298	mg/L	0.20	1	09/24/21 16:00	10/07/21 13:54	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	od: EP	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.014	mg/L	0.010	1	09/24/21 16:00	09/28/21 00:23	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	nod: El	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0018	mg/L	0.0010	1	09/24/21 16:00	09/28/21 16:56	7440-48-4	
Molybdenum, Total Recoverable	0.0081	mg/L	0.0010	1	09/24/21 16:00	09/28/21 16:56	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1680	mg/L	13.3	1		09/21/21 13:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
-	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.1	Std. Units	0.10	1		09/20/21 12:03		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	122	mg/L	20.0	20		09/23/21 02:00	16887-00-6	
Fluoride	0.31	mg/L	0.20	1		09/23/21 01:41	16984-48-8	
Sulfate	766	mg/L	100	100		09/23/21 18:23	14808-79-8	

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Sample: IBA-2-091421	Lab ID: 603	80625002	Collected: 09/14/2	1 14:50	0 Received: 09	/17/21 00:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.026	mg/L	0.0050	1	09/24/21 16:00	10/07/21 13:56	7440-39-3	
Boron, Total Recoverable	0.20	mg/L	0.10	1	09/24/21 16:00	10/07/21 13:56	7440-42-8	
Calcium, Total Recoverable	216	mg/L	0.20	1	09/24/21 16:00	10/07/21 13:56	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EP	PA 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.020	mg/L	0.010	1	09/24/21 16:00	09/28/21 00:25	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0010	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:03	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:03	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	OC					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1340	mg/L	13.3	1		09/21/21 13:51		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		09/20/21 12:06		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Kansas City					
Chloride	114	mg/L	20.0	20		09/23/21 03:13	16887-00-6	
Fluoride	0.32	mg/L	0.20	1		09/23/21 02:55	16984-48-8	
Sulfate	527	mg/L	100	100		09/27/21 13:49	14808-79-8	

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Sample: IBA-3-091421	Lab ID: 603	80625003	Collected: 09/14/2	1 15:30	Received: 09	/17/21 00:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Meth	nod: EF	PA 200.7			
	Pace Analytica	al Services -	Kansas City					
Barium, Total Recoverable	0.019	mg/L	0.0050	1	09/24/21 16:00	09/28/21 12:55	7440-39-3	
Boron, Total Recoverable	0.30	mg/L	0.10	1	09/24/21 16:00	09/28/21 12:55	7440-42-8	
Calcium, Total Recoverable	270	mg/L	0.20	1	09/24/21 16:00	09/28/21 12:55	7440-70-2	M1
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EP	A 3010			
	Pace Analytica	al Services -	Kansas City					
Lithium, Total Recoverable	0.021	mg/L	0.010	1	09/24/21 16:00	09/28/21 00:28	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Meth	nod: EF	PA 200.8			
	Pace Analytica	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:06	7440-48-4	
Molybdenum, Total Recoverable	0.0022	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:06	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytica	al Services -	Kansas City					
Total Dissolved Solids	1570	mg/L	20.0	1		09/21/21 13:52		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	00-H+B					
-	Pace Analytica	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		09/20/21 12:11		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytica	al Services -	Kansas City					
Chloride	122	mg/L	20.0	20		09/23/21 03:50	16887-00-6	
Fluoride	0.29	mg/L	0.20	1		09/23/21 03:32	16984-48-8	
Sulfate	672	mg/L	100	100		09/23/21 18:47	14808-79-8	

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Sample: IBA-4-091421	Lab ID: 603	80625004	Collected: 09/14/2	1 16:5	0 Received: 09	/17/21 00:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	nod: E	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.022	mg/L	0.0050	1	09/24/21 16:00	09/28/21 13:00	7440-39-3	
Boron, Total Recoverable	0.24	mg/L	0.10	1	09/24/21 16:00	09/28/21 13:00	7440-42-8	
Calcium, Total Recoverable	112	mg/L	0.20	1	09/24/21 16:00	09/28/21 13:00	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.034	mg/L	0.010	1	09/24/21 16:00	09/28/21 13:00	7439-93-2	
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	nod: E	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:10	7440-48-4	
Molybdenum, Total Recoverable	0.0018	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:10	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	OC					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	634	mg/L	10.0	1		09/21/21 13:52		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450	0-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.4	Std. Units	0.10	1		09/20/21 13:21		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	18.5	mg/L	1.0	1		09/23/21 04:08	16887-00-6	
Fluoride	0.55	mg/L	0.20	1		09/23/21 04:08	16984-48-8	
Sulfate	163	mg/L	20.0	20		09/23/21 04:27	14808-79-8	

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Sample: JEC-IBA-DUP-091421	Lab ID: 603	380625005	Collected: 09/14/2	1 15:30	0 Received: 09	0/17/21 00:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	thod: EPA 20	0.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.019	mg/L	0.0050	1	09/24/21 16:00	09/28/21 13:02	7440-39-3	
Boron, Total Recoverable	0.29	mg/L	0.10	1	09/24/21 16:00	09/28/21 13:02	7440-42-8	
Calcium, Total Recoverable	274	mg/L	0.20	1	09/24/21 16:00	09/28/21 13:02	7440-70-2	
6010 MET ICP	Analytical Met	thod: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.018	mg/L	0.010	1	09/24/21 16:00	09/28/21 13:02	7439-93-2	
200.8 MET ICPMS	Analytical Met	thod: EPA 20	0.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	0.0015	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:16	7440-48-4	
Molybdenum, Total Recoverable	0.0022	mg/L	0.0010	1	09/24/21 16:00	09/28/21 17:16	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	thod: SM 254	10C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1590	mg/L	13.3	1		09/21/21 13:52		
4500H+ pH, Electrometric	Analytical Met	thod: SM 450)0-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		09/20/21 12:13		H6
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	121	mg/L	20.0	20		09/23/21 05:03	16887-00-6	
Fluoride	0.29	mg/L	0.20	1		09/23/21 04:45	16984-48-8	
Sulfate	671	mg/L	100	100		09/23/21 18:59	14808-79-8	

Project:	JEC Inactive Botte	om Ash CCR										
Pace Project No .:	60380625											
QC Batch:	745486		Analy	ysis Method	d: E	PA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descrip	otion: 2	00.7 Metals	s, Total					
			Labo	oratory:	Р	ace Analyti	cal Servic	es - Kansa	s City			
Associated Lab Sar	nples: 60380625	001, 6038062500	02, 6038062	25003, 6038	30625004, 6	038062500)5					
METHOD BLANK:	2986089			Matrix: Wa	ater							
Associated Lab Sar	nples: 60380625	001, 6038062500	2, 6038062	25003, 6038	30625004, 6	038062500)5					
			Blai	nk l	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Barium		mg/L	<	0.0050	0.0050	09/27/21	23:47					
Boron		mg/L		<0.10	0.10	09/27/21	23:47					
Calcium		mg/L		<0.20	0.20	09/27/21	23:47					
LABORATORY COI	NTROL SAMPLE:	2986090										
			Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Res	ult	% Rec	Limi	its (Qualifiers	_		
Barium		mg/L		1	0.95	95	i :	85-115				
Boron		mg/L		1	0.90	90) ;	85-115				
Calcium		mg/L	1	10	9.6	96	i	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 2986	091		2986092							
			MS	MSD								
		60380536001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/l	. 0.15	1	1	1.1	1.1	98	99	70-130	1	20	
Boron	mg/l	. 0.27	1	1	1.2	1.2	93	88	70-130	4	20	
Calcium	mg/l	- 147	10	10	159	158	119	114	70-130	0	20	
MATRIX SPIKE SAI	MPLE:	2986093										
			60380	625003	Spike	MS		MS	% Rec			
Paran	neter	Units	Re	sult	Conc.	Result	%	6 Rec	Limits		Qualif	iers
Barium		mg/L		0.019	1	0	.96	95	70	-130		
Boron		mg/L		0.30	1		1.3	96	70	-130		
Calcium		mg/L		270	10	2	261	131	70	-130 M	11	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC Inactive Botto	m Ash CCR										
Pace Project No.:	60380625											
QC Batch:	745483		Analy	sis Metho	d: E	PA 200.8						
QC Batch Method:	EPA 200.8		Analy	/sis Descri	ption: 2	200.8 MET						
			Labo	ratory:	F	Pace Analyti	ical Servic	es - Kansa	s City			
Associated Lab Sar	mples: 60380625	001, 6038062500	2, 6038062	25003, 603	80625004, 6	6038062500)5					
METHOD BLANK:	2986071			Matrix: W	ater							
Associated Lab Sar	mples: 60380625	001, 6038062500	2, 6038062	25003, 603	80625004, 6	6038062500	05					
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Cobalt		mg/L	<	0.0010	0.0010	09/28/21	16:43					
Molybdenum		mg/L	<	0.0010	0.0010	09/28/21	16:43					
LABORATORY CO	NTROL SAMPLE:	2986072	0.11									
Doror	notor	Linita	Spike	LC	S	LCS	% R	lec ito	Qualifiara			
Fala						% Rec			Juaimers	_		
Cobalt		mg/L	0.0)4	0.041	103	3	85-115				
Molybdenum		mg/L	0.0)4	0.042	104	ł	85-115				
MATRIX SPIKE & M	ATRIX SPIKE DUP	PLICATE: 2986	073 MS	MSD	2986074							
		60380536002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	mg/L	<0.0010	0.04	0.04	0.038	0.039	96		70-130	2	20	
Molybdenum	mg/L	<0.0010	0.04	0.04	0.043	0.044	107	109	70-130	2	20	
MATRIX SPIKE SA	MPLE:	2986075										
_			60380	625004	Spike	MS	-	MS	% Rec	:	.	
Parar	neter	Units	Re	sult	Conc.	Result	%	% Rec	Limits		Qualif	iers
Cobalt		mg/L		<0.0010	0.04	0.	038	95	70	-130		
Molybdenum		mg/L		0.0018	0.04	0.	045	109	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC Inactive Botton	n Ash CCR										
Pace Project No.:	60380625											
QC Batch:	745480		Ana	ysis Metl	hod:	EPA 6010						
QC Batch Method:	EPA 3010		Ana	ysis Des	cription:	6010 MET						
			Labo	oratory:		Pace Analy	tical Servic	es - Kansa	s City			
Associated Lab Sar	nples: 603806250	01, 6038062500	2, 603806	25003, 6	0380625004	l, 603806250	05					
METHOD BLANK:	2986054			Matrix:	Water							
Associated Lab Sar	nples: 603806250	01, 6038062500	2, 603806	25003, 6	0380625004	, 603806250	05					
			Bla	ink	Reporting							
Paran	neter	Units	Res	sult	Limit	Anal	yzed	Qualifier	S			
Lithium		mg/L		<0.010	0.0	09/27/2	1 23:47					
LABORATORY CO	NTROL SAMPLE:	2986055										
			Spike		LCS	LCS	% F	Rec				
Paran	neter	Units	Conc.	. F	Result	% Rec	Lim	its	Qualifiers	_		
Lithium		mg/L		1	0.95	9	5	80-120				
MATRIX SPIKE & M	ATRIX SPIKE DUP	_ICATE: 2986	056		298605	57						
			MS	MSD								
Dava		60380536001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	0
Parameter	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Lithium	mg/L	0.024	1		1 0.98	B 1.0	96	99	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC Inactive Botte	om Ash CCR									
Pace Project No .:	60380625										
QC Batch:	744455		Analysis Me	ethod:	SI	VI 2540C					
QC Batch Method:	SM 2540C		Analysis De	escription:	25	540C Total Di	ssolve	ed Solids			
			Laboratory:		Pa	ace Analytica	l Serv	ices - Kar	nsas (City	
Associated Lab San	nples: 60380625	5001, 6038062500	02, 60380625003,	60380625004	1, 60	0380625005					
METHOD BLANK:	2982535		Matrix	: Water							
Associated Lab San	nples: 60380625	5001, 6038062500	02, 60380625003,	60380625004	1, 60	0380625005					
			Blank	Reporting	ļ						
Paran	neter	Units	Result	Limit		Analyze	d	Quali	fiers		
Total Dissolved Soli	ds	mg/L			5.0	09/21/21 1	3:50			_	
		-									
LABORATORY CON	NTROL SAMPLE:	2982536									
			Spike	LCS		LCS	%	Rec			
Paran	neter	Units	Conc.	Result	G	% Rec	Lir	nits	Qu	alifiers	
Total Dissolved Solid	ds	mg/L	1000	968		97		80-120			
	F 0000507										
SAMPLE DUPLICA	IE: 2982537		60280460002	Dun				Мох			
Paran	neter	Units	Result	Result		RPD		RPD		Qualifiers	
Total Dissolved Soli		mg/l	1040	10)70		3		10		
		g/ =					C				
SAMPLE DUPLICA	TE: 2982538										
			60380625002	Dup				Max			
Paran	neter	Units	Result	Result		RPD		RPD		Qualifiers	
Total Dissolved Soli	ds	mg/L	1340	13	340		0		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC Inactive Bottor	m Ash CCR						
Pace Project No.:	60380625							
QC Batch:	744237		Analysis Meth	od:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	ription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kan	sas City	
Associated Lab San	nples: 603806250	001, 60380625002	2, 60380625003, 60	380625005				
SAMPLE DUPLICA	ΓE: 2981913							
			60379873001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees C		Std. Units	7.8	8.	0	2	5 H6	_

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC Inactive Bottom	Ash CCR						
Pace Project No.:	60380625							
QC Batch:	744326		Analysis Meth	iod:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	cription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kan	sas City	
Associated Lab San	nples: 603806250)4						
SAMPLE DUPLICA	TE: 2982165							
			60380628001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees C		Std. Units	7.4	7	7.3	1	5 H6	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

4818		Analysis N	lethod:	EF	PA 300.0			
PA 300.0		Analysis D	escription:	30	0.0 IC Anion	S		
		Laborator	/:	Pa	ace Analytical	Services - Kar	isas City	
3: 60380625	001, 60380625002	2, 60380625003	, 603806250	04, 60	380625005			
3681		Matr	ix: Water					
s: 60380625	001, 60380625002	2, 60380625003	, 603806250	04, 60	380625005			
	11-16	Blank	Reporti	ng	A			
	Units	_ Result			Analyze		lers	
	mg/L	<1	.0	1.0	09/22/21 08	3:22		
	mg/L	<0.2	:0	0.20	09/22/21 08	3:22		
	mg/L	<1.	0	1.0	09/22/21 08	3:22		
5966		Matr	ix: Water					
s: 60380625	001, 60380625002	2, 60380625003	, 603806250	04, 60	380625005			
		Blank	Reporti	ng				
	Units	Result	Limit		Analyze	d Qualit	fiers	
	mg/L	<1	.0	1.0	09/23/21 08	3:02		
	mg/L	<0.2	0	0.20	09/23/21 08	3:02		
	mg/L	<1	0	1.0	09/23/21 08	3:02		
8391		Matr	ix: Water					
s: 60380625	001, 60380625002	2, 60380625003	, 603806250	04, 60	380625005			
		Blank	Reporti	ng				
	Units	Result	Limit		Analyze	d Qualif	iers	
	mg/L	<1	.0	1.0	09/27/21 09	9:57		
	mg/L	<0.2	:0	0.20	09/27/21 09	9:57		
	mg/L	<1.	.0	1.0	09/27/21 09	9:57		
 DL SAMPLE:	2983682							
		Spike	LCS		LCS	% Rec		
	Units	Conc.	Result	0	% Rec	Limits	Qualifiers	
	mg/L		5.2		104	90-110		
	mg/L	2.5	2.5		98	90-110		
	mg/L	5	5.3		107	90-110		
OL SAMPLE:	2985967	Caller			1.00	0/ D		
	Units	Spike Conc.	Result	Q	LUS % Rec	% Rec Limits	Qualifiers	
	mg/l			,			244.11010	
	mg/L	5 2 E	4.8		90 106	90-110		
	mg/L	2.5	2.0		001	90-110		
	ng/L	Э	4.9		90	90-110		
4 F = 3 = r - 3 = r 3 = r	44818 PA 300.0 S: 60380625 33681 S: 60380625 r 35966 S: 60380625 r 38391 S: 60380625 r OL SAMPLE: r OL SAMPLE: r	44818 PA 300.0 \$: 60380625001, 60380625002 33681 \$: 60380625001, 60380625002 r Units mg/L mg/L 35966 s: 60380625001, 60380625002 r Units mg/L mg/L <	44818 Analysis N PA 300.0 Analysis D Laboratory Eaboratory 3681 Matr 3681 Matr s: 60380625001, 60380625002, 60380625003 Blank Result mg/L <1.	44818 Analysis Method: PA 300.0 Analysis Description: Laboratory: Si 60380625001, 60380625002, 60380625003, 60380625003 80380625003, 60380625003 33681 Matrix: Water s: 60380625001, 60380625002, 60380625003, 6038062500 Blank Reportin r Units Result Limit mg/L <1.0	44818 Analysis Method: EF PA 300.0 Analysis Description: 30 Laboratory: Pa s: 60380625001, 60380625002, 60380625003, 60380625004, 60 33681 Matrix: Water s: 60380625001, 60380625002, 60380625003, 60380625004, 60 Blank Reporting r Units Result Limit mg/L <1.0	Hat18 Analysis Method: EPA 300.0 PA 300.0 Analysis Description: 300.0 IC Aniom: Laboratory: Pace Analytical s: 60380625001, 60380625002, 60380625003, 60380625004, 60380625005 Blank Reporting s: 60380625001, 60380625002, 60380625003, 60380625004, 60380625005 Blank Reporting r Units Result Limit Analyze mg/L <1.0	Haff 8 Analysis Method: EPA 300.0 PA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pa ace Analytical Services - Kar s: 60380625001, 60380625002, 60380625003, 60380625004, 60380625005 J3681 Matrix: Water s: 60380625001, 60380625002, 60380625003, 60380625004, 60380625005 Blank Reporting r Units Result Limit Analyzed Qualit mg/L <1.0	H4818 Analysis Method: EPA 300.0 PA 300.0 Analysis Description: 300.0 C Anions Laboratory: Pace Analytical Services - Kansas City 36080625001, 60380625002, 60380625003, 60380625004, 60380625005 Blank Reporting r Units Result Limit Analyzed Qualifiers mg/L <1.0

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

LABORATORY CONTROL SAMPLE	E: 2988392										
		Spike	LC	S	LCS	%	Rec				
Parameter	Units	Conc	. Res	sult	% Rec	Lir	mits	Qualifiers			
Chloride	mg/L		5	4.7	9	5	90-110				
Fluoride	mg/L	2	2.5	2.6	10	3	90-110				
Sulfate	mg/L		5	4.8	9	7	90-110				
MATRIX SPIKE SAMPLE:	2983685										
		6038	0536003	Spike	MS		MS	% Re	С		
Parameter	Units	R	esult	Conc.	Result		% Rec	Limits	S	Qualif	liers
Chloride	mg/L		21.2	25		45.3	96	8	0-120		
Fluoride	mg/L		0.25	2.5		2.6	96	8	0-120		
Sulfate	mg/L		418	250		675	103	80	0-120		
MATRIX SPIKE & MATRIX SPIKE [DUPLICATE: 2983	3692		2983693	3						
		MS	MSD								
	60380084003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter II	Inite Result	Conc	Conc	Result	Result	% Rec	% Rec	Limits	RbD	RPD	Oual

Parameter	Units	60380084003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	22200	25000	25000	61800	54600	158	130	80-120	12	15	M1
Fluoride	mg/L	ND	1250	1250	1920	1700	154	136	80-120	12	15	M1
Sulfate	mg/L	3150	2500	2500	6150	5590	120	98	80-120	10	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 60380625

- [1] REV. 1
- [2] Report revised to include Ba, B, and Ca by 200.7

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC Inactive Bottom Ash CCR

Pace Project No.: 60380625

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60380625001	IBA-1-091421	EPA 200.7	745486	EPA 200.7	745595
60380625002	IBA-2-091421	EPA 200.7	745486	EPA 200.7	745595
60380625003	IBA-3-091421	EPA 200.7	745486	EPA 200.7	745595
60380625004	IBA-4-091421	EPA 200.7	745486	EPA 200.7	745595
60380625005	JEC-IBA-DUP-091421	EPA 200.7	745486	EPA 200.7	745595
60380625001	IBA-1-091421	EPA 3010	745480	EPA 6010	745596
60380625002	IBA-2-091421	EPA 3010	745480	EPA 6010	745596
60380625003	IBA-3-091421	EPA 3010	745480	EPA 6010	745596
60380625004	IBA-4-091421	EPA 3010	745480	EPA 6010	745596
60380625005	JEC-IBA-DUP-091421	EPA 3010	745480	EPA 6010	745596
60380625001	IBA-1-091421	EPA 200.8	745483	EPA 200.8	745597
60380625002	IBA-2-091421	EPA 200.8	745483	EPA 200.8	745597
60380625003	IBA-3-091421	EPA 200.8	745483	EPA 200.8	745597
60380625004	IBA-4-091421	EPA 200.8	745483	EPA 200.8	745597
60380625005	JEC-IBA-DUP-091421	EPA 200.8	745483	EPA 200.8	745597
60380625001	IBA-1-091421	SM 2540C	744455		
60380625002	IBA-2-091421	SM 2540C	744455		
60380625003	IBA-3-091421	SM 2540C	744455		
60380625004	IBA-4-091421	SM 2540C	744455		
60380625005	JEC-IBA-DUP-091421	SM 2540C	744455		
60380625001	IBA-1-091421	SM 4500-H+B	744237		
60380625002	IBA-2-091421	SM 4500-H+B	744237		
60380625003	IBA-3-091421	SM 4500-H+B	744237		
60380625004	IBA-4-091421	SM 4500-H+B	744326		
60380625005	JEC-IBA-DUP-091421	SM 4500-H+B	744237		
60380625001	IBA-1-091421	EPA 300.0	744818		
60380625002	IBA-2-091421	EPA 300.0	744818		
60380625003	IBA-3-091421	EPA 300.0	744818		
60380625004	IBA-4-091421	EPA 300.0	744818		
60380625005	JEC-IBA-DUP-091421	EPA 300.0	744818		

15

Sample Condition Upon Receipt

WO#:60380625

Client Name: Everson			
Courier: FedEx UPS Clay Clay		Pace 🗆 🛛 Xroads 🗅	Client 🔽 Other 🗆
Tracking #: Pac	e Shipping Label Use	d? Yes 🗆 No 🗆	ć
Custody Seal on Cooler/Box Present: Yes 🖉 No 🗆	Seals intact: Yes	No 🗆	
Packing Material: Bubble Wrap Bubble Bags	□ Foam □	None Othe	er 🗆
Thermometer Used: Type of	fice Wet Blue No	ne	
Cooler Temperature (°C): As-readCorr. Fact Temperature should be above freezing to 6°C	or Correc	ted	examining contents: 79 9-18
Chain of Custody present:	Mes □No □N/A		
Chain of Custody relinquished:	Yes DNO DN/A		
Samples arrived within holding time:	Hes No N/A		
Short Hold Time analyses (<72hr):	□Yes INO □N/A		
Rush Turn Around Time requested:			
Sufficient volume:	Yes 🗆 No 🖾 N/A		
Correct containers used:	QVes □No □N/A		
Pace containers used:			
Containers intact:			
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ØN/A		
Filtered volume received for dissolved tests?			
Sample labels match COC: Date / time / ID / analyses			
Samples contain multiple phases? Matrix: w/			
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	Yes No N/A	List sample IDs, volumes date/time added.	s, lot #'s of preservative and the
Cyanide water sample checks:	TYPE THONK		
Potassium iodide test strip turns blue/purple? (Preserve)			
Trip Blank present:			
Headspace in VOA vials (>6mm):	□Yes □No ØN/A		
Samples from USDA Regulated Area: State:	□Yes □No □MA		
Additional labels attached to 5035A / TX1005 vials in the field?			
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required?	Y / N
Person Contacted: Date/T	ime:		
Comments/ Resolution:			

Project Manager Review:

Date:

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

ij,

Section Required	A Client Information:	Section B	- toio	- - - - - - - - - - - - - - 					Sect	tion C															
Company.	EVERGY KANSAS CENTRAL, INC.	Report To: 1	Veliss	sa Mic	chels, S	amantha	Kanev. D	anielle Ob	Invoi	ce Infor	Acr.	Dunte P	aldeve				Г				- -				
Address:	Jeffrey Energy Center (JEC)	Copy To:	lared	Morri	son. Jak	de Humo	hrev Lau	ra Hines	Com	anv Nat		VEDC	V KAN	040	CENTE		5								
	818 Kaneae Avia Tanaha VS 66613	1000		1.1.1.1						fund		אבאפ		CHO		JAL,		GULA	TORY ,	AGENC	×				
	O O Mailsas Me, Tupeka, NS 000 12	,		chiege	el, branc	IIIN UO	Sarah Ha	zelwood	Addr	ess:	SEE	SECT	A NOL				L.	NPDE	l S S	GROL	ND WA	TER	DRIN	IKING WA	TER
Email To:	melissa.michels@evergy.com	Purchase Or	der No						Pace	Quote Ince:							L	UST	L	RCRA		L	OTH	ĥ	
Phone:	785-575-8113 Fax:	Project Name	ie G	EC In	active E	ottom A:	sh Pond C	CCR	Pace Manag	Project ter:	Han	k Kapk	a, 913-	563-1	404		ŝ	te Loca	tíon		ţ.				
Requeste	d Due Date/TAT: 7 day	Project Num	per:						Pace	Profile #.	9657	7, 1					1	STA	TE:	ž					
		Ì												L	Req	lueste	d Ana	lysis F	iltered	(NIN)					
	Section D Valid Matrix Co tequired Client Information MATRIX	odes coDE	(Jiel ol	(awc		COLLE	CTED		_		Prese	ervative	Sé	† N /A	z	z	z	z			I				
	WATER WATER WATER WATER WATER SOLUCIT SOLUCIT SOLUCIUD	92 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	seboo bilav ees	-388 C=C	COMPOS	Ш.	COMPOSI END/GRA	Щ.	S					t	***Si *Si			***S			(N/A)				
# MƏTI	SAMPLE ID WIFE (A-Z, 0-9/,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	gw R P ST ST P ST) EQOD XIATAM		DATE	U U U U U U U U U	DATE			H ² SO ³ Nubreserved	10F ©ONH	HOBV FOCSCEN	Vither Methanol	test sisylenA	steM IstoT 7.00 steM IstoT 8.00	00: CI' E' 20¢	940C 1D2	IsteM IstoT 010			Sesidual Chlorine		c		1
1 -	IBA-1-091421		Ę	U			09/14/21	14:40	5	(()	~				z × z ×	ε ×	* * 7 ×	9 >	+				ee Proje	CT NO./ L	aD I.D.
2	IBA-2-091421		1 1 2	0			09/14/21	14:50	2	0	0				< ×	< ×	< ×	< ×							
6	IBA-3-091421	1	TV TV	U	*	×.	09/14/21	15:30	en L	6	2				×	×	×	×							
4	IBA-4-091421	_	ž	U		9	09/14/21	16:50	5	9	2			_	×	×	×	×							
ŝ	JEC-IBA-DUP-091421	_	Ę	U	~		09/14/21	15:30	5	e	2				×	×	×	×							
ø			-	-																					
~ •			+	+	+										-										
о б			-			1								-							+				
10														_				-							
÷			_	_							H				$\left \right $	Ħ									
12		-	-	_											_										
	ADDITIONAL COMMENTS	2	GUING	JUISHE	ED BY / A	FFILIATIO	z	DATE	F	IME		¥	CCEPTE	D BY /	AFFILIA	ATION		DATI	μ	TIME		SAI	APLE COI	IDITIONS	
200.7 Tota	I Metals*: B, Ca, Ba		ъ	Ison R	. Franks	/ scs		9/16/21	4	2:00		10	60,	1				9-10	2		2	L			
200.8 Tota	l Metals**: Co, Mo											11	\$											-	
6010 Total	Metals***: Li																		$\left \cdot \right $						
									_		_								-					_	
Pag						SAMPLEF	R NAME AN	ID SIGNATL	E												о.	no t	ooler iy		ntact
je 2						ā	RINT Name	of SAMPLE	R: Jaso	A.F.	ranks		1	N							ui du	oevie I\Y) e	poteu DO be	(N/A	(N/X
8 of						S	GNATURE	of SAMPLE	3		Q	V	1	~	DATE	Signer	_	6	16/01		neT	୍ଦ୍ଦକମ ୬୦୮	Seal Ci))) dwe

28

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

Attachment 2-2

December 2021 Annual Assessment Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

February 17, 2022

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC INACTIVE BOTTOM ASH POND C Pace Project No.: 60387817

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on December 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Indianapolis
- Pace Analytical Services Kansas City
- Pace Analytical Services Greensburg

REV_2 remove duplicated Li result.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc. JD Schlegel, Evergy, Inc. Jacob Will, Evergy Kansas Central, Jeffrey Energy Center

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Soil Permit #: P330-19-00257

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60387817001	IBA-1-120621	Water	12/06/21 13:50	12/07/21 08:20
60387817002	IBA-2-120621	Water	12/06/21 12:35	12/07/21 08:20
60387817003	IBA-3-120621	Water	12/06/21 11:30	12/07/21 08:20
60387817004	IBA-4-120621	Water	12/06/21 16:00	12/07/21 08:20
60387817005	JEC-IBA-DUP-120621	Water	12/06/21 12:35	12/07/21 08:20

SAMPLE ANALYTE COUNT

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60387817001	 IBA-1-120621	EPA 200.7		4	PASI-K
		EPA 6010	JPK	1	PASI-I
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	CJH1	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0	MAW	1	PASI-K
60387817002	IBA-2-120621	EPA 200.7	MA1	4	PASI-K
		EPA 6010	JPK	1	PASI-I
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	CJH1	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0	MAW	1	PASI-K
60387817003	IBA-3-120621	EPA 200.7	MA1	4	PASI-K
		EPA 6010	JPK	1	PASI-I
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	CJH1	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0	MAW	1	PASI-K
60387817004	IBA-4-120621	EPA 200.7	MA1	4	PASI-K
		EPA 6010	JPK	1	PASI-I
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	CJH1	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0	MAW	1	PASI-K
60387817005	JEC-IBA-DUP-120621	EPA 200.7	MA1	4	PASI-K
		EPA 6010	JPK	1	PASI-I
		EPA 200.8	MRV	7	PASI-K
		EPA 245.1	CJH1	1	PASI-K
		EPA 903.1	SLC	1	PASI-PA

SAMPLE ANALYTE COUNT

Project:JEC INACTIVE BOTTOM ASH POND CPace Project No.:60387817

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 904.0	JC2	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		EPA 300.0	MAW	1	PASI-K

PASI-I = Pace Analytical Services - Indianapolis

PASI-K = Pace Analytical Services - Kansas City

PASI-PA = Pace Analytical Services - Greensburg

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 6010

Description:6010 MET ICPClient:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 245.1

Description:245.1 MercuryClient:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 245.1 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 903.1

Description:903.1 Radium 226Client:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 904.0

Description:904.0 Radium 228Client:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: Total Radium Calculation

Description:Total Radium 228+226Client:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Method: EPA 300.0 Description: 300.0 IC Anions 28 Days

Client:Evergy Kansas Central, Inc.Date:February 17, 2022

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 760324

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60387602004,60387817005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 3042110)

Fluoride

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.:

lo.:	60387817		

Sample: IBA-1-120621	Lab ID: 603	87817001	Collected: 12/06/2	1 13:5	0 Received: 12	/07/21 08:20 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	nod: EPA 20	00.7 Preparation Met	hod: El	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.033	mg/L	0.0050	1	12/13/21 14:50	12/17/21 17:25	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/17/21 17:25	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	12/13/21 14:50	12/17/21 17:25	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/13/21 14:50	12/17/21 17:25	7439-92-1	
6010 MET ICP	Analytical Meth	nod: EPA 60	010 Preparation Meth	od: EF	PA 3010			
	Pace Analytica	I Services -	- Indianapolis					
Lithium, Total Recoverable	0.019	mg/L	0.010	1	01/17/22 08:15	01/17/22 22:27	7439-93-2	
200.8 MET ICPMS	Analytical Meth	nod: EPA 20	00.8 Preparation Met	hod: El	PA 200.8			
	Pace Analytica	I Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/13/21 14:50	12/22/21 10:08	7440-43-9	
Cobalt, Total Recoverable	0.0018	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7440-48-4	
Molybdenum, Total Recoverable	0.0083	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:08	7440-28-0	
245.1 Mercury	Analytical Meth	nod: EPA 24	45.1 Preparation Met	hod: El	PA 245.1			
	Pace Analytica	I Services -	Kansas City					
Mercury	<0.00020	mg/L	0.00020	1	12/14/21 16:08	12/15/21 12:37	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
	Pace Analytica	I Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		12/08/21 14:33	16984-48-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No

ct No.:	60387817	

Sample: IBA-2-120621	Lab ID: 603	87817002	Collected: 12/06/2	1 12:3	5 Received: 12	/07/21 08:20 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation Me	hod: El	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.027	mg/L	0.0050	1	12/13/21 14:50	12/17/21 17:31	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/17/21 17:31	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.0050	1	12/13/21 14:50	12/17/21 17:31	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.010	1	12/13/21 14:50	12/17/21 17:31	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	nod: EF	PA 3010			
	Pace Analytica	I Services -	Indianapolis					
Lithium, Total Recoverable	0.023	mg/L	0.010	1	01/17/22 08:15	01/17/22 22:29	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation Me	hod: El	PA 200.8			
	Pace Analytica	I Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.00050	1	12/13/21 14:50	12/22/21 10:24	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7440-48-4	
Molybdenum, Total Recoverable	0.0022	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.0010	1	12/13/21 14:50	12/22/21 10:24	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	5.1 Preparation Me	hod: El	PA 245.1			
	Pace Analytica	I Services -	Kansas City					
Mercury	<0.00020	mg/L	0.00020	1	12/14/21 16:08	12/15/21 12:44	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica	I Services -	Kansas City					
Fluoride	<0.20	mg/L	0.20	1		12/08/21 14:46	16984-48-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.:

No.: 60387817

Sample: IBA-3-120621	Lab ID: 603	87817003	Collected:	12/06/2	1 11:30	Received: 12	/07/21 08:20 N	latrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparati	on Meth	nod: EP	PA 200.7			
	Pace Analytica	I Services -	Kansas City						
Barium, Total Recoverable	0.019	mg/L	0	.0050	1	12/13/21 14:50	12/17/21 17:33	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0	.0010	1	12/13/21 14:50	12/17/21 17:33	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0	.0050	1	12/13/21 14:50	12/17/21 17:33	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L		0.010	1	12/13/21 14:50	12/17/21 17:33	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparatio	on Meth	od: EP/	A 3010			
	Pace Analytica	I Services -	Indianapolis						
Lithium, Total Recoverable	0.023	mg/L		0.010	1	01/17/22 08:15	01/17/22 22:31	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparati	on Meth	nod: EP	PA 200.8			
	Pace Analytica	I Services -	Kansas City						
Antimony, Total Recoverable	<0.0010	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.0	00050	1	12/13/21 14:50	12/22/21 10:28	7440-43-9	
Cobalt, Total Recoverable	0.0014	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7440-48-4	
Molybdenum, Total Recoverable	0.0022	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0	.0010	1	12/13/21 14:50	12/22/21 10:28	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	45.1 Preparati	on Meth	nod: EP	PA 245.1			
	Pace Analytica	I Services -	Kansas City						
Mercury	<0.00020	mg/L	0.0)0020	1	12/14/21 16:08	12/15/21 12:46	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0						
	Pace Analytica	I Services -	Kansas City						
Fluoride	<0.20	mg/L		0.20	1		12/08/21 14:59	16984-48-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.

	-	-	-	-	-	-
No	60	387	817			

Sample: IBA-4-120621	Lab ID: 6038	37817004	Collected:	12/06/2	1 16:00	Received: 12	/07/21 08:20 N	latrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	00.7 Prepara	tion Metl	hod: EP	A 200.7			
	Pace Analytical	Services -	Kansas City						
Barium, Total Recoverable	0.020	mg/L	(0.0050	1	12/13/21 14:50	12/17/21 17:36	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/17/21 17:36	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	(0.0050	1	12/13/21 14:50	12/17/21 17:36	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L		0.010	1	12/13/21 14:50	12/17/21 17:36	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparat	ion Meth	od: EPA	3010			
	Pace Analytical	Services -	- Indianapolis						
Lithium, Total Recoverable	0.038	mg/L		0.010	1	01/17/22 08:15	01/17/22 22:33	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	00.8 Prepara	tion Meti	hod: EP	A 200.8			
	Pace Analytical	Services -	Kansas City						
Antimony, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.	.00050	1	12/13/21 14:50	12/22/21 10:31	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7440-48-4	
Molybdenum, Total Recoverable	0.0018	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	(0.0010	1	12/13/21 14:50	12/22/21 10:31	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	45.1 Prepara	tion Met	hod: EP	A 245.1			
	Pace Analytical	Services -	Kansas City						
Mercury	<0.00020	mg/L	0.	.00020	1	12/14/21 16:08	12/15/21 12:48	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00						
	Pace Analytical	Services -	Kansas City						
Fluoride	0.49	mg/L		0.20	1		12/08/21 15:13	16984-48-8	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: JEC-IBA-DUP-120621	Lab ID: 6038	37817005	Collected: 12/	06/21 12:3	5 Received: 12	/07/21 08:20 N	latrix: Water	
Parameters	Results	Units	Report Lim	it DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Meth	od: EPA 20	0.7 Preparation	Method: E	PA 200.7			
	Pace Analytica	I Services -	Kansas City					
Barium, Total Recoverable	0.029	mg/L	0.00	50 1	12/13/21 14:50	12/17/21 17:38	7440-39-3	
Beryllium, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/17/21 17:38	7440-41-7	
Chromium, Total Recoverable	<0.0050	mg/L	0.00	50 1	12/13/21 14:50	12/17/21 17:38	7440-47-3	
Lead, Total Recoverable	<0.010	mg/L	0.0	10 1	12/13/21 14:50	12/17/21 17:38	7439-92-1	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation I	/lethod: El	PA 3010			
	Pace Analytica	I Services -	Indianapolis					
Lithium, Total Recoverable	0.027	mg/L	0.0	10 1	01/17/22 08:15	01/17/22 22:36	7439-93-2	
200.8 MET ICPMS	Analytical Meth	od: EPA 20	0.8 Preparation	Method: E	PA 200.8			
	Pace Analytica	I Services -	Kansas City					
Antimony, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7440-36-0	
Arsenic, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7440-38-2	
Cadmium, Total Recoverable	<0.00050	mg/L	0.000	50 1	12/13/21 14:50	12/22/21 10:35	7440-43-9	
Cobalt, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7440-48-4	
Molybdenum, Total Recoverable	0.0023	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7439-98-7	
Selenium, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7782-49-2	
Thallium, Total Recoverable	<0.0010	mg/L	0.00	10 1	12/13/21 14:50	12/22/21 10:35	7440-28-0	
245.1 Mercury	Analytical Meth	od: EPA 24	15.1 Preparation	Method: E	PA 245.1			
	Pace Analytica	I Services -	Kansas City					
Mercury	<0.00020	mg/L	0.000	20 1	12/14/21 16:08	12/15/21 12:53	7439-97-6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica	I Services -	Kansas City					
Fluoride	0.26	mg/L	0.	20 1		12/09/21 09:35	16984-48-8	

Project:	JEC INACTIVE BO	OTTOM ASH PON	ID C									
Pace Project No.:	60387817											
QC Batch:	761455		Anal	ysis Metho	d:	EPA 245.1						
QC Batch Method:	QC Batch Method: EPA 245.1				ption:	245.1 Mercu	ury					
			Labo	oratory:		Pace Analyt	ical Service	es - Kansa	s City			
Associated Lab Sam	ples: 60387817	001, 6038781700	2, 603878	17003, 603	87817004,	603878170	05					
METHOD BLANK:	3046828			Matrix: W	ater							
Associated Lab Sam	ples: 60387817	001, 6038781700	2, 603878 [,]	17003, 603	87817004,	603878170	05					
			Bla	nk	Reporting							
Param	neter	Units	Res	sult	Limit	Analy	/zed	Qualifier	S			
Mercury		mg/L	<0	.00020	0.0002	0 12/15/2	1 12:16					
LABORATORY CON	ITROL SAMPLE:	3046829										
_			Spike	LC	S	LCS	% Re	ec				
Param	neter	Units	Conc.	Res	sult	% Rec	Limi ⁻	ts (Qualifiers	_		
Mercury		mg/L	0.00	05	0.0047	9	5 8	85-115				
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 3046	830		3046831							
			MS	MSD								
-		60387245002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>
Parameter		Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Mercury	mg/L	- <0.048 ug/L	0.005	0.005	0.0047	0.0047	94	94	70-130	0	20	
		2040020										
WAIKIN SPIKE SAN		3040032	60387	7817004	Snike	MS		MS	% Rec			
Param	neter	Units	Re	esult	Conc.	Result	%	Rec	Limits		Qualif	iers
Mercury		mg/L		<0.00020	0.005	0.0	047	94	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No :	JEC INACTIVE B	OTTOM ASH POND C							
OC Batch:	761401		Analysis M	ethod:	F	PA 200 7			
OC Batch Method:	EPA 200 7		Analysis M	escription.	20	n 7 Metals Tr	ntal		
QO Daton Method.	EI A 200.7		Laboratory		P	ace Analytical	Services - Kar	sas City	
Associated Lab Sar	mples: 60387817	001, 60387817002, 60	0387817003,	60387817	7004, 6	0387817005			
METHOD BLANK:	3046694		Matrix	x: Water					
Associated Lab Sar	mples: 60387817	001, 60387817002, 60	0387817003,	60387817	7004, 6	0387817005			
			Blank	Repo	rting				
Parar	neter	Units	Result	Lin	nit	Analyzed	l Qualif	fiers	
Barium		mg/L	<0.0050)	0.0050	12/17/21 17	:16		
Beryllium		mg/L	<0.0010)	0.0010	12/17/21 17	:16		
Chromium		mg/L	<0.0050)	0.0050	12/17/21 17	:16		
Lead		mg/L	<0.010)	0.010	12/17/21 17	:16		
LABORATORY CO	NTROL SAMPLE:	3046695							
			Spike	LCS		LCS	% Rec		
Parar	neter	Units	Conc.	Result		% Rec	Limits	Qualifiers	
Barium		mg/L	1	1	.0	100	85-115		
Beryllium		mg/L	1	1	.0	104	85-115		
Chromium		ma/l	1	1	.0	102	85-115		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3046696 3046697												
		60387817001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.033	1	1	1.1	1.1	102	102	70-130	0	20	
Beryllium	mg/L	<0.0010	1	1	1.0	1.0	102	101	70-130	1	20	
Chromium	mg/L	<0.0050	1	1	1.0	1.0	101	100	70-130	1	20	
Lead	mg/L	<0.010	1	1	1.0	1.0	101	100	70-130	1	20	

1.0

101

85-115

1

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Lead

EPA 200.8

200.8 MET

Pace Analytical Services - Kansas City

Project.	IEC INACTIVE BOTTOM ASH POND C
FIDJECI.	JEC INACTIVE BOTTOW ASH FOND C

EPA 200.8

QC Batch Method:

QC Batch:	761402

Analysis Method:
Analysis Description:

Laboratory:

Matrix: Water

Associated Lab Samples: 60387817001, 60387817002, 60387817003, 60387817004, 60387817005

METHOD BLANK: 3046698

Associated Lab Sampl	les: 603878	317001, 60387	817002, 60387	817003, 60387	817004, 60387817005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.0010	0.0010	12/22/21 10:02	
Arsenic	mg/L	<0.0010	0.0010	12/22/21 10:02	
Cadmium	mg/L	<0.00050	0.00050	12/22/21 10:02	
Cobalt	mg/L	<0.0010	0.0010	12/22/21 10:02	
Molybdenum	mg/L	<0.0010	0.0010	12/22/21 10:02	
Selenium	mg/L	<0.0010	0.0010	12/22/21 10:02	
Thallium	mg/L	<0.0010	0.0010	12/22/21 10:02	

LABORATORY CONTROL SAMPLE: 3046699

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.04	0.041	101	85-115	
Arsenic	mg/L	0.04	0.041	102	85-115	
Cadmium	mg/L	0.04	0.041	103	85-115	
Cobalt	mg/L	0.04	0.039	96	85-115	
Molybdenum	mg/L	0.04	0.041	102	85-115	
Selenium	mg/L	0.04	0.041	104	85-115	
Thallium	mg/L	0.04	0.038	95	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3046700 3046701 MS MSD 60387817001 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual 20 Antimony mg/L < 0.0010 0.04 0.04 0.039 0.039 98 98 70-130 0 Arsenic < 0.0010 0.04 0.04 0.041 0.041 101 101 70-130 20 mg/L 1 Cadmium < 0.00050 0.04 0.04 0.038 0.038 94 70-130 20 mg/L 94 0 Cobalt mg/L 0.0018 0.04 0.04 0.038 0.038 92 91 70-130 1 20 0.0083 0.04 0.04 0.051 Molybdenum mg/L 0.050 106 105 70-130 1 20 Selenium < 0.0010 0.04 0.04 0.038 0.038 96 95 70-130 1 20 mg/L Thallium mg/L < 0.0010 0.04 0.04 0.040 0.040 100 100 70-130 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC INACTIVE BO	OTTOM ASH POM	ND C									
Pace Project No.:	60387817											
QC Batch:	658744		Anal	ysis Metho	od: E	EPA 6010						
QC Batch Method:	EPA 3010		Anal	ysis Descr	iption: 6	6010 MET						
			Labo	oratory:	F	Pace Analyt	ical Service	es - Indiana	apolis			
Associated Lab Sar	mples: 60387817	001, 6038781700	02, 603878 ⁻	17003, 603	387817004, 0	603878170	05					
METHOD BLANK:	3035292			Matrix: V	Vater							
Associated Lab Sar	mples: 60387817	001, 6038781700	2, 603878 [,]	17003, 603	87817004, 6	603878170	05					
			Bla	nk	Reporting							
Para	meter	Units	Res	sult	Limit	Analy	/zed	Qualifiers	5			
Lithium		mg/L		<0.010	0.010	0 01/17/22	2 21:55					
LABORATORY CO	NTROL SAMPLE:	3035293										
			Spike	LC	CS	LCS	% R	ec				
Para	meter	Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers			
Lithium		mg/L		1	1.0	102	2 8	30-120				
MATRIX SPIKE & M	MATRIX SPIKE DUF	PLICATE: 3035	294		3035295							
			MS	MSD					_			
Deremete	مة: ما ا	60387769003	Spike	Spike	MS	MSD	MS % Dee	MSD	% Rec		Max	Qual
Paramete			Conc.	Conc.		Result	% Kec	% KeC				Qual
Lithium	mg/L	0.046	1	1	1.0	1.1	98	108	75-125	9	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC INACTIVE	BOTTOM ASH POI	ND C									
Pace Project No .:	60387817											
QC Batch:	760323		Analy	sis Method	d: E	EPA 300.0						
QC Batch Method:	EPA 300.0		Analy	sis Descrij	otion: 3	800.0 IC Ani	ons					
			Labor	atory:	F	Pace Analyti	cal Service	es - Kansa	s City			
Associated Lab San	nples: 603878	17001, 6038781700	02, 60387817	7003, 603	87817004							
METHOD BLANK:	3042101			Matrix: W	ater							
Associated Lab San	nples: 603878	17001, 6038781700	02, 60387817	7003, 603	87817004							
			Blan	k l	Reporting							
Paran	neter	Units	Resu	ılt	Limit	Analy	zed	Qualifier	S			
Fluoride		mg/L		<0.20	0.20	0 12/08/21	08:37					
METHOD BLANK:	3044602			Matrix: W	ater							
Associated Lab San	nples: 603878	17001, 6038781700	02, 60387817	7003, 603	87817004							
			Blan	k l	Reporting							
Paran	neter	Units	Resu	ılt	Limit	Analy	zed	Qualifier	S			
Fluoride		mg/L		<0.20	0.20	0 12/09/21	19:49					
		3042102										
		3042102	Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Res	ult	% Rec	Limi	ts	Qualifiers			
Fluoride		mg/L	2.5	5	2.5	101		90-110		_		
LABORATORY COM	NTROL SAMPLE:	3044603										
			Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Res	ult	% Rec	Limi	ts	Qualifiers			
Fluoride		mg/L	2.5	5	2.5	101		90-110		_		
MATRIX SPIKE & M	IATRIX SPIKE DI	JPLICATE: 3042	2103		3042104							
			MS	MSD								
_		60387774001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg	/L ND	12.5	12.5	12.9	12.9	103	104	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	JEC IN	ACTIVE BC	TTOM ASH PON	ID C									
Pace Project No.:	603878	317											
QC Batch:	76032	24		Anal	ysis Metho	d: E	EPA 300.0						
QC Batch Method:	EPA 3	300.0		Anal	ysis Descri	iption: 3	300.0 IC An	ions					
				Labo	oratory:	F	Pace Analy	tical Service	es - Kansas	s City			
Associated Lab Sar	nples:	603878170	005										
METHOD BLANK:	304210	06			Matrix: W	/ater							
Associated Lab Sar	mples:	603878170	005										
				Bla	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	6			
Fluoride			mg/L		<0.20	0.20	0 12/08/2	1 08:46					
METHOD BLANK:	304460	00			Matrix: W	/ater							
Associated Lab Sar	nples:	603878170	005										
				Bla	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	6			
Fluoride			mg/L		<0.20	0.20	0 12/09/2	1 08:44					
LABORATORY CO	NTROL S	SAMPLE:	3044601										
				Spike	LC	CS	LCS	% Re	ес				
Parar	neter		Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers			
Fluoride			mg/L	2	.5	2.5	9	9 9	90-110				
MATRIX SPIKE & N	ATRIX S	SPIKE DUP	LICATE: 3042	108		3042109							
				MS	MSD								
_			60387817005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride		mg/L	0.26	2.5	2.5	2.6	2.7	95	97	80-120	2	15	
MATRIX SPIKE SA	MPLE:		3042110										
_				60387	602004	Spike	MS		MS	% Rec	;	o	
Parar	neter		Units	Re	esult	Conc.	Result	%	Kec	Limits		Qualif	iers
Fluoride			mg/L		ND	2.5		1.6	64	80	-120 M	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: IBA-1-120621 PWS:	Lab ID: 60387817 Site ID:	7001 Collected: 12/06/21 13:50 Sample Type:	Received:	12/07/21 08:20 N	Aatrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.514 ± 0.536 (0.801) C:NA T:96%	pCi/L	01/22/22 12:52	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	1.15 ± 0.656 (1.20) C:60% T:90%	pCi/L	01/19/22 14:32	15262-20-1	
	Pace Analytical Serv	rices - Greensburg				
Total Radium	Total Radium Calculation	1.66 ± 1.19 (2.00)	pCi/L	01/24/22 11:12	7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: IBA-2-120621	Lab ID: 603878	Collected: 12/06/21 12:35	Received:	12/07/21 08:20 N	Aatrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.101 ± 0.324 (0.625) C:NA T:96%	pCi/L	01/22/22 12:52	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.648 ± 0.536 (1.07) C:64% T:92%	pCi/L	01/19/22 14:32	15262-20-1	
	Pace Analytical S	ervices - Greensburg				
Total Radium	Total Radium Calculation	0.749 ± 0.860 (1.70)	pCi/L	01/24/22 11:12	7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: IBA-3-120621	Lab ID: 6038781	7003 Collected: 12/06/21 11:30	Received:	12/07/21 08:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Ser	vices - Greensburg			_	
Radium-226	EPA 903.1	-0.179 ± 0.374 (0.842) C:NA T:101%	pCi/L	01/22/22 12:52	13982-63-3	
	Pace Analytical Ser	vices - Greensburg				
Radium-228	EPA 904.0	-0.140 ± 0.481 (1.15) C:67% T:89%	pCi/L	01/19/22 14:32	2 15262-20-1	
	Pace Analytical Ser	vices - Greensburg				
Total Radium	Total Radium Calculation	0.000 ± 0.855 (1.99)	pCi/L	01/24/22 11:12	7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: IBA-4-120621 PWS:	Lab ID: 60387817 Site ID:	Collected: 12/06/21 16:00 Sample Type:	Received:	12/07/21 08:20 M	fatrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.870 ± 0.769 (1.12) C:NA T:89%	pCi/L	01/22/22 12:52	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.999 ± 0.530 (0.972) C:67% T:89%	pCi/L	01/19/22 14:30	15262-20-1	
	Pace Analytical Serv	rices - Greensburg				
Total Radium	Total Radium Calculation	1.87 ± 1.30 (2.09)	pCi/L	01/24/22 11:12	7440-14-4	

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Sample: JEC-IBA-DUP-120621 PWS:	Lab ID: 6038781 Site ID:	7005 Collected: 12/06/21 12:35 Sample Type:	Received:	12/07/21 08:20 N	Aatrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.413 ± 0.369 (0.474) C:NA T:101%	pCi/L	01/22/22 12:52	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.811 ± 0.529 (1.03) C:69% T:85%	pCi/L	01/19/22 14:30	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.22 ± 0.898 (1.50)	pCi/L	01/24/22 11:12	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	JEC INACTIVE BOTTOM	ASH POND C				
Pace Project No .:	60387817					
QC Batch:	478385	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 22	28		
		Laboratory:	Pace Analytical S	Services - Greensburg	g	
Associated Lab Sam	ples: 60387817001, 603	87817002, 60387817003, 6038781700	4, 60387817005			
METHOD BLANK:	2312053	Matrix: Water				
Associated Lab Sam	ples: 60387817001, 603	87817002, 60387817003, 6038781700	4, 60387817005			
Param	neter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228	0.240 ±	0.282 (0.587) C:65% T:87%	pCi/L	01/19/22 11:27		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	JEC INACTIVE BOTTOM A	SH POND C				
Pace Project No .:	60387817					
QC Batch:	478384	Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1	Analysis Description:	903.1 Radium-22	26		
		Laboratory:	Pace Analytical S	Services - Greensburg	g	
Associated Lab Sam	ples: 60387817001, 6038	37817002, 60387817003, 60387817004	4, 60387817005			
METHOD BLANK:	2312052	Matrix: Water				
Associated Lab Sam	ples: 60387817001, 6038	37817002, 60387817003, 60387817004	4, 60387817005			
Param	ieter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226	0.221 ± 0).347 (0.581) C:NA T:98%	pCi/L	01/22/22 12:52		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60387817

Analytical QC Batch Lab ID **QC Batch Method** Batch Sample ID **Analytical Method** 60387817001 IBA-1-120621 EPA 200.7 761401 EPA 200.7 761543 60387817002 IBA-2-120621 EPA 200.7 761401 EPA 200.7 761543 60387817003 IBA-3-120621 EPA 200.7 761401 EPA 200.7 761543 60387817004 IBA-4-120621 EPA 200.7 761401 EPA 200.7 761543 60387817005 **JEC-IBA-DUP-120621** EPA 200.7 761401 EPA 200.7 761543 658744 60387817001 IBA-1-120621 EPA 3010 EPA 6010 658883 IBA-2-120621 60387817002 EPA 3010 658744 EPA 6010 658883 60387817003 IBA-3-120621 EPA 3010 658744 EPA 6010 658883 60387817004 IBA-4-120621 EPA 3010 658744 EPA 6010 658883 60387817005 JEC-IBA-DUP-120621 658744 EPA 3010 EPA 6010 658883 60387817001 IBA-1-120621 EPA 200.8 761402 EPA 200.8 761544 60387817002 IBA-2-120621 EPA 200.8 761402 EPA 200.8 761544 60387817003 IBA-3-120621 EPA 200.8 761402 EPA 200 8 761544 60387817004 IBA-4-120621 EPA 200.8 761402 EPA 200.8 761544 JEC-IBA-DUP-120621 60387817005 EPA 200.8 761402 EPA 200.8 761544 60387817001 IBA-1-120621 EPA 245.1 761455 EPA 245.1 761833 60387817002 IBA-2-120621 EPA 245.1 761455 EPA 245.1 761833 60387817003 IBA-3-120621 EPA 245.1 761455 EPA 245.1 761833 60387817004 IBA-4-120621 EPA 245.1 761455 EPA 245.1 761833 60387817005 **JEC-IBA-DUP-120621** 761455 EPA 245.1 EPA 245.1 761833 478384 60387817001 IBA-1-120621 EPA 903.1 60387817002 IBA-2-120621 EPA 903.1 478384 60387817003 IBA-3-120621 EPA 903.1 478384 IBA-4-120621 478384 60387817004 FPA 903.1 JEC-IBA-DUP-120621 60387817005 EPA 903.1 478384 IBA-1-120621 478385 60387817001 EPA 904.0 60387817002 IBA-2-120621 EPA 904.0 478385 60387817003 IBA-3-120621 EPA 904.0 478385 60387817004 IBA-4-120621 EPA 904.0 478385 60387817005 JEC-IBA-DUP-120621 EPA 904.0 478385 480450 60387817001 IBA-1-120621 **Total Radium Calculation** 60387817002 IBA-2-120621 **Total Radium Calculation** 480450 60387817003 IBA-3-120621 Total Radium Calculation 480450 60387817004 IBA-4-120621 **Total Radium Calculation** 480450 60387817005 JEC-IBA-DUP-120621 **Total Radium Calculation** 480450 60387817001 IBA-1-120621 EPA 300.0 760323 IBA-2-120621 60387817002 EPA 300.0 760323 60387817003 IBA-3-120621 EPA 300.0 760323 60387817004 IBA-4-120621 EPA 300.0 760323 60387817005 **JEC-IBA-DUP-120621** EPA 300.0 760324

Pace Analytical* Sample Condition Upon Receipt Sample Condition Upon Receipt 50387817
Client Name: <u>Evergy</u> Courier: FedEx UPS VIA Clay PEX ECI Pace Xroads Client A Other D
Tracking #: Pace Shipping Label Used? Yes D No D
Custody Seal on Cooler/Box Present: Yes/Q No D Seals intact: Yes D No D
Thermometer Used: TSG9 Type of log: Wet Blue None
Cooler Temperature (°C): As road 4/1 Corr Factor Di) Corrected /(C)
Temperature (C). As-readCont. FactorCorrectedCorre
Chain of Custody present:
Chain of Custody relinquished:
Samples arrived within holding time:
Short Hold Time analyses (<72hr):
Rush Turn Around Time requested:
Sufficient volume:
Correct containers used:
Pace containers used:
Containers intact:
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?
Filtered volume received for dissolved tests?
Sample labels match COC: Date / time / ID / analyses
Samples contain multiple phases? Matrix: IT □Yes XNo □N/A
Containers requiring pH preservation in compliance? $(HNO_3, H_2SO_4, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)$ (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# Cvanide water sample checks: Lotst sample IDs, volumes, lot #'s of preservative and the date/time added.
Lead acetate strip turns dark? (Record only)
Potassium iodide test strip turns blue/purple? (Preserve)
Trip Blank present:
Headspace in VOA vials (>6mm):
Samples from USDA Regulated Area: State: Yes XNo N/A
Additional labels attached to 5035A / TX1005 vials in the field? Yes 🖉 No DN/A
Client Notification/ Resolution: Copy COC to Client? Y / N Field Data Required? Y / N
Person Contacted: Date/Time: Comments/ Resolution:

Project Manager Review:

Date:

F-KS-C-003-Rev. 11, February 28, 2018

ica	IS COL
ly th	acelab
Ina	ww.pa
9	ž
22	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Sectio	un A ed Client Information:	Section B	tooic							Section	U												Ľ		,			Г
Compar	IN EVERGY KANSAS CENTRAL INC	Report To:	Malia		Minterla.			-	i	nvoice In	ormatik	Ë											<u> </u>	ade:	-	ō	-	
Artifices		in tindau	Mens	V BSS	viicnels,	Samar	itha Kané	iy, Daniell€	Zinsm	Attention:	<	ccoul	nts Pa	ayable														1
Calinov	Jenrey Energy Center (JEC)	Copy To:	Jarec	oM b	orrison,	Jake Ht	umphrey,	Laura Hin	es	Company	Nàme:	Ň	ERGY	KAN	SAS	CEN	TRAL	INO	REG	LA1	ORY	GEN	≿					
	818 Kansas Ave, Topeka, KS 66612		JD S	chle	gel, Bra	N nobri	Vill, Sarah	I Hazelwoo	p	Address:	S	EES	ECTIC	A NC						VPDE		GRO		VATER		DRINKIN	G WATER	Т
Email	o: melissa.michels@evergy.com	Purchase O	rder N		10JEC-	-00000	17747			Pace Quote									L	JST	L	RCR	<		. L	DTHER		
Phone:	785-575-8113 Fax	Project Nam	iei	JEC	Inactive	e Bottor	n Ash Po	nd CCR		Pace Project	A	lice S	spiller,	913-	563-1	403			Site	Locat	ц					2		
Reque	sted Due Date/TAT: 7 day	Project Num	ber:							ace Profile	i6 ⊭∶	657, 2								STA	jiji	×	s	26				
															H	N.	eque	sted /	Inaly	sis Fi	tered	(N/N)	Γ					-
	Section D Valid Matrix Co Required Client Information <u>MATRIX</u>	odes code	(fiel of	(AMC		8	LLECTEI	0			Ţ,	esen	ratives	10	1°N /A	z	Z	z	z	z	z							8.4
	WATER WATER WASE WASE PRODUCT SOLUCOLID OIL	or www	seboo billev ees))=) 8AAB=	ST	POSITE	ក្រ ក្រ	MPOSITE ID/GRAB		s					1	*sle	**S		***S					(N/A)				
# W311	SamPLE ID WIFE (A-2, 0-9 (,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	AR TOT ST) EDOD XIRTAM	SAMPLE TYPE (G	DATE	ž			D TA 9M9T 3J9MAS	Unpreserved # OF CONTAINER	[•] ONH ^⁵ OS ⁷ H	IOH	⁸ O ² S ² BN HO ^B N	lonsdf0	teaT sisylsnA	stəM listoT 7.00	steM IstoT 8.00: 1:00: F	6H 1.34	610 Total Meta	822 muibes	mulbeA leto			sesidual Chlorine	9	A	< /₃<	
-	IBA-1-120621		ž	0	aki	1230	0 12/06	21 1350		4	~					z ×	e × z ×	z ×	9 ×	1 >					Lace	Inject	10./ Lab I.D.	Т
2	IBA-2-120621		ž	U	216.12	122	0 12/06	21 1230	-	4 1	۳ ۳				_	×	×	×		×	: ×							Т
e	IBA-3-120621		Ę	U	12/64	1105	12/06/	21 1130		4 1	<u>۳</u>				_	×	×	×		×	: ×			\vdash				Т
4	IBA-4-120621		¥	U	(4 2/4	153	5 12/06/	21 1600	-	4 1	8				_	×	×	×	×	×	×			-				Т
ŝ	JEC IBA-DUP-120621		¥	U	12/6/2	221	0 12/06	21 IA 35		4 1	m					×	×	×	×	×	×							Γ
9																	_											Γ
-											_								\vdash		-					1.4		T
80															_						_							Τ
6																								\vdash				Г
9							_				_						-		_									Γ
÷ ;															E		-											TΤ
4	ADDITIONAL COMMENTS		RELIN		HED BY		VIION	A	 _µ	IMIT			ACC	CEPTE		AFFI			+		+	T #		-	IdMps	TIONOT	SIGN	Т
200.7 T	otal Metals*: Ba, Be, Cr, Pb (4 metals)								3	000		N	30.0	0					+	1	+		17					
200.8 T	otal Metals**: Sb, As, Cd, Co, Mo, Se, Tl (7 metals)		2		arroerpu	ne / uen	2 2		X	000	3	10	2	3	2	2	0	N	9			2	ř.	0	*	2-	>>	
6010 Tc	stal Metals***: Li (1 metal)										+				·				╈		+			+				1
(2) 1L n notes)	itric preserved for all Radium analysis (Pace PM-see profil							1											+		-		_	-				T
Pag						SAMF	LER NAM	E AND SIG	NATURE										1		-		0	ud		(N Pele	tos	T
je 3							PRINT N	lame of SAN	IPLER: N	Aatt Var	erput	ue											, uj di	bevi	(N/A)	iy Sea	(N/)	
5 of 4							SIGNAT	URE of SAN	IPLER:	Dr. M	L	la	dy	X	5	DA'	re sig	Y:	101	24.1%	M		T	Rece	90	boteu0 Moo0	Iqme2	
43											4														1	,		1

F-ALL-Q-020rev 08, 12-Oct-2007

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

	PC PC																	hiosulfate																
	CAD.																5	rm Na T								XL			Liquid			2		
	386	869	a													Mi	wab	Colifor	Bag	-	settes					Mat			ueous			g Wate		
2	5 52	W65	a														Wipe/S	120mL	Ziploc	Air Filte	AIL Cas						Vater	Solid	Von-aq	ЫL	Vipe	Drinkin		
Q	SAD	ыс	z														ľ			Ì							Ē							
	586	NGKN	Ν														_	SP51	ZPLC	ΨF							M	SL	NAL	Ы	WP	ž		
	1 3	GFU	r														Γ							Γ			P						Τ	
5	5	ZEd	8										1									l		0			d filtere		0			0		
e s	PIL	IB3C	8																	stic	<u>e</u> .g	2 0	iii iii	d plasti	cetate	U.U.	ic - field	<u>u</u>	I plasti	tic	cetate	l plasti	<u></u> .	5 E
6	2B	SE4	8													stic	Istic	stic	astic	ed pla	Aceta A plact	3 plasti	04 plas	served	H, Zn A	H plasti	3 plasti	3 plasti	servec	04 plas	H, Zn A	served	3 plast	4 plas
nnfile #	Notes	B3F	8													Plas	OH pla	O3 pia	SO4 P	Dreser		ONH	H2SC	- unpre	NaO!	- NaOł	ÖNH	ÖNH.	unpre	H2SC	NaO	- unpre		HZSC
	-	NEdi	Э														1L NA	1L HN	1L H2;		500ml	500ml	500ml	500mL	500ml	250mL	250mL	250mL	250mL	250mL	250mL	125mL	125mL	
ount		NLd8	3	M.	n) (r	NC	5																										
ner C		3630	3														BP1C	BP1N	BP1S	BP10	BP 14	BP2N	BP2S	BP2U	BP2Z	BP3C	BP3F	BP3N	BP3U	BP3S	BP3Z	BP4U	Br4N	Br40
ontai		BP2U	E			_															Τ		ass								Τ			_
iple C	d d	0148		-	-	-	1												:	ge	2		nber g		ø	SS	SS	s	s	s	2			
Sarr	L	/GEU	/																	TIDEL V		lass	lear/ar	glass	er glas	ber gla	ber gla	er glas	er glas	er glas	er glas			
	M	/@ † N															l ar	ar	Iar	rved ar	er alasi	mber q	ulfate c	amber	3 ambi	04 amt	04 am	es amb	es amb	es amb	es amb			
		VG32															ear soi	ear soi	ear sol	brese	ample	SO4 al	Thios	Inpres	NH	- H2SC	- H2SC	- unpre	- unpre	- nnpre	ă			
	Š	res∪										4					8oz cl	402 CI	ZOZ CI	402 UT		1L H2	1L Na	1liter (500ml	500ml	250ml	500ml	250ml	125ml	10001			
	- F	∩เอง	1																															
1	TA	н≀э∀														ass	WGK	NGFI NGFI	1251		AG1H	AG1S	AG1T	AG1U	AG2N	AG2S	AG3S	AG2U	AG3U	AG4U	AG5U			
0		ULDB														15																		
S	5	N690																							vial				s					
5	12	N69V															ar vial	oa vial	Vidi	er vial	er vial	served		ar vial	clear v	glass		glass	ar glas					
(+)	$ \rightarrow $	DG90															ate clea	nber v	m best	4 amh	io amb	unpre	ear via	io. cle	served	clear	glass	Clear	es cle					
	Site:	н690															bisulfa	Moor	TODA		Na Th	amber	HCIC	Na Th	unpre	12SO4	unpres		Inp					
Ļ	(Ájuo	н69л															40mL	40ml	1000	40ml	40mL	40mL	40mL	40mL	40mL	1 liter	1liter	mucz	mucz					
C PAGE SBS	BK MeOH (Я																																
00		Matrix													r Codes		DG9E			DG9S	DG91	DG9L	VG9 L	VG91	VG9L	BG1S	BG1	1200	פפער					
		COC Line Iterr	-	2	е	4	5	6	7	∞	6	10	11	12	Containe																			

ENV-FRM-LENE-0001, Rev 01

Dated: 08/19/2021

Lustody JEC INACTIVE BOTTOM A JEC INACTIVE BOTTOM A Subcontract To JEC INACTIVE BOTTOM A Subcontract To Subcontract To Asubcontract To Asubcontract To Bare Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600 Phone (724)850-5600 Water 021 13:50 60387817002 Water 021 11:30 60387817003 Water 021 11:35 60387817005 Water 021 12:35 60387817005 Mater 021 12:35 Custody Seal	Chain of Custody Samples Pre-Logged into econtrocter Orkorder Name: JEC INACTIVE BOTTOM A Subcontract To Pace Analytical Pittsburgh 1638 Roseytown Road Suites 2,3, & 4 Subcontract To Native PS 12/6/2021 13:50 FS 12/6/2021 13:50 FS 12/6/2021 12:35 FS FS	WO#:30456499	CC. State Of Origin: KS 30456499 Cert. Needed: Ves	SH POND C Owner Received Date: 12/7/2021 Results Requested By: 12/21/2021 Reminested Analysis		8 	Radium 22 Radium 22 Radium 22 Radium 22 Radium 22 Radium 22			2 X X X X X 203			Comments	Date/Time	2 In Khi Jewo ****PLEASE, INCLUDE QC SHEETS*******	andle 11795	N Received on Ice Y or (N) Samples Intact (Y br N
	Chain of C orkorder Name: orkorder Name: Type Ps 12/6/2 Ps 12/6/2 Ps 12/6/2 Ps 12/6/2		Samples Pre-Logged intr	JEC INACTIVE BOTTO	Pace Analytical Pittsburg 1638 Roseytown Road Suites 2,3, & 4 Greensburg, PA 15601 Phone (724)850-5600		t ime LabiD Ma	021 13:50 60387817001 W ₄	021 12:35 60387817002 W ₆	021 11:30 60387817003 We	021 16:00 60387817004 We	021 12:35 60387817005 We		ate/Time Received By	1/1/1 1800 MM/1		Custody Seal Y o

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

ļ

Tuesday, December 07, 2021 2:59:59 PM bage 32 of 43

Pittsburgh Lab Sample Cond	ition	Upo	II R	eceipt	
Face Analytical Client Name:	P	au	<u>e I</u>	LS	Project # 30 4 5 6 4 9
	nt 🗆	Comm	nercial	Pace Other	Label $\delta \mathcal{M}$
Tracking #: 5333 8757 1138					LIMS Login
Custody Seal on Cooler/Box Present:		no	Seal	s intact: Fyes	no
Thermometer Used <u>NIA</u>	Туре	of Ice	: We	t Blue None	
Cooler Temperature Observed Temp		- ° C	Corr	ection Factor:	C Final Temp: C
Temp should be above freezing to 6°C				nH paper (ot#	Poto and Initials of porcon evenining
Commentes		TNE		10701	contents: ET 12-27-21
Comments:	Yes		N/A	TOPCET	
Chain of Custody Present:		╆──			
Chain of Custody Filled Out:	\leftarrow	╉──		2.	
Chain of Custody Relinquished:	\vdash			3.	
Sampler Name & Signature on COC:	+	\vdash		4.	· · · · · · · · · · · · · · · · · · ·
Sample Labels match COC:				5. 	
-Includes date/time/ID Matrix:		<u>ハ</u>			
Samples Arrived within Hold Time:	\vdash		_	6.	
Short Hold Time Analysis (<72hr remaining):		\vdash	-	7.	
Rush Turn Around Time Requested:	\vdash	\vdash		8.	
Sufficient Volume:	\downarrow			9.	
Correct Containers Used:	K	ļ		10.	
-Pace Containers Used:	$ \mid $	ļ			······································
Containers Intact:	\lor	<u> </u>		11.	
Orthophosphate field filtered		ļ		12.	
Hex Cr Aqueous sample field filtered		<u> </u>		13.	
Organic Samples checked for dechlorination:			K,	14.	
Filtered volume received for Dissolved tests		ļ		15.	
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	 ,		16. PHZ	2
All containers meet method preservation				Initial when ET	Date/time of
equirements.	\nvdash	I		completed	preservation
				preservative	
leadspace in VOA Vials (>6mm):				17.	
rip Blank Present:		$\langle \rangle$		18.	
rip Blank Custody Seals Present					
Rad Samples Screened < 0.5 mrem/hr				completed: ET	Date: 12-27-21 Survey Meter SN: 1503
lient Notification/ Resolution:					
Person Contacted:			Date/1	Time:	Contacted By:
Comments/ Resolution:					
······································					· · · · · · · · · · · · · · · · · · ·

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

_

	0# 307146	5030714		Custoc] Sample arme: JEC IN Subcontrac	by profile 1020 s Pre-Logged ACTIVE BOT ct To	00, line 1 (into eCC	6010 DC. H PC	W DND C	State Cert. Own	e Of Orig Needed er Recei	jin: : [ved	KS × Yes Date:	12/7/2 Req	No 2021	Res	sults	Requ	Pa	2 ace	Analytical [®] www.pacelabs.com 1/21/2022
Alice Pace 9608 Lene Pho	e Spiller e Analyt 8 Loiret exa, KS ne (913)	ical Kansas Blvd. 66219 599-5665		Pace / 7726 Indian Phone	Analytical India Moller Road apolis, IN 4626 a (317)875-5894	napolis 58 4	P	reserve	d Con	tainers	0 Li (<0.010mg/L)									
Item	Sample	: ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HNO3				601									LAB USE ONLY
1	IBA-1-120	0621	PS	12/6/2021 13:50	60387817001	Water	1				X			++						
2	IBA-2-120	0621	PS	12/6/2021 12:35	60387817002	Water	1				X									
3	IBA-3-120	0621	PS	12/6/2021 11:30	60387817003	Water	1				Х									
4	IBA-4-120	0621	PS	12/6/2021 16:00	60387817004	Water	1				Х									
5	JEC-IBA-	DUP-120621	PS	12/6/2021 12:35	60387817005	Water	1				X									
Tran	sfers	Released By		Date/Time	Received B	y .				Date/Tim	e		orting li	mit <0	010-	Com	nments			
1 2 3	/	Mull Pace		Vistzz ugu	x F Beill	est x	}			1/14/22	ક્લડ	cal	cium is	high in	sam	ples				
Coo	ler Ten	nperature on Receipt	0.0	°C Cus	tody Seal(Y)or N			Rece	ived on	Ice (Ŷ) or	Ν			Sam	nples	Intact	$t(\gamma)$	or N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

F-IN-Q-290-rev.21,	02Feb2021
--------------------	-----------

SAMPLE CONDITION UPON RECEIPT FORM

Prace Analytical*	LE CON	DITION	UPON RECEIPT FORM				
Date/Time and Initials of person examining contents	s:BC	1020	1/4/22				
1. Courier: 🖄 FED EX 🗌 UPS 🗌 CLIENT 🗌 PAG	CE 🗆 U	JSPS 🗌	OTHER5. Packing Material:	- Bubble Wrap	Bubble	e Bags	
2. Custody Seal on Cooler/Box Present: 🏼 Yes	🗆 No			None	Other		
(If yes)Seals Intact: 🕅 Yes 🗆 No (leave blank	if no seals	were prese	ent)				
3. Thermometer: 123456 ABCDEF			6. Ice Type: 🗡 Wet	🗆 Blue 🗌 None	1		
4. Cooler Temperature: 0.30.6 Temp should be above freezing to 6°C (Initial/Corrected)			7. If temp. is over 6°C or	under 0°C, was the PM	notified?:	🗌 Yes	🗌 No
All	discrepand	ies will be:	written out in the comments section below.				
	Yes	No			Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		7	All containers needing acid/base pres. Have be <u>CHECKED</u> ?: exceptions: VOA, coliform, LLHg, container with a septum cap or preserved with H	en O&G, and any Cl.			
Short Hold Time Analysis (48 hours or less)? Analysis:		J	HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/Z Any non-conformance to pH recommendations will b count form	nAc (>9) e noted on the container			ы. н Я ₁
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:	1	Residual Chlorine Check (SVOC 625 Pest/PCB	608)	<u>Present</u>	Absent	N/A /
Rush TAT Requested (4 days or less):			Residual Chlorine Check (Total/Amenable/Free	Cyanide)			5
Custody Signatures Present?	J		Headspace Wisconsin Sulfide?				1
Containers Intact?:	J		Headspace in VOA Vials (>6mm): See Containter Count form for details		<u>Present</u>	<u>Absent</u>	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	J	1	Trip Blank Present?			7	
Extra labels on Terracore Vials? (soils only)		J	Trip Blank Custody Seals?:				J

COMMENTS:

Sample Container Count

** Place a RED dot on containers

		Kit	-																								t	that a	re out of	conform	nance **
COC Line Item	WGFU	R	DG9H VG9H	VOA VIAL HS (>6mm)	VG9U	DG9U	VG9T	AGOU	AG1H	AG1U	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	BP3S	BP3B	BP3Z	CG3H	Syringe Kit			Matrix	HNO3/ H2SO4 pH <2	NaOH/ ZNAc pH >9	NaOH pH>10
1																l												WT	1		
2																												1	1		
3																															
4																															
5																Y												¥	•		
6																															
7																													L		
8																															
9																															
10																															
11																															
12																										-					

Container Codes

	Glas	SS				P	ast	c / Misc.	
DG9H	40mL HCI amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic		BP4U	25mL unpreserved plasti	c
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic		BP4N	25mL HNO3 plastic	
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCI Clear Glass	BP1S	1L H2SO4 plastic		BP4S	25mL H2SO4 plastic	
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic				
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac		Syring	t LL Cr+6 sampling kit	
VG9H	40mL HCl clear vial	AG1H	1L HCI amber glass	BP2N	500mL HNO3 plastic			•	
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic		AF	ir Filter	· · · · · · · · · · · · · · · · · · ·
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic		С	ir Cassettes	
Ι	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		R	erracore kit	
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac		SP5T	20mL Coliform Na Thios	ulfate
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic		U	umma Can	
JGFU	4oz unpreserved amber wide	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic		ZPLC	iploc Bag	
CG3H	250mL clear glass HCl	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered				
BG1H	1L HCI clear glass	AG3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic		WT	Water	
BG1S	1L H2SO4 clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic		SL	Solid	
GN	General	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic		NAL	Non-aqueous liquid	Oil
							WP	Wipe	

PACE Analytical Services Ra-226 Analysis

MS/MSD 2

Qual	ity Control \$	Sample Pe	orformance Assessment	
Pace Analytical	Test: Ra-226		<u>Analyst Must Manually Enter All Fields Highlighted in Yello</u>	low.
Ar	lalyst: SLC Date: 1/14/2022 ch ID: 64424 atrix: DW		Sample Matrix Spike Control Assessment MS Sample Collection Date: Sample 1.D. Sample 1.D. Sample MS 1.D.	USW/SV
Method Blank Assessment MB Concent MB Counting Unce MB Numerical Performance Inc MB Status vs Numerical Inc MB Status vs Mmerical Inc	ple ID 2312052 tration: 0.221 tainty: 0.346 timity: 0.581 ificator: 1.25 licator: N.A.		Sample MSU I.D. Spike I.D.: MS/MSD Decay Corrected Spike Concentration (pCl/mL): Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MSD Aliquot (L, g, F): MSD Tardet Conc. (pCl/L, g, F):	
Laboratory Control Sample Assessment	LCSD (Y or N)?	λ	MS Spike Uncertainty (calculated): MSD Spike Uncertainty (calculated):	
Coun Splike Concentration (of Volume Use Volume Use Volume Use Volume Use Aliquot Volume (pc)IL Uncertainty (pc)IL Uncertainty (pc)IL Nurmerical Performance Ind Percent Res Status vs Numerical Ind Status vs Numerical Ind Percent Res Upper % Recovery Upper % Recovery Duplicate Sample Result (pc)IL Sample Assessment Sample Result (pc)IL Sample Assessment Sample Counting Uncertainty (pc)IL Are sample and/or duplicate Result (pc)IL Sample Duplicate Result Counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result Counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result Counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result Counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result Counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Duplicate Result belo Duplicate Result belo Result belo Result belo Result counting Uncertainty (pc)IL Are sample and/or duplicate Result belo Result belo Resul	Lose 10.1 Lose 4424 Lose et ID.: 21-040 J(mL): 224-35 J(mL): 230-30 J(mL): 230-30 J(mL): 0.40 J(mL): 0.430 J(mL): 0.430 J(mL): 0.393 J(mL): 0.393 J(mL): 0.4424 J(mL): 135% Limits: 135% J(mL): 32% J(mL): 32%	LCSD64424 1/22/2022 21-040 32.435 0.1665 4.880 0.269 1.117 0.49 1.117 0.49 1.117 0.49 N/A Pass 1.35% 7.3% 7.3% 7.3%	Matrix Spike Result Counting Uncertainty (pC/IL, g, F): Sample Result Counting Uncertainty (pC/IL, g, F): Sample Matrix Spike Result Counting Uncertainty (pC/IL, g, F): Matrix Spike Duplicate Result Counting Uncertainty (pC/IL, g, F): Sample Matrix Spike Duplicate Result Counting Uncertainty (pC/IL, g, F): MS Numerical Performance Indicator: MS Numerical Performance Indicator: MS Numerical Indicator: MS Status vs Numerical Indicator: MS Status vs Numerical Indicator: MS Status vs Numerical Indicator: MS Status vs Recovery: MS MS Duplicate Result Counting Uncertainty (pC/IL, g, F): Duplicate Result Counting Uncertainty (pC/IL, g, F): MS/ MSD Duplicate Result Counting Uncertainty (pC/IL, g, F): MS/ MSD Duplicate Result Counting Uncertainty (pC/IL, g, F): Duplicate Result Counting Uncertainty (pC/IL, g, F): MS/ MSD Duplicate Result Counting Uncertainty (pC/IL, g, F): M	
•••••••••••••••••••••••••••••••••••••••				

Comments:

Page 48 of 48 SEC 1/22/22

PACE Analytical Services Ra-228 Analysis

Face Analytical

Quality Control Sample Performance Assessment

Test: F	За-228		Analyst Must Manually Enter All Fields Highlighted in	<u>Yellow.</u>	
Analyst:	JC2		Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
Date: 1/	16/2022		Sample Collection Date:		
Worklist	64425		Sample I.D.		
Maulx:			Sample MS I.D.		
Method Blank Assessment			Santha Wou Lu-		
MB Sample ID	2312053		MS/MSD Decay Corrected Snike Concentration (nCi/m1)-		
MB concentration:	0.240		Spike Volume Used in MS (mL)		
M/B 2 Sigma CSU:	0.282		Spike Volume Used in MSD (mL):		
MB MDC:	0.587		MS Aliquot (L, g, F):		
MB Numerical Performance Indicator:	1.67		MS Target Conc.(pCi/L, g, F):		
MB Status vs Numerical Indicator:	Pass		MSD Aliquot (L, g, F):		
MB Status vs. MDC:	Pass		MSD Target Conc. (pCi/L, g, F):		
			MS Spike Uncertainty (calculated):		
-aboratory Control Sample Assessment	(X or N)?	Y	MSD Spike Uncertainty (calculated):		
	CS64425	LCSD64425	Sample Result:		
Count Date: 1	/19/2022	1/19/2022	Sample Result 2 Sigma CSU (pCi/L, g, F):		
Spike I.D.:	21-029	21-029	Sample Matrix Spike Result:		
Decay Corrected Spike Concentration (pCi/mL):	36.656	36.656	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Volume Used (mL):	0.10	0.10	Sample Matrix Spike Duplicate Result:		
Aliquot Volume (L, g, F):	0.815	0.810	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Target Conc. (pCi/L, g, F):	4.499	4.523	MS Numerical Performance Indicator:		
Uncertainty (Calculated):	0.220	0.222	MSD Numerical Performance Indicator:		
Result (pCi/L, g, F):	3.999	4.503	MS Percent Recovery:		
LUS/LUSU 2 Sigma USU (pUi/L, g, F):	0.935	1.014	MSD Percent Recovery:		
Numerical Performance Indicator.	-1.02	-0.04	MS Status vs Numerical Indicator:		
Percent Recovery:	88.87%	99.56%	MSID Status vs Numerical Indicator:		
Status vs numerical indicator:	N/A	AN	MS Status vs Recovery:		
Status vs Recovery:	Pass	Pass	MSD Status vs Recovery:		
Upper % Recovery Limits: Lower % Recovery Limits:	135% 60%	135% 60%	MS/MSD Upper % Recovery Limits: MS/MSD Lower % Decovery Limits:		
LOWER A LANDARY ALLAND	20.72	% 70	MICHANDE FORME & VECOVERY LITITIS.		
Duplicate Sample Assessment			Matrix Spike/Matrix Spike Duplicate Sample Assessment		
	201125	Cotor Ductionto			
Dunlicate Sample I.D. 10	CSD64425	samnle IDs if	Sample I.D.		
Sample Result (nCi/I _ 0 _ F)	3 999	other than	Samula MSD I D		
Sample Result 2 Sigma CSU (pCi/L, q, F);	0.935	LCS/LCSD in	Sample Matrix Spike Result:		
Sample Duplicate Result (pCi/L, a, F):	4.503 tt	he space below.	Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):		
Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	1.014		Sample Matrix Spike Duplicate Result:		
Are sample and/or duplicate results below RL?	Q		Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):		
Duplicate Numerical Performance Indicator.	-0.717		Duplicate Numerical Performance Indicator:		
(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	11.35%		(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:		
Duplicate Status vs Numerical Indicator	Pass		MS/ MSD Duplicate Status vs Numerical Indicator.		
UUDICATE STATUS VS RPD. 1	Pass 36%		MS/ MS/ Uuplicate Status vs RPD:		
	2722				

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

144/20/2 22 M/20/2 22

Page 46 of 46
Attachment 2-3

March 2022 Semi-Annual Sampling Event Laboratory Analytical Report

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

May 17, 2022

Melissa Michels Evergy, Inc. 818 Kansas Avenue Topeka, KS 66612

RE: Project: JEC INACTIVE BOTTOM ASH POND C Pace Project No.: 60394852

Dear Melissa Michels:

Enclosed are the analytical results for sample(s) received by the laboratory on March 10, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

REVISED 3/2/22 to include 200.7 metals requested.

REVISED_2

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Laura Hines, Evergy, Inc. Jake Humphrey, Evergy, Inc. Samantha Kaney, Haley & Aldrich Jared Morrison, Evergy, Inc. Danielle Oberbroeckling, Haley & Aldrich Melanie Satanek, Haley & Aldrich, Inc. JD Schlegel, Evergy, Inc. Jacob Will, Evergy Kansas Central, Jeffrey Energy Center

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60394852001	IBA-1-030922	Water	03/09/22 18:20	03/10/22 15:00
60394852002	IBA-2-030922	Water	03/09/22 18:40	03/10/22 15:00
60394852003	IBA-3-030922	Water	03/09/22 17:45	03/10/22 15:00
60394852004	IBA-4-030922	Water	03/09/22 17:25	03/10/22 15:00
60394852005	DUP-IBA-030922	Water	03/09/22 18:40	03/10/22 15:00

SAMPLE ANALYTE COUNT

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60394852001	IBA-1-030922	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394852002	IBA-2-030922	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394852003	IBA-3-030922	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394852004	IBA-4-030922	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	3	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60394852005	DUP-IBA-030922	EPA 200.7	JLH	3	PASI-K
		EPA 6010	JLH	1	PASI-K
		EPA 200.8	JGP	2	PASI-K
		SM 2540C	JDS	1	PASI-K
		SM 4500-H+B	SK	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Date: May 17, 2022

5/17/22 Amended report to reflect DUP collection time of 18:40 to match chain of custody.

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method: EPA 200.7

Description:200.7 Metals, TotalClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for EPA 200.7 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 775828

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394834001,60394852001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 3096624)
 - Calcium
- MS (Lab ID: 3096626)
 - Calcium
- MSD (Lab ID: 3096625)
 - Calcium

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method: EPA 6010

Description:6010 MET ICPClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for EPA 6010 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 776740

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60394852002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MSD (Lab ID: 3099659)
 - Lithium
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 3099659)
 - Lithium

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method: EPA 200.8

Description:200.8 MET ICPMSClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for EPA 200.8 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.8 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for SM 2540C by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method:	SM	4500-H+E
mounou.	0	4000 1116

Description:4500H+ pH, ElectrometricClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for SM 4500-H+B by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

- DUP-IBA-030922 (Lab ID: 60394852005)
- IBA-1-030922 (Lab ID: 60394852001)
- IBA-2-030922 (Lab ID: 60394852002)
- IBA-3-030922 (Lab ID: 60394852003)
- IBA-4-030922 (Lab ID: 60394852004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Evergy Kansas Central, Inc.Date:May 17, 2022

General Information:

5 samples were analyzed for EPA 300.0 by Pace Analytical Services Kansas City. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 775525

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - MS (Lab ID: 3095467)
 - Chloride
 - MSD (Lab ID: 3095468)
 - Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: JEC INACTIVE BOTTOM ASH POND C

1 10,000.

Pace Project No.: 60394852

Sample: IBA-1-030922	Lab ID: 603	94852001	Collected: 03/09/2	22 18:20	0 Received: 03	s/10/22 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: El	PA 200.7			
Barium, Total Recoverable Boron, Total Recoverable Calcium, Total Recoverable	0.033 0.38 318	mg/L mg/L mg/L	0.0050 0.10 1.0	1 1 5	03/16/22 14:38 03/16/22 14:38 03/16/22 14:38	03/18/22 20:16 03/18/22 20:16 03/18/22 19:18	7440-39-3 7440-42-8 7440-70-2	M1
6010 MET ICP	Analytical Met Pace Analytica	hod: EPA 60 al Services -	10 Preparation Metl Kansas City	nod: EF	PA 3010			
Lithium, Total Recoverable	<0.030	mg/L	0.030	3	03/22/22 08:02	03/24/22 17:19	7439-93-2	
200.8 MET ICPMS	Analytical Met Pace Analytica	hod: EPA 20 al Services -	0.8 Preparation Met Kansas City	hod: El	PA 200.8			
Cobalt, Total Recoverable Molybdenum, Total Recoverable	0.0015 0.0075	mg/L mg/L	0.0010 0.0010	1 1	03/17/22 11:25 03/17/22 11:25	03/19/22 10:17 03/19/22 10:17	7440-48-4 7439-98-7	
2540C Total Dissolved Solids	Analytical Met Pace Analytica	hod: SM 254 al Services -	40C Kansas City					
Total Dissolved Solids	1460	mg/L	20.0	1		03/16/22 15:16		
4500H+ pH, Electrometric	Analytical Met Pace Analytica	hod: SM 450 al Services -	00-H+B Kansas City					
pH at 25 Degrees C	7.2	Std. Units	0.10	1		03/18/22 15:42		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica	hod: EPA 30 al Services -	0.0 Kansas City					
Chloride Fluoride Sulfate	128 0.23 950	mg/L mg/L mg/l	50.0 0.20 50.0	50 1 50		03/16/22 11:45 03/15/22 19:00 03/16/22 11:45	16887-00-6 16984-48-8 14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

i iojeci.

Pace Project No.: 60394852

Sample: IBA-2-030922	Lab ID: 603	394852002	Collected: 03/09/2	2 18:4	0 Received: 03	3/10/22 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	hod: EPA 20	0.7 Preparation Met	hod: E	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.027	mg/L	0.0050	1	03/16/22 14:38	03/18/22 20:29	7440-39-3	
Boron, Iotal Recoverable	0.21	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:29	7440-42-8	
Calcium, Iotal Recoverable	232	mg/∟	0.60	3	03/16/22 14:38	03/18/22 19:32	7440-70-2	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	<0.030	mg/L	0.030	3	03/22/22 08:02	03/24/22 17:26	7439-93-2	M1,R1
200.8 MET ICPMS	Analytical Met	hod: EPA 20	0.8 Preparation Met	hod: E	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt. Total Recoverable	<0.0010	ma/L	0.0010	1	03/17/22 11:25	03/19/22 10:20	7440-48-4	
Molybdenum, Total Recoverable	0.0020	mg/L	0.0010	1	03/17/22 11:25	03/19/22 10:20	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	hod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1240	mg/L	13.3	1		03/16/22 15:16		
4500H+ pH, Electrometric	Analytical Met	hod: SM 450)0-H+B					
-	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		03/18/22 15:44		H6
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
-	Pace Analytic	al Services -	Kansas City					
Chloride	110	ma/L	50.0	50		03/16/22 11:58	16887-00-6	
Fluoride	0.30	mg/L	0.20	1		03/15/22 19:53	16984-48-8	
Sulfate	577	mg/L	50.0	50		03/16/22 11:58	14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

i iojoot.

Pace Project No.: 60394852

Sample: IBA-3-030922	Lab ID: 603	394852003	Collected: 03/09/2	2 17:45	6 Received: 03	B/10/22 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met Pace Analytica	hod: EPA 20 al Services -	0.7 Preparation Met	hod: EF	PA 200.7			
Barium, Total Recoverable Boron, Total Recoverable Calcium, Total Recoverable	0.019 0.28 269	mg/L mg/L mg/L	0.0050 0.10 0.60	1 1 3	03/16/22 14:38 03/16/22 14:38 03/16/22 14:38	03/18/22 20:32 03/18/22 20:32 03/18/22 19:35	7440-39-3 7440-42-8 7440-70-2	
6010 MET ICP	Analytical Met Pace Analytica	hod: EPA 60 al Services -	10 Preparation Meth Kansas City	iod: EP	A 3010			
Lithium, Total Recoverable	<0.030	mg/L	0.030	3	03/22/22 08:02	03/24/22 17:28	7439-93-2	
200.8 MET ICPMS	Analytical Met Pace Analytica	hod: EPA 20 al Services -	0.8 Preparation Met Kansas City	hod: EF	PA 200.8			
Cobalt, Total Recoverable Molybdenum, Total Recoverable	0.0012 0.0020	mg/L mg/L	0.0010 0.0010	1 1	03/17/22 11:25 03/17/22 11:25	03/19/22 10:23 03/19/22 10:23	7440-48-4 7439-98-7	
2540C Total Dissolved Solids	Analytical Met Pace Analytica	hod: SM 254 al Services -	40C Kansas City					
Total Dissolved Solids	1410	mg/L	20.0	1		03/16/22 15:16		
4500H+ pH, Electrometric	Analytical Met Pace Analytica	hod: SM 450 al Services -	00-H+B Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		03/18/22 15:39		H6
300.0 IC Anions 28 Days	Analytical Met Pace Analytica	hod: EPA 30 al Services -	00.0 Kansas City					
Chloride Fluoride Sulfate	115 0.22 709	mg/L mg/L mg/L	50.0 0.20 50.0	50 1 50		03/16/22 12:12 03/15/22 20:20 03/16/22 12:12	16887-00-6 16984-48-8 14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

i iojeci.

Pace Project No.: 60394852

Sample: IBA-4-030922	Lab ID: 603	394852004	Collected: 03/09/2	2 17:2	5 Received: 03	3/10/22 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Me	thod: EPA 20	0.7 Preparation Met	hod: E	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.021	mg/L	0.0050	1	03/16/22 14:38	03/18/22 20:34	7440-39-3	
Boron, Total Recoverable	0.23	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:34	7440-42-8	
Calcium, Total Recoverable	107	mg/L	0.40	2	03/16/22 14:38	03/18/22 19:37	7440-70-2	
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation Meth	nod: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	0.033	mg/L	0.010	1	03/22/22 08:02	03/24/22 14:22	7439-93-2	
200.8 MET ICPMS	Analytical Me	thod: EPA 20	0.8 Preparation Met	hod: E	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Chromium, Total Recoverable	<1.0	ug/L	1.0	1	03/17/22 11:25	03/19/22 10:29	7440-47-3	
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/17/22 11:25	03/19/22 10:29	7440-48-4	
Molybdenum, Total Recoverable	0.0018	mg/L	0.0010	1	03/17/22 11:25	03/19/22 10:29	7439-98-7	
2540C Total Dissolved Solids	Analytical Me	thod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	623	mg/L	10.0	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Me	thod: SM 450	00-H+B					
	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	0.10	1		03/18/22 15:38		H6
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0					
	Pace Analytic	al Services -	Kansas City					
Chloride	18.2	mg/L	1.0	1		03/15/22 20:47	16887-00-6	
Fluoride	0.64	mg/L	0.20	1		03/15/22 20:47	16984-48-8	
Sulfate	159	mg/L	20.0	20		03/16/22 12:26	14808-79-8	

Project: JEC INACTIVE BOTTOM ASH POND C

1 10,000.

Pace Project No.: 60394852

Sample: DUP-IBA-030922	Lab ID: 603	394852005	Collected: 03/09/2	2 18:4	0 Received: 03	B/10/22 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Met	thod: EPA 20	00.7 Preparation Met	hod: E	PA 200.7			
	Pace Analytic	al Services -	Kansas City					
Barium, Total Recoverable	0.028	mg/L	0.0050	1	03/16/22 14:38	03/18/22 20:36	7440-39-3	
Boron, Total Recoverable	0.21	mg/L	0.10	1	03/16/22 14:38	03/18/22 20:36	7440-42-8	
Calcium, Total Recoverable	234	mg/L	0.60	3	03/16/22 14:38	03/18/22 19:39	7440-70-2	
6010 MET ICP	Analytical Met	thod: EPA 60	010 Preparation Meth	nod: EF	PA 3010			
	Pace Analytic	al Services -	Kansas City					
Lithium, Total Recoverable	<0.030	mg/L	0.030	3	03/22/22 08:02	03/24/22 17:30	7439-93-2	
200.8 MET ICPMS	Analytical Met	thod: EPA 20	0.8 Preparation Met	hod: E	PA 200.8			
	Pace Analytic	al Services -	Kansas City					
Cobalt, Total Recoverable	<0.0010	mg/L	0.0010	1	03/17/22 11:25	03/19/22 10:39	7440-48-4	
Molybdenum, Total Recoverable	0.0020	mg/L	0.0010	1	03/17/22 11:25	03/19/22 10:39	7439-98-7	
2540C Total Dissolved Solids	Analytical Met	thod: SM 254	40C					
	Pace Analytic	al Services -	Kansas City					
Total Dissolved Solids	1510	mg/L	13.3	1		03/16/22 15:17		
4500H+ pH, Electrometric	Analytical Met	thod: SM 450	00-H+B					
-	Pace Analytic	al Services -	Kansas City					
pH at 25 Degrees C	7.3	Std. Units	s 0.10	1		03/18/22 15:34		H6
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 30	0.0					
-	Pace Analytic	al Services -	Kansas City					
Chloride	106	mg/L	50.0	50		03/16/22 12:40	16887-00-6	
Fluoride	0.31	mg/L	0.20	1		03/15/22 21:13	16984-48-8	
Sulfate	537	mg/L	50.0	50		03/16/22 12:40	14808-79-8	

Project: JE Pace Project No.: 60	EC INACTIVE BO 0394852	TTOM ASH PON	ND C									
QC Batch:	775828		Anal	ysis Method	d: E	PA 200.7						
QC Batch Method:	EPA 200.7		Anal	ysis Descrij	otion: 2	00.7 Metals	s, Total					
			Labo	oratory:	P	ace Analyti	cal Servic	es - Kansa	s City			
Associated Lab Sample	es: 603948520	001, 6039485200	2, 603948	52003, 603	94852004, 6	039485200)5					
METHOD BLANK: 30	096622			Matrix: W	ater							
Associated Lab Sample	es: 603948520	01,6039485200	2, 603948	52003, 603	94852004, 6	039485200)5					
			Bla	nk l	Reporting							
Paramet	er	Units	Res	sult	Limit	Analy	zed	Qualifier	s			
Barium		mg/L	<	0.0050	0.0050	03/18/22	2 19:14					
Boron		mg/L		<0.10	0.10	03/21/22	2 12:42					
Calcium		mg/L		<0.20	0.20	03/18/22	2 19:14					
LABORATORY CONTI	ROL SAMPLE:	3096623	0									
Paramot	or	Unite	Spike	LU	5 	LUS % Roc	% R	ec	Qualifiara			
		Units				/0 Kec			Quaimers	_		
Barium		mg/L		1	1.0	103	3	85-115				
Boron		mg/L		10	0.97	97 107		85-115 95-115				
Calcium		ing/∟		10	10.4	104	r	00-110				
MATRIX SPIKE & MAT	RIX SPIKE DUPI	_ICATE: 3096	624		3096625							
			MS	MSD								
_		60394852001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	mg/L	0.033	1	1	1.1	1.0	102	101	70-130	2	20	
Boron	mg/L	0.38	1	1	1.4	1.4	98	98	70-130	1	20	
Calcium	mg/L	318	10	10	323	320	56	25	70-130	1	20	M1
MATRIX SPIKE SAMP	LE:	3096626										
			60394	4834001	Spike	MS		MS	% Rec			
Paramet	er	Units	Re	esult	Conc.	Result	%	6 Rec	Limits		Quali	fiers
Barium		mg/L		0.036	1		1.1	105	70	-130		
Boron		mg/L		0.40	1		1.4	101	70	-130		
Calcium		mg/L		207	10	:	220	132	70	-130 M	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	JEC INACTIVE B 60394852	OTTOM ASH PON	ND C									
QC Batch:	776076		Anal	ysis Metho	d: I	EPA 200.8						
QC Batch Method:	EPA 200.8		Anal	ysis Descr	iption:	200.8 MET						
			Labo	oratory:	I	Pace Analyt	tical Servio	ces - Kansa	as City			
Associated Lab San	nples: 60394852	2001, 6039485200	2, 603948	52003, 603	94852004,	603948520	05					
METHOD BLANK:	3097414			Matrix: W	/ater							
Associated Lab San	nples: 60394852	001, 6039485200	2, 603948	52003, 603	94852004,	603948520	05					
			Bla	nk	Reporting							
Paran	neter	Units	Res	sult	Limit	Anal	yzed	Qualifie	rs			
Chromium		ug/L		<1.0	1.	0 03/19/2	2 10:12					
Cobalt		mg/L	<	0.0010	0.001	0 03/19/2	2 10:12					
Molybdenum		mg/L	<	:0.0010	0.001	0 03/19/2	2 10:12					
LABORATORY COM	NTROL SAMPLE:	3097415										
			Spike	LC	CS	LCS	% F	Rec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Lim	nits	Qualifiers	_		
Chromium		ug/L	4	40	42.2	10	6	85-115				
Cobalt		mg/L	0.0	04	0.041	10	1	85-115				
Molybdenum		mg/L	0.0	04	0.042	10	4	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DUP	PLICATE: 3097	416		3097417							
			MS	MSD								
Parameter	. Units	60394852004 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chromium	ug/L	<1.0	40	40	39.8	39.7	99	999	9 70-130	0	20	
Cobalt	mg/L	<0.0010	0.04	0.04	0.035	0.035	88	8 89	9 70-130	1	20	
Molybdenum	mg/L	0.0018	0.04	0.04	0.042	0.042	101	100	0 70-130	0	20	
MATRIX SPIKE SAM	MPLE:	3097418										
			60394	4874001	Spike	MS		MS	% Rec	;		
Paran	neter	Units	Re	esult	Conc.	Result		% Rec	Limits		Qualif	iers
Chromium		ug/L		1.4	40	4	42.6	103	70	-130		
Cobalt		mg/L		11.7 ug/L	0.04	0.	.050	95	70	-130		
Molybdenum		mg/L		5.9 ug/L	0.04	0.	.048	106	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC INACTIVE BO	OTTOM ASH POM	ND C									
Pace Project No.:	60394852											
QC Batch:	776740		Anal	ysis Met	thod:	EPA 6010						
QC Batch Method:	EPA 3010		Anal	ysis Des	scription:	6010 MET						
			Labo	oratory:		Pace Analy	tical Servic	es - Kansa	as City			
Associated Lab Sar	mples: 60394852	001, 6039485200	2, 6039485	52003, 6	60394852004,	603948520	005					
METHOD BLANK:	3099656			Matrix:	Water							
Associated Lab Sar	nples: 60394852	001, 6039485200	2, 603948	52003, 6	60394852004,	603948520	05					
			Bla	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Anal	yzed	Qualifie	rs			
Lithium		mg/L		<0.010	0.01	03/24/2	2 14:06					
LABORATORY CO	NTROL SAMPLE:	3099657										
			Spike		LCS	LCS	% R	ec				
Parar	neter	Units	Conc.	I	Result	% Rec	Limi	its	Qualifiers	_		
Lithium		mg/L		1	0.86	8	6 8	80-120				
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 3099	658		309965	9						
			MS	MSD								
_		60394852002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	.
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Lithium	mg/L	<0.030	2		2 2.1	0.17	105	-	7 75-125	171	20	M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: JE	EC INACTIVE B	OTTOM ASH PO	ND C					
Pace Project No.: 60)394852							
QC Batch:	775867		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
			Laboratory:		Pace Analytica	Services - Ka	nsas City	
Associated Lab Sample	es: 60394852	2001						
METHOD BLANK: 30	96792		Matrix	: Water				
Associated Lab Sample	es: 60394852	2001						
			Blank	Reporting				
Paramete	er	Units	Result	Limit	Analyze	d Quali	ifiers	
Total Dissolved Solids		mg/L	<5.0	5	.0 03/16/22 1	5:12		
LABORATORY CONTR	ROL SAMPLE:	3096793						
			Spike	LCS	LCS	% Rec		
Paramete	er	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Solids		mg/L	1000	1000	100	80-120		
SAMPLE DUPLICATE:	3096794		00004004000	Dur		Mari		
Paramet	or	Linite	60394821003 Result	Dup	PPD	RPD	Qualifie	are
	51							
Total Dissolved Solids		mg/L	1040	0 105	50	0	10	
SAMPLE DUPLICATE:	3096795							
			60394850001	Dup		Max		
Paramete	er	Units	Result	Result	RPD	RPD	Qualifie	ers
Total Dissolved Solids		mg/L	545	53	32	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC INACTIVE B	OTTOM ASH PON	DC					
Pace Project No.:	60394852							
QC Batch:	775868		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Dis	ssolved Solids		
			Laboratory:		Pace Analytical	Services - Kar	nsas City	
Associated Lab San	nples: 60394852	2002, 60394852003	3, 60394852004,	60394852005				
METHOD BLANK:	3096796		Matrix	: Water				
Associated Lab San	nples: 60394852	2002, 60394852003	3, 60394852004,	60394852005				
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solid	ds	mg/L	<5.0	5	.0 03/16/22 15	5:16		
LABORATORY COM	NTROL SAMPLE:	3096797						
_			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Solid	ds	mg/L	1000	996	100	80-120		
	FE 0000700							
SAMPLE DUPLICA	IE: 3096798		6030/853005	Dup		Мах		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solid	ds	mg/L	3170	300	00	6	10	_
SAMPLE DUPLICA	IE: 3096799		60204020004	Dun		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solid	ds	mg/L	17600	1760	00	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	JEC INACTIVE BO 60394852	TTOM ASH PON	DC					
QC Batch:	776255		Analysis Meth	od:	SM 4500-H+B			
QC Batch Method:	SM 4500-H+B		Analysis Desc	ription:	4500H+B pH			
			Laboratory:		Pace Analytical	Services - Kan	isas City	
Associated Lab Sar	nples: 603948520	001, 60394852002	2, 60394852003, 60	394852004,	60394852005			
SAMPLE DUPLICA	TE: 3097993							
			60394734002	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	7.2	7	.3	0	5 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	JEC INACTIVE BO	TTOM ASH PON	ID C										
Pace Project No .:	60394852												
QC Batch:	775525		Analy	sis Metho	od:	EF	PA 300.0						
QC Batch Method:	EPA 300.0		Analy	sis Desci	ription:	30	0.0 IC Ani	ons					
			Labor	atory:		Pa	ace Analyti	cal Serv	ices - Kans	as City			
Associated Lab Sam	nples: 603948520	01, 6039485200	2, 60394852	2003, 603	394852004	4, 60)3948520()5					
METHOD BLANK:	3095465			Matrix: V	Vater								
Associated Lab Sam	nples: 603948520	01, 6039485200	2, 60394852	2003, 603	394852004	4, 60)39485200)5					
D		1.1.2.1.4	Blan	k	Reporting	9	A						
Param		Units	Resu	lit	Limit		Analy	zea	Qualifie	ers			
Chloride		mg/L		<1.0		1.0	03/15/22	2 17:13					
Fluoride		mg/L		<0.20	0	.20	03/15/22	2 17:13					
Sullate		ilig/L		<1.0		1.0	03/13/22	. 17.13					
METHOD BLANK:	3097419			Matrix: V	Vater								
Associated Lab Sam	nples: 603948520	01, 6039485200	2, 60394852	2003, 603	394852004	4, 60)39485200)5					
_			Blan	k	Reporting	9							
Param	neter	Units	Resu	ilt	Limit		Analy	zed	Qualifie	ers			
Chloride		mg/L		<1.0	_	1.0	03/16/22	2 08:52					
Fluoride		mg/L		<0.20	0	.20	03/16/22	2 08:52					
Suifate		mg/L		<1.0		1.0	03/16/22	2 08:52					
LABORATORY COM	TROL SAMPLE:	3095466											
_			Spike	L	CS		LCS	%	Rec				
Param	neter	Units	Conc.	Re	esult	, ,	% Rec	Lir	nits	Qualifiers			
Chloride		mg/L	į	5	5.2		105	5	90-110				
Fluoride		mg/L	2.5	5	2.4		97		90-110				
Sulfate		mg/L	Ę	5	5.1		103	3	90-110				
LABORATORY CON	NTROL SAMPLE:	3097420											
			Spike	L	CS		LCS	%	Rec				
Param	neter	Units	Conc.	Re	esult	q	% Rec	Lir	nits	Qualifiers			
Chloride		mg/L		5	4.7		95	5	90-110				
Fluoride		mg/L	2.5	5	2.7		108	3	90-110				
Sulfate		mg/L	Ę	5	5.1		102	2	90-110				
MATRIX SPIKE & M	IATRIX SPIKE DUPL	_ICATE: 30954	467		30954	68							
			MS	MSD									
_		60390971001	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	180	50	50) 22	8	228	9	7 9	6 80-120	0	15	E,H1
Fluoride	mg/L	0.623	2.5	2.5	5 3.	3	3.4	10	8 11	1 80-120	2	15	H1
Sulfate	mg/L	26.5	50	50) 75.	4	75.1	9	8 9	7 80-120	0	15	H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H1 Analysis conducted outside the EPA method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: JEC INACTIVE BOTTOM ASH POND C

Pace Project No.: 60394852

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60394852001	IBA-1-030922	EPA 200.7	775828	EPA 200.7	776011
60394852002	IBA-2-030922	EPA 200.7	775828	EPA 200.7	776011
60394852003	IBA-3-030922	EPA 200.7	775828	EPA 200.7	776011
60394852004	IBA-4-030922	EPA 200.7	775828	EPA 200.7	776011
60394852005	DUP-IBA-030922	EPA 200.7	775828	EPA 200.7	776011
60394852001	IBA-1-030922	EPA 3010	776740	EPA 6010	776977
60394852002	IBA-2-030922	EPA 3010	776740	EPA 6010	776977
60394852003	IBA-3-030922	EPA 3010	776740	EPA 6010	776977
60394852004	IBA-4-030922	EPA 3010	776740	EPA 6010	776977
60394852005	DUP-IBA-030922	EPA 3010	776740	EPA 6010	776977
60394852001	IBA-1-030922	EPA 200.8	776076	EPA 200.8	776191
60394852002	IBA-2-030922	EPA 200.8	776076	EPA 200.8	776191
60394852003	IBA-3-030922	EPA 200.8	776076	EPA 200.8	776191
60394852004	IBA-4-030922	EPA 200.8	776076	EPA 200.8	776191
60394852005	DUP-IBA-030922	EPA 200.8	776076	EPA 200.8	776191
60394852001	IBA-1-030922	SM 2540C	775867		
60394852002	IBA-2-030922	SM 2540C	775868		
60394852003	IBA-3-030922	SM 2540C	775868		
60394852004	IBA-4-030922	SM 2540C	775868		
60394852005	DUP-IBA-030922	SM 2540C	775868		
60394852001	IBA-1-030922	SM 4500-H+B	776255		
60394852002	IBA-2-030922	SM 4500-H+B	776255		
60394852003	IBA-3-030922	SM 4500-H+B	776255		
60394852004	IBA-4-030922	SM 4500-H+B	776255		
60394852005	DUP-IBA-030922	SM 4500-H+B	776255		
60394852001	IBA-1-030922	EPA 300.0	775525		
60394852002	IBA-2-030922	EPA 300.0	775525		
60394852003	IBA-3-030922	EPA 300.0	775525		
60394852004	IBA-4-030922	EPA 300.0	775525		
60394852005	DUP-IBA-030922	EPA 300.0	775525		

		WO#:60394852
Pace DC#_Title: ENV-FRM-	LENE-0009_Samı	ple Co 50394852
AMANTICIA ELEVICE Revision: 2 Effe	ective Date: 01/12/2	022 Issued By: Lenexa
Client Name: Wergu		
Courier: FedEx 🗆 UPS 🗆 🕢 IA 🗗 Clay 🗆	PEX 🗆 🛛 ECI 🗆	Pace 🗆 Xroads 🗆 Client 🗖 Other 🗆
Tracking #: Page Page Page Page Page Page Page Page	ce Shipping Label Use	d? Yes □ No Ø
Custody Seal on Cooler/Box Present: Yes 🖵 No 🗆	Seals intact: Yes	
Packing Material: Bubble Wrap D Bubble Bags I		None \Box Other $\mathbb{Z}_{\mathbb{Z}}$
Cooler Temperature (°C): As read $4 c$ Corr Fac		Date and initials of period 241
Temperature should be above freezing to 6°C	tor <u>0 - a</u> Correc	ted 5.8 [examining contents:///
Chain of Custody present:		
Chain of Custody present.		
Samples arrived within holding time:		
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:	Yes □No □N/A	
Sufficient volume:		
Correct containers used:	Yes No N/A	
Pace containers used:		
Containers intact:		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □AI/A	
Filtered volume received for dissolved tests?	Yes No VN/A	
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix: 64		
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	□Yes □No □ / /A :	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
rip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field		
Client Notification/ Resolution: Copy COC to	Client? Y // N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
Project Manager Review:	Date	2:

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Sectio	d Client Information:	Section B Required P	roject Ir	nformat	tion:				Secti	U U											Ľ					
Compan	W: EVERGY KANSAS CENTRAL, INC.	Report To:	Meliss	sa Mic	chels, S	amantha	Kaney, D	anielle Zin	sin Attent	OU:	Acco	unts P	avable	0			Г							,		
Address	Jeffrey Energy Center (JEC)	Copy To:	Jared	Morri	ison, Ja	ke Hump	hrey, Lau	a Hines	Comp	man ynam	iei E	VERG	Y KAN	ISAS	CENT	RAI	ON									r
	818 Kansas Ave, Topeka, KS 66612						8		Addres	5	SEE	SECT	A NOI						ATOR		Σ					Т
Email To	melissa.michels@evergy.com	urchase O	rder No.	10	DJEC-00	000477	25		Pace Q	uote							Т		בי בי	5 5		VATER			WATER	
Phone:	785-575-8113 Fax: P	rolect Nam	ie.		a china l	A mother	Dand de	6	Referen	Ice:							-	CS.		RC	₹.		LO L	HER		
			2		Iacive t	SOROTH A	Sn Pond C	¥.	Manage	r)ect	Alice	Spille	rr, 913-	-563-1	403			Shte Lo	cation				同語	and the second	THE THE	101
sanbax	red Due Date//A1: 7 day	roject Num	iber.						Pace P	rofile #	9657	. 2					Г	ŝ	ATE:		KS					SSIL
L		Ī	ł	ł										Н	R	duest	ed An	alysis	Filtere	NIX) P					and the second	
	Section D Valid Matrix Coc Required Client Information <u>MATRIX</u> 2	ies cope	(fiel of	(awc		COLLE	CTED				Prese	*rvative	8	N //	z	Z 7	z	z	2		F					The state
		ارر ۶۲۶	sepoo pilen ees)))=) 8A98=	COMPOS STAR	3TE	COMPOSI		S						**sli	QII	***	<u> </u>				(N/A)		1	6	
# WƏLI		e œ⊢ ø) EDOD XIATAM	 D) BAYT BLAMA8 	DATE	E	DATE		# OF CONTAINER	H ⁵ CO ⁴ Jubieseived	-ICI -INO ³	HOBY	A20203 Methanol	test zisγlenA.	steM IstoT 7.00	00.0 CI, F, S	Hq \ 20 010 Total Metal	922 muibe	muibeA leto			sesidual Chlorine	E	S.	5	
Ŧ	IBA-1-030922		ž	0			20/09/02	18:20			1 0				2 >	E >	Т 9	Я	I.	1	1	Б Н	Pace Pri	oject No	/ Lab I.D.	T
2	IBA-2-030922		5	0			03/09/22	18:40	4	10	10		T	Т		< >	<	× ,	× >	-	+	+				T
e	IBA-3-030922		1×	0	3	ы т	03/09/22	17:45	4	1 0	1 0		1	T.	< >		< > < >	< >	< >	1	Ŧ	+				1
4	IBA-4-030922		TW TW	0			03/09/22	17:25	4	2	1 0	E	1	1		< >	< > < >				Ŧ	+				T
ŝ	DUP-IBA-030922		WT V	U			03/09/22	18:40	4	0	~	E		T	×	< ×	< ×				-					Т
ø				\square						-		1		1		-	4	-			F	+				1
-				-														E		F	F	╞				T
80								_		F		E		Г			+			L		-				T
0														F			-			F	F	╞				1
9				1				-			-			1			-	t		F	1	╞				T
ŧ														T							1	+				-
12			-	_						_	-			_						F	F					Т
	ADDITIONAL COMMENTS		RELING	JUISHE	ED BY / A	FFILIATIO	z	DATE	Ē	ų		Ā	CCEPTI	ED BY	AFFIL	NOLLA		A	μ	IMIT	1	ľ	SAMPLE	OITION	sk	-
200.7 Tot	tai Metaks*: B, Ba, Ca		, L	Ison R.	. Franks	/ scs		3/10/22		g	5	#	5	P		È	010	12	54	10	m		Ę	Ľ		-
200.B Tot	tal Metals**; Co, Mo													B			5	1	R	201	5		2	T		-
6010 Tote	ai Metais***: ∟í (1 metal)																		-		+	_	+	1		
(2) 1L nitr notes)	tic preserved for all Radium analysis (Pace PM-see profile																		+		_		+	T		-r-
Pa					f	AMPLER	NAME AN	D SIGNATI	<u>"</u>	1											+	1	- P	T	*	-
age					-	ſ	and shows														ں .د T	uo p	(N	(N/)	ceju	_
927						1	RINT Name	of SAMPLER	: Jason	R. Fr	Suks				10.4						uj dui)9Vi9C		v) vier (Y	ii aelc (N\Y)	
of 2						ຶ	IGNATURE	of SAMPLER	Da	1000	X	5	200	les	UMM)	Signe (YY)	τ		3/10/22		Ter	Сөр		Cool) dweg	
28									1			-													3	-1

F-ALL-Q-020rev.08, 12-Oct-2007

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month to any involces not paid within 30 days.

		hper brc hbDn hb3S hb3C	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7														Wipe/Swab	120mL Coliform Na hiosulfate	Ziploc Bag	Air Filter	Terracore Kit	Summa Can			Matrix	1.Matar	Solid	Non-aqueous Liquid	OIL	Wipe	Drinking Water				
~		559	8														_	SP5T	ZPLC	H ۲	<u>ه</u> د	<u> </u>				ΤM	SL	NAL	Ы	WP	DW			_	
()	2	BP3F	8											, P												Par	B								
V	2	BP3N	8			F	ľ							-										stic	e	ald filto		stic		e	stic				
gli	8	NLds	8-			F	7					1								lastic	stic	stic	astic	ed plas	Aceta	stic - fie	stic	ed plas	astic	Acetal	ed plas	stic	astic d nictic		
*	t sa	3630	8	-	1	F	>	-		+	-		-	-		actic	olastic	plastic	plastic	Zn Are	OH DIa	03 pla	S04 pl	reserv	SH, Z		03 pla:	reserv	SO4 pla	DH, Zn	reserv	03 pla:	serve		
	Not	BP2U		-	-								-				AOH F	NO3 F	12004	Inprese	TL NA	HN H	nL H2	ur ur	nL Na(NH Tu	nL unp	nL H25	nL Na(nL unp				
	15	0148	3-	-	+	-	17					-		+			JL N				500r	500r	500r		2005	2501	250r	250r	250r	250r	125r	125r	1601		
	2	Nebn	^ 	-			-	-	-	-	-	-					U	z	0		0	z	s	, c		۱	z)	s	N	_	zlo			
	Ŧ	WEKN	^	-	-	_	-	-	-		-	-	-	-			BP1	Bb			BP2	BP2	BP2				BP3	BP3	BP3	BP3	BP4				
	5	IGEN			-		-	\vdash	-	-			-	-									glass												
	\$	VG5U	1		-		\vdash	\vdash	-										- vido	ass			amber	s	ISS	ass	ass	ass	ass	ass					
	F	AG4U	1				-	_	-	-									- danc	au luci	SS	glass	clear/	er glas	nher gi	nber a	ber gl	lber gl	iber gl	lber gl					
	0	AG3S	1				_							-			oiljar	oil jar	por la	res an	ber gla	amber	sulfate			004 ar	res an	res an	res an	res an					
		VG2U	-	_			-										clear s	clear s		und nL und	ICI am	2SO4	a Thio			nL H2	nL unp	nL unp	nL unp	nL unp					
	2	UIBA								-				-			8oz	204	407	1001	11	1				250r	500r	250r	125r	5 P					
	L-	HtəA				_											S.				Ŧ	s	_ =		z	S	2	2		_					
	52	0198		-		-								-		Slass	9M M		19	AQC 2	AG1	AG	AG		AG.	AG3	AG2	AG3	AGA	AG5					7
tainer C	X	8690				_		-						-		Ŭ																		Y	2
		W690				-		_									-= [9	5			9	eq		r vial				3SS						11 11	128
o1_Sam	2	1650			_	-											ear via	ar vial	r vial	ber vi	nber vi	reserv	aar vis		ar alas:	s	r glass	lear gl						20	n
ENE-00 ate: Iso ant:	ţ	5 1165V		_	_	_		_		_							Ifate cl	OH Cles	ambe	O4 arr	Thio an	er unp		Pana a	04 cles	es glas	L Clea	pres C	soil ai					50	N N N
-FRM-LI ective Da	S	0650			_	_	_		_	_								MeC	IL TSP	1L H2S	IL Na				r H2S(r unpre	ML HO	mL Un	z clear					~	ر
tle: ENV 1:3 Eff(_	_	_	_		_	_				$\left \right $			404	401	40n	40n	40u	4 1 1	404	40m	1lite	1lite	250	250	160					Number	
DC#_Tit Revisior		NGOH VUIDIA	+			_			_	_		_		\square	les		98 91	W6	g	SS	16	100			15	10	문	DB.	nn					k Order	
		U E	3	-			~	_	_	_					ner Cod		ЭĊ	88	ß	ß	g		2 S	2 S	BB	BG	Ш Ш С	BG	2					Wor	
		Line It	-	2	3	4	2	9	~	∞	თ	10	11	12	Contai																				F

Page 1 of 1

Page 28 of 28