### 2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

### CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To: Evergy Metro, Inc.



27213167.21 | January 2022, Revised December 16, 2022

8575 W 110<sup>th</sup> Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

#### CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).



Douglas L. Doerr, P.E.

SCS Engineers

| Revision<br>Number | Revision<br>Date  | Revision Section | Summary of Revisions |
|--------------------|-------------------|------------------|----------------------|
| 0                  | January 2022      | NA               | Original Report.     |
| 1                  | December 16, 2022 | Addendum 1       | Added Addendum 1     |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |
|                    |                   |                  |                      |

#### Table of Contents

| Sect | ion    |         | Pag                                                                                         | ge      |
|------|--------|---------|---------------------------------------------------------------------------------------------|---------|
| CERT | IFICAT | IONS    |                                                                                             | i       |
| 1    | INTRO  | ODUCTIO | ON                                                                                          | 1       |
|      | 1.1    | § 257.  | .90(e)(6) Summary                                                                           | 1       |
|      |        | 1.1.1   | § 257.90(e)(6)(i) Initial Monitoring Program                                                | 1       |
|      |        | 1.1.2   | § 257.90(e)(6)(ii) Final Monitoring Program                                                 | 1       |
|      |        | 1.1.3   | § 257.90(e)(6)(iii) Statistically Significant Increases                                     | 1       |
|      |        | 1.1.4   | § 257.90(e)(6)(iv) Statistically Significant Levels                                         | 2       |
|      |        | 1.1.5   | § 257.90(e)(6)(v) Selection of Remedy                                                       | 2       |
|      |        | 1.1.6   | § 257.90(e)(6)(vi) Remedial Activities                                                      | 2       |
| 2    | § 257  | 7.90(e) | ANNUAL REPORT REQUIREMENTS                                                                  | 3       |
|      | 2.1    | § 257.  | 90(e)(1) Site Map                                                                           | 3       |
|      | 2.2    | § 257.9 | 90(e)(2) Monitoring System Changes                                                          | 3       |
|      | 2.3    | § 257.9 | 90(e)(3) Summary of Sampling Events                                                         | 3       |
|      | 2.4    | § 257.9 | 90(e)(4) Monitoring Transition Narrative                                                    | 4       |
|      | 2.5    | § 257.9 | 90(e)(5) Other Requirements                                                                 | 4       |
|      |        | 2.5.1   | § 257.90(e) Program Status                                                                  | 4       |
|      |        | 2.5.2   | § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency.                | 5       |
|      |        | 2.5.3   | § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration                          | 5       |
|      |        | 2.5.4   | § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequence                | cy<br>6 |
|      |        | 2.5.5   | § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater<br>Protection Standards | 6       |
|      |        | 2.5.6   | § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration                     | 6       |
|      |        | 2.5.7   | § 257.96(a) Demonstration for Additional Time for Assessment of Corrective                  | 6       |
|      | 26     | 8 257   | 90(e)(6) Overview Summary                                                                   |         |
| 3    | GENF   |         | MMENTS                                                                                      | 7       |
| -    |        |         |                                                                                             |         |

#### Appendices

| Appendix A        | Figures                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure :          | 1: Site Map                                                                                                                                                             |
| Figure :          | 2: Potentiometric Surface Map (May 2021)                                                                                                                                |
| Figure :          | 3: Potentiometric Surface Map (November 2021)                                                                                                                           |
| <b>Appendix B</b> | Tables                                                                                                                                                                  |
| Table 1           | : Appendix III Detection Monitoring Results                                                                                                                             |
| Table 2           | : Detection Monitoring Field Measurements                                                                                                                               |
| Appendix C        | CCR Groundwater Monitoring Alternative Source Demonstration Report<br>November 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating<br>Station (May 2021). |
| Addendum 1        | 2021 Annual Groundwater Monitoring and Corrective Action Report Addendum 1                                                                                              |

#### 1 INTRODUCTION

This 2021 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Metro, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station.

#### 1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

#### 1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2021), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

#### 1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2021), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

#### 1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

| Monitoring Event | Monitoring Well | Constituent | ASD        |
|------------------|-----------------|-------------|------------|
| Fall 2020        | MW-10           | Calcium     | Successful |
| Fall 2020        | MW-10           | Sulfate     | Successful |

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

#### 1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

#### 1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

#### 1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

#### 2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action, to the extent available:

#### 2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

#### 2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2021.

#### 2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under § 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2021). Samples collected in 2021 were collected and analyzed for Appendix III detection monitoring constituents. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include Fall 2020 semiannual detection monitoring event verification sample data collected and analyzed in 2021; Spring 2021 semiannual detection monitoring data, verification sample data; and, the initial Fall 2021 semiannual detection monitoring data. The dates of sample collection are also provided in these tables.

#### 2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2021. Only detection monitoring was conducted in 2021.

#### 2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in § 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

#### 2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2020 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2020 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2020 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2020 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2021 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2021 semiannual detection monitoring sampling and analysis event per the certified statistical method, and
- g. initiation of the Fall 2021 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2022).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2021 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2022 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2022 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

#### 2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by  $\S 257.90(e)$ .

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

# 2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as **Appendix C**:

CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, CCR Landfill, Iatan Generating Station (May 2021).

#### 2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

## 2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

# 2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

# 2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that

the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

#### 2.6 § 257.90(e)(6) OVERVIEW SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

#### **3 GENERAL COMMENTS**

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the latan Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

#### APPENDIX A

### FIGURES

Figure 1: Site Map

Figure 2: Potentiometric Surface Map (May 2021)

Figure 3: Potentiometric Surface Map (November 2021)



|                  |                                         | Ϋ́Ρ     | 11          | ·                      | <u> </u>         | ı             |
|------------------|-----------------------------------------|---------|-------------|------------------------|------------------|---------------|
|                  |                                         |         |             |                        |                  |               |
|                  |                                         |         |             |                        |                  |               |
| <u>SEND:</u>     |                                         |         |             |                        |                  |               |
| A / IA/ 1        | CCR GROUNDWATER MONITORING              |         |             |                        |                  |               |
| w w — 1          | WELL SYSTEM                             | ш       |             |                        | +                |               |
|                  | UTILITY WASTE LANDFILL UNIT             | EV. DAT |             |                        |                  | '<br>1/       |
|                  | BOUNDARY                                | RE      |             |                        | 1                | ۹ <u>&gt;</u> |
|                  |                                         |         | ТЕМ         |                        | RING             | ORT           |
|                  |                                         |         | 3 SYS       |                        | IITOF            | REF           |
| 001701           |                                         |         | ORINC       |                        | NOM              | TION          |
| URIZON<br>TATE P | IAL DATUM: MISSOURI<br>LANE COORDINATE  | 1AP     | IDFILL      |                        | TER              | I AC          |
| YSTEM,           | WEST ZONE (NAD 83)                      | SITE N  | TER N       |                        | MA               | VOIT.         |
| ERTICAL          | DATUM: NAVD 88                          |         | IDWA        |                        | INNC             | REC           |
| OOGLE            | EARTH IMAGE DATED                       | ш       | ROUN        | ILE                    | GRC              | СОЯ           |
|                  | Y 2020. BOUNDARY                        | ет тп   | CR G        | JECT T                 | 2021             | AND           |
| RE APF           | PROXIMATE                               | SHEI    | 0           | PRO                    |                  |               |
| OUNDAI           | RY AND MONITOR WELL                     |         | ĮΝΥ         |                        |                  |               |
|                  | NS PROVIDED BY                          |         | AMR         |                        |                  |               |
| σαμο α           |                                         |         | T CC        | VTION                  |                  |               |
| CR LAN<br>HOWN   | IDFILL UNIT BOUNDARY<br>IS APPROXIMATE. |         | IGH         | GSTA                   | DURI             |               |
|                  |                                         |         | В&I         | ATIN                   | MISS             |               |
|                  |                                         |         | DWE         | BNE                    | ATAN,            |               |
|                  |                                         |         | Z P(        | TAN                    | 4                |               |
|                  |                                         |         | s ci'       | Ā                      |                  |               |
|                  |                                         | IENT    | NSA         |                        |                  |               |
|                  | X                                       | 5       | Ą           |                        | _                |               |
|                  |                                         |         |             |                        | JRR              | JRR           |
|                  |                                         | ď       | )           | 0                      | Q/A RWW B        | PROJ. MGR     |
|                  | THE                                     | й<br>Ц  | ļ           | 681-0012               | Ē                | -             |
|                  | NORA                                    |         | 1<br>0<br>1 | : 66210<br>VX. (913)   | en: ALR          | er: JRR       |
|                  |                                         |         | n St, Ste.  | (, Kansas<br>-0030 F/  | 20 DWN.          | ₹             |
|                  | PLANT NORTH                             | U<br>U  | W. 110th    | land Park<br>(913) 681 | 213167.2         | ALR           |
|                  |                                         | Ŭ       | 8575        | PH. (                  | PROJ. NO.<br>272 | DSN. BY:      |
|                  |                                         |         | COR BASE    | 2021.DWG               |                  |               |
|                  | 0 500 1000                              | DATE    | :<br>1/1    | 1/2                    | 22               |               |
|                  | FEET                                    | FIGU    | ND.         | 1                      |                  |               |
|                  |                                         |         |             | 1                      |                  |               |
|                  |                                         |         |             |                        |                  |               |





#### APPENDIX B

#### TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

#### Table 1 CCR Landfill Appendix III Detection Monitoring Results Evergy latan Generating Station

|           |          |        | Appendix III Constituents       n     Calcium<br>(mg/L)     Chloride<br>(mg/L)     Fluoride<br>(mg/L)     pH<br>(S.U.)     Sulfate<br>(mg/L)     Total<br>Dissolved<br>Solids<br>(mg/L)         **7.36      *484       00     137     5.59     0.257     7.34     33.3     500       00     152     6.48     0.314     6.89     35.4     537       00     167     6.45     0.316     7.05     126     611       00     165     6.68     0.371     6.80     114     595       *164       **6.97         *153       **7.15         *153       **6.97         *147     *1.56      **6.93     *31.6     *542(H)         ***6.99      **550       00     148     6.03     0.342     6.40     57.2     513 |          |          |        |         |                    |  |  |
|-----------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|---------|--------------------|--|--|
| NA ( - 11 | Commite  | Beren  | Calaium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chlorido | Flueride | -11    | Sulfata | Total<br>Dissolved |  |  |
| weii      | Sample   | Boron  | Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chioride | Fluoride | рн     | Suitate | Solids             |  |  |
| Number    | Date     | (mg/L) | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/L)   | (mg/L)   | (S.U.) | (mg/L)  | (mg/L)             |  |  |
| MW-1      | 02/02/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | **7.36 |         | *484               |  |  |
| MW-1      | 05/20/21 | <0.200 | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.59     | 0.257    | 7.34   | 33.3    | 500                |  |  |
| MW-1      | 11/17/21 | <0.200 | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.48     | 0.314    | 6.89   | 35.4    | 537                |  |  |
| MW-2      | 05/20/21 | <0.200 | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.45     | 0.316    | 7.05   | 126     | 611                |  |  |
| MW-2      | 11/17/21 | <0.200 | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.68     | 0.371    | 6.80   | 114     | 595                |  |  |
| MW-6      | 02/02/21 |        | *164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | **6.97 |         |                    |  |  |
| MW-6      | 03/01/21 |        | *153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | **7.15 |         |                    |  |  |
| MW-6      | 05/20/21 | <0.200 | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.75     | 0.274    | 6.26   | 46.9    | 619                |  |  |
| MW-6      | 07/20/21 |        | *147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *1.56    |          | *6.93  | *31.6   | *542(H)            |  |  |
| MW-6      | 08/04/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | **6.99 |         | *550               |  |  |
| MW-6      | 11/17/21 | <0.200 | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.12     | 0.344    | 7.08   | 32.2    | 508                |  |  |
| MW-7      | 05/20/21 | <0.200 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.03     | 0.342    | 6.40   | 57.2    | 513                |  |  |
| MW-7      | 07/20/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | *7.54  |         |                    |  |  |
| MW-7      | 11/17/21 | <0.200 | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.72     | 0.383    | 7.05   | 31.0    | 446                |  |  |
| MW-8      | 02/02/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *8.22    |          | **7.18 |         | *518               |  |  |
| MW-8      | 05/20/21 | <0.200 | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.34     | 0.364    | 6.50   | 17.3    | 426                |  |  |
| MW-8      | 07/20/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | *7.87  |         |                    |  |  |
| MW-8      | 11/17/21 | <0.200 | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.4     | 0.404    | 7.17   | 91.0    | 640                |  |  |
| MW-9      | 02/02/21 |        | *106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | **7.00 |         |                    |  |  |
| MW-9      | 05/20/21 | <0.200 | 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.00    | 0.367    | 6.48   | 19.7    | 384                |  |  |
| MW-9      | 07/20/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | *7.33  |         |                    |  |  |
| MW-9      | 11/17/21 | <0.200 | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.00    | 0.440    | 7.04   | 19.2    | 394                |  |  |
| MW-10     | 02/02/21 |        | *160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | **7.08 | *46.7   |                    |  |  |
| MW-10     | 03/01/21 |        | *160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | **7.08 | *48.4   |                    |  |  |
| MW-10     | 05/20/21 | <0.200 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.5     | 0.457    | 6.32   | 46.7    | 628                |  |  |
| MW-10     | 07/20/21 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | *6.93  | *38.6   |                    |  |  |
| MW-10     | 11/17/21 | <0.200 | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.6     | 0.629    | 7.01   | 35.7    | 491                |  |  |

\* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

(H) Out of Hold Analysis

#### Table 2 CCR Landfill Detection Monitoring Field Measurements Evergy latan Generating Station

| Well<br>Number | Sample<br>Date | рН<br>(S.U.) | Specific<br>Conductivity<br>(µS) | Temperature<br>(°C) | Turbidity<br>(NTU) | ORP<br>(mV) | DO<br>(mg/L) | Water Level<br>(ft btoc) | Groundwater<br>Elevation<br>(ft NGVD) |
|----------------|----------------|--------------|----------------------------------|---------------------|--------------------|-------------|--------------|--------------------------|---------------------------------------|
| MW-1           | 02/02/21       | **7.36       | 800                              | 11.6                | 4.3                | -68         | 0.00         | 22.28                    | 766.41                                |
| MW-1           | 05/20/21       | 7.34         | 880                              | 14.33               | 2.9                | -141        | 1.96         | 20.82                    | 767.87                                |
| MW-1           | 11/17/21       | 6.89         | 938                              | 13.88               | 3.9                | -128        | 0.00         | 22.78                    | 765.91                                |
| MW-2           | 05/20/21       | 7.05         | 1030                             | 15.22               | 5.1                | -143        | 3.44         | 22.32                    | 767.29                                |
| MW-2           | 11/17/21       | 6.80         | 1040                             | 14.07               | 5.0                | -126        | 0.00         | 23.80                    | 765.81                                |
| MW-6           | 02/02/21       | **6.97       | 1050                             | 14.26               | 0.0                | -119        | 0.32         | 24.48                    | 765.17                                |
| MW-6           | 03/01/21       | **7.15       | 896                              | 14.20               | 5.9                | -118        | 2.53         | 25.26                    | 764.39                                |
| MW-6           | 05/20/21       | 6.26         | 1140                             | 16.00               | 0.0                | -137        | 0.00         | 24.47                    | 765.18                                |
| MW-6           | 07/20/21       | *6.93        | 846                              | 17.08               | 7.9                | -119        | 0.42         | 23.53                    | 766.12                                |
| MW-6           | 08/04/21       | **6.99       | 843                              | 17.11               | 4.5                | -99         | 0.69         | 24.05                    | 765.60                                |
| MW-6           | 11/17/21       | 7.08         | 921                              | 14.96               | 2.1                | -132        | 0.00         | 24.93                    | 764.72                                |
| MW-7           | 05/20/21       | 6.40         | 786                              | 15.84               | 0.0                | -47         | 0.00         | 23.96                    | 765.69                                |
| MW-7           | 07/20/21       | *7.54        | 765                              | 15.55               | 6.1                | -59         | 0.00         | 23.34                    | 766.31                                |
| MW-7           | 11/17/21       | 7.05         | 789                              | 14.36               | 11.6               | -57         | 1.76         | 24.75                    | 764.90                                |
| MW-8           | 02/02/21       | **7.18       | 964                              | 14.00               | 8.8                | -89         | 0.40         | 24.41                    | 765.30                                |
| MW-8           | 05/20/21       | 6.50         | 885                              | 15.81               | 0.0                | -102        | 0.00         | 23.14                    | 766.57                                |
| MW-8           | 07/20/21       | *7.87        | 903                              | 15.60               | 7.1                | -137        | 0.00         | 23.15                    | 766.56                                |
| MW-8           | 11/17/21       | 7.17         | 1050                             | 14.52               | 3.7                | -106        | 5.60         | 24.54                    | 765.17                                |
| MW-9           | 02/02/21       | **7.00       | 676                              | 10.67               | 30.9               | -84         | 0.00         | 23.84                    | 766.06                                |
| MW-9           | 05/20/21       | 6.48         | 715                              | 16.49               | 0.0                | -131        | 0.00         | 22.32                    | 767.58                                |
| MW-9           | 07/20/21       | *7.33        | 684                              | 17.86               | 38.1               | -156        | 0.95         | 22.61                    | 767.29                                |
| MW-9           | 11/17/21       | 7.04         | 747                              | 13.87               | 13.9               | -118        | 0.00         | 24.32                    | 765.58                                |
| MW-10          | 02/02/21       | **7.08       | 1060                             | 11.79               | 3.3                | -20         | 0.00         | 23.22                    | 766.24                                |
| MW-10          | 03/01/21       | **7.08       | 1080                             | 14.59               | 17.2               | -32         | 2.51         | 24.29                    | 765.17                                |
| MW-10          | 05/20/21       | 6.32         | 1140                             | 16.39               | 0.0                | -85         | 0.00         | 22.67                    | 766.79                                |
| MW-10          | 07/20/21       | *6.93        | 948                              | 16.36               | 0.0                | -23         | 0.25         | 22.24                    | 767.22                                |
| MW-10          | 11/17/21       | 7.01         | 1080                             | 14.61               | 0.0                | -78         | 0.00         | 23.84                    | 765.62                                |

\* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data

at RCRA Facilities, Unified Guidance, March 2009.

\*\*Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

#### APPENDIX C

CCR Groundwater Monitoring Alternative Source Demonstration Report November 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (May 2021)

### CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2020 GROUNDWATER MONITORING EVENT

#### CCR LANDFILL

latan Generating Station Evergy Metro, Inc. Platte County, Missouri



May 2021 File No. 27213167.20

8575 W. 110<sup>th</sup> Suite 100 Overland Park, KS 66210 913-749-0700

#### CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.



Douglas L. Doerr, P.E.

**SCS Engineers** 

#### **Table of Contents**

#### Section

#### Page

| CERT | IFICA | ΓΙΟΝS                       | . i |
|------|-------|-----------------------------|-----|
| 1    | Regu  | ılatory Framework           | 1   |
| 2    | Stati | stical Results              | 1   |
| 3    | Alte  | native Source Demonstration | 2   |
|      | 3.1   | Box and Whiskers Plots      | 2   |
|      | 3.2   | Piper Diagram Plots         | 2   |
|      | 3.3   | Time Series Plots           | 3   |
| 4    | Cond  | lusion                      | 3   |
| 5    | Gene  | eral Comments               | 3   |

#### Appendices

| Appendix A | Box and Whiskers Plots                     |
|------------|--------------------------------------------|
| Appendix B | Potentiometric Surface Map (November 2020) |
| Appendix C | Piper Diagram Plots and Analytical Results |
| Appendix D | Time Series Plots                          |

#### 1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

#### 2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on November 9, 2020. Review and validation of the results from the November 2020 Detection Monitoring Event was completed on December 18, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. Statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 2, 2021 and March 1, 2021.

The completed statistical evaluation identified two Appendix III constituents above the prediction limits established for monitoring well MW-10.

| Constituent/Monitoring Well | *UPL  | Observation<br>November 9, 2020 | 1st Verification<br>February 2, 20201 | 2nd Verification<br>March 1, 2021 |
|-----------------------------|-------|---------------------------------|---------------------------------------|-----------------------------------|
| Calcium                     |       |                                 |                                       |                                   |
| MW-10                       | 154.2 | 158                             | 160                                   | 160                               |
| Sulfate                     |       |                                 |                                       |                                   |
| MW-10                       | 39.5  | 42.3                            | 46.7                                  | 48.4                              |

\*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified SSIs above the background prediction limits for calcium and sulfate at monitoring well MW-10.

#### 3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the latan Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

#### 3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for all of the groundwater monitoring system wells were prepared to allow comparison of the calcium and sulfate concentrations between MW-10 and the other monitoring wells both upgradient and downgradient. The calcium box and whiskers plot for MW-10 indicates the calcium concentrations at MW-10 are within or below the concentration ranges for the other wells. The sulfate box and whiskers plot for MW-10 indicates the sulfate concentrations at MW-10 are within or below the concentration ranges for the other wells. Box and whisker plots are provided in **Appendix A**. Additionally, MW-10 is located upgradient of the landfill for this sampling event as shown on the potentiometric surface map provided in **Appendix B**. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality.

#### 3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na),

Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO<sub>4</sub>), Carbonate ( $CO_3$ ), and Bicarbonate ( $HCO_3$ ).

A piper diagram generated for MW-10 and leachate is provided in **Appendix C** along with analytical results. The piper diagram indicates the groundwater from monitoring well MW-10 does not plot near where the leachate plots and is not trending toward the leachate over time. Therefore, the groundwater from MW-10 does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels or that the SSI resulted from natural variation in groundwater quality.

#### 3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for calcium and sulfate at monitoring well MW-10 was compared to the time series plot for sulfate at the other monitoring wells both upgradient and downgradient. The sulfate time series plot for MW-10 indicates the sulfate concentrations in MW-10 are generally below the concentrations in the other wells both upgradient and downgradient. The sulfate time series plot for MW-10 indicates the sulfate concentrations in MW-10 are generally below the concentrations in the other wells both upgradient and downgradient. The sulfate time series plot for MW-10 indicates the sulfate concentrations in MW-10 are generally below the concentrations in the other wells both upgradient and downgradient. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix D**.

#### 4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

#### 5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

**Box and Whiskers Plots** 



Box & Whiskers Plot

Constituent: Calcium Analysis Run 4/28/2021 8:10 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

mg/L



Box & Whiskers Plot

Constituent: Sulfate Analysis Run 4/28/2021 8:10 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

mg/L

#### Box & Whiskers Plot

|                             | latan Utility Waste LF | Client: S | SCS Engineers | Data: latan jrr F | Printed 4/28/2021, 8 | :12 AM |             |      |             |
|-----------------------------|------------------------|-----------|---------------|-------------------|----------------------|--------|-------------|------|-------------|
| <u>Constituent</u> <u>W</u> | Vell                   | N         | Mean          | Std. Dev.         | Std. Err.            | Median | <u>Min.</u> | Max. | <u>%NDs</u> |
| Calcium (mg/L) M            | /W-1 (bg)              | 16        | 131.9         | 5.372             | 1.343                | 133    | 116         | 141  | 0           |
| Calcium (mg/L) M            | /W-10                  | 22        | 136           | 16.85             | 3.593                | 134.5  | 109         | 160  | 0           |
| Calcium (mg/L) N            | /W-2 (bg)              | 17        | 166.4         | 6.509             | 1.579                | 167    | 146         | 177  | 0           |
| Calcium (mg/L) M            | /W-6                   | 19        | 146.1         | 8.953             | 2.054                | 147    | 131         | 164  | 0           |
| Calcium (mg/L) N            | /W-7                   | 20        | 149.3         | 27.33             | 6.112                | 139    | 116         | 199  | 0           |
| Calcium (mg/L) M            | /W-8                   | 18        | 142.9         | 10.01             | 2.36                 | 141    | 130         | 170  | 0           |
| Calcium (mg/L) M            | /W-9                   | 17        | 110.7         | 7.577             | 1.838                | 110    | 97.2        | 123  | 0           |
| Sulfate (mg/L) M            | /W-1 (bg)              | 15        | 31.48         | 4.407             | 1.138                | 32.6   | 22.3        | 36.9 | 0           |
| Sulfate (mg/L) M            | /W-10                  | 23        | 32.21         | 10.8              | 2.253                | 33     | 17.4        | 48.4 | 0           |
| Sulfate (mg/L) M            | /W-2 (bg)              | 16        | 136.6         | 24.1              | 6.026                | 145.5  | 81.5        | 172  | 0           |
| Sulfate (mg/L) M            | /W-6                   | 17        | 28.84         | 5.89              | 1.428                | 30.2   | 20.1        | 37.6 | 0           |
| Sulfate (mg/L) M            | /W-7                   | 19        | 80.61         | 61.89             | 14.2                 | 54.4   | 16.2        | 186  | 0           |
| Sulfate (mg/L) M            | /W-8                   | 16        | 41.38         | 16.28             | 4.069                | 41.85  | 23.3        | 85.8 | 0           |
| Sulfate (mg/L) M            | /W-9                   | 15        | 21.44         | 3.34              | 0.8624               | 21.5   | 15.9        | 26.2 | 0           |

Appendix B

Potentiometric Surface Map



| CK.<br>BY                   | I                                           | I                                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|---------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SHEET TITLE REV DATE DATE   |                                             | ROJECT TITLE<br>IATAN GROUNDWATER 2020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CLIENT                      | IATAN GENERATING STATION<br>IATAN, MISSOURI |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CADD<br>SC2 ENGINE<br>FIGUR |                                             | 0.01 8575 W. 110th St, Ste. 100        | PH. (913) 681-0030 FAX. (913) 681-0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27213167.20 MM. BII ALR WARNEN JRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a psw. Bft TGW GMK. Bft Mrku. Midf                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                                             |                                        | CLIENT CONTRACTOR CLIENT SHEET TILE POTENTIOMETRIC SURFACE MAP POTENTIOMETRIC SURFACE MAP POTENTION STAR 100h Strate Action Stra | CLENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT<br>CLIENT | CLENT<br>CLENT<br>CLENT<br>CLENT<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRICTOR<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRI<br>CONTRINCO<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIPTED<br>CONTRIP | CLENT CLENT SHEET THLE   CLENT CLENT SHEET THLE   SCS ENGINEERS EVERGY METRO, INC. POTENTIOMETRIC SURFACE MAP<br>POTENTION   STOT ALL DEPARTMENT EVERGY METRO, INC. POTENTIOMETRIC SURFACE MAP<br>(NOVEMBER 2020)   Stot ALL DEPARTMENT IATAN GROUND POLECT THLE   Stot ALL DEPARTMENT IATAN, MISSOURI PROJECT THLE   Stot ALL DEPARTMENT IATAN, MISSOURI PROJECT THLE   Stot ALL DEPARTMENT IATAN, MISSOURI PROJECT THLE |

Appendix C

Piper Diagram Plots and Analytical Results



latan Utility Waste LF Client: SCS Engineers Data: latan jrr

#### Piper Diagram

Analysis Run 4/2/2021 4:19 PM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

| Totals (ppm)       | Na   | K    | Ca  | Mg   | Cl   | SO4   | HCO3 | CO3 |
|--------------------|------|------|-----|------|------|-------|------|-----|
| MW-10 8/18/2016    | 7.77 | 4.45 | 123 | 47.3 | 7.47 | 17.8  | 480  | 10  |
| MW-10 11/9/2016    | 7.11 | 4.02 | 124 | 47.3 | 9.15 | 17.4  | 428  | 10  |
| MW-10 2/3/2017     | 7.2  | 3.93 | 109 | 46.7 | 10.3 | 19.1  | 442  | 10  |
| MW-10 1/10/2019    | 8.51 | 5.08 | 157 | 64.3 | 21   | 38    | 555  | 10  |
| MW-10 7/11/2019    | 8.12 | 5.11 | 153 | 63.8 | 22.5 | 33    | 537  | 10  |
| MW-10 11/4/2019    | 7.41 | 4.57 | 142 | 54.2 | 21.6 | 33.6  | 526  | 10  |
| MW-10 8/25/2020    | 11.9 | 4.51 | 163 | 59.1 | 16.4 | 47.9  | 589  | 10  |
| MW-10 3/1/2021     | 14.9 | 4.56 | 160 | 56.5 | 17.1 | 48.4  | 570  | 10  |
| LEACHATE 8/18/2016 | 9250 | 689  | 573 | 4240 | 6990 | 28000 | 644  | 10  |
| LEACHATE 11/9/2016 | 1230 | 90.7 | 334 | 398  | 876  | 3460  | 480  | 10  |
| LEACHATE 2/3/2017  | 1880 | 121  | 560 | 671  | 1760 | 6070  | 505  | 10  |
| LEACHATE 11/4/2019 | 1110 | 51.7 | 460 | 163  | 2340 | 5230  | 206  | 10  |
|                    |      |      |     |      |      |       |      |     |

Appendix D

**Time Series Plots**
mg/L

**Time Series** 



Constituent: Calcium Analysis Run 4/28/2021 8:05 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr 200 MW-1 (bg) MW-10 160 MW-2 (bg) 120 MW-6 MW-7 80 **MW-8** MW-9 40 0 8/18/16 7/15/17 6/11/18 5/8/19 4/3/20 3/1/21

**Time Series** 

Constituent: Sulfate Analysis Run 4/28/2021 8:05 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

mg/L

## ADDENDUM 1

## 2021 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

## SCS ENGINEERS

December 16, 2022 File No. 27213167.21

| Го: | Evergy Metro, Inc.                                  |
|-----|-----------------------------------------------------|
|     | Jared Morrison – Director, Water and Waste Programs |

From: SCS Engineers Douglas L. Doerr, P.E. John R. Rockhold, P.G.



Subject: 2021 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Metro, Inc. CCR Landfill Iatan Generating Station – Platte County, Missouri

The CCR Landfill at the latan Generating Station is subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2021 for the CCR Landfill was completed and placed in the facility's operating record on January 28, 2022, as required by the Rule. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

0

- February 2021 First verification sampling for the Fall 2020 detection monitoring event.
- March 2021 Second verification sampling for the Fall 2020 detection monitoring event.
- May 2021 Spring 2021 semiannual detection monitoring sampling event.
- July 2021 First verification sampling for the Spring 2021 detection monitoring sampling event.
- November 2021 Fall 2021 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2021 included the following:

- Fall 2020 semiannual detection monitoring statistical analyses.
- Spring 2021 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes revised groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2021 Spring 2021 semiannual detection monitoring sampling event.
- November 2021 Fall 2021 semiannual detection monitoring sampling event.

Jared Morrison December 16, 2022

## ATTACHMENT 1

Laboratory Analytical Reports

Jared Morrison December 16, 2022

## ATTACHMENT 1-1 February 2021 Sampling Event Laboratory Report



# ANALYTICAL REPORT

February 11, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description: L1313833 02/04/2021 27213167.19 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr Qc Gl AI Sc

## Entire Report Reviewed By:

Jubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## Pace Analytical National

12065 Lebanon Rd

Mount Juliet, TN 37122 615-758-5858 800-767-5859

www.pacenational.com

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13

PAGE: 1 of 18

## TABLE OF CONTENTS

| ₩               |  |
|-----------------|--|
| <sup>1</sup> Cp |  |
| <sup>2</sup> Tc |  |
| <sup>3</sup> Ss |  |
| <sup>4</sup> Cn |  |
| ⁵Sr             |  |
| <sup>6</sup> Qc |  |
| <sup>7</sup> Gl |  |
| <sup>8</sup> Al |  |

Sc

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-1 L1313833-01                           | 5  |
| MW-6 L1313833-02                           | 6  |
| MW-8 L1313833-03                           | 7  |
| DUPLICATE 1 L1313833-04                    | 8  |
| MW-9 L1313833-05                           | 9  |
| MW-10 L1313833-06                          | 10 |
| DUPICATE 2 L1313833-07                     | 11 |
| Qc: Quality Control Summary                | 12 |
| Gravimetric Analysis by Method 2540 C-2011 | 12 |
| Wet Chemistry by Method 9056A              | 13 |
| Metals (ICP) by Method 6010B               | 15 |
| GI: Glossary of Terms                      | 16 |
| Al: Accreditations & Locations             | 17 |
| Sc: Sample Chain of Custody                | 18 |
|                                            |    |

SDG: L1313833 DATE/TIME: 02/11/21 14:13

**PAGE**: 2 of 18

## SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

\*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

| MW-1 11313833-01 GW                                                         |                        |          | Collected by<br>G. Penaflor      | Collected date/time 02/02/21 15:00    | Received da 02/04/21 09    | ite/time<br>:00                  |
|-----------------------------------------------------------------------------|------------------------|----------|----------------------------------|---------------------------------------|----------------------------|----------------------------------|
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011                                  | WG1617190              | 1        | 02/05/21 16:04                   | 02/05/21 19:18                        | MMF                        | Mt. Juliet, TN                   |
| MW-6 L1313833-02 GW                                                         |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 15:25 | Received da 02/04/21 09    | te/time<br>:00                   |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Metals (ICP) by Method 6010B                                                | WG1617975              | 1        | 02/08/21 09:27                   | 02/08/21 11:56                        | EL                         | Mt. Juliet, TN                   |
| MW-8 L1313833-03 GW                                                         |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 14:45 | Received da 02/04/21 09    | ite/time<br>:00                  |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A | WG1617190<br>WG1618252 | 1<br>1   | 02/05/21 16:04<br>02/09/21 11:55 | 02/05/21 19:18<br>02/09/21 11:55      | MMF<br>ELN                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| DUPLICATE1 L1313833-04 GW                                                   |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 14:45 | Received da<br>02/04/21 09 | ite/time<br>:00                  |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A | WG1617190<br>WG1618252 | 1<br>1   | 02/05/21 16:04<br>02/09/21 12:34 | 02/05/21 19:18<br>02/09/21 12:34      | MMF<br>ELN                 | Mt. Juliet, TN<br>Mt. Juliet, TN |
| MW-9 L1313833-05 GW                                                         |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 14:20 | Received da 02/04/21 09    | te/time<br>:00                   |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Metals (ICP) by Method 6010B                                                | WG1617975              | 1        | 02/08/21 09:27                   | 02/08/21 11:58                        | EL                         | Mt. Juliet, TN                   |
| MW-10 L1313833-06 GW                                                        |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 15:40 | Received da 02/04/21 09    | te/time<br>:00                   |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B               | WG1618252<br>WG1617975 | 1<br>1   | 02/09/21 13:00<br>02/08/21 09:27 | 02/09/21 13:00<br>02/08/21 11:40      | ELN<br>EL                  | Mt. Juliet, TN<br>Mt. Juliet, TN |
| DUPICATE 2 L1313833-07 GW                                                   |                        |          | Collected by<br>G. Penaflor      | Collected date/time<br>02/02/21 15:45 | Received da 02/04/21 09    | ite/time<br>:00                  |
| Method                                                                      | Batch                  | Dilution | Preparation<br>date/time         | Analysis<br>date/time                 | Analyst                    | Location                         |
| Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010B               | WG1618252<br>WG1617975 | 1<br>1   | 02/09/21 14:06<br>02/08/21 09:27 | 02/09/21 14:06<br>02/08/21 11:26      | ELN<br>EL                  | Mt. Juliet, TN<br>Mt. Juliet, TN |

PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13

## CASE NARRATIVE

\*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1313833 DATE/TIME: 02/11/21 14:13

# SAMPLE RESULTS - 01



Τс

#### Gravimetric Analysis by Method 2540 C-2011

| , , ,            |        |           |       |          |                  |           |
|------------------|--------|-----------|-------|----------|------------------|-----------|
|                  | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |
| Analyte          | ug/l   |           | ug/l  |          | date / time      |           |
| Dissolved Solids | 484000 |           | 10000 | 1        | 02/05/2021 19:18 | WG1617190 |

| <sup>3</sup> Ss |
|-----------------|
|                 |
| <sup>4</sup> Cn |
|                 |
| ⁵Sr             |
|                 |
| <sup>6</sup> Qc |
|                 |
| <sup>7</sup> Gl |
|                 |
| <sup>8</sup> Al |
|                 |
| ⁰Sc             |

## Collected date/time: 02/02/21 15:25

# SAMPLE RESULTS - 02



Metals (ICP) by Method 6010B

|         | 0100   |           |      |          |                  |           | Cn |
|---------|--------|-----------|------|----------|------------------|-----------|----|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |    |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2  |
| Calcium | 164000 |           | 1000 | 1        | 02/08/2021 11:56 | WG1617975 | Tc |



Chloride

Collected date/time: 02/02/21 14:45

# SAMPLE RESULTS - 03

\*

Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

8220

|                      | /         |           |        |          |                  |                  | 1 Cm                |
|----------------------|-----------|-----------|--------|----------|------------------|------------------|---------------------|
|                      | Result    | Qualifier | RDL    | Dilution | Analysis         | Batch            | Cp                  |
| Analyte              | ug/l      |           | ug/l   |          | date / time      |                  | 2                   |
| Dissolved Solids     | 518000    |           | 10000  | 1        | 02/05/2021 19:18 | <u>WG1617190</u> | Tc                  |
| Wet Chemistry by Met | hod 9056A |           |        |          |                  |                  | <br><sup>3</sup> Ss |
|                      | Result    | Qualifier | RDL    | Dilution | Analysis         | Batch            |                     |
| Analyte              | ug/l      |           | ug/l   |          | date / time      |                  | $^{4}$ Cn           |
|                      |           |           | 10.0.0 |          | 00/00/000444 55  | 11101010050      |                     |

1

02/09/2021 11:55

WG1618252

1000

# SAMPLE RESULTS - 04



Qc

Gl

Â

Sc

## Gravimetric Analysis by Method 2540 C-2011

| eravine ine / marysis | o by method z |           |       |                |                  |           |                     |
|-----------------------|---------------|-----------|-------|----------------|------------------|-----------|---------------------|
|                       | Result        | Qualifier | RDL   | Dilution       | Analysis         | Batch     | Ср                  |
| Analyte               | ug/l          |           | ug/l  |                | date / time      |           | 2                   |
| Dissolved Solids      | 488000        |           | 10000 | 1              | 02/05/2021 19:18 | WG1617190 | Tc                  |
| Wet Chemistry by N    | lethod 9056   | 4         |       | <b>D</b> il 11 |                  |           | <br><sup>3</sup> Ss |
|                       | Result        | Qualifier | RDL   | Dilution       | Analysis         | Batch     |                     |
| Analyte               | ug/l          |           | ug/l  |                | date / time      |           | <sup>4</sup> Cn     |
| Chloride              | 8470          |           | 1000  | 1              | 02/09/2021 12:34 | WG1618252 | CII                 |

SDG: L1313833

## Collected date/time: 02/02/21 14:20

# SAMPLE RESULTS - 05



Metals (ICP) by Method 6010B

| 0.02   |                                        |                                           |                                                                                            |                                                                                                                          |                                                                                                                                                                                         | 1 Cm                                                                                                                                                                                                                                                            |
|--------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | Qualifier                              | RDL                                       | Dilution                                                                                   | Analysis                                                                                                                 | Batch                                                                                                                                                                                   | Cp                                                                                                                                                                                                                                                              |
| ug/l   |                                        | ug/l                                      |                                                                                            | date / time                                                                                                              |                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                               |
| 106000 |                                        | 1000                                      | 1                                                                                          | 02/08/2021 11:58                                                                                                         | WG1617975                                                                                                                                                                               | Tc                                                                                                                                                                                                                                                              |
|        | Result           ug/l           106000 | Result <u>Qualifier</u><br>ug/l<br>106000 | Result         Qualifier         RDL           ug/l         ug/l         1000         1000 | Result         Qualifier         RDL         Dilution           ug/l         ug/l         100000         10000         1 | Result         Qualifier         RDL         Dilution         Analysis           ug/l         ug/l         date / time           106000         1000         1         02/08/2021 11:58 | Result         Qualifier         RDL         Dilution         Analysis         Batch           ug/l         ug/l         date / time         date / time         date / time           106000         1000         1         02/08/2021 11:58         WG1617975 |



SDG: L1313833 DATE/TIME: 02/11/21 14:13

#### SAMPLE RESULTS - 06 L1313833

Qc

GI

Â

Sc

#### Wet Chemistry by Method 9056A

|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     | - [C            |
|-------------------|--------------|-----------|------|----------|------------------|-----------|-----------------|
| Analyte           | ug/l         |           | ug/l |          | date / time      |           | 2               |
| Sulfate           | 46700        |           | 5000 | 1        | 02/09/2021 13:00 | WG1618252 | Tc              |
| Metals (ICP) by M | lethod 6010B |           |      |          |                  |           | <sup>3</sup> Ss |
|                   | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte           | ug/l         |           | ug/l |          | date / time      |           | $^{4}$ Cr       |
| Calcium           | 160000       | V         | 1000 | 1        | 02/08/2021 11:40 | WG1617975 |                 |

# SAMPLE RESULTS - 07

\*

1

Qc

GI

Â

Sc

## Wet Chemistry by Method 9056A

|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
|-----------------|--------------|-----------|------|----------|------------------|-----------|-----------------|
| Analyte         | ug/l         |           | ug/l |          | date / time      |           | 2               |
| Sulfate         | 48000        |           | 5000 | 1        | 02/09/2021 14:06 | WG1618252 | Ťτ              |
| Metals (ICP) by | Method 6010B |           |      |          |                  |           | <sup>3</sup> Ss |
|                 | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte         | ug/l         |           | ug/l |          | date / time      |           | <sup>4</sup>    |
| Calcium         | 161000       |           | 1000 | 1        | 02/08/2021 11:26 | WG1617975 |                 |

## WG1617190

Gravimetric Analysis by Method 2540 C-2011

### QUALITY CONTROL SUMMARY L1313833-01,03,04

Τс

Ss

<sup>6</sup>Qc

GI

Â

Sc

#### Method Blank (MB)

| (MB) R3620494-1 02/05 | 5/21 19:18 |              |        |        |
|-----------------------|------------|--------------|--------|--------|
|                       | MB Result  | MB Qualifier | MB MDL | MB RDL |
| Analyte               | ug/l       |              | ug/l   | ug/l   |
| Dissolved Solids      | U          |              | 2820   | 10000  |

### L1313833-03 Original Sample (OS) • Duplicate (DUP)

| L1313833-03 Orig      | ginal Sample        | (OS) • Dup | olicate ( | DUP)    |               |                   |  | <sup>4</sup> C  |
|-----------------------|---------------------|------------|-----------|---------|---------------|-------------------|--|-----------------|
| (OS) L1313833-03 02/0 | 05/21 19:18 • (DUP) | R3620494-4 | 02/05/21  | 19:18   |               |                   |  | Cn              |
|                       | Original Result     | DUP Result | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | <sup>5</sup> Sr |
| Analyte               | ug/l                | ug/l       |           | %       |               | %                 |  |                 |
| Dissolved Solids      | 518000              | 518000     | 1         | 0.000   |               | 5                 |  | G               |

## Laboratory Control Sample (LCS)

| (LCS) R3620494-2 02/ | /05/21 19:18 |            |          |             |               |
|----------------------|--------------|------------|----------|-------------|---------------|
|                      | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte              | ug/l         | ug/l       | %        | %           |               |
| Dissolved Solids     | 8800000      | 8540000    | 97.0     | 77.4-123    |               |

PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13

PAGE: 12 of 18

## WG1618252

Wet Chemistry by Method 9056A

### QUALITY CONTROL SUMMARY L1313833-03,04,06,07

| Method Dian     |                |              |        |        | $^{1}$ Cr |
|-----------------|----------------|--------------|--------|--------|-----------|
| (MB) R3621108-1 | 02/09/21 09:11 |              |        |        |           |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | 2         |
| Analyte         | ug/l           |              | ug/l   | ug/l   | Tc        |
| Chloride        | U              |              | 379    | 1000   |           |
| Sulfate         | U              |              | 594    | 5000   | 355       |
|                 |                |              |        |        |           |

### L1313833-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1313833-04 ( | 02/09/2112:34 • (DUF | ) R3621108-5 | 02/09/21 | 12:47   |               |                   |
|--------------------|----------------------|--------------|----------|---------|---------------|-------------------|
|                    | Original Resul       | t DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte            | ug/l                 | ug/l         |          | %       |               | %                 |
| Chloride           | 8470                 | 8260         | 1        | 2.58    |               | 15                |
| Sulfate            | 69700                | 67900        | 1        | 2.64    |               | 15                |

## L1313779-04 Original Sample (OS) • Duplicate (DUP)

| L1313779-04 Origi                                                 | nal Sample      | (OS) • Dup | licate (l | DUP)    |               |                   |  | 8       | Ĺ |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|-----------|---------|---------------|-------------------|--|---------|---|--|--|--|
| (OS) L1313779-04 02/09/21 16:56 • (DUP) R3621108-8 02/09/21 17:09 |                 |            |           |         |               |                   |  |         |   |  |  |  |
|                                                                   | Original Result | DUP Result | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | 9<br>SC | 1 |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |           | %       |               | %                 |  | 50      |   |  |  |  |
| Chloride                                                          | 43400           | 43500      | 1         | 0.121   |               | 15                |  |         |   |  |  |  |

### L1313779-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1313779-04 02/10/2 | )S) L1313779-04 02/10/21 09:46 • (DUP) R3621108-11 02/10/21 09:59 |            |          |         |               |                   |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|
|                          | Original Result                                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |
| Analyte                  | ug/l                                                              | ug/l       |          | %       |               | %                 |  |  |  |  |  |
| Sulfate                  | 136000                                                            | 132000     | 5        | 2.49    |               | 15                |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3621108-2 02/09/2 | CS) R3621108-2 02/09/21 09:24 |            |          |             |               |  |  |  |  |  |  |  |
|--------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                          | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                  | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Chloride                 | 40000                         | 40000      | 100      | 80.0-120    |               |  |  |  |  |  |  |  |
| Sulfate                  | 40000                         | 40700      | 102      | 80.0-120    |               |  |  |  |  |  |  |  |

PROJECT: 27213167.19

DATE/TIME: 02/11/21 14:13

PAGE: 13 of 18



⁺Cn

GI

Wet Chemistry by Method 9056A

### QUALITY CONTROL SUMMARY L1313833-03,04,06,07

## Ss Cn

Sr Qc

GI

Sc

| L1313833-03 Original | Sample (OS) • | Matrix Spike (MS) • | <ul> <li>Matrix Spike Duplicate</li> </ul> | (MSD) |
|----------------------|---------------|---------------------|--------------------------------------------|-------|

| (OS) L1313833-03 02/09/2                                                                                                          | (OS) L1313833-03 02/09/21 11:55 • (MS) R3621108-3 02/09/21 12:08 • (MSD) R3621108-4 02/09/21 12:21 |       |        |        |     |      |   |          |   |   |      |    |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|--------|--------|-----|------|---|----------|---|---|------|----|
| Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |                                                                                                    |       |        |        |     |      |   |          |   |   |      |    |
| Analyte                                                                                                                           | ug/l                                                                                               | ug/l  | ug/l   | ug/l   | %   | %    |   | %        |   |   | %    | %  |
| Chloride                                                                                                                          | 50000                                                                                              | 8220  | 61200  | 59000  | 106 | 102  | 1 | 80.0-120 |   |   | 3.60 | 15 |
| Sulfate                                                                                                                           | 50000                                                                                              | 67800 | 121000 | 118000 | 106 | 99.8 | 1 | 80.0-120 | E | E | 2.42 | 15 |

#### L1313833-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1313833-06 02/09/2 | OS) L1313833-06 02/09/21 13:00 • (MS) R3621108-6 02/09/21 13:13 • (MSD) R3621108-7 02/09/21 13:26 |                 |           |            |         |          |          |             |              |               |      |            |
|--------------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
|                          | Spike Amount                                                                                      | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                  | ug/l                                                                                              | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Chloride                 | 50000                                                                                             | 17100           | 67900     | 68600      | 102     | 103      | 1        | 80.0-120    |              |               | 1.05 | 15         |
| Sulfate                  | 50000                                                                                             | 46700           | 96800     | 97900      | 100     | 102      | 1        | 80.0-120    |              |               | 1.08 | 15         |

## L1313779-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1313779-05 02/09/2                                                                                                          | OS) L1313779-05 02/09/21 17:22 • (MS) R3621108-9 02/09/21 17:35 • (MSD) R3621108-10 02/09/21 17:48 |        |        |        |      |     |   |          |   |   |      |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|------|-----|---|----------|---|---|------|----|--|
| Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |                                                                                                    |        |        |        |      |     |   |          |   |   |      |    |  |
| Analyte                                                                                                                           | ug/l                                                                                               | ug/l   | ug/l   | ug/l   | %    | %   |   | %        |   |   | %    | %  |  |
| Chloride                                                                                                                          | 50000                                                                                              | 108000 | 155000 | 160000 | 93.5 | 104 | 1 | 80.0-120 | E | E | 3.23 | 15 |  |
| Sulfate                                                                                                                           | 50000                                                                                              | 87300  | 136000 | 141000 | 97.6 | 107 | 1 | 80.0-120 | E | E | 3.41 | 15 |  |

SDG: L1313833 DATE/TIME: 02/11/21 14:13

## WG1617975

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

Тс

Ss

Ċn

Sr

Qc

GI

Â

Sc

## Method Blank (MB)

| (MB) R3620413-1 02/08/21 11:35 |           |              |        |        |  |
|--------------------------------|-----------|--------------|--------|--------|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  |
| Calcium                        | U         |              | 79.3   | 1000   |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3620413-2 02/08/21 11:37 |              |            |          |             |               |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |
| Calaium                         | 10000        | 0470       | 047      | QO 0 120    |               |  |  |

### L1313833-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| OS) L1313833-06 02/08/21 11:40 • (MS) R3620413-4 02/08/21 11:45 • (MSD) R3620413-5 02/08/21 11:47 |              |                 |           |            |         |          |          |             |                    |               |       |            |
|---------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------------|---------------|-------|------------|
|                                                                                                   | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |                    |               | %     | %          |
| Calcium                                                                                           | 10000        | 160000          | 166000    | 167000     | 64.6    | 75.0     | 1        | 75.0-125    | $\underline{\vee}$ |               | 0.621 | 20         |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13

PAGE: 15 of 18

## GLOSSARY OF TERMS

## \*

Τс

ŚS

Cn

Sr

ʹQc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDI                             | Mathead Data stian Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>reported.                                                                                                                                                                                                                                                                                                                                                                                              |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| E | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|
| V | The sample concentration is too high to evaluate accurate spike recoveries.                                                                 |

PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13

PAGE: 16 of 18

## ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productive, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. \* Not all certifications held by the laboratory are applicable to the results reported in the attached report. \* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

## Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN, 37122

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| Florida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| Idaho                         | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois                      | 200008      | Oklahoma                    | 9915             |
| Indiana                       | C-TN-01     | Oregon                      | TN200002         |
| lowa                          | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup>        | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| Louisiana                     | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana                     | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Minnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| EPA–Crypto                    | TN00003     |                             |                  |

## Pace Analytical National 1313 Point Mallard Parkway SE Suite B Decatur, AL, 35601

| Alabama                           | 40160                                |                      |          |
|-----------------------------------|--------------------------------------|----------------------|----------|
| ANSI National Accreditation Board | L2239                                |                      |          |
|                                   |                                      |                      |          |
| Pace Analytical National          | 660 Bercut Dr. Ste. C Sacramento, C  | CA, 95811            |          |
| California                        | 2961                                 | Oregon               | CA300002 |
| Minnesota                         | 006-999-465                          | Washington           | C926     |
| North Dakota                      | R-214                                |                      |          |
|                                   |                                      |                      |          |
| Pace Analytical National          | 6000 South Eastern Avenue Ste 9A     | Las Vegas, NV, 89119 |          |
| Nevada                            | NV009412021-1                        |                      |          |
|                                   |                                      |                      |          |
| Pace Analytical National          | 1606 E. Brazos Street Suite D Victor | ia, TX, 77901        |          |
| Texas                             | T104704328-20-18                     |                      |          |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

| - | <sup>3</sup> Ss |
|---|-----------------|
| - | <sup>4</sup> Cn |
|   | ⁵Sr             |
| - | <sup>6</sup> Oc |
|   | 7               |
|   | GI              |
|   | <sup>8</sup> Al |
|   | <sup>9</sup> Sc |
|   |                 |

Τс

PROJECT: 27213167.19

SDG: L1313833 DATE/TIME: 02/11/21 14:13 PAGE: 17 of 18

| Company Name/Address:                                                              |                                         |                                                 | Billing Infor                                   | mation:                 |                |            | I           | 1        |          | A            | nalvsis /        | Containe   | r / Prese | ervative           |                                   |                                                | Chain of Custody                                                                                   | Page of                                                                                            |
|------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------|----------------|------------|-------------|----------|----------|--------------|------------------|------------|-----------|--------------------|-----------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210              |                                         |                                                 | Accounts Payable<br>8575 W. 110th Street        |                         |                |            |             | 2        |          |              |                  |            |           |                    |                                   |                                                | Pace                                                                                               | Analytical°                                                                                        |
|                                                                                    |                                         |                                                 | Overland                                        | Overland Park, KS 66210 |                |            |             |          |          |              |                  |            |           |                    |                                   |                                                | / National Ca                                                                                      | enter for resting a innovatio                                                                      |
| Report to:<br>Jason Franks                                                         |                                         |                                                 | Email To:<br>jfranks@sc                         | sengineers              | .com;jay.mar   | tin@eve    | rgy.c       |          |          |              |                  |            |           |                    |                                   |                                                | 12065 Lebanon Road M<br>Phone: 615-758-5858 A<br>Submitting a sample via<br>constitutes acknowledg | It Juliet, TN 37122<br>JII: 800-767-5859<br>a this chain of custody<br>gment and acceptance of the |
| Project Description:<br>Evergy - latan Generating Station                          |                                         | City/State<br>Collected:                        |                                                 |                         | PI<br>PT       | ease Circ  | le:<br>)ET  |          |          |              |                  |            |           |                    |                                   |                                                | Pace Terms and Conditi<br>https://info.pacelabs.co<br>terms.pdf                                    | ions found at:<br>om/hubfs/pas-standard-                                                           |
| Phone: 913-681-0030                                                                | Client Project #<br>27213167.19         |                                                 | Lab Proje                                       | ct #<br>OPKS-IATAI      |                |            | NO3         | oPres    | res      | 5            |                  |            |           |                    |                                   | B1                                             | 09                                                                                                 |                                                                                                    |
| Collected by (print):                                                              | Site/Facility I                         | ) #                                             | #                                               |                         |                |            | 1           | IDPE-H   | DPE-No   | PE-Nof       | NoPres           |            |           |                    |                                   |                                                | Acctnum: AQU                                                                                       | JAOPKS                                                                                             |
| Collected by (signature):                                                          | Rush? (I<br>Same D<br>Next Da<br>Two Da | Lab MUST Be<br>ay Five I<br>ay 5 Day<br>y 10 Da | Notified)<br>Day<br>(Rad Only)<br>ay (Rad Only) | Quote #                 | e Results Need | led        | No.         | 0 250mlF | 2125mlHI | 125mIHDI     | ImiHDPE-         |            |           |                    |                                   |                                                | Prelogin: P82<br>PM: 206 - Jeff                                                                    | 5366<br>Carr                                                                                       |
| Packed on Ice N Y X                                                                | Comp/Grab                               | Matrix *                                        | Depth                                           | Da                      | złd<br>te      | ïme        | of<br>Cntrs | a - 601  | hloride  | ulfate       | DS 250           |            |           |                    |                                   |                                                | Shipped Via:<br>Remarks                                                                            | Sample # (lab only)                                                                                |
| MW-1                                                                               | GRAB                                    | GW                                              |                                                 | 2/2/                    | 21 15          | 00         | 1           | 0        | 0        | s            | X                |            |           |                    |                                   |                                                |                                                                                                    | -01                                                                                                |
| MW-6                                                                               | 1                                       | GW                                              |                                                 | 2/2                     | 121 19         | 25         | 1           | X        |          |              |                  |            |           |                    |                                   |                                                |                                                                                                    | 02                                                                                                 |
| MW-8                                                                               |                                         | GW                                              |                                                 | 2/2/                    | 21 14          | 45         | 2           |          | X        |              | X                |            |           |                    |                                   |                                                |                                                                                                    | 03                                                                                                 |
| DUPLICATE 1                                                                        |                                         | GW                                              |                                                 | 2/21                    | 21 14          | 145        | 2           |          | X        | at the de    | X                |            |           |                    |                                   |                                                |                                                                                                    | 04                                                                                                 |
| MW-8 MS/MSD                                                                        |                                         | GW                                              |                                                 | 2/2/                    | 21 14          | 45         | 2           |          | X        |              | X                |            |           |                    |                                   |                                                |                                                                                                    | 04                                                                                                 |
| MW-9                                                                               |                                         | GW                                              |                                                 | 2121                    | 121 16         | 120        | 1           | x        |          | - the second |                  |            |           |                    |                                   |                                                |                                                                                                    | de                                                                                                 |
| MW-10                                                                              |                                         | GW                                              |                                                 | 19-1                    |                | :40        | 2           | X        |          | X            |                  |            |           |                    |                                   |                                                |                                                                                                    | 07                                                                                                 |
| DUPICATE 2                                                                         |                                         | GW                                              |                                                 |                         | 13             | 45         | 2           | X        |          | x            |                  |            |           |                    |                                   |                                                |                                                                                                    | 08                                                                                                 |
| MW-10 MS/MSD                                                                       | V                                       | GW                                              |                                                 |                         | 15             | 50         | 2           | x        |          | X            |                  |            |           |                    |                                   |                                                |                                                                                                    | 09                                                                                                 |
|                                                                                    | homorke                                 |                                                 |                                                 |                         |                |            | 1.          |          |          |              |                  |            |           |                    |                                   | Sampl                                          | le Receipt C                                                                                       | hecklist                                                                                           |
| SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Nethalks.                               |                                                 | ¢.                                              |                         |                |            |             |          |          |              | pH<br>Flow       | v          | Other     |                    | COC S<br>COC S<br>Bottle<br>Corre | eal Pro<br>igned/<br>es arr<br>ct bot<br>cient | esent/intact<br>Accurate:<br>ive intact:<br>tles used:<br>volume sent:                             |                                                                                                    |
| DW - Drinking Water<br>OT - Other                                                  | Samples returne                         | d via:<br>xCourier<br>Date:                     | الوك .<br>Tim                                   | A                       | Tracking #     | : (Signati | ure)        | 1        | • 3-     | 21           | Trip Bla         | ink Receiv | red: Te   | 3 NO               | VOA Z<br>Prese<br>RAD S           | ero He<br>rvatio<br>creen                      | If Applicat<br>adspace:<br>n Correct/Ch<br><0.5 mR/hr:                                             | ecked: _Y _N                                                                                       |
| Relinquished by : (Signature)                                                      | ics i                                   | 02/03/                                          | 2/ /<br>Tim                                     | 1400<br>ne:             | Received b     | Kd         | Jon<br>ure) | 2        | 140      | 3            | Pemp!            | H          | C Bottl   | BR<br>es Received: | - If pres                         | ervation                                       | n required by Lo                                                                                   | gin: Date/Time                                                                                     |
| Relinquished by : (Signature)                                                      | [                                       | Date:                                           | Tim                                             | ne:                     | Received fo    | r lab by:  | (Signa      | iture)   |          |              | 1.2 - 0<br>Date; | 2=10       | Time      | 15                 | Hold:                             |                                                |                                                                                                    | Condition:                                                                                         |

Jared Morrison December 16, 2022

## ATTACHMENT 1-2 March 2021 Sampling Event Laboratory Report



## Pace Analytical® ANALYTICAL REPORT March 10, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1322463 03/03/2021 27213167.20 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 Тс Ss Cn Sr ʹQc Gl AI Sc

### Entire Report Reviewed By:

Wubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## Pace Analytical National

12065 Lebanon Rd

Mount Juliet, TN 37122 615-758-5858 800-767-5859

www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1322463

DATE/TIME: 03/10/21 11:49 PAGE: 1 of 12

## TABLE OF CONTENTS

| Cp: Cover Page                 | 1  |
|--------------------------------|----|
| Tc: Table of Contents          | 2  |
| Ss: Sample Summary             | 3  |
| Cn: Case Narrative             | 4  |
| Sr: Sample Results             | 5  |
| MW-6 L1322463-01               | 5  |
| MW-10 L1322463-02              | 6  |
| DUPICATE 1 L1322463-03         | 7  |
| Qc: Quality Control Summary    | 8  |
| Wet Chemistry by Method 9056A  | 8  |
| Metals (ICP) by Method 6010B   | 9  |
| GI: Glossary of Terms          | 10 |
| Al: Accreditations & Locations | 11 |
| Sc: Sample Chain of Custody    | 12 |
|                                |    |

Ср

Ss

°Cn

Sr

Qc

GI

A

Sc

## SAMPLE SUMMARY

|                               |           |          |                | Collected date/time | Received date/time |                |  |
|-------------------------------|-----------|----------|----------------|---------------------|--------------------|----------------|--|
| MW-6 L1322463-01 GW           |           |          | April Thompson | 03/01/21 13:35      | 03/03/21 13:00     |                |  |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst            | Location       |  |
|                               |           |          | date/time      | date/time           |                    |                |  |
| Metals (ICP) by Method 6010B  | WG1629877 | 1        | 03/08/21 13:22 | 03/09/21 09:35      | KMG                | Mt. Juliet, TN |  |
|                               |           |          | Collected by   | Collected date/time | Received da        | te/time        |  |
| MW-10 L1322463-02 GW          |           |          | April Thompson | 03/01/21 15:23      | 03/03/2113:        | 00             |  |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst            | Location       |  |
|                               |           |          | date/time      | date/time           |                    |                |  |
| Wet Chemistry by Method 9056A | WG1631305 | 1        | 03/09/21 04:09 | 03/09/21 04:09      | MCG                | Mt. Juliet, TN |  |
| Metals (ICP) by Method 6010B  | WG1629877 | 1        | 03/08/21 13:22 | 03/09/21 09:37      | KMG                | Mt. Juliet, TN |  |
|                               |           |          | Collected by   | Collected date/time | Received da        | te/time        |  |
| DUPICATE 1 L1322463-03 GW     |           |          | April Thompson | 03/01/21 15:23      | 03/03/2113:        | 00             |  |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst            | Location       |  |
|                               |           |          | date/time      | date/time           |                    |                |  |
| Wet Chemistry by Method 9056A | WG1631305 | 1        | 03/09/21 04:22 | 03/09/21 04:22      | MCG                | Mt. Juliet, TN |  |
| Metals (ICP) by Method 6010B  | WG1629877 | 1        | 03/08/2113:22  | 03/09/21 09:40      | KMG                | Mt. Juliet, TN |  |

SDG: L1322463 Ср

<sup>2</sup>Tc

Ss

°Cn

Sr

Qc

GI

ΆI

Sc

## CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.20

SDG: L1322463 DATE/TIME: 03/10/21 11:49 PAGE: 4 of 12

# SAMPLE RESULTS - 01

## Metals (ICP) by Method 6010B

|         |        |           |      |          |                  |           | 1'Cr |
|---------|--------|-----------|------|----------|------------------|-----------|------|
|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |      |
| Analyte | ug/l   |           | ug/l |          | date / time      |           | 2    |
| Calcium | 153000 |           | 1000 | 1        | 03/09/2021 09:35 | WG1629877 | Tc   |

#### SAMPLE RESULTS - 02 L1322463

### Wet Chemistry by Method 9056A

| Wet Chemistry by   | Method 9056A | N         |      |          |                  |           | 1               |
|--------------------|--------------|-----------|------|----------|------------------|-----------|-----------------|
|                    | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte            | ug/l         |           | ug/l |          | date / time      |           | 2               |
| Sulfate            | 48400        |           | 5000 | 1        | 03/09/2021 04:09 | WG1631305 | Tc              |
| Metals (ICP) by Me | thod 6010B   |           |      |          |                  |           | <sup>3</sup> Ss |
|                    | Result       | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte            | ug/l         |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Calcium            | 160000       |           | 1000 | 1        | 03/09/2021 09:37 | WG1629877 | CII             |

Qc

GI

ΆI

Sc

#### DUPICATE 1 Collected date/time: 03/01/21 15:23

#### SAMPLE RESULTS - 03 L1322463

## Wet Chemistry by Method 9056A

| Wet Chemistry by  | y Method 9056A | N         |      |          |                  |           | 1               |
|-------------------|----------------|-----------|------|----------|------------------|-----------|-----------------|
|                   | Result         | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte           | ug/l           |           | ug/l |          | date / time      |           | 2               |
| Sulfate           | 48500          |           | 5000 | 1        | 03/09/2021 04:22 | WG1631305 | Tc              |
| Metals (ICP) by M | lethod 6010B   |           |      |          |                  |           | <sup>3</sup> Ss |
|                   | Result         | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte           | ug/l           |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Calcium           | 159000         |           | 1000 | 1        | 03/09/2021 09:40 | WG1629877 | СП              |

Qc

GI

ΆI

Sc

## WG1631305

Wet Chemistry by Method 9056A

### QUALITY CONTROL SUMMARY L1322463-02,03

### Method Blank (MB)

| ivietnod Biani  | K (IVIB)       |              |        |        |                 | `  |
|-----------------|----------------|--------------|--------|--------|-----------------|----|
| (MB) R3628675-1 | 03/08/21 10:36 |              |        |        |                 | .p |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | 2               | _  |
| Analyte         | ug/l           |              | ug/l   | ug/l   |                 | С  |
| Sulfate         | U              |              | 594    | 5000   |                 | _  |
|                 |                |              |        |        | <sup>°</sup> S: | S  |

#### L1322458-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1322458-02 03/09/ | /21 03:43 • (DUF | P) R3628675-5 | 5 03/09/2 | 1 03:56 |               |                   |
|-------------------------|------------------|---------------|-----------|---------|---------------|-------------------|
|                         | Original Result  | DUP Result    | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l             | ug/l          |           | %       |               | %                 |
| Sulfate                 | 48300            | 48300         | 1         | 0.0213  |               | 15                |

⁺Cn

Sr

## L1323107-06 Original Sample (OS) • Duplicate (DUP)

| L1323107-06 Origi      | nal Sample       | (OS) • Dup    | olicate ( | DUP)    |               |              | <sup>7</sup> Gl |
|------------------------|------------------|---------------|-----------|---------|---------------|--------------|-----------------|
| (OS) L1323107-06 03/09 | /21 08:04 • (DUF | P) R3628675-6 | 6 03/09/2 | 1 08:17 |               |              |                 |
|                        | Original Result  | DUP Result    | Dilution  | DUP RPD | DUP Qualifier | P RPD<br>its | <sup>8</sup> Al |
| Analyte                | ug/l             | ug/l          |           | %       |               |              |                 |
| Sulfate                | ND               | ND            | 1         | 8.37    |               |              | <sup>9</sup> Sc |

#### Laboratory Control Sample (LCS)

| (LCS) R3628675-2 03/08/2 | 21 10:49     |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | ug/l         | ug/l       | %        | %           |               |
| Sulfate                  | 40000        | 40300      | 101      | 80.0-120    |               |

## L1322448-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1322448-02 03/09/2 | 21 02:30 • (MS) | R3628675-3 (    | 03/09/21 02:43 | • (MSD) R3628 | 3675-4 03/09/ | 21 02:56 |          |             |              |               |        |            |
|--------------------------|-----------------|-----------------|----------------|---------------|---------------|----------|----------|-------------|--------------|---------------|--------|------------|
|                          | Spike Amount    | Original Result | MS Result      | MSD Result    | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                  | ug/l            | ug/l            | ug/l           | ug/l          | %             | %        |          | %           |              |               | %      | %          |
| Sulfate                  | 50000           | 107000          | 156000         | 156000        | 99.2          | 99.3     | 1        | 80.0-120    | E            | E             | 0.0530 | 15         |

## L1323107-06 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1323107-06 03/09/2 | 1 08:04 • (MS) F | 3628675-7 0            | 3/09/21 08:30 |         |          |             |              |
|--------------------------|------------------|------------------------|---------------|---------|----------|-------------|--------------|
|                          | Spike Amount     | <b>Original Result</b> | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                  | ug/l             | ug/l                   | ug/l          | %       |          | %           |              |
| Sulfate                  | 50000            | ND                     | 53300         | 105     | 1        | 80.0-120    |              |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:   |
|--------------------|-------------|----------|----------------|---------|
| SCS Engineers - KS | 27213167.20 | L1322463 | 03/10/21 11:49 | 8 of 12 |

## WG1629877

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

#### Method Blank (MB)

| (MB) R3628905-1 03 | 3/09/21 08:53 |              |        |        |
|--------------------|---------------|--------------|--------|--------|
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | ug/l          |              | ug/l   | ug/l   |
| Calcium            | U             |              | 79.3   | 1000   |

### Laboratory Control Sample (LCS)

| (LCS) R3628905-2 03/09/21 08:56 |              |            |          |             |               |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |
| Calcium                         | 10000        | 9500       | 95.0     | 80.0-120    |               |  |

### L1322438-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1322438-01 03/09/21 08:58 • (MS) R3628905-4 03/09/21 09:03 • (MSD) R3628905-5 03/09/21 09:06 |              |                 |           |            |         |          |          |             |                    |                    |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------------|--------------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |                    |                    | %     | %          |
| Calcium                                                                                            | 10000        | 133000          | 140000    | 139000     | 73.7    | 65.0     | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.621 | 20         |

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

## GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |  |  |  |  |  |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |  |  |  |  |  |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |  |  |  |  |  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |  |  |  |  |  |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |  |  |  |  |  |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |  |  |  |  |  |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |  |  |  |  |  |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |  |  |  |  |  |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| E                               | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |

V

The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1322463 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc
# ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| Idaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

PROJECT: 27213167.20

SDG: L1322463 DATE/TIME: 03/10/21 11:49

PAGE: 11 of 12

<sup>2</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Sr <sup>6</sup> Qc <sup>7</sup> Gl <sup>8</sup> Al <sup>9</sup> Sc

| Name/Address:                                                                |                             |                                                | Billing Infor                                  | mation:                        |                      |                     | T               |          |          | Ar   | nalvsis / Co | ntainer /  | Preservati             | ve     |                                                 | Chain of Custody                                                                             | Page of                                                      |
|------------------------------------------------------------------------------|-----------------------------|------------------------------------------------|------------------------------------------------|--------------------------------|----------------------|---------------------|-----------------|----------|----------|------|--------------|------------|------------------------|--------|-------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| S Engineers - KS<br>75 W. 110th Street<br>Pland Park, KS 66210               |                             |                                                | Accounts<br>8575 W.<br>Overland                | Payable<br>110th St<br>Park, K | e<br>treet<br>S 6621 | 0                   | Pres<br>Chk     | 5        |          |      |              | •          |                        |        |                                                 | - Pace A<br>National Car                                                                     | Analytical *                                                 |
| Port to:<br>Franks                                                           |                             |                                                | Email To:<br>jfranks@sc                        | sengineers                     | s.com;ja             | y.martin@e          | vergy.c         |          |          |      |              |            |                        |        |                                                 | 12065 Lebanon Road Mt<br>Phone: 615-758-5858 Al<br>Submitting a sample via                   | Juliet, TN 37122<br>t: 800-767-5859<br>this chain of custody |
| oject Description:<br>ojecty - latan Generating Station                      |                             | City/State<br>Collected:                       | vestor                                         | nm                             | 0                    | Please C<br>PT MT ( | ircle:<br>CT ET |          |          |      |              |            |                        |        |                                                 | constitutes acknowledgn<br>Pace Terms and Conditio<br>https://info.pacelabs.con<br>terms.odf | hent and acceptance<br>ins found at:<br>m/hubfs/pas-standar  |
| hone: 913-681-0030                                                           | Client Project<br>27213167. | :#<br>20                                       |                                                | Lab Proje                      | ect #<br>OPKS-I/     | ATAN                |                 | NO3      | res      |      |              |            |                        |        | -                                               | SDG # 01                                                                                     | 72240                                                        |
| collegted by (print):<br>April Thompson                                      | Site/Facility I             | D #                                            |                                                | P.O. #                         |                      |                     |                 | HDPE-H   | PE-NoP   |      |              |            |                        | -      |                                                 | Acctnum: AQU                                                                                 | IAOPKS                                                       |
| collected by (signature):                                                    | Rush?         (             | Lab MUST Be<br>Day Five D<br>ay 5 Day<br>10 Da | Notified)<br>Day<br>(Rad Only)<br>v (Rad Only) | Quote #                        | #<br>e Results       | Needed              | No              | 0 250ml  | 25mIHD   |      |              |            |                        |        |                                                 | Prelogin: <b>P830</b><br>PM: <b>206 - Jeff C</b>                                             | )695<br>Jarr                                                 |
| packed on Ice N Y<br>Sample ID                                               | Comp/Grab                   | Day<br>Matrix *                                | Depth                                          | Da                             | ite                  | Time                | of<br>Cntrs     | ca - 601 | ulfate 1 |      |              |            |                        |        |                                                 | Shipped Via:<br>Remarks                                                                      | Sample # (la                                                 |
| MW-6                                                                         | Grah                        | GW                                             | 1                                              | 31                             | 1/21                 | 1335                | 1               | x        |          |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
| MW-10                                                                        | Girab                       | GW                                             |                                                | 3/1                            | 121                  | 1523                | 2               | X        | X        |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
| DUPICATE 1                                                                   | Gurab                       | GW                                             |                                                | 3/1                            | 121                  | 1523                | 5 2             | X        | X        |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
| MW-10 MS/MSD                                                                 |                             | GW                                             |                                                |                                |                      |                     | -2-             | X        | _X_      |      | ~            |            |                        |        |                                                 |                                                                                              |                                                              |
|                                                                              |                             |                                                |                                                |                                |                      |                     |                 |          |          |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
|                                                                              |                             |                                                |                                                |                                |                      |                     |                 |          |          |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
|                                                                              |                             |                                                |                                                |                                |                      |                     |                 |          |          |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
|                                                                              |                             |                                                |                                                |                                |                      |                     |                 |          |          |      |              |            |                        |        |                                                 |                                                                                              |                                                              |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks:                    |                                                |                                                |                                |                      |                     |                 |          |          |      | pH           | т<br>с     | emp                    | _      | COC Seal<br>COC Signe<br>Bottles a<br>Correct h | Present/Intact:<br>d/Accurate:<br>rrive intact:                                              |                                                              |
| pW - Drinking Water<br>of - Other                                            | Samples returned<br>UPSFedE | d via:<br>kCourier                             |                                                |                                | Trackin              | ng #                |                 |          |          |      |              |            |                        |        | Sufficien<br>VOA Zero                           | t volume sent:<br><u>If Applicab</u><br>Headspace:<br>ion Correct (Ch                        | Le X                                                         |
| Relinquished by : (Signature)                                                | D                           | 3/2/2                                          | Time                                           | 214                            | Receiv               | ed by: (Signa       | son             | 13       | -2-2     | ·/ 1 | rip Blank    | Received:  | Yes No<br>HCL/M<br>TBR | leoH   | RAD Scree                                       | n <0.5 mR/hr:                                                                                | F                                                            |
| Relinquished by : (Signature)                                                | D                           | oate:                                          | Time                                           |                                | Receiv               | ed by: (Signa       | ature)          |          |          | 0    | remp. 73     | ~°C<br>202 | Bottles Rece           | lived: | If preservat                                    | ion required by Log                                                                          | in: Date/Tin                                                 |
| Relinquished by : (Signature)                                                | D                           | ate:                                           | Time                                           | :                              | Receiv               | ed for lab by       | : (Signat       | ture)    | A        |      | Bate: 12     | 61         | Time:                  | ØD     | Hold:                                           |                                                                                              | Condition                                                    |



# Pace Analytical® ANALYTICAL REPORT March 10, 2021

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1322458 03/03/2021 27213167.20 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr ʹQc Gl AI Sc

#### Entire Report Reviewed By:

Wubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# Pace Analytical National

12065 Lebanon Rd

Mount Juliet, TN 37122 615-758-5858 800-767-5859

www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1322458

DATE/TIME: 03/10/21 11:48 PAGE: 1 of 13

# TABLE OF CONTENTS

| Cp: Cover Page                      | 1  |
|-------------------------------------|----|
| Tc: Table of Contents               | 2  |
| Ss: Sample Summary                  | 3  |
| Cn: Case Narrative                  | 4  |
| Sr: Sample Results                  | 5  |
| MW-6 L1322458-01                    | 5  |
| MW-10 L1322458-02                   | 6  |
| Qc: Quality Control Summary         | 7  |
| Wet Chemistry by Method 2320 B-2011 | 7  |
| Wet Chemistry by Method 9056A       | 8  |
| Metals (ICP) by Method 6010B        | 10 |
| GI: Glossary of Terms               | 11 |
| Al: Accreditations & Locations      | 12 |
| Sc: Sample Chain of Custody         | 13 |
|                                     |    |

Ср

Ss

°Cn

Sr

Qc

GI

A

# SAMPLE SUMMARY

|                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
|-------------------------------------|-----------|----------|----------------|---------------------|--------------|----------------|
| MW-6 L1322458-01 GW                 |           |          | A. Thompson    | 03/01/21 13:35      | 03/03/2113:0 | 00             |
| Method                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                     |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 2320 B-2011 | WG1629824 | 1        | 03/05/21 07:06 | 03/05/21 07:06      | SL           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A       | WG1631305 | 1        | 03/09/21 03:22 | 03/09/21 03:22      | MCG          | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B        | WG1629877 | 1        | 03/08/21 13:22 | 03/09/21 09:30      | KMG          | Mt. Juliet, TN |
|                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| MW-10 L1322458-02 GW                |           |          | A. Thompson    | 03/01/21 15:23      | 03/03/2113:0 | 00             |
| Method                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                     |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 2320 B-2011 | WG1629824 | 1        | 03/05/21 07:16 | 03/05/21 07:16      | SL           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A       | WG1631305 | 1        | 03/09/21 03:43 | 03/09/21 03:43      | MCG          | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B        | WG1629877 | 1        | 03/08/21 13.22 | 03/00/21 00.32      | KMC          | Mt Juliot TN   |

<sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al

Ср

<sup>2</sup>Tc

DATE/TIME: 03/10/21 11:48

# CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.20

SDG: L1322458 DATE/TIME: 03/10/21 11:48

PAGE: 4 of 13

### MW-6

### Collected date/time: 03/01/21 13:35

# SAMPLE RESULTS - 01

### Wet Chemistry by Method 2320 B-2011

|                        | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | <br>Ср |
|------------------------|--------|-----------|-------|----------|------------------|-----------|--------|
| Analyte                | ug/l   |           | ug/l  |          | date / time      |           | 2      |
| Alkalinity,Bicarbonate | 474000 |           | 20000 | 1        | 03/05/2021 07:06 | WG1629824 | Tc     |
| Alkalinity,Carbonate   | ND     |           | 20000 | 1        | 03/05/2021 07:06 | WG1629824 |        |
|                        |        |           |       |          |                  |           |        |

#### Sample Narrative:

L1322458-01 WG1629824: Endpoint pH 4.5 Headspace

#### Wet Chemistry by Method 9056A

|          |        |           |      |          |                  |           | 5               |
|----------|--------|-----------|------|----------|------------------|-----------|-----------------|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | ຶSr             |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |                 |
| Chloride | 1680   |           | 1000 | 1        | 03/09/2021 03:22 | WG1631305 | <sup>6</sup> Oc |
| Sulfate  | 32200  |           | 5000 | 1        | 03/09/2021 03:22 | WG1631305 | QC              |
|          |        |           |      |          |                  |           |                 |

#### Metals (ICP) by Method 6010B

|           | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | 2       |
|-----------|--------|-----------|------|----------|------------------|-----------|---------|
| Analyte   | ug/l   |           | ug/l |          | date / time      |           | ΪΑ      |
| Magnesium | 32400  |           | 1000 | 1        | 03/09/2021 09:30 | WG1629877 |         |
| Potassium | 4520   |           | 2000 | 1        | 03/09/2021 09:30 | WG1629877 | 9<br>50 |
| Sodium    | 5950   |           | 3000 | 1        | 03/09/2021 09:30 | WG1629877 |         |

Ss

Cn

<sup>7</sup>Gl

# MW-10

# Collected date/time: 03/01/21 15:23

#### SAMPLE RESULTS - 02 L1322458

### Wet Chemistry by Method 2320 B-2011

|                        |        |           |       |          |                  |           | I Cn |
|------------------------|--------|-----------|-------|----------|------------------|-----------|------|
|                        | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     | Cp   |
| Analyte                | ug/l   |           | ug/l  |          | date / time      |           | 2    |
| Alkalinity,Bicarbonate | 570000 |           | 20000 | 1        | 03/05/2021 07:16 | WG1629824 | Tc   |
| Alkalinity,Carbonate   | ND     |           | 20000 | 1        | 03/05/2021 07:16 | WG1629824 |      |
|                        |        |           |       |          |                  |           |      |

#### Sample Narrative:

L1322458-02 WG1629824: Endpoint pH 4.5 Headspace

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Chloride | 17100  |           | 1000 | 1        | 03/09/2021 03:43 | WG1631305 |

### Metals (ICP) by Method 6010B

| Metals (ICP) by Me | ethod 6010B |           |      |          |                  |           | <sup>7</sup> CL |
|--------------------|-------------|-----------|------|----------|------------------|-----------|-----------------|
|                    | Result      | Qualifier | RDL  | Dilution | Analysis         | Batch     | G               |
| Analyte            | ug/l        |           | ug/l |          | date / time      |           | 8               |
| Magnesium          | 56500       |           | 1000 | 1        | 03/09/2021 09:32 | WG1629877 | ٦A              |
| Potassium          | 4560        |           | 2000 | 1        | 03/09/2021 09:32 | WG1629877 |                 |
| Sodium             | 14900       |           | 3000 | 1        | 03/09/2021 09:32 | WG1629877 | <sup>9</sup> Sc |

Ss

Cn

Qc

### WG1629824

Wet Chemistry by Method 2320 B-2011

#### QUALITY CONTROL SUMMARY L1322458-01,02

### Method Blank (MB)

| Method Biguk (M        | в)         |              |        |        | $^{1}$ Cn       |
|------------------------|------------|--------------|--------|--------|-----------------|
| (MB) R3627767-1 03/05  | 5/21 03:38 |              |        |        | Ср              |
|                        | MB Result  | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                | ug/l       |              | ug/l   | ug/l   | Tc              |
| Alkalinity,Bicarbonate | U          |              | 8450   | 20000  |                 |
| Alkalinity,Carbonate   | U          |              | 8450   | 20000  | <sup>3</sup> SS |
|                        |            |              |        |        |                 |

#### Sample Narrative:

BLANK: Endpoint pH 4.5

### L1322190-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1322190-02 03/05/2 | 21 04:46 • (DUP | P) R3627767-2 | 03/05/21 | 04:59   |               |                   |  |  |  |
|--------------------------|-----------------|---------------|----------|---------|---------------|-------------------|--|--|--|
|                          | Original Result | DUP Result    | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                  | ug/l            | ug/l          |          | %       |               | %                 |  |  |  |
| Alkalinity,Bicarbonate   | 145000          | 145000        | 1        | 0.147   |               | 20                |  |  |  |
| Alkalinity,Carbonate     | ND              | ND            | 1        | 0.000   |               | 20                |  |  |  |

#### Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

### L1322687-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1322687-02 03/05/2 | 21 13:21 • (DUP) | R3627767-4 ( | 03/05/211 | 13:35   |               |                   |  |  |  |
|--------------------------|------------------|--------------|-----------|---------|---------------|-------------------|--|--|--|
|                          | Original Result  | DUP Result   | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                  | ug/l             | ug/l         |           | %       |               | %                 |  |  |  |
| Alkalinity,Bicarbonate   | 21300            | 20400        | 1         | 4.39    |               | 20                |  |  |  |
| Alkalinity,Carbonate     | ND               | ND           | 1         | 0.000   |               | 20                |  |  |  |

#### Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

| ACCOUNT:           |   |
|--------------------|---|
| SCS Engineers - KS | 5 |

PROJECT: 27213167.20

SDG: L1322458

DATE/TIME: 03/10/21 11:48

PAGE: 7 of 13 ⁺Cn

Sr

Qc

GI

Â

## WG1631305

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

### Method Blank (MB)

| method Blai     |                |              |        |        | 11 |
|-----------------|----------------|--------------|--------|--------|----|
| (MB) R3628675-1 | 03/08/21 10:36 |              |        |        |    |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | ſ  |
| Analyte         | ug/l           |              | ug/l   | ug/l   |    |
| Chloride        | U              |              | 379    | 1000   |    |
| Sulfate         | U              |              | 594    | 5000   |    |
|                 |                |              |        |        |    |

°Cn

Sr

Qc

GI

Â

Sc

### L1322458-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1322458-02 03/09/ | '21 03:43 • (DUF | P) R3628675-5 | 5 03/09/2 | 1 03:56 |               |                   |
|-------------------------|------------------|---------------|-----------|---------|---------------|-------------------|
|                         | Original Result  | DUP Result    | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | ug/l             | ug/l          |           | %       |               | %                 |
| Chloride                | 17100            | 17100         | 1         | 0.0421  |               | 15                |
| Sulfate                 | 48300            | 48300         | 1         | 0.0213  |               | 15                |

### L1323107-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1323107-06 03/09/2 | 108:04 • (DUP)  | ) R3628675-6 | 03/09/21 | 08:1/   |               |                   |
|--------------------------|-----------------|--------------|----------|---------|---------------|-------------------|
|                          | Original Result | DUP Result   | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | ug/l            | ug/l         |          | %       |               | %                 |
| Chloride                 | 63100           | 63100        | 1        | 0.0518  |               | 15                |
| Sulfate                  | ND              | ND           | 1        | 8.37    |               | 15                |

### Laboratory Control Sample (LCS)

| (LCS) R3628675-2 03/08/ | /21 10:49    |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | ug/l         | ug/l       | %        | %           |               |
| Chloride                | 40000        | 40300      | 101      | 80.0-120    |               |
| Sulfate                 | 40000        | 40300      | 101      | 80.0-120    |               |

### L1322448-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1322448-02 03/09/2 | 21 02:30 • (MS) | R3628675-3 (    | 03/09/21 02:43 | • (MSD) R3628 | 3675-4 03/09/ | 21 02:56 |          |             |              |               |        |            |
|--------------------------|-----------------|-----------------|----------------|---------------|---------------|----------|----------|-------------|--------------|---------------|--------|------------|
|                          | Spike Amount    | Original Result | MS Result      | MSD Result    | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                  | ug/l            | ug/l            | ug/l           | ug/l          | %             | %        |          | %           |              |               | %      | %          |
| Chloride                 | 50000           | 10400           | 63100          | 63100         | 105           | 105      | 1        | 80.0-120    |              |               | 0.0472 | 15         |
| Sulfate                  | 50000           | 107000          | 156000         | 156000        | 99.2          | 99.3     | 1        | 80.0-120    | E            | E             | 0.0530 | 15         |

| ACCOUNT:           | PROJECT:    | SDG:     | DATE/TIME:     | PAGE:   |
|--------------------|-------------|----------|----------------|---------|
| SCS Engineers - KS | 27213167.20 | L1322458 | 03/10/21 11:48 | 8 of 13 |

#### WG1631305 Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1322458-01,02

### L1323107-06 Original Sample (OS) • Matrix Spike (MS)

| L1323107-06 Origi       | nai Sampie       | $(05) \cdot Matri$ | nx spike (r    | VIS)    |          |             |              | 1 CD            |
|-------------------------|------------------|--------------------|----------------|---------|----------|-------------|--------------|-----------------|
| (OS) L1323107-06 03/09/ | /21 08:04 • (MS) | R3628675-7 (       | 03/09/21 08:30 | C       |          |             |              | Ср              |
|                         | Spike Amount     | Original Result    | MS Result      | MS Rec. | Dilution | Rec. Limits | MS Qualifier | 2               |
| Analyte                 | ug/l             | ug/l               | ug/l           | %       |          | %           |              | Тс              |
| Chloride                | 50000            | 63100              | 112000         | 98.0    | 1        | 80.0-120    | E            |                 |
| Sulfate                 | 50000            | ND                 | 53300          | 105     | 1        | 80.0-120    |              | <sup>3</sup> Ss |
|                         |                  |                    |                |         |          |             |              |                 |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213167.20

SDG: L1322458

DATE/TIME: 03/10/21 11:48

PAGE: 9 of 13 ⁺Cn

Sr

Qc

GI

Â

### WG1629877

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

### Method Blank (MB)

| (MB) R3628905-1 03/09/21 | 1 08:53   |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | ug/l      |              | ug/l   | ug/l   |
| Magnesium                | U         |              | 85.3   | 1000   |
| Potassium                | U         |              | 261    | 2000   |
| Sodium                   | U         |              | 504    | 3000   |

#### Laboratory Control Sample (LCS)

| (LCS) R3628905-2 03/09 | /21 08:56    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | ug/l         | ug/l       | %        | %           |               |
| Magnesium              | 10000        | 9410       | 94.1     | 80.0-120    |               |
| Potassium              | 10000        | 8930       | 89.3     | 80.0-120    |               |
| Sodium                 | 10000        | 9380       | 93.8     | 80.0-120    |               |

### L1322438-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| DS) L1322438-01 03/09/21 08:58 • (MS) R3628905-4 03/09/21 09:03 • (MSD) R3628905-5 03/09/21 09:06 |              |                        |           |            |         |          |          |             |              |               |       |            |
|---------------------------------------------------------------------------------------------------|--------------|------------------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                   | Spike Amount | <b>Original Result</b> | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l                   | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Magnesium                                                                                         | 10000        | 7300                   | 16400     | 16300      | 91.2    | 90.1     | 1        | 75.0-125    |              |               | 0.662 | 20         |
| Potassium                                                                                         | 10000        | ND                     | 11000     | 10900      | 92.3    | 90.9     | 1        | 75.0-125    |              |               | 1.23  | 20         |
| Sodium                                                                                            | 10000        | 50100                  | 58900     | 58500      | 87.2    | 83.9     | 1        | 75.0-125    |              |               | 0.564 | 20         |

DATE/TIME: 03/10/21 11:48 Тс

Ss

Cn

Sr

Qc

GI

Â

# GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E                               | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial                                                                                                                                                                                                                                                                                                                                                                                                    |

Jbb g calibration (ICAL).

PROJECT: 27213167.20

SDG: L1322458

DATE/TIME: 03/10/21 11:48 Τс

Ss

Cn

Sr

Qc

GI

AI

# ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| Idaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

PROJECT: 27213167.20

SDG: L1322458 DATE/TIME: 03/10/21 11:48 <sup>1</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Sr <sup>6</sup> Qc <sup>7</sup> Gl <sup>8</sup> Al <sup>9</sup> Sc

| Company Name/Address:                                   |                                    |                                          | Billing Infor                                       | mation:  |           |               |             |         |              | A      | nalvsis /  | Contain   | er / Pres | ervative    |                               | Chain                                        | of Custody                                                                       | Page of                                                                              |
|---------------------------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------|----------|-----------|---------------|-------------|---------|--------------|--------|------------|-----------|-----------|-------------|-------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| SCS Engineers - KS                                      |                                    | Accounts Payable<br>8575 W. 110th Street |                                                     |          |           |               | Pres<br>Chk |         |              | 02     |            |           |           |             |                               | _/_                                          | Pace A                                                                           | nalytical <sup>®</sup>                                                               |
| Overland Park, KS 66210                                 |                                    |                                          | Overland                                            | Park, KS | 66210     |               |             |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
| Report to:<br>Jason Franks                              |                                    |                                          | Email To:<br>jfranks@scsengineers.com;jay.martin@ev |          |           |               | ergy.c      |         | res<br>oPres |        | oPres      |           |           |             |                               | 12065 Li<br>Phone: 6<br>Submitti             | ebanon Road Mt .<br>615-758-5858 Alt:<br>ing a sample via ti<br>ites acknowledgm | uliet, TN 37122<br>800-767-5859<br>his chain of custody<br>ent and acceptance of the |
| Project Description:<br>Evergy latan Generating Station |                                    | City/State<br>Collected:                 | Weston MO Please Cir<br>PT MT C                     |          |           | rcle:<br>T ET | res         | HNO3    |              | PE-N   |            |           |           |             | Pace Ter<br>https://i         | rms and Condition<br>info.pacelabs.com<br>df | s found at:<br>/hubfs/pas-standard-                                              |                                                                                      |
| Phone: 913-681-0030                                     | Client Project<br>27213167         | .210                                     | C Lab Project #<br>AQUAOPKS-IATAN                   |          |           |               |             | PE-NoP  | DPE-N        | HDPE-I | SmIHD      |           |           |             |                               | SDG                                          | # L  <br>1097                                                                    | 520450                                                                               |
| Collected by (print):                                   | Site/Facility I                    | D #                                      |                                                     | P.O. #   |           |               |             | MIHDE   | 25mlH        | 250mll | 56 12      |           |           |             |                               | Acctn                                        | um: AQU                                                                          | AOPKS                                                                                |
| Collected by (signature):                               | <b>Rush?</b> (<br>Same D<br>Next D | Lab MUST Be<br>Day Five<br>ay 5 Da       | e Notified)<br>Day<br>y (Rad Only)                  | Quote #  | Results N | Needed        |             | KCA 125 | 9056 1       | - 6010 | iride - 90 |           |           |             |                               | Preio<br>PM: 2                               | gin: <b>P830</b><br>206 - Jeff Ci                                                | 879<br>702<br>arr                                                                    |
| Immediately Packed on Ice N Y                           | Two Da                             | ay 10 D<br>Day                           | ay (Rad Only)                                       |          |           |               | No.<br>of   | , AL    | de .         | , Na   | Chlo       |           |           |             |                               | PB:                                          |                                                                                  |                                                                                      |
| Sample ID                                               | Comp/Grab                          | Matrix *                                 | Depth                                               | Date     |           | Time          | Cntrs       | ALKBI   | Chlori       | K, Mg  | 504, (     |           |           |             |                               | Shipp                                        | Remarks                                                                          | Sample # (lab only)                                                                  |
| MW-6                                                    | Gab                                | GW                                       | 2526                                                | 3/11     | 21        | 1335          | 3           | X       |              | X      | X          |           |           |             |                               |                                              |                                                                                  | -01                                                                                  |
| /W-10                                                   | Grab                               | GW                                       | 25.5                                                | 3/12     | .1        | 1523          | 3           | x       | X            | X      |            |           |           |             |                               |                                              |                                                                                  | 00                                                                                   |
|                                                         |                                    |                                          |                                                     |          |           |               |             |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
|                                                         |                                    |                                          |                                                     |          |           |               | 1           |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
|                                                         |                                    |                                          |                                                     |          |           |               | 1           |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
|                                                         |                                    |                                          |                                                     |          |           |               | 1           |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
|                                                         |                                    |                                          |                                                     |          |           |               | 1           |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
|                                                         |                                    |                                          |                                                     |          |           |               |             |         |              |        |            |           |           |             |                               |                                              |                                                                                  |                                                                                      |
| * Matrix:                                               | Remarks:                           |                                          | 1                                                   | 1        |           |               | 1           | -       |              |        | рН         |           | Temp      |             | COC Sea                       | Sample Red                                   | ceipt Che<br>/Intact:                                                            | Cklist                                                                               |
| GW - Groundwater B - Bioassay<br>WW - WasteWater        |                                    |                                          |                                                     |          |           |               |             |         |              |        | Flow       |           | _ Other   |             | COC Sig<br>Bottles<br>Correct | ned/Accur<br>arrive i<br>bottles             | ate:<br>ntact:<br>used:                                                          | N N N                                                                                |
| DW - Drinking Water<br>OT - Other                       | Samples returned<br>UPSFedE        | d via:<br>x Courier                      |                                                     | Т        | Fracking  | #             |             |         |              |        |            |           |           |             | Suffici<br>VOA Zer            | ent volum<br><u>If A</u><br>o Headspa        | e sent:<br>pplicabl<br>ce:                                                       |                                                                                      |
| Relinquished by : (Signature)                           | C                                  | ate:<br>3/2/                             | ZI II                                               | R        | Received  | by: (Signat   | loon        | 3.      | 2-2-2        | 21     | Trip Blar  | nk Receiv | ved: Yes  | CL / MeoH   | Preserv<br>RAD Scr            | een <0.5                                     | mR/hr:                                                                           | sked:                                                                                |
| Relinquished by : (Signature)                           | C                                  | Date:                                    | Time                                                | : R      | Received  | d by: (Signat | ure)        |         | 61           | 1      | Temp:      | Bri       | C Bottle  | s Received: | If preserv                    | vation requi                                 | red by Logi                                                                      | n: Date/Time                                                                         |
| Relinquished by : (Signature)                           | C                                  | Date:                                    | Time                                                | :: R     | Received  | for lab by    | Signat      | ure)    | >            | 6      | Date:      | 15-0      | Time      | 2.0         | Hold:                         |                                              |                                                                                  | Condition:<br>NCF / OK                                                               |

.

# ATTACHMENT 1-3 May 2021 Sampling Event Laboratory Report



# Pace Analytical® ANALYTICAL REPORT June 08, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1356626 05/21/2021 27213167.21 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

### Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.21

SDG: L1356626

DATE/TIME: 06/08/21 16:56

PAGE: 1 of 17

# TABLE OF CONTENTS

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-1 L1356626-01                           | 5  |
| MW-2 L1356626-02                           | 6  |
| MW-6 L1356626-03                           | 7  |
| MW-7 L1356626-04                           | 8  |
| MW-8 L1356626-05                           | 9  |
| DUPLICATE L1356626-06                      | 10 |
| Qc: Quality Control Summary                | 11 |
| Gravimetric Analysis by Method 2540 C-2011 | 11 |
| Wet Chemistry by Method 9056A              | 12 |
| Metals (ICP) by Method 6010B               | 14 |
| GI: Glossary of Terms                      | 15 |
| Al: Accreditations & Locations             | 16 |
| Sc: Sample Chain of Custody                | 17 |

<sup>1</sup>Cp <sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

SDG: L1356626 DATE/TIME: 06/08/21 16:56

# SAMPLE SUMMARY

|                                            |           |          | Collected by                | Collected date/time                   | Received da              | te/time        |
|--------------------------------------------|-----------|----------|-----------------------------|---------------------------------------|--------------------------|----------------|
| MW-1 L1356626-01 GW                        |           |          | G. Panaflor                 | 05/20/21 15:00                        | 05/21/21 09:             | 30             |
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 00:45              | 06/04/21 00:45                        | ELN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/21 10:29                        | EL                       | Mt. Juliet, TN |
| MW-2 11356626-02 GW                        |           |          | Collected by<br>G. Panaflor | Collected date/time<br>05/20/21 09:45 | Received da 05/21/21 09: | te/time<br>30  |
| Mathad                                     | Patch     | Dilution | Proparation                 | Applycic                              | Applyct                  | Location       |
| method                                     | Batch     | Dilution | date/time                   | date/time                             | Analyst                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 00:58              | 06/04/21 00:58                        | ELN                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 5        | 06/04/21 01:11              | 06/04/21 01:11                        | ELN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/2110:38                         | EL                       | Mt. Juliet, TN |
| MW-6 11356626-03 GW                        |           |          | Collected by<br>G. Panaflor | Collected date/time<br>05/20/21 09:35 | Received da 05/21/21 09: | te/time<br>30  |
| Method                                     | Batch     | Dilution | Preparation                 | Analysis                              | Analyst                  | Location       |
| inculu                                     | Daten     | Dilution | date/time                   | date/time                             | Analyse                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt Juliet TN   |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 01:24              | 06/04/21 01:24                        | FLN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/21 10:41                        | EL                       | Mt. Juliet, TN |
|                                            |           |          | Collected by                | Collected date/time                   | Received da              | te/time        |
| MW-7 L1356626-04 GW                        |           |          | G. Panaflor                 | 05/20/21 12:45                        | 05/21/21 09:             | 30             |
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 01:36              | 06/04/21 01:36                        | ELN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/21 09:33                        | EL                       | Mt. Juliet, TN |
|                                            |           |          | Collected by                | Collected date/time                   | Received da              | te/time        |
| MW-8 L1356626-05 GW                        |           |          | G. Panaflor                 | 05/20/21 12:10                        | 05/21/21 09:             | 30             |
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 02:15              | 06/04/21 02:15                        | ELN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/2110:44                         | EL                       | Mt. Juliet, TN |
|                                            |           |          | Collected by                | Collected date/time                   | Received da              | te/time        |
| DUPLICATE L1356626-06 GW                   |           |          | G. Panaflor                 | 05/20/21 12:50                        | 05/21/21 09:             | 30             |
| Method                                     | Batch     | Dilution | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                  | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16              | 05/27/21 14:31                        | MMF                      | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 02:54              | 06/04/21 02:54                        | ELN                      | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B               | WG1683965 | 1        | 06/07/2116:48               | 06/08/2110:47                         | EL                       | Mt. Juliet, TN |

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.21

SDG: L1356626 DATE/TIME: 06/08/21 16:56 Ср

<sup>2</sup>Tc

Ss

°Cn

Sr

Qc

GI

ΆI

# CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.21

SDG: L1356626 DA<sup>-</sup> 06/0 PAGE: 4 of 17

#### SAMPLE RESULTS - 01 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

|                  | -      |           |      |          |                  |           | 1 Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 500    |           | 10.0 | 1        | 05/27/2021 14:31 | WG1678535 | ⁻Tc  |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/20/21 15:00

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |  |           |  |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|--|-----------|--|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |           |  |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           |  | $^{4}$ Cn |  |  |  |
| Chloride                      | 5590   |           | 1000 | 1        | 06/04/2021 00:45 | WG1682542 |  | CII       |  |  |  |
| Fluoride                      | 257    |           | 150  | 1        | 06/04/2021 00:45 | WG1682542 |  | 5         |  |  |  |
| Sulfate                       | 33300  |           | 5000 | 1        | 06/04/2021 00:45 | WG1682542 |  | Sr        |  |  |  |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 10:29 | WG1683965 |
| Calcium | 137000 |           | 1000 | 1        | 06/08/2021 10:29 | WG1683965 |

Qc

Gl

Â

#### SAMPLE RESULTS - 02 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

| · · · · · ·      | · ·    |           |      |          |                  |           | l'Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 611    |           | 13.3 | 1        | 05/27/2021 14:31 | WG1678535 | Tc   |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |       |          |                  |           |                 |  |  |  |  |
|-------------------------------|--------|-----------|-------|----------|------------------|-----------|-----------------|--|--|--|--|
|                               | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |                 |  |  |  |  |
| Analyte                       | ug/l   |           | ug/l  |          | date / time      |           | <sup>4</sup> Cn |  |  |  |  |
| Chloride                      | 6450   |           | 1000  | 1        | 06/04/2021 00:58 | WG1682542 |                 |  |  |  |  |
| Fluoride                      | 316    |           | 150   | 1        | 06/04/2021 00:58 | WG1682542 | 5               |  |  |  |  |
| Sulfate                       | 126000 |           | 25000 | 5        | 06/04/2021 01:11 | WG1682542 | Sr              |  |  |  |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 10:38 | WG1683965 |
| Calcium | 167000 |           | 1000 | 1        | 06/08/2021 10:38 | WG1683965 |

Qc

Gl

Â

#### SAMPLE RESULTS - 03 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

| ,                | , , , , , , , , , , , , , , , , , , , |           |      |          |                  |           | l'Cn |
|------------------|---------------------------------------|-----------|------|----------|------------------|-----------|------|
|                  | Result                                | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte          | mg/l                                  |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 619                                   | <u>J3</u> | 13.3 | 1        | 05/27/2021 14:31 | WG1678535 | ⁻Tc  |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/20/21 09:35

| Wet Chemistry by Method 9056A                              |       |  |      |   |                  |           |  |                 |  |  |
|------------------------------------------------------------|-------|--|------|---|------------------|-----------|--|-----------------|--|--|
| Result <u>Qualifier</u> RDL Dilution Analysis <u>Batch</u> |       |  |      |   |                  |           |  |                 |  |  |
| Analyte                                                    | ug/l  |  | ug/l |   | date / time      |           |  | <sup>4</sup> Cn |  |  |
| Chloride                                                   | 2750  |  | 1000 | 1 | 06/04/2021 01:24 | WG1682542 |  |                 |  |  |
| Fluoride                                                   | 274   |  | 150  | 1 | 06/04/2021 01:24 | WG1682542 |  | 5               |  |  |
| Sulfate                                                    | 46900 |  | 5000 | 1 | 06/04/2021 01:24 | WG1682542 |  | Sr              |  |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 10:41 | WG1683965 |
| Calcium | 188000 |           | 1000 | 1        | 06/08/202110:41  | WG1683965 |

Qc

Gl

Â

#### SAMPLE RESULTS - 04 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | Cn. |
|------------------|--------|-----------|------|----------|------------------|-----------|-----|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2   |
| Dissolved Solids | 513    |           | 10.0 | 1        | 05/27/2021 14:31 | WG1678535 | ⁻Tc |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/20/21 12:45

| Wet Chemistry by Method 9056A                              |       |  |      |   |                  |           |                 |  |  |  |
|------------------------------------------------------------|-------|--|------|---|------------------|-----------|-----------------|--|--|--|
| Result <u>Qualifier</u> RDL Dilution Analysis <u>Batch</u> |       |  |      |   |                  |           |                 |  |  |  |
| Analyte                                                    | ug/l  |  | ug/l |   | date / time      |           | <sup>4</sup> Cn |  |  |  |
| Chloride                                                   | 6030  |  | 1000 | 1 | 06/04/2021 01:36 | WG1682542 |                 |  |  |  |
| Fluoride                                                   | 342   |  | 150  | 1 | 06/04/2021 01:36 | WG1682542 | 5               |  |  |  |
| Sulfate                                                    | 57200 |  | 5000 | 1 | 06/04/2021 01:36 | WG1682542 | Sr              |  |  |  |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 09:33 | WG1683965 |
| Calcium | 148000 | V         | 1000 | 1        | 06/08/2021 09:33 | WG1683965 |

Qc

Gl

Â

#### SAMPLE RESULTS - 05 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

| ,                | ,      |           |      |          |                  |           | Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|----|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2  |
| Dissolved Solids | 426    |           | 10.0 | 1        | 05/27/2021 14:31 | WG1678535 | Tc |

#### Wet Chemistry by Method 9056A

Collected date/time: 05/20/21 12:10

| Wet Chemistry by Method 9056A                |       |  |      |   |                  |           |  |           |  |  |
|----------------------------------------------|-------|--|------|---|------------------|-----------|--|-----------|--|--|
| Result Qualifier RDL Dilution Analysis Batch |       |  |      |   |                  |           |  |           |  |  |
| Analyte                                      | ug/l  |  | ug/l |   | date / time      |           |  | $^{4}$ Cn |  |  |
| Chloride                                     | 1340  |  | 1000 | 1 | 06/04/2021 02:15 | WG1682542 |  | CII       |  |  |
| Fluoride                                     | 364   |  | 150  | 1 | 06/04/2021 02:15 | WG1682542 |  | 5         |  |  |
| Sulfate                                      | 17300 |  | 5000 | 1 | 06/04/2021 02:15 | WG1682542 |  | Sr        |  |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 10:44 | WG1683965 |
| Calcium | 127000 |           | 1000 | 1        | 06/08/2021 10:44 | WG1683965 |

Qc

Gl

Â

#### SAMPLE RESULTS - 06 L1356626

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | <br>Ср |
|------------------|--------|-----------|------|----------|------------------|-----------|--------|
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2      |
| Dissolved Solids | 432    |           | 10.0 | 1        | 05/27/2021 14:31 | WG1678535 | Tc     |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A                              |       |  |      |   |                  |           |                 |  |  |  |
|------------------------------------------------------------|-------|--|------|---|------------------|-----------|-----------------|--|--|--|
| Result <u>Qualifier</u> RDL Dilution Analysis <u>Batch</u> |       |  |      |   |                  |           |                 |  |  |  |
| Analyte                                                    | ug/l  |  | ug/l |   | date / time      |           | <sup>4</sup> Cn |  |  |  |
| Chloride                                                   | 1290  |  | 1000 | 1 | 06/04/2021 02:54 | WG1682542 |                 |  |  |  |
| Fluoride                                                   | 357   |  | 150  | 1 | 06/04/2021 02:54 | WG1682542 | 5               |  |  |  |
| Sulfate                                                    | 16800 |  | 5000 | 1 | 06/04/2021 02:54 | WG1682542 | Sr              |  |  |  |

#### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/08/2021 10:47 | WG1683965 |
| Calcium | 126000 |           | 1000 | 1        | 06/08/2021 10:47 | WG1683965 |

Qc

Gl

Â

# WG1678535

Gravimetric Analysis by Method 2540 C-2011

#### QUALITY CONTROL SUMMARY L1356626-01,02,03,04,05,06

#### Method Blank (MB)

| (MB) R3661820-1 05/27/2114:31 |           |              |        |        |  |                 |  |  |  |  |
|-------------------------------|-----------|--------------|--------|--------|--|-----------------|--|--|--|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |  |  |
| Analyte                       | mg/l      |              | mg/l   | mg/l   |  | Tc              |  |  |  |  |
| Dissolved Solids              | U         |              | 10.0   | 10.0   |  |                 |  |  |  |  |
|                               |           |              |        |        |  | <sup>3</sup> Ss |  |  |  |  |

#### L1356626-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356626-02 05/27/21 14:31 • (DUP) R3661820-3 05/27/21 14:31 |                 |            |          |         |               |                   |  |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |
| Analyte                                                           | mg/l            | mg/l       |          | %       |               | %                 |  |  |  |  |
| Dissolved Solids                                                  | 611             | 605        | 1        | 0.878   |               | 5                 |  |  |  |  |

### L1356626-03 Original Sample (OS) • Duplicate (DUP)

| L1356626-03 Original Sample (OS) • Duplicate (DUP) |                   |            |          |         |               |                   |                 |  |  |  |  |  |
|----------------------------------------------------|-------------------|------------|----------|---------|---------------|-------------------|-----------------|--|--|--|--|--|
| (OS) L1356626-03 05/27/                            | '21 14:31 • (DUP) | R3661820-4 | 05/27/21 | 14:31   |               |                   |                 |  |  |  |  |  |
|                                                    | Original Result   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |  |  |  |  |  |
| Analyte                                            | mg/l              | mg/l       |          | %       |               | %                 |                 |  |  |  |  |  |
| Dissolved Solids                                   | 619               | 660        | 1        | 6.46    | <u>J3</u>     | 5                 | <sup>9</sup> Sc |  |  |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3661820-2 05/27/ | /21 14:31    |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | mg/l         | mg/l       | %        | %           |               |
| Dissolved Solids        | 8800         | 8690       | 98.8     | 77.4-123    |               |

DATE/TIME: 06/08/21 16:56 Cn

Sr

Qc

# WG1682542

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1356626-01,02,03,04,05,06

### Method Blank (MB)

(MR) P3663230 1 06/03/2113:04

| (IVIB) R3663230-1 06/03/2 | 21 13:04  |              |        |       |                 |
|---------------------------|-----------|--------------|--------|-------|-----------------|
|                           | MB Result | MB Qualifier | MB MDL | B RDL | 2               |
| Analyte                   | ug/l      |              | ug/l   | /     | Tc              |
| Chloride                  | U         |              | 379    | 00    |                 |
| Fluoride                  | U         |              | 64.0   | 0     | <sup>3</sup> Ss |
| Sulfate                   | U         |              | 594    | 000   | 00              |

#### L1356541-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356541-01 06/03 | (21 22:11 • (DUP) F | R3663230-3 ( | 06/03/212 | 22:24   |               |                   |  |  |  |
|------------------------|---------------------|--------------|-----------|---------|---------------|-------------------|--|--|--|
|                        | Original Result     | DUP Result   | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                | ug/l                | ug/l         |           | %       |               | %                 |  |  |  |
| Chloride               | 17100               | 17000        | 1         | 0.123   |               | 15                |  |  |  |
| Fluoride               | 194                 | 190          | 1         | 1.98    |               | 15                |  |  |  |
| Sulfate                | 11100               | 11200        | 1         | 1.32    |               | 15                |  |  |  |

### L1356626-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356626-06 06/04/21 02:54 • (DUP) R3663230-7 06/04/21 03:06 |                 |            |          |         |               |                   |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |
| Chloride                                                          | 1290            | 1270       | 1        | 0.891   |               | 15                |  |  |  |  |  |  |
| Fluoride                                                          | 357             | 350        | 1        | 2.09    |               | 15                |  |  |  |  |  |  |
| Sulfate                                                           | 16800           | 16900      | 1        | 0.833   |               | 15                |  |  |  |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3663230-2 06/03/2113:17 |              |            |          |             |               |  |  |  |  |  |  |  |
|--------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                                | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                        | ug/l         | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Chloride                       | 40000        | 39300      | 98.2     | 80.0-120    |               |  |  |  |  |  |  |  |
| Fluoride                       | 8000         | 8230       | 103      | 80.0-120    |               |  |  |  |  |  |  |  |
| Sulfate                        | 40000        | 40000      | 99.9     | 80.0-120    |               |  |  |  |  |  |  |  |

| ACCOUNT:           |   |
|--------------------|---|
| SCS Engineers - KS | 5 |

PROJECT: 27213167.21

SDG: L1356626

DATE/TIME: 06/08/21 16:56

PAGE: 12 of 17 Ср

°Cn

Sr

Qc

GI

Â

# QUALITY CONTROL SUMMARY

### L1356541-02 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1356541-02 06/03/21 22:37 • (MS) R3663230-4 06/03/21 22:49 |              |                 |           |         |          |             |              |  |  |  |  |  |  |
|------------------------------------------------------------------|--------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|--|--|--|
|                                                                  | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |  |  |  |
| Analyte                                                          | ug/l         | ug/l            | ug/l      | %       |          | %           |              |  |  |  |  |  |  |
| Chloride                                                         | 50000        | 70600           | 118000    | 94.2    | 1        | 80.0-120    | Ē            |  |  |  |  |  |  |
| Fluoride                                                         | 5000         | 218             | 5210      | 99.9    | 1        | 80.0-120    |              |  |  |  |  |  |  |
| Sulfate                                                          | 50000        | 5270            | 56300     | 102     | 1        | 80.0-120    |              |  |  |  |  |  |  |

### L1356626-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1356626-04 06/04/21 01:36 • (MS) R3663230-5 06/04/21 01:49 • (MSD) R3663230-6 06/04/21 02:02 |              |                 |           |            |         |          |          |             |              |               |       |            |  |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Chloride                                                                                           | 50000        | 6030            | 57100     | 58300      | 102     | 104      | 1        | 80.0-120    |              |               | 2.01  | 15         |  |
| Fluoride                                                                                           | 5000         | 342             | 5510      | 5630       | 103     | 106      | 1        | 80.0-120    |              |               | 2.19  | 15         |  |
| Sulfate                                                                                            | 50000        | 57200           | 108000    | 109000     | 102     | 104      | 1        | 80.0-120    | E            | E             | 0.889 | 15         |  |

### WG1683965

Metals (ICP) by Method 6010B

#### QUALITY CONTROL SUMMARY L1356626-01,02,03,04,05,06

### Method Blank (MB)

| Method Diam     | K (IVID)       |              |        |        | $^{1}$ Cp $^{1}$ |
|-----------------|----------------|--------------|--------|--------|------------------|
| (MB) R3664572-1 | 06/08/21 09:28 |              |        |        | СР               |
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL | 2                |
| Analyte         | ug/l           |              | ug/l   | ug/l   | Tc               |
| Boron           | U              |              | 20.0   | 200    |                  |
| Calcium         | U              |              | 79.3   | 1000   | <sup>3</sup> Ss  |
|                 |                |              |        |        |                  |

### Laboratory Control Sample (LCS)

| (LCS) R3664572-2 06/08/ | 21 09:30     |            |          |             |               | -            |
|-------------------------|--------------|------------|----------|-------------|---------------|--------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier | ⁵Sr          |
| Analyte                 | ug/l         | ug/l       | %        | %           |               |              |
| Boron                   | 1000         | 973        | 97.3     | 80.0-120    |               | <sup>6</sup> |
| Calcium                 | 10000        | 9870       | 98.7     | 80.0-120    |               |              |

### L1356626-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1356626-04 06/08/2 | 21 09:33 • (MS) | R3664572-4      | 06/08/21 09:39 | 9 • (MSD) R366 | 4572-5 06/08 | /21 09:42 |          |             |              |                    |        |            | Å  |
|--------------------------|-----------------|-----------------|----------------|----------------|--------------|-----------|----------|-------------|--------------|--------------------|--------|------------|----|
|                          | Spike Amount    | Original Result | MS Result      | MSD Result     | MS Rec.      | MSD Rec.  | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier      | RPD    | RPD Limits |    |
| Analyte                  | ug/l            | ug/l            | ug/l           | ug/l           | %            | %         |          | %           |              |                    | %      | %          | 9  |
| Boron                    | 1000            | ND              | 1080           | 1080           | 99.6         | 99.1      | 1        | 75.0-125    |              |                    | 0.394  | 20         | Sc |
| Calcium                  | 10000           | 148000          | 154000         | 154000         | 64.5         | 63.4      | 1        | 75.0-125    | V            | $\underline{\vee}$ | 0.0726 | 20         |    |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

DATE/TIME: 06/08/21 16:56 ⁺Cn

GI

# GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| E  | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL). |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| J3 | The associated batch QC was outside the established quality control range for precision.                                                    |

V The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.21

SDG: L1356626 Τс

Ss

Cn

Sr

Qc

GI

AI

# ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| ldaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1356626 DATE/TIME: 06/08/21 16:56

| SCS Engineers - KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                     |                                                                   |                       |                   | 1 mil     |                       | 1                | 1                                           | Inda                       |                                                                                                                             |                                  |                                                                                                                 |                                                                                  |                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|-------------------|-----------|-----------------------|------------------|---------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| 8575 W. 110th Street<br>Overland Park, KS 66210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Account:<br>8575 W.<br>Overland                                     | ccounts Payable<br>575 W. 110th Street<br>Overland Park, KS 66210 |                       |                   |           | 22                    |                  |                                             |                            |                                                                                                                             |                                  | - Pac                                                                                                           | - Pace Analytical*                                                               |                                                           |  |
| Report to:<br>Jason Franks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Email To:<br>jfranks@scsengineers.com;jay.martin@ev                 |                                                                   |                       |                   | Pres      |                       |                  | 1                                           |                            |                                                                                                                             |                                  | 12065 Lebanon Rd Mi<br>Submitting a sample v<br>constitutes acknowled                                           | ount Juliet, TN 37122<br>Ia this chain of custody<br>gment and acceptance of the |                                                           |  |
| Project Description:<br>Evergy - latan Generating Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | City/State<br>Collected:                                            |                                                                   | Please Cit<br>PT MT C |                   | IoN-3     |                       |                  |                                             |                            |                                                                                                                             |                                  | Pace Terms and Condi<br>https://info.pacelabs.o<br>terms.pdf                                                    | tions found at:<br>:om/hubfs/pas-standard-                                       |                                                           |  |
| Phone: 913-681-0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Client Project #<br>27213167.21         |                                                                     | Lab Project #<br>AQUAOPKS                                         |                       | ct #<br>PKS-IATAN |           | INHDPI                | HN03             |                                             |                            |                                                                                                                             |                                  |                                                                                                                 | SDG # U                                                                          | 38662<br>114                                              |  |
| Collected by (print):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Site/Facility ID #                      |                                                                     | P.O. #                                                            |                       |                   |           | 1) 125r               | I) 125r<br>HDPE- |                                             |                            |                                                                                                                             |                                  |                                                                                                                 | Acctnum: AQ                                                                      | Acctnum: AQUAOPKS                                         |  |
| Collected by (signature): Collected by (sign |                                         | ush? (Lab MUST Be Notified)<br>Same Day Five Day                    |                                                                   |                       | Quote #           |           |                       | DPE-N            | HDPE-N                                      | Ure-i                      |                                                                                                                             |                                  |                                                                                                                 | Template: <b>T13</b><br>Prelogin: <b>P84</b>                                     | Template: <b>T136059</b> Prelogin: <b>P846714</b> PM4.206 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Next Day 5 Day (Rad Only)<br>Two Day 10 Day (Rad Only)<br>Three Day |                                                                   | Date Results Needed   |                   | No.<br>of | s (Cld                | s (Cld<br>- 6010 | Soml                                        |                            |                                                                                                                             |                                  |                                                                                                                 | PB: TN                                                                           | PB:TN 5-11-21                                             |  |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comp/Grab                               | Matrix *                                                            | Depth                                                             | Date                  | Time              | Cntrs     | Anior                 | a, Ca            | rds 2                                       |                            |                                                                                                                             |                                  |                                                                                                                 | Shipped Via: F<br>Remarks                                                        | Sample # (lab only)                                       |  |
| /W-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GAAB                                    | GW                                                                  |                                                                   | 5/20/2                | 1 1600            | ) 3       | X                     | X                | X                                           |                            |                                                                                                                             |                                  |                                                                                                                 |                                                                                  | -21                                                       |  |
| /W-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | GW                                                                  | 1 and                                                             | 11                    | 0945              | 3         | X                     | X                | X                                           |                            |                                                                                                                             |                                  |                                                                                                                 |                                                                                  | -22                                                       |  |
| ИW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | GW                                                                  | A                                                                 |                       | 0935              | 3         | X                     | x                | X                                           |                            |                                                                                                                             |                                  |                                                                                                                 |                                                                                  | -77                                                       |  |
| иw-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | GW                                                                  |                                                                   |                       | 1245              | 3         | X                     | X                | X                                           |                            |                                                                                                                             |                                  |                                                                                                                 | dia 4                                                                            | -24                                                       |  |
| иพ-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | GW                                                                  |                                                                   |                       | 1210              | 3         | X                     | x                | X                                           | 1000                       |                                                                                                                             |                                  |                                                                                                                 |                                                                                  | -15                                                       |  |
| иW7 MS/MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | GW                                                                  |                                                                   |                       | 1255              | 3         | X                     | X                | X                                           |                            |                                                                                                                             | - the second                     |                                                                                                                 |                                                                                  | -44                                                       |  |
| DUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                       | GW                                                                  |                                                                   | V                     | 1250              | 3         | X                     | x                | X                                           |                            | THE .                                                                                                                       | n d                              |                                                                                                                 |                                                                                  | ele                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                     |                                                                   |                       |                   |           |                       |                  |                                             |                            |                                                                                                                             |                                  |                                                                                                                 |                                                                                  | The film                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                     |                                                                   |                       |                   |           |                       | 196              |                                             |                            |                                                                                                                             |                                  |                                                                                                                 |                                                                                  |                                                           |  |
| Matrix: b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emarke:                                 |                                                                     |                                                                   |                       | 1                 | <u> </u>  |                       |                  | 144.55                                      |                            |                                                                                                                             |                                  |                                                                                                                 | ample Perceint Ch                                                                | hanklist                                                  |  |
| S - Soil AIR - Air F - Filter<br>SW - Groundwater B - Bioassay<br>WW - WasteWater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | emarks:                                 |                                                                     |                                                                   |                       |                   |           | pH Temp<br>Flow Other |                  |                                             |                            |                                                                                                                             | COC Seal<br>COC Signe<br>Bottles | COC Scal Present/Intact: V N<br>COC Signed/Accurate: N<br>Bottles arrive intact: N<br>Correct bottles used: V N |                                                                                  |                                                           |  |
| DW - Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amples returned via:<br>UPSFedExCourier |                                                                     |                                                                   |                       |                   |           |                       |                  |                                             |                            | Correct bottles used:    YN       Sufficient volume sent:    YN       If Applicable    Y_N       VOA Zero Headspace:    Y_N |                                  |                                                                                                                 |                                                                                  |                                                           |  |
| Relinguished by : (Sternature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | te:<br>/20/2                                                        | : Reci                                                            | Received by: (Signatu |                   |           |                       |                  | Trip Blank Received: Yes / No<br>HCL / MeoH |                            |                                                                                                                             | RAD Scree                        | Preservation Correct/Checked:N<br>RAD Screen <0.5 mR/hr:N                                                       |                                                                                  |                                                           |  |
| Relinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Da                                      | te:                                                                 | Time                                                              | Rec                   | eived by: (Signat | ure)      |                       |                  |                                             | Temp: °C Bottles Received: |                                                                                                                             |                                  | If preservation required by Login: Date/Time                                                                    |                                                                                  |                                                           |  |
| Relinquished by : (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Da                                      | te:                                                                 | Time                                                              | Rec                   | eived for lab by: | (Signat   | ure)                  |                  |                                             | Date:                      | 21-2                                                                                                                        | Time:                            | Hold:                                                                                                           | The second                                                                       | Condition:<br>NCF / OK                                    |  |



# Pace Analytical® ANALYTICAL REPORT June 10, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1356622 05/21/2021 27213167.21-A Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl A Sc

### Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.21-A

SDG: L1356622

DATE/TIME: 06/10/21 14:47 PAGE: 1 of 13

# TABLE OF CONTENTS

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-9 L1356622-01                           | 5  |
| MW-10 L1356622-02                          | 6  |
| Qc: Quality Control Summary                | 7  |
| Gravimetric Analysis by Method 2540 C-2011 | 7  |
| Wet Chemistry by Method 9056A              | 8  |
| Metals (ICP) by Method 6010B               | 10 |
| GI: Glossary of Terms                      | 11 |
| Al: Accreditations & Locations             | 12 |
| Sc: Sample Chain of Custody                | 13 |
|                                            |    |

Ср

Ss

°Cn

Sr

Qc

GI

A

# SAMPLE SUMMARY

|                                            |           | Сс       |                | Collected date/time | Received date/time |                |  |
|--------------------------------------------|-----------|----------|----------------|---------------------|--------------------|----------------|--|
| MW-9 L1356622-01 GW                        |           |          | G. Paneflor    | 05/20/21 11:25      | 05/21/21 09:30     |                |  |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst            | Location       |  |
|                                            |           |          | date/time      | date/time           |                    |                |  |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16 | 05/27/21 14:31      | MMF                | Mt. Juliet, TN |  |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 00:19 | 06/04/21 00:19      | ELN                | Mt. Juliet, TN |  |
| Metals (ICP) by Method 6010B               | WG1685453 | 1        | 06/10/21 02:56 | 06/10/21 09:39      | EL                 | Mt. Juliet, TN |  |
|                                            |           |          | Collected by   | Collected date/time | Received da        | te/time        |  |
| MW-10 L1356622-02 GW                       |           |          | G. Paneflor    | 05/20/21 10:40      | 05/21/21 09:       | 30             |  |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst            | Location       |  |
|                                            |           |          | date/time      | date/time           |                    |                |  |
| Gravimetric Analysis by Method 2540 C-2011 | WG1678535 | 1        | 05/27/21 13:16 | 05/27/21 14:31      | MMF                | Mt. Juliet, TN |  |
| Wet Chemistry by Method 9056A              | WG1682542 | 1        | 06/04/21 00:32 | 06/04/21 00:32      | ELN                | Mt. Juliet, TN |  |
| Metals (ICP) by Method 6010B               | WC100E4E2 | 1        | 00/10/21 02:50 | 00/10/01 00:41      | <b>E1</b>          | MA LUBRA TH    |  |

Ср

<sup>2</sup>Tc

Ss

DATE/TIME: 06/10/21 14:47
### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.21-A

SDG: L1356622

PAGE: 4 of 13

### SAMPLE RESULTS - 01 L1356622

### Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | Cp    |
|------------------|--------|-----------|------|----------|------------------|-----------|-------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | -1-   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | <br>2 |
| Dissolved Solids | 384    |           | 10.0 | 1        | 05/27/2021 14:31 | WG1678535 | ⁻Tc   |

### Wet Chemistry by Method 9056A

Collected date/time: 05/20/21 11:25

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |  |                 |  |  |  |  |  |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|--|-----------------|--|--|--|--|--|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |                 |  |  |  |  |  |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           |  | <sup>4</sup> Cn |  |  |  |  |  |  |  |
| Chloride                      | ND     |           | 1000 | 1        | 06/04/2021 00:19 | WG1682542 |  |                 |  |  |  |  |  |  |  |
| Fluoride                      | 367    |           | 150  | 1        | 06/04/2021 00:19 | WG1682542 |  | 5               |  |  |  |  |  |  |  |
| Sulfate                       | 19700  |           | 5000 | 1        | 06/04/2021 00:19 | WG1682542 |  | Sr              |  |  |  |  |  |  |  |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/10/2021 09:39 | WG1685453 |
| Calcium | 98400  |           | 1000 | 1        | 06/10/2021 09:39 | WG1685453 |

Qc

Gl

Â

### SAMPLE RESULTS - 02 L1356622

### Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | (Cn   |
|------------------|--------|-----------|------|----------|------------------|-----------|-------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср    |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | <br>2 |
| Dissolved Solids | 628    |           | 13.3 | 1        | 05/27/2021 14:31 | WG1678535 | ⁻Tc   |

### Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |                 |  |  |  |  |  |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|-----------------|--|--|--|--|--|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |  |  |  |  |  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |  |  |  |  |  |  |
| Chloride                      | 16500  |           | 1000 | 1        | 06/04/2021 00:32 | WG1682542 |                 |  |  |  |  |  |  |
| Fluoride                      | 457    |           | 150  | 1        | 06/04/2021 00:32 | WG1682542 | 5               |  |  |  |  |  |  |
| Sulfate                       | 46700  |           | 5000 | 1        | 06/04/2021 00:32 | WG1682542 | Sr              |  |  |  |  |  |  |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 06/10/2021 09:41 | WG1685453 |
| Calcium | 148000 |           | 1000 | 1        | 06/10/2021 09:41 | WG1685453 |

Qc

Gl

Â

### WG1678535

Gravimetric Analysis by Method 2540 C-2011

### QUALITY CONTROL SUMMARY L1356622-01,02

### Method Blank (MB)

| Method Blank (      | MB)         |              |        |        | $^{1}$ Cp       |
|---------------------|-------------|--------------|--------|--------|-----------------|
| (MB) R3661820-1 05/ | 27/21 14:31 |              |        |        | Ср              |
|                     | MB Result   | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte             | mg/l        |              | mg/l   | mg/l   | Tc              |
| Dissolved Solids    | U           |              | 10.0   | 10.0   |                 |
|                     |             |              |        |        | <sup>3</sup> Ss |

### L1356626-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356626-02 05/27/ | 21 14:31 • (DUP) | R3661820-3 | 05/27/211 | 14:31   |               |                   |
|-------------------------|------------------|------------|-----------|---------|---------------|-------------------|
|                         | Original Result  | DUP Result | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                 | mg/l             | mg/l       |           | %       |               | %                 |
| Dissolved Solids        | 611              | 605        | 1         | 0.878   |               | 5                 |

### L1356626-03 Original Sample (OS) • Duplicate (DUP)

| L1356626-03 Orig       | 1356626-03 Original Sample (OS) • Duplicate (DUP) |            |           |         |               |                   |                 |  |
|------------------------|---------------------------------------------------|------------|-----------|---------|---------------|-------------------|-----------------|--|
| (OS) L1356626-03 05/27 | //21 14:31 • (DUP)                                | R3661820-4 | 05/27/211 | 4:31    |               |                   |                 |  |
|                        | Original Result                                   | DUP Result | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |  |
| Analyte                | mg/l                                              | mg/l       |           | %       |               | %                 |                 |  |
| Dissolved Solids       | 619                                               | 660        | 1         | 6.46    | <u>J3</u>     | 5                 | °Sc             |  |

### Laboratory Control Sample (LCS)

| (LCS) R3661820-2 05/27/ | /21 14:31    |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | mg/l         | mg/l       | %        | %           |               |
| Dissolved Solids        | 8800         | 8690       | 98.8     | 77.4-123    |               |

DATE/TIME: 06/10/21 14:47 Cn

Sr

Qc

### WG1682542

Wet Chemistry by Method 9056A

### QUALITY CONTROL SUMMARY L1356622-01,02

### Method Blank (MB) (MAD) D2662220 1 06/03/2112:04

| (MB) R3663230-1 | 06/03/2113:04 |  |
|-----------------|---------------|--|
|                 |               |  |

| (IVID) K3003230-1 00/03/2 | 2115.04   |              |        |        |                 |
|---------------------------|-----------|--------------|--------|--------|-----------------|
|                           | MB Result | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                   | ug/l      |              | ug/l   | ug/l   | Tc              |
| Chloride                  | U         |              | 379    | 1000   |                 |
| Fluoride                  | U         |              | 64.0   | 150    | <sup>3</sup> Ss |
| Sulfate                   | U         |              | 594    | 5000   |                 |

### L1356541-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356541-01 06/03/2 | SS) L1356541-01 06/03/21 22:11 • (DUP) R3663230-3 06/03/21 22:24 |            |          |         |               |                   |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|
|                          | Original Result                                                  | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |
| Analyte                  | ug/l                                                             | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |
| Chloride                 | 17100                                                            | 17000      | 1        | 0.123   |               | 15                |  |  |  |  |  |  |
| Fluoride                 | 194                                                              | 190        | 1        | 1.98    |               | 15                |  |  |  |  |  |  |
| Sulfate                  | 11100                                                            | 11200      | 1        | 1.32    |               | 15                |  |  |  |  |  |  |

### L1356626-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1356626-06 06/04/2 | JS) L1356626-06 06/04/21 02:54 • (DUP) R3663230-7 06/04/21 03:06 |            |          |         |               |                   |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|
|                          | Original Result                                                  | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |
| Analyte                  | ug/l                                                             | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |
| Chloride                 | 1290                                                             | 1270       | 1        | 0.891   |               | 15                |  |  |  |  |  |  |
| Fluoride                 | 357                                                              | 350        | 1        | 2.09    |               | 15                |  |  |  |  |  |  |
| Sulfate                  | 16800                                                            | 16900      | 1        | 0.833   |               | 15                |  |  |  |  |  |  |

### Laboratory Control Sample (LCS)

| .CS) R3663230-2 06/03/2113:17 |              |            |          |             |               |  |  |  |  |  |  |  |
|-------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                               | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                       | ug/l         | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Chloride                      | 40000        | 39300      | 98.2     | 80.0-120    |               |  |  |  |  |  |  |  |
| Fluoride                      | 8000         | 8230       | 103      | 80.0-120    |               |  |  |  |  |  |  |  |
| Sulfate                       | 40000        | 40000      | 99.9     | 80.0-120    |               |  |  |  |  |  |  |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213167.21-A

SDG: L1356622

DATE/TIME: 06/10/21 14:47

PAGE: 8 of 13 Ср

⁴Cn

Sr

Qc

GI

Â

# QUALITY CONTROL SUMMARY

### L1356541-02 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1356541-02 06/03/2 | (OS) L1356541-02 06/03/21 22:37 • (MS) R3663230-4 06/03/21 22:49 |                 |           |         |          |             |              |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|--|--|--|
|                          | Spike Amount                                                     | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |  |  |  |
| Analyte                  | ug/l                                                             | ug/l            | ug/l      | %       |          | %           |              |  |  |  |  |  |  |
| Chloride                 | 50000                                                            | 70600           | 118000    | 94.2    | 1        | 80.0-120    | Ē            |  |  |  |  |  |  |
| Fluoride                 | 5000                                                             | 218             | 5210      | 99.9    | 1        | 80.0-120    |              |  |  |  |  |  |  |
| Sulfate                  | 50000                                                            | 5270            | 56300     | 102     | 1        | 80.0-120    |              |  |  |  |  |  |  |

### L1356626-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1356626-04 06/04/ | (OS) L1356626-04 06/04/21 01:36 • (MS) R3663230-5 06/04/21 01:49 • (MSD) R3663230-6 06/04/21 02:02 |                 |           |            |         |          |          |             |              |               |       |            |  |
|-------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
|                         | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
| Analyte                 | ug/l                                                                                               | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Chloride                | 50000                                                                                              | 6030            | 57100     | 58300      | 102     | 104      | 1        | 80.0-120    |              |               | 2.01  | 15         |  |
| Fluoride                | 5000                                                                                               | 342             | 5510      | 5630       | 103     | 106      | 1        | 80.0-120    |              |               | 2.19  | 15         |  |
| Sulfate                 | 50000                                                                                              | 57200           | 108000    | 109000     | 102     | 104      | 1        | 80.0-120    | E            | E             | 0.889 | 15         |  |

### WG1685453

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

### Method Blank (MB)

| MB) R3665552-1 06/10/21 09:22 |           |              |        |        |                |  |  |  |  |
|-------------------------------|-----------|--------------|--------|--------|----------------|--|--|--|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL | 2              |  |  |  |  |
| Analyte                       | ug/l      |              | ug/l   | ug/l   | T              |  |  |  |  |
| Boron                         | U         |              | 20.0   | 200    |                |  |  |  |  |
| Calcium                       | U         |              | 79.3   | 1000   | <sup>3</sup> C |  |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3665552-2 06/10/21 09:24 |              |            |          |             |               |  |  |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Boron                           | 1000         | 939        | 93.9     | 80.0-120    |               |  |  |  |  |  |  |  |
| Calcium                         | 10000        | 9630       | 96.3     | 80.0-120    |               |  |  |  |  |  |  |  |

### GLOSSARY OF TERMS

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E                               | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).                                                                                                                                                                                                                                                                                                                                                                                |

The associated batch QC was outside the established quality control range for precision.

JЗ

SDG: L1356622 Τс

Ss

Cn

Sr

Qc

GI

AI

### ACCREDITATIONS & LOCATIONS

### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| Idaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1356622 Τс

Ss

Cn

Sr

Qc

Gl

AI

| Company Name/Address:                                                                                  |                               |                          | Billing Info                                                        | rmation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>武</u> 第            |                   | 1.3KE   |         | , 1   | Analysis / C                            | ontaine | er / Preserv  | ative                                        | 1 A.A.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page of                                                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------|---------|-------|-----------------------------------------|---------|---------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210<br>Report to:<br>Jason Franks    |                               |                          | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |         | 22      |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Analytical                                                                  |  |  |  |
|                                                                                                        |                               |                          | Email To:<br>jfranks@s                                              | csengineers.com;ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y.martin@ev           | vergy.c           | Pres    |         |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12065 Lebanon Rd Moi<br>Submitting a sample via<br>constitutes acknowledg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unt Juliet, TN 37122<br>a this chain of custody<br>ment and acceptance of the |  |  |  |
| Project Description:<br>Evergy - latan Generating Station                                              |                               | City/State<br>Collected: |                                                                     | Please Circ<br>PT MT CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | T ET              | E-Nol   | ~       |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pace Terms and Conditions found at:<br>https://info.pacelabs.com/hubfs/pas-standard-<br>terms.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |  |  |  |
| Phone: 913-681-0030                                                                                    | Client Project<br>27213167.   | #<br>21-A                |                                                                     | Lab Project #<br>AQUAOPKS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATAN                  |                   | nIHDF   | ONH     |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56622                                                                         |  |  |  |
| Collected by (print):                                                                                  | Site/Facility ID # P.O. #     |                          |                                                                     | P.O. #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |         |         | oPres |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acctnum: AQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JAOPKS                                                                        |  |  |  |
| collected by (signature):                                                                              | Rush? (L<br>Same Da           | ab MUST Be               | Notified)                                                           | Quote #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   | F, S04  | 250ml   | DPE-N |                                         |         |               | 1. 1. S. |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Template: <b>T16</b><br>Prelogin: <b>P84</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | remplate: <b>T166691</b><br>Prelogin: <b>P846540</b>                          |  |  |  |
| mmediately<br>Packed on Ice NY_X                                                                       | Next Da<br>Two Day<br>Three D | y5 Day<br>y10 Day<br>ay  | (Rad Only)<br>ay (Rad Only)                                         | Date Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Needed              | No.               | s (Cld, | 6010    | HIMOS |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM: <b>206 - Jeff (</b><br>PB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carr                                                                          |  |  |  |
| Sample ID                                                                                              | Comp/Grab                     | Matrix *                 | Depth                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                  | Cntrs             | Anion:  | s, Ca - | DS 25 |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipped Via: Fe<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample # (lab only)                                                           |  |  |  |
| /W-9                                                                                                   | GRAB                          | GW                       | 1                                                                   | 5/20/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1125                  | 3                 | X       | X       | X     |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -01                                                                           |  |  |  |
| AW-10                                                                                                  | GRAB                          | GW                       | -                                                                   | 5/20/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1040                  | 3                 | x       | X       | X     |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -ir                                                                           |  |  |  |
|                                                                                                        | 200                           | A see                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Si                | des .   |         |       | 19.2                                    |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |
|                                                                                                        |                               |                          |                                                                     | Appendix of the second s |                       |                   |         |         |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second sec |                                                                               |  |  |  |
|                                                                                                        |                               |                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                    |                   |         |         |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |
|                                                                                                        | =                             |                          |                                                                     | 19-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                   |         |         |       | -76                                     | •       |               |                                              |                                              | Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |
|                                                                                                        |                               |                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |         |         |       | 1 - A - A - A - A - A - A - A - A - A - |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |
|                                                                                                        |                               | and the second           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |         |         |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |  |  |  |
|                                                                                                        |                               |                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1                 |         | 192.44  |       |                                         |         |               |                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |  |  |  |
| Matrix: Do                                                                                             | marke                         |                          | 1                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                   |         |         |       |                                         |         |               |                                              |                                              | 2.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |  |  |  |
| S - Soil AIR - Air F - Filter<br>W - Groundwater B - Bioassay<br>/W - WasteWater<br>W - Drinking Water |                               |                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | The second second |         |         |       | pH                                      |         | Temp<br>Other |                                              | COC Se<br>COC Si<br>Bottle<br>Correc         | eal Project Pr | esent/Intact:<br>Accurate:<br>ive intact:<br>tles used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |  |  |
| r - Other                                                                                              | UPS FedEx                     | via:<br>Courier<br>te:   | Time                                                                | Trackin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g #<br>ed by: (Signat | ure)              |         |         | 5     | rip Blank F                             | Receive | t: Yes //     | 2                                            | VOA Ze<br>Preser                             | ero He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>If Applicabl</u><br>adspace:<br>n Correct/Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cked:                                                                         |  |  |  |
| Sallully                                                                                               | 5                             | 120/2                    | 16                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                   |         |         |       | A                                       | 0       | HCL /         | ИеоН                                         | RAD SC                                       | reen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5 mR/hr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y_Y_N                                                                         |  |  |  |
| elinquished by : (Signature)                                                                           | Date:                         |                          | Time: Received by: (S                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed by: (Signat        | gnature)          |         |         |       | Temp; T °C Bottles Received:            |         |               |                                              | If preservation required by Login: Date/Time |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |
| Relinquished by : (Signature)                                                                          | Dat                           | te:                      | Time                                                                | Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed for lab by:        | (Signatu          | Tett    | 6-      | 1     | Date: 5-21                              | -21     | Time:         | 0                                            | Hold:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Condition:<br>NCF / OK)                                                       |  |  |  |

<u>出会の取</u>具。

## ATTACHMENT 1-4 July 2021 Sampling Event Laboratory Report



# Pace Analytical® ANALYTICAL REPORT

August 01, 2021

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1381302 07/21/2021 27213167.21 - L KCP&L latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

### **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.21 - L

L1381302

SDG:

DATE/TIME: 08/01/21 08:29 PAGE: 1 of 13

### TABLE OF CONTENTS

| Tc: Table of Contents2Ss: Sample Summary3Cn: Case Narrative4Sr: Sample Results5MW-6L1381302-01DUPLICATEL1381302-02MW-10L1381302-03Cc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10GI: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13 | Cp: Cover Page                 | 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|
| Ss: Sample Summary3Cn: Case Narrative4Sr: Sample Results5MW-6L1381302-015DUPLICATEL1381302-026MW-10L1381302-037Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                    | Tc: Table of Contents          | 2  |
| Cn: Case Narrative4Sr: Sample Results5MW-6 L1381302-015DUPLICATE L1381302-026MW-10 L1381302-037Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                    | Ss: Sample Summary             | 3  |
| Sr: Sample Results5MW-6L1381302-01DUPLICATEL1381302-02MW-10L1381302-03Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                             | Cn: Case Narrative             | 4  |
| MW-6 L1381302-015DUPLICATE L1381302-026MW-10 L1381302-037Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                          | Sr: Sample Results             | 5  |
| DUPLICATE L1381302-026MW-10 L1381302-037Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                           | MW-6 L1381302-01               | 5  |
| MW-10L1381302-037Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                  | DUPLICATE L1381302-02          | 6  |
| Qc: Quality Control Summary8Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                                   | MW-10 L1381302-03              | 7  |
| Wet Chemistry by Method 9056A8Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                                                               | Qc: Quality Control Summary    | 8  |
| Metals (ICP) by Method 6010B10Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                                                                                             | Wet Chemistry by Method 9056A  | 8  |
| Gl: Glossary of Terms11Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                                                                                                                           | Metals (ICP) by Method 6010B   | 10 |
| Al: Accreditations & Locations12Sc: Sample Chain of Custody13                                                                                                                                                                                                                                                  | GI: Glossary of Terms          | 11 |
| Sc: Sample Chain of Custody 13                                                                                                                                                                                                                                                                                 | Al: Accreditations & Locations | 12 |
|                                                                                                                                                                                                                                                                                                                | Sc: Sample Chain of Custody    | 13 |

SDG: L1381302 Ср

Ss

Cn

Sr

Qc

GI

ΆI

### SAMPLE SUMMARY

|                               |           |          | Collected by   | Collected date/time | Received da  | te/time        |
|-------------------------------|-----------|----------|----------------|---------------------|--------------|----------------|
| MW-6 L1381302-01 GW           |           |          | Whit Martin    | 07/20/21 09:50      | 07/21/21 08: | 30             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1710983 | 1        | 07/27/21 19:17 | 07/27/21 19:17      | ELN          | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B  | WG1712952 | 1        | 07/30/21 07:17 | 07/30/21 14:12      | CCE          | Mt. Juliet, TN |
|                               |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| DUPLICATE L1381302-02 GW      |           |          | Whit Martin    | 07/20/21 09:50      | 07/21/21 08: | 30             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1710983 | 1        | 07/27/21 21:28 | 07/27/21 21:28      | ELN          | Mt. Juliet, TN |
| Metals (ICP) by Method 6010B  | WG1712952 | 1        | 07/30/21 07:17 | 07/30/21 15:27      | CCE          | Mt. Juliet, TN |
|                               |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| MW-10 L1381302-03 GW          |           |          | Whit Martin    | 07/20/21 09:10      | 07/21/21 08: | 30             |
| Method                        | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                               |           |          | date/time      | date/time           |              |                |
| Wet Chemistry by Method 9056A | WG1710983 | 1        | 07/27/21 22:01 | 07/27/21 22:01      | ELN          | Mt. Juliet, TN |

Ср

<sup>2</sup>Tc

Ss

°Cn

Sr

Qc

GI

ΆI

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager



SDG: L1381302 DATE/TIME: 08/01/21 08:29 PAGE: 4 of 13

### SAMPLE RESULTS - 01 L1381302

### Wet Chemistry by Method 9056A

| Wet Chemistry by | Net Chemistry by Method 9056A |           |      |          |                  |           |  |                 |  |  |  |
|------------------|-------------------------------|-----------|------|----------|------------------|-----------|--|-----------------|--|--|--|
|                  | Result                        | Qualifier | RDL  | Dilution | Analysis         | Batch     |  | Ср              |  |  |  |
| Analyte          | ug/l                          |           | ug/l |          | date / time      |           |  | 2               |  |  |  |
| Chloride         | 1560                          |           | 1000 | 1        | 07/27/2021 19:17 | WG1710983 |  | Tc              |  |  |  |
| Sulfate          | 31600                         |           | 5000 | 1        | 07/27/2021 19:17 | WG1710983 |  |                 |  |  |  |
|                  |                               |           |      |          |                  |           |  | <sup>3</sup> Ss |  |  |  |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |
|---------|--------|-----------|------|----------|------------------|-----------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |           |
| Calcium | 147000 | V         | 1000 | 1        | 07/30/2021 14:12 | WG1712952 | 5         |

Sr

Qc

GI

Â

### DUPLICATE Collected date/time: 07/20/21 09:50

### SAMPLE RESULTS - 02 L1381302

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch            | ( |
|----------|--------|-----------|------|----------|------------------|------------------|---|
| Analyte  | ug/l   |           | ug/l |          | date / time      |                  | 2 |
| Chloride | 1590   |           | 1000 | 1        | 07/27/2021 21:28 | WG1710983        | 2 |
| Sulfate  | 31700  |           | 5000 | 1        | 07/27/2021 21:28 | <u>WG1710983</u> |   |
|          |        |           |      |          |                  |                  | 3 |

### Metals (ICP) by Method 6010B

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | $^{4}$ Cn |
|---------|--------|-----------|------|----------|------------------|-----------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |           |
| Calcium | 148000 |           | 1000 | 1        | 07/30/2021 15:27 | WG1712952 | 5         |

Sr

Qc

GI

Â

# SAMPLE RESULTS - 03

### Wet Chemistry by Method 9056A

|         |    |          |            |      |          |                  |           | Cr |
|---------|----|----------|------------|------|----------|------------------|-----------|----|
|         | Re | esult Qu | ualifier R | DL   | Dilution | Analysis         | Batch     |    |
| Analyte | ug | /1       | Ц          | ıg/l |          | date / time      |           | 2  |
| Sulfate | 38 | 600      | 5          | 000  | 1        | 07/27/2021 22:01 | WG1710983 | Tc |

### WG1710983

Wet Chemistry by Method 9056A

### QUALITY CONTROL SUMMARY L1381302-01,02,03

### Method Blank (MB)

|                 | <b>X Y</b>                    |              |        |        |  | Cn l            |  |  |  |
|-----------------|-------------------------------|--------------|--------|--------|--|-----------------|--|--|--|
| (MB) R3684603-1 | MB) R3684603-1 07/27/21 09:56 |              |        |        |  |                 |  |  |  |
|                 | MB Result                     | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |  |
| Analyte         | ug/l                          |              | ug/l   | ug/l   |  | ⁻Tc             |  |  |  |
| Chloride        | U                             |              | 379    | 1000   |  |                 |  |  |  |
| Sulfate         | U                             |              | 594    | 5000   |  | <sup>3</sup> Ss |  |  |  |
|                 |                               |              |        |        |  |                 |  |  |  |

⁺Cn

Sr

Qc

GI

### L1381290-04 Original Sample (OS) • Duplicate (DUP)

| (OS) L1381290-04 07/27/21 15:27 • (DUP) R3684603-3 07/27/21 15:43 |                 |            |          |         |               |                   |  |  |  |  |
|-------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|
|                                                                   | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |
| Analyte                                                           | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |
| Chloride                                                          | 22400           | 22000      | 10       | 1.75    |               | 15                |  |  |  |  |
| Sulfate                                                           | 88300           | 85600      | 10       | 3.15    |               | 15                |  |  |  |  |

### L1381302-01 Original Sample (OS) • Duplicate (DUP)

| LI38I302-01 Orig                                                  | Isaisuz-ur Original sample (US) • Duplicate (DUP) |            |          |         |               |                   |  |          |  |
|-------------------------------------------------------------------|---------------------------------------------------|------------|----------|---------|---------------|-------------------|--|----------|--|
| (OS) L1381302-01 07/27/21 19:17 • (DUP) R3684603-6 07/27/21 19:33 |                                                   |            |          |         |               |                   |  |          |  |
|                                                                   | Original Result                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | 9<br>S C |  |
| Analyte                                                           | ug/l                                              | ug/l       |          | %       |               | %                 |  | 50       |  |
| Chloride                                                          | 1560                                              | 1580       | 1        | 1.20    |               | 15                |  |          |  |
| Sulfate                                                           | 31600                                             | 31600      | 1        | 0.154   |               | 15                |  |          |  |

### Laboratory Control Sample (LCS)

| (LCS) R3684603-2 07/27/ | _CS) R3684603-2 07/27/2110:12 |            |          |             |               |  |  |  |  |  |
|-------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                         | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                 | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |  |
| Chloride                | 40000                         | 40600      | 101      | 80.0-120    |               |  |  |  |  |  |
| Sulfate                 | 40000                         | 40800      | 102      | 80.0-120    |               |  |  |  |  |  |

### L1381290-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1381290-04 07/27/21 15:27 • (MS) R3684603-4 07/27/21 16:00 • (MSD) R3684603-5 07/27/21 16:16 |              |                 |           |            |         |          |          |             |              |               |        |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |
| Chloride                                                                                           | 50000        | 22400           | 69200     | 69400      | 93.7    | 94.1     | 10       | 80.0-120    |              |               | 0.235  | 15         |
| Sulfate                                                                                            | 50000        | 88300           | 132000    | 132000     | 87.7    | 87.8     | 10       | 80.0-120    |              |               | 0.0573 | 15         |

| ACCOUNT:           | PROJECT:        | SDG:     | DATE/TIME:     | PAGE:   |
|--------------------|-----------------|----------|----------------|---------|
| SCS Engineers - KS | 27213167.21 - L | L1381302 | 08/01/21 08:29 | 8 of 13 |

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

### L1381302-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1381302-01 07/27/21 19:17 • (MS) R3684603-7 07/27/21 19:50 • (MSD) R3684603-8 07/27/21 20:39 |              |                 |           |            |         |          |          |             |              |               |      |            |  |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |  |
| Chloride                                                                                           | 50000        | 1560            | 52500     | 50100      | 102     | 97.1     | 1        | 80.0-120    |              |               | 4.73 | 15         |  |
| Sulfate                                                                                            | 50000        | 31600           | 83400     | 80900      | 104     | 98.7     | 1        | 80.0-120    |              |               | 2.95 | 15         |  |

PROJECT: 27213167.21 - L SDG: L1381302 DATE/TIME: 08/01/21 08:29

**PAGE**: 9 of 13

### WG1712952

Metals (ICP) by Method 6010B

# QUALITY CONTROL SUMMARY

### Method Blank (MB)

| (MB) R3686095-1 07/30/2114:06 |           |              |        |        |  |  |
|-------------------------------|-----------|--------------|--------|--------|--|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |
| Analyte                       | ug/l      |              | ug/l   | ug/l   |  |  |
| Calcium                       | U         |              | 79.3   | 1000   |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3686095-2 07/30 | LS) R3686095-2 07/30/2114:09 |            |          |             |               |  |  |  |  |  |
|------------------------|------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                        | Spike Amount                 | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                | ug/l                         | ug/l       | %        | %           |               |  |  |  |  |  |
| Calcium                | 10000                        | 9980       | 99.8     | 80.0-120    |               |  |  |  |  |  |

### L1381302-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1381302-01 07/30/21 14:12 • (MS) R3686095-4 07/30/21 14:18 • (MSD) R3686095-5 07/30/21 14:20 |              |                 |           |            |         |          |          |             |              |               |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Calcium                                                                                            | 10000        | 147000          | 154000    | 155000     | 70.6    | 76.1     | 1        | 75.0-125    | V            |               | 0.355 | 20         |

| ACCOUNT:           |  |  |  |  |  |  |  |
|--------------------|--|--|--|--|--|--|--|
| SCS Engineers - KS |  |  |  |  |  |  |  |

DATE/TIME: 08/01/21 08:29

Тс

Ss

Cn

Sr

Qc

GI

Â

### **GLOSSARY OF TERMS**

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                            |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol<br>observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will<br>be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                    |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

V

The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.21 - L

SDG: L1381302

DATE/TIME: 08/01/21 08:29 Τс

Ss

Cn

Sr

Qc

GI

AI

### ACCREDITATIONS & LOCATIONS

### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| Florida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| ldaho                         | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois                      | 200008      | Oklahoma                    | 9915             |
| Indiana                       | C-TN-01     | Oregon                      | TN200002         |
| lowa                          | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LA000356         |
| Kentucky <sup>16</sup>        | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| Louisiana                     | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana                     | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Minnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto                    | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1381302

| Company Name/Address:                                                         |                                     |                                                             | Dilling Info                                         | rmation                                     |                      | T            | 1            |            |        | Analusia     | ICanta    | nor / Dr | aconuctiu  |           |                            |                                                                              | Chain of Custod                                                        | Page of                                                                     |
|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------|--------------|--------------|------------|--------|--------------|-----------|----------|------------|-----------|----------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210         |                                     |                                                             | Account<br>8575 W.<br>Overlan                        | ts Payable<br>. 110th Stree<br>d Park, KS 6 | et<br>6210           | Pres<br>Chk  | 07           |            |        |              | Conta     | ner / Pr | eservativ  | <u>/e</u> |                            | Pace And                                                                     |                                                                        | e Analytical                                                                |
| Report to:<br>Jason Franks                                                    |                                     |                                                             | Email To:<br>jfranks@s                               | csengineers.co                              | m;jay.martin@e       | vergy.c      | -            | Pres       |        |              |           |          |            |           |                            |                                                                              | 12065 Lebanon Rd Mc<br>Submitting a sample vi<br>constitutes acknowled | unt Juliet, TN 37122<br>a this chain of custody<br>ment and acceptance of t |
| Project Description:<br>KCP&L latan Generating Station                        |                                     | City/State<br>Collected:                                    | Weston                                               | , MO                                        | Please C<br>PT MT    | irele:<br>ET |              | PE-No      | s      |              |           |          |            |           |                            |                                                                              | Pace Terms and Condit<br>https://info.pacelabs.c<br>terms.pdf          | ions found at:<br>pm/hubfs/pas-standard-                                    |
| Phone: 913-681-0030                                                           | Client Proj<br>2721316              | ect #<br>7.21 - L                                           |                                                      | Lab Project a                               | #<br>KS-IATAN        | j.           | NO3          | SmIHD      | NoPre  |              |           |          |            |           |                            |                                                                              | SDG # 5                                                                | 8/302                                                                       |
| Collected by (print):<br>Whit Martin                                          | Site/Facilit                        | y ID #                                                      |                                                      | P.O. #                                      |                      |              | DPE-H        | 56 125     | HDPE-  |              |           |          |            |           |                            |                                                                              | Acctnum: AQ                                                            | JAOPKS                                                                      |
| Collected by (signature):<br>What Marts<br>Immediately<br>Packed on Ice N Y X | Rusha<br>Sam<br>Next<br>Two<br>Thre | Clab MUST Be<br>e Day Five<br>Day 5 Da<br>Day 10 D<br>e Day | e Notified)<br>Day<br>y (Rad Only)<br>Day (Rad Only) | e Results Needed                            |                      | 010 250mlH   | de, SO4 - 90 | 0056 125ml |        |              |           |          |            |           |                            | Template: <b>T12</b><br>Prelogin: <b>P86</b><br>PM: <b>206 - Jeff</b><br>PB: | 9786<br>1401<br>Carr                                                   |                                                                             |
| Sample ID                                                                     | Comp/Gra                            | ab Matrix *                                                 | Depth                                                | Date                                        | Time                 | Cntrs        | - 6(         | lori       | 14 - 1 |              |           |          |            | 1         |                            |                                                                              | Shipped Via:                                                           | Sample # (lab.on)                                                           |
| MW-6                                                                          | Grad                                | GW                                                          |                                                      | 7/20/2                                      | 0950                 | 2            | C<br>X       | C<br>X     | SC     |              |           |          |            |           |                            |                                                                              | nemarks                                                                |                                                                             |
| MW-6 MS/MSD                                                                   | Grab                                | GW                                                          |                                                      | 7/20/2                                      | 1 0950               | 2            | x            | X          |        |              |           |          |            |           |                            |                                                                              |                                                                        |                                                                             |
| DUPLICATE                                                                     | Grat                                | GW                                                          |                                                      | 7/20/                                       | 0950                 | 2            | X            | X          |        |              |           | ·        |            | -         |                            |                                                                              |                                                                        | -02                                                                         |
| MW-10.                                                                        | Grak                                | GW                                                          |                                                      | 7/20/2                                      | 1 0910               | 1            |              |            | X      |              |           |          |            |           |                            |                                                                              |                                                                        | -03                                                                         |
|                                                                               |                                     |                                                             |                                                      |                                             |                      |              |              |            |        |              |           |          |            |           |                            |                                                                              |                                                                        |                                                                             |
|                                                                               |                                     |                                                             |                                                      |                                             |                      |              |              |            |        |              |           |          |            |           |                            |                                                                              |                                                                        |                                                                             |
| * Matrix:                                                                     | Remarks:                            |                                                             |                                                      |                                             |                      | I            |              |            |        | DH           |           | Tem      |            |           | COC Se                     | Sampl                                                                        | e Receipt Ch                                                           | ecklist                                                                     |
| GW - Groundwater B - Bioassay<br>WW - WasteWater                              |                                     |                                                             |                                                      |                                             |                      | 1            |              |            |        | Flow         |           | Othe     | er         |           | COC Si<br>Bottle<br>Correc | lgned/A<br>es arri<br>et bott                                                | Accurate:<br>Lve intact:<br>Lles used:                                 | 555                                                                         |
| OT - Other                                                                    | Samples return<br>UPSFed            | ed via:<br>ExCourier                                        |                                                      | Tra                                         | Tracking # 9883 0084 |              |              |            | +      | 1003         |           |          |            |           | VOA Ze                     | ero Hea                                                                      | If Applicab<br>adspace:                                                | Le $-\frac{Y}{1}$                                                           |
| Relinquished by : (Signature)                                                 |                                     | Date:                                                       | 121 15                                               | 15 Re                                       | ceived by: (Signa    | ture)        |              |            |        | Trip Blai    | the Recei | 1<br>1   | HCL/ Me    | оН        | RAD SC                     | reen <                                                                       | (0.5 mR/hr:                                                            | ¥ _                                                                         |
| Relinquished by : (Signature)                                                 |                                     | Date:                                                       | Time                                                 | e: Re                                       | ceived by: (Signa    | ture)        |              |            |        | Templ<br>31  | ote       | E Bott   | les Receiv | 7         | If prese                   | ervation                                                                     | required by Log                                                        | in: Date/Time                                                               |
| Relinquished by : (Signature)                                                 |                                     | Date:                                                       | Time                                                 | e: Re                                       | teather              | (Signat      | ture)        | 15         |        | Date:<br>7/2 | 1121      | Tim      | e:<br>830  | >         | Hold:                      |                                                                              |                                                                        | Condition:<br>NCF / OK                                                      |



# Pace Analytical® ANALYTICAL REPORT

August 09, 2021

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1385413 07/21/2021 27213167.21 - L KCP&L latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

### **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.21 - L

SDG: L1385413

DATE/TIME: 08/09/21 07:30

PAGE:

1 of 11

### TABLE OF CONTENTS

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-6 L1385413-01                           | 5  |
| DUPLICATE L1385413-02                      | 6  |
| Qc: Quality Control Summary                | 7  |
| Gravimetric Analysis by Method 2540 C-2011 | 7  |
| GI: Glossary of Terms                      | 8  |
| Al: Accreditations & Locations             | 9  |
| Sc: Sample Chain of Custody                | 10 |
|                                            |    |



SDG: L1385413

### SAMPLE SUMMARY

|                                            |           |          | Collected by   | Collected date/time | Received dat  | te/time        |
|--------------------------------------------|-----------|----------|----------------|---------------------|---------------|----------------|
| MW-6 L1385413-01 GW                        |           |          | Whit Martin    | 07/20/21 09:50      | 07/21/21 08:3 | 30             |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                            |           |          | date/time      | date/time           |               |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1716521 | 1        | 08/03/21 14:35 | 08/03/21 15:24      | VRP           | Mt. Juliet, TN |
|                                            |           |          | Collected by   | Collected date/time | Received dat  | te/time        |
| DUPLICATE L1385413-02 GW                   |           |          | Whit Martin    | 07/20/21 09:50      | 07/21/21 08:3 | 30             |
| Method                                     | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                            |           |          | date/time      | date/time           |               |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1716521 | 1        | 08/03/21 14:35 | 08/03/2115:24       | VRP           | Mt. Juliet, TN |

Ср

SDG: L1385413 DATE/TIME: 08/09/21 07:30

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb law

Jeff Carr Project Manager



SDG: L1385413 DATE/TIME: 08/09/21 07:30

# SAMPLE RESULTS - 01

### Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | I Cr |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |      |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 542    | Q         | 11.1 | 1        | 08/03/2021 15:24 | WG1716521 | Tc   |

# SAMPLE RESULTS - 02

### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ct |
|------------------|--------|-----------|------|----------|------------------|-----------|----|
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2  |
| Dissolved Solids | 534    | Q         | 10.0 | 1        | 08/03/2021 15:24 | WG1716521 | Τc |

### WG1716521

Gravimetric Analysis by Method 2540 C-2011

### QUALITY CONTROL SUMMARY L1385413-01,02

### Method Blank (MB)

| (MB) R3689154-1 08/03/21 15:24 |           |              |        |        |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |
| Analyte                        | mg/l      |              | mg/l   | mg/l   |  |  |  |
| Dissolved Solids               | U         |              | 10.0   | 10.0   |  |  |  |

### L1384494-23 Original Sample (OS) • Duplicate (DUP)

| Original Result DUP Result Dilution DUP RPD DUP Qualifier DI<br>Li   Analyte mg/l mg/l % % |               |                   |   |       |  |   |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------|-------------------|---|-------|--|---|--|--|--|--|
|                                                                                            | DUP Qualifier | DUP RPD<br>Limits |   |       |  |   |  |  |  |  |
| Analyte                                                                                    | mg/l          | mg/l              |   | %     |  | % |  |  |  |  |
| Dissolved Solids                                                                           | 631           | 632               | 1 | 0.211 |  | 5 |  |  |  |  |

### L1384900-05 Original Sample (OS) • Duplicate (DUP)

| L1384900-05 Orig       | inal Sample       | e (OS) • Du   | plicate  | (DUP)   |               |                   | <sup>7</sup> Gl |
|------------------------|-------------------|---------------|----------|---------|---------------|-------------------|-----------------|
| (OS) L1384900-05 08/03 | 8/21 15:24 • (DUF | 9) R3689154-4 | 08/03/21 | 15:24   |               |                   |                 |
|                        | Original Result   | DUP Result    | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |
| Analyte                | mg/l              | mg/l          |          | %       |               | %                 |                 |
| Dissolved Solids       | 994               | 998           | 1        | 0.402   |               | 5                 | <sup>9</sup> Sc |

### Laboratory Control Sample (LCS)

| (LCS) R3689154-2 08/03/21 15:24 |              |            |          |             |               |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |
| Analyte                         | mg/l         | mg/l       | %        | %           |               |  |  |  |
| Dissolved Solids                | 8800         | 8400       | 95 5     | 77 4-123    |               |  |  |  |

DATE/TIME: 08/09/21 07:30 PAGE: 7 of 11

Ср

Тс

Ss

Cn

Sr

Qc

### GLOSSARY OF TERMS

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Q

Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

PROJECT: 27213167.21 - L

SDG: L1385413

DATE/TIME: 08/09/21 07:30 Τс

Ss

Cn

Sr

Qc

GI

AI

### ACCREDITATIONS & LOCATIONS

### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| ldaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>1 4</sup>    | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 ⁵     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1385413

| Company Name/Address:                                                                                                                                                                                     | THE REAL PROPERTY AND                                                                                                          |                                                                     | Billing Info              | armation:                                           |                   | 1          | 1            |                  |                  |                  | And And                   | Steph of Solid State                                                               |                                                               |                                                                                    |                                                                  | -    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|-----------------------------------------------------|-------------------|------------|--------------|------------------|------------------|------------------|---------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210                                                                                                                                     | Account<br>8575 W.<br>Overlan                                                                                                  | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                           |                                                     |                   |            |              | Analysis / Conta | iner / Preservat | lye              | Chain (                   | Pace                                                                               | Page L of L                                                   |                                                                                    |                                                                  |      |
| Report to:<br>Jason Franks                                                                                                                                                                                |                                                                                                                                |                                                                     |                           | Email To:<br>jfranks@scsengineers.com;jay.martin@ev |                   |            |              | res              |                  |                  |                           |                                                                                    | 12065 Le<br>Submitta                                          | 65 Lebason Rd Mount Juliet, TN 37122<br>mitting a sample via this chain of custody |                                                                  | 2425 |
| Project Description:<br>KCP&L latan Generating Station                                                                                                                                                    |                                                                                                                                | City/State<br>Collected:                                            | Weston                    | MO                                                  | Please C<br>PT MT | ITELE:     |              | E-Nof            |                  |                  |                           |                                                                                    | constitut<br>Pace Ten<br>https://w<br>terms.pd                | es acknowledgmi<br>ms and Condition<br>the pacelabs.com<br>f                       | ent and acceptance of the<br>s found at:<br>/hubfs/pas-standard- |      |
| Phone: 913-681-0030                                                                                                                                                                                       | One: 913-681-0030 Client Project #   27213167.21 - L   Ilected by (print): Site/Facility ID #   With Martin Site/Facility ID # |                                                                     |                           | Lab Project #                                       | -IATAN            |            | 103          | mIHDP            | oPres            |                  |                           |                                                                                    | SDG A                                                         | 1302                                                                               | 1 NV<br>8/3/21                                                   |      |
| Collected by (print):<br>Whit Martin                                                                                                                                                                      |                                                                                                                                |                                                                     |                           | P.O. #                                              | #                 |            | DPE-HA       | 56 125           | HDPE-A           |                  |                           |                                                                                    | Acctn                                                         | Um: AQU                                                                            | 25V13                                                            | 1    |
| Collected by (signature):<br>When Martin<br>mmediately<br>Packed on ice N y X<br>Collected by (signature):<br>Rush? (Lab MUST Be N<br>Same Day Five Da<br>Next Day 5 Day (<br>Two Day 10 Day<br>Three Day |                                                                                                                                | Notified)<br>Day<br>y (Rad Only)<br>ay (Rad Only)                   | Quote #<br>Date Resu      | Date Results Needed                                 |                   | 10 250mlHI | le, SO4 - 90 | 056 125mlt       |                  |                  |                           | Template: <b>T129786</b><br>Prelogin: <b>P861401</b><br>PM: 206 - Jeff Carr<br>PB: |                                                               |                                                                                    |                                                                  |      |
| Sample ID                                                                                                                                                                                                 | Comp/Grab                                                                                                                      | Matrix *                                                            | Depth                     | Date                                                | Time              | Cntrs      | a - 60       | hlorid           | 04 - 9           |                  |                           |                                                                                    | Shippe                                                        | ed Via:<br>emarks                                                                  | Sample # (lab only)                                              |      |
| MW-6                                                                                                                                                                                                      | Grab                                                                                                                           | GW                                                                  |                           | 7/20/21                                             | 0950              | 2          | X            | X                | S                |                  |                           |                                                                                    |                                                               |                                                                                    | -at                                                              | 10   |
| NW-6 MS/MSD                                                                                                                                                                                               | Grab                                                                                                                           | GW                                                                  |                           | 7/20/21                                             | 0950              | 2          | x            | X                |                  |                  |                           |                                                                                    |                                                               |                                                                                    |                                                                  |      |
| UPLICATE                                                                                                                                                                                                  | Grab                                                                                                                           | GW                                                                  | Contraction of the second | 7/20/21                                             | 0950              | 2          | X            | X                | Cite Cite        |                  |                           |                                                                                    |                                                               |                                                                                    | -02                                                              | 5    |
| /W-10.                                                                                                                                                                                                    | Grab                                                                                                                           | GW                                                                  | -                         | 7/20/21                                             | 0910              | 1          |              |                  | X                |                  |                           |                                                                                    |                                                               | in nen val<br>Angel van                                                            | 103                                                              |      |
|                                                                                                                                                                                                           |                                                                                                                                | Contraction of the second                                           |                           |                                                     |                   |            |              |                  |                  |                  |                           |                                                                                    |                                                               |                                                                                    |                                                                  |      |
|                                                                                                                                                                                                           |                                                                                                                                |                                                                     |                           |                                                     |                   |            |              |                  |                  |                  |                           |                                                                                    |                                                               |                                                                                    |                                                                  |      |
|                                                                                                                                                                                                           | States and states                                                                                                              | No. of Concession                                                   | No.                       |                                                     |                   | 1          |              | 1991             |                  |                  |                           |                                                                                    |                                                               |                                                                                    |                                                                  |      |
| Matrix:<br>S - Soil AIR - Air F - Filter<br>IW - Groundwater B - Bioassay<br>VW - WasteWater                                                                                                              | Remarks:                                                                                                                       |                                                                     | - Altern                  |                                                     | The line          |            |              |                  |                  | pH               | Temp<br>Other             | COC<br>COC<br>Bott                                                                 | Sample Rec<br>Seal Present/<br>Signed/Accura<br>Les arrive in | eipt Che<br>Intact:<br>te:<br>tact:                                                | NP R                                                             |      |
| OW - Drinking Water<br>OT - Other                                                                                                                                                                         | Samples returned                                                                                                               | via:<br>Courier                                                     |                           | Tracki                                              | ns# 988           | 33         | 33 0084      |                  |                  | 1003             |                           |                                                                                    | icient volume<br>If Ar                                        | N N                                                                                |                                                                  |      |
| Relinquished by : (Signature)                                                                                                                                                                             | Da                                                                                                                             | nte:<br>7/20/:                                                      | z1 15                     | 15 Receiv                                           | ved by: (Signati  | ure)       |              |                  |                  | Trip Blank Recei | ved: (Yes? No<br>1 (C) Mi | eoH                                                                                | Sero Readspec<br>srvation Corr<br>screen <0.5 m               | e:<br>ect/Chec<br>R/hr:                                                            | ked:                                                             |      |
| Relinquished by : (Signature)                                                                                                                                                                             | Da                                                                                                                             | ite:                                                                | Time:                     | Receiv                                              | ved by: (Signati  | ure)       |              |                  |                  | Si Gh            | Bottles Recei             | Ved: If pre                                                                        | servation require                                             | ed by Login                                                                        | : Date/Time                                                      |      |
| Relinquished by : (Signature)                                                                                                                                                                             | Da                                                                                                                             | ite:                                                                | Time:                     | Receiv                                              | ather             | (Signatu   | ire)         | 15               | 1                | Date:<br>7/21/21 | Time: 0830                | Hold:                                                                              |                                                               |                                                                                    | Condition<br>NCF / OK                                            |      |

 $R_5$ 

# AQUAOPKS L1381302-01 and -02 relog for TDS

Firefox

Per client request, please relog AQUAOPKS samples L1381302-01 and -02 for TDS. Client is aware that the samples are OOH and may require dilutions.

NOTICE-- The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by

others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately

P Please consider the environment before printing this email

Time spent: oh Time estimate: oh Members

Jeffrey A. Carr (responsible)

f 1



# Pace Analytical® ANALYTICAL REPORT

August 09, 2021

### **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1386668 08/05/2021 27213167.21 Evergy latan Gen Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 Тс Ss Cn Śr ʹQc Gl A Sc

Entire Report Reviewed By:

Jubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

### **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.21

SDG: L1386668

DATE/TIME: 08/09/21 07:08

PAGE: 1 of 10
## TABLE OF CONTENTS

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-6 L1386668-01                           | 5  |
| DUPLICATE L1386668-02                      | 6  |
| Qc: Quality Control Summary                | 7  |
| Gravimetric Analysis by Method 2540 C-2011 | 7  |
| GI: Glossary of Terms                      | 8  |
| Al: Accreditations & Locations             | 9  |
| Sc: Sample Chain of Custody                | 10 |
|                                            |    |



SDG: L1386668

## SAMPLE SUMMARY

|                                            |           |          | Collected by    | Collected date/time | Received date | e/time         |
|--------------------------------------------|-----------|----------|-----------------|---------------------|---------------|----------------|
| MW-6 L1386668-01 GW                        |           |          | Jason R. Franks | 08/04/2110:25       | 08/05/21 09:0 | 00             |
| Method                                     | Batch     | Dilution | Preparation     | Analysis            | Analyst       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1718421 | 1        | 08/05/2119:35   | 08/05/21 19:39      | VRP           | Mt. Juliet, TN |
|                                            |           |          | Collected by    | Collected date/time | Received date | e/time         |
| DUPLICATE L1386668-02 GW                   |           |          | Jason R. Franks | 08/04/2110:25       | 08/05/21 09:0 | 00             |
| Method                                     | Batch     | Dilution | Preparation     | Analysis            | Analyst       | Location       |
|                                            |           |          | date/time       | date/time           |               |                |
| Gravimetric Analysis by Method 2540 C-2011 | WG1718421 | 1        | 08/05/21 19:35  | 08/05/21 19:39      | VRP           | Mt. Juliet, TN |

Sc

Ср

SDG: L1386668 DATE/TIME: 08/09/21 07:08

## CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.21

SDG: L1386668

] 30 PAGE: 4 of 10

## SAMPLE RESULTS - 01

## Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | <br>I'Cr |
|------------------|--------|-----------|------|----------|------------------|-----------|----------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |          |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | <br>2    |
| Dissolved Solids | 550    |           | 10.0 | 1        | 08/05/2021 19:39 | WG1718421 | ⁻Tc      |

SDG: L1386668

## SAMPLE RESULTS - 02

## Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | 1 Cr |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |      |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 546    |           | 10.0 | 1        | 08/05/2021 19:39 | WG1718421 | Tc   |

SDG: L1386668 DATE/TIME: 08/09/21 07:08

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY L1386668-01,02

## Method Blank (MB)

| Method Blank       | (MB)         |              |        |        |                 |   |
|--------------------|--------------|--------------|--------|--------|-----------------|---|
| (MB) R3689182-1 08 | /05/21 19:39 |              |        |        |                 | р |
|                    | MB Result    | MB Qualifier | MB MDL | MB RDL | 2               | _ |
| Analyte            | mg/l         |              | mg/l   | mg/l   | Tc              | С |
| Dissolved Solids   | U            |              | 10.0   | 10.0   |                 |   |
|                    |              |              |        |        | <sup>3</sup> Ss | S |

#### L1386668-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1386668-01 08/05/ | (OS) L1386668-01 08/05/21 19:39 • (DUP) R3689182-3 08/05/21 19:39 |            |          |         |               |                   |  |  |
|-------------------------|-------------------------------------------------------------------|------------|----------|---------|---------------|-------------------|--|--|
|                         | Original Result                                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |
| Analyte                 | mg/l                                                              | mg/l       |          | %       |               | %                 |  |  |
| Dissolved Solids        | 550                                                               | 537        | 1        | 2.39    |               | 5                 |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3689182-2 08 | 8/05/21 19:39 |            |          |             |               |
|---------------------|---------------|------------|----------|-------------|---------------|
|                     | Spike Amount  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte             | mg/l          | mg/l       | %        | %           |               |
| Dissolved Solids    | 8800          | 8320       | 94.5     | 77.4-123    |               |

DATE/TIME: 08/09/21 07:08 Cn

Sr

Qc

GI

Â

## GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>reported.                                                                                                                                                                                                                                                                                                                                                                                              |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: 27213167.21

SDG: L1386668 DATE/TIME: 08/09/21 07:08

PAGE:

8 of 10

Τс

Ss

Cn

Sr

Qc

GI

AI

## ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| Florida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| daho                          | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois                      | 200008      | Oklahoma                    | 9915             |
| Indiana                       | C-TN-01     | Oregon                      | TN200002         |
| owa                           | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup>        | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| ouisiana                      | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| ouisiana                      | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Vinnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto                    | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

PROJECT: 27213167.21

SDG: L1386668 DATE/TIME: 08/09/21 07:08

PAGE:

9 of 10

Τс

Ss

Cn

Sr

Qc

Gl

AI

| SCS Engineers                                                                |                                                | Billing Info                                      | Billing Information:<br>Jason Franks<br>SCS Engineers |                   |                  |        | Analysis / Container / Preservative |           |             |                             |                             | Chain of Custody                                                               | Page of                       |
|------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------|------------------|--------|-------------------------------------|-----------|-------------|-----------------------------|-----------------------------|--------------------------------------------------------------------------------|-------------------------------|
|                                                                              |                                                | SCS Eng                                           |                                                       |                   |                  |        |                                     |           |             |                             |                             | 2                                                                              |                               |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             | Pace Al<br>National Cente                                                      | nalytical®                    |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
| Report to:<br>Jason Franks                                                   |                                                | Email To:<br>jfranks@                             | scsengineers.                                         | com               |                  |        |                                     |           |             |                             |                             | 12065 Lebanon Rd<br>Mount Juliet, TN 3712<br>Phone: 615-758-5858               |                               |
| Project Description:<br>Evergy latan Gen Station                             |                                                | City/State V<br>Collected:                        | Veston, MO                                            | Please<br>PT MT   | Circle:<br>CT ET |        |                                     |           |             |                             |                             | Phone: 800-767-5859<br>Fax: 615-758-5859                                       |                               |
| Phone: 9133023238                                                            | Client Project # 27213167.21                   |                                                   | Lab Project #                                         |                   |                  | 6      |                                     |           |             |                             |                             | SDG # 1.58                                                                     | 053                           |
| Collected by (print):                                                        | Site/Facility ID #                             |                                                   | P.O. #                                                |                   | р<br>F           | nPre   |                                     |           |             |                             |                             | Table<br>Acctnum:                                                              |                               |
| Collected by (signature):                                                    | Rush? (Lab !                                   | MUST Be Notified)                                 | Quote #                                               |                   |                  | nl No  |                                     |           |             |                             |                             | Template:                                                                      |                               |
| Immediately<br>Packed on Ice N Y                                             | Same Day<br>Next Day<br>X Two Day<br>Three Day | Five Day<br>5 Day (Rad Only)<br>10 Day (Rad Only) | Date Res<br>2 Day                                     | ults Needed       | No.              | - 500n |                                     |           |             |                             |                             | PM:<br>PB:                                                                     |                               |
| Sample ID                                                                    | Comp/Gra                                       | ab Matrix* [                                      | Depth Dat                                             | e Time            | Cntrs            | TDS    |                                     |           |             |                             |                             | Shipped Via:<br>Remarks                                                        | Sample # (lab only)           |
| MVV-6                                                                        | Grab                                           | GW                                                | 08/4/2                                                | 21 1025           | 1                | ×      |                                     |           |             |                             |                             |                                                                                | 61                            |
| Duplicate                                                                    | Grab                                           | GW                                                | 8/4/2                                                 | 1 1025            | - 1.             | ×      |                                     |           |             |                             |                             |                                                                                | R                             |
|                                                                              |                                                |                                                   |                                                       | _                 |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
|                                                                              |                                                |                                                   |                                                       |                   |                  |        |                                     |           |             |                             |                             |                                                                                |                               |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks:                                       |                                                   |                                                       |                   |                  |        | 1                                   | pH        | Te          | emp                         | COC Ser<br>COC Si<br>Bottle | Sample Receipt Che<br>al Present/Intact:<br>gned/Accurate:<br>s arrive intact: | NP Y N                        |
| WW - WasteWater                                                              | Samples returned                               | d via:                                            |                                                       |                   |                  |        |                                     | Flow      | 0           | ther                        | Correc                      | t bottles used:<br>ient volume sent:                                           | Y NN                          |
| OT - Other                                                                   | UPSFedEx                                       | Courier                                           | Т                                                     | racking # 98      | 83               | 01     | 084 0                               | 989       |             |                             | VOA Ze                      | If Applicabl<br>ro Headspace:                                                  | <u>e</u> YN                   |
| Relinguished by : (Signature)                                                | D                                              | 8/4/21                                            | Time: R                                               | eceived by: (Sign | ature)           |        |                                     | Trip Blan | k Received: | Yes No<br>HCL / MeoH<br>TBR | Preser<br>RAD Sc            | vation Correct/Che<br>reen <0.5 mR/hr:                                         | cked: $\underline{Y}_{Y}_{N}$ |
| Relinquished by : (Signature)                                                | D                                              | patę:                                             | Time: R                                               | eceived by: (Sign | ature)           |        | 0                                   | Temp:     | -28         | Bottles Received:           | If prese                    | rvation required by Log                                                        | in: Date/Time                 |
| Relinquished by : (Signature)                                                | D                                              | pate:                                             | Time: R                                               | eceived for labo  | y: (Signa        | ature) | In                                  | Date:     | 5/21        | Time: 0900                  | Hold:                       |                                                                                | Condition:<br>NCF / OK        |

Jared Morrison December 16, 2022

## ATTACHMENT 1-5 November 2021 Sampling Event Laboratory Report



# Pace Analytical® ANALYTICAL REPORT

December 16, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1433083 11/18/2021 27213167.21-A Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

## Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.21-A

SDG:

L1433083

DATE/TIME: 12/16/21 10:45

PAGE: 1 of 25

## TABLE OF CONTENTS

| Cp: Cover Page                             | 1  |
|--------------------------------------------|----|
| Tc: Table of Contents                      | 2  |
| Ss: Sample Summary                         | 3  |
| Cn: Case Narrative                         | 4  |
| Sr: Sample Results                         | 5  |
| MW-1 L1433083-01                           | 5  |
| MW-2 L1433083-02                           | 6  |
| MW-6 L1433083-03                           | 7  |
| MW-7 L1433083-04                           | 8  |
| MW-8 L1433083-05                           | 9  |
| DUPLICATE L1433083-06                      | 10 |
| Qc: Quality Control Summary                | 11 |
| Gravimetric Analysis by Method 2540 C-2011 | 11 |
| Wet Chemistry by Method 9056A              | 14 |
| Metals (ICP) by Method 6010D               | 19 |
| GI: Glossary of Terms                      | 23 |
| Al: Accreditations & Locations             | 24 |
| Sc: Sample Chain of Custody                | 25 |

<sup>1</sup>Cp <sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

## SAMPLE SUMMARY

| MW-1 L1433083-01 GW                        |           |           | Collected by<br>Whit Martin | Collected date/time<br>11/17/21 10:45 | Received da<br>11/18/21 15:00 | te/time<br>D   |
|--------------------------------------------|-----------|-----------|-----------------------------|---------------------------------------|-------------------------------|----------------|
| Method                                     | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1779725 | 1         | 11/24/21 11:14              | 11/24/21 16:11                        | BRG                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1787688 | 1         | 12/11/21 15:24              | 12/11/21 15:24                        | LBR                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788314 | 1         | 12/13/21 14:16              | 12/15/21 03:29                        | CCE                           | Mt. Juliet, TN |
| MW-2 L1433083-02 GW                        |           |           | Collected by<br>Whit Martin | Collected date/time<br>11/17/21 09:55 | Received da<br>11/18/21 15:00 | te/time<br>)   |
| Method                                     | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1780105 | 1         | 11/24/21 20:07              | 11/24/21 20:11                        | VRP                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1787688 | 1         | 12/11/21 15:36              | 12/11/21 15:36                        | LBR                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1788873 | 5         | 12/14/21 16:23              | 12/14/21 16:23                        | LBR                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788842 | 1         | 12/14/21 10:31              | 12/14/21 19:03                        | CCE                           | Mt. Juliet, TN |
|                                            |           |           | Collected by                | Collected date/time                   | Received da                   | te/time        |
| MW-6 L1433083-03 GW                        |           |           | Whit Martin                 | 11/17/21 13:30                        | 11/18/21 15:00                | )              |
| Method                                     | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1779332 | 1         | 11/23/21 18:00              | 11/23/21 19:01                        | MEU                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1787688 | 1         | 12/11/21 15:48              | 12/11/21 15:48                        | LBR                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788842 | 1         | 12/14/21 10:31              | 12/14/21 19:11                        | CCE                           | Mt. Juliet, TN |
| MW-7 L1433083-04 GW                        |           |           | Collected by<br>Whit Martin | Collected date/time<br>11/17/21 12:25 | Received da<br>11/18/21 15:00 | te/time<br>)   |
| Method                                     | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1779332 | 1         | 11/23/21 18:00              | 11/23/21 19:01                        | MEU                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1787688 | 1         | 12/11/21 15:59              | 12/11/21 15:59                        | LBR                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788226 | 9         | 12/15/21 13:12              | 12/16/21 04:35                        | CCE                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788848 | 1         | 12/14/21 15:00              | 12/15/21 02:05                        | CCE                           | Mt. Juliet, TN |
| MW-8 L1433083-05 GW                        |           |           | Collected by<br>Whit Martin | Collected date/time<br>11/17/21 11:35 | Received da<br>11/18/21 15:00 | te/time<br>D   |
| Method                                     | Batch     | Dilution  | Preparation<br>date/time    | Analysis<br>date/time                 | Analyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1779332 | 1         | 11/23/21 18:00              | 11/23/21 19:01                        | MEU                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1788153 | 1         | 12/12/21 22:20              | 12/12/21 22:20                        | ELN                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788842 | 1         | 12/14/21 10:31              | 12/14/21 19:14                        | CCE                           | Mt. Juliet, TN |
|                                            |           |           | Collected by<br>Whit Martin | Collected date/time 11/17/21 12:25    | Received da<br>11/18/21 15:00 | te/time<br>)   |
| Method                                     | Batch     | Dilution  | Preparation                 | Δnalveis                              | Analyst                       | Location       |
|                                            | DatCH     | DilutiOII | date/time                   | date/time                             | Anaiyst                       | Location       |
| Gravimetric Analysis by Method 2540 C-2011 | WG1779725 | 1         | 11/24/21 11:14              | 11/24/21 16:11                        | BRG                           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A              | WG1788153 | 1         | 12/12/21 22:33              | 12/12/21 22:33                        | ELN                           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D               | WG1788842 | 1         | 12/14/21 10:31              | 12/14/21 19:16                        | CCE                           | Mt. Juliet, TN |

PROJECT: 27213167.21-A

SDG: L1433083 DATE/TIME: 12/16/21 10:45 **PAGE**: 3 of 25 Ср

<sup>2</sup>Tc

Ss

°Cn

Sr

Qc

GI

ΆI

## CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager



PROJECT: 27213167.21-A

SDG: L1433083 DA<sup>-</sup> 12/16 PAGE: 4 of 25

#### SAMPLE RESULTS - 01 L1433083

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
|------------------|--------|-----------|------|----------|------------------|-----------|-----|
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2   |
| Dissolved Solids | 537    |           | 10.0 | 1        | 11/24/2021 16:11 | WG1779725 | ⁻Tc |

## Wet Chemistry by Method 9056A

Collected date/time: 11/17/21 10:45

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |                 |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|-----------------|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |  |
| Chloride                      | 6480   |           | 1000 | 1        | 12/11/2021 15:24 | WG1787688 | CII             |  |
| Fluoride                      | 314    |           | 150  | 1        | 12/11/2021 15:24 | WG1787688 | 5               |  |
| Sulfate                       | 35400  |           | 5000 | 1        | 12/11/2021 15:24 | WG1787688 | Sr              |  |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/15/2021 03:29 | WG1788314 |
| Calcium | 152000 |           | 1000 | 1        | 12/15/2021 03:29 | WG1788314 |

Qc

Gl

Â

#### SAMPLE RESULTS - 02 L1433083

## Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | 1 Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 595    |           | 10.0 | 1        | 11/24/2021 20:11 | WG1780105 | ⁻Tc  |

## Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |       |          |                  |           |                 |  |
|-------------------------------|--------|-----------|-------|----------|------------------|-----------|-----------------|--|
|                               | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |                 |  |
| Analyte                       | ug/l   |           | ug/l  |          | date / time      |           | <sup>4</sup> Cn |  |
| Chloride                      | 6680   |           | 1000  | 1        | 12/11/2021 15:36 | WG1787688 |                 |  |
| Fluoride                      | 371    |           | 150   | 1        | 12/11/2021 15:36 | WG1787688 | 5               |  |
| Sulfate                       | 114000 |           | 25000 | 5        | 12/14/2021 16:23 | WG1788873 | Sr              |  |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/14/2021 19:03 | WG1788842 |
| Calcium | 165000 |           | 1000 | 1        | 12/14/2021 19:03 | WG1788842 |

Qc

GI

Â

#### SAMPLE RESULTS - 03 L1433083

## Gravimetric Analysis by Method 2540 C-2011

| ,                | -      |           |      |          |                  |           | (Cn   |
|------------------|--------|-----------|------|----------|------------------|-----------|-------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср    |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | <br>2 |
| Dissolved Solids | 508    |           | 10.0 | 1        | 11/23/2021 19:01 | WG1779332 | ⁻Tc   |

## Wet Chemistry by Method 9056A

Collected date/time: 11/17/21 13:30

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |                 |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|-----------------|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |  |
| Chloride                      | 2120   |           | 1000 | 1        | 12/11/2021 15:48 | WG1787688 |                 |  |
| Fluoride                      | 344    |           | 150  | 1        | 12/11/2021 15:48 | WG1787688 | 5               |  |
| Sulfate                       | 32200  |           | 5000 | 1        | 12/11/2021 15:48 | WG1787688 | Sr              |  |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/14/2021 19:11 | WG1788842 |
| Calcium | 147000 |           | 1000 | 1        | 12/14/2021 19:11 | WG1788842 |

Qc

GI

Â

#### SAMPLE RESULTS - 04 L1433083

#### Gravimetric Analysis by Method 2540 C-2011

| · · · · · ·      | · ·    |           |      |          |                  |           | Cn  |
|------------------|--------|-----------|------|----------|------------------|-----------|-----|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2   |
| Dissolved Solids | 446    |           | 10.0 | 1        | 11/23/2021 19:01 | WG1779332 | ⁻Tc |

## Wet Chemistry by Method 9056A

| Wet Chemistry by Method 9056A |        |           |      |          |                  |           |     |    |  |
|-------------------------------|--------|-----------|------|----------|------------------|-----------|-----|----|--|
|                               | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |     | _  |  |
| Analyte                       | ug/l   |           | ug/l |          | date / time      |           | 4   | `n |  |
| Chloride                      | 1720   |           | 1000 | 1        | 12/11/2021 15:59 | WG1787688 |     |    |  |
| Fluoride                      | 383    |           | 150  | 1        | 12/11/2021 15:59 | WG1787688 | 5   |    |  |
| Sulfate                       | 31000  |           | 5000 | 1        | 12/11/2021 15:59 | WG1787688 | Ī S | r  |  |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/15/2021 02:05 | WG1788848 |
| Calcium | 112000 |           | 9000 | 9        | 12/16/2021 04:35 | WG1788226 |

Qc

GI

Â

#### SAMPLE RESULTS - 05 L1433083

## Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | l'Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Cp   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 640    |           | 10.0 | 1        | 11/23/2021 19:01 | WG1779332 | Tc   |

## Wet Chemistry by Method 9056A

Collected date/time: 11/17/21 11:35

| Wet Chemistry by Metho | d 9056A |           |      |          |                  |           | <sup>3</sup> Ss     |
|------------------------|---------|-----------|------|----------|------------------|-----------|---------------------|
|                        | Result  | Qualifier | RDL  | Dilution | Analysis         | Batch     |                     |
| Analyte                | ug/l    |           | ug/l |          | date / time      |           | <br><sup>4</sup> Cn |
| Chloride               | 14400   |           | 1000 | 1        | 12/12/2021 22:20 | WG1788153 | CII                 |
| Fluoride               | 404     |           | 150  | 1        | 12/12/2021 22:20 | WG1788153 | 5                   |
| Sulfate                | 91000   |           | 5000 | 1        | 12/12/2021 22:20 | WG1788153 | Sr                  |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/14/2021 19:14 | WG1788842 |
| Calcium | 178000 |           | 1000 | 1        | 12/14/2021 19:14 | WG1788842 |

Qc

GI

Â

#### SAMPLE RESULTS - 06 L1433083

## Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср |
|------------------|--------|-----------|------|----------|------------------|-----------|----|
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2  |
| Dissolved Solids | 452    |           | 10.0 | 1        | 11/24/2021 16:11 | WG1779725 | Tc |

## Wet Chemistry by Method 9056A

| Wet Chemistry b | y Method 9056 | 4         |      |          |                  |                  | <sup>3</sup> Ss |
|-----------------|---------------|-----------|------|----------|------------------|------------------|-----------------|
|                 | Result        | Qualifier | RDL  | Dilution | Analysis         | Batch            | L               |
| Analyte         | ug/l          |           | ug/l |          | date / time      |                  | <sup>4</sup> Cn |
| Chloride        | 1520          |           | 1000 | 1        | 12/12/2021 22:33 | WG1788153        |                 |
| Fluoride        | 379           |           | 150  | 1        | 12/12/2021 22:33 | WG1788153        | 5               |
| Sulfate         | 30700         |           | 5000 | 1        | 12/12/2021 22:33 | <u>WG1788153</u> | ِ Sr            |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/14/2021 19:16 | WG1788842 |
| Calcium | 130000 |           | 1000 | 1        | 12/14/2021 19:16 | WG1788842 |

Qc

GI

Â

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY L1433083-03,04,05

## Method Blank (MB)

| (MB) R3734175-1 11/23/21 | 19:01     |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | mg/l      |              | mg/l   | mg/l   |
| Dissolved Solids         | U         |              | 10.0   | 10.0   |

## L1432776-12 Original Sample (OS) • Duplicate (DUP)

| L1432776-12 Origin        | ai Sample (     | (OS) • Dup     | licate (L   |         |               |                   | $^{4}$ Cn       |
|---------------------------|-----------------|----------------|-------------|---------|---------------|-------------------|-----------------|
| (OS) L1432776-12 11/23/21 | 19:01 • (DUP) R | 3734175-3 11/2 | 23/21 19:01 |         |               |                   |                 |
|                           | Original Result | DUP Result     | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | ⁵Sr             |
| Analyte                   | mg/l            | mg/l           |             | %       |               | %                 |                 |
| Dissolved Solids          | 1210            | 1280           | 1           | 5.94    | <u>13</u>     | 5                 | <sup>6</sup> Qc |

## L1432898-10 Original Sample (OS) • Duplicate (DUP)

| L1432898-10 Ori       | ginal Sampl       | e (OS) • Dup     | olicate (   | DUP)    |               |                   | <sup>7</sup> Gl |
|-----------------------|-------------------|------------------|-------------|---------|---------------|-------------------|-----------------|
| (OS) L1432898-10 11/2 | 3/21 19:01 • (DUF | ) R3734175-4 11/ | /23/21 19:0 | 1       |               |                   |                 |
|                       | Original Res      | ult DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |
| Analyte               | mg/l              | mg/l             |             | %       |               | %                 |                 |
| Dissolved Solids      | 1310              | 1450             | 1           | 9.86    | <u>J3</u>     | 5                 | <sup>9</sup> Sc |

## Laboratory Control Sample (LCS)

| (LCS) R3734175-2 11/23/21 19:01 |              |            |          |             |               |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |
| Analyte                         | mg/l         | mg/l       | %        | %           |               |  |
| Dissolved Solids                | 8800         | 8050       | 91.5     | 77.4-123    |               |  |

DATE/TIME: 12/16/21 10:45 Тс

Ss

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY L1433083-01,06

## Method Blank (MB)

| (MB) R3734296-1 11/24/21 | 1 16:11   |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | mg/l      |              | mg/l   | mg/l   |
| Dissolved Solids         | U         |              | 10.0   | 10.0   |

## L1432898-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1432898-05 11/24/2 | :1 16:11 • (DUP) R | 3734296-3 11 | /24/21 16:1 | 1       |               |                   |
|--------------------------|--------------------|--------------|-------------|---------|---------------|-------------------|
|                          | Original Result    | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | mg/l               | mg/l         |             | %       |               | %                 |
| Dissolved Solids         | 1460               | 1480         | 1           | 1.53    |               | 5                 |

## L1432898-06 Original Sample (OS) • Duplicate (DUP)

| L1432898-06 Original Sample (OS) • Duplicate (DUP) |                    |              |              |         |               |                   |  |                 |  |  |
|----------------------------------------------------|--------------------|--------------|--------------|---------|---------------|-------------------|--|-----------------|--|--|
| (OS) L1432898-06 11/24/2                           | 21 16:11 • (DUP) F | 3734296-4 11 | 1/24/21 16:′ | 11      |               |                   |  |                 |  |  |
|                                                    | Original Result    | DUP Result   | Dilution     | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  | <sup>8</sup> Al |  |  |
| Analyte                                            | mg/l               | mg/l         |              | %       |               | %                 |  |                 |  |  |
| Dissolved Solids                                   | 1650               | 1650         | 1            | 0.152   |               | 5                 |  | °Sc             |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3734296-2 11/24/2 | CS) R3734296-2 11/24/21 16:11 |            |          |             |               |  |  |  |  |
|--------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|
|                          | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |
| Analyte                  | mg/l                          | mg/l       | %        | %           |               |  |  |  |  |
| Dissolved Solids         | 8800                          | 8570       | 97.4     | 77.4-123    |               |  |  |  |  |

DATE/TIME: 12/16/21 10:45

PAGE: 12 of 25 Тс

Ss

⁺Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

## QUALITY CONTROL SUMMARY L1433083-02

## Method Blank (MB)

| INIEthod Blank (INIE           | 5)        |              |        |        | $^{1}$ Cn |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|-----------|--|--|--|--|
| (MB) R3734313-1 11/24/21 20:11 |           |              |        |        |           |  |  |  |  |
|                                | MB Result | MB Qualifier | MB MDL | MB RDL | 2         |  |  |  |  |
| Analyte                        | mg/l      |              | mg/l   | mg/l   | Tc        |  |  |  |  |
| Dissolved Solids               | U         |              | 10.0   | 10.0   |           |  |  |  |  |
|                                |           |              |        |        | ³Ss       |  |  |  |  |

## L1432977-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1432977-03 11/24/21 20:11 • (DUP) R3734313-4 11/24/2 | 1 20:11 |
|------------------------------------------------------------|---------|
|------------------------------------------------------------|---------|

| · /              | Original Resul | t DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|----------------|--------------|----------|---------|---------------|-------------------|
| Analyte          | mg/l           | mg/l         |          | %       |               | %                 |
| Dissolved Solids | 278            | 271          | 1        | 2.55    |               | 5                 |

## Laboratory Control Sample (LCS)

| (LCS) R3734313-3 11/2 | 24/21 20:11  |            |          |             |               |
|-----------------------|--------------|------------|----------|-------------|---------------|
|                       | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte               | mg/l         | mg/l       | %        | %           |               |
| Dissolved Solids      | 8800         | 7980       | 90.7     | 77.4-123    |               |

DATE/TIME: 12/16/21 10:45 ⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY L1433083-01,02,03,04

## Method Blank (MB)

(MR) 03740460 1 12/11/21 00:07

| (IVID) R3740400-1 12/11/21 | 09.07     |              |        |        |                 |
|----------------------------|-----------|--------------|--------|--------|-----------------|
|                            | MB Result | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                    | ug/l      |              | ug/l   | ug/l   | Tc              |
| Chloride                   | U         |              | 379    | 1000   |                 |
| Fluoride                   | U         |              | 64.0   | 150    | <sup>3</sup> Ss |
| Sulfate                    | U         |              | 594    | 5000   |                 |

## L1433083-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1433083-04 12/11/21 15:59 • (DUP) R3740460-3 12/11/21 16:11

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |
|----------|-----------------|------------|----------|---------|---------------|-------------------|--|--|
| Analyte  | ug/l            | ug/l       |          | %       |               | %                 |  |  |
| Chloride | 1720            | 1560       | 1        | 9.75    |               | 15                |  |  |
| Fluoride | 383             | 382        | 1        | 0.235   |               | 15                |  |  |
| Sulfate  | 31000           | 30900      | 1        | 0.500   |               | 15                |  |  |

## L1432919-23 Original Sample (OS) • Duplicate (DUP)

| OS) L1432919-23 12/11/21 17:56 • (DUP) R3740460-6 12/11/21 18:08 |                 |            |          |         |               |                   |  |  |  |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |  |  |
| Chloride                                                         | ND              | ND         | 1        | 0.000   |               | 15                |  |  |  |  |  |  |
| Fluoride                                                         | ND              | ND         | 1        | 0.000   |               | 15                |  |  |  |  |  |  |
| Sulfate                                                          | ND              | ND         | 1        | 0.000   |               | 15                |  |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3740460-2 12/11/21 09:19 |              |            |          |             |               |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |  |  |  |
| Chloride                        | 40000        | 39500      | 98.7     | 80.0-120    |               |  |  |  |  |  |
| Fluoride                        | 8000         | 7990       | 99.9     | 80.0-120    |               |  |  |  |  |  |
| Sulfate                         | 40000        | 39400      | 98.5     | 80.0-120    |               |  |  |  |  |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213167.21-A

SDG: L1433083

DATE/TIME: 12/16/21 10:45

PAGE: 14 of 25 Ср

°Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

## L1433083-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| OS) L1433083-04 12/11/21 15:59 • (MS) R3740460-4 12/11/21 16:23 • (MSD) R3740460-5 12/11/21 16:34 |              |                 |           |            |         |          |          |             |              |               |        |            |
|---------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|--------|------------|
|                                                                                                   | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD    | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %      | %          |
| Chloride                                                                                          | 50000        | 1720            | 52700     | 52700      | 102     | 102      | 1        | 80.0-120    |              |               | 0.0449 | 15         |
| Fluoride                                                                                          | 5000         | 383             | 5530      | 5530       | 103     | 103      | 1        | 80.0-120    |              |               | 0.125  | 15         |
| Sulfate                                                                                           | 50000        | 31000           | 78400     | 78500      | 94.7    | 94.9     | 1        | 80.0-120    |              |               | 0.102  | 15         |

## L1432919-23 Original Sample (OS) • Matrix Spike (MS)

| JS) L1432919-23 12/11/21 17:56 • (MS) R3740460-7 12/11/21 18:20 |              |                 |           |         |          |             |              |  |  |  |
|-----------------------------------------------------------------|--------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|
|                                                                 | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |
| Analyte                                                         | ug/l         | ug/l            | ug/l      | %       |          | %           |              |  |  |  |
| Chloride                                                        | 50000        | ND              | 50500     | 101     | 1        | 80.0-120    |              |  |  |  |
| Fluoride                                                        | 5000         | ND              | 5170      | 103     | 1        | 80.0-120    |              |  |  |  |
| Sulfate                                                         | 50000        | ND              | 49900     | 99.8    | 1        | 80.0-120    |              |  |  |  |

| ACCOUNT:           |  |
|--------------------|--|
| SCS Engineers - KS |  |

DATE/TIME: 12/16/21 10:45

PAGE: 15 of 25 Cp <sup>2</sup>Tc <sup>3</sup>Ss <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY L1433083-05,06

## Method Blank (MB)

| (MB) R3740144-1   | 12/12/21 18:06 |
|-------------------|----------------|
| (IVIB) R3740144-1 | 12/12/21 18:06 |

| (IVIB) R3740144-1 12/12/21 | 18.06     |              |        |        |                 |
|----------------------------|-----------|--------------|--------|--------|-----------------|
|                            | MB Result | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                    | ug/l      |              | ug/l   | ug/l   | Tc              |
| Chloride                   | U         |              | 379    | 1000   |                 |
| Fluoride                   | U         |              | 64.0   | 150    | <sup>3</sup> Ss |
| Sulfate                    | U         |              | 594    | 5000   | 00              |

## L1433083-06 Original Sample (OS) • Duplicate (DUP)

| SS) L1433083-06 12/12/21 22:33 • (DUP) R3740144-3 12/12/21 22:46 |                 |            |          |         |               |                   |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |
| Chloride                                                         | 1520            | 1610       | 1        | 5.45    |               | 15                |  |  |  |
| Fluoride                                                         | 379             | 399        | 1        | 5.24    |               | 15                |  |  |  |
| Sulfate                                                          | 30700           | 32600      | 1        | 5.88    |               | 15                |  |  |  |

## L1433678-04 Original Sample (OS) • Duplicate (DUP)

| JS) L1433678-04 12/13/21 04:20 • (DUP) R3740144-8 12/13/21 04:33 |                 |            |          |         |               |                   |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |
| Chloride                                                         | 3760            | 3830       | 1        | 1.84    |               | 15                |  |  |  |
| Fluoride                                                         | ND              | ND         | 1        | 24.9    | <u>P1</u>     | 15                |  |  |  |
| Sulfate                                                          | ND              | ND         | 1        | 1.02    |               | 15                |  |  |  |

## Laboratory Control Sample (LCS)

| LCS) R3740144-2 12/12/2118:19 |              |            |          |             |               |  |  |  |  |
|-------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|
|                               | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |
| Analyte                       | ug/l         | ug/l       | %        | %           |               |  |  |  |  |
| Chloride                      | 40000        | 38900      | 97.2     | 80.0-120    |               |  |  |  |  |
| Fluoride                      | 8000         | 7820       | 97.7     | 80.0-120    |               |  |  |  |  |
| Sulfate                       | 40000        | 39200      | 98.1     | 80.0-120    |               |  |  |  |  |

| ACCOUNT:          |   |
|-------------------|---|
| SCS Engineers - K | S |

PROJECT: 27213167.21-A

SDG: L1433083

DATE/TIME: 12/16/21 10:45

PAGE: 16 of 25 Ср

⁴Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY

## L1433105-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433105-02 12/12/21 | 23:12 • (MS) R3 | 3/40144-4 12/12 | 2/21 23:24 • (M | SD) R3/40144- | 5 12/12/21 23:3 | 57       |          |             |              |               |      |            |
|---------------------------|-----------------|-----------------|-----------------|---------------|-----------------|----------|----------|-------------|--------------|---------------|------|------------|
|                           | Spike Amount    | Original Result | MS Result       | MSD Result    | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                   | ug/l            | ug/l            | ug/l            | ug/l          | %               | %        |          | %           |              |               | %    | %          |
| Chloride                  | 50000           | 17600           | 68400           | 70400         | 102             | 106      | 1        | 80.0-120    |              |               | 2.79 | 15         |
| Fluoride                  | 5000            | 629             | 5660            | 5860          | 101             | 105      | 1        | 80.0-120    |              |               | 3.37 | 15         |
| Sulfate                   | 50000           | 35700           | 85000           | 87000         | 98.7            | 103      | 1        | 80.0-120    |              |               | 2.29 | 15         |

## L1433458-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| OS) L1433458-08 12/13/21 02:25 • (MS) R3740144-6 12/13/21 03:03 • (MSD) R3740144-7 12/13/21 03:16 |              |                 |           |            |         |          |          |             |              |               |      |            |
|---------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
|                                                                                                   | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                                                                                           | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Chloride                                                                                          | 50000        | 2440            | 51300     | 53300      | 97.8    | 102      | 1        | 80.0-120    |              |               | 3.68 | 15         |
| Fluoride                                                                                          | 5000         | 174             | 5140      | 5340       | 99.3    | 103      | 1        | 80.0-120    |              |               | 3.89 | 15         |
| Sulfate                                                                                           | 50000        | ND              | 48900     | 50800      | 97.8    | 102      | 1        | 80.0-120    |              |               | 3.93 | 15         |

DATE/TIME: 12/16/21 10:45

PAGE: 17 of 25

Wet Chemistry by Method 9056A

## QUALITY CONTROL SUMMARY L1433083-02

## Method Blank (MB)

| Method Blan       | ik (MB)       |              |        |        |                 | _ |
|-------------------|---------------|--------------|--------|--------|-----------------|---|
| (MB) R3741161-1 1 | 2/14/21 09:45 |              |        |        |                 | Ρ |
|                   | MB Result     | MB Qualifier | MB MDL | MB RDL | 2               | _ |
| Analyte           | ug/l          |              | ug/l   | ug/l   | Тс              | С |
| Sulfate           | U             |              | 594    | 5000   |                 |   |
|                   |               |              |        |        | <sup>3</sup> Ss | S |

## L1441672-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1441672-01 12/14/21 1 | S) L1441672-01 12/14/21 14:14 • (DUP) R3741161-3 12/14/21 14:26 |            |          |         |               |                     |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------|------------|----------|---------|---------------|---------------------|--|--|--|--|
|                             | Original Result                                                 | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>— Limits |  |  |  |  |
| Analyte                     | ug/l                                                            | ug/l       |          | %       |               | %                   |  |  |  |  |
| Sulfate                     | ND                                                              | ND         | 1        | 0.290   |               | 15                  |  |  |  |  |

⁴Cn

Sr

## L1441475-01 Original Sample (OS) • Duplicate (DUP)

| L1441475-01 Origin                                               | 1441475-01 Original Sample (OS) • Duplicate (DUP) |            |          |         |               |                   |                 |  |  |  |  |  |
|------------------------------------------------------------------|---------------------------------------------------|------------|----------|---------|---------------|-------------------|-----------------|--|--|--|--|--|
| OS) L1441475-01 12/14/21 18:31 • (DUP) R3741161-6 12/14/21 18:43 |                                                   |            |          |         |               |                   |                 |  |  |  |  |  |
|                                                                  | Original Result                                   | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | <sup>8</sup> Al |  |  |  |  |  |
| Analyte                                                          | ug/l                                              | ug/l       |          | %       |               | %                 |                 |  |  |  |  |  |
| Sulfate                                                          | 9910                                              | 10500      | 1        | 5.61    |               | 15                | <sup>9</sup> Sc |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3741161-2 12/14/21 C | 9:57         |            |          |             |               |
|-----------------------------|--------------|------------|----------|-------------|---------------|
|                             | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                     | ug/l         | ug/l       | %        | %           |               |
| Sulfate                     | 40000        | 39800      | 99.5     | 80.0-120    |               |

## L1441672-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1441672-01 12/14/21 14:14 • (MS) R3741161-4 12/14/21 14:37 • (MSD) R3741161-5 12/14/21 14:49                                |       |      |       |       |     |     |   |          |  |  |       |            |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|-----|-----|---|----------|--|--|-------|------------|
| Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |       |      |       |       |     |     |   |          |  |  |       | RPD Limits |
| Analyte                                                                                                                           | ug/l  | ug/l | ug/l  | ug/l  | %   | %   |   | %        |  |  | %     | %          |
| Sulfate                                                                                                                           | 50000 | ND   | 54700 | 54700 | 100 | 100 | 1 | 80.0-120 |  |  | 0.139 | 15         |

## L1441475-01 Original Sample (OS) • Matrix Spike (MS)

| DS) L1441475-01 12/14/21 18:31 • (MS) R3741161-7 12/14/21 18:55 |              |                 |           |         |          |             |              |  |  |
|-----------------------------------------------------------------|--------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|
|                                                                 | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |
| Analyte                                                         | ug/l         | ug/l            | ug/l      | %       |          | %           |              |  |  |
| Sulfate                                                         | 50000        | 9910            | 60700     | 102     | 1        | 80.0-120    |              |  |  |
|                                                                 |              |                 |           |         |          |             |              |  |  |

| ACCOUNT:           | PROJECT:      | SDG:     | DATE/TIME:     | PAGE:    |
|--------------------|---------------|----------|----------------|----------|
| SCS Engineers - KS | 27213167.21-A | L1433083 | 12/16/21 10:45 | 18 of 25 |

Metals (ICP) by Method 6010D

## QUALITY CONTROL SUMMARY L1433083-04

## Method Blank (MB)

| Method Blank                   | (MB)      |              |        |        |  | $^{1}$ Cp       |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|-----------------|--|--|--|--|
| (MB) R3741328-1 12/16/21 03:44 |           |              |        |        |  |                 |  |  |  |  |
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |  |  |
| Analyte                        | ug/l      |              | ug/l   | ug/l   |  | Tc              |  |  |  |  |
| Calcium                        | U         |              | 79.3   | 1000   |  |                 |  |  |  |  |
|                                |           |              |        |        |  | <sup>3</sup> Ss |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3741328-2 12/16/2 | CS) R3741328-2 12/16/21 03:47 |            |          |             |               |  |  |  |  |
|--------------------------|-------------------------------|------------|----------|-------------|---------------|--|--|--|--|
|                          | Spike Amount                  | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |
| Analyte                  | ug/l                          | ug/l       | %        | %           |               |  |  |  |  |
| Calcium                  | 10000                         | 9580       | 95.8     | 80.0-120    |               |  |  |  |  |

## L1431579-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1431579-01 12/16/21 03:49 • (MS) R3741328-4 12/16/21 03:54 • (MSD) R3741328-5 12/16/21 03:57                               |       |      |       |       |      |      |   |          |  |  |      |            |
|----------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|------|------|---|----------|--|--|------|------------|
| Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |       |      |       |       |      |      |   |          |  |  |      | RPD Limits |
| Analyte                                                                                                                          | ug/l  | ug/l | ug/l  | ug/l  | %    | %    |   | %        |  |  | %    | %          |
| Calcium                                                                                                                          | 10000 | 3150 | 13100 | 12800 | 99.3 | 96.7 | 1 | 75.0-125 |  |  | 2.05 | 20         |

DATE/TIME: 12/16/21 10:45

PAGE: 19 of 25 Cn

Sr

Qc

GI

Â

Metals (ICP) by Method 6010D

## QUALITY CONTROL SUMMARY L1433083-01

## Method Blank (MB)

|                       | D)        |              |        |        | $^{1}$ Cp       |
|-----------------------|-----------|--------------|--------|--------|-----------------|
| (MB) R3740935-1 12/15 | /21 03:08 |              |        |        | Ср              |
|                       | MB Result | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte               | ug/l      |              | ug/l   | ug/l   | Tc              |
| Boron                 | U         |              | 20.0   | 200    |                 |
| Calcium               | U         |              | 79.3   | 1000   | <sup>3</sup> Ss |
|                       |           |              |        |        | 00              |

## Laboratory Control Sample (LCS)

| (LCS) R3740935-2 12/15/2 | 1 03:10      |            |          |             |               | -            |
|--------------------------|--------------|------------|----------|-------------|---------------|--------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier | ⁵Sr          |
| Analyte                  | ug/l         | ug/l       | %        | %           |               |              |
| Boron                    | 1000         | 1000       | 100      | 80.0-120    |               | <sup>6</sup> |
| Calcium                  | 10000        | 10300      | 103      | 80.0-120    |               |              |

## L1439833-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                                                                                                                                  |                                                                                                  | · · · · · |       | · · · · · · · · · · · · · · · · · · · |     | •   | 1 |          |  |  |       |    |                   |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|-------|---------------------------------------|-----|-----|---|----------|--|--|-------|----|-------------------|
| (OS) L1439833-05 12/15/2                                                                                                         | 8) L1439833-05 12/15/21 03:13 • (MS) R3740935-4 12/15/21 03:18 • (MSD) R3740935-5 12/15/21 03:21 |           |       |                                       |     |     |   |          |  |  |       |    | - <sup>8</sup> Al |
| Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |                                                                                                  |           |       |                                       |     |     |   |          |  |  |       |    |                   |
| Analyte                                                                                                                          | ug/l                                                                                             | ug/l      | ug/l  | ug/l                                  | %   | %   |   | %        |  |  | %     | %  | 9                 |
| Boron                                                                                                                            | 1000                                                                                             | ND        | 1030  | 1040                                  | 103 | 104 | 1 | 75.0-125 |  |  | 1.12  | 20 | Sc                |
| Calcium                                                                                                                          | 10000                                                                                            | 8550      | 18900 | 18800                                 | 103 | 102 | 1 | 75.0-125 |  |  | 0.467 | 20 |                   |

| ACCOUNT:           |   |
|--------------------|---|
| SCS Engineers - KS | ŝ |

SDG: L1433083

DATE/TIME: 12/16/21 10:45

PAGE: 20 of 25 °Cn

GI

Metals (ICP) by Method 6010D

## QUALITY CONTROL SUMMARY L1433083-02,03,05,06

## Method Blank (MB)

| MB) R3740819-1 12/14/21 18:39 |           |              |        |        |  |                 |  |  |  |  |  |  |
|-------------------------------|-----------|--------------|--------|--------|--|-----------------|--|--|--|--|--|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |  |  |  |  |
| Analyte                       | ug/l      |              | ug/l   | ug/l   |  | Tc              |  |  |  |  |  |  |
| Boron                         | U         |              | 20.0   | 200    |  |                 |  |  |  |  |  |  |
| Calcium                       | U         |              | 79.3   | 1000   |  | <sup>3</sup> SS |  |  |  |  |  |  |
|                               |           |              |        |        |  |                 |  |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3740819-2 12/14/2 | 1 18:41      |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | ug/l         | ug/l       | %        | %           |               |
| Boron                    | 1000         | 991        | 99.1     | 80.0-120    |               |
| Calcium                  | 10000        | 10000      | 100      | 80.0-120    |               |

## L1433073-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433073-01 12/14/21 | 18:44 • (MS) R3 | 740819-4 12/14  | 4/21 18:50 • (MS | SD) R3740819-5 | 5 12/14/21 18:53 | 3        |          |             |                    |                    |       |            |
|---------------------------|-----------------|-----------------|------------------|----------------|------------------|----------|----------|-------------|--------------------|--------------------|-------|------------|
|                           | Spike Amount    | Original Result | MS Result        | MSD Result     | MS Rec.          | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD   | RPD Limits |
| Analyte                   | ug/l            | ug/l            | ug/l             | ug/l           | %                | %        |          | %           |                    |                    | %     | %          |
| Boron                     | 1000            | ND              | 1080             | 1080           | 98.2             | 98.6     | 1        | 75.0-125    |                    |                    | 0.404 | 20         |
| Calcium                   | 10000           | 353000          | 349000           | 350000         | 0.000            | 0.000    | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.275 | 20         |

## L1433184-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433184-07 12/14/21 | 18:55 • (MS) R3 | 740819-6 12/14  | 4/21 18:58 • (MS | SD) R3740819-7 | 7 12/14/21 19:00 | )        |          |             |              |               |       |            |
|---------------------------|-----------------|-----------------|------------------|----------------|------------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount    | Original Result | MS Result        | MSD Result     | MS Rec.          | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l            | ug/l            | ug/l             | ug/l           | %                | %        |          | %           |              |               | %     | %          |
| Boron                     | 1000            | 1640            | 2630             | 2610           | 98.3             | 96.8     | 1        | 75.0-125    |              |               | 0.594 | 20         |
| Calcium                   | 10000           | 85300           | 95500            | 94300          | 102              | 89.8     | 1        | 75.0-125    |              |               | 1.32  | 20         |

PROJECT: 27213167.21-A

SDG: L1433083

DATE/TIME: 12/16/21 10:45

PAGE: 21 of 25 °Cn

Sr

Qc

GI

A

Metals (ICP) by Method 6010D

## QUALITY CONTROL SUMMARY L1433083-04

## Method Blank (MB)

| Method Blan                   | Method Blank (MB) |              |        |        |  |                 |  |  |  |  |  |
|-------------------------------|-------------------|--------------|--------|--------|--|-----------------|--|--|--|--|--|
| MB) R3740827-4 12/15/21 07:22 |                   |              |        |        |  |                 |  |  |  |  |  |
|                               | MB Result         | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |  |  |  |
| Analyte                       | ug/l              |              | ug/l   | ug/l   |  | Tc              |  |  |  |  |  |
| Boron                         | U                 |              | 20.0   | 200    |  |                 |  |  |  |  |  |
|                               |                   |              |        |        |  | <sup>3</sup> Ss |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3740827-5 12/15/2 | 1 07:24      |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | ug/l         | ug/l       | %        | %           |               |
| Boron                    | 1000         | 960        | 96.0     | 80.0-120    |               |

## L1433083-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433083-04 12/15/21 | 1 02:05 • (MS) F | R3740827-2 12   | 2/15/21 02:10 • ( | MSD) R374082 | 27-3 12/15/21 0 | 2:13     |          |             |              |               |       |            |
|---------------------------|------------------|-----------------|-------------------|--------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                           | Spike Amount     | Original Result | MS Result         | MSD Result   | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                   | ug/l             | ug/l            | ug/l              | ug/l         | %               | %        |          | %           |              |               | %     | %          |
| Boron                     | 1000             | ND              | 1070              | 1070         | 97.5            | 97.3     | 1        | 75.0-125    |              |               | 0.226 | 20         |

DATE/TIME: 12/16/21 10:45 Cn

Sr

<sup>°</sup>Qc

GI

Â

## GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDI                             | Method Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Not detected at the Reporting Limit (or MDL where applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PDI                             | Penorted Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ROL                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RPD                             | Palative Percent Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDG                             | Sample Delivery Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                              | Not detected at the Reporting Limit (or MDL where applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                               | The name of the particular compound or analysis performed. Some Analysis and Methods will have multiple analysis                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analyte                         | reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| J3 | The associated batch QC was outside the established quality control range for precision.  |
|----|-------------------------------------------------------------------------------------------|
| P1 | RPD value not applicable for sample concentrations less than 5 times the reporting limit. |
| V  | The sample concentration is too high to evaluate accurate spike recoveries.               |

|      | ໍSs             |
|------|-----------------|
|      | <sup>4</sup> Cn |
|      | <sup>5</sup> Sr |
|      | <sup>6</sup> Qc |
|      | <sup>7</sup> Gl |
| the  | <sup>8</sup> Al |
| al   |                 |
| rol  | Sc              |
| tlue |                 |

Τс

PROJECT: 27213167.21-A

SDG: L1433083 DATE/TIME: 12/16/21 10:45

## ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| Idaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1433083 Τс

Ss

Cn

Sr

Qc

Gl

AI

| Company Name/Address:                                                              |                   |                                              | Billin                                                        | ng Inform                                                           | mation:         |               | •                  |         |             | 1         |           | Analysis / | Contain | er / Pre | servativ   | e   | 1                                    | C                                        | Chain of Custody                                                              | Page of _                                                                 |
|------------------------------------------------------------------------------------|-------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|-----------------|---------------|--------------------|---------|-------------|-----------|-----------|------------|---------|----------|------------|-----|--------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| SCS Engineers - KS<br>8575 W. 110th Street<br>Overland Park, KS 66210              |                   |                                              | Acce<br>857<br>Ove                                            | Accounts Payable<br>8575 W. 110th Street<br>Overland Park, KS 66210 |                 |               | Pres<br>Chk        |         | 12          |           |           |            | - 3     |          |            |     |                                      | Pac                                      | e Analytica                                                                   |                                                                           |
| Report to:<br>Jason Franks                                                         |                   |                                              | Emai<br>jfran                                                 | il To:<br>hks@scs                                                   | engineers       | .com;ja       | y.martin@ev        | /ergy.c | res         |           |           |            |         |          |            |     |                                      | 11                                       | 2065 Lebanon Rd Mot<br>Submitting a sample via                                | unt Juliet, TN 37122<br>this chain of custody<br>ment and acceptance of 1 |
| Project Description:<br>Evergy - latan Generating Station                          |                   | City/S<br>Collec                             | ate<br>ted: We                                                | stion.                                                              | MO              |               | Please Ci<br>PT MT | TTET    | E-Nol       |           |           |            |         |          |            |     |                                      | Fh                                       | Pace Terms and Conditi<br>https://info.pacelabs.co<br>erms.pdf                | ons found at:<br>om/hubfs/pas-standard-                                   |
| Phone: 913-681-0030                                                                | Client P<br>27213 | roject #<br>167.21-A                         |                                                               |                                                                     | Lab Proje       | ct #<br>PKS-I | ATAN               |         | MIHDP       | -HNO3     |           |            |         |          |            |     |                                      | -                                        | C2                                                                            | 11 55005                                                                  |
| Collected by (print):<br>Wait Martin                                               | Site/Fac          | ility ID #                                   |                                                               |                                                                     | P.O. #          |               |                    |         | 4) 1251     | IHDPE     | VoPres    |            |         |          |            |     |                                      | Ā                                        | Acctnum: AQL                                                                  | JAOPKS                                                                    |
| Collected by (signature):                                                          | Ru:               | ch? (Lab MU<br>ame Day<br>lext Day<br>wo Day | ST Be Notifi<br>_ Five Day<br>_ 5 Day (Rad C<br>_ 10 Day (Rad | ied)<br>Only)<br>I Only)                                            | Quote #<br>Date | Results       | s Needed           | Nc.     | (Cld, F, SO | 6010 250m | OmiHDPE-1 |            |         |          |            |     |                                      | T<br>P<br>F                              | emplate: <b>T13</b><br>Prelogin: <b>P88</b><br>PM: <b>206 - Jeff (</b><br>PB: | 6059<br>5751<br>Carr                                                      |
| Sample ID                                                                          | Comp/             | Grab Mat                                     | rix * De                                                      | epth                                                                | Dat             | e             | Time               | Critrs  | Anions      | 3, Ca - I | rDS 25    |            |         |          |            |     |                                      | S                                        | hipped Via: <b>Fe</b><br>Remarks                                              | Sample # (lab on                                                          |
| MW-1                                                                               | Gra               | b G                                          | w                                                             |                                                                     | 11/17           | 1/21          | 1045               | 3/      | X           | X         | X         |            |         |          |            |     |                                      |                                          |                                                                               | -0                                                                        |
| MW-2                                                                               | 1                 | G                                            | w                                                             |                                                                     |                 | 1             | 0955               | 3       | X           | X         | X         |            |         |          |            |     |                                      |                                          |                                                                               | - 0                                                                       |
| MW-6                                                                               |                   | G                                            | w .                                                           |                                                                     |                 | -             | 1330               | 3       | X           | X         | X         |            |         |          |            |     |                                      |                                          |                                                                               | -0                                                                        |
| MW-7                                                                               |                   | G                                            | w                                                             |                                                                     |                 |               | 1225               | 3       | X           | x         | X         |            |         |          |            |     |                                      |                                          |                                                                               | - (                                                                       |
| MW-8                                                                               |                   | G                                            | w                                                             |                                                                     | Series 1        |               | 1135               | 3       | X           | x         | X         |            |         |          | g-bend     |     |                                      |                                          |                                                                               |                                                                           |
| MW-7MS/MSD                                                                         |                   | G                                            | w.                                                            |                                                                     |                 |               | 1225               | 3       | X           | x         | X         |            |         |          |            |     |                                      |                                          |                                                                               |                                                                           |
| DUPLICATE                                                                          | 1                 | G                                            | W                                                             | С. н.                                                               |                 |               | 1225               | 3 .     | X           | x         | X         |            |         |          |            |     |                                      |                                          |                                                                               | -0                                                                        |
|                                                                                    |                   |                                              |                                                               |                                                                     |                 |               |                    |         |             |           |           |            |         |          |            |     |                                      |                                          |                                                                               |                                                                           |
| * Matrix                                                                           | Romarks           |                                              |                                                               |                                                                     |                 |               |                    |         |             |           |           |            |         |          |            |     |                                      | Sample                                   | Receipt Ch                                                                    | ecklist                                                                   |
| SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater |                   |                                              |                                                               |                                                                     |                 |               |                    | I       | 6           | -         | 0.11      | pH _       | 6.1     | Other    |            | -   | COC Se<br>COC Si<br>Bottle<br>Correc | al Pres<br>gned/Ac<br>s arriv<br>t bottl | ent/Intact:<br>curate:<br>e intact:<br>es used:                               | NP Y                                                                      |
| OT - Other                                                                         | Samples ret       | urned via:<br>edExCo                         | urier                                                         |                                                                     |                 | Trackin       | ig #               |         | ØI          | -41.      | 04.8      | s d        | 2-81    | 0-       | 25         | B   | VOA Ze                               | ro Head                                  | f Applicabl                                                                   | eY_                                                                       |
| Relinquished by : (Signature)                                                      |                   | Date:                                        | /21                                                           | Time:                                                               | 610             | Receive       | ed by: (Signat     | ure)    | A           | .(        |           | Trip Blank | Receiv  | ed: Ye   | HCL / Med  | н   | Preser<br>RAD Sc                     | vation<br>reen <0                        | Correct/Che<br>.5 mR/hr:                                                      | cked: Y                                                                   |
| Relinquished by : (Signature)                                                      |                   | Date:                                        |                                                               | Time:                                                               |                 | Receive       | ed by: (Signat     | ure)    | 1400        |           |           | Temp: F    | .0-3    | Bottl    | es Receive | ed: | If prese                             | rvation re                               | equired by Log                                                                | in: Date/Time                                                             |
| Relinquished by : (Signature)                                                      |                   | Date:                                        |                                                               | Time:                                                               |                 | Receive       | ed for lab by:     | (Signat | ure)        | ~         |           | 9019.01    | X       | Time     | 1571       | 5   | Hold:                                |                                          |                                                                               | Condition:<br>NCF / OK                                                    |



# Pace Analytical® ANALYTICAL REPORT

December 16, 2021

## **SCS Engineers - KS**

Sample Delivery Group: Samples Received: Project Number: Description:

L1433105 11/18/2021 27213167.21-A Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.21-A

SDG: L1433105

DATE/TIME: 12/16/21 13:40 PAGE: 1 of 14
# TABLE OF CONTENTS

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 5  |
| 6  |
| 7  |
| 7  |
| 8  |
| 10 |
| 12 |
| 13 |
| 14 |
|    |

Ср

Ss

°Cn

Sr

Qc

GI

A

Sc

# SAMPLE SUMMARY

|                                                                                                                       |                                              |                         | Collected by                                                                   | Collected date/time                                                         | Received dat                 | te/time                                                        |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|
| MW-9 L1433105-01 GW                                                                                                   |                                              |                         | Whit Martin                                                                    | 11/17/21 12:25                                                              | 11/18/21 15:00               | )                                                              |
| Method                                                                                                                | Batch                                        | Dilution                | Preparation                                                                    | Analysis                                                                    | Analyst                      | Location                                                       |
|                                                                                                                       |                                              |                         | date/time                                                                      | date/time                                                                   |                              |                                                                |
| Gravimetric Analysis by Method 2540 C-2011                                                                            | WG1779725                                    | 1                       | 11/24/21 11:14                                                                 | 11/24/21 16:11                                                              | BRG                          | Mt. Juliet, TN                                                 |
| Wet Chemistry by Method 9056A                                                                                         | WG1788153                                    | 1                       | 12/12/21 22:59                                                                 | 12/12/21 22:59                                                              | ELN                          | Mt. Juliet, TN                                                 |
| Metals (ICP) by Method 6010D                                                                                          | WG1788842                                    | 1                       | 12/14/21 10:31                                                                 | 12/14/21 19:19                                                              | CCE                          | Mt. Juliet, TN                                                 |
|                                                                                                                       |                                              |                         | Collected by                                                                   | Collected date/time                                                         | Received dat                 | te/time                                                        |
| MW/ 10 1 1/22105 02 CW/                                                                                               |                                              |                         | Whit Mortin                                                                    | 11/17/21 11:45                                                              | 11/10/01 15.00               |                                                                |
| 1VIV-10 L1433105-02 GVV                                                                                               |                                              |                         | WITH WIGHTIN                                                                   | 11/17/21 11.45                                                              | 11/18/21 15:00               | )                                                              |
| Method                                                                                                                | Batch                                        | Dilution                | Preparation                                                                    | Analysis                                                                    | Analyst                      | Location                                                       |
| Method                                                                                                                | Batch                                        | Dilution                | Preparation<br>date/time                                                       | Analysis<br>date/time                                                       | Analyst                      | Location                                                       |
| Method Gravimetric Analysis by Method 2540 C-2011                                                                     | Batch<br>WG1779725                           | Dilution<br>1           | Preparation<br>date/time<br>11/24/21 11:14                                     | Analysis<br>date/time<br>11/24/21 16:11                                     | Analyst<br>BRG               | Location<br>Mt. Juliet, TN                                     |
| Method<br>Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A                                 | Batch<br>WG1779725<br>WG1788153              | Dilution<br>1<br>1      | Preparation<br>date/time<br>11/24/21 11:14<br>12/12/21 23:12                   | Analysis<br>date/time<br>11/24/21 16:11<br>12/12/21 23:12                   | Analyst<br>BRG<br>ELN        | Location<br>Mt. Juliet, TN<br>Mt. Juliet, TN                   |
| Method<br>Gravimetric Analysis by Method 2540 C-2011<br>Wet Chemistry by Method 9056A<br>Metals (ICP) by Method 6010D | Batch<br>WG1779725<br>WG1788153<br>WG1788859 | Dilution<br>1<br>1<br>1 | Preparation<br>date/time<br>11/24/21 11:14<br>12/12/21 23:12<br>12/14/21 14:59 | Analysis<br>date/time<br>11/24/21 16:11<br>12/12/21 23:12<br>12/15/21 07:14 | Analyst<br>BRG<br>ELN<br>CCE | Location<br>Mt. Juliet, TN<br>Mt. Juliet, TN<br>Mt. Juliet, TN |

Sc

Ср

<sup>2</sup>Tc

DATE/TIME: 12/16/21 13:40

# CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager



DATE/TIME: 12/16/21 13:40

#### SAMPLE RESULTS - 01 L1433105

#### Gravimetric Analysis by Method 2540 C-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср  |
|------------------|--------|-----------|------|----------|------------------|-----------|-----|
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2   |
| Dissolved Solids | 394    |           | 10.0 | 1        | 11/24/2021 16:11 | WG1779725 | ⁻Tc |

#### Wet Chemistry by Method 9056A

Collected date/time: 11/17/21 12:25

| Wet Chemistry by Metho | d 9056A |           |      |          |                  |           | <sup>3</sup> Ss |
|------------------------|---------|-----------|------|----------|------------------|-----------|-----------------|
|                        | Result  | Qualifier | RDL  | Dilution | Analysis         | Batch     |                 |
| Analyte                | ug/l    |           | ug/l |          | date / time      |           | <sup>4</sup> Cn |
| Chloride               | ND      |           | 1000 | 1        | 12/12/2021 22:59 | WG1788153 |                 |
| Fluoride               | 440     |           | 150  | 1        | 12/12/2021 22:59 | WG1788153 | 5               |
| Sulfate                | 19200   |           | 5000 | 1        | 12/12/2021 22:59 | WG1788153 | Sr              |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/14/2021 19:19 | WG1788842 |
| Calcium | 106000 |           | 1000 | 1        | 12/14/2021 19:19 | WG1788842 |

DATE/TIME: 12/16/21 13:40 Qc

GI

Â

Sc

#### SAMPLE RESULTS - 02 L1433105

### Gravimetric Analysis by Method 2540 C-2011

|                  |        |           |      |          |                  |           | 1 Cn |
|------------------|--------|-----------|------|----------|------------------|-----------|------|
|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     | Ср   |
| Analyte          | mg/l   |           | mg/l |          | date / time      |           | 2    |
| Dissolved Solids | 491    |           | 10.0 | 1        | 11/24/2021 16:11 | WG1779725 | ⁻Tc  |

#### Wet Chemistry by Method 9056A

| Wet Chemistry by Metho | d 9056A |           |      |          |                  |           |   | <sup>3</sup> Ss |
|------------------------|---------|-----------|------|----------|------------------|-----------|---|-----------------|
|                        | Result  | Qualifier | RDL  | Dilution | Analysis         | Batch     | [ |                 |
| Analyte                | ug/l    |           | ug/l |          | date / time      |           | [ | $^{4}$ Cn       |
| Chloride               | 17600   |           | 1000 | 1        | 12/12/2021 23:12 | WG1788153 |   | CII             |
| Fluoride               | 629     |           | 150  | 1        | 12/12/2021 23:12 | WG1788153 |   | 5               |
| Sulfate                | 35700   |           | 5000 | 1        | 12/12/2021 23:12 | WG1788153 |   | Sr              |

#### Metals (ICP) by Method 6010D

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Boron   | ND     |           | 200  | 1        | 12/15/2021 07:14 | WG1788859 |
| Calcium | 131000 |           | 1000 | 1        | 12/15/2021 22:15 | WG1788859 |

Qc

GI

Â

Sc

## WG1779725

Gravimetric Analysis by Method 2540 C-2011

#### QUALITY CONTROL SUMMARY L1433105-01,02

#### Method Blank (MB)

| (MB) R3734296-1 11/24/21 | 16:11     |              |        |        |
|--------------------------|-----------|--------------|--------|--------|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                  | mg/l      |              | mg/l   | mg/l   |
| Dissolved Solids         | U         |              | 10.0   | 10.0   |

#### L1432898-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1432898-05 11/24/2 | 1 16:11 • (DUP) R | 3734296-3 11 | /24/21 16:1 | 1       |               |        |
|--------------------------|-------------------|--------------|-------------|---------|---------------|--------|
|                          | Original Result   | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | Limits |
| Analyte                  | mg/l              | mg/l         |             | %       |               | %      |
| Dissolved Solids         | 1460              | 1480         | 1           | 1.53    |               | 5      |

## L1432898-06 Original Sample (OS) • Duplicate (DUP)

| L1432898-06 Origi        | nal Sample         | (OS) • Du    | plicate     | (DUP)   |               |                   | 7 | <sup>′</sup> GI |
|--------------------------|--------------------|--------------|-------------|---------|---------------|-------------------|---|-----------------|
| (OS) L1432898-06 11/24/2 | :1 16:11 • (DUP) R | 3734296-4 11 | /24/21 16:1 | 1       |               |                   |   |                 |
|                          | Original Result    | DUP Result   | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits | 8 | <sup>3</sup> Al |
| Analyte                  | mg/l               | mg/l         |             | %       |               | %                 | L |                 |
| Dissolved Solids         | 1650               | 1650         | 1           | 0.152   |               | 5                 | ç | Sc              |

## Laboratory Control Sample (LCS)

| (LCS) R3734296-2 11/24/2 | 21 16:11     |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | mg/l         | mg/l       | %        | %           |               |
| Dissolved Solids         | 8800         | 8570       | 97.4     | 77.4-123    |               |

DATE/TIME: 12/16/21 13:40

PAGE: 7 of 14

Тс

Ss

Cn

Sr

Qc

# WG1788153

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1433105-01,02

## Method Blank (MB)

| (MB) R3740144-1 | 12/12/21 18:06 |
|-----------------|----------------|
|                 |                |

| (1010) 1(3) +01++1 12/12/21 | 10.00     |              |        |        | <u> </u>        |
|-----------------------------|-----------|--------------|--------|--------|-----------------|
|                             | MB Result | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte                     | ug/l      |              | ug/l   | ug/l   | ⁻Tc             |
| Chloride                    | U         |              | 379    | 1000   |                 |
| Fluoride                    | U         |              | 64.0   | 150    | <sup>3</sup> Ss |
| Sulfate                     | U         |              | 594    | 5000   |                 |

### L1433083-06 Original Sample (OS) • Duplicate (DUP)

| (OS) L1433083-06 12/12/2 | 1 22:33 • (DUP) | R3740144-3 1 | 2/12/21 22 | :46     |               |                   |
|--------------------------|-----------------|--------------|------------|---------|---------------|-------------------|
|                          | Original Result | DUP Result   | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | ug/l            | ug/l         |            | %       |               | %                 |
| Chloride                 | 1520            | 1610         | 1          | 5.45    |               | 15                |
| Fluoride                 | 379             | 399          | 1          | 5.24    |               | 15                |
| Sulfate                  | 30700           | 32600        | 1          | 5.88    |               | 15                |

## L1433678-04 Original Sample (OS) • Duplicate (DUP)

| JS) L1433678-04 12/13/21 04:20 • (DUP) R3740144-8 12/13/21 04:33 |                 |            |          |         |               |                   |  |  |  |  |  |
|------------------------------------------------------------------|-----------------|------------|----------|---------|---------------|-------------------|--|--|--|--|--|
|                                                                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |  |  |  |  |
| Analyte                                                          | ug/l            | ug/l       |          | %       |               | %                 |  |  |  |  |  |
| Chloride                                                         | 3760            | 3830       | 1        | 1.84    |               | 15                |  |  |  |  |  |
| Fluoride                                                         | ND              | ND         | 1        | 24.9    | <u>P1</u>     | 15                |  |  |  |  |  |
| Sulfate                                                          | ND              | ND         | 1        | 1.02    |               | 15                |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| (LCS) R3740144-2 12/12/21 | _CS) R3740144-2 12/12/21 18:19 |            |          |             |               |  |  |  |  |  |  |  |  |
|---------------------------|--------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|--|
|                           | Spike Amount                   | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |  |
| Analyte                   | ug/l                           | ug/l       | %        | %           |               |  |  |  |  |  |  |  |  |
| Chloride                  | 40000                          | 38900      | 97.2     | 80.0-120    |               |  |  |  |  |  |  |  |  |
| Fluoride                  | 8000                           | 7820       | 97.7     | 80.0-120    |               |  |  |  |  |  |  |  |  |
| Sulfate                   | 40000                          | 39200      | 98.1     | 80.0-120    |               |  |  |  |  |  |  |  |  |

| ACCOUNT:           |
|--------------------|
| SCS Engineers - KS |

PROJECT: 27213167.21-A

SDG: L1433105

DATE/TIME: 12/16/21 13:40

PAGE: 8 of 14 Ср

⁴Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

## L1433105-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433105-02 12/12/21 | JS) L1433105-02 12/12/21 23:12 • (MS) R3/40144-4 12/12/21 23:24 • (MSD) R3/40144-5 12/12/21 23:37 |                 |           |            |         |          |          |             |              |               |      |            |
|---------------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
|                           | Spike Amount                                                                                      | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                   | ug/l                                                                                              | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Chloride                  | 50000                                                                                             | 17600           | 68400     | 70400      | 102     | 106      | 1        | 80.0-120    |              |               | 2.79 | 15         |
| Fluoride                  | 5000                                                                                              | 629             | 5660      | 5860       | 101     | 105      | 1        | 80.0-120    |              |               | 3.37 | 15         |
| Sulfate                   | 50000                                                                                             | 35700           | 85000     | 87000      | 98.7    | 103      | 1        | 80.0-120    |              |               | 2.29 | 15         |

## L1433458-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433458-08 12/13/21 02:25 • (MS) R3740144-6 12/13/21 03:03 • (MSD) R3740144-7 12/13/21 03:16 |              |                 |           |            |         |          |          |             |              |               |      |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Chloride                                                                                           | 50000        | 2440            | 51300     | 53300      | 97.8    | 102      | 1        | 80.0-120    |              |               | 3.68 | 15         |
| Fluoride                                                                                           | 5000         | 174             | 5140      | 5340       | 99.3    | 103      | 1        | 80.0-120    |              |               | 3.89 | 15         |
| Sulfate                                                                                            | 50000        | ND              | 48900     | 50800      | 97.8    | 102      | 1        | 80.0-120    |              |               | 3.93 | 15         |

DATE/TIME: 12/16/21 13:40

PAGE: 9 of 14 <sup>2</sup> Cp <sup>2</sup> Tc <sup>3</sup> Ss <sup>4</sup> Cn <sup>5</sup> Sr <sup>6</sup> Qc <sup>7</sup> Gl <sup>8</sup> Al <sup>9</sup> Sc

## WG1788842

Metals (ICP) by Method 6010D

## QUALITY CONTROL SUMMARY L1433105-01

## Method Blank (MB)

| Method Blank       | (IVIB)        |              |        |        | $^{1}Cp$        |
|--------------------|---------------|--------------|--------|--------|-----------------|
| (MB) R3740819-1 12 | 2/14/21 18:39 |              |        |        | Ср              |
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL | 2               |
| Analyte            | ug/l          |              | ug/l   | ug/l   | Тс              |
| Boron              | U             |              | 20.0   | 200    |                 |
| Calcium            | U             |              | 79.3   | 1000   | <sup>3</sup> Ss |
|                    |               |              |        |        |                 |

#### Laboratory Control Sample (LCS)

| (LCS) R3740819-2 12/14/21 18:41 |              |            |          |             |               |  |  |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |  |  |  |  |  |
| Boron                           | 1000         | 991        | 99.1     | 80.0-120    |               |  |  |  |  |  |  |  |
| Calcium                         | 10000        | 10000      | 100      | 80.0-120    |               |  |  |  |  |  |  |  |

## L1433073-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433073-01 12/14/21 18:44 • (MS) R3740819-4 12/14/21 18:50 • (MSD) R3740819-5 12/14/21 18:53 |              |                 |           |            |         |          |          |             |                    |                    |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------------|--------------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier       | MSD Qualifier      | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |                    |                    | %     | %          |
| Boron                                                                                              | 1000         | ND              | 1080      | 1080       | 98.2    | 98.6     | 1        | 75.0-125    |                    |                    | 0.404 | 20         |
| Calcium                                                                                            | 10000        | 353000          | 349000    | 350000     | 0.000   | 0.000    | 1        | 75.0-125    | $\underline{\vee}$ | $\underline{\vee}$ | 0.275 | 20         |

## L1433184-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433184-07 12/14/21 18:55 • (MS) R3740819-6 12/14/21 18:58 • (MSD) R3740819-7 12/14/21 19:00 |              |                 |           |            |         |          |          |             |              |               |       |            |
|----------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
|                                                                                                    | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                                                                                            | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Boron                                                                                              | 1000         | 1640            | 2630      | 2610       | 98.3    | 96.8     | 1        | 75.0-125    |              |               | 0.594 | 20         |
| Calcium                                                                                            | 10000        | 85300           | 95500     | 94300      | 102     | 89.8     | 1        | 75.0-125    |              |               | 1.32  | 20         |

PROJECT: 27213167.21-A

SDG: L1433105

DATE/TIME: 12/16/21 13:40

PAGE: 10 of 14 °Cn

Sr

Qc

GI

A

Sc

## WG1788859

Metals (ICP) by Method 6010D

### QUALITY CONTROL SUMMARY L1433105-02

### Method Blank (MB)

| Method Blank (MB) |                |              |        |        |  |                 |  |  |
|-------------------|----------------|--------------|--------|--------|--|-----------------|--|--|
| (MB) R3740937-1   | 12/15/21 07:09 |              |        |        |  | Ср              |  |  |
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |  | 2               |  |  |
| Analyte           | ug/l           |              | ug/l   | ug/l   |  | Tc              |  |  |
| Boron             | U              |              | 20.0   | 200    |  |                 |  |  |
|                   |                |              |        |        |  | <sup>³</sup> Ss |  |  |

## Method Blank (MB)

| (MB) R3741432-1 12/ | (MB) R3741432-1 12/15/21 22:09 |              |        |        |  |  |  |  |  |  |
|---------------------|--------------------------------|--------------|--------|--------|--|--|--|--|--|--|
|                     | MB Result                      | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |  |
| Analyte             | ug/l                           |              | ug/l   | ug/l   |  |  |  |  |  |  |
| Calcium             | 2490                           |              | 79.3   | 1000   |  |  |  |  |  |  |

## Laboratory Control Sample (LCS)

| Laboratory Control Sample (LCS) |              |            |          |             |               |                 |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|-----------------|--|--|--|--|
| (LCS) R3740937-2 12/15/21 07:11 |              |            |          |             |               |                 |  |  |  |  |
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |                 |  |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               | <sup>8</sup> Al |  |  |  |  |
| Boron                           | 1000         | 989        | 98.9     | 80.0-120    |               |                 |  |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3741432-2 12/15/21 22:12 |              |            |          |             |               |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |
| Analyte                         | ug/l         | ug/l       | %        | %           |               |  |  |  |  |
| Calcium                         | 10000        | 11700      | 117      | 80.0-120    |               |  |  |  |  |

## L1433105-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1433105-02 12/15/21                                                                                                        | OS) L1433105-02 12/15/21 07:14 • (MS) R3740937-4 12/15/21 07:20 • (MSD) R3740937-5 12/15/21 07:22 |      |      |      |      |      |   |          |  |  |      |    |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|------|---|----------|--|--|------|----|
| Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |                                                                                                   |      |      |      |      |      |   |          |  |  |      |    |
| Analyte                                                                                                                          | ug/l                                                                                              | ug/l | ug/l | ug/l | %    | %    |   | %        |  |  | %    | %  |
| Boron                                                                                                                            | 1000                                                                                              | ND   | 1110 | 1090 | 98.8 | 97.4 | 1 | 75.0-125 |  |  | 1.30 | 20 |

| ACCOUNT:           | PROJECT:      |
|--------------------|---------------|
| SCS Engineers - KS | 27213167.21-A |

SDG: L1433105

DATE/TIME: 12/16/21 13:40

PAGE: 11 of 14 Cn

Sr

⁰Sc

# GLOSSARY OF TERMS

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P1                              | RPD value not applicable for sample concentrations less than 5 times the reporting limit.                                                                                                                                                                                                                                                                                                                                                                                                                                  |

V

PROJECT: 27213167.21-A

The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1433105 DATE/TIME: 12/16/21 13:40

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

# ACCREDITATIONS & LOCATIONS

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama                | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------|-------------|-----------------------------|------------------|
| Alaska                 | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                | AZ0612      | New Hampshire               | 2975             |
| Arkansas               | 88-0469     | New Jersey–NELAP            | TN002            |
| California             | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado               | TN00003     | New York                    | 11742            |
| Connecticut            | PH-0197     | North Carolina              | Env375           |
| Florida                | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>   | 923         | North Dakota                | R-140            |
| Idaho                  | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois               | 200008      | Oklahoma                    | 9915             |
| Indiana                | C-TN-01     | Oregon                      | TN200002         |
| lowa                   | 364         | Pennsylvania                | 68-02979         |
| Kansas                 | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup> | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>  | 16          | South Dakota                | n/a              |
| Louisiana              | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana              | LA018       | Texas                       | T104704245-20-18 |
| Maine                  | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland               | 324         | Utah                        | TN000032021-11   |
| Massachusetts          | M-TN003     | Vermont                     | VT2006           |
| Michigan               | 9958        | Virginia                    | 110033           |
| Minnesota              | 047-999-395 | Washington                  | C847             |
| Mississippi            | TN00003     | West Virginia               | 233              |
| Missouri               | 340         | Wisconsin                   | 998093910        |
| Montana                | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025       | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 5     | 1461.02     | DOD                         | 1461.01          |
| Canada                 | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto             | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1433105 Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| Company Name/Address:                                                                                                                |                                       |                                                | Billing Into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rmation:                                        |                      |                    |             |           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nalvsis /             | Contain   | er / Prese                         | rvative    |                                         |                                                                       | Chain of Custody                                                                                                     | Page of                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|--------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------------------------------|------------|-----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 8575 W. 110th Street<br>Overland Park, KS 66210                                                                                      |                                       |                                                | Account<br>8575 W.<br>Overland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8575 W. 110th Street<br>Overland Park, KS 66210 |                      |                    |             | 12        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       | Pac                                                                                                                  | e Analytical °                                                              |
| Report to:<br>ason Franks                                                                                                            |                                       |                                                | Email To:<br>jfranks@so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | csengineers.com;j                               | ay.martin@ev         | ergy.c             | Pres        |           | A THE PARTY OF THE |                       |           |                                    |            |                                         |                                                                       | 12065 Lebanon Rd Mo<br>Submitting a sample via<br>constitutes acknowleds                                             | int Juliet, TN 37122<br>this chain of custody<br>ment and acceptance of the |
| Project Description:<br>Evergy - latan Generating Station                                                                            |                                       | City/State<br>Collected:                       | Weston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MO                                              | Please Ci<br>PT MT C |                    | E-No        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       | https://info.pacelabs.ci<br>terms.pdf                                                                                | im/hubfs/pas-standard-                                                      |
| Phone: 913-681-0030                                                                                                                  | Client Project<br>27213167.           | #<br>21-A                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab Project #<br>AQUAOPKS-I                     | IATAN                |                    | MIHDP       | ONH-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •         |                                    |            |                                         |                                                                       | SDG # (                                                                                                              | 12                                                                          |
| Collected by (print):<br>Whit Martin                                                                                                 | Site/Facility II                      | D #                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P.O. #                                          |                      |                    | 4) 125      | HDPE      | NoPres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12<br>                |           |                                    |            |                                         |                                                                       | Acctnum: AQI                                                                                                         | JAOPKS                                                                      |
| Collected by (signature):                                                                                                            | Rush? (I                              | Lab MUST Be<br>lay Five<br>ay 5 Da<br>lay 10 D | Notified)<br>Day<br>y (Rad Only)<br>ay (Rad Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quote #<br>Date Result                          | s Needed             | No                 | (Cld, F, SO | 6010 250n | OmiHDPE-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |           |                                    |            |                                         |                                                                       | Template: <b>116</b><br>Prelogin: <b>P88</b><br>PM: <b>206 - Jeff</b> (<br>PB:                                       | 5691<br>5754<br>Carr                                                        |
| Sample ID                                                                                                                            | Comp/Grab                             | Matrix *                                       | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                            | Time                 | Cntrs              | nions       | Ca -      | DS 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |           |                                    | 12         |                                         |                                                                       | Shipped Via: For Remarks                                                                                             | Sample # (lab only)                                                         |
| WW-9                                                                                                                                 | Grah                                  | GW                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/17/21                                        | 1225                 | 3                  | ×<br>X      | x         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |                                    | i, i       |                                         |                                                                       |                                                                                                                      | -01                                                                         |
| MW-10                                                                                                                                | Grab                                  | GW                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/17/21                                        | 1145                 | 3                  | x           | x         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.07.                |           | ale ar                             |            |                                         |                                                                       |                                                                                                                      | - 02                                                                        |
|                                                                                                                                      |                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                      | <u> </u> <u>}=</u> |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       | The second second                                                                                                    |                                                                             |
|                                                                                                                                      |                                       |                                                | n Talan Angangkan Angangkan<br>Angangkan Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angangkan<br>Angan<br>Angan<br>Angan<br>Angan<br>Angan<br>Angan<br>An |                                                 |                      |                    |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       |                                                                                                                      |                                                                             |
|                                                                                                                                      |                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                      | L.                 |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       | - 40 <sub>10</sub> - 47                                                                                              |                                                                             |
|                                                                                                                                      |                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • <u>38</u> 2 /                                 |                      |                    |             |           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |                                    |            |                                         | GIT .                                                                 |                                                                                                                      |                                                                             |
| and and a second and                      |                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | and the second       | T C                |             | 100.17    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |                                    |            |                                         |                                                                       |                                                                                                                      |                                                                             |
|                                                                                                                                      |                                       | Section 2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                      |                    |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           | 8.3                                |            |                                         |                                                                       |                                                                                                                      |                                                                             |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater<br>DW - Drinking Water<br>OT - Other | marks:<br>mples returned<br>UPS FedEx | l via:<br>Courier                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trackin                                         | ng # 🛞 \             | 842                | pole        | tz        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PH<br>Flow<br>A77 (CH | +2.       | Temp_<br>Other_<br>S+ C<br>8 + - C | 2-2.5      | COC S<br>COC S<br>Bott<br>Corre<br>Suff | Samp<br>Seal Pr<br>Signed/<br>les arr<br>ect bot<br>icient<br>Zero He | le Receipt Ch<br>esent/Intact:<br>Accurate:<br>ive intact:<br>tles used:<br>volume sent:<br>If Applicabl<br>adspace: | ecklist<br>NP Y N<br>Y N<br>Y N<br>e                                        |
| Relinquished by : (Signature)                                                                                                        | Da                                    | ate:<br>11/17/2                                | 1 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510 Receiv                                      | ed by: (Signat       | ure)               | L           | il        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rip Blank             | k Receive | ed: Yes,<br>HC<br>TBI              | NO<br>HeoH | Prese<br>RAD S                          | ervatio                                                               | n Correct/Che<br><0.5 mR/hr:                                                                                         | cked: $\underline{A} = \underline{N}$                                       |
| Relinquished by : (Signature)                                                                                                        | Da                                    | atë:                                           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receiv                                          | ed by: (Signat       | ure) V             | 1           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EME:N<br>SiTEL        | )-3.      | 7                                  | D Cervea:  | If pre                                  | servation                                                             | required by Log                                                                                                      | in: Date/Time                                                               |
| Relinquished by : (Signature)                                                                                                        | Di                                    | ate:                                           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receiv                                          | ed for ab by:        | (Signati           | re)         | ~         | Ć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219:/18               | h         | Time:                              | SE         | ) Hold:                                 |                                                                       |                                                                                                                      | Condition:<br>NCF / K                                                       |

Jared Morrison December 16, 2022

# ATTACHMENT 2 Statistical Analyses

Jared Morrison December 16, 2022

# ATTACHMENT 2-1

# Fall 2020 Semiannual Detection Monitoring Statistical Analyses

#### **MEMORANDUM**

March 17, 2021

To: latan Generating Station 20250 State Route 45 N Platte County, Missouri Evergy Metro, Inc.

From: SCS Engineers



### RE: Determination of Statistically Significant Increases - CCR Landfill Fall 2020 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on November 9, 2020. Review and validation of the results from the November 2020 Detection Monitoring Event was completed on December 18, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. Statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on February 2, 2021 and March 1, 2021.

The completed statistical evaluation identified two Appendix III constituents above the prediction limits established for monitoring well MW-10.

| Constituent/Monitoring Well | *UPL  | Observation<br>November 9, 2020 | 1st Verification<br>February 2, 20201 | 2nd Verification<br>March 1, 2021 |
|-----------------------------|-------|---------------------------------|---------------------------------------|-----------------------------------|
| Calcium                     |       |                                 |                                       |                                   |
| MW-10                       | 154.2 | 158                             | 160                                   | 160                               |
| Sulfate                     |       |                                 |                                       |                                   |
| MW-10                       | 39.5  | 42.3                            | 46.7                                  | 48.4                              |

\*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified SSIs above the background prediction limits for calcium and sulfate at monitoring well MW-10.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas<sup>™</sup> Output:

Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results,

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 17, 2021 Page 2 of 2

1<sup>st</sup> verification re-sample results (when applicable), 2<sup>nd</sup> verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas<sup>™</sup> Configuration Settings:

Screen shots of the applicable Sanitas<sup>™</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 17, 2021

# ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/10/2021 2:38 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-10 background 0.24 MW-10 compliance 0.18 mg/L Limit = 0.20.12 -000--0000--0--0  $\diamond$ 0.06 0 8/18/16 6/22/17 4/27/18 3/2/19 1/5/20 11/9/20

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



0 8/18/16 6/22/17 4/27/18 3/2/19 1/5/20 11/9/20

MW-6 compliance

Limit = 0.2

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Boron Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Boron Analysis Run 3/10/2021 2:44 PM View: CCR LF III

| 1          | MW-1 | MW-1 | MW-10 | MW-10 | MW-2 | MW-2 | MW-6 | MW-6 |
|------------|------|------|-------|-------|------|------|------|------|
| 8/18/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 9/29/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 11/9/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 12/21/2016 | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 2/3/2017   | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/24/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 7/5/2017   | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 8/17/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 10/5/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/21/2018  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 11/12/2018 | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/20/2019  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/20/2020  |      | <0.2 |       | <0.2  |      | <0.2 |      | <0.2 |
| 11/9/2020  |      | <0.2 |       | <0.2  |      | <0.2 |      | <0.2 |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-8 background 0.24 MW-8 compliance 0.18 mg/L Limit = 0.20.12 -000--0000--0--0  $\diamond$ 0.06 0 8/18/16 6/22/17 4/27/18 3/2/19 1/5/20 11/9/20

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric



Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=131.8, Std. Dev.=5.97, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8766, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron, Calcium Analysis Run 3/10/2021 2:44 PM View: CCR LF III

| 1          | MW-7 | I<br>MW-7 | MW-8 | I<br>MW-8 | MW-9 | MW-9 | MW-1 | MW-1 |
|------------|------|-----------|------|-----------|------|------|------|------|
| 8/18/2016  | <0.2 |           | <0.2 |           | <0.2 |      | 134  |      |
| 9/29/2016  | <0.2 |           | <0.2 |           | <0.2 |      | 134  |      |
| 11/9/2016  | <0.2 |           | <0.2 |           | <0.2 |      | 136  |      |
| 12/21/2016 | <0.2 |           | <0.2 |           | <0.2 |      | 134  |      |
| 2/3/2017   | <0.2 |           | <0.2 |           | <0.2 |      | 116  |      |
| 5/24/2017  | <0.2 |           | <0.2 |           | <0.2 |      | 128  |      |
| 7/5/2017   | <0.2 |           | <0.2 |           | <0.2 |      | 129  |      |
| 8/17/2017  | <0.2 |           | <0.2 |           | <0.2 |      | 134  |      |
| 10/5/2017  | <0.2 |           | <0.2 |           | <0.2 |      | 141  |      |
| 11/14/2017 |      |           |      |           |      |      | 130  |      |
| 5/21/2018  | <0.2 |           | <0.2 |           | <0.2 |      | 131  |      |
| 11/12/2018 | <0.2 |           | <0.2 |           | <0.2 |      | 137  |      |
| 5/20/2019  | <0.2 |           | <0.2 |           | <0.2 |      | 130  |      |
| 5/20/2020  |      | <0.2      |      | <0.2      |      | <0.2 |      | 131  |
| 11/9/2020  |      | <0.2      |      | <0.2      |      | <0.2 |      | 134  |
|            |      |           |      |           |      |      |      |      |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=130.7, Std. Dev.=15.04, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8963, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=166.4, Std. Dev.=7.175, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8366, critical = 0.825. Kappa = 1.648 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Calcium Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Calcium Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=144.7, Std. Dev.=7.032, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9678, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=12.15, Std. Dev.=1.12, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8573, critical = 0.851. Kappa = 1.561 (c=7, wer7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 3/10/2021 2:44 PM View: CCR LF III

| Т          | MW-10 | MW-10                | MW-2 | MW-2 | MW-6 | MW-6               | MW-7 | MW-7 |
|------------|-------|----------------------|------|------|------|--------------------|------|------|
| 8/18/2016  | 123   |                      | 170  |      | 142  |                    | 145  |      |
| 9/29/2016  | 118   |                      | 169  |      | 139  |                    | 144  |      |
| 11/9/2016  | 124   |                      | 169  |      | 142  |                    | 146  |      |
| 12/21/2016 | 123   |                      | 166  |      | 146  |                    | 138  |      |
| 2/3/2017   | 109   |                      | 146  |      | 136  |                    | 116  |      |
| 5/24/2017  | 125   |                      | 166  |      | 150  |                    | 123  |      |
| 7/5/2017   | 120   |                      | 165  |      | 147  |                    | 125  |      |
| 8/17/2017  | 122   |                      | 168  |      | 150  |                    | 133  |      |
| 10/5/2017  | 131   |                      | 177  |      | 157  |                    | 135  |      |
| 11/14/2017 | 119   |                      | 161  |      | 151  |                    | 125  |      |
| 5/21/2018  | 115   |                      | 164  |      | 150  |                    | 123  |      |
| 11/12/2018 | 138   |                      | 166  |      | 147  |                    | 192  |      |
| 1/10/2019  | 157   |                      |      |      |      |                    | 185  |      |
| 3/14/2019  | 151   |                      |      |      |      |                    | 132  |      |
| 5/20/2019  | 151   |                      | 167  |      | 131  |                    | 184  |      |
| 7/11/2019  | 153   |                      | 175  |      | 138  |                    | 199  |      |
| 8/20/2019  | 143   |                      |      |      |      |                    | 183  |      |
| 5/20/2020  |       | 150                  |      | 164  |      | 138                |      | 140  |
| 11/9/2020  |       | 158                  |      | 167  |      | 160                |      | 132  |
| 2/2/2021   |       | 160 1st Verification | n    |      |      | 164 1st Verificati | on   |      |
| 3/1/2021   |       | 160 2nd Verificat    | ion  |      |      | 153 2nd Verificat  | lion |      |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=142, Std. Dev.=10.21, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8744, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=109.9, Std. Dev.=7.272, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9797, critical = 0.814. Kappa = 1.682 (c3r, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Calcium Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Calcium Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=5.966, Std. Dev.=0.4435, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9436, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=15.12, Std. Dev=5.1, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium, Chloride Analysis Run 3/10/2021 2:44 PM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

|            |      |           |      | -    | -    | -    |       |                   |
|------------|------|-----------|------|------|------|------|-------|-------------------|
| Т          | MW-8 | I<br>MW-8 | MW-9 | MW-9 | MW-1 | MW-1 | MW-10 | MW-10             |
| 8/18/2016  | 136  |           | 119  |      | 5.93 |      | 7.47  |                   |
| 9/29/2016  | 132  |           | 102  |      | 6.07 |      | 7.83  |                   |
| 11/9/2016  | 135  |           | 103  |      | 5.95 |      | 9.15  |                   |
| 12/21/2016 | 139  |           | 116  |      | 5.97 |      | 9.84  |                   |
| 2/3/2017   | 133  |           | 105  |      | 6    |      | 10.3  |                   |
| 5/24/2017  | 138  |           | 108  |      | 5.61 |      | 12.6  |                   |
| 7/5/2017   | 142  |           | 97.2 |      | 5.78 |      | 15.9  |                   |
| 8/17/2017  | 145  |           | 110  |      | 6.13 |      | 17.6  |                   |
| 10/5/2017  | 155  |           | 113  |      | 6.75 |      | 19.7  |                   |
| 11/14/2017 | 145  |           | 113  |      | 6.73 |      | 17.6  |                   |
| 12/29/2017 |      |           |      |      | 6.27 |      |       |                   |
| 5/21/2018  | 130  |           | 105  |      | 5.63 |      | 14.1  |                   |
| 11/12/2018 | 170  |           | 122  |      | 5.04 |      | 15.1  |                   |
| 1/10/2019  | 149  |           |      |      |      |      | 21    |                   |
| 3/14/2019  | 140  |           |      |      |      |      |       |                   |
| 5/20/2019  | 141  |           | 115  |      | 5.66 |      | 21    |                   |
| 7/11/2019  |      |           |      |      |      |      | 22.5  |                   |
| 8/20/2019  |      |           |      |      |      |      | 20.3  |                   |
| 5/20/2020  |      | 144       |      | 105  |      | 5.6  |       | 16.4              |
| 11/9/2020  |      | 158       |      | 123  |      | 5.24 |       | 16.7              |
| 2/2/2021   |      |           |      | 106  |      |      |       |                   |
| 3/1/2021   |      |           |      |      |      |      |       | 17.1 Extra Sample |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=8.253, Std. Dev.=1.076, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8719, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit





Background Data Summary (based on square root transformation): Mean=1.216, Std. Dev.=0.1104, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8387, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 3/10/2021 2:39 PM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr Constituent: Chloride Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary (based on square root transformation): Mean=3.057, Std. Dev.=1.629, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8683, critical = 0.851. Kappa = 1.551 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=1.907, Std. Dev.=0.5992, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk@alpha = 0.01, calculated = 0.8695, critical = 0.855. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            |      |      |      |                   |      | ,    |      |      |                         |
|------------|------|------|------|-------------------|------|------|------|------|-------------------------|
| 1          | MW-2 | MW-2 | MW-6 | I<br>MW-6         | MW-7 | MW-7 | MW-8 | MW-8 |                         |
| 8/18/2016  | 8.26 |      | 1.31 |                   | 12.3 |      | 1.5  |      |                         |
| 9/29/2016  | 8.79 |      | 1.46 |                   | 13.9 |      | 1.42 |      |                         |
| 11/9/2016  | 8.76 |      | 1.29 |                   | 11.1 |      | 1.76 |      |                         |
| 12/21/2016 | 8.24 |      | 1.72 |                   | 6.64 |      | 1.89 |      |                         |
| 2/3/2017   | 8.17 |      | 1.4  |                   | 3.32 |      | 4.02 |      |                         |
| 5/24/2017  | 9.54 |      | 1.49 |                   | 1.76 |      | 3.63 |      |                         |
| 7/5/2017   | 8.99 |      | 1.54 |                   | 1.81 |      | 4.44 |      |                         |
| 8/17/2017  | 8.98 |      | 1.32 |                   | 2    |      | 3.53 |      |                         |
| 10/5/2017  | 9.23 |      | 2.09 |                   | 3.32 |      | 4.55 |      |                         |
| 11/14/2017 | 8.97 |      | 2.12 |                   | 2.58 |      | 4.86 |      |                         |
| 12/29/2017 |      |      | 1.45 |                   |      |      |      |      |                         |
| 5/21/2018  | 8.14 |      | 1.45 |                   | 1.54 |      | 1.5  |      |                         |
| 11/12/2018 | 5.79 |      | 1.31 |                   | 26.4 |      | 12.1 |      |                         |
| 1/10/2019  |      |      |      |                   | 23.3 |      | 5.63 |      |                         |
| 3/14/2019  |      |      |      |                   | 4.77 |      | 4.79 |      |                         |
| 5/20/2019  | 7.18 |      | 1.21 |                   | 26   |      | 3.98 |      |                         |
| 7/11/2019  | 6.5  |      | 1.2  |                   | 31.9 |      |      |      |                         |
| 8/20/2019  |      |      |      |                   | 28.7 |      |      |      |                         |
| 5/20/2020  |      | 7.28 |      | 1.55              |      | 8.49 |      | 4.89 |                         |
| 11/9/2020  |      | 7.03 |      | 1.6               |      | 3.18 |      | 9.92 |                         |
| 2/2/2021   |      |      |      |                   |      |      |      | 8.22 | 1st Verification Sample |
| 3/1/2021   |      |      |      | 1.68 Extra Sample |      |      |      |      |                         |
|            |      |      |      |                   |      |      |      |      |                         |

Sanitas  $^{\rm w}$  v.9.6.28 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit







Background Data Summary (after Aitchison's Adjustment): Mean=1.151, Std. Dev.=1.028, n=13, 30.77% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.













Intrawell Parametric

Background Data Summary: Mean=488.6, Std. Dev.=13.34, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9663, critical = 0.805. Kappa = 1.716 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=663.3, Std. Dev.=33.46, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9501, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Chloride, Dissolved Solids Analysis Run 3/10/2021 2:44 PM View: CCR LF III

| 1          | MW-9 | MW-9 | MW-1 | MW-1                 | MW-10 | MW-10 | MW-2 | MW-2 |
|------------|------|------|------|----------------------|-------|-------|------|------|
| 8/18/2016  | 1.95 |      | 513  |                      | 532   |       | 696  |      |
| 9/29/2016  | <1   |      | 486  |                      | 502   |       | 651  |      |
| 11/9/2016  | <1   |      | 484  |                      | 516   |       | 711  |      |
| 12/21/2016 | 1.66 |      | 493  |                      | 497   |       | 636  |      |
| 2/3/2017   | 1.16 |      | 506  |                      | 531   |       | 661  |      |
| 5/24/2017  | 1.07 |      | 477  |                      | 1760  |       | 690  |      |
| 7/5/2017   | 1.06 |      | 481  |                      | 474   |       | 638  |      |
| 8/17/2017  | <1   |      | 500  |                      | 539   |       | 690  |      |
| 10/5/2017  | 3.57 |      | 472  |                      | 539   |       | 683  |      |
| 11/14/2017 | 1.82 |      |      |                      |       |       |      |      |
| 5/21/2018  | <1   |      | 496  |                      | 509   |       | 648  |      |
| 11/12/2018 | 1.1  |      | 485  |                      | 554   |       | 590  |      |
| 5/20/2019  | 1.57 |      | 470  |                      | 697   |       | 666  |      |
| 5/20/2020  |      | <1   |      | 507                  |       | 585   |      | 659  |
| 11/9/2020  |      | 1.3  |      | 520                  |       | 645   |      | 640  |
| 2/2/2021   |      |      |      | 484 1st Verification | on    |       |      |      |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=515.5, Std. Dev.=23.66, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=429.7, Std. Dev.=28.65, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Background Data Summary: Mean=500.3, Std. Dev.=28.83, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.814. Kappa = 1.682 (c3 - w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Dissolved Solids Analysis Run 3/10/2021 2:39 PM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Constituent: Dissolved Solids Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            | MW-6 | MW-6 | MW-7 | MW-7 | MW-8 | MW-8               | MW-9 | MW-9 |
|------------|------|------|------|------|------|--------------------|------|------|
| 8/18/2016  | 522  |      | 560  |      | 494  |                    | 475  |      |
| 9/29/2016  | 498  |      | 554  |      | 517  |                    | 398  |      |
| 11/9/2016  | 506  |      | 538  |      | 471  |                    | 476  |      |
| 12/21/2016 | 519  |      | 492  |      | 493  |                    | 415  |      |
| 2/3/2017   | 527  |      | 487  |      | 515  |                    | 442  |      |
| 5/24/2017  | 544  |      | 462  |      | 485  |                    | 415  |      |
| 7/5/2017   | 508  |      | 445  |      | 500  |                    | 386  |      |
| 8/17/2017  | 542  |      | 466  |      | 504  |                    | 431  |      |
| 10/5/2017  | 528  |      | 459  |      | 505  |                    | 414  |      |
| 5/21/2018  | 540  |      | 439  |      | 437  |                    | 412  |      |
| 11/12/2018 | 484  |      | 681  |      | 563  |                    | 435  |      |
| 1/10/2019  |      |      | 724  |      | 502  |                    |      |      |
| 3/14/2019  |      |      | 472  |      |      |                    |      |      |
| 5/20/2019  | 468  |      | 737  |      | 518  |                    | 457  |      |
| 7/11/2019  |      |      | 761  |      |      |                    |      |      |
| 8/20/2019  |      |      | 743  |      |      |                    |      |      |
| 5/20/2020  |      | 491  |      | 525  |      | 516                |      | 385  |
| 11/9/2020  |      | 548  |      | 453  |      | 571                |      | 475  |
| 2/2/2021   |      |      |      |      |      | 518 1st Verificati | on   |      |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.278, Std. Dev.=0.02501, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG





Prediction Limit

Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.3525, Std. Dev.=0.1011, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=0.3379, Std. Dev.=0.02721, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit



Background Data Summary: Mean=0.3279, Std. Dev.=0.02554, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9487, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.001075.

Constituent: Fluoride Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            |       |       |       | -     | •     |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | MW-1  | MW-1  | MW-10 | MW-10 | MW-2  | MW-2  | MW-6  | MW-6  |
| 8/18/2016  | 0.234 |       | 0.584 |       | 0.303 |       | 0.298 |       |
| 9/29/2016  | 0.292 |       | 0.622 |       | 0.356 |       | 0.343 |       |
| 11/9/2016  | 0.274 |       | 0.642 |       | 0.331 |       | 0.324 |       |
| 12/21/2016 | 0.241 |       | 0.538 |       | 0.292 |       | 0.293 |       |
| 2/3/2017   | 0.288 |       | 0.521 |       | 0.342 |       | 0.348 |       |
| 5/24/2017  | 0.272 |       | 0.591 |       | 0.327 |       | 0.297 |       |
| 7/5/2017   | 0.275 |       | 0.582 |       | 0.334 |       | 0.317 |       |
| 8/17/2017  | 0.276 |       | 0.682 |       | 0.332 |       | 0.313 |       |
| 10/5/2017  | 0.273 |       | 0.312 |       | 0.326 |       | 0.312 |       |
| 5/21/2018  | 0.327 |       | 0.654 |       | 0.383 |       | 0.354 |       |
| 6/26/2018  | 0.263 |       |       |       | 0.32  |       |       |       |
| 11/12/2018 | 0.288 |       | 0.68  |       | 0.327 |       | 0.325 |       |
| 5/20/2019  | 0.311 |       | 0.623 |       | 0.373 |       | 0.366 |       |
| 7/11/2019  |       |       |       |       | 0.389 |       | 0.373 |       |
| 8/20/2019  |       |       |       |       | 0.333 |       | 0.328 |       |
| 5/20/2020  |       | 0.24  |       | 0.517 |       | 0.286 |       | 0.264 |
| 11/9/2020  |       | 0.271 |       | 0.476 |       | 0.313 |       | 0.308 |
|            |       |       |       |       |       |       |       |       |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.3603, Std. Dev.=0.03685, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.001075.

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit





Background Data Summary: Mean=0.4189, Std. Dev.=0.02467, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8902, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr



Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=0.3653, Std. Dev.=0.05978, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8122, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride, pH Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            | MW-7  | MW-7  | MW-8  | MW-8  | MW-9  | MW-9  | MW-1 | MW-1              |  |
|------------|-------|-------|-------|-------|-------|-------|------|-------------------|--|
| 8/18/2016  | 0.366 |       | 0.438 |       | 0.338 |       | 6.89 |                   |  |
| 9/29/2016  | 0.395 |       | 0.439 |       | 0.415 |       | 7.24 |                   |  |
| 11/9/2016  | 0.333 |       | 0.415 |       | 0.383 |       | 6.74 |                   |  |
| 12/21/2016 | 0.284 |       | 0.461 |       | 0.344 |       | 6.86 |                   |  |
| 2/3/2017   | 0.337 |       | 0.407 |       | 0.327 |       | 6.91 |                   |  |
| 5/24/2017  | 0.391 |       | 0.391 |       | 0.387 |       | 7.41 |                   |  |
| 7/5/2017   | 0.378 |       | 0.391 |       | 0.364 |       | 7.54 |                   |  |
| 8/17/2017  | 0.326 |       | 0.406 |       | 0.39  |       | 6.98 |                   |  |
| 10/5/2017  | 0.341 |       | 0.396 |       | 0.204 |       | 7.03 |                   |  |
| 11/14/2017 |       |       |       |       |       |       | 6.93 |                   |  |
| 12/29/2017 |       |       |       |       |       |       | 6.98 |                   |  |
| 5/21/2018  | 0.414 |       | 0.441 |       | 0.426 |       | 6.93 |                   |  |
| 6/26/2018  |       |       |       |       |       |       | 6.99 |                   |  |
| 11/12/2018 | 0.369 |       | 0.396 |       | 0.39  |       | 6.99 |                   |  |
| 5/20/2019  | 0.389 |       | 0.446 |       | 0.415 |       | 6.93 |                   |  |
| 5/20/2020  |       | 0.291 |       | 0.336 |       | 0.389 |      | 6.81              |  |
| 11/9/2020  |       | 0.288 |       | 0.357 |       | 0.324 |      | 7.34              |  |
| 2/2/2021   |       |       |       |       |       |       |      | 7.36 Extra Sample |  |
Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=7.157, Std. Dev.=0.18, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9096, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.





Within Limits

Prediction Limit



Background Data Summary: Mean=7.048, Std. Dev.=0.2096, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8784, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: pH Analysis Run 3/10/2021 2:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=7.243, Std. Dev.=0.2171, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9298, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=7.244, Std. Dev.=0.2706, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @aipha = 0.01, calculated = 0.916, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: pH Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            |       |                 |      | -    | -    | -                |      |      |              |
|------------|-------|-----------------|------|------|------|------------------|------|------|--------------|
|            | MW-10 | MW-10           | MW-2 | MW-2 | MW-6 | MW-6             | MW-7 | MW-7 |              |
| 8/18/2016  | 7.06  |                 | 6.9  |      | 7.18 |                  | 6.97 |      |              |
| 9/29/2016  | 7.31  |                 | 7.45 |      | 6.97 |                  | 7.25 |      |              |
| 11/9/2016  | 6.93  |                 | 6.79 |      | 7.72 |                  | 7.87 |      |              |
| 12/21/2016 | 6.96  |                 | 6.85 |      | 6.99 |                  | 6.88 |      |              |
| 2/3/2017   | 6.99  |                 | 7.08 |      | 7.1  |                  | 7.01 |      |              |
| 5/24/2017  | 7.51  |                 | 7.35 |      | 7.49 |                  | 7.67 |      |              |
| 7/5/2017   | 7.31  |                 | 7.33 |      | 7.46 |                  | 7.36 |      |              |
| 8/17/2017  | 7.1   |                 | 6.97 |      | 7.47 |                  | 7.15 |      |              |
| 10/5/2017  | 7.05  |                 | 7    |      | 7.2  |                  | 7.15 |      |              |
| 11/14/2017 | 7.09  |                 | 6.91 |      | 7.14 |                  | 7.13 |      |              |
| 12/29/2017 |       |                 |      |      | 7.02 |                  |      |      |              |
| 5/21/2018  | 7.04  |                 | 6.9  |      | 7.08 |                  | 7.04 |      |              |
| 6/26/2018  |       |                 | 6.99 |      |      |                  |      |      |              |
| 11/12/2018 | 7.19  |                 | 7.15 |      | 7.27 |                  | 7.18 |      |              |
| 1/10/2019  | 7.36  |                 |      |      |      |                  | 7.42 |      |              |
| 3/14/2019  | 7.27  |                 |      |      |      |                  | 7.24 |      |              |
| 5/20/2019  | 7.05  |                 | 6.92 |      | 7.43 |                  | 7.21 |      |              |
| 7/11/2019  | 7.46  |                 | 7.33 |      | 7.29 |                  | 7.63 |      |              |
| 8/20/2019  | 6.99  |                 | 6.85 |      | 7.07 |                  | 6.99 |      |              |
| 5/20/2020  |       | 6.92            |      | 6.81 |      | 6.83             |      | 6.82 |              |
| 7/13/2020  |       | 6.96 Extra Sam  | ple  |      |      | 6.84 Extra Sampl | e    | 6.87 | Extra Sample |
| 8/25/2020  |       | 7 Extra Sam     | ple  |      |      | 7.15 Extra Sampl | e    |      |              |
| 11/9/2020  |       | 7.02            |      | 7.26 |      | 7.09             |      | 7.45 | Extra Sample |
| 2/2/2021   |       | 7.08 Extra Samp | le   |      |      | 6.97 Extra Sampl | e    |      |              |
| 3/1/2021   |       | 7.08 Extra Samp | le   |      |      | 7.15 Extra Sampl | e    |      |              |
|            |       |                 |      |      |      |                  |      |      |              |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Seasonality was not detected with 95% confidence.







Prediction Limit



Background Data Summary: Mean=7.185, Std. Dev.=0.1795, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: pH Analysis Run 3/10/2021 2:40 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas<sup>™</sup> v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=26.95, Std. Dev.=7.937, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Background Data Summary: Mean=32.62, Std. Dev.=3.775, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8898, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH, Sulfate Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|            | MW-8 | MW-8             | MW-9 | MW-9 | MW-1 | MW-1 | MW-10 | MW-10 | )                |
|------------|------|------------------|------|------|------|------|-------|-------|------------------|
| 8/18/2016  | 7.1  |                  | 7.02 |      | 32.4 |      | 17.8  |       |                  |
| 9/29/2016  | 7.32 |                  | 7.28 |      | 35.3 |      | 19.7  |       |                  |
| 11/9/2016  | 8.24 |                  | 6.99 |      | 33.2 |      | 17.4  |       |                  |
| 12/21/2016 | 7.1  |                  | 7.02 |      | 36.2 |      | 17.7  |       |                  |
| 2/3/2017   | 7.13 |                  | 7.05 |      | 36.9 |      | 19.1  |       |                  |
| 5/24/2017  | 7.66 |                  | 7.61 |      | 27.4 |      | 22.4  |       |                  |
| 7/5/2017   | 7.44 |                  | 7.37 |      | 34.2 |      | 24.7  |       |                  |
| 8/17/2017  | 7.27 |                  | 7.13 |      | 35.2 |      | 26.5  |       |                  |
| 10/5/2017  | 7.25 |                  | 7.35 |      | 34.5 |      | 26.4  |       |                  |
| 11/14/2017 | 7.24 |                  | 7.19 |      |      |      |       |       |                  |
| 5/21/2018  | 7.17 |                  | 7.05 |      | 32.6 |      | 23.6  |       |                  |
| 11/12/2018 | 7.15 |                  | 7.21 |      | 24.6 |      | 32.9  |       |                  |
| 1/10/2019  | 7.57 |                  |      |      |      |      | 38    |       |                  |
| 3/14/2019  | 7.38 |                  |      |      |      |      | 40.1  |       |                  |
| 5/20/2019  | 7.11 |                  | 7.13 |      | 28.9 |      | 37.3  |       |                  |
| 7/11/2019  |      |                  |      |      |      |      | 33    |       |                  |
| 8/20/2019  |      |                  |      |      |      |      | 34.6  |       |                  |
| 5/20/2020  |      | 6.98             |      | 7.02 |      | 27.6 |       | 43.1  |                  |
| 7/13/2020  |      |                  |      |      |      |      |       | 47.7  | 1st Verification |
| 8/25/2020  |      | 7.23 Extra Sampl | e    |      |      |      |       | 47.9  | 2nd Verification |
| 11/9/2020  |      | 7.52             |      | 7    |      | 30.9 |       | 42.3  |                  |
| 2/2/2021   |      | 7.18 Extra Samp  | le   | 7    |      |      |       | 46.7  | 1st Verification |
| 3/1/2021   |      |                  |      |      |      |      |       | 48.4  | 2nd Verification |
|            |      |                  |      |      |      |      |       |       |                  |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=141, Std. Dev.=23.93, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.





Prediction Limit



Background Data Summary: Mean=30.21, Std. Dev.=5.456, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 3/10/2021 2:40 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Sulfate Analysis Run 3/10/2021 2:40 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=8.273, Std. Dev=3.445, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8729, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=40.07, Std. Dev.=17.39, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8273, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 3/10/2021 2:44 PM View: CCR LF III

| 1          | MW-2 | MW-2 | MW-6 | MW-6             | MW-7 | MW-7 | MW-8 | MW-8 |
|------------|------|------|------|------------------|------|------|------|------|
| 8/18/2016  | 142  |      | 30.2 |                  | 70.2 |      | 23.3 |      |
| 9/29/2016  | 151  |      | 33.5 |                  | 70.6 |      | 24.2 |      |
| 11/9/2016  | 155  |      | 31.4 |                  | 62.6 |      | 23.8 |      |
| 12/21/2016 | 155  |      | 28.6 |                  | 50   |      | 25.5 |      |
| 2/3/2017   | 150  |      | 28.5 |                  | 41.9 |      | 39.6 |      |
| 5/24/2017  | 172  |      | 32.7 |                  | 16.2 |      | 42.8 |      |
| 7/5/2017   | 158  |      | 37.2 |                  | 19.5 |      | 54.8 |      |
| 8/17/2017  | 149  |      | 37.6 |                  | 34.1 |      | 43   |      |
| 10/5/2017  | 151  |      | 34.5 |                  | 24.3 |      | 43.4 |      |
| 5/21/2018  | 137  |      | 30.9 |                  | 23.8 |      | 25.4 |      |
| 11/12/2018 | 81.5 |      | 27.3 |                  | 149  |      | 85.8 |      |
| 1/10/2019  |      |      |      |                  | 159  |      | 48.4 |      |
| 3/14/2019  |      |      |      |                  | 33.9 |      |      |      |
| 5/20/2019  | 119  |      | 20.2 |                  | 166  |      | 40.9 |      |
| 7/11/2019  | 112  |      | 20.1 |                  | 186  |      |      |      |
| 8/20/2019  |      |      |      |                  | 166  |      |      |      |
| 5/20/2020  |      | 126  |      | 20.4             |      | 54.4 |      | 45   |
| 11/9/2020  |      | 129  |      | 24.8             |      | 34   |      | 58.5 |
| 3/1/2021   |      |      |      | 32.2 Extra Sampl | e    |      |      |      |

Sanitas™ v.9.6.28 Sanitas software licensed to SCS Engineers. UG





Constituent: Sulfate Analysis Run 3/10/2021 2:40 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 3/10/2021 2:44 PM View: CCR LF III

|       |        | 1    |      |
|-------|--------|------|------|
|       |        | MW-9 | MW-9 |
| 8/18/ | 2016   | 16.7 |      |
| 9/29/ | 2016   | 26.2 |      |
| 11/9/ | 2016   | 23   |      |
| 12/21 | 1/2016 | 22.2 |      |
| 2/3/2 | 017    | 21.1 |      |
| 5/24/ | 2017   | 15.9 |      |
| 7/5/2 | 017    | 24.8 |      |
| 8/17/ | 2017   | 19.8 |      |
| 10/5/ | 2017   | 21.5 |      |
| 5/21/ | 2018   | 18.3 |      |
| 11/12 | 2/2018 | 25.8 |      |
| 5/20/ | 2019   | 22.8 |      |
| 5/20/ | 2020   |      | 20.7 |
| 11/9/ | 2020   |      | 17.4 |
|       |        |      |      |

latan Utility Waste LF Client: SCS Engineers Data: latan jrr Printed 3/10/2021, 2:44 PM

| <u>Constituent</u>      | Well    | Upper Lim.     | Lower Lim.   | <u>Date</u> | Observ.     | <u>Sig.</u> | <u>Bg N</u> | <u>%NDs</u> | <u>Transform</u> | <u>Alpha</u> | Method                |
|-------------------------|---------|----------------|--------------|-------------|-------------|-------------|-------------|-------------|------------------|--------------|-----------------------|
| Boron (mg/L)            | MW-1    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-10   | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-2    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-6    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-7    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-8    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-9    | 0.2            | n/a          | 11/9/2020   | 0.1ND       | No          | 12          | 100         | n/a              | 0.002173     | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | MW-1    | 141.9          | n/a          | 11/9/2020   | 134         | No          | 13          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-10   | 154.2          | n/a          | 3/1/2021    | 160         | Yes         | 17          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-2    | 178.2          | n/a          | 11/9/2020   | 167         | No          | 14          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-6    | 156.3          | n/a          | 3/1/2021    | 153         | No          | 14          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-7    | 193.1          | n/a          | 11/9/2020   | 132         | No          | 17          | 0           | sqrt(x)          | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-8    | 158.5          | n/a          | 11/9/2020   | 158         | No          | 15          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-9    | 122.1          | n/a          | 2/2/2021    | 106         | No          | 13          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-1    | 6.697          | n/a          | 11/9/2020   | 5.24        | No          | 14          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-10   | 23.19          | n/a          | 3/1/2021    | 17.1        | No          | 16          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-2    | 10.03          | n/a          | 11/9/2020   | 7.03        | No          | 14          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-6    | 1.945          | n/a          | 3/1/2021    | 1.68        | No          | 15          | 0           | sqrt(x)          | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-7    | 31.35          | n/a          | 11/9/2020   | 3.18        | No          | 17          | 0           | sqrt(x)          | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-8    | 8.265          | n/a          | 2/2/2021    | 8.22        | No          | 15          | 0           | sqrt(x)          | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-9    | 2.881          | n/a          | 11/9/2020   | 1.3         | No          | 13          | 30.77       | No               | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-1    | 511.5          | n/a          | 2/2/2021    | 484         | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-10   | 1760           | n/a          | 11/9/2020   | 645         | No          | 12          | 0           | n/a              | 0.002173     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | MW-2    | 720.7          | n/a          | 11/9/2020   | 640         | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-6    | 556.1          | n/a          | 11/9/2020   | 548         | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-7    | 761            | n/a          | 11/9/2020   | 453         | No          | 16          | 0           | n/a              | 0.001026     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | MW-8    | 548.8          | n/a          | 2/2/2021    | 518         | No          | 13          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-9    | 478.8          | n/a          | 11/9/2020   | 475         | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-1    | 0.3201         | n/a          | 11/9/2020   | 0.271       | No          | 13          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-10   | 0.7252         | n/a          | 11/9/2020   | 0.476       | No          | 12          | 0           | x^2              | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-2    | 0.3818         | n/a          | 11/9/2020   | 0.313       | No          | 15          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-6    | 0.37           | n/a          | 11/9/2020   | 0.308       | No          | 14          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/l)         | MW-7    | 0 4235         | n/a          | 11/9/2020   | 0.288       | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-8    | 0.4612         | n/a          | 11/9/2020   | 0.357       | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-9    | 0 4678         | n/a          | 11/9/2020   | 0.324       | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| nH(S I )                | MW-1    | 7 54           | 6 74         | 2/2/2021    | 7.36        | No          | 15          | 0           | n/a              | 0.002625     | NP Intra (normality)  |
| pH (SU)                 | MW-10   | 7 438          | 6 876        | 3/1/2021    | 7.08        | No          | 17          | 0           | No               | 0.000        | Param Intra 1 of 3    |
| pH (SU)                 | MW-2    | 7 379          | 6 717        | 11/9/2020   | 7.26        | No          | 16          | 0           | No               | 0.000        | Param Intra 1 of 3    |
| pH (SU)                 | MW-6    | 7 586          | 6 899        | 3/1/2021    | 7 15        | No          | 16          | 0           | No               | 0.000        | Param Intra 1 of 3    |
| pH (SU)                 | MW-7    | 7 666          | 6 822        | 11/9/2020   | 7 45        | No          | 17          | 0           | No               | 0.000        | Param Intra 1 of 3    |
| pH (SU)                 | MW-8    | 8 24           | 7 1          | 2/2/2021    | 7.18        | No          | 15          | 0           | n/a              | 0.002625     | NP Intra (normality)  |
| pH (S.U.)               | M\W/_9  | 7 487          | 6.883        | 2/2/2021    | 7           | No          | 13          | 0           | No               | 0.002020     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\A/_1  | 30.1           | 0.000<br>n/a | 11/0/2020   | 30.0        | No          | 12          | 0           | No               | 0.0000       | Param Intra 1 of 3    |
| Sulfate (mg/L)          | MW-10   | 39.5           | n/a          | 3/1/2021    | <b>18 /</b> | Vee         | 16          | 0           | No               | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | MIN/ 2  | 181.0          | n/a          | 11/0/2020   | 120         | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 2    |
| Sulfate (mg/L)          | MIN 6   | 30 20          | n/a          | 3/1/2020    | 32.2        | No          | 12          | 0           | No               | 0.001075     | Param Intra 1 of 2    |
| Sulfate (mg/L)          | M\A/ 7  | 39.39<br>188 2 | n/a          | 11/0/2020   | 34          | No          | 16          | 0           | eart(x)          | 0.001075     | Param Intra 1 of 2    |
| Sulfate (mg/L)          |         | 60.22          | n/a          | 11/0/2020   | 54          | No          | 10          | 0           | syri(x)          | 0.001075     | Derem Intra 1 of 2    |
| Suilate (IIIY/L)        |         | 09.33          | n/a<br>n/a   | 11/9/2020   |             | INO         | 10          | 0           |                  | 0.001075     |                       |
| Suilate (IIIg/L)        | 10100-9 | 21.20          | n/a          | 11/9/2020   | 17.4        | INO         | 12          | U           | INO              | 0.001075     | Falam mua 1 01 3      |

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 17, 2021

## ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Data           | Output                                  | Trend Test                    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|----------------|-----------------------------------------|-------------------------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
| Exclud         | le data flag                            | s: i                          |             |                |               |              |       |        |             |
| Data           | Reading O                               | ptions                        |             |                |               |              |       |        |             |
| 🔘 In           | ndividual Ob                            | oservations                   |             |                |               |              |       |        |             |
| $\bigcirc$ M   | lean of Eac                             | :h:                           | O Month     |                |               |              |       |        |             |
| $\bigcirc$ M   | ledian of Ea                            | ach:                          | Seasor      | n              |               |              |       |        |             |
| Non-I<br>Setup | Detect / Tri<br>Seasons<br>omatically F | ace Handling.<br>Process Resa |             |                |               |              |       |        |             |

| Data                                                                                                                                                                                                                                                   | Output                                                                                                                                                                                                                                             | Trend Test                                                                                                                                                                                                                                                                     | Control Cht                                                                                                                                                             | Prediction Lim                                            | Tolerance Lim                                                                                                                                                | Conf/Tol Int                                                                                                                                                                  | ANOVA                                                  | Welchs                 | Other Tests                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|------------------------------|
| <ul> <li>Bla</li> <li>Fou</li> <li>Fou</li> <li>Fou</li> <li>Fou</li> <li>Tou</li> <li>Dra</li> <li>Dra</li> <li>Dra</li> <li>Enl</li> <li>Enl</li> <li>Enl</li> <li>Wid</li> <li>Use</li> <li>Tru</li> <li>Inc</li> <li>Sho</li> <li>Setup</li> </ul> | ick and Whi<br>ur Plots Per<br>Always Com<br>Include Tick<br>Use Constit<br>aw Border A<br>large/Reduc<br>de Margins (<br>arge/Reduc<br>de Margins (<br>e CAS# (No<br>incate File N<br>dude Limit Li<br>ow Deselect<br>ow Deselect<br>o Symbols ar | te Output<br>Page<br>abine Data Pa<br>& Marks on D<br>uent Name fo<br>round Text Re<br>ce Fonts (Grap<br>ce Fonts (Grap<br>ce Fonts (Grap<br>ce Fonts (Data<br>(on reports with<br>t Const. Name<br>Names to 20<br>nes when fou<br>ted Data on a<br>ted Data on a<br>nd Colors | iges<br>ata Page<br>r Graph Title<br>eports and Da<br>ohs):<br>a/Text Report<br>chout explicit s<br>e)<br>Characters<br>ind in Databas<br>fime Series<br>III Data Pages | ta Pages<br>100%<br>s): 100%<br>etting)<br>se<br>ighter ✓ | <ul> <li>Pro</li> <li>Rou</li> <li>Use</li> <li>Indi</li> <li>Sho</li> <li>Thic</li> <li>Zoo</li> <li>Output</li> <li>Les</li> <li>No</li> <li>Mo</li> </ul> | mpt to Overwrit<br>und Limits to<br>er-Set Scale<br>icate Backgrou<br>ow Exact Dates<br>ck Plot Lines<br>om Factor: 20<br>Decimal Precision<br>mal Precision<br>ire Precision | te/Append S<br>2 Sig. Digits<br>and Data<br>s<br>00% ~ | ummary Ta<br>(when not | ables<br>set in data file)   |
| Drinter                                                                                                                                                                                                                                                | Adaba PD                                                                                                                                                                                                                                           | c                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | 2 3                                                       | tore Frint Jobs In                                                                                                                                           | maluple consu                                                                                                                                                                 | ituenit mode                                           | Store /                | Printem                      |
| Printer:                                                                                                                                                                                                                                               | Adobe PD                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |                                                           |                                                                                                                                                              |                                                                                                                                                                               |                                                        |                        | <ul> <li>Printers</li> </ul> |

| Data Output                                                                                                                                                                                                                                                  | Trend Test                                                                                                                                                          | Control Cht     | Prediction Lim   | Tolerance Lim    | Conf/Tol Int | ANOVA | Welchs | Other Tests |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------|--------------|-------|--------|-------------|--|--|
| Use Modified                                                                                                                                                                                                                                                 | Alpha (                                                                                                                                                             | ).02            |                  |                  |              |       |        |             |  |  |
| Test Residuals For Normality (Parametric test only) using Shapiro-Wilk/Francia v at Alpha = 0.01 v                                                                                                                                                           |                                                                                                                                                                     |                 |                  |                  |              |       |        |             |  |  |
| Continue                                                                                                                                                                                                                                                     | Parametric if l                                                                                                                                                     | Jnable to Nom   | nalize           |                  |              |       |        |             |  |  |
| Transformation                                                                                                                                                                                                                                               | Transformation (Parametric test only)   Use Ladder of Powers  Natural Log or No Transformation  Never Transform  Use Specific Transformation:  Use Best W Statistic |                 |                  |                  |              |       |        |             |  |  |
| Use Non-Parame                                                                                                                                                                                                                                               | tric Test (Sen'                                                                                                                                                     | 's Slope/Mann   | -Kendall) when I | Non-Detects Perc | cent > 75    |       |        |             |  |  |
| Include 95.                                                                                                                                                                                                                                                  | % Confidence                                                                                                                                                        | e Interval arou | und Trend Line   |                  |              |       |        |             |  |  |
| Automatically Remove Outliers (Parametric test only)                                                                                                                                                                                                         |                                                                                                                                                                     |                 |                  |                  |              |       |        |             |  |  |
| Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope /<br>Mann-Kendall (the non-parametric alternative) is available as a report in its own right, under Analysis->Intrawell->Trend. |                                                                                                                                                                     |                 |                  |                  |              |       |        |             |  |  |

| Data                                                                                 | Output                                                                                                   | Trend Test                                                                                                 | Control Cht                                          | Prediction Lim                                              | Tolerance Lim                                     | Conf/Tol Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANOVA                                                                                                           | Welchs                                                                             | Other Tests |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|--|--|
| Test Use Use Aito Optio                                                              | for Normal<br>Non-Paran<br>chison's Ad<br>onal Furthe<br>Poisson Pr                                      | ity using Sh<br>netric Test wh<br>justment ~<br>r Refinement:<br>ediction Limit                            | apiro-Wilk/Fra<br>nen Non-Dete<br>when Non-De<br>Use | encia  Cts Percent >  E etects Percent > w etects Percent > | at Alpha = 0.01<br>50<br>15<br>then NDs % >       | t Alpha = 0.01       Image: Constraint of the second |                                                                                                                 |                                                                                    |             |  |  |
| Deseat                                                                               | sonalize (Ir<br>Seasonality<br>Seasonality<br>ways (Whe                                                  | ntra- and Inter<br>y Is Detected<br>y Is Detected<br>en Sufficient [                                       | Well)<br>Or Insufficien<br>Data)                     | t to Test<br>Never                                          | IntraWell Ot<br>Stop if<br>Plot Ba<br>Override St | her<br>Background Tr<br>ckground Data<br>andard Deviati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rend Detect                                                                                                     | ed at Alpha                                                                        | a = 0.05 ∨  |  |  |
| And<br>Facility<br>Statistic<br>Constitu<br>Downg<br>Samplir<br>Comp<br>1 (<br>0 2 ( | ways Use I<br>cal Evaluat<br>uents Anal<br>gradient (Co<br>ng Plan<br>aring Ind<br>of 1 C<br>of 4 ("Modi | Non-Parametr<br>tions per Year<br>yzed:<br>ompliance) W<br>ividual Obsen<br>) 1 of 2 (<br>ified California | ic<br>r:<br>ells:<br>vations<br>1 of 3<br>''')       | 2<br>7<br>7<br>0 1 of 4                                     | Override D                                        | F: (<br>tically Remove<br>d Test Mode<br>Deselected Dat<br>etric Limit =<br>etric Limit when<br>t/Second High<br>ecent PQL if a<br>ecent Backgro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Override Ka<br>Backgroun<br>a Lighter<br>lighest Bac<br>n 100% Non<br>est Backgro<br>vailable, or<br>pund Value | ppa:<br>d Outliers<br>kground Va<br>-Detects:<br>ound Value<br>MDL<br>(subst. meth | ilue 🗸      |  |  |

| Data Output Trend Test Control Cht Prediction Lim Tolerance                            | Lim Conf/Tol Int ANOVA Welchs Other Test         |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|--|
| Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney                                     |                                                  |  |  |  |  |  |  |  |  |
| Use Modified Alpha                                                                     | Combine Background Wells on Mann-Whitney         |  |  |  |  |  |  |  |  |
|                                                                                        |                                                  |  |  |  |  |  |  |  |  |
| Outlier Tests                                                                          |                                                  |  |  |  |  |  |  |  |  |
| <ul> <li>EPA 1989 Outlier Screening (fixed alpha of 0.05)</li> </ul>                   |                                                  |  |  |  |  |  |  |  |  |
| • Dixon's at $\alpha = 0.05 \lor$ or if n > 22 $\lor$ Rosner's at $\alpha = 0.01 \lor$ | Use EPA Screening to establish Suspected Outlier |  |  |  |  |  |  |  |  |
| O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use                             | Ladder of Powers to achieve Best W Stat          |  |  |  |  |  |  |  |  |
| ✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1                       | ~                                                |  |  |  |  |  |  |  |  |
| Stop if Non-Normal                                                                     |                                                  |  |  |  |  |  |  |  |  |
| O Continue with Parametric Test if Non-Normal                                          |                                                  |  |  |  |  |  |  |  |  |
| O Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use                                 | Ladder of Powers to achieve Best W Stat          |  |  |  |  |  |  |  |  |
| No Outlier If Less Than 3.0 Times Median                                               |                                                  |  |  |  |  |  |  |  |  |
| Apply Rules found in Ohio Guidance Document 0715                                       |                                                  |  |  |  |  |  |  |  |  |
| Combine Background Wells on the Outlier Report                                         |                                                  |  |  |  |  |  |  |  |  |
| Piper, Stiff Diagram                                                                   |                                                  |  |  |  |  |  |  |  |  |
| Combine Wells                                                                          | ✓ Label Constituents                             |  |  |  |  |  |  |  |  |
| Combine Dates                                                                          | ☑ Label Axes                                     |  |  |  |  |  |  |  |  |
| Use Default Constituent Names                                                          | Note Cation-Anion Balance (Piper only)           |  |  |  |  |  |  |  |  |
| Use Constituent Definition File Edit                                                   |                                                  |  |  |  |  |  |  |  |  |
|                                                                                        |                                                  |  |  |  |  |  |  |  |  |

## ATTACHMENT 2-2

Spring 2021 Semiannual Detection Monitoring Statistical Analyses

#### MEMORANDUM

October 5, 2021

To: latan Generating Station 20250 State Route 45 N Platte County, Missouri Evergy Metro, Inc.



#### From: SCS Engineers

### RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2021 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 20, 2021. Review and validation of the results from the May 2021 Detection Monitoring Event was completed on July 27, 2021, which constitutes completion and finalization of detection monitoring laboratory analyses. Statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 20, 2021 and August 4, 2021.

# Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation did not identify any SSIs above background.

Attached to this memorandum are the following backup information:

#### Attachment 1: Sanitas<sup>™</sup> Output:

Statistical evaluation output from Sanitas<sup>™</sup> for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1<sup>st</sup> verification re-sample results (when applicable), 2<sup>nd</sup> verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

### Attachment 2: Sanitas<sup>™</sup> Configuration Settings:

Screen shots of the applicable Sanitas<sup>™</sup> configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

latan Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021 Page 2 of 2

| Revision<br>Number | Revision<br>Date | Attachment<br>Revised | Summary of Revisions |
|--------------------|------------------|-----------------------|----------------------|
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |
|                    |                  |                       |                      |

Iatan Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021

## ATTACHMENT 1

Sanitas<sup>™</sup> Output

Sanitas  $^{\rm vw}$  v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-1 background 0.24 MW-1 compliance 0.18 ng/L Limit = 0.20.12 -0--0 0.06 0 8/18/16 7/31/17 7/13/18 6/25/19 6/6/20 5/20/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/16/2021 12:29 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr



Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/16/2021 12:29 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas<sup>™</sup> v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            | MW-1 | MW-1 | MW-10 | MW-10 | MW-2 | MW-2 | MW-6 | MW-6 |
|------------|------|------|-------|-------|------|------|------|------|
| 8/18/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 9/29/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 11/9/2016  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 12/21/2016 | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 2/3/2017   | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/24/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 7/5/2017   | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 8/17/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 10/5/2017  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/21/2018  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 11/12/2018 | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/20/2019  | <0.2 |      | <0.2  |       | <0.2 |      | <0.2 |      |
| 5/20/2021  |      | <0.2 |       | <0.2  |      | <0.2 |      | <0.2 |

Sanitas  $^{\rm vw}$  v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-7 background 0.24 MW-7 compliance 0.18 ng/L Limit = 0.20.12 -0--0 0.06 0 8/18/16 7/31/17 7/13/18 6/25/19 6/6/20 5/20/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-8 background 0.24 MW-8 compliance 0.18 mg/L Limit = 0.20.12 0.06 0 8/18/16 7/31/17 7/13/18 6/25/19 6/6/20 5/20/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas<sup>w</sup> v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Within Limit

Prediction Limit



Background Data Summary: Mean=131.8, Std. Dev.=5.97, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8766, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Boron, Calcium Analysis Run 9/16/2021 12:34 PM View: CCR LF III

| 1          | MW-7 | MW-7 | MW-8 | MW-8 | MW-9 | MW-9 | MW-1 | MW-1 |
|------------|------|------|------|------|------|------|------|------|
| 8/18/2016  | <0.2 |      | <0.2 |      | <0.2 |      | 134  |      |
| 9/29/2016  | <0.2 |      | <0.2 |      | <0.2 |      | 134  |      |
| 11/9/2016  | <0.2 |      | <0.2 |      | <0.2 |      | 136  |      |
| 12/21/2016 | <0.2 |      | <0.2 |      | <0.2 |      | 134  |      |
| 2/3/2017   | <0.2 |      | <0.2 |      | <0.2 |      | 116  |      |
| 5/24/2017  | <0.2 |      | <0.2 |      | <0.2 |      | 128  |      |
| 7/5/2017   | <0.2 |      | <0.2 |      | <0.2 |      | 129  |      |
| 8/17/2017  | <0.2 |      | <0.2 |      | <0.2 |      | 134  |      |
| 10/5/2017  | <0.2 |      | <0.2 |      | <0.2 |      | 141  |      |
| 11/14/2017 |      |      |      |      |      |      | 130  |      |
| 5/21/2018  | <0.2 |      | <0.2 |      | <0.2 |      | 131  |      |
| 11/12/2018 | <0.2 |      | <0.2 |      | <0.2 |      | 137  |      |
| 5/20/2019  | <0.2 |      | <0.2 |      | <0.2 |      | 130  |      |
| 5/20/2021  |      | <0.2 |      | <0.2 |      | <0.2 |      | 137  |
|            |      |      |      |      |      |      |      |      |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=130.7, Std. Dev.=15.04, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8963, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=166.4, Std. Dev.=7.175, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8366, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Calcium Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=144.7, Std. Dev.=7.032, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9678, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas<sup>™</sup> v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary (based on square root transformation): Mean=12.15, Std. Dev.=1.12, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8573, critical = 0.851. Kappa = 1.561 (c=7, wer7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            | MW-10 | MW-10 | MW-2 | MW-2 | MW-6 | MW-6 | MW-7 | MW-7 |
|------------|-------|-------|------|------|------|------|------|------|
| 8/18/2016  | 123   |       | 170  |      | 142  |      | 145  |      |
| 9/29/2016  | 118   |       | 169  |      | 139  |      | 144  |      |
| 11/9/2016  | 124   |       | 169  |      | 142  |      | 146  |      |
| 12/21/2016 | 123   |       | 166  |      | 146  |      | 138  |      |
| 2/3/2017   | 109   |       | 146  |      | 136  |      | 116  |      |
| 5/24/2017  | 125   |       | 166  |      | 150  |      | 123  |      |
| 7/5/2017   | 120   |       | 165  |      | 147  |      | 125  |      |
| 8/17/2017  | 122   |       | 168  |      | 150  |      | 133  |      |
| 10/5/2017  | 131   |       | 177  |      | 157  |      | 135  |      |
| 11/14/2017 | 119   |       | 161  |      | 151  |      | 125  |      |
| 5/21/2018  | 115   |       | 164  |      | 150  |      | 123  |      |
| 11/12/2018 | 138   |       | 166  |      | 147  |      | 192  |      |
| 1/10/2019  | 157   |       |      |      |      |      | 185  |      |
| 3/14/2019  | 151   |       |      |      |      |      | 132  |      |
| 5/20/2019  | 151   |       | 167  |      | 131  |      | 184  |      |
| 7/11/2019  | 153   |       | 175  |      | 138  |      | 199  |      |
| 8/20/2019  | 143   |       |      |      |      |      | 183  |      |
| 5/20/2021  |       | 148   |      | 167  |      | 188  |      | 148  |
| 7/20/2021  |       |       |      |      |      | 147  |      |      |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=142, Std. Dev.=10.21, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8744, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit





Background Data Summary: Mean=109.9, Std. Dev.=7.272, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9797, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Calcium Analysis Run 9/16/2021 12:30 PM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Sanitas<sup>™</sup> v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=5.966, Std. Dev.=0.4435, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9436, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=15.12, Std. Dev=5.1, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium, Chloride Analysis Run 9/16/2021 12:34 PM View: CCR LF III

| 1          | MW-8 | MW-8 | MW-9 | MW-9 | MW-1 | MW-1 | MW-10 | MW-10 |
|------------|------|------|------|------|------|------|-------|-------|
| 8/18/2016  | 136  |      | 119  |      | 5.93 |      | 7.47  |       |
| 9/29/2016  | 132  |      | 102  |      | 6.07 |      | 7.83  |       |
| 11/9/2016  | 135  |      | 103  |      | 5.95 |      | 9.15  |       |
| 12/21/2016 | 139  |      | 116  |      | 5.97 |      | 9.84  |       |
| 2/3/2017   | 133  |      | 105  |      | 6    |      | 10.3  |       |
| 5/24/2017  | 138  |      | 108  |      | 5.61 |      | 12.6  |       |
| 7/5/2017   | 142  |      | 97.2 |      | 5.78 |      | 15.9  |       |
| 8/17/2017  | 145  |      | 110  |      | 6.13 |      | 17.6  |       |
| 10/5/2017  | 155  |      | 113  |      | 6.75 |      | 19.7  |       |
| 11/14/2017 | 145  |      | 113  |      | 6.73 |      | 17.6  |       |
| 12/29/2017 |      |      |      |      | 6.27 |      |       |       |
| 5/21/2018  | 130  |      | 105  |      | 5.63 |      | 14.1  |       |
| 11/12/2018 | 170  |      | 122  |      | 5.04 |      | 15.1  |       |
| 1/10/2019  | 149  |      |      |      |      |      | 21    |       |
| 3/14/2019  | 140  |      |      |      |      |      |       |       |
| 5/20/2019  | 141  |      | 115  |      | 5.66 |      | 21    |       |
| 7/11/2019  |      |      |      |      |      |      | 22.5  |       |
| 8/20/2019  |      |      |      |      |      |      | 20.3  |       |
| 5/20/2021  |      | 127  |      | 98.4 |      | 5.59 |       | 16.5  |
|            |      |      |      |      |      |      |       |       |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=8.253, Std. Dev.=1.076, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8719, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



mg/L



Prediction Limit

Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=1.216, Std. Dev.=0.1104, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8387, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Chloride Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=3.057, Std. Dev.=1.629, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8683, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary (based on square root transformation): Mean=1.907, Std. Dev.=0.5992, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8695, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            |      |      |      |      | -    | -    |      |      |
|------------|------|------|------|------|------|------|------|------|
| 1          | MW-2 | MW-2 | MW-6 | MW-6 | MW-7 | MW-7 | MW-8 | MW-8 |
| 8/18/2016  | 8.26 |      | 1.31 |      | 12.3 |      | 1.5  |      |
| 9/29/2016  | 8.79 |      | 1.46 |      | 13.9 |      | 1.42 |      |
| 11/9/2016  | 8.76 |      | 1.29 |      | 11.1 |      | 1.76 |      |
| 12/21/2016 | 8.24 |      | 1.72 |      | 6.64 |      | 1.89 |      |
| 2/3/2017   | 8.17 |      | 1.4  |      | 3.32 |      | 4.02 |      |
| 5/24/2017  | 9.54 |      | 1.49 |      | 1.76 |      | 3.63 |      |
| 7/5/2017   | 8.99 |      | 1.54 |      | 1.81 |      | 4.44 |      |
| 8/17/2017  | 8.98 |      | 1.32 |      | 2    |      | 3.53 |      |
| 10/5/2017  | 9.23 |      | 2.09 |      | 3.32 |      | 4.55 |      |
| 11/14/2017 | 8.97 |      | 2.12 |      | 2.58 |      | 4.86 |      |
| 12/29/2017 |      |      | 1.45 |      |      |      |      |      |
| 5/21/2018  | 8.14 |      | 1.45 |      | 1.54 |      | 1.5  |      |
| 11/12/2018 | 5.79 |      | 1.31 |      | 26.4 |      | 12.1 |      |
| 1/10/2019  |      |      |      |      | 23.3 |      | 5.63 |      |
| 3/14/2019  |      |      |      |      | 4.77 |      | 4.79 |      |
| 5/20/2019  | 7.18 |      | 1.21 |      | 26   |      | 3.98 |      |
| 7/11/2019  | 6.5  |      | 1.2  |      | 31.9 |      |      |      |
| 8/20/2019  |      |      |      |      | 28.7 |      |      |      |
| 5/20/2021  |      | 6.45 |      | 2.75 |      | 6.03 |      | 1.34 |
| 7/20/2021  |      |      |      | 1.56 |      |      |      |      |

Sanitas<sup>™</sup> v.9.6.31 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit







Background Data Summary (after Aitchison's Adjustment): Mean=1.151, Std. Dev.=1.028, n=13, 30.77% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.













Intrawell Parametric

Background Data Summary: Mean=488.6, Std. Dev.=13.34, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9663, critical = 0.805. Kappa = 1.716 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: Dissolved Solids Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.





Prediction Limit Intrawell Parametric



Background Data Summary: Mean=663.3, Std. Dev.=33.46, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9501, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Chloride, Dissolved Solids Analysis Run 9/16/2021 12:34 PM View: CCR LF III

| 1          | MW-9 | MW-9 | MW-1 | MW-1 | MW-10 | MW-10 | MW-2 | MW-2 |
|------------|------|------|------|------|-------|-------|------|------|
| 8/18/2016  | 1.95 |      | 513  |      | 532   |       | 696  |      |
| 9/29/2016  | <1   |      | 486  |      | 502   |       | 651  |      |
| 11/9/2016  | <1   |      | 484  |      | 516   |       | 711  |      |
| 12/21/2016 | 1.66 |      | 493  |      | 497   |       | 636  |      |
| 2/3/2017   | 1.16 |      | 506  |      | 531   |       | 661  |      |
| 5/24/2017  | 1.07 |      | 477  |      | 1760  |       | 690  |      |
| 7/5/2017   | 1.06 |      | 481  |      | 474   |       | 638  |      |
| 8/17/2017  | <1   |      | 500  |      | 539   |       | 690  |      |
| 10/5/2017  | 3.57 |      | 472  |      | 539   |       | 683  |      |
| 11/14/2017 | 1.82 |      |      |      |       |       |      |      |
| 5/21/2018  | <1   |      | 496  |      | 509   |       | 648  |      |
| 11/12/2018 | 1.1  |      | 485  |      | 554   |       | 590  |      |
| 5/20/2019  | 1.57 |      | 470  |      | 697   |       | 666  |      |
| 5/20/2021  |      | <1   |      | 500  |       | 628   |      | 611  |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=515.5, Std. Dev.=23.66, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Dissolved Solids Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Dissolved Solids Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=500.3, Std. Dev.=28.83, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9252, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=429.7, Std. Dev.=28.65, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 9/16/2021 12:34 PM View: CCR LF III

| 1          | MW-6 | MW-6 | MW-7 | MW-7 | MW-8 | MW-8 | MW-9 | MW-9 |
|------------|------|------|------|------|------|------|------|------|
| 8/18/2016  | 522  |      | 560  |      | 494  |      | 475  |      |
| 9/29/2016  | 498  |      | 554  |      | 517  |      | 398  |      |
| 11/9/2016  | 506  |      | 538  |      | 471  |      | 476  |      |
| 12/21/2016 | 519  |      | 492  |      | 493  |      | 415  |      |
| 2/3/2017   | 527  |      | 487  |      | 515  |      | 442  |      |
| 5/24/2017  | 544  |      | 462  |      | 485  |      | 415  |      |
| 7/5/2017   | 508  |      | 445  |      | 500  |      | 386  |      |
| 8/17/2017  | 542  |      | 466  |      | 504  |      | 431  |      |
| 10/5/2017  | 528  |      | 459  |      | 505  |      | 414  |      |
| 5/21/2018  | 540  |      | 439  |      | 437  |      | 412  |      |
| 11/12/2018 | 484  |      | 681  |      | 563  |      | 435  |      |
| 1/10/2019  |      |      | 724  |      | 502  |      |      |      |
| 3/14/2019  |      |      | 472  |      |      |      |      |      |
| 5/20/2019  | 468  |      | 737  |      | 518  |      | 457  |      |
| 7/11/2019  |      |      | 761  |      |      |      |      |      |
| 8/20/2019  |      |      | 743  |      |      |      |      |      |
| 5/20/2021  |      | 619  |      | 513  |      | 426  |      | 384  |
| 7/20/2021  |      | 550  |      |      |      |      |      |      |
|            |      |      |      |      |      |      |      |      |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.278, Std. Dev.=0.02501, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

mg/L





Prediction Limit

Intrawell Parametric

Background Data Summary (based on square transformation): Mean=0.3525, Std. Dev.=0.1011, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=0.3379, Std. Dev.=0.02721, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit



Background Data Summary: Mean=0.3279, Std. Dev.=0.02554, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9487, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            |       |       |       | -     | -     | -     |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | MW-1  | MW-1  | MW-10 | MW-10 | MW-2  | MW-2  | MW-6  | MW-6  |
| 8/18/2016  | 0.234 |       | 0.584 |       | 0.303 |       | 0.298 |       |
| 9/29/2016  | 0.292 |       | 0.622 |       | 0.356 |       | 0.343 |       |
| 11/9/2016  | 0.274 |       | 0.642 |       | 0.331 |       | 0.324 |       |
| 12/21/2016 | 0.241 |       | 0.538 |       | 0.292 |       | 0.293 |       |
| 2/3/2017   | 0.288 |       | 0.521 |       | 0.342 |       | 0.348 |       |
| 5/24/2017  | 0.272 |       | 0.591 |       | 0.327 |       | 0.297 |       |
| 7/5/2017   | 0.275 |       | 0.582 |       | 0.334 |       | 0.317 |       |
| 8/17/2017  | 0.276 |       | 0.682 |       | 0.332 |       | 0.313 |       |
| 10/5/2017  | 0.273 |       | 0.312 |       | 0.326 |       | 0.312 |       |
| 5/21/2018  | 0.327 |       | 0.654 |       | 0.383 |       | 0.354 |       |
| 6/26/2018  | 0.263 |       |       |       | 0.32  |       |       |       |
| 11/12/2018 | 0.288 |       | 0.68  |       | 0.327 |       | 0.325 |       |
| 5/20/2019  | 0.311 |       | 0.623 |       | 0.373 |       | 0.366 |       |
| 7/11/2019  |       |       |       |       | 0.389 |       | 0.373 |       |
| 8/20/2019  |       |       |       |       | 0.333 |       | 0.328 |       |
| 5/20/2021  |       | 0.257 |       | 0.457 |       | 0.316 |       | 0.274 |
|            |       |       |       |       |       |       |       |       |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.3603, Std. Dev.=0.03685, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=0.4189, Std. Dev.=0.02467, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8902, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/16/2021 12:30 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit



Background Data Summary: Mean=0.3653, Std. Dev.=0.05978, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8122, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.
Constituent: Fluoride, pH Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            |       |       |       | •     | •     |       |      |      |
|------------|-------|-------|-------|-------|-------|-------|------|------|
|            | MW-7  | MW-7  | MW-8  | MW-8  | MW-9  | MW-9  | MW-1 | MW-1 |
| 8/18/2016  | 0.366 |       | 0.438 |       | 0.338 |       | 6.89 |      |
| 9/29/2016  | 0.395 |       | 0.439 |       | 0.415 |       | 7.24 |      |
| 11/9/2016  | 0.333 |       | 0.415 |       | 0.383 |       | 6.74 |      |
| 12/21/2016 | 0.284 |       | 0.461 |       | 0.344 |       | 6.86 |      |
| 2/3/2017   | 0.337 |       | 0.407 |       | 0.327 |       | 6.91 |      |
| 5/24/2017  | 0.391 |       | 0.391 |       | 0.387 |       | 7.41 |      |
| 7/5/2017   | 0.378 |       | 0.391 |       | 0.364 |       | 7.54 |      |
| 8/17/2017  | 0.326 |       | 0.406 |       | 0.39  |       | 6.98 |      |
| 10/5/2017  | 0.341 |       | 0.396 |       | 0.204 |       | 7.03 |      |
| 11/14/2017 |       |       |       |       |       |       | 6.93 |      |
| 12/29/2017 |       |       |       |       |       |       | 6.98 |      |
| 5/21/2018  | 0.414 |       | 0.441 |       | 0.426 |       | 6.93 |      |
| 6/26/2018  |       |       |       |       |       |       | 6.99 |      |
| 11/12/2018 | 0.369 |       | 0.396 |       | 0.39  |       | 6.99 |      |
| 5/20/2019  | 0.389 |       | 0.446 |       | 0.415 |       | 6.93 |      |
| 5/20/2021  |       | 0.342 |       | 0.364 |       | 0.367 |      | 7.34 |
|            |       |       |       |       |       |       |      |      |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=7.157, Std. Dev.=0.18, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.0906, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.





Within Limits

Prediction Limit



Background Data Summary: Mean=7.048, Std. Dev.=0.2096, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8784, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: pH Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=7.243, Std. Dev.=0.2171, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9298, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=7.244, Std. Dev=0.2706, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.851. Kappa = 1.561 (c=7), w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            |       |       |      |      | -    | -    |      |      |
|------------|-------|-------|------|------|------|------|------|------|
| T          | MW-10 | MW-10 | MW-2 | MW-2 | MW-6 | MW-6 | MW-7 | MW-7 |
| 8/18/2016  | 7.06  |       | 6.9  |      | 7.18 |      | 6.97 |      |
| 9/29/2016  | 7.31  |       | 7.45 |      | 6.97 |      | 7.25 |      |
| 11/9/2016  | 6.93  |       | 6.79 |      | 7.72 |      | 7.87 |      |
| 12/21/2016 | 6.96  |       | 6.85 |      | 6.99 |      | 6.88 |      |
| 2/3/2017   | 6.99  |       | 7.08 |      | 7.1  |      | 7.01 |      |
| 5/24/2017  | 7.51  |       | 7.35 |      | 7.49 |      | 7.67 |      |
| 7/5/2017   | 7.31  |       | 7.33 |      | 7.46 |      | 7.36 |      |
| 8/17/2017  | 7.1   |       | 6.97 |      | 7.47 |      | 7.15 |      |
| 10/5/2017  | 7.05  |       | 7    |      | 7.2  |      | 7.15 |      |
| 11/14/2017 | 7.09  |       | 6.91 |      | 7.14 |      | 7.13 |      |
| 12/29/2017 |       |       |      |      | 7.02 |      |      |      |
| 5/21/2018  | 7.04  |       | 6.9  |      | 7.08 |      | 7.04 |      |
| 6/26/2018  |       |       | 6.99 |      |      |      |      |      |
| 11/12/2018 | 7.19  |       | 7.15 |      | 7.27 |      | 7.18 |      |
| 1/10/2019  | 7.36  |       |      |      |      |      | 7.42 |      |
| 3/14/2019  | 7.27  |       |      |      |      |      | 7.24 |      |
| 5/20/2019  | 7.05  |       | 6.92 |      | 7.43 |      | 7.21 |      |
| 7/11/2019  | 7.46  |       | 7.33 |      | 7.29 |      | 7.63 |      |
| 8/20/2019  | 6.99  |       | 6.85 |      | 7.07 |      | 6.99 |      |
| 5/20/2021  |       | 6.32  |      | 7.05 |      | 6.26 |      | 6.4  |
| 7/20/2021  |       | 6.93  |      |      |      | 6.93 |      | 7.54 |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.





Within Limits

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=7.185, Std. Dev.=0.1795, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: pH Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=26.95, Std. Dev.=7.937, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Background Data Summary: Mean=32.62, Std. Dev.=3.775, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8898, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Sulfate Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: pH, Sulfate Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            |      |      |      |      | -    | -    |       |       |
|------------|------|------|------|------|------|------|-------|-------|
|            | MW-8 | MW-8 | MW-9 | MW-9 | MW-1 | MW-1 | MW-10 | MW-10 |
| 8/18/2016  | 7.1  |      | 7.02 |      | 32.4 |      | 17.8  |       |
| 9/29/2016  | 7.32 |      | 7.28 |      | 35.3 |      | 19.7  |       |
| 11/9/2016  | 8.24 |      | 6.99 |      | 33.2 |      | 17.4  |       |
| 12/21/2016 | 7.1  |      | 7.02 |      | 36.2 |      | 17.7  |       |
| 2/3/2017   | 7.13 |      | 7.05 |      | 36.9 |      | 19.1  |       |
| 5/24/2017  | 7.66 |      | 7.61 |      | 27.4 |      | 22.4  |       |
| 7/5/2017   | 7.44 |      | 7.37 |      | 34.2 |      | 24.7  |       |
| 8/17/2017  | 7.27 |      | 7.13 |      | 35.2 |      | 26.5  |       |
| 10/5/2017  | 7.25 |      | 7.35 |      | 34.5 |      | 26.4  |       |
| 11/14/2017 | 7.24 |      | 7.19 |      |      |      |       |       |
| 5/21/2018  | 7.17 |      | 7.05 |      | 32.6 |      | 23.6  |       |
| 11/12/2018 | 7.15 |      | 7.21 |      | 24.6 |      | 32.9  |       |
| 1/10/2019  | 7.57 |      |      |      |      |      | 38    |       |
| 3/14/2019  | 7.38 |      |      |      |      |      | 40.1  |       |
| 5/20/2019  | 7.11 |      | 7.13 |      | 28.9 |      | 37.3  |       |
| 7/11/2019  |      |      |      |      |      |      | 33    |       |
| 8/20/2019  |      |      |      |      |      |      | 34.6  |       |
| 5/20/2021  |      | 6.5  |      | 6.48 |      | 33.3 |       | 46.7  |
| 7/20/2021  |      | 7.87 |      | 7.33 |      |      |       | 38.6  |
|            |      |      |      |      |      |      |       |       |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=141, Std. Dev.=23.93, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



mg/L

Prediction Limit

Intrawell Parametric





Background Data Summary: Mean=30.21, Std. Dev.=5.456, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr



Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric



Background Data Summary (based on square root transformation): Mean=8.273, Std. Dev=3.445, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8729, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric



Background Data Summary: Mean=40.07, Std. Dev.=17.39, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8273, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            | MW-2 | MW-2 | MW-6 | MW-6 | MW-7 | MW-7 | MW-8 | MW-8 |
|------------|------|------|------|------|------|------|------|------|
| 8/18/2016  | 142  |      | 30.2 |      | 70.2 |      | 23.3 |      |
| 9/29/2016  | 151  |      | 33.5 |      | 70.6 |      | 24.2 |      |
| 11/9/2016  | 155  |      | 31.4 |      | 62.6 |      | 23.8 |      |
| 12/21/2016 | 155  |      | 28.6 |      | 50   |      | 25.5 |      |
| 2/3/2017   | 150  |      | 28.5 |      | 41.9 |      | 39.6 |      |
| 5/24/2017  | 172  |      | 32.7 |      | 16.2 |      | 42.8 |      |
| 7/5/2017   | 158  |      | 37.2 |      | 19.5 |      | 54.8 |      |
| 8/17/2017  | 149  |      | 37.6 |      | 34.1 |      | 43   |      |
| 10/5/2017  | 151  |      | 34.5 |      | 24.3 |      | 43.4 |      |
| 5/21/2018  | 137  |      | 30.9 |      | 23.8 |      | 25.4 |      |
| 11/12/2018 | 81.5 |      | 27.3 |      | 149  |      | 85.8 |      |
| 1/10/2019  |      |      |      |      | 159  |      | 48.4 |      |
| 3/14/2019  |      |      |      |      | 33.9 |      |      |      |
| 5/20/2019  | 119  |      | 20.2 |      | 166  |      | 40.9 |      |
| 7/11/2019  | 112  |      | 20.1 |      | 186  |      |      |      |
| 8/20/2019  |      |      |      |      | 166  |      |      |      |
| 5/20/2021  |      | 126  |      | 46.9 |      | 57.2 |      | 17.3 |
| 7/20/2021  |      |      |      | 31.6 |      |      |      |      |
|            |      |      |      |      |      |      |      |      |

Sanitas™ v.9.6.31 Sanitas software licensed to SCS Engineers. UG





Constituent: Sulfate Analysis Run 9/16/2021 12:31 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 9/16/2021 12:34 PM View: CCR LF III

|            | 1    |      |
|------------|------|------|
|            | MW-9 | MW-9 |
| 8/18/2016  | 16.7 |      |
| 9/29/2016  | 26.2 |      |
| 5/25/2010  | 20.2 |      |
| 11/9/2016  | 23   |      |
| 12/21/2016 | 22.2 |      |
| 2/3/2017   | 21.1 |      |
| 5/24/2017  | 15.9 |      |
| 7/5/2017   | 24.9 |      |
| 7/5/2017   | 24.0 |      |
| 8/17/2017  | 19.8 |      |
| 10/5/2017  | 21.5 |      |
| 5/21/2018  | 18.3 |      |
| 11/12/2018 | 25.8 |      |
| 11/12/2016 | 23.0 |      |
| 5/20/2019  | 22.8 |      |
| 5/20/2021  |      | 19.7 |
|            |      |      |

latan Utility Waste LF Client: SCS Engineers Data: latan jrr Printed 9/16/2021, 12:34 PM

| <u>Constituent</u>      | Well    | <u>Upper Lim.</u> | Lower Lim. | <u>Date</u> | Observ. | <u>Sig.</u> | <u>Bg N</u> | <u>%NDs</u> | Transform | <u>Alpha</u> | Method                |
|-------------------------|---------|-------------------|------------|-------------|---------|-------------|-------------|-------------|-----------|--------------|-----------------------|
| Boron (mg/L)            | MW-1    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-10   | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-2    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-6    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-7    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-8    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Boron (mg/L)            | MW-9    | 0.2               | n/a        | 5/20/2021   | 0.1ND   | No          | 12          | 100         | n/a       | 0.002173     | NP Intra (NDs) 1 of 3 |
| Calcium (mg/L)          | MW-1    | 141.9             | n/a        | 5/20/2021   | 137     | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-10   | 154.2             | n/a        | 5/20/2021   | 148     | No          | 17          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-2    | 178.2             | n/a        | 5/20/2021   | 167     | No          | 14          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-6    | 156.3             | n/a        | 7/20/2021   | 147     | No          | 14          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-7    | 193.1             | n/a        | 5/20/2021   | 148     | No          | 17          | 0           | sqrt(x)   | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-8    | 158.5             | n/a        | 5/20/2021   | 127     | No          | 15          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Calcium (mg/L)          | MW-9    | 122.1             | n/a        | 5/20/2021   | 98.4    | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-1    | 6.697             | n/a        | 5/20/2021   | 5.59    | No          | 14          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-10   | 23.19             | n/a        | 5/20/2021   | 16.5    | No          | 16          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-2    | 10.03             | n/a        | 5/20/2021   | 6.45    | No          | 14          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-6    | 1.945             | n/a        | 7/20/2021   | 1.56    | No          | 15          | 0           | sqrt(x)   | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-7    | 31.35             | n/a        | 5/20/2021   | 6.03    | No          | 17          | 0           | sqrt(x)   | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-8    | 8.265             | n/a        | 5/20/2021   | 1.34    | No          | 15          | 0           | sqrt(x)   | 0.001075     | Param Intra 1 of 3    |
| Chloride (mg/L)         | MW-9    | 2.881             | n/a        | 5/20/2021   | 0.5ND   | No          | 13          | 30.77       | No        | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-1    | 511.5             | n/a        | 5/20/2021   | 500     | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-10   | 1760              | n/a        | 5/20/2021   | 628     | No          | 12          | 0           | n/a       | 0.002173     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | MW-2    | 720.7             | n/a        | 5/20/2021   | 611     | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-6    | 556.1             | n/a        | 7/20/2021   | 550     | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-7    | 761               | n/a        | 5/20/2021   | 513     | No          | 16          | 0           | n/a       | 0.001026     | NP Intra (normality)  |
| Dissolved Solids (mg/l) | MW-8    | 548.8             | n/a        | 5/20/2021   | 426     | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Dissolved Solids (mg/l) | MW-9    | 478.8             | n/a        | 5/20/2021   | 384     | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-1    | 0.3201            | n/a        | 5/20/2021   | 0.257   | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-10   | 0.7252            | n/a        | 5/20/2021   | 0.457   | No          | 12          | 0           | x^2       | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-2    | 0.3818            | n/a        | 5/20/2021   | 0.316   | No          | 15          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-6    | 0.37              | n/a        | 5/20/2021   | 0.274   | No          | 14          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-7    | 0.4235            | n/a        | 5/20/2021   | 0.342   | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-8    | 0.4612            | n/a        | 5/20/2021   | 0.364   | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Fluoride (mg/L)         | MW-9    | 0.4678            | n/a        | 5/20/2021   | 0.367   | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| pH (S.U.)               | MW-1    | 7.54              | 6.74       | 5/20/2021   | 7.34    | No          | 15          | 0           | n/a       | 0.002625     | NP Intra (normality)  |
| pH (S.U.)               | MW-10   | 7.438             | 6.876      | 7/20/2021   | 6.93    | No          | 17          | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | MW-2    | 7.379             | 6.717      | 5/20/2021   | 7.05    | No          | 16          | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | MW-6    | 7.586             | 6.899      | 7/20/2021   | 6.93    | No          | 16          | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (S.U.)               | MW-7    | 7.666             | 6.822      | 7/20/2021   | 7.54    | No          | 17          | 0           | No        | 0.000        | Param Intra 1 of 3    |
| pH (SU)                 | MW-8    | 8 24              | 7 1        | 7/20/2021   | 7 87    | No          | 15          | 0           | n/a       | 0.002625     | NP Intra (normality)  |
| pH (SU)                 | MW-9    | 7 487             | 6 883      | 7/20/2021   | 7 33    | No          | 13          | 0           | No        | 0.000        | Param Intra 1 of 3    |
| Sulfate (mg/L)          | MW-1    | 39.1              | n/a        | 5/20/2021   | 33.3    | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | MW-10   | 39.5              | n/a        | 7/20/2021   | 38.6    | No          | 16          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\\\/_2 | 181.2             | n/a        | 5/20/2021   | 126     | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\\/_6  | 39.39             | n/a        | 7/20/2021   | 31 6    | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\\\/_7 | 188 2             | n/a        | 5/20/2021   | 57.2    | No          | 16          | 0           | sart(x)   | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\\\/_8 | 69.33             | n/a        | 5/20/2021   | 17 3    | No          | 13          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
| Sulfate (mg/L)          | M\\/_Q  | 27.26             | n/a        | 5/20/2021   | 10.7    | No          | 12          | 0           | No        | 0.001075     | Param Intra 1 of 3    |
|                         | 10100-0 | 21.20             | 1, u       | 0,20,2021   | 10.1    | 110         | 14          |             |           | 0.001070     |                       |

latan Generating Station Determination of Statistically Significant Increases CCR Landfill October 5, 2021

# ATTACHMENT 2

Sanitas<sup>™</sup> Configuration Settings

| Data           | Output                                  | Trend Test                    | Control Cht | Prediction Lim | Tolerance Lim | Conf/Tol Int | ANOVA | Welchs | Other Tests |
|----------------|-----------------------------------------|-------------------------------|-------------|----------------|---------------|--------------|-------|--------|-------------|
| Exclud         | le data flag                            | s: i                          |             |                |               |              |       |        |             |
| Data           | Reading O                               | ptions                        |             |                |               |              |       |        |             |
| 🔘 In           | ndividual Ob                            | oservations                   |             |                |               |              |       |        |             |
| $\bigcirc$ M   | lean of Eac                             | :h:                           | O Month     |                |               |              |       |        |             |
| $\bigcirc$ M   | ledian of Ea                            | ach:                          | Seasor      | n              |               |              |       |        |             |
| Non-I<br>Setup | Detect / Tri<br>Seasons<br>omatically F | ace Handling.<br>Process Resa |             |                |               |              |       |        |             |

| Data Output                               | Trend Test                                                                     | Control Cht                        | Prediction Lim                         | Tolerance Lim                              | Conf/Tol Int                      | ANOVA                         | Welchs                       | Other Tests |
|-------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------|------------------------------|-------------|
| Use Modified                              | Alpha (                                                                        | ).02                               |                                        |                                            |                                   |                               |                              |             |
| 🗹 Test Residua                            | ls For Normalit                                                                | y (Parametric f                    | test only) using                       | Shapiro-Wilk/Fr                            | ancia 🗸 🗸                         | at Alpha                      | = 0.01                       | $\sim$      |
| Continue                                  | Parametric if l                                                                | Jnable to Nom                      | nalize                                 |                                            |                                   |                               |                              |             |
| Transformation                            | (Parametric tes<br>r of Powers<br>) or No Transfo<br>Isform<br>ic Transformati | it only)<br>ormation<br>ion:       |                                        |                                            |                                   |                               |                              |             |
| Use Non-Parame                            | tric Test (Sen'                                                                | 's Slope/Mann                      | -Kendall) when I                       | Non-Detects Perc                           | cent > 75                         |                               |                              |             |
| Include 95.                               | % Confidence                                                                   | e Interval arou                    | und Trend Line                         |                                            |                                   |                               |                              |             |
| Automatically                             | Remove Outli                                                                   | ers (Parametri                     | c test only)                           |                                            |                                   |                               |                              |             |
| Note: there is no "/<br>Mann-Kendall (the | Always Use No<br>non-parametric                                                | on-Parametric'<br>c alternative) i | ' checkbox on th<br>s available as a r | iis tab because, f<br>report in its own ri | or consistency<br>ght, under Anal | with prior ve<br>ysis->Intraw | ersions, Sen<br>vell->Trend. | 's Slope /  |

| Data                                                                                                                                                                               | Output                                                                                                 | Trend Test                                                                                                 | Control Cht                                   | Prediction Lim                              | Tolerance Lim                                                                | Conf/Tol Int                                                                                                                                      | ANOVA                                                                                                              | Welchs                                                                                 | Other Tests             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|
| ☑ Test<br>☑ Use I<br>Use Aito                                                                                                                                                      | for Normal<br>Non-Paran<br>shison's Ad                                                                 | ity using Sha<br>netric Test wh                                                                            | apiro-Wilk/Fra<br>ien Non-Dete<br>when Non-De | ncia ∽<br>cts Percent ><br>etects Percent > | at Alpha = 0.01                                                              | ✓ O<br>O                                                                                                                                          | sformation<br>Use Ladder<br>Natural Log<br>Never Tran<br>Use Specifi                                               | r of Powers<br>or No Tran<br>sform<br>c Transform                                      | isformation<br>nation : |
| Optional Further Refinement: Use       when NDs % > 50       Use Best W Statistic         Use Poisson Prediction Limit when Non-Detects Percent > 90       Plot Transformed Values |                                                                                                        |                                                                                                            |                                               |                                             |                                                                              |                                                                                                                                                   |                                                                                                                    |                                                                                        |                         |
| Deseas                                                                                                                                                                             | ed at Alph                                                                                             | a = 0.05 ∨                                                                                                 |                                               |                                             |                                                                              |                                                                                                                                                   |                                                                                                                    |                                                                                        |                         |
| Alv<br>Facility<br>Statistic<br>Constitu<br>Downg<br>Samplin<br>Compa<br>0 1 c<br>0 2 c                                                                                            | ways Use I<br>a Evaluat<br>uents Anal<br>radient (Co<br>ng Plan<br>aring Ind<br>of 1 C<br>of 4 (''Modi | Non-Parametr<br>tions per Year<br>yzed:<br>ompliance) Wo<br>ividual Obsen<br>) 1 of 2 (<br>fied California | ic<br>ells:<br>vations<br>1 of 3<br>")        | 2<br>7<br>7<br>0 1 of 4                     | Override D Automa 2-Taileo Show D Non-Parama Non-Parama Highes Most R Most R | F: (<br>tically Remove<br>d Test Mode<br>)eselected Dat<br>etric Limit =<br>etric Limit wher<br>t/Second High<br>ecent PQL if a<br>jecent Backgro | Dverride Kap<br>Backgroun<br>a Lighter<br>Highest Bac<br>n 100% Non<br>est Backgro<br>vailable, or<br>pund Value ( | ppa:<br>d Outliers<br><br>kground Va<br>-Detects:<br>bund Value<br>MDL<br>(subst. meth | ilue V                  |

| Data Output Trend Test Control Cht Prediction Lim Tolerance                            | Lim Conf/Tol Int ANOVA Welchs Other Test         |
|----------------------------------------------------------------------------------------|--------------------------------------------------|
| Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney                                     |                                                  |
| Use Modified Alpha                                                                     | Combine Background Wells on Mann-Whitney         |
|                                                                                        |                                                  |
| Outlier Tests                                                                          |                                                  |
| <ul> <li>EPA 1989 Outlier Screening (fixed alpha of 0.05)</li> </ul>                   |                                                  |
| • Dixon's at $\alpha = 0.05 \lor$ or if n > 22 $\lor$ Rosner's at $\alpha = 0.01 \lor$ | Use EPA Screening to establish Suspected Outlier |
| O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use                             | Ladder of Powers to achieve Best W Stat          |
| ✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1                       | ~                                                |
| Stop if Non-Normal                                                                     |                                                  |
| O Continue with Parametric Test if Non-Normal                                          |                                                  |
| O Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use                                 | Ladder of Powers to achieve Best W Stat          |
| No Outlier If Less Than 3.0 Times Median                                               |                                                  |
| Apply Rules found in Ohio Guidance Document 0715                                       |                                                  |
| Combine Background Wells on the Outlier Report                                         |                                                  |
| Piper, Stiff Diagram                                                                   |                                                  |
| Combine Wells                                                                          | ✓ Label Constituents                             |
| Combine Dates                                                                          | ☑ Label Axes                                     |
| Use Default Constituent Names                                                          | Note Cation-Anion Balance (Piper only)           |
| Use Constituent Definition File Edit                                                   |                                                  |
|                                                                                        |                                                  |

Jared Morrison December 16, 2022

# ATTACHMENT 3 Groundwater Potentiometric Surface Maps



|                                                                                                                                                                     |               |                          |                                | _                                      |                               |                    | _                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|--------------------------------|----------------------------------------|-------------------------------|--------------------|----------------------|
|                                                                                                                                                                     | ₽Ŗ            | 1                        | T                              | 1                                      | T                             | T                  | 1                    |
| LEGEND<br>CCR UNIT BOUNDARY (APPROXIMATE LIMITS)<br>CCR GROUNDWATER MONITORING SYSTEM WELLS                                                                         | REV DATE      | IAY 2021) 🔼 – 📔          | <u> </u>                       | -                                      | aing ann 🛆 - I                |                    | UDENUUM     -        |
| (GROUNDWATER ELEVATION)<br>GROUNDWATER POTENTIOMETRIC SURFACE<br>ELEVATIONS<br>DIRECTION OF GROUNDWATER FLOW AND<br>CALCULATED GROUNDWATER FLOW RATE<br>(FEET/YEAR) |               | IIOMETHIC SURFACE MAP (N | CCH LANDFILL                   | Ш                                      |                               |                    | א וועב אטווטא אטוויא |
| <u>S:</u><br>HORIZONTAL DATUM: MISSOURI STATE<br>PLANE COORDINATE SYSTEM WEST ZONE<br>(NAD 83)                                                                      | SHEET TITLE   | POIEN                    |                                | PROJECT TI                             | 2021 GF                       |                    | いしちについ               |
| VERTICAL DATUM: NAVD 88                                                                                                                                             |               |                          |                                |                                        |                               |                    |                      |
| GOOGLE EARTH IMAGE DATED MARCH 27,<br>2017                                                                                                                          |               | c                        |                                | NION                                   |                               |                    |                      |
| APPROXIMATE BOUNDARY LOCATION<br>PROVIDED BY BURNS & MCDONNELL                                                                                                      |               |                          |                                |                                        | SSOURI                        |                    |                      |
| MONITORING WELL LOCATIONS PROVIDED<br>BY SHAFFER, KLINE, & WARREN                                                                                                   |               |                          |                                | JENERAI                                | ATAN, MI                      |                    |                      |
| WATER LEVEL MEASUREMENTS<br>COMPLETED ON MAY 20, 2021                                                                                                               | ENT           |                          |                                | IA IAN (                               | 1                             |                    |                      |
| ,                                                                                                                                                                   | GL            |                          |                                |                                        | Т                             |                    |                      |
| 45°<br>PLANT NORTH                                                                                                                                                  | SCS ENGINEERS |                          | E B 8575 W. 110th St, Ste. 100 | PH. (913) 681-0030 FAX. (913) 681-0012 | PROLINO. DWN. BY: Q/A RVW BY: | 27213167.21 ALR JR | TGW TRK True JRK     |
| 0 500 1000<br>FEET                                                                                                                                                  | DATE<br>FIGUF | :<br>12<br>RE 1          | 2 <u>/2</u><br>NO.             | <u>2/</u>                              | 22                            | 2                  |                      |



|                                                                                                                                                                                                                                                                                                                                                   | ₽Ŗ                                                                                                                            | 1                                              |                            | ۱<br>                                  | 1                              | I                     | 1           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|----------------------------------------|--------------------------------|-----------------------|-------------|
| LEGEND<br>CCR UNIT BOUNDARY (APPROXIMATE LIMITS)<br>CCR GROUNDWATER MONITORING SYSTEM WELLS<br>(GROUNDWATER ELEVATION)<br>GROUNDWATER POTENTIOMETRIC SURFACE<br>ELEVATIONS<br>DIRECTION OF GROUNDWATER FLOW AND<br>CALCULATED GROUNDWATER FLOW RATE<br>(FEET/YEAR)<br>S:<br>HORIZONTAL DATUM: MISSOURI STATE<br>PLANE COORDINATE SYSTEM WEST ZONE | SHEET TILE<br>CONTRACTOR OF A CONTRACTOR OF A | POLENTIOMETRIC SURFACE MAP (NOVEMBER 2021) 🔼 – | CCH LANDHILL               |                                        |                                |                       |             |
| (NAD 83)                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               | й<br>Г                                         |                            |                                        |                                | . (                   | <u>כ</u>    |
| VERTICAL DATUM: NAVD 88                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                |                            |                                        |                                |                       |             |
| GOOGLE EARTH IMAGE DATED MARCH 27, 2017                                                                                                                                                                                                                                                                                                           |                                                                                                                               | <u>c</u>                                       |                            | ATION                                  | _                              |                       |             |
| APPROXIMATE BOUNDARY LOCATION<br>PROVIDED BY BURNS & MCDONNELL                                                                                                                                                                                                                                                                                    |                                                                                                                               | 4<br>0<br>0                                    |                            | TING ST                                | SSOURI                         |                       |             |
| MONITORING WELL LOCATIONS PROVIDED<br>BY SHAFFER, KLINE, & WARREN                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                |                            | JENERA                                 | VTAN, MI.                      |                       |             |
| WATER LEVEL MEASUREMENTS<br>COMPLETED ON NOVEMBER 17, 2021                                                                                                                                                                                                                                                                                        | T<br>EVERG<br>IATAN G                                                                                                         |                                                |                            |                                        |                                |                       |             |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                             | CLIEN                                                                                                                         |                                                |                            |                                        |                                |                       |             |
| 45°<br>PLANT NORTH                                                                                                                                                                                                                                                                                                                                | SCS FNGINFFRS                                                                                                                 |                                                | 8575 W. 110th St, Ste. 100 | PH. (913) 681-0030 FAX. (913) 681-0012 | PROJ. NO. DWN. BY: Q/A RVW BY: | Z 27213167.21 ALK JRR | TGW TRK TRK |
| 0 500 1000<br>FEET                                                                                                                                                                                                                                                                                                                                | DATE                                                                                                                          | :<br>12<br>RE 1                                | 2/2<br>NO.                 | <u>2/1</u><br>3                        | 22                             |                       |             |