2020 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To: Evergy Metro, Inc.

27213167.20 | January 2021 Revision 1, April 2021 Revision 2, December 16, 2022

> 8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

Revision Number	Revision Date	Revision Sections	Summary of Revisions
0	January 29, 2021	N A	Original
1	April 7, 2021	Table of Contents Appendix A	Addition of Potentiometric Surface Maps to Appendix A.
2	December 16, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sect	ion			Page
CERT	IFICAT	FIONS		i
1	INTR		ON	
	1.1	§ 257.	.90(e)(6) Summary	
		1.1.1	§ 257.90(e)(6)(i) Initial Monitoring Program	1
		1.1.2	§ 257.90(e)(6)(ii) Final Monitoring Program	1
		1.1.3	§ 257.90(e)(6)(iii) Statistically Significant Increases	1
		1.1.4	§ 257.90(e)(6)(iv) Statistically Significant Levels	2
		1.1.5	§ 257.90(e)(6)(v) Selection of Remedy	2
		1.1.6	§ 257.90(e)(6)(vi) Remedial Activities	2
2	§ 25	7.90(e)	ANNUAL REPORT REQUIREMENTS	3
	2.1	§ 257.9	90(e)(1) Site Map	3
	2.2	§ 257.9	90(e)(2) Monitoring System Changes	3
	2.3	§ 257.9	90(e)(3) Summary of Sampling Events	3
	2.4	§ 257.9	90(e)(4) Monitoring Transition Narrative	4
	2.5	§ 257.9	90(e)(5) Other Requirements	4
		2.5.1	§ 257.90(e) Program Status	4
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Freque	ncy5
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	5
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequencies	5
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	6
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	6
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Correctiv Measures	/e
	2.6	§ 257.	.90(e)(6) OVERVIEW SUMMARY	
3		-	DMMENTS	

Appendices

Appendix A	Figures
------------	---------

- Figure 1: Site Map
- Figure 2: Potentiometric Surface Map (May 2020)

Figure 3: Potentiometric Surface Map (November 2020)

Appendix B Tables

Table 1: Appendix III with Supplemental Appendix IV Detection Monitoring ResultsTable 2: Detection Monitoring Field Measurements

- Appendix C Alternative Source Demonstration
 - C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2020).
 - C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2020).
- Addendum 1 2020 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2020 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Metro, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station.

1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2020), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2020), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

Monitoring Event	nitoring Event Monitoring Well		ASD
Fall 2019	MW-1	Fluoride	Successful
Spring 2020	MW-10	Sulfate	Successful

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to \S 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2020.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under § 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2020). Samples collected in 2020 were collected and analyzed for Appendix III detection monitoring constituents. Additionally, Appendix IV constituents were analyzed with the spring event for potential future updating of background data in conformance with EPA Unified Guidance and industry standards. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III with Supplemental Appendix IV Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include Fall 2019 semiannual detection monitoring data, verification sample data, and supplementary

Appendix IV sample data; and, the initial Fall 2020 semiannual detection monitoring data. The dates of sample collection and the monitoring program requiring the sample are also provided in these tables.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2020. Only detection monitoring was conducted in 2020.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in § 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2019 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2019 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2019 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2019 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2020 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method, and supplemental Appendix IV sample analysis,
- f. completion of the statistical evaluation of the Spring 2020 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2020 semiannual detection monitoring sampling and analysis event, and
- *h.* initiation of the Fall 2020 semiannual detection monitoring sampling and analysis event.

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2021).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2020 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2021 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2021 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as **Appendix C**:

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2020).
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2020).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that

the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.6 § 257.90(e)(6) OVERVIEW SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

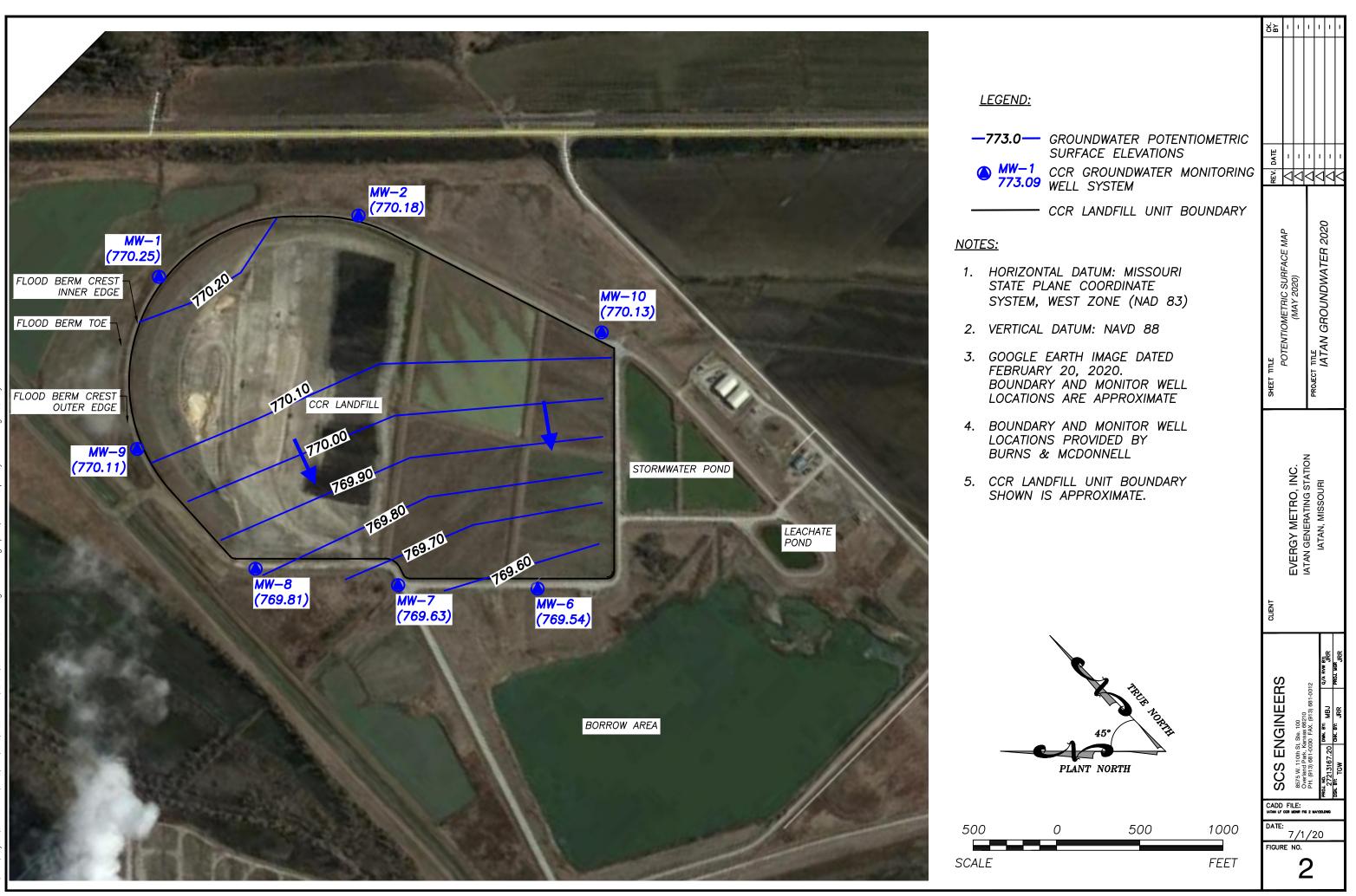
3 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the latan Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES


Figure 1: Site Map

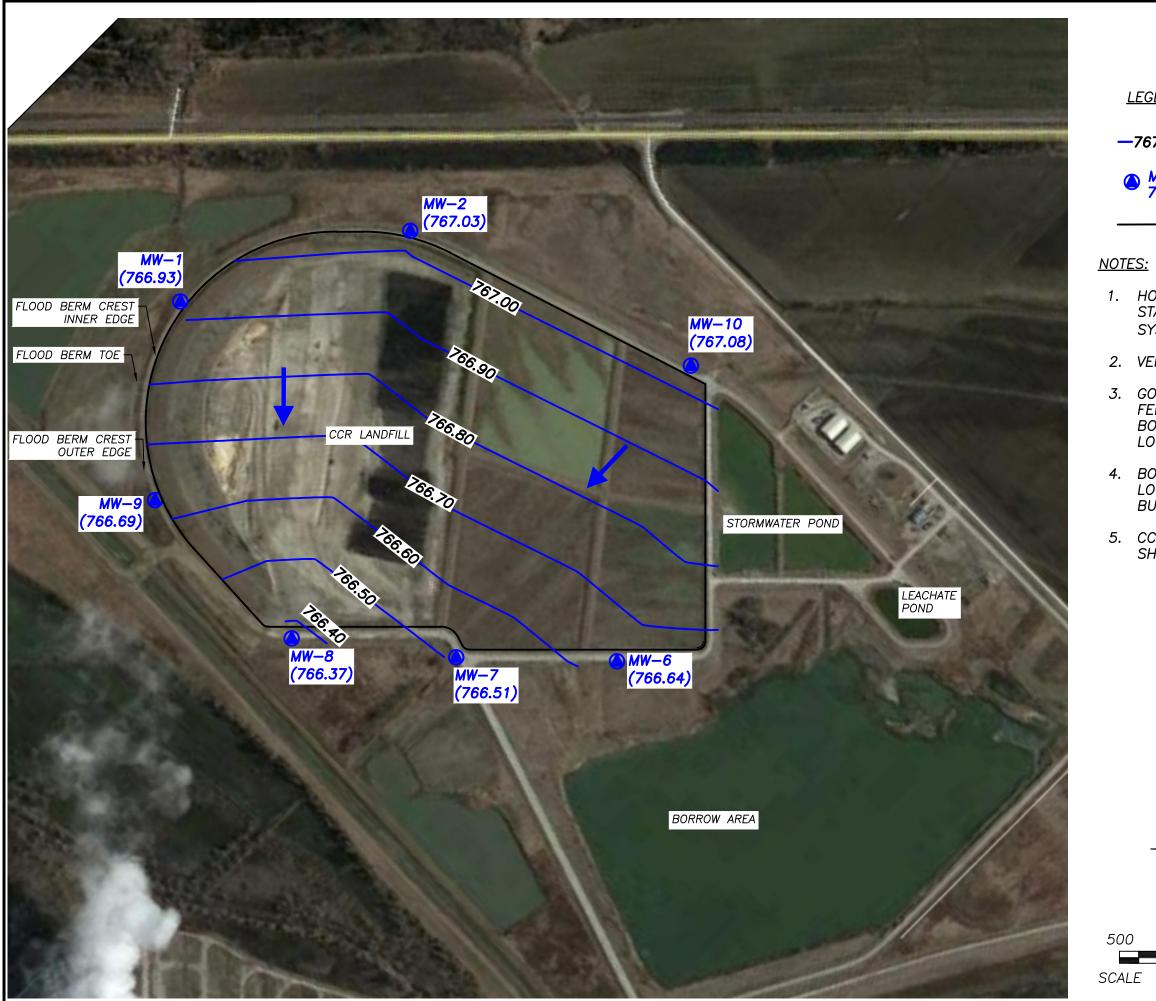

Figure 2: Potentiometric Surface Map (May 2020)

Figure 3: Potentiometric Surface Map (November 2020)

SEND: MW-1 CCR GROUNDWATER MONITORING WELL SYSTEM CCR LANDFILL UNIT BOUNDARY ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88 DOCLE EARTH MAGE DATED	<u>ш</u>	$\frac{\Delta}{2020 \text{ GROUNDWATER MONITORING}} \xrightarrow{\Delta}{-} = \frac{-}{-}$ $\frac{\Delta}{2020 \text{ GROUNDWATER MONITORING}} \xrightarrow{\Delta}{-} = \frac{-}{-}$ $\frac{\Delta}{-} = \frac{-}{-}$ $\frac{\Delta}{-} = \frac{-}{-}$
MW-1 CCR GROUNDWATER MONITORING WELL SYSTEM CCR LANDFILL UNIT BOUNDARY ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88	REV.	
MW-1 CCR GROUNDWATER MONITORING WELL SYSTEM CCR LANDFILL UNIT BOUNDARY ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88	REV.	
ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88	REV.	
BOUNDARY ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88	REV.	WATER MONITORING ろ TION ACTION REPORT
TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83) ERTICAL DATUM: NAVD 88	SITE MAP CCR LANDFILL IDWATER MONITORING SYSTEM	WATER MONITORING TION ACTION REPORT
PRIL 2018. BOUNDARY AND ONITOR WELL LOCATIONS ARE PPROXIMATE	SHEET TITLE CCR GROUN	PROJECT TITLE 2020 GROUND AND CORREC
OUNDARY AND MONITOR WELL OCATIONS PROVIDED BY URNS & MCDONNELL CR LANDFILL UNIT BOUNDARY HOWN IS APPROXIMATE.	CLIENT EVERGY METRO, INC. INTAN GENERATING STATION	WESTON, MISSOURI
0 500 1000	CADD FILE: SCS ENGINEERS B576 W, 110th St. Ster. 100 Overland Park, Kensse Ko210 Overland Park, Kensse Ko210	URE NOVZOJNIG

		-				
	Ϋ́Ε	ı	1	1	ı	-
<u>GEND:</u>						
57.0 GROUNDWATER POTENTIOMETRIC SURFACE ELEVATIONS MW-1 CCR GROUNDWATER MONITORING	V. DATE	-	-	-	-	
773.09 WELL SYSTEM	REV.	4	4		4	
UTILITY WASTE LANDFILL UNIT BOUNDARY	1	J.			<i>320</i>	
		CE MA			ER 2(
ORIZONTAL DATUM: MISSOURI TATE PLANE COORDINATE YSTEM, WEST ZONE (NAD 83)		PUTENTIOMETRIC SURFACE MAP	(NUVEMBER 2020)		ATAN GROUNDWATER 2020	
ERTICAL DATUM: NAVD 88					N GRO	I
OOGLE EARTH IMAGE DATED EBRUARY 20, 2020. OUNDARY AND MONITOR WELL OCATIONS ARE APPROXIMATE	SHEET TITLE	POIE		PROJECT TITLE	IATAI	
OUNDARY AND MONITOR WELL OCATIONS PROVIDED BY URNS & MCDONNELL						I
CR LANDFILL UNIT BOUNDARY HOWN IS APPROXIMATE.				IALAN GENERALING STAL	IATAN, MISSOURI	
	CLIENT					
HILH NORTH PLANT NORTH		FIL			8 PROJ. NO. 377313167 20 DWN. BY: ALR 0/A RWW BY: JRR	
0 500 1000	DATE	1,		5/:	21	
FEET				3		
						4

APPENDIX B

TABLES

Table 1: Appendix III with Supplemental Appendix IV Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1

CCR Landfill

Appendix III with Supplemental Appendix IV Detection Monitoring Results Evergy latan Generating Station

ntal olved lids Antimony Arsen g/L) (mg/L) (mg/L
07 <0.00400 0.013
20
59 <0.00400 0.021
40
91 <0.00400 0.021
48
25 <0.00400 0.0076
53
16 <0.00400 0.011
71
85 <0.00400 0.019
75
VU.UU4UU U.UIS
5

* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data

at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

Table 2CCR LandfillDetection Monitoring Field MeasurementsEvergy latan Generating Station

Well Number	Sample Date	рН (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-1	01/15/20	**7.04	899	13.12	1.2	-100	0.00	17.42	771.27
MW-1	02/04/20	**6.91	895	12.77	7.0	-99	0.00	17.70	770.99
MW-1	05/20/20	6.81	892	14.71	12.9	-123	0.00	18.44	770.25
MW-1	11/09/20	7.34	792	15.75	0.6	-116	0.73	21.76	766.93
MW-2	01/15/20	**7.02	1110	13.71	0.9	-100	0.00	18.30	771.31
MW-2	05/20/20	6.81	1090	15.15	11.2	-112	0.00	19.43	770.18
MW-2	11/09/20	7.26	941	15.94	10.7	-111	0.69	22.58	767.03
MW-6	01/15/20	*7.26	915	13.12	10.5	-100	0.00	18.80	770.85
MW-6	05/20/20	6.83	890	15.27	15.7	-74	0.00	20.11	769.54
MW-6	07/13/20	*6.84	857	15.44	28.1	-65	0.00	20.81	768.84
MW-6	08/25/20	*7.15	821	18.68	17.5	-117	2.55	20.69	768.96
MW-6	11/09/20	7.09	1010	16.16	9.9	-103	0.19	23.01	766.64
MW-7	01/15/20	*7.15	1120	14.21	6.5	-71	0.00	18.83	770.82
MW-7	05/20/20	6.82	897	14.69	5.0	5	0.00	20.02	769.63
MW-7	07/13/20	*6.87	814	14.58	13.8	-35	0.00	20.84	768.81
MW-7	11/09/20	7.45	719	16	5.8	-60	0.60	23.14	766.51
MW-8	01/15/20	*7.31	915	12.25	8.7	-71	0.00	18.81	770.90
MW-8	05/20/20	6.98	904	15.19	0.0	-62	0.00	19.90	769.81
MW-8	08/25/20	*7.23	915	18.86	0.0	-75	1.69	20.45	769.26
MW-8	11/09/20	7.52	879	15.8	0.0	-91	1.43	23.34	766.37
MW-9	01/15/20	**7.24	768	12.29	15.2	-100	0.00	18.75	771.15
MW-9	05/20/20	7.02	726	17.05	24.0	-17	0.00	19.79	770.11
MW-9	11/09/20	7.00	850	15.69	23.5	-112	0.16	23.21	766.69
MW-10	01/15/20	**7.18	1080	12.74	4.2	-49	0.00	18.23	771.23
MW-10	05/20/20	6.92	1040	15.51	0.0	-83	0.61	19.33	770.13
MW-10	07/13/20	**6.96	1070	15.36	15.3	-49	0.00	20.20	769.26
MW-10	08/25/20	**7.00	1120	19.34	0.0	-64	8.83	20.03	769.43
MW-10	11/09/20	7.02	1110	15.75	0.0	-59	1.34	22.38	767.08

* Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data

at RCRA Facilities, Unified Guidance, March 2009.

**Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

 μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATION

- C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2020)
- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2020)

C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2020)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2019 GROUNDWATER MONITORING EVENT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

Evergy Metro, Inc.

Presented By:

SCS ENGINEERS

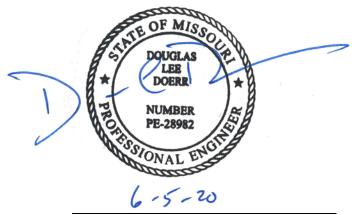
8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

June 2020

File No. 27213167.20

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Section

Page

CERT	IFICA	ΓΙΟΝS	. i					
1	Regulatory Framework1							
2	Stati	stical Results	1					
3	Alte	native Source Demonstration	2					
	3.1	Box and Whiskers Plots	2					
	3.2	Piper Diagram Plots	2					
	3.3	Time Series Plots	3					
4	Cond	lusion	3					
5	Gene	eral Comments	3					

Appendices

Appendix A	Box and Whiskers Plots
Appendix B	Piper Diagram Plots and Analytical Results
Appendix C	Time Series Plots

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on November 4, 2019. Review and validation of the results from the November 2019 Detection Monitoring Event was completed on December 12, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 15, 2020 and February 4, 2020.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-1.

Constituent/Monitoring Well	*UPL	Observation November 4, 2019	1st Verification January 15, 2020	2nd Verification February 4, 2020	
Fluoride					
MW-1	0.3201	0.488	0.326	0.329	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified a SSI above the background prediction limit for fluoride in monitoring well MW-1.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the latan Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for all of the groundwater monitoring system wells were prepared to allow comparison of the fluoride concentrations between MW-1 and the other monitoring wells both upgradient and downgradient. The fluoride box and whiskers plot for MW-1 indicates the fluoride concentrations in MW-1 are generally below the concentrations in the other wells although there can be some overlap as indicated by the whiskers. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO₄), Carbonate (CO₃), and Bicarbonate (HCO₃).

A piper diagram generated for MW-1 and leachate is provided in **Appendix B** along with analytical results. The piper diagram indicates the groundwater from monitoring well MW-1 does not plot near where the leachate plots. Therefore, the groundwater from MW-1 does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

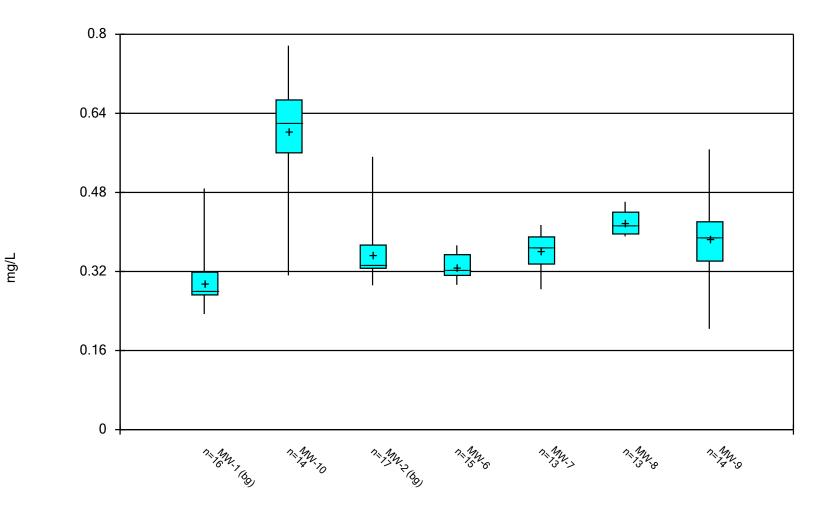
The times series plot for fluoride in monitoring well MW-1 was compared to the time series plot for fluoride in the other monitoring wells both upgradient and downgradient. The fluoride time series plot for MW-1 indicates the fluoride concentrations in MW-1 are generally below the concentrations in the other wells both upgradient and downgradient. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

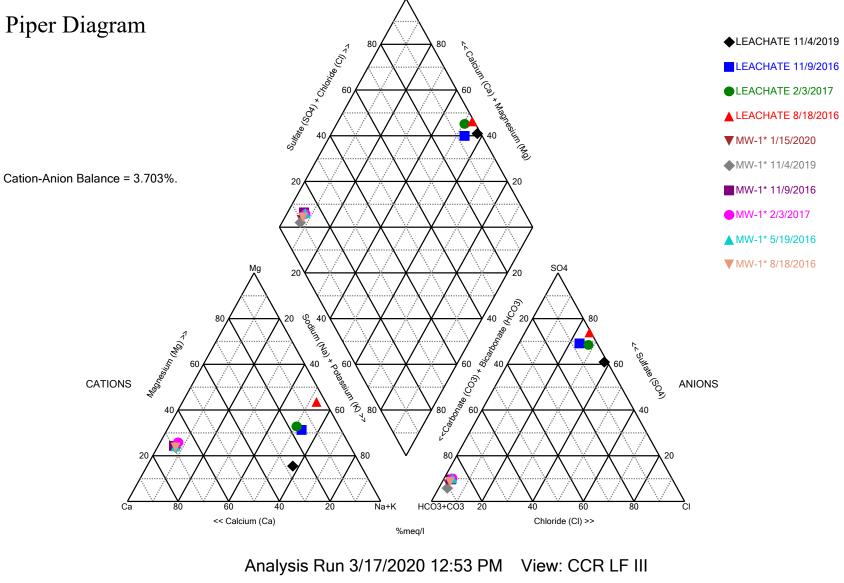
This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station. No warranties, express or implied, are intended or made.


The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional

judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Box and Whiskers Plots


Constituent: Fluoride Analysis Run 3/17/2020 12:15 PM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Box & Whiskers Plot

	latan Utility Waste I	LF Client:	SCS Engineers	Data: latan jrr	Printed 3/17/2020,	12:18 PM			
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	<u>Min.</u>	<u>Max.</u>	<u>%NDs</u>
Fluoride (mg/L)	MW-1 (bg)	16	0.2973	0.05805	0.01451	0.282	0.234	0.488	0
Fluoride (mg/L)	MW-10	14	0.6032	0.1056	0.02823	0.6225	0.312	0.777	0
Fluoride (mg/L)	MW-2 (bg)	17	0.3526	0.05801	0.01407	0.333	0.292	0.552	0
Fluoride (mg/L)	MW-6	15	0.33	0.02589	0.006685	0.325	0.293	0.373	0
Fluoride (mg/L)	MW-7	13	0.3618	0.03574	0.009914	0.369	0.284	0.414	0
Fluoride (mg/L)	MW-8	13	0.4198	0.02385	0.006616	0.415	0.391	0.461	0
Fluoride (mg/L)	MW-9	14	0.3854	0.0788	0.02106	0.3885	0.204	0.567	0

Appendix B

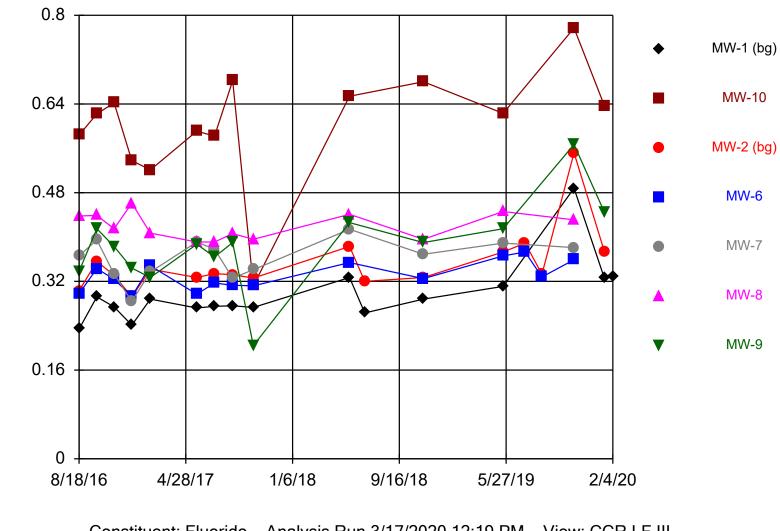
Piper Diagram Plots and Analytical Results

latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Piper Diagram

Analysis Run 3/17/2020 12:53 PM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr


Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3	CO3
MW-1* 5/19/2016	11.3	6.56	130	27.3	6.02	34.4	374	10
MW-1* 8/18/2016	11.7	6.56	134	27.4	5.93	32.4	436	10
MW-1* 11/9/2016	11.1	6	136	28.4	5.95	33.2	383	10
MW-1* 2/3/2017	11	5.93	116	26.8	6	36.9	394	10
MW-1* 11/4/2019	11.8	6.49	132	27	6.61	22.3	420	10
MW-1* 1/15/2020	11.6	6.17	129	26.7	5.32	27.3	406	10
LEACHATE 8/18/2016	9250	689	573	4240	6990	28000	644	10
LEACHATE 11/9/2016	1230	90.7	334	398	876	3460	480	10
LEACHATE 2/3/2017	1880	121	560	671	1760	6070	505	10
LEACHATE 11/4/2019	1110	51.7	460	163	2340	5230	206	10

Appendix C

Time Series Plots

mg/L

Time Series

Constituent: Fluoride Analysis Run 3/17/2020 12:19 PM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2020 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2020)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2020 GROUNDWATER MONITORING EVENT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

Evergy Metro, Inc.

Presented By:

SCS ENGINEERS

8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

December 2020

File No. 27213167.20

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Section

Page

CERT	IFICA	ΓΙΟΝS	. i					
1	Regulatory Framework1							
2	Stati	stical Results	1 2 2 2 3 3					
3 Alternative Source Demonstration								
	3.1	Box and Whiskers Plots	2					
	3.2	Piper Diagram Plots	2					
	3.3	Time Series Plots	3					
4	Conc	lusion	3					
5	Gene	eral Comments	3					

Appendices

Appendix A	Box and Whiskers Plots
Appendix B	Piper Diagram Plots and Analytical Results
Appendix C	Time Series Plots

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 20, 2020. Review and validation of the results from the May 2020 Detection Monitoring Event was completed on June 29, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 13, 2020 and August 25, 2020.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-10.

Constituent/Monitoring Well	*UPL	Observation May 20, 2020	1st Verification July 13, 2020	2nd Verification August 25, 2020	
Sulfate					
MW-10	39.5	43.1	47.7	47.9	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified a SSI above the background prediction limit for sulfate in monitoring well MW-10.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the latan Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Box and whiskers plots for all of the groundwater monitoring system wells were prepared to allow comparison of the sulfate concentrations between MW-10 and the other monitoring wells both upgradient and downgradient. The sulfate box and whiskers plot for MW-10 indicates the sulfate concentrations in MW-10 are within or below the concentration ranges for the other wells. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO₄), Carbonate (CO₃), and Bicarbonate (HCO₃).

A piper diagram generated for MW-10 and leachate is provided in **Appendix B** along with analytical results. The piper diagram indicates the groundwater from monitoring well MW-10 does not plot near

where the leachate plots. Therefore, the groundwater from MW-10 does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.3 TIME SERIES PLOTS

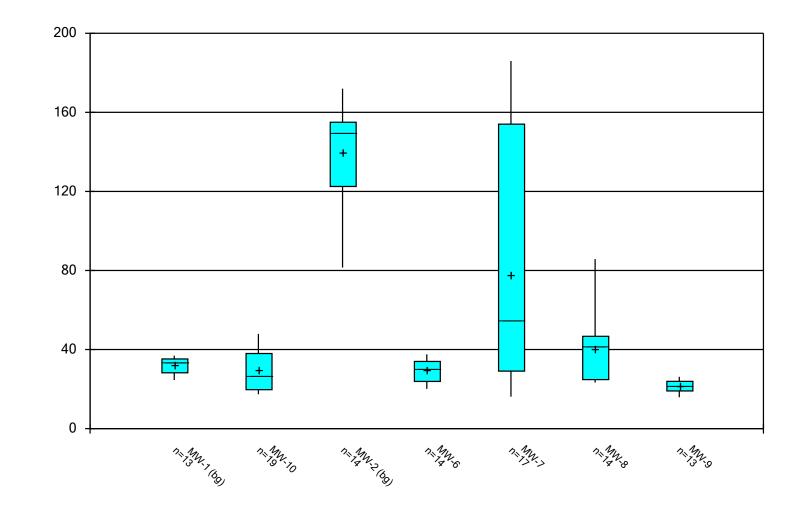
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors (i.e. "spikes"). More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

The time series plot for sulfate in monitoring well MW-10 was compared to the time series plot for sulfate in the other monitoring wells both upgradient and downgradient. The sulfate time series plot for MW-10 indicates the sulfate concentrations in MW-10 are generally below the concentrations in the other wells both upgradient and downgradient. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not

to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Box and Whiskers Plots

Box & Whiskers Plot

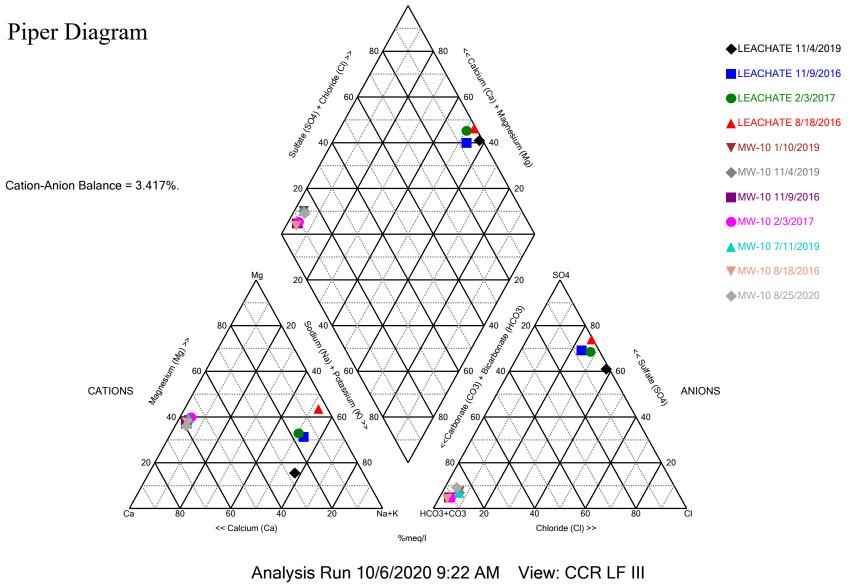
Constituent: Sulfate Analysis Run 10/6/2020 9:06 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

mg/L

Box & Whiskers Plot

	latan Utility Waste LF	Client:	SCS Engineers	Data: latan jrr I	Printed 10/6/2020, 9	9:07 AM			
Constituent W	ell I	N	Mean	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
Sulfate (mg/L) M	W-1 (bg)	13	32.23	3.873	1.074	33.2	24.6	36.9	0
Sulfate (mg/L) M	W-10	19	29.99	10.27	2.356	26.5	17.4	47.9	0
Sulfate (mg/L) M	W-2 (bg)	14	139.9	23.33	6.236	149.5	81.5	172	0
Sulfate (mg/L) M	W-6	14	29.51	5.861	1.566	30.55	20.1	37.6	0
Sulfate (mg/L) M	W-7	17	78.09	60.56	14.69	54.4	16.2	186	0
Sulfate (mg/L) M	W-8	14	40.42	16.76	4.48	41.85	23.3	85.8	0
Sulfate (mg/L) M	W-9	13	21.45	3.217	0.8922	21.5	15.9	26.2	0

Appendix B

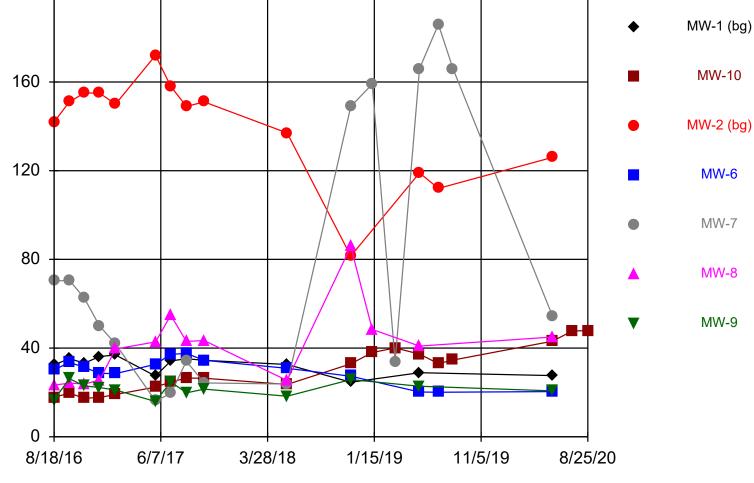

Piper Diagram Plots and Analytical Results

Piper Diagram

Analysis Run 10/6/2020 9:24 AM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Totals (ppm)	Na	K	Ca	Mg	Cl	S04	HCO3	CO3
MW-10 8/18/2016	7.77	4.45	123	47.3	7.47	17.8	480	10
MW-10 11/9/2016	7.11	4.02	124	47.3	9.15	17.4	428	10
MW-10 2/3/2017	7.2	3.93	109	46.7	10.3	19.1	442	10
MW-10 1/10/2019	8.51	5.08	157	64.3	21	38	555	10
MW-10 7/11/2019	8.12	5.11	153	63.8	22.5	33	537	10
MW-10 11/4/2019	7.41	4.57	142	54.2	21.6	33.6	526	10
MW-10 8/25/2020	11.9	4.51	163	59.1	16.4	47.9	589	10
LEACHATE 8/18/2016	9250	689	573	4240	6990	28000	644	10
LEACHATE 11/9/2016	1230	90.7	334	398	876	3460	480	10
LEACHATE 2/3/2017	1880	121	560	671	1760	6070	505	10
LEACHATE 11/4/2019	1110	51.7	460	163	2340	5230	206	10


latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Appendix C

Time Series Plots

200

Constituent: Sulfate Analysis Run 10/6/2020 9:12 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

mg/L

ADDENDUM 1

2020 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

SCS ENGINEERS

December 16, 2022 File No. 27213167.20

То:	Evergy Metro, Inc. Jared Morrison – Director, Water and Waste Programs
From:	SCS Engineers Douglas L. Doerr, P.E. John R. Rockhold, P.G.
Subject:	2020 Annual Groundwater Monitoring and Corrective Action Report Addendum 1 Evergy Metro, Inc. CCR Landfill latan Generating Station – Platte County, Missouri

The CCR Landfill at the latan Generating Station is subject to the groundwater monitoring and corrective action requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule); as described in CFR 40 257.90 through CFR 40 257.98. An Annual Groundwater Monitoring and Corrective Action (GWMCA) Report documenting activities completed in 2020 for the CCR Landfill was completed and placed in the facility's operating record on January 29, 2021, as required by the Rule. The report was subsequently revised and placed in the operating record April 7, 2021. The Annual GWMCA report was to fulfill the requirements specified in 40 CFR 257.90(e).

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

• Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

0

Jared Morrison December 16, 2022 Page 2

- January 2020 First verification sampling for the Fall 2019 detection monitoring event.
- February 2020 Second verification sampling for the Fall 2019 detection monitoring event.
- May 2020 Spring 2020 semiannual detection monitoring sampling event and Appendix IV.
- July 2020 First verification sampling for the Spring 2020detection monitoring sampling event.
- August 2020 Second verification sampling for the Spring 2020 detection monitoring sampling event.
- November 2020 Fall 2020 semiannual detection monitoring sampling event.
- Attachment 2 Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2020 included the following:

- Fall 2019 semiannual detection monitoring statistical analyses.
- Spring 2020 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2020 Spring 2020 semiannual detection monitoring sampling event.
- November 2020 Fall 2020 semiannual detection monitoring sampling event.

Jared Morrison December 16, 2022

ATTACHMENT 1

Laboratory Analytical Reports

Jared Morrison December 16, 2022

ATTACHMENT 1-1 January 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

January 24, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1180954 01/18/2020 27213167.19 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Vubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1180954 DATE/TIME: 01/24/20 09:20 PAGE: 1 of 21

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
°Sc	

Cp: Cover Page	1			
Tc: Table of Contents	2			
Ss: Sample Summary				
Cn: Case Narrative	5			
Sr: Sample Results	6			
MW-1 L1180954-01	6			
MW-2 L1180954-02	7			
MW-9 L1180954-03	8			
DUPLICATE 1 L1180954-04	9			
MW-10 L1180954-05	10			
MW-101 L1180954-06	11			
MW-104 L1180954-07	12			
DUPLICATE 2 L1180954-08	13			
MW-105 L1180954-09	14			
MW-107 L1180954-10	15			
Qc: Quality Control Summary	16			
Wet Chemistry by Method 9056A	16			
Metals (ICP) by Method 6010B	17			
GI: Glossary of Terms	18			
Al: Accreditations & Locations	19			
Sc: Sample Chain of Custody	20			

SDG: L1180954

DATE/TIME: 01/24/20 09:20

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

	0, 1111 22 0					
MW-1 L1180954-01 GW			Collected by Jason R Franks	Collected date/time 01/15/20 14:05	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/22/20 21:27	01/22/20 21:27	ELN	Mt. Juliet, TN
MW-2 L1180954-02 GW			Collected by Jason R Franks	Collected date/time 01/15/20 13:30	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/22/20 21:43	01/22/20 21:43	ELN	Mt. Juliet, TN
MW-9 L1180954-03 GW			Collected by Jason R Franks	Collected date/time 01/15/20 14:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/22/20 21:59	01/22/20 21:59	ELN	Mt. Juliet, TN
DUPLICATE 1 L1180954-04 GW			Collected by Jason R Franks	Collected date/time 01/15/20 14:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/22/20 23:38	01/22/20 23:38	ELN	Mt. Juliet, TN
MW-10 L1180954-05 GW			Collected by Jason R Franks	Collected date/time 01/15/20 12:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/22/20 23:54	01/22/20 23:54	ELN	Mt. Juliet, TN
MW-101 L1180954-06 GW			Collected by Jason R Franks	Collected date/time 01/16/20 11:00	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/23/20 00:11	01/23/20 00:11	ELN	Mt. Juliet, TN
MW-104 L1180954-07 GW			Collected by Jason R Franks	Collected date/time 01/15/20 11:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 14:47	EL	Mt. Juliet, TN
DUPLICATE 2 L1180954-08 GW			Collected by Jason R Franks	Collected date/time 01/15/20 11:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:55	EL	Mt. Juliet, TN

PROJECT: 27213167.19

SDG: L1180954 DATE/TIME: 01/24/20 09:20 ₩

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-105 L1180954-09 GW			Collected by Jason R Franks	Collected date/time 01/16/20 12:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/23/20 00:27	01/23/20 00:27	ELN	Mt. Juliet, TN
MW-107 L1180954-10 GW			Collected by Jason R Franks	Collected date/time 01/16/20 13:45	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1414370	1	01/23/20 00:44	01/23/20 00:44	ELN	Mt. Juliet, TN

SDG: L1180954

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1180954 DATE/TIME: 01/24/20 09:20

SAMPLE RESULTS - 01 L1180954

¥

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	326		100	1	01/22/2020 21:27	<u>WG1414370</u>	Tc

SAMPLE RESULTS - 02 L1180954

¥

Ss

Cn

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 'Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	374		100	1	01/22/2020 21:43	WG1414370	Tc

Collected date/time: 01/15/20 14:50

SAMPLE RESULTS - 03 L1180954

Ср

Τс

Result	Qualifier	RDL	Dilution	Analysis	Batch	
ug/l		ug/l		date / time		
ND		1000	1	01/22/2020 21:59	WG1414370	
445		100	1	01/22/2020 21:59	<u>WG1414370</u>	
	ug/l ND	ug/l ND	ug/l ug/l ND 1000	ug/l ug/l ND 1000 1	ug/l ug/l date / time ND 1000 1 01/22/2020 21:59	ug/l ug/l date / time ND 1000 1 01/22/2020 21:59 WG1414370

³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
⁹ Sc	

*

Ср

Тс

Wet Chemistry by Method 9056A

	Result	Qualifier F	RDL	Dilution	Analysis	Batch
Analyte	ug/l	ι	ug/l		date / time	
Chloride	ND	1	1000	1	01/22/2020 23:38	WG1414370
Fluoride	438	1	100	1	01/22/2020 23:38	WG1414370

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
[°] Al
⁹ Sc

SDG: L1180954 DATE/TIME: 01/24/20 09:20

*

Ср

	, ,							11	\sim
		Result	Qualifier	RDL	Dilution	Analysis	Batch	1	C
Analyte		ug/l		ug/l		date / time		2	_
Fluoride		637		100	1	01/22/2020 23:54	WG1414370	-	Т

² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
⁹ Sc	

*

Ср

²Tc

Wet Chemistry by Method 9056A

Desult	0		Dilution	Aventie	Datab	
Result	Qualifier	RDL	Dilution	Analysis	Batch	
ug/l		ug/l		date / time		[
6380		1000	1	01/23/2020 00:11	WG1414370	
380		100	1	01/23/2020 00:11	WG1414370	L
	6380	ug/l 6380	ug/l ug/l 6380 1000	ug/l ug/l 6380 1000 1	ug/l ug/l date / time 6380 1000 1 01/23/2020 00:11	ug/l ug/l date / time 6380 1000 1 01/23/2020 00:11 WG1414370

^³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

SDG: L1180954

Collected date/time: 01/15/20 11:50

SAMPLE RESULTS - 07 L1180954

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ch
Analyte	ug/l		ug/l		date / time		2
Calcium	55400		1000	1	01/23/2020 14:47	WG1414408	Tc

Τс

Metals (ICP) by Method 6010B

							1'0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ľ
Analyte	ug/l		ug/l		date / time		2
Calcium	55900		1000	1	01/23/2020 15:55	WG1414408	T

³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl
Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl
⁵ Sr ⁶ Qc ⁷ Gl
⁵ Sr ⁶ Qc ⁷ Gl
⁶ Qc ⁷ Gl
⁶ Qc ⁷ Gl
⁷ Gl
⁷ Gl
8
8
8
8
AI
°Sc

SAMPLE RESULTS - 09 L1180954

¥

Ss

Cn

Qc

GI

Â

Sc

	, ,							' Cn l
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte		ug/l		ug/l		date / time		2
Chloride		20400		1000	1	01/23/2020 00:27	WG1414370	⁻Tc

ACCOUNT:	
SCS Engineers - KS	

*

Wet Chemistry by Method 9056A

Wet Chemistry by Method 3030A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср	
Analyte	ug/l		ug/l		date / time			2	
Chloride	34300		1000	1	01/23/2020 00:44	WG1414370		⁻Tc	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

SDG: L1180954 DATE/TIME: 01/24/20 09:20

PAGE: 15 of 21

WG1414370

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY <u>L1180954-01,02,03,04,05,06,09,10</u>

(MB) R3493292-1	01/22/20 10:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		51.9	1000	
Fluoride	U		9.90	100	

L1180954-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1180954-03 01/22/20	0 21:59 • (DUP)	R3493292-5	01/22/20	22:16		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	ND	821	1	2.33	J	15
Fluoride	445	437	1	1.79		15

Laboratory Control Sample (LCS)

(LCS) R3493292-2 01/22/	/20 10:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39100	97.7	80.0-120	
Fluoride	8000	7950	99.4	80.0-120	

L1180954-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180954-03 01/22/20 21:59 • (MS) R3493292-6 01/22/20 22:32 • (MSD) R3493292-7 01/22/20 22:49												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	ND	46900	47200	92.2	92.7	1	80.0-120			0.588	15
Fluoride	5000	445	5030	5080	91.7	92.7	1	80.0-120			0.989	15

Ср

Cn

Sr

Qc

GI

A

WG1414408

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3493571-1 01/2	23/20 14:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3493571-2 01/23/20	D 14:41 • (LCSD)	R3493571-3 (01/23/20 14:44							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	9550	9860	95.5	98.6	80.0-120			3.16	20

L1180954-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180954-07 01/23/2	20 14:47 • (MS) F	R3493571-5 01/	/23/20 14:52 •	(MSD) R34935	71-6 01/23/20	14:54						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	55400	64000	64000	85.4	86.3	1	75.0-125			0.145	20

SDG: L1180954 DATE/TIME: 01/24/20 09:20

Τс

GLOSSARY OF TERMS

*

Ср

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

PROJECT: 27213167.19

SDG: L1180954 DATE/TIME: 01/24/20 09:20

PAGE: 18 of 21

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Neva
Arizona	AZ0612	New I
Arkansas	88-0469	New.
California	2932	New I
Colorado	TN00003	New Y
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgin
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyom

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910

Third Party Federal Accreditations

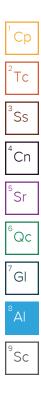
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213167.19

L1180954

PAGE: 19 of 21

01/24/20 09:20

CCC Frankran KC			Billing Info	ormation:					£	Analysis	Container /	Preservative	Chain of Custody Page of			
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			22							- Pace, Nettone Co	Analytical [®] Inter for Teeting & Innovetio	
Report to: Jason Franks				Email To: jfranks@scsengineers.com;										12065 Lebanon Rd		
Project City/State			Jay.martin	jay.martin@kcpl.com;					res					Mount Juliet, TN 37 Phone: 615-758-585	· 2006-05	
Description: Evergy latan Generating Statio Collected			MES	TON, MC	Please Circ PT MT CT				NoF					Phone: 800-767-585 Fax: 615-758-5859		
Phone: 913-681-0030 Fax: 913-681-0012	Client Proje 2721316		Lab Project # AQUAOPKS-IATAN				33	res	HDPE-I	Se l				SDS # 6180954		
Collected by (print):	Site/Facilit	y ID #		P.O. #			E-HNC	PE-Nol	125m	E-Nol				M165		
Collected by (signature):	Rush? (Lab MUST Be M Same Day Five Day Next Day5 Day (Day y (Rad Only) Date Results Needed				250mHDPE-HND3	25mlHDPE-NoPres	Fluoride 125miHDPE-NoPres	(5mlHDPE-NoPres				5056)295		
			10 Day (Rad Only)					r i	le, F	e 12				PM: 206 - Jeff C PB:	arr	
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Cntrs	Calcium	Chloride	Chloride,	Fluoride				Shipped Via:	Sample # (lab only)	
MW-1	GRA	GW	-7	1/15/2020	1405	1	0	0	0	T X					- 01	
WW-2	T	GW	-	11100	1330	1				x			4			
MŴ-9		GW	-	1	1450	1			X						07	
DUPLICATE 1		GW	-		1450	1			X						04	
MW-9 MS/MSD		GW	-		1450	1			X						-09	
WW-10		GW	-	1	1250	1				x				-05	-06-	
MW-101		GW	-	1/10/202	1.55	1			x					-06	-67	
WW-104		GW	-	1.1000	1150	1	X							-07	-08	
DUPLICATE 2		GW	(1150	1	x							-08	-09-	
MW-104 MS/MSD	V	GW	1		IISD	1	x	_							-10	
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay WW - WasteWater W - Drinking Water	Remarks:									pH Flow		emp	COC Seal COC Sign Bottles Correct	ample Receipt Ch Present/Intact; ed/Accurate; arrive intact; bottles used; nt volume sent;	ecklist NP Y N VY N VY N	
OT - Other UPSFedEx Coul Relinquished by : (Signature) Date: Relinquished by : (Signature) Date:		ier <u>SUA</u> Tracking # Time: Received by: (Signatur			ura H	,10	7	Trip Blank Received: Yes / No HCL / MeoH			VOA Zero Preserva	Sufficient volume sent: _YN If Applicable _YN VOA Zero Headspace: _YN Preservation Correct/Checked: _YN RAD Screen <0.5 mR/hr:				
		Date:	Time: Received by: (Signatur				<u>v</u>		100	remp:		TBR lottles Received:	If preserva	tion required by Logi	n: Date/Time	
elinquished by : (Signature)	Relinquished by : (Signature) Date:		Ti	Time: Received for lab by: (S				Signature)			Date: Time: 1-18-20 8ch				Condition: NCF / OK	

			Billing Info	rmation:				1	A	nalvsis /	Contain	er / Preserva	tive		Chain of Custody	Page of	
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W.	ounts Payable 5 W. 110th Street erland Park, KS 66210											Netional Cen	nalytical [®] ter for Teating & Innovatio	
Report to: Jason Franks				franks@scsenginee @kcpl.com;	rs.com;				res						12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5858	2. 新聞会行	
Description: Evergy latan Generating Statio Collected:		City/State Collected:	Please Circle:					1	NoP					Phone: 800-767-5859 Fax: 615-758-5859			
Phone: 913-681-0030 ax: 913-681-0012	Client Project 27213167.1		× _~.	Lab Project # AQUAOPKS-I/	ATAN		250miHDPE-HNO3	Pres	HDPE	Pres						- Caurin	
ASON RERAM	JASON & FRANK			P.O. #				DPE-No	e 125n	DPE-No					Table # Acctnum: AQUAOPKS		
lected by (signature): Rush? (Lab MUST Be Notified) Same DayFive Day Next Day5 Day (Rad Only) Two Day10 Day (Rad Only)		Day (Rad Only)	Quote # Date Results Needed				125mlHDPE-NoPres	Chloride 125mlHDPE-NoPres Chloride, Fluoride 125mlHDPE-NoPres	125mIHDPE-NoPres				Template: T136056 Prelogin: P750295 PM: 206 - Jeff Carr				
Packed on Ice N Y Sample ID	Three Da		Depth	Date	Time	No. of Cntrs	Ę	Chloride	oride	Fluoride					PB: Shipped Via:		
			Т		I	4	Cal		ਲ	Flu					Remarks	Sample # (lab only)	
WW-105	GRAB	GW	-	1/16/2020	1250	1		X							-09	-++	
MW-107		GW	-	1	1345	1		X							-10	-10	
															jii a		
				<u>.</u>		2											
I																	
	2 							-									
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater		1				рн Flow					_ Temp		COC Sea COC Sig Bottles	Sample Receipt Checklist COC Seal Present/Intact:MPYN COC Signed/Accurate:YN Bottles arrive intact:YN Correct bottles used:N			
DW - Drinking Water DT - Other	Samples retur UPS Fe	ned via: dExCou	urier <u>5</u>	WA Tra	acking #								_	Sufficient volume sent: ZY If Applicable YOA Zero Headspace; Y			
Relinquished by : (Signature)			Time: Ref 1521	ceived by: (Sign	A	ul	l		Trip Blan	nk Recei	ved: Yes /v HCL / TBR	MeoH	RAD Sci	vation Correct/Che ceen <0.5 mR/hr:			
telinquisped by : (6ignature)	M	Date:	1	Time: Ref	ceived by: (Sign	ature)				Temp: 1. 7+0.	2 = 21	C Bottles Re	peived:	If preser	vation required by Log	in: Date/Time	
Relinquished by : (Signature)		Date:		Tíme: Re	ceived for lab b	y: (Signa	ature	~		Date:	2-0	Time:	to	Hold:		Condition: NCF / OK	

ANALYTICAL REPORT

January 24, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1180951 01/18/2020 27213167.19 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1180951 DATE/TIME: 01/24/20 09:12

TABLE OF CONTENTS

₩	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ AI	
°Sc	

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-1 L1180951-01	6
MW-2 L1180951-02	7
MW-9 L1180951-03	8
MW-10 L1180951-04	9
MW-101 L1180951-05	10
MW-104 L1180951-06	11
MW-105 L1180951-07	12
MW-107 L1180951-08	13
Qc: Quality Control Summary	14
Wet Chemistry by Method 2320 B-2011	14
Wet Chemistry by Method 9056A	15
Metals (ICP) by Method 6010B	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

SDG: L1180951 DATE/TIME: 01/24/20 09:12

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLES	ONE LAB. NATIONW				
MW-1 L1180951-01 GW			Collected by Jason R Franks	Collected date/time 01/15/20 14:05	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 14:49	01/21/20 14:49	DGR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1415117	1	01/22/20 22:33	01/22/20 22:33	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:28	EL	Mt. Juliet, TN
MW-2 L1180951-02 GW			Collected by Jason R Franks	Collected date/time 01/15/20 13:30	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
viction and the second s	Baten	Dilution	date/time	date/time	Analyst	Eocation
Net Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 14:58	01/21/20 14:58	DGR	Mt. Juliet, TI
Net Chemistry by Method 9056A	WG1415117	1	01/22/20 23:26	01/22/20 23:26	ELN	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1415117	5	01/23/20 05:41	01/23/20 05:41	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:31	EL	Mt. Juliet, TN
MW-9 L1180951-03 GW			Collected by Jason R Franks	Collected date/time 01/15/20 14:50	Received da 01/18/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 15:16	01/21/20 15:16	DGR	Mt. Juliet, TI
Net Chemistry by Method 9056A	WG1415117	1	01/22/20 23:39	01/22/20 23:39	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:34	EL	Mt. Juliet, TI
MW-10 L1180951-04 GW			Collected by Jason R Franks	Collected date/time 01/15/20 12:50	Received date/time 01/18/20 08:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 15:24	01/21/20 15:24	DGR	Mt. Juliet, TI
Net Chemistry by Method 9056A	WG1415117	1	01/22/20 23:52	01/22/20 23:52	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:36	EL	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-101 L1180951-05 GW			Jason R Franks	01/16/20 11:00	01/18/20 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 15:32	01/21/20 15:32	DGR	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1415117	1	01/23/20 00:05	01/23/20 00:05	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:44	EL	Mt. Juliet, Tl
MW-104 L1180951-06 GW			Collected by Jason R Franks	Collected date/time 01/16/20 11:50	Received da 01/18/20 08:	
		D.1:				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 15:49	01/21/20 15:49	DGR	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1415117	5	01/23/20 05:54	01/23/20 05:54	ELN	Mt. Juliet, TI
	WG1414408	1	01/22/20 09:57	01/23/20 15:47	EL	Mt. Juliet, TN

PROJECT: 27213167.19

SDG: L1180951 DATE/TIME: 01/24/20 09:12

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received da	te/time
MW-105 L1180951-07 GW			Jason R Franks	01/16/20 12:50	01/18/20 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 15:57	01/21/20 15:57	DGR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1415117	5	01/23/20 06:08	01/23/20 06:08	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:50	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-107 L1180951-08 GW			Jason R Franks	01/16/20 13:45	01/18/20 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1414276	1	01/21/20 16:05	01/21/20 16:05	DGR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1415117	5	01/23/20 06:21	01/23/20 06:21	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1414408	1	01/22/20 09:57	01/23/20 15:52	EL	Mt. Juliet, TN

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

*

Ср

Tc

SDG: L1180951 DATE/TIME: 01/24/20 09:12

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213167.19

SDG: L1180951 DATE/TIME: 01/24/20 09:12

PAGE: 5 of 20

SAMPLE RESULTS - 01 L1180951

Cn

⁷Gl

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	406000		20000	1	01/21/2020 14:49	WG1414276	Tc
Alkalinity,Carbonate	ND		20000	1	01/21/2020 14:49	WG1414276	
Sample Narrative							³ Ss

Sample Narrative:

L1180951-01 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	· · · · · · · · · · · · · · · · · · ·					 5
	Result	Qualifier RDL	Dilution	Analysis	Batch	ິSr
Analyte	ug/l	ug/l		date / time		
Chloride	5320	1000	1	01/22/2020 22:33	WG1415117	⁶ OC
Sulfate	27300	5000	1	01/22/2020 22:33	WG1415117	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		Ŭ
Calcium	129000		1000	1	01/23/2020 15:28	WG1414408	L
Magnesium	26700		1000	1	01/23/2020 15:28	WG1414408	9
Potassium	6170		1000	1	01/23/2020 15:28	WG1414408	
Sodium	11600		1000	1	01/23/2020 15:28	WG1414408	

SDG: L1180951 Collected date/time: 01/15/20 13:30

SAMPLE RESULTS - 02

*

Cn

⁷Gl

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	427000		20000	1	01/21/2020 14:58	WG1414276	Tc
Alkalinity,Carbonate	ND		20000	1	01/21/2020 14:58	WG1414276	
							³ Ss

Sample Narrative:

L1180951-02 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

						 5
	Result	Qualifier RDL	Dilution	Analysis	Batch	ິSr
Analyte	ug/l	ug/l		date / time		
Chloride	6840	1000	1	01/22/2020 23:26	WG1415117	⁶ Oc
Sulfate	125000	25000	5	01/23/2020 05:41	WG1415117	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Calcium	165000		1000	1	01/23/2020 15:31	WG1414408	
Magnesium	33800		1000	1	01/23/2020 15:31	WG1414408	
Potassium	5710		1000	1	01/23/2020 15:31	WG1414408	
Sodium	12400		1000	1	01/23/2020 15:31	WG1414408	

Collected date/time: 01/15/20 14:50

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	350000		20000	1	01/21/2020 15:16	WG1414276	² Τ(
Alkalinity,Carbonate	ND		20000	1	01/21/2020 15:16	WG1414276	
Comple Negrative							³ Ss

Sample Narrative:

L1180951-03 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	23400		5000	1	01/22/2020 23:39	WG1415117

	Result	Qualifier	RDL	Dilution	Analysis	Batch	G
Analyte	ug/l		ug/l		date / time		8
Calcium	104000		1000	1	01/23/2020 15:34	WG1414408	Ă
Magnesium	28400		1000	1	01/23/2020 15:34	WG1414408	
Potassium	4940		1000	1	01/23/2020 15:34	WG1414408	⁹ Sc
Sodium	6440		1000	1	01/23/2020 15:34	WG1414408	

Collected date/time: 01/15/20 12:50

SAMPLE RESULTS - 04

Ss

Cn

⁷Gl

Wet Chemistry by Method 2320 B-2011

Analyte ug/l date / time Alkalinity,Bicarbonate 496000 20000 1 01/21/2020 15:24 WG1414276 Alkalinity,Carbonate ND 20000 1 01/21/2020 15:24 WG1414276		Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
· · · · · · · · · · · · · · · · · · ·	Analyte	ug/l		ug/l		date / time		2
Alkalinity,Carbonate ND 20000 1 01/21/2020 15:24 WG1414276	Alkalinity,Bicarbonate	496000		20000	1	01/21/2020 15:24	WG1414276	Tc
	Alkalinity,Carbonate	ND		20000	1	01/21/2020 15:24	WG1414276	

Sample Narrative:

L1180951-04 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

						 5
	Result Q	ualifier RDL	Dilution	Analysis	Batch	ິSr
Analyte	ug/l	ug/l		date / time		
Chloride	18100	1000	1	01/22/2020 23:52	WG1415117	⁶ OC
Sulfate	28500	5000	1	01/22/2020 23:52	WG1415117	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	8
Analyte	ug/l		ug/l		date / time		Ĭ
Calcium	134000		1000	1	01/23/2020 15:36	WG1414408	
Magnesium	52800		1000	1	01/23/2020 15:36	WG1414408	9
Potassium	4390		1000	1	01/23/2020 15:36	WG1414408	Ň
Sodium	7650		1000	1	01/23/2020 15:36	WG1414408	

Collected date/time: 01/16/20 11:00

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	513000		20000	1	01/21/2020 15:32	WG1414276	Tc
Alkalinity,Carbonate	ND		20000	1	01/21/2020 15:32	WG1414276	
							³ Ss

Sample Narrative:

L1180951-05 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	ND		5000	1	01/23/2020 00:05	WG1415117

	Result	Qualifier	RDL	Dilution	Analysis	Batch	GI
Analyte	ug/l		ug/l		date / time		8
Calcium	131000		1000	1	01/23/2020 15:44	WG1414408	ĬA
Magnesium	33900		1000	1	01/23/2020 15:44	WG1414408	
Potassium	5540		1000	1	01/23/2020 15:44	WG1414408	°Sc
Sodium	36600		1000	1	01/23/2020 15:44	WG1414408	50

Collected date/time: 01/16/20 11:50

SAMPLE RESULTS - 06 L1180951

Cn

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	178000		20000	1	01/21/2020 15:49	WG1414276	Tc
Alkalinity,Carbonate	ND		20000	1	01/21/2020 15:49	WG1414276	
Sample Narrative							³ Ss

Sample Narrative:

L1180951-06 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ٌSr
Analyte	ug/l		ug/l		date / time		
Chloride	23500		5000	5	01/23/2020 05:54	WG1415117	⁶ Qc
Sulfate	145000		25000	5	01/23/2020 05:54	WG1415117	
							7
Metals (ICP) by I	Method 6010B						Í GI

	Result	Qualifier	RDL	Dilution	Analysis	Batch	8
Analyte	ug/l		ug/l		date / time		Ă١
Magnesium	11600		1000	1	01/23/2020 15:47	WG1414408	
Potassium	3680		1000	1	01/23/2020 15:47	WG1414408	⁹ Sc
Sodium	78000		1000	1	01/23/2020 15:47	WG1414408	

Collected date/time: 01/16/20 12:50

SAMPLE RESULTS - 07

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	226000		20000	1	01/21/2020 15:57	WG1414276	Tc
Alkalinity,Carbonate	ND		20000	1	01/21/2020 15:57	WG1414276	
							³ Ss

Sample Narrative:

L1180951-07 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	308000		25000	5	01/23/2020 06:08	WG1415117

	Result	Qualifier	RDL	Dilution	Analysis	Batch	G
Analyte	ug/l		ug/l		date / time		8
Calcium	77900		1000	1	01/23/2020 15:50	WG1414408	ĬAĬ
Magnesium	18100		1000	1	01/23/2020 15:50	WG1414408	
Potassium	4530		1000	1	01/23/2020 15:50	WG1414408	⁹ Sc
Sodium	130000		1000	1	01/23/2020 15:50	WG1414408	50

Collected date/time: 01/16/20 13:45

SAMPLE RESULTS - 08

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	ug/l		ug/l		date / time		
Alkalinity,Bicarbonate	154000		20000	1	01/21/2020 16:05	WG1414276	
Alkalinity,Carbonate	ND		20000	1	01/21/2020 16:05	WG1414276	
							3

Sample Narrative:

L1180951-08 WG1414276: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	206000		25000	5	01/23/2020 06:21	WG1415117

	Result	Qualifier	RDL	Dilution	Analysis	Batch	GI
Analyte	ug/l		ug/l		date / time		8
Calcium	38300		1000	1	01/23/2020 15:52	WG1414408	٦A
Magnesium	7690		1000	1	01/23/2020 15:52	WG1414408	
Potassium	5810		1000	1	01/23/2020 15:52	WG1414408	°Sc
Sodium	122000		1000	1	01/23/2020 15:52	WG1414408	50

WG1414276

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

Ср

⁺Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3492737-1 01/21/	20 13:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	3930	J	2710	20000
Alkalinity,Carbonate	U		2710	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

L1180372-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1180372-01 01/21/2	20 13:52 • (DUP) F	R3492737-2 (01/21/20 14	:00			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Alkalinity,Bicarbonate	108000	108000	1	0.0384		20	
Alkalinity,Carbonate	ND	0.000	1	0.000		20	

Sample Narrative:

OS: Endpoint pH 4.5

DUP: Endpoint pH 4.5

L1180951-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1180951-05 01/21/20 15:32 • (DUP) R3492737-4 01/21/20 15:40									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Alkalinity,Bicarbonate	513000	514000	1	0.209		20			
Alkalinity,Carbonate	ND	0.000	1	0.000		20			

Sample Narrative:

OS: Endpoint pH 4.5 DUP: Endpoint pH 4.5

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1180951 DATE/TIME: 01/24/20 09:12

PAGE: 14 of 20

WG1415117

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3493466-1 (01/22/20 19:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	418	J	51.9	1000	
Sulfate	564	J	77.4	5000	

L1180951-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1180951-01 01/22/20 22:33 • (DUP) R3493466-3 01/22/20 22:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	Limits
Analyte	ug/l	ug/l		%		%
Chloride	5320	5210	1	2.19		15
Sulfate	27300	27000	1	1.21		15

L1181246-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1181246-01 01/23/20	04:36 • (DUP)	R3493466-6	01/23/20 (04:49					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Chloride	68300	69900	1	2.38		15			
Sulfate	23200	23900	1	3.34		15			

Laboratory Control Sample (LCS)

(LCS) R3493466-2 01/2	22/20 20:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39700	99.3	80.0-120	
Sulfate	40000	40100	100	80.0-120	

L1180951-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180951-01 01/22/20) 22:33 • (MS) R	3493466-4 01	/22/20 23:00	• (MSD) R3493	466-5 01/22/2	0 23:13						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	5320	58300	58100	106	105	1	80.0-120			0.346	15
Sulfate	50000	27300	80300	80100	106	106	1	80.0-120			0.244	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.19	L1180951	01/24/20 09:12	15 of 20

[°]Sr [°]Qc ⁷Gl

⁺Cn

Â

QUALITY CONTROL SUMMARY <u>L1180951-01,02,03,04,05,06,07,08</u>

L1181246-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1181246-01 01/23/20	0 04:36 • (MS) R	3493466-7 01	/23/20 05:0	2			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	68300	116000	96.3	1	80.0-120	E
Sulfate	50000	23200	75400	105	1	80.0-120	

SDG: L1180951 DATE/TIME: 01/24/20 09:12

PAGE: 16 of 20

WG1414408

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Ср

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3493571-1 01/23/20 14:39

	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Calcium	U		46.3	1000	
Magnesium	45.8	J	11.1	1000	
Potassium	U		102	1000	
Sodium	U		98.5	1000	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3493571-2 01/23/20 14:41 • (LCSD) R3493571-3 01/23/20 14:44										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	9550	9860	95.5	98.6	80.0-120			3.16	20
Magnesium	10000	9390	9690	93.9	96.9	80.0-120			3.12	20
Potassium	10000	9100	9340	91.0	93.4	80.0-120			2.67	20
Sodium	10000	9610	9930	96.1	99.3	80.0-120			3.24	20

L1180954-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180954-07 01/23/20 14:47 • (MS) R3493571-5 01/23/20 14:52 • (MSD) R3493571-6 01/23/20 14:54												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	55400	64000	64000	85.4	86.3	1	75.0-125			0.145	20
Magnesium	10000	11500	20800	20800	92.4	92.7	1	75.0-125			0.141	20
Potassium	10000	3680	13100	13000	94.0	93.0	1	75.0-125			0.821	20
Sodium	10000	78000	85800	85800	77.9	78.3	1	75.0-125			0.0424	20

SDG: L1180951 DATE/TIME: 01/24/20 09:12

GLOSSARY OF TERMS

*

Ср

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

The identification of the analyte is acceptable; the reported value is an estimate.

J

PROJECT: 27213167.19

SDG: L1180951 DATE/TIME: 01/24/20 09:12

PAGE: 18 of 20

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.19

L1180951

01/24/20 09:12

	$\phi = \frac{1}{2} \phi$		Billing Information:						A	nalvsis /	/ Contai	ner / Preserv	ative	Fernander	Chain of Custody	Page of					
8575 V		Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			8575 W. 110th Street											Analytical [®] Iter for Testing & Innovail					
eport to: ason Franks			jay.martin	franks@scsenginee @kcpl.com;	rs.com;			NO3			oPres				12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585						
roject escription: Evergy latan Gene	erating Statio	City/State Collected:	LIA	STAN	Please Circl		es	H	NO		E-N				Phone: 800-767-585 Fax: 615-758-5859	0.33%					
hone:913-681-0030 ax: 913-681-0012	Client Project 27213167.1			Lab Project # AQUAOPKS-I	ATAN		125mlHDPE-NoPres	250mlHDPE-HNO3	6010 250mHDPE-HNO3	125mlHDPE-NoPres	125mlHDPE-NoPres					1 <i>30951</i> 164					
ollected by (print):	and the state of the second second	Site/Facility ID # P.O. # Rush? (Lab MUST Be Notified). Quote #			MIHDI	6010 250	50ml	HDPE-	9056 12				Acc	AVFRO							
ollected by (signature):	Rush? (L Same Da						1111111112	1. 1.	6010 2	125ml	1				Template: T152 Prelogin: P750	293					
nmediately acked on Ice N Y	Two Day			Next Day 5 Day (R Two Day 10 Day (Next Day 5 D		Next Day 5 Day 10 Day 10 Day		Date Resu	lts Needed	No. of	, ALKCA	Mg, Na	1	1 10	Chioride			PM: 206 - Jeff Ca PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	ALKBI,	Ca, K,	K, Mg, Na	s04 -	S04, (Shipped Via: Remarks	Sample # (lab only)					
//W-1	GRAC	GW	-	1/15/202	6 1405	3	X	X			X					-01					
/w-2		GW	-		1330	3	X	X			X					02					
1W-9		GW	-		1450	3	X	X		x						03					
1W-10		GW	-		1250	3	X	X			X					04					
/W-101		GW	-	1/16/2020	1100	3	X	X		x						09					
/W-104		GW	-		1150	3	X		X		X					06					
NW-105		GW	-		1250	3	X	x		х						07					
WW-107		GW	1	V	1345	3	X	X		X						08					
					-776) - 184																
Matrix: 55 - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Samples retur		5		acking #					pH Flov	-	Temp Other		COC Sea COC Sig Bottles Correct	ample Receipt Ch Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent: <u>If Applicab</u>						
Relinquished by (Signature)	_UPS _ Fe	Date:	1	AON J	ceived by: (Signat	ture	en	E.		Trip Bla	nk Rece		/ MeoH	Preserv	o Headspace: ation Correct/Ch een <0.5 mR/hr:	YY					
Relinquished by : (Signature)		Date:	10000		ceived by: (Signat	ture)	-14			Temp: 1, 9+0		C Bottles		If preserv	ration required by Log	gin: Date/Time					
Relinquished by : (Signature)		Date:	i and	Time: Re	eived for lab by:	(Signa	ture)			Date:	8-	Time:	84	Hold:		Condition: NCF / OK					

Jared Morrison December 16, 2022

ATTACHMENT 1-2 February 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1186248 02/05/2020 27213167.19 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1186248 DATE/TIME: 02/10/20 08:38

PAGE: 1 of 18

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1186248-01	5
DUPLICATE 1 L1186248-02	6
MW-104 L1186248-03	7
DUPLICATE 2 L1186248-04	8
MW-105 L1186248-05	9
MW-107 L1186248-06	10
DUPLICATE 3 L1186248-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SDG: L1186248

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-1 L1186248-01 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 10:00	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1423103	1	02/06/20 05:48	02/06/20 05:48	ELN	Mt. Juliet, TN
DUPLICATE 1 L1186248-02 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 10:00	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1423103	1	02/06/20 06:31	02/06/20 06:31	ELN	Mt. Juliet, TN
MW-104 L1186248-03 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 10:05	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1423537	1	02/06/20 17:16	02/07/20 11:39	TRB	Mt. Juliet, TN
DUPLICATE 2 L1186248-04 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 10:05	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1423537	1	02/06/20 17:16	02/07/20 11:54	TRB	Mt. Juliet, TN
WW-105 L1186248-05 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 10:40	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1423103	1	02/06/20 06:46	02/06/20 06:46	ELN	Mt. Juliet, TN
MW-107 L1186248-06 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 11:05	Received da 02/05/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1423103	1	02/06/20 07:00	02/06/20 07:00	ELN	Mt. Juliet, TN
DUPLICATE 3 L1186248-07 GW			Collected by Jason R. Franks	Collected date/time 02/04/20 11:05	Received date/time 02/05/20 08:00	
DUILICATES LINUZ-0-07 OW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

PROJECT: 27213167.19

SDG: L1186248 DATE/TIME: 02/10/20 08:38

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213167.19

SDG: L1186248 DATE/TIME: 02/10/20 08:38

PAGE: 4 of 18

SAMPLE RESULTS - 01

*

Ср

Тс

Wet Chemistry by Method 9056A

								10
	Result	Qualifier	RDL	Dilution	Analysis	Batch		C
Analyte	ug/l		ug/l		date / time		ī	2
Fluoride	329		100	1	02/06/2020 05:48	WG1423103		٦

SDG: L1186248

SAMPLE RESULTS - 02 L1186248

¥

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Fluoride	331		100	1	02/06/2020 06:31	WG1423103	⁻Tc

SDG: L1186248

Collected date/time: 02/04/20 10:05

SAMPLE RESULTS - 03

Ср

Тс

· · · · · ·							1'0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Calcium	51300	$\underline{\vee}$	1000	1	02/07/2020 11:39	WG1423537	T

SAMPLE RESULTS - 04

. , , ,	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time		F	2
Calcium	50800		1000	1	02/07/2020 11:54	WG1423537		Tc

³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	
Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	³ Ss
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	
Sr ⁶ Qc ⁷ Gl ⁸ Al	⁴ Cn
Sr ⁶ Qc ⁷ Gl ⁸ Al	
⁷ Gl ⁸ Al	⁵Sr
⁷ Gl ⁸ Al	
⁸ Al	⁶ Qc
⁸ Al	
Al	⁷ Gl
Al	
°Sc	⁸ Al
°Sc	
	°Sc

SAMPLE RESULTS - 05 L1186248

¥

Ss

Cn

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

	, ,							l'Cn l
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte		ug/l		ug/l		date / time		2
Chloride		20900		1000	1	02/06/2020 06:46	WG1423103	⁻Tc

ACCOUNT:
SCS Engineers - KS

SAMPLE RESULTS - 06 L1186248

*

Wet Chemistry by Method 9056A

								l'Cn	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch		CP	l
Analyte	ug/l		ug/l		date / time			2	1
Chloride	27500		1000	1	02/06/2020 07:00	WG1423103		Tc	l

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

SDG: L1186248

PAGE: 10 of 18

SAMPLE RESULTS - 07

*

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Cp	
Analyte	ug/l		ug/l		date / time			2	ì
Chloride	27400		1000	1	02/06/2020 08:12	WG1423103		Tc	

³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al		
Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al		
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	³ Ss	
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al		
Sr ⁶ Qc ⁷ Gl ⁸ Al	⁴ Cn	
Sr ⁶ Qc ⁷ Gl ⁸ Al		
⁷ Gl ⁸ Al	⁵Sr	
⁷ Gl ⁸ Al		
⁸ AI	⁶ Qc	
⁸ AI		
AI	⁷ Gl	
AI		
⁹ Sc	⁸ Al	
°Sc		
	⁹ Sc	

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1186248

18

DATE/TIME: 02/10/20 08:38 PAGE: 11 of 18

WG1423103

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1186248-01,02,05,06,07

Method Blat										
(MB) R3497541-1	02/05/20 22:50									
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	ug/l		ug/l	ug/l		ĒΤ.				
Chloride	U		51.9	1000						
Fluoride	U		9.90	100		³ S				
						1 7				

L1186180-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1186180-01 02/05/20 23:34 • (DUP) R3497541-3 02/05/20 23:48											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	11400	11300	1	0.369		15					
Fluoride	744	745	1	0.188		15					

L1186330-01 Original Sample (OS) • Duplicate (DUP)

DS) L1186330-01 02/06/20 09:24 • (DUP) R3497541-18 02/06/20 09:39												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	ug/l	ug/l		%		%						
Chloride	11400	11400	1	0.176		15						
Fluoride	845	852	1	0.837		15						

Laboratory Control Sample (LCS)

(LCS) R3497541-2 02/05/20 23:05											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Chloride	40000	39700	99.3	80.0-120							
Fluoride	8000	8070	101	80.0-120							

L1186188-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186188-01 02/06/20 00:02 • (MS) R3497541-4 02/06/20 00:17 • (MSD) R3497541-5 02/06/20 00:31												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6360	51200	51300	89.6	89.9	1	80.0-120			0.334	15
Fluoride	5000	323	4730	4780	88.1	89.1	1	80.0-120			0.981	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.19	L1186248	02/10/20 08:38	12 of 18

°Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1186248-01,02,05,06,07

Τс

Ss

Sr

Cn

Sc

L1186188-03 Origina		Aatrix Spiko (MS) .	Matrix Spiko	Duplicate (MSD)
LIIOOIOO-OS Oligilia	i Sample (OS) • N	auix spike (ivis) •	Matrix Spike	

(OS) L1186188-03 02/06/2	(OS) L1186188-03 02/06/20 01:00 • (MS) R3497541-6 02/06/20 01:14 • (MSD) R3497541-7 02/06/20 01:58											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	20300	65700	66100	90.7	91.5	1	80.0-120			0.595	15
Fluoride	5000	337	4800	4890	89.2	91.0	1	80.0-120			1.82	15

L1186193-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186193-01 02/06/20	0 02:26 • (MS)	R3497541-8 02	2/06/20 02:41	• (MSD) R3497	541-9 02/06/20	0 02:55						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	59800	103000	104000	86.4	88.5	1	80.0-120	E	E	1.02	15
Fluoride	5000	209	4350	4470	82.8	85.3	1	80.0-120			2.83	15

L1186202-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186202-01 02/06/20 03:24 • (MS) R3497541-10 02/06/20 03:38 • (MSD) R3497541-11 02/06/20 03:53													8
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	ſ
Chloride	50000	227000	261000	261000	68.4	68.6	1	80.0-120	EV	EV	0.0293	15	
Fluoride	5000	1050	5500	5530	89.0	89.6	1	80.0-120			0.493	15	Ľ

L1186202-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186202-03 02/06/2	20 04:51 • (MS)	R3497541-12 (02/06/20 05:0	95 • (MSD) R349	97541-13 02/0	6/20 05:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	25300	71900	72400	93.3	94.2	1	80.0-120			0.642	15
Fluoride	5000	130	4630	4690	90.1	91.2	1	80.0-120			1.17	15

L1186248-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186248-01 02/06/2	20 05:48 • (MS)	R3497541-14 (02/06/20 06:0	3 • (MSD) R349	97541-15 02/0	6/20 06:17						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	5610	51800	52200	92.4	93.3	1	80.0-120			0.805	15
Fluoride	5000	329	4880	4940	90.9	92.1	1	80.0-120			1.24	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
SCS Engineers - KS	27213167.19	L1186248	02/10/20 08:38

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1186248-01,02,05,06,07

L1186248-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186248-06 02/06	/20 07:00 • (MS	S) R3497541-16	02/06/20 07	:43 • (MSD) R34	97541-17 02/	06/20 07:58						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	27500	72500	72700	89.9	90.5	1	80.0-120			0.373	15
Fluoride	5000	792	5410	5420	92.3	92.6	1	80.0-120			0.272	15

SDG: L1186248

DATE/TIME: 02/10/20 08:38

PAGE: 14 of 18

WG1423537

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3497928-1 0	2/07/20 11:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		46.3	1000

Laboratory Control Sample (LCS)

(LCS) R3497928-2 02;	(LCS) R3497928-2 02/07/20 11:36					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Calcium	10000	9810	98.1	80.0-120		

L1186248-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1186248-03 02/07/2	20 11:39 • (MS) I	R3497928-4 0	2/07/20 11:44 •	(MSD) R34979	928-5 02/07/2	0 11:46						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	51300	57900	57800	65.5	64.5	1	75.0-125	V	V	0.171	20

ACCOUNT:
SCS Engineers - KS

SDG: L1186248 DATE/TIME: 02/10/20 08:38 Sc

Тс

GLOSSARY OF TERMS

*

Тс

ŚS

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.19

SDG: L1186248 DATE/TIME: 02/10/20 08:38 PAGE: 16 of 18

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshi
Arkansas	88-0469	New Jersey-N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.19

L1186248

PAGE: 17 of 18

02/10/20 08:38

				Billing In	forma	ation:		13			A	nalvsis / Co	ontainei	/ Preserv	/ative		Chain of C	ustody	Page of
SCS Engineers - KS 3575 W. 110th Street Overland Park, KS 66210				8575 V	V. 11	ayable - LOth Street Park, KS 662		Pres Chk	42								-/4	ace/	Analytical [®] Inter for Teating & Innovetion
Report to: I ason Franks				jay.mart	tin@k	nks@scsengin ccpl.com;	s@scsengineers.com; pl.com;										12065 Lebe Mount Julie Phone: 615 Phone: 800	et, TN 37 5-758-585	8
Project Description: Evergy latan Genera	ting Sta		ty/State ollected:	WEG	5Th	NMC	Please Circ										Fax: 615-75	58-5859	回经常新
Phone: 913-681-0030 Fax: 913-681-0012	Client Pr 27213	oject #		V. C.	Constant and the second	ab Project #	-IATAN		103	oPres	oPres						SDG # Table #	11	186248
JASON K. FRANKS	Site/Faci	lity ID #			P.O. #				DPE-HI	DPE-N	DPE-N						Acctnum		JAOPKS
Collected by (signature):	Sa N Ti	ime Day ext Day	MUST Be Five I 5 Day 10 Da	Day (Rad Only)	L	Quote # Date Re	sults Needed	No. of	m 250mHDPE-HN03	de 125mlHDPE-NoPres	de 125mlHDPE-NoPres						Prelogin PM: 206 PB:	(P75)	3038
Sample ID	Comp/0	Grab	Matrix *	Dept	n	Date	Time	Cntrs	Calcium	Chloride	Fluoride						Shipped Rem		Sample # (lab only)
MW-1	GCA	B	GW			52/4/20	1000	1			X				1				-01
MW-1 MS/MSD			GW				1000	1			X				T.				01
DUPLICATE 1			GW				10005	1			X							Z.	62
MW-104			GW				1005	1	X										03
MW-104 MS/MSD			GW			and the	1005	1	X										03
DUPLICATE 2		1-1	GW	1971 - 1972 1971 - 1972 1971 - 1972			1005	1	X									1	04
MW-105	1		GW		199		1040	1		X							2 - 62 		09
MW-107			GW				1105	1		X							al .		06
MW-107 MS/MSD			GW			1	1105	1		X					1				06
DUPLICATE 3			GW			V	1105	1		X									07
* Matrix: SS-Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remark					A 1						pH Flow _		Temp_		COC Sea COC Sig Bottles Correct	Sample Rece Present/1 ped/Accurat arrive int bottles us ent volume	Intact te: tact: sed: sent:	
OT - Other Relinquished by : (Signature)			Date: 2	irier <u>C</u>	Tin	ne:	Tracking # Received by: Sign	lature)		c		Trip Blank	k Receiv		L/MeoH	Preserv	If Ap ro Headspace vation Corre- ceen <0.5 ml	e; ect/Cl	ecked; _Y _N ZY _N ZY _N
Relinquished by : (Signature)	2		Date: 2/4/	20	Tin	and a state of the state of the	Received by: (Sign	lature)				Temp: U	AS°C	And the second	Received:	If preser	vation require	d by Lo	gin; Date/Time
Relinquished by : (Signature)		and the second se	Date:	1.	_		Received for lab b	y: (Signa	ature)			Date:	5-2	Time:	300	Hold:			Condition: NCF / OK

ATTACHMENT 1-3 May 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1221447 05/22/2020 27213167.19 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221447 DATE/TIME: 05/31/20 19:20 PAGE: 1 of 17

TABLE OF CONTENTS

₩	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ AI	

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1221447-01	5
MW-2 L1221447-02	6
MW-6 L1221447-03	7
MW-7 L1221447-04	8
MW-8 L1221447-05	9
DUPLICATE L1221447-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

SDG: L1221447 DATE/TIME: 05/31/20 19:20 PAGE: 2 of 17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-1 L1221447-01 GW			Collected by Jason R. Franks	Collected date/time 05/20/20 09:55	Received da 05/22/20 09	
		Dil ii				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1482574	1	05/29/20 11:57	05/29/20 11:57	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:11	TRB	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-2 L1221447-02 GW			Jason R. Franks	05/20/20 10:55	05/22/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1482574	1	05/28/20 22:30	05/28/20 22:30	ELN	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1482574	5	05/28/20 22:41	05/28/20 22:41	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:13	TRB	Mt. Juliet, TI
			Collected by	Collected date/time		
MW-6 L1221447-03 GW			Jason R. Franks	05/20/20 09:40	05/22/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1482574	1	05/28/20 22:52	05/28/20 22:52	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:16	TRB	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-7 L1221447-04 GW			Jason R. Franks	05/20/20 10:30	05/22/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1482574	1	05/28/20 23:03	05/28/20 23:03	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 11:21	TRB	Mt. Juliet, Tl
			Collected by Jason R. Franks	Collected date/time 05/20/20 12:00	Received da 05/22/20 09	
MW-8 L1221447-05 GW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1482574	1	05/28/20 23:46	05/28/20 23:46	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:19	TRB	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	
DUPLICATE L1221447-06 GW			Jason R. Franks	05/20/20 10:35	05/22/20 09	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1482636	1	05/27/20 18:24	05/27/20 23:25	TH	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1482574	1	05/29/20 00:19	05/29/20 00:19	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:21	TRB	Mt. Juliet, TI

PROJECT: 27213167.19

SDG: L1221447 DATE/TIME: 05/31/20 19:20

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1221447 DATE/TIME: 05/31/20 19:20 PAGE: 4 of 17

SAMPLE RESULTS - 01 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср	
Analyte	ug/l		ug/l		date / time		2	ī
Dissolved Solids	507000		10000	1	05/27/2020 23:25	WG1482636	Tc	

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 09:55

Wet Chemistry b	Wet Chemistry by Method 9056A										
	Result	Qualifier	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l		date / time		4				
Chloride	5600		1000	1	05/29/2020 11:57	WG1482574					
Fluoride	240		150	1	05/29/2020 11:57	WG1482574	5				
Sulfate	27600		5000	1	05/29/2020 11:57	WG1482574	ľS				

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 12:11	WG1481517
Calcium	131000		1000	1	05/29/2020 12:11	WG1481517

SDG: L1221447

SAMPLE RESULTS - 02 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср	l
Analyte	ug/l		ug/l		date / time		2	ì
Dissolved Solids	659000		13300	1	05/27/2020 23:25	WG1482636	Tc	

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 10:55

Wet Chemistry by Method 9056A										
	Result	Qualifier	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l		date / time					
Chloride	7280		1000	1	05/28/2020 22:30	WG1482574				
Fluoride	286		150	1	05/28/2020 22:30	<u>WG1482574</u>				
Sulfate	126000		25000	5	05/28/2020 22:41	WG1482574				

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 12:13	WG1481517
Calcium	164000		1000	1	05/29/2020 12:13	WG1481517

SAMPLE RESULTS - 03 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	491000		10000	1	05/27/2020 23:25	WG1482636	Tc

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 09:40

Wet Chemistry by	y Method 9056/	А					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		- ⁴ Cn
Chloride	1550		1000	1	05/28/2020 22:52	WG1482574	CII
Fluoride	264		150	1	05/28/2020 22:52	WG1482574	5
Sulfate	20400		5000	1	05/28/2020 22:52	WG1482574	Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 12:16	WG1481517
Calcium	138000		1000	1	05/29/2020 12:16	WG1481517

SAMPLE RESULTS - 04 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	525000		10000	1	05/27/2020 23:25	WG1482636	Tc

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 10:30

Wet Chemistry k	by Method 9056A	4					3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time		4
Chloride	8490		1000	1	05/28/2020 23:03	WG1482574	
Fluoride	291		150	1	05/28/2020 23:03	WG1482574	5
Sulfate	54400		5000	1	05/28/2020 23:03	WG1482574	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 11:21	WG1481517
Calcium	140000		1000	1	05/29/2020 11:21	WG1481517

SAMPLE RESULTS - 05 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

		0 110		D:1 .:			 Ср	L
	Result	Qualifier	RDL	Dilution	Analysis	Batch	<u> </u>	
Analyte	ug/l		ug/l		date / time		2	1
Dissolved Solids	516000		10000	1	05/27/2020 23:25	WG1482636	Tc	

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 12:00

Wet Chemistry by	/ Method 9056/	4					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Chloride	4890		1000	1	05/28/2020 23:46	WG1482574	
Fluoride	336		150	1	05/28/2020 23:46	WG1482574	5
Sulfate	45000		5000	1	05/28/2020 23:46	WG1482574	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 12:19	WG1481517
Calcium	144000		1000	1	05/29/2020 12:19	WG1481517

SDG: L1221447

SAMPLE RESULTS - 06 L1221447

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	524000		10000	1	05/27/2020 23:25	WG1482636	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by	Method 9056A	Ą					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4 Cn
Chloride	8590		1000	1	05/29/2020 00:19	WG1482574	CII
Fluoride	291		150	1	05/29/2020 00:19	WG1482574	5
Sulfate	54500		5000	1	05/29/2020 00:19	WG1482574	Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/29/2020 12:21	WG1481517
Calcium	142000		1000	1	05/29/2020 12:21	WG1481517

WG1482636

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

Gl

A

Sc

Method Blank (MB)

(MB) R3533284-1 05/	/27/20 23:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1221447-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1221447-06 05/27/20 23:25 • (DUP) R3533284-3 05/27/20 23:25										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Dissolved Solids	524000	522000	1	0.382		5				

Laboratory Control Sample (LCS)

(LCS) R3533284-2 0	(LCS) R3533284-2 05/27/20 23:25									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Dissolved Solids	8800000	8620000	98.0	85.0-115						

PROJECT: 27213167.19

SDG: L1221447 DATE/TIME: 05/31/20 19:20 PAGE: 11 of 17 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1221447-01,02,03,04,05,06

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3533055-1	05/28/20 19:37

(MB) R3533055-1	05/28/20 19:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		379	1000	
Fluoride	U		64.0	150	
Sulfate	U		594	5000	

L1221751-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221751-01	05/29/20 01:46 • (DUP)	R3533055-7	05/29/20	01:57		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD

	-				Limits
Analyte	ug/l	ug/l		%	%
Chloride	85900	84800	1	1.31	15
Fluoride	ND	ND	1	0.696	15
Sulfate	10100	10000	1	1.15	15

L1221447-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1221447-03 05/28/20 22:52 • (DUP) R3533055-9 05/29/20 11:46										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Chloride	1550	1500	1	2.85		15				
Fluoride	264	278	1	5.35		15				
Sulfate	20400	20300	1	0.228		15				

Laboratory Control Sample (LCS)

(LCS) R3533055-2 05/28/20 19:47									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Chloride	40000	39900	99.8	80.0-120					
Fluoride	8000	8350	104	80.0-120					
Sulfate	40000	38900	97.1	80.0-120					

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221447

DATE/TIME: 05/31/20 19:20

PAGE: 12 of 17

QUALITY CONTROL SUMMARY

L1221288-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1221288-01 05/28/2	DS) L1221288-01 05/28/20 20:42 • (MS) R3533055-4 05/28/20 20:53											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	ug/l	ug/l	ug/l	%		%						
Chloride	50000	1360	52300	102	1	80.0-120						
Fluoride	5000	185	5470	106	1	80.0-120						
Sulfate	50000	16100	65400	98.7	1	80.0-120						

L1221447-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221447-04 05/28/20 23:03 • (MS) R3533055-5 05/28/20 23:14 • (MSD) R3533055-6 05/28/20 23:25												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8490	58600	59000	100	101	1	80.0-120			0.714	15
Fluoride	5000	291	5310	5340	100	101	1	80.0-120			0.421	15
Sulfate	50000	54400	99300	101000	89.7	92.9	1	80.0-120		E	1.56	15

DATE/TIME: 05/31/20 19:20 Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1221447-01,02,03,04,05,06

Тс Ss

Sr

Cn

GI

Qc

Sc

Method	Rlank I	
Method	DIDIIK	

(MB) R3533271-1 05	/29/20 11:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		25.4	200
Calcium	U		389	1000

Laboratory Control Sample (LCS)

(LCS) R3533271-2 05/29/2	20 11:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	956	95.6	80.0-120	
Calcium	10000	9590	95.9	80.0-120	

L1221445-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221445-09 05/29/2	20 11:11 • (MS) R3	3533271-4 05/	29/20 11:16 • (N	/ISD) R3533271	-5 05/29/2011	1:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	3960	4820	4860	86.4	90.4	1	75.0-125			0.829	20
Calcium	10000	43300	51300	51600	79.8	83.4	1	75.0-125			0.688	20

L1221447-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221447-04 05/29/2	0 11:21 • (MS) R	3533271-6 05/	/29/20 11:24 • ((MSD) R353327	71-7 05/29/20	11:26						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	1050	1070	95.2	97.0	1	75.0-125			1.71	20
Calcium	10000	140000	148000	149000	83.1	89.5	1	75.0-125			0.430	20

DATE/TIME: 05/31/20 19:20

GLOSSARY OF TERMS

Тс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221447

DATE/TIME: 05/31/20 19:20 PAGE: 15 of 17

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.19

L1221447

PAGE: 16 of 17

05/31/20 19:20

SCS Engineers - KS			Billing Info							A		Contai	ner / Pres	ervative			Chain of Cust	ody Page <u>/</u> of <u>/</u>		
8575 W. 110th Street Overland Park, KS 66210	Street , KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 6621			treet	0	Pres Chk		n								Pal	Ce Analytical* as Center for Testing & Innovation
Report to: Jason Franks				Email To: Jfranks@scsengineers				scsengineers.com;jay.martin@evergy.c			Pres									12065 Lebanon Mount Juliet, T Phone: 615-758
Project Description: Evergy - latan Generating Station		City/State Collected:	11 10			Please C PT MT C		-Nof	1.2.2 1.2.2 1.2.2 1.2.2								Phone: 800-767 Fax: 615-758-58	7-5859 859		
Phone: 913-681-0030	Client Project 27213167.			Lab Proje		ATAN		SmiHDPE-NoPres	HNO3								SDG # /2	.21447 010		
Collected by (print): (1450NR. FRANKS	Site/Facility ID #			P.O. #				12	IHDPE-	loPres						Acctnum: AQUAOPKS				
Collected by (signature):	Same Da	Itent Project # Itab Project # Itab Project # AQUAOPKS-IATAN AQUAOPKS-IATAN Iten State ree/Facility ID # P.O. # Iten State Rush? (Lab MUST Be Notified) Quote # Same Day Five Day Next Day S Day (Rad Only) Date Results Needed No. Two Day 10 Day (Rad Only) Date Results Needed No.				Template: T136059 Prelogin: P769374 PM: 206 - Jeff Carr PB:														
Sample ID	Comp/Grab	Matrix *	Depth	Da	te	Time	of Cntrs	Anions (Cld,	B, Ca - I	TDS 25						1.31.3 1.21.3 1.31.3 1.21.3 1.	Shipped Via Remarks	: Sample # (lab only)		
MW-1	GRAG	GW	-	5/00	20	0955	3	X	X	X								-01		
MW-2		GW	-	1	1	1055	3	x	x	x			terre and				and the second s	02		
MW-6	1	GW	-			0940	3	X	X	x						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
MW-7		GW	-			1030	3	X	X	X								03		
WW-8		GW	-			1200	3	x	X	X						trans in	- 744	05		
DUPLICATE		GW	Carrier of			1035	3	X	X	X			in the second					- 16		
mw7ms/msd		GW		N	/	1640	3	X	X	X							a starting	04		
						1070														
																	andra di			
torenti, si sefficiele											Catali					-				
' Matrix: 55 - Soil AIR - Air F - Filter 5W - Groundwater B - Bioassay NW - WasteWater	lemarks:										pH Flow		_ Temp _		Bott]	Seal Pr Signed/ les arr	Accurate: ive intact	ct: _NP _Y _N		
OW - Drinking Water OT - Other	Samples returned UPS FedEx				Tracking	g.#									Suff	icient	tles used: volume sent <u>If Applic</u> adspace:	t:N able Y N		
Placen K. Shake	- Da	te: [/21/2	o Time	300	Receive	d by: (Signat	ure)	5/21/	200	T	rip Blan	k Receiv	ved: Yes	2/MeoH	Prese	ervatio	on Correct/0 <0.5 mR/hr			
Relinquished by : (Signature)	Dat	frommer	Time		Receive	d by: (Signat	ure)			T	emp:11	A		Received:	If pres	servation	n required by	Login: Date/Time		
Relinquished by : (Signature)	Dat	te:	Time	•	Receive	d for lab by;	(Signatu	rte)		D)ate:	1/1	Time:	9:00	Hold:			Condition? NCF		

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1221408 05/22/2020 27213167.19 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221408 DATE/TIME: 05/31/20 19:13

TABLE OF CONTENTS

1

₩
¹ Cp
² Tc
³ Ss

Cn

Sr

Qc

GI

ΆI

Sc

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-9 L1221408-01	5
MW-10 L1221408-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

Cp: Cover Page

SDG: L1221408 DATE/TIME: 05/31/20 19:13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received date/time 05/22/20 09:00		
MW-9 L1221408-01 GW			Jason R. Franks	05/20/20 12:30			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1481644	1	05/24/20 11:02	05/24/20 13:06	TH	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1482430	1	05/27/20 03:35	05/27/20 03:35	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 20:21	EL	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-10 L1221408-02 GW			Jason R. Franks	05/20/20 13:50	05/22/20 09	9:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
			date/ time	dates time			
Gravimetric Analysis by Method 2540 C-2011	WG1481935	1	05/26/20 11:00	05/26/20 12:23	MMF	Mt. Juliet, TN	
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A	WG1481935 WG1482430	1			MMF ELN	Mt. Juliet, TN Mt. Juliet, TN	

SDG: L1221408

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1221408 DATE/TIME: 05/31/20 19:13 PAGE: 4 of 14

SAMPLE RESULTS - 01 L1221408

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time		2]
Dissolved Solids	385000		10000	1	05/24/2020 13:06	WG1481644	2	Тс

Wet Chemistry by Method 9056A

Collected date/time: 05/20/20 12:30

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l	quanner	ug/l	Diración	date / time	Buten	
hloride	ND		1000	1	05/27/2020 03:35	WG1482430	
luoride	389		150	1	05/27/2020 03:35	WG1482430	
Sulfate	20700		5000	1	05/27/2020 03:35	WG1482430	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/28/2020 20:21	WG1481516
Calcium	105000		1000	1	05/28/2020 20:21	WG1481516

SAMPLE RESULTS - 02 L1221408

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier I	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l	ι	ug/l		date / time		2
Dissolved Solids	585000	1	13300	1	05/26/2020 12:23	WG1481935	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L			
Analyte	ug/l		ug/l		date / time		4			
Chloride	16400		1000	1	05/27/2020 03:50	WG1482430				
Fluoride	517		150	1	05/27/2020 03:50	WG1482430	5			
Sulfate	43100		5000	1	05/27/2020 03:50	WG1482430	Č			

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/28/2020 20:23	WG1481516
Calcium	150000		1000	1	05/28/2020 20:23	WG1481516

WG1481644

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3531804-1 05/2	(MB) R3531804-1 05/24/20 13:06						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Dissolved Solids	U		2820	10000			

Laboratory Control Sample (LCS)

(LCS) R3531804-2 05/	LCS) R3531804-2 05/24/20 13:06								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Dissolved Solids	8800000	7740000	88.0	85.0-115					

Sc

WG1481935

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3532683-1 05/	/26/20 12:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

Laboratory Control Sample (LCS)

(LCS) R3532683-2 05/26/20 12:23							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
Dissolved Solids	8800000	8340000	94.8	85.0-115			

ACCOUNT:	
SCS Engineers - KS	

PROJECT: 27213167.19

SDG: L1221408 DATE/TIME: 05/31/20 19:13 PAGE: 8 of 14 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1221408-01,02

Ср

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3532165-1	05/26/20 22:11

(MD) 100021001					
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Chloride	U		379	1000	
Fluoride	U		64.0	150	³ Ss
Sulfate	U		594	5000	00
					⁴ Cn

L1221322-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221322-01 05/27/2	OS) L1221322-01 05/27/20 02:51 • (DUP) R3532165-3 05/27/20 03:06									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Chloride	19800	19700	1	0.150		15				
Fluoride	506	508	1	0.335		15				
Sulfate	10300	10300	1	0.116		15				

L1221445-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1221445-04 05/27/20 06:50 • (DUP) R3532165-5 05/27/20 07:05									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Chloride	24100	24100	1	0.0328		15			
Fluoride	539	548	1	1.53		15			

L1221445-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1221445-04	05/27/20 11:33 • (DUP)					DUP RPD
Analyte	Original Result ua/l	ua/l	Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %
Sulfate	139000	139000	5	0.299		15

Laboratory Control Sample (LCS) (LCC) D2E221CE 2, 0E/20/20 22:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39600	98.9	80.0-120	
Fluoride	8000	8260	103	80.0-120	
Sulfate	40000	38700	96.7	80.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.19	L1221408	05/31/20 19:13	9 of 14

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1221322-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1221322-01 05/27/2	DS) L1221322-01 05/27/20 02:51 • (MS) R3532165-4 05/27/20 03:20									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Chloride	50000	19800	72600	106	1	80.0-120				
Fluoride	5000	506	5580	102	1	80.0-120				
Sulfate	50000	10300	62000	103	1	80.0-120				

L1221445-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221445-09 05/27/20 09:19 • (MS) R3532165-6 05/27/20 09:34 • (MSD) R3532165-7 05/27/20 09:49												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	29400	76900	77400	94.9	96.0	1	80.0-120			0.676	15
Fluoride	5000	583	5250	5320	93.4	94.8	1	80.0-120			1.33	15

ACCOUNT:	
SCS Engineers -	КS

DATE/TIME: 05/31/20 19:13

PAGE: 10 of 14 Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1221408-01,02

*

⁺Cn

Sr

°Qc

GI

Â

Sc

Method Blank (MB)

Method Blau	ik (IVIB)				
(MB) R3532814-1	05/28/20 19:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		25.4	200	
Calcium	U		389	1000	

Laboratory Control Sample (LCS)

(LCS) R3532814-2 05/28/20 19:44								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Boron	1000	926	92.6	80.0-120				
Calcium	10000	9550	95.5	80.0-120				

DATE/TIME: 05/31/20 19:13

PAGE: 11 of 14

GLOSSARY OF TERMS

*

Тс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: 27213167.19

SDG: L1221408 DATE/TIME: 05/31/20 19:13

PAGE: 12 of 14

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

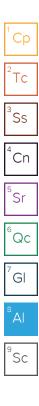
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



27213167.19

L1221408

PAGE: 13 of 14

05/31/20 19:13

and the second second second second second second			Billing Infor	mation:		R1	1. A. A.	in laipe	A	nalvsis / (Containe	r / Preserva	tive		Chain of Cu	ustody	Page of
CS Engineers - KS 575 W. 110th Street verland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210 Email To: jfranks@scsengineers.com;jay.martin@eve					17							- /	2 ace Ar	nalytical* e tor festing & innovetion
eport to: ason Franks		125mlHDPE-NoPres DPE-HNO3											Mount Julier Phone: 615-	12065 Lebanon Rd. Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859			
Project Description: Evergy - latan Generating Station		City/State Collected:	WEST	on MC	Please C PT MT		PE-NG)3							Fax: 615-75		
Phone: 913-681-0030	Client Project # 27213167.1			Lab Project #			IdHIn	ONH-								G005	1 million and a million of the second se
Collected by (print): JASON R. FEANKS	Site/Facility ID	#	894499 1575	P.O. #	n an an Anna Anna Anna Anna Anna Anna A			250mIHDPE-HNO3	NoPres						Acctnum: AQUAOPK		
Jean R. John	Same Da	ab MUST Be	Five Day		Quote # Date Results Needed		d, F, SO4)		250miHDPE-NoPres						Template: T166691 Prelogin: P769391 PM: 206 - Jeff Carr		391
Immediately Packed on Ice N Y	Two Day Three Da	10 D	ay (Rad Only)			No. oí	Anions (Cld,	Ca - 6010	250m						PB: Shipped	Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anio	B, Ca	TDS						Rema	arks	Sample # (lab only)
MW-9	GRAS	GW	1	5/20/2	x 1230	3	X	X	X							-	-01
MW-10	~	GW		1 V	1350	3	X	X	X								02
			1.000										12.3		1. 1.		
					149-54		- Andrewski										
a daga da ang ang ang ang ang ang ang ang ang an				14 28 (14)		16				1							
								Sector Sector									
															. ander		
	Contraction of the					1. Sec. 14.	1			- 1				, iii	ample Recei 1 Present/In	pt Chec	:klist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		Temp Other		COC Sign Bottles Correct	ned/Accurate arrive inta bottles use	e: act: ed:	
DW - Drinking Water Samples ret		Courie	*****		acking.#	atural		-1. 1		Trip Blar	nk Receiv	ed: Yes/N	vo)	VOA Zero Preserva	<u>If Applicable</u> VOA Zero Headspace: Y N Preservation Correct/Checked: Y		
Relinquished by : (Signature) Relinquished by : (Signature)	ke !	5/21/2 ate:	Tim 20 (3 Tim	300	eceived by: (Sign eceived by: (Sign	lin	~ 5	130	20	Temp			MeoH		een <0.5 mR/		r: Date/Time
Relinquished by : (Signature)	D	ate:	Tím	ie: Ri	eceived for lab b	y: (Signa	ature)			4.(01 Date:	0:4.	<u>6</u> Time: 9:1		Hold:			Condition: NCF / ØK

ANALYTICAL REPORT

Revised Report

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1221510 05/22/2020 27213167.19 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 1 of 41

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	- 3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-3 L1221510-01	7
MW-4 L1221510-02	9
MW-5 L1221510-03	11
MW-1 L1221510-04	13
MW-2 L1221510-05	14
MW-6 L1221510-06	15
MW-7 L1221510-07	16
MW-8 L1221510-08	17
DUPLICATE L1221510-09	18
Qc: Quality Control Summary	19
Gravimetric Analysis by Method 2540 C-2011	19
Wet Chemistry by Method 410.4	20
Wet Chemistry by Method 9020B	21
Wet Chemistry by Method 9056A	28
Wet Chemistry by Method 9060A	30
Mercury by Method 7470A	31
Metals (ICP) by Method 6010B	32
Metals (ICPMS) by Method 6020	36
GI: Glossary of Terms	39
Al: Accreditations & Locations	40
Sc: Sample Chain of Custody	41

²Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

*

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 2 of 41

SAMPLE SUMMARY

	SAMPLES	SUMN	/IARY		ONE I	AB. NATIONWI
MW-3 L1221510-01 GW			Collected by Jason R. Franks	Collected date/time 05/20/20 11:35	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1481517	1	05/29/20 12:24	05/29/20 12:24	TRB	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG1481381	1	05/23/20 14:05	05/23/20 14:57	TH	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:44	AKA	Mt. Juliet, TN
Wet Chemistry by Method 9020B	WG1482110	1	05/27/20 14:47	05/27/20 14:47	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1482574	1	05/29/20 00:41	05/29/20 00:41	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9060A	WG1482704	1	05/28/20 02:13	05/28/20 02:13	VRP	Mt. Juliet, TN
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:52	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 12:24	TRB	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 20:19	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 09:36	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-4 L1221510-02 GW			Jason R. Franks	05/20/20 12:35	05/22/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG1481518	1	05/29/20 00:12	05/29/20 00:12	TRB	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG1481381	1	05/23/20 14:05	05/23/20 14:57	TH	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:44	AKA	Mt. Juliet, TN
Wet Chemistry by Method 9020B	WG1482110	1	05/27/20 15:29	05/27/20 15:29	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1482574	1	05/29/20 00:52	05/29/20 00:52	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9060A	WG1482704	1	05/28/20 02:34	05/28/20 02:34	VRP	Mt. Juliet, TN
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:54	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:12	TRB	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 20:22	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 09:39	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-5 L1221510-03 GW			Jason R. Franks	05/20/20 10:20	05/22/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1481518	1	05/29/20 00:15	05/29/20 00:15	TRB	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG1481381	1	05/23/20 14:05	05/23/20 14:57	TH	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:45	AKA	Mt. Juliet, TN
Net Chemistry by Method 9020B	WG1482110	1	05/27/20 15:48	05/27/20 15:48	VRP	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1482574	1	05/29/20 01:02	05/29/20 01:02	ELN	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1482574	10	05/29/20 01:13	05/29/20 01:13	ELN	Mt. Juliet, TN
Net Chemistry by Method 9060A	WG1482704	1	05/28/20 03:34	05/28/20 03:34	VRP	Mt. Juliet, TN
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:56	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:15	TRB	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 20:25	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 09:56	JPD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-1 L1221510-04 GW			Jason R. Franks	05/20/20 09:55	05/22/20 09):00
		_	_		Applyct	Location
	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Method	Batch WG1481518	Dilution 1			JDG	Mt. Juliet, TN
Method Calculated Results			date/time	date/time		
Method Calculated Results Wet Chemistry by Method 410.4	WG1481518	1	date/time 05/29/20 00:18	date/time 05/29/20 00:18	JDG	Mt. Juliet, TN Mt. Juliet, TN
Method Calculated Results Wet Chemistry by Method 410.4 Wet Chemistry by Method 9020B	WG1481518 WG1483083	1	date/time 05/29/20 00:18 05/27/20 23:32	date/time 05/29/20 00:18 05/28/20 03:45	JDG AKA	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Method Calculated Results Wet Chemistry by Method 410.4 Wet Chemistry by Method 9020B Wet Chemistry by Method 9060A	WG1481518 WG1483083 WG1482110	1 1 1	date/time 05/29/20 00:18 05/27/20 23:32 05/27/20 16:09	date/time 05/29/20 00:18 05/28/20 03:45 05/27/20 16:09	JDG AKA VRP	Mt. Juliet, TN
Method Calculated Results Wet Chemistry by Method 410.4 Wet Chemistry by Method 9020B Wet Chemistry by Method 9060A Mercury by Method 7470A Metals (ICP) by Method 6010B	WG1481518 WG1483083 WG1482110 WG1482704	1 1 1 1	date/time 05/29/20 00:18 05/27/20 23:32 05/27/20 16:09 05/28/20 03:48	date/time 05/29/20 00:18 05/28/20 03:45 05/27/20 16:09 05/28/20 03:48	JDG AKA VRP VRP	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10

PAGE: 3 of 41

*

Ср

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

⁺Cn

Sr

Qc

GI

ΆI

Sc

MW-1 L1221510-04 GW			Collected by Jason R. Franks	Collected date/time 05/20/20 09:55	Received da 05/22/20 09	
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
etals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 10:00	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-2 L1221510-05 GW			Jason R. Franks	05/20/20 10:55	05/22/20 09	9:00
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1481518	1	05/29/20 00:20	05/29/20 00:20	JDG	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:46	AKA	Mt. Juliet, TN
Net Chemistry by Method 9020B	WG1482110	1	05/27/20 16:29	05/27/20 16:29	VRP	Mt. Juliet, TN
Vet Chemistry by Method 9060A	WG1482704	1	05/28/20 05:33	05/28/20 05:33	VRP	Mt. Juliet, TN
Vercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:59	TCT	Mt. Juliet, TN
Aetals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:20	JDG	Mt. Juliet, TN
	WG1481528	1	05/28/20 07:49	05/28/20 20:39	JPD	Mt. Juliet, TN
Aetals (ICPMS) by Method 6020 Aetals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 10:03	JPD	Mt. Juliet, TN
				Callestad data hima	De estivadade	4 - 14 ²
MW-6 L1221510-06 GW			Collected by Jason R. Franks	Collected date/time 05/20/20 09:40	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG1481518	1	05/29/20 00:28	05/29/20 00:28	JDG	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:46	AKA	Mt. Juliet, TN
Net Chemistry by Method 9020B	WG1482110	1	05/27/20 16:50	05/27/20 16:50	VRP	Mt. Juliet, TN
Vet Chemistry by Method 9060A	WG1482704	1	05/28/20 05:49	05/28/20 05:49	VRP	Mt. Juliet, TN
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 15:01	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:28	JDG	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 20:42	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 10:06	JPD	Mt. Juliet, TN Mt. Juliet, TN
			Collected by		D	
MW-7 L1221510-07 GW				Collected date/time 05/20/20 10:30	Received da 05/22/20 09	
/ ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Calculated Results	WG1481518	1	05/29/20 00:02	05/29/20 00:02	JDG	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:47	AKA	Mt. Juliet, TN
Vet Chemistry by Method 9020B	WG1482710	1	05/27/20 18:23	05/27/20 18:23	VRP	Mt. Juliet, TN
Net Chemistry by Method 9060A	WG1482704	1	05/28/20 06:09	05/28/20 06:09	VRP	Mt. Juliet, TN
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 12:29	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:02	JDG	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 16:32	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-8 L1221510-08 GW			Jason R. Franks	05/20/20 12:00	05/22/20 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Calculated Results	WG1481518	1	05/29/20 00:31	05/29/20 00:31	JDG	Mt. Juliet, TN
Net Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:49	AKA	Mt. Juliet, TN
Vet Chemistry by Method 9020B	WG1482110	1	05/27/20 17:44	05/27/20 17:44	VRP	Mt. Juliet, TN
Vet Chemistry by Method 9060A	WG1482704	1	05/28/20 07:06	05/28/20 07:06	VRP	Mt. Juliet, TN
Aercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 15:03	TCT	Mt. Juliet, TN
Vetals (ICP) by Method 6010B	WG1481265 WG1481518	1	05/28/20 21.56	05/29/20 00:31	JDG	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1481518 WG1481529	1	05/28/20 08:10	05/28/20 11:04	LD	Mt. Juliet, TN Mt. Juliet, TN
ACCOUNT: SCS Engineers - KS	PROJECT:		SDG:	DAT	E/TIME:	
			L1221510	07/10		

SAMPLE SUMMARY

DUPLICATE L1221510-09 GW			Collected by Jason R. Franks	Collected date/time 05/20/20 10:35	Received date/time 05/22/20 09:00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Calculated Results	WG1481518	1	05/29/20 00:34	05/29/20 00:34	JDG	Mt. Juliet, TN	
Vet Chemistry by Method 410.4	WG1483083	1	05/27/20 23:32	05/28/20 03:49	AKA	Mt. Juliet, TN	
Net Chemistry by Method 9020B	WG1482110	1	05/27/20 18:03	05/27/20 18:03	VRP	Mt. Juliet, TN	
Net Chemistry by Method 9060A	WG1482704	1	05/28/20 07:19	05/28/20 07:19	VRP	Mt. Juliet, TN	
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 15:05	TCT	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1481518	1	05/28/20 17:24	05/29/20 00:34	JDG	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1481529	1	05/28/20 08:10	05/28/20 11:07	LD	Mt. Juliet, TN	

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

¥

Ср

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221510

PAGE: 5 of 41

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

AI

Sc

Report Revision History

Level II Report - Version 1: 06/01/20 09:55

Project Narrative

This report has been revised. Collection dates have been changed to 5/20 and T8 qualifiers have been removed from samples -01,-02 and -03.

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 6 of 41

MW-3 Collected date/time: 05/20/2	0 11:35			L1221	SULTS - 0′ 1510		
Calculated Results							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Hardness (calculated) as CaCO3	619000		2500	1	05/29/2020 12:24	<u>WG1481517</u>	Тс
Gravimetric Analysis b	y Method 2	2540 C-20)11				^³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cr
Dissolved Solids	591000		13300	1	05/23/2020 14:57	<u>WG1481381</u>	
Wet Chemistry by Met	hod 410.4						⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l		date / time		Qc
COD	21500		20000	1	05/28/2020 03:44	WG1483083	7
Wet Chemistry by Met	hod 9020B	}					[′] GI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁸ Al
Analyte	ug/l		ug/l		date / time		A
ТОХ	ND		100	1	05/27/2020 14:47	WG1482110	9
Wet Chemistry by Met	hod 9056A	λ.					ິSc
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	11700		1000	1	05/29/2020 00:41	WG1482574	
Fluoride	299		150	1	05/29/2020 00:41	WG1482574	
Sulfate	75600		5000	1	05/29/2020 00:41	WG1482574	
Wet Chemistry by Met	hod 9060A	A.					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
TOC (Total Organic Carbon)	1800	B	1000	1	05/28/2020 02:13	WG1482704	
Mercury by Method 74	170A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Mercury	ND		0.200	1	05/26/2020 14:52	WG1481265	
Metals (ICP) by Method	d 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Aluminum	ND		200	1	05/29/2020 12:24	WG1481517	
Barium	297		5.00	1	05/29/2020 12:24	WG1481517	
Boron	ND		200	1	05/29/2020 12:24	WG1481517	
Calcium	182000		1000	1	05/29/2020 12:24	WG1481517	
Chromium	ND		10.0	1	05/29/2020 12:24	WG1481517	
Cobalt	ND		10.0	1	05/29/2020 12:24	WG1481517	
Iron	2950		100	1	05/29/2020 12:24	WG1481517	
Magnesium	40100		1000	1	05/29/2020 12:24	<u>WG1481517</u>	
Manganoso	597		10.0	1	05/20/2020 12:24	W/C1/101E17	

Magnesium 40100 1000 05/29/2020 12:24 1 Manganese 587 10.0 05/29/2020 12:24 1 ND Nickel 10.0 05/29/2020 12:24 1 Silver ND 5.00 1 05/29/2020 12:24

Sodium

6550

PROJECT: 27213167.19

1

3000

SDG: L1221510

05/29/2020 12:24

DATE/TIME: 07/10/20 12:10

WG1481517

WG1481517

WG1481517

WG1481517

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

*

Qc

GI

ΆI

Sc

Collected date/time:	05/20/20 11:35
Metals (ICPMS)	by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Antimony	ND		4.00	1	05/28/2020 20:19	WG1481528	
Arsenic	9.22		2.00	1	05/28/2020 20:19	<u>WG1481528</u>	
Beryllium	ND		2.00	1	05/29/2020 09:36	WG1481528	
Cadmium	ND		1.00	1	05/28/2020 20:19	<u>WG1481528</u>	
Copper	ND		5.00	1	05/28/2020 20:19	WG1481528	
Lead	ND		5.00	1	05/28/2020 20:19	<u>WG1481528</u>	
Selenium	ND		2.00	1	05/28/2020 20:19	WG1481528	
Thallium	ND		2.00	1	05/28/2020 20:19	<u>WG1481528</u>	
Zinc	ND		25.0	1	05/28/2020 20:19	WG1481528	

MW-4 Collected date/time: 05/20/2	0 12:35		SAMP	LE RE	SULTS - 02 510	2 ONE LAB. NATIC	DNWIDE. 🧩
Calculated Results							1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	—— Ср
Analyte	ug/l		ug/l		date / time	—	
Hardness (calculated) as CaCO3	566000		2500	1	05/29/2020 00:12	WG1481518	Tc
Gravimetric Analysis b	y Method 2	2540 C-20	011				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cn
Dissolved Solids	533000		10000	1	05/23/2020 14:57	WG1481381	CII
Wet Chemistry by Met	hod 410.4						⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l		date / time		ଁ Q c
COD	ND		20000	1	05/28/2020 03:44	WG1483083	
Wet Chemistry by Met	hod 9020E	3					[′] Gl
	Result	Qualifier	RDL	Dilution	Analysis	Batch	8 1
Analyte	ug/l		ug/l		date / time		ĬĂĬ
ТОХ	ND		100	1	05/27/2020 15:29	WG1482110	9
Wet Chemistry by Met	hod 90564	4					Sc
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Chloride	6420		1000	1	05/29/2020 00:52	WG1482574	
Fluoride	463		150	1	05/29/2020 00:52	WG1482574	
Sulfate	23300		5000	1	05/29/2020 00:52	WG1482574	
Wet Chemistry by Met	hod 90604	4					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
TOC (Total Organic Carbon)	3250		1000	1	05/28/2020 02:34	WG1482704	
Mercury by Method 74	170A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Mercury	ND		0.200	1	05/26/2020 14:54	WG1481265	
Metals (ICP) by Method	d 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Aluminum	ND		200	1	05/29/2020 00:12	WG1481518	
Barium	434		5.00	1	05/29/2020 00:12	WG1481518	
Boron	ND		200	1	05/29/2020 00:12	WG1481518	
Calcium	149000		1000	1	05/29/2020 00:12	WG1481518	
Chromium	ND		10.0	1	05/29/2020 00:12	WG1481518	
Cobalt	ND		10.0	1	05/29/2020 00:12	WG1481518	
Iron	6650		100	1	05/29/2020 00:12	WG1481518	
Magnacium	47200		1000	4	05/20/2020 00:12	WC1401E10	

ACCOUNT: SCS Engineers - KS

47300

1210

ND

ND

7280

Magnesium

Manganese

Nickel

Silver

Sodium

PROJECT: 27213167.19

1

1

1

1

1

1000

10.0

10.0

5.00

3000

SDG: L1221510

05/29/2020 00:12

05/29/2020 00:12

05/29/2020 00:12

05/29/2020 00:12

05/29/2020 00:12

WG1481518

WG1481518

WG1481518

WG1481518

WG1481518

DATE/TIME: 07/10/20 12:10 PAGE: 9 of 41

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

*

Qc

GI

ΆI

Sc

Collected date/time:	05/20/20 12:35
Metals (ICPMS)	by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Antimony	ND		4.00	1	05/28/2020 20:22	WG1481528	
Arsenic	58.1		2.00	1	05/28/2020 20:22	WG1481528	
Beryllium	ND		2.00	1	05/29/2020 09:39	WG1481528	
Cadmium	ND		1.00	1	05/28/2020 20:22	WG1481528	
Copper	ND		5.00	1	05/28/2020 20:22	WG1481528	
Lead	ND		5.00	1	05/28/2020 20:22	WG1481528	
Selenium	ND		2.00	1	05/28/2020 20:22	WG1481528	
Thallium	ND		2.00	1	05/28/2020 20:22	WG1481528	
Zinc	ND		25.0	1	05/28/2020 20:22	WG1481528	

MW-5 Collected date/time: 05/20/2	0 10:20		SAMPI	LE RE:	SULTS - 03 510	ONE LAB. NATIONWIDE.	*
Calculated Results							1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	- Ср
Analyte	ug/l		ug/l		date / time		2
Hardness (calculated) as CaCO3	893000		2500	1	05/29/2020 00:15	<u>WG1481518</u>	Tc
Gravimetric Analysis b	y Method 2	540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		- ^⁴ Cn
Dissolved Solids	1440000	<u>13</u>	25000	1	05/23/2020 14:57	<u>WG1481381</u>	
Wet Chemistry by Met	hod 410.4						⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l		date / time		ČQc
COD	28400		20000	1	05/28/2020 03:45	<u>WG1483083</u>	7
Wet Chemistry by Met	hod 9020E	}					[′] GI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	8
Analyte	ug/l		ug/l		date / time		ĨĂ
TOX	ND		100	1	05/27/2020 15:48	WG1482110	9
Wet Chemistry by Met	hod 9056A Result	Qualifier	RDL	Dilution	Analysis	Batch	د د
	Result	Quaimer	NDL	Dilution	Analysis	Bateri	
Analyte	ua/l		ua/l		date / time		
	ug/l		ug/l	10	date / time 05/29/2020 01:13	WG1482574	_
Chloride	160000		10000	10	05/29/2020 01:13	WG1482574 WG1482574	
Analyte Chloride Fluoride Sulfate	-			10 1 10		WG1482574 WG1482574 WG1482574 WG1482574	
Chloride Fluoride Sulfate	160000 318 836000		10000 150	1	05/29/2020 01:13 05/29/2020 01:02	WG1482574	
Chloride Fluoride	160000 318 836000	Qualifier	10000 150	1	05/29/2020 01:13 05/29/2020 01:02	WG1482574	-
Chloride Fluoride Sulfate	160000 318 836000 hod 9060A		10000 150 50000	1 10	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13	WG1482574 WG1482574	
Chloride Fluoride Sulfate Wet Chemistry by Met	160000 318 836000 hod 9060A Result		10000 150 50000 RDL	1 10	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis	WG1482574 WG1482574	
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon)	160000 318 836000 hod 9060A Result ug/l 3100		10000 150 50000 RDL ug/l	1 10 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 05/29/2020 01:13 Analysis date / time	WG1482574 WG1482574 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon)	160000 318 836000 hod 9060A Result ug/l 3100		10000 150 50000 RDL ug/l	1 10 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 05/29/2020 01:13 Analysis date / time	WG1482574 WG1482574 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74	160000 318 836000 hod 9060A Result ug/l 3100	Qualifier	10000 150 50000 RDL ug/l 1000	1 10 Dilution 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34	WG1482574 WG1482574 Batch WG1482704	
Chloride Fluoride Sulfate Wet Chemistry by Met	160000 318 836000 hod 9060A Result ug/l 3100 F70A Result	Qualifier	10000 150 50000 RDL ug/l 1000 RDL	1 10 Dilution 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis	WG1482574 WG1482574 Batch WG1482704	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte	160000 318 836000 hod 9060A Result ug/l 3100 F70A Result ug/l ND	Qualifier	10000 150 50000 RDL ug/l 1000 RDL ug/l	1 10 Dilution 1 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time	WG1482574 WG1482574 Batch WG1482704 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Meth Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury Metals (ICP) by Method	160000 318 836000 hod 9060A Result ug/l 3100 FOA Result ug/l ND d 6010B Result	Qualifier	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL	1 10 Dilution 1 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Analysis	WG1482574 WG1482574 Batch WG1482704 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury	160000 318 836000 hod 9060A Result ug/l 3100 F70A Result ug/l ND d 6010B Result ug/l	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200	1 10 Dilution 1 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Analysis date / time	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury Metals (ICP) by Method	160000 318 836000 hod 9060A Result ug/l 3100 F70A Result ug/l ND d 6010B Result ug/l ND	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL ug/l 200	1 10 Dilution 1 Dilution	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Analysis date / time 05/29/2020 00:15	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 Batch WG1481265 WG1481518	
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Metals (ICP) by Method Analyte Aluminum	160000 318 836000 hod 9060A Result ug/l 3100 F70A Result ug/l ND d 6010B Result ug/l	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 0.200 RDL ug/l ug/l	1 10 Dilution 1 Dilution 1 Dilution 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Analysis date / time	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 Batch	-
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury Metals (ICP) by Method Analyte Aluminum Barium	160000 318 836000 hod 9060A Result ug/l 3100 470A Result ug/l ND d 6010B Result ug/l ND 192 1390	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL ug/l 200 5.00 200	1 10 Dilution 1 Dilution 1 Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:03 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Analysis date / time 05/29/2020 00:15 05/29/2020 00:15	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 WG1481265 Batch WG1481518 WG1481518 WG1481518 WG1481518 WG1481518 WG1481518	
Chloride Fluoride Sulfate Wet Chemistry by Meth Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury Metals (ICP) by Method Analyte Aluminum Barium Boron	160000 318 836000 hod 9060A Result ug/l 3100 FOA Result ug/l ND d 6010B Result ug/l ND d 6010B Result ug/l 192 1390 265000	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL ug/l 200 5.00 200 1000	1 10 Dilution 1 Dilution 1 Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:03 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 So5/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 WG1481265 WG1481518 WG1481518	
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Metals (ICP) by Method Analyte Aluminum	160000 318 836000 hod 9060A Result ug/l 3100 FOA Result ug/l ND d 6010B Result ug/l ND d 6010B Result ug/l 192 1390 265000 ND	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL ug/l 200 5.00 200 1000 10.0	1 10 Dilution 1 Dilution 1 Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:13 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 Sof/29/2020 01:5 05/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 WG1481265 WG1481265 WG1481518 WG1481518	
Chloride Fluoride Sulfate Wet Chemistry by Met Analyte TOC (Total Organic Carbon) Mercury by Method 74 Analyte Mercury Metals (ICP) by Method Analyte Aluminum Barium Boron Calcium	160000 318 836000 hod 9060A Result ug/l 3100 FOA Result ug/l ND d 6010B Result ug/l ND d 6010B Result ug/l 192 1390 265000	<u>Qualifier</u> <u>Qualifier</u>	10000 150 50000 RDL ug/l 1000 RDL ug/l 0.200 RDL ug/l 200 5.00 200 1000	1 10 Dilution 1 Dilution 1 1 Dilution 1 1 1 1 1 1	05/29/2020 01:13 05/29/2020 01:02 05/29/2020 01:03 Analysis date / time 05/28/2020 03:34 Analysis date / time 05/26/2020 14:56 So5/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15 05/29/2020 00:15	WG1482574 WG1482574 Batch WG1482704 Batch WG1481265 WG1481265 WG1481518 WG1481518	

WG1481518 Magnesium 55900 1000 05/29/2020 00:15 1 WG1481518 Manganese 1270 10.0 1 05/29/2020 00:15 ND WG1481518 Nickel 10.0 1 05/29/2020 00:15 Silver ND 5.00 1 05/29/2020 00:15 WG1481518 159000 3000 WG1481518 Sodium 1 05/29/2020 00:15

PROJECT: 27213167.19

SDG: L1221510

Collected date/time: 05/20/20 10:20 Metals (ICPMS) by Method 6020

SAMPLE RESULTS - 03 L1221510

ONE LAB. NATIONWIDE.

Qc

Gl

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 20:25	WG1481528
Arsenic	11.5		2.00	1	05/28/2020 20:25	WG1481528
Beryllium	ND		2.00	1	05/29/2020 09:56	WG1481528
Cadmium	ND		1.00	1	05/28/2020 20:25	WG1481528
Copper	ND		5.00	1	05/28/2020 20:25	WG1481528
Lead	ND		5.00	1	05/28/2020 20:25	WG1481528
Selenium	ND		2.00	1	05/28/2020 20:25	WG1481528
Thallium	ND		2.00	1	05/28/2020 20:25	WG1481528
Zinc	ND		25.0	1	05/28/2020 20:25	WG1481528

SDG: L1221510

MW-1 Collected date/time: 05/20/	20 09:55		SAMP	LE RE	SULTS - 04	4	ONE LAB. NATIONWIDE.	*
Calculated Results								1
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time			2
Hardness (calculated) as CaCO3	448000		2500	1	05/29/2020 00:18	WG1481518		Tc
Wet Chemistry by Me	thod 410.4							³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			⁴ Cn
COD	ND		20000	1	05/28/2020 03:45	WG1483083		CIT
Wet Chemistry by Me	thod 90208	3						⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6
Analyte	ug/l		ug/l		date / time			[°] Qc
ТОХ	ND		100	1	05/27/2020 16:09	WG1482110		
								⁷ Gl
Wet Chemistry by Me	thod 9060	4						
	Result	Qualifier	RDL	Dilution	Analysis	Batch		⁸ Al
Analyte	ug/l		ug/l		date / time			
TOC (Total Organic Carbon)	1790	B	1000	1	05/28/2020 03:48	WG1482704		⁹ Sc
Mercury by Method 7	470A							
	Desult	Qualifian	וחח	Dilution	A	Batah		

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	05/26/2020 14:57	WG1481265

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
		Quaimer		Dilution		Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:18	WG1481518
Barium	239		5.00	1	05/29/2020 00:18	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:18	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:18	<u>WG1481518</u>
Iron	11000		100	1	05/29/2020 00:18	WG1481518
Magnesium	28500		1000	1	05/29/2020 00:18	<u>WG1481518</u>
Manganese	638		10.0	1	05/29/2020 00:18	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:18	<u>WG1481518</u>
Silver	ND		5.00	1	05/29/2020 00:18	WG1481518
Sodium	11500		3000	1	05/29/2020 00:18	WG1481518

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 20:29	WG1481528
Arsenic	13.6		2.00	1	05/28/2020 20:29	WG1481528
Beryllium	ND		2.00	1	05/29/2020 10:00	WG1481528
Cadmium	ND		1.00	1	05/28/2020 20:29	WG1481528
Copper	ND		5.00	1	05/28/2020 20:29	WG1481528
Lead	ND		5.00	1	05/28/2020 20:29	WG1481528
Selenium	ND		2.00	1	05/28/2020 20:29	WG1481528
Thallium	ND		2.00	1	05/28/2020 20:29	WG1481528
Zinc	ND		25.0	1	05/28/2020 20:29	WG1481528

PROJECT: 27213167.19

SDG: L1221510

MW-2 Collected date/time: 05/20/2	20 10:55		SAMP	LE RES	SULTS - 05 ₅10	5	ONE LAB. NATIONWIDE.
Calculated Results							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hardness (calculated) as CaCO3	558000		2500	1	05/29/2020 00:20	WG1481518	
Wet Chemistry by Met	thod 410.4 Result	Qualifier	RDL	Dilution	Analysis	Batch	
Arrahar							
Analyte	ug/l		ug/l		date / time		
COD	ug/l ND		ug/l 20000	1	date / time 05/28/2020 03:46	WG1483083	
	ND		0	1		<u>WG1483083</u>	
COD	ND	Qualifier	0	1 Dilution		WG1483083 Batch	
COD	ND thod 9020B		20000		05/28/2020 03:46		

Wet Chemistry by Method 9060A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁸ A I
Analyte	ug/l		ug/l		date / time		AI
TOC (Total Organic Carbon)	1780	B	1000	1	05/28/2020 05:33	WG1482704	⁹ Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	05/26/2020 14:59	WG1481265

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:20	WG1481518
Barium	216		5.00	1	05/29/2020 00:20	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:20	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:20	WG1481518
Iron	13000		100	1	05/29/2020 00:20	WG1481518
Magnesium	35300		1000	1	05/29/2020 00:20	WG1481518
Manganese	750		10.0	1	05/29/2020 00:20	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:20	WG1481518
Silver	ND		5.00	1	05/29/2020 00:20	WG1481518
Sodium	12100		3000	1	05/29/2020 00:20	WG1481518

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 20:39	WG1481528
Arsenic	21.9		2.00	1	05/28/2020 20:39	WG1481528
Beryllium	ND		2.00	1	05/29/2020 10:03	WG1481528
Cadmium	ND		1.00	1	05/28/2020 20:39	WG1481528
Copper	ND		5.00	1	05/28/2020 20:39	WG1481528
Lead	ND		5.00	1	05/28/2020 20:39	WG1481528
Selenium	ND		2.00	1	05/28/2020 20:39	WG1481528
Thallium	ND		2.00	1	05/28/2020 20:39	WG1481528
Zinc	ND		25.0	1	05/28/2020 20:39	WG1481528

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 Ср

Тс

Ss

Cn

Qc

GI

MW-6 Collected date/time: 05/20/2	0 09:40		SAMP	LE RE	SULTS - 06 510	6	ONE LAB. NATIONWIDE.	*
Calculated Results								1
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time			2
Hardness (calculated) as CaCO3	473000		2500	1	05/29/2020 00:28	WG1481518		⁻Tc
Wet Chemistry by Met	hod 410.4							³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			⁴ Cn
COD	25300		20000	1	05/28/2020 03:46	WG1483083		СП
Wet Chemistry by Met	hod 9020B	}						⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6
Analyte	ug/l		ug/l		date / time			[°] Qc
ТОХ	ND		100	1	05/27/2020 16:50	WG1482110		
Wet Chemistry by Met	hod 9060A	A.						⁷ Gl
	Result	Qualifier	RDL	Dilution	Analysis	Batch		⁸ Al
Analyte	ug/l		ug/l		date / time			AI
TOC (Total Organic Carbon)	1920	B	1000	1	05/28/2020 05:49	WG1482704		⁹ Sc
Mercury by Method 74	70A							
	Result	Qualifier	RDL	Dilution	Analysis	Batch		

date / time

05/26/2020 15:01

WG1481265

Metals (ICP) by Method 6010B

ug/l

ND

Analyte

Mercury

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:28	WG1481518
Barium	281		5.00	1	05/29/2020 00:28	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:28	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:28	WG1481518
Iron	7500		100	1	05/29/2020 00:28	WG1481518
Magnesium	31000		1000	1	05/29/2020 00:28	WG1481518
Manganese	595		10.0	1	05/29/2020 00:28	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:28	WG1481518
Silver	ND		5.00	1	05/29/2020 00:28	WG1481518
Sodium	6180		3000	1	05/29/2020 00:28	WG1481518

1

ug/l

0.200

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 20:42	WG1481528
Arsenic	21.5		2.00	1	05/28/2020 20:42	WG1481528
Beryllium	ND		2.00	1	05/29/2020 10:06	WG1481528
Cadmium	ND		1.00	1	05/28/2020 20:42	WG1481528
Copper	ND		5.00	1	05/28/2020 20:42	WG1481528
Lead	ND		5.00	1	05/28/2020 20:42	WG1481528
Selenium	ND		2.00	1	05/28/2020 20:42	WG1481528
Thallium	ND		2.00	1	05/28/2020 20:42	WG1481528
Zinc	ND		25.0	1	05/28/2020 20:42	WG1481528

PROJECT: 27213167.19

SDG: L1221510

MW-7	
Collected date/time	: 05/20/20 10:30

SAMPLE RESULTS - 07 L1221510

Calculated	Results

Col

Calculated Results							1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Hardness (calculated) as CaCO3	480000		2500	1	05/29/2020 00:02	WG1481518	2
Wet Chemistry by Met	thod 410.4						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l		date / time		4
COD	ND		20000	1	05/28/2020 03:47	WG1483083	
Wet Chemistry by Met	thod 90201	3					5
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		0
ТОХ	ND	<u>J3 J5</u>	100	1	05/27/2020 18:23	WG1482710	
Wet Chemistry by Met	thod 9060,	4					/
	Result	Qualifier	RDL	Dilution	Analysis	Batch	8
Analyte	ug/l		ug/l		date / time		
TOC (Total Organic Carbon)	1820	B	1000	1	05/28/2020 06:09	WG1482704	9
Mercury by Method 74	470A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		

05/26/2020 12:29

WG1481265

Metals (ICP) by Method 6010B

ND

Mercury

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:02	WG1481518
Barium	223	<u>01</u>	5.00	1	05/29/2020 00:02	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:02	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:02	WG1481518
Iron	1240		100	1	05/29/2020 00:02	WG1481518
Magnesium	29800	<u>01</u>	1000	1	05/29/2020 00:02	WG1481518
Manganese	574	<u>01</u>	10.0	1	05/29/2020 00:02	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:02	WG1481518
Silver	ND		5.00	1	05/29/2020 00:02	WG1481518
Sodium	8090		3000	1	05/29/2020 00:02	WG1481518

1

0.200

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 16:32	WG1481528
Arsenic	7.68		2.00	1	05/28/2020 16:32	WG1481528
Beryllium	ND		2.00	1	05/28/2020 16:32	WG1481528
Cadmium	ND		1.00	1	05/28/2020 16:32	WG1481528
Copper	ND		5.00	1	05/28/2020 16:32	WG1481528
Lead	ND		5.00	1	05/28/2020 16:32	WG1481528
Selenium	ND		2.00	1	05/28/2020 16:32	WG1481528
Thallium	ND		2.00	1	05/28/2020 16:32	WG1481528
Zinc	ND		25.0	1	05/28/2020 16:32	WG1481528

PROJECT: 27213167.19

SDG: L1221510

MW-8 Collected date/time: 05/20/2	20 12:00		SAMP		SULTS - 08 510	3	ONE LAB. NATIONWIDE.	1
Calculated Results								1
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			5
Hardness (calculated) as CaCO3	480000		2500	1	05/29/2020 00:31	WG1481518		
Wet Chemistry by Me	thod 410.4							3
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			4
COD	ND		20000	1	05/28/2020 03:49	WG1483083		L
Wet Chemistry by Me	thod 9020E	3						Ş
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6
Analyte	ug/l		ug/l		date / time			ľ
ТОХ	ND		100	1	05/27/2020 17:44	WG1482110		
Wet Chemistry by Me	thod 90604	4						7
	Result	Qualifier	RDL	Dilution	Analysis	Batch		٤
Analyte	ug/l		ug/l		date / time			
TOC (Total Organic Carbon)	1710	B	1000	1	05/28/2020 07:06	WG1482704		ć

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	05/26/2020 15:03	WG1481265

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:31	WG1481518
Barium	217		5.00	1	05/29/2020 00:31	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:31	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:31	WG1481518
Iron	3340		100	1	05/29/2020 00:31	WG1481518
Magnesium	28000		1000	1	05/29/2020 00:31	WG1481518
Manganese	645		10.0	1	05/29/2020 00:31	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:31	WG1481518
Silver	ND		5.00	1	05/29/2020 00:31	WG1481518
Sodium	6510		3000	1	05/29/2020 00:31	WG1481518

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 11:04	<u>WG1481529</u>
Arsenic	11.5		2.00	1	05/28/2020 11:04	WG1481529
Beryllium	ND		2.00	1	05/28/2020 11:04	WG1481529
Cadmium	ND		1.00	1	05/28/2020 11:04	WG1481529
Copper	ND		5.00	1	05/28/2020 11:04	WG1481529
Lead	ND		5.00	1	05/28/2020 11:04	WG1481529
Selenium	ND		2.00	1	05/28/2020 11:04	WG1481529
Thallium	ND		2.00	1	05/28/2020 11:04	WG1481529
Zinc	ND		25.0	1	05/28/2020 11:04	WG1481529

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 Ср

Tc

Ss

Cn

Qc

GI

ΆI

Sc

ONE LAB. NATIONWIDE. DUPLICATE SAMPLE RESULTS - 09 Collected date/time: 05/20/20 10:35 L1221510 **Calculated Results** Qualifier RDL Dilution Result Analysis Batch Analyte ug/l ug/l date / time Hardness (calculated) as CaCO3 482000 2500 1 05/29/2020 00:34 WG1481518 Wet Chemistry by Method 410.4 Result Qualifier RDL Dilution Analysis Batch Analyte ug/l ug/l date / time COD ND 20000 05/28/2020 03:49 WG1483083 1 Wet Chemistry by Method 9020B Result Qualifier RDL Dilution Analysis Batch Analyte ug/l date / time ug/l TOX ND 05/27/2020 18:03 100 1 WG1482110 Wet Chemistry by Method 9060A

Result Qualifier RDL Dilution Analysis Batch AI Analyte date / time ug/l ug/l TOC (Total Organic Carbon) 1800 05/28/2020 07:19 B 1000 1 WG1482704 Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	05/26/2020 15:05	WG1481265

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aluminum	ND		200	1	05/29/2020 00:34	WG1481518
Barium	223		5.00	1	05/29/2020 00:34	WG1481518
Chromium	ND		10.0	1	05/29/2020 00:34	WG1481518
Cobalt	ND		10.0	1	05/29/2020 00:34	WG1481518
Iron	1250		100	1	05/29/2020 00:34	WG1481518
Magnesium	30000		1000	1	05/29/2020 00:34	WG1481518
Manganese	566		10.0	1	05/29/2020 00:34	WG1481518
Nickel	ND		10.0	1	05/29/2020 00:34	WG1481518
Silver	ND		5.00	1	05/29/2020 00:34	WG1481518
Sodium	8240		3000	1	05/29/2020 00:34	WG1481518

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Antimony	ND		4.00	1	05/28/2020 11:07	WG1481529
Arsenic	7.34		2.00	1	05/28/2020 11:07	WG1481529
Beryllium	ND		2.00	1	05/28/2020 11:07	WG1481529
Cadmium	ND		1.00	1	05/28/2020 11:07	WG1481529
Copper	ND		5.00	1	05/28/2020 11:07	WG1481529
Lead	ND		5.00	1	05/28/2020 11:07	WG1481529
Selenium	ND		2.00	1	05/28/2020 11:07	WG1481529
Thallium	ND		2.00	1	05/28/2020 11:07	WG1481529
Zinc	ND		25.0	1	05/28/2020 11:07	WG1481529

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

Τс

Ss

Cn

*Q*c

Gl

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3531269-1 05/23	3/20 14:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1221510-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-03 05	5/23/20 14:57 • (DUI	P) R3531269-3	05/23/20	14:57		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1440000	1600000	1	10.7	J3	5

Laboratory Control Sample (LCS)

(LCS) R3531269-2 05	(LCS) R3531269-2 05/23/20 14:57					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Dissolved Solids	8800000	8390000	95.3	85.0-115		

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 19 of 41

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,07,08,09

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3532385-1 05	5/28/20 03:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
COD	U		11700	20000

L1220720-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1220720-03 05/28/	/20 03:43 • (DU	P) R3532385-	3 05/28/2	20 03:43		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
COD	21500	21100	1	1.67		20

L1221510-02 Original Sample (OS) • Duplicate (DUP)

L1221510-02 Origin	L1221510-02 Original Sample (OS) • Duplicate (DUP)									
(OS) L1221510-02 05/28/2	(OS) L1221510-02 05/28/20 03:44 • (DUP) R3532385-4 05/28/20 03:45									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al			
Analyte	ug/l	ug/l		%		%				
COD	ND	22100	1	11.2		20	°Sc			

Laboratory Control Sample (LCS)

(LCS) R3532385-2 05/2	LCS) R3532385-2 05/28/20 03:42								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
COD	222000	230000	104	90.0-110					

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/28/20 03:47 • (MS) R3532385-5 05/28/20 03:47 • (MSD) R3532385-6 05/28/20 03:47												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
COD	400000	ND	424000	423000	102	102	1	80.0-120			0.151	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.19	L1221510	07/10/20 12:10	20 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,08,09

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Diai	k (IVID)						
(MB) R3532062-2 05/26/20 13:02							
	MB Result	MB Qualifier MB MD	MB RDL				
Analyte	ug/l	ug/l	ug/l				
ТОХ	U	27.7	100				

Method Blank (MB)

(MB) R3532486-2 C	(MB) R3532486-2 05/27/20 13:05							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
TOX	U		27.7	100				

L1221167-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221167-01 05/26/2	0 16:01 • (DUP)	R3532062-3	05/26/20	16:32		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
TOX	ND	ND	1	0.000		20

L1221355-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221355-01 05/26/2	OS) L1221355-01 05/26/20 17:02 • (DUP) R3532062-6 05/26/20 17:12								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
ТОХ	ND	ND	1	0.000		20			

L1221355-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1221355-02 05/26/2	S) L1221355-02 05/26/20 17:21 • (DUP) R3532062-7 05/26/20 17:31								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
TOX	ND	ND	1	0.000		20			

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10

PAGE: 21 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,08,09

Тс

Ss

GI

L1221355-03 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

L1221355-04 Original Sample (OS) • Duplicate (DUP)

L1221355-04 Original Sample (OS) • Duplicate (DUP)									
(OS) L1221355-04 05/26/20 19:24 • (DUP) R3532062-9 05/26/20 19:34									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁵Sr	
Analyte	ug/l	ug/l		%		%			
ТОХ	ND	ND	1	0.000		20		⁶ Qc	

L1221433-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221433-01 05/26/20 19:44 • (DUP) R3532062-10 05/26/20 19:53									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
ТОХ	ND	ND	1	0.000		20			

L1221433-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1221433-02 05/26/20 20:03 • (DUP) R3532062-11 05/26/20 20:12										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
ТОХ	ND	ND	1	200	<u>P1</u>	20				

L1221433-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1221433-03 05/26/2	(OS) L1221433-03 05/26/20 20:22 • (DUP) R3532062-12 05/26/20 20:32										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
TOX	ND	ND	1	200	P1	20					

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

PAGE: 22 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,08,09

Тс

Ss

GI

L1221433-04 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD nits	
Analyte	ug/l	ug/l		%			
TOX	ND	ND	1	0.000			

L1221433-05 Original Sample (OS) • Duplicate (DUP)

L1221433-05 Original Sample (OS) • Duplicate (DUP)								
(OS) L1221433-05 05/2	27/20 13:45 • (DUP	e) R3532486-4	1 05/27/20	D 13:55				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	ug/l	ug/l		%		%		
TOX	ND	ND	1	0.000		20		

L1221433-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1221433-06 05/27/20 14:05 • (DUP) R3532486-5 05/27/20 14:16									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
ТОХ	ND	ND	1	200	P1	20			

L1221433-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1221433-07 05/27/20 14:27 • (DUP) R3532486-6 05/27/20 14:37											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
ТОХ	ND	ND	1	0.000		20					

L1221510-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-01 05/27/2	(OS) L1221510-01 05/27/20 14:47 • (DUP) R3532486-7 05/27/20 14:57										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
ТОХ	ND	ND	1	0.000		20					

ACCOUNT:	
SCS Engineers - KS	5

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

PAGE: 23 of 41 Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,08,09

Тс

Ss

GI

L1221510-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	P RPD its	
Analyte	ug/l	ug/l		%			
TOX	ND	ND	1	0.000			

L1221510-03 Original Sample (OS) • Duplicate (DUP)

L1221510-03 Orig	ginal Sample	(OS) • Dup	olicate (I	DUP)			⁴ Cn
(OS) L1221510-03 05/2	:7/20 15:48 • (DUF	P) R3532486-9	9 05/27/20) 15:58			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte	ug/l	ug/l		%		%	
ТОХ	ND	ND	1	0.000		20	⁶ Q¢

L1221510-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-04 05/27/2	20 16:09 • (DUP) R3532486-10	05/27/2	0 16:19		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
TOX	ND	ND	1	0.000		20

L1221510-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-05 05/27/2	20 16:29 • (DUP) R3532486-11	1 05/27/20) 16:39		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
TOX	ND	ND	1	0.000		20

L1221510-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-06 05/27/2	20 16:50 • (DUP)) R3532486-12	2 05/27/2	0 17:00		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

ACCOUNT:	
SCS Engineers - KS	

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

PAGE: 24 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,08,09

Тс

Ss

GI

L1221510-08 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
TOX	ND	ND	1	0.000		20	

L1221510-09 Original Sample (OS) • Duplicate (DUP)

L1221510-09 C	riginal Sample	(OS) • Dup	olicate (l	OUP)		
(OS) L1221510-09 0	5/27/20 18:03 • (DUP) R3532486-14	4 05/27/2	0 18:13		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3532062-1 05	5/26/20 12:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
ТОХ	200	212	106	85.0-115	

Laboratory Control Sample (LCS)

(LCS) R3532486-1 05/27/20 12:37							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
TOX	200	212	106	85.0-115			

L1221167-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221167-01 05/26/20	0 16:01 • (MS) R3	3532062-4 05	5/26/20 16:42 •	(MSD) R35320	062-5 05/26/2	20 16:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
ТОХ	200	ND	212	206	106	103	1	80.0-120			2.78	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.19	L1221510	07/10/20 12:10	25 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY L1221510-07

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3532485-2 05	5/27/20 13:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
ТОХ	U		27.7	100

L1221510-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1221510-07 05/27/2	0 18:23 • (DUP)	R3532485-3	05/27/20	18:36		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

L1219683-05 Original Sample (OS) • Duplicate (DUP)

L1219683-05 C	riginal Sample	(OS) • Du	plicate (DUP)		
(OS) L1219683-05 0	5/27/20 19:58 • (DUF	P) R3532485-	7 05/27/20	0 20:08		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

L1221617-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221617-01 05/28/20	0 15:56 • (DUP)	R3533100-3	05/28/20	16:07		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
ТОХ	ND	ND	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3532485-1 05/27/	/20 12:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
ТОХ	200	212	106	85.0-115	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

PAGE: 26 of 41

Wet Chemistry by Method 9020B

QUALITY CONTROL SUMMARY

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/27/20	0 18:23 • (MS) R	3532485-4 0	5/27/20 18:45 •	(MSD) R35324	185-5 05/27/2	0 18:56						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte					0/	0/		0/			0/	0/
Analyte	ug/i	ug/l	ug/l	ug/l	%	%		%			%	%

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 27 of 41

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1221510-01,02,03

(MB) R3533055-1 C	05/28/20 19:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

L1221751-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1221751-01 05/29/2	20 01:46 • (DUP)	R3533055-7	05/29/20	01:57		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	85900	84800	1	1.31		15
Fluoride	ND	ND	1	0.696		15
Sulfate	10100	10000	1	1.15		15

L1221447-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1221447-03 05/28/2	20 22:52 • (DUF	P) R3533055-9	9 05/29/2	20 11:46		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1550	1500	1	2.85		15
Fluoride	264	278	1	5.35		15
Sulfate	20400	20300	1	0.228		15

Laboratory Control Sample (LCS)

(LCS) R3533055-2 05/2	8/20 19:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39900	99.8	80.0-120	
Fluoride	8000	8350	104	80.0-120	
Sulfate	40000	38900	97.1	80.0-120	

ACCOUNT:	
SCS Engineers - KS	S

PROJECT: 27213167.19

SDG: L1221510

DATE/TIME: 07/10/20 12:10

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

QUALITY CONTROL SUMMARY

L1221288-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1221288-01 05/28	8/20 20:42 • (MS)	R3533055-4 (05/28/20 20	:53			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	1360	52300	102	1	80.0-120	
Fluoride	5000	185	5470	106	1	80.0-120	
Sulfate	50000	16100	65400	98.7	1	80.0-120	

L1221447-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221447-04 05/28/2	20 23:03 • (MS)	R3533055-5	05/28/20 23:14	4 • (MSD) R353	3055-6 05/28	/20 23:25						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8490	58600	59000	100	101	1	80.0-120			0.714	15
Fluoride	5000	291	5310	5340	100	101	1	80.0-120			0.421	15
Sulfate	50000	54400	99300	101000	89.7	92.9	1	80.0-120		E	1.56	15

Wet Chemistry by Method 9060A

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,07,08,09

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3532634-1 05/27/	20 20:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
TOC (Total Organic Carbon)	242	J	102	1000

L1221488-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1221488-22 05/27/	'20 23:38 • (DUF	P) R3532634-3	3 05/28/2	0 00:03		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
TOC (Total Organic Carbon)	817000	819000	10	0.245		20

L1221510-04 Original Sample (OS) • Duplicate (DUP)

L1221510-04 Origir	nal Sample ((OS) • Dup	olicate (l	OUP)		
OS) L1221510-04 05/28/2	20 03:48 • (DUF	P) R3532634-	6 05/28/2	0 04:02		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
TOC (Total Organic Carbon)	1790	1870	1	4.43		20

Laboratory Control Sample (LCS)

(LCS) R3532634-2 05/27	//20 21:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
TOC (Total Organic Carbon)	75000	73500	98.0	85.0-115	

L1221510-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-02 05/28/2	20 02:34 • (MS)	R3532634-4 (05/28/20 02:5	57 • (MSD) R353	32634-5 05/2	8/20 03:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
TOC (Total Organic Carbon)	50000	3250	52000	52700	97.5	98.8	1	80.0-120			1.30	20

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/28/2	20 06:09 • (MS)	R3532634-7 (05/28/20 06:	31 • (MSD) R353	32634-8 05/2	28/20 06:53							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
TOC (Total Organic Carbon)	50000	1820	50800	51600	98.0	99.6	1	80.0-120			1.58	20	
A	CCOUNT:			PRC	JECT:			SDG:		DATE	TIME:		PAGE:
SCS E	Engineers - KS			2721	3167.19		L1	221510		07/10/2	0 12:10		30 of 41

Mercury by Method 7470A

QUALITY CONTROL SUMMARY L1221510-01,02,03,04,05,06,07,08,09

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3531871-1 05	5/26/20 12:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Mercury	U		0.100	0.200	

Laboratory Control Sample (LCS)

(LCS) R3531871-5 05/	/26/20 12:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	2.73	91.0	80.0-120	

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/26/20 12:29 • (MS) R3531871-6 05/26/20 12:31 • (MSD) R3531871-7 05/26/20 12:33												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Mercury	3.00	ND	2.75	2.73	91.8	90.9	1	75.0-125			1.00	20

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 31 of 41 Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Тс

Ss

⁺Cn

Sr

[°]Qc

GI

A

Sc

Method Blank (MB)

(MB) R3533271-1	05/29/20	11:06
		MB Result

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		70.4	200
Barium	U		0.895	5.00
Boron	U		25.4	200
Calcium	U		389	1000
Chromium	U		5.00	10.0
Cobalt	U		0.807	10.0
Iron	U		45.8	100
Magnesium	U		111	1000
Manganese	U		3.27	10.0
Nickel	U		2.98	10.0
Silver	U		1.91	5.00
Sodium	U		1400	3000

Laboratory Control Sample (LCS)

(LCS) R3533271-2 05/29/20 11:09										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Aluminum	10000	10100	101	80.0-120						
Barium	1000	957	95.7	80.0-120						
Boron	1000	956	95.6	80.0-120						
Calcium	10000	9590	95.9	80.0-120						
Chromium	1000	951	95.1	80.0-120						
Cobalt	1000	965	96.5	80.0-120						
Iron	10000	9460	94.6	80.0-120						
Magnesium	10000	9910	99.1	80.0-120						
Manganese	1000	941	94.1	80.0-120						
Nickel	1000	962	96.2	80.0-120						
Silver	200	174	86.9	80.0-120						
Sodium	10000	9500	95.0	80.0-120						

L1221445-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221445-09	(OS) L1221445-09 05/29/20 11:11 • (MS) R3533271-4 05/29/20 11:16 • (MSD) R3533271-5 05/29/20 11:19												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Aluminum	10000	703	10000	10000	93.1	93.2	1	75.0-125			0.104	20	
Barium	1000	92.6	1050	1040	95.5	94.3	1	75.0-125			1.14	20	
Boron	1000	3960	4820	4860	86.4	90.4	1	75.0-125			0.829	20	
ACCOUNT:				PROJECT:			SDG:			DATE/TIME:			PAGE:
		27213167.19			L1221510			07/10/20 12:10			32 of 41		

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

. Qc

Gl

A

Sc

L1221445-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221445-09 05/29/20 11:11 • (MS) R3533271-4 05/29/20 11:16 • (MSD) R3533271-5 05/29/20 11:19												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	43300	51300	51600	79.8	83.4	1	75.0-125			0.688	20
Chromium	1000	ND	966	961	96.6	96.1	1	75.0-125			0.498	20
Cobalt	1000	ND	1010	1000	101	100	1	75.0-125			1.01	20
Iron	10000	2640	11700	11700	90.5	91.0	1	75.0-125			0.402	20
Magnesium	10000	8870	18300	18300	94.3	93.9	1	75.0-125			0.212	20
Manganese	1000	206	1140	1140	93.3	93.1	1	75.0-125			0.164	20
Nickel	1000	ND	1010	1000	101	99.7	1	75.0-125			1.03	20
Silver	200	ND	176	177	88.1	88.6	1	75.0-125			0.599	20
Sodium	10000	183000	186000	189000	32.6	63.2	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	1.63	20

L1221447-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221447-04 05/29/20 11:21 • (MS) R3533271-6 05/29/20 11:24 • (MSD) R3533271-7 05/29/20 11:26												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	10000	ND	9960	10200	99.6	102	1	75.0-125			2.08	20
Barium	1000	220	1170	1180	94.9	96.3	1	75.0-125			1.19	20
Boron	1000	ND	1050	1070	95.2	97.0	1	75.0-125			1.71	20
Calcium	10000	140000	148000	149000	83.1	89.5	1	75.0-125			0.430	20
Chromium	1000	ND	965	964	96.5	96.4	1	75.0-125			0.0506	20
Cobalt	1000	ND	979	993	97.8	99.2	1	75.0-125			1.40	20
Iron	10000	1300	10800	10900	95.1	96.4	1	75.0-125			1.20	20
Magnesium	10000	29300	38100	38300	87.5	90.0	1	75.0-125			0.646	20
Manganese	1000	597	1540	1530	94.1	93.3	1	75.0-125			0.501	20
Nickel	1000	ND	978	991	97.8	99.1	1	75.0-125			1.32	20
Silver	200	ND	181	180	90.5	90.0	1	75.0-125			0.485	20
Sodium	10000	7980	17400	17600	94.1	95.9	1	75.0-125			1.01	20

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 33 of 41

QUALITY CONTROL SUMMARY L1221510-02,03,04,05,06,07,08,09

(MB) R3532881-1 05/28/2	20 23:57					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Aluminum	U		70.4	200		
Barium	U		0.895	5.00		
Boron	U		25.4	200		
Calcium	U		389	1000		
Chromium	U		5.00	10.0		
Cobalt	U		0.807	10.0		
Iron	U		45.8	100		
Magnesium	U		111	1000		
Manganese	U		3.27	10.0		
Nickel	U		2.98	10.0		
Silver	U		1.91	5.00		
Sodium	U		1400	3000		

Laboratory Control Sample (LCS)

(LCS) R3532881-2 05/28	/20 23:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Aluminum	10000	10100	101	80.0-120	
Barium	1000	961	96.1	80.0-120	
Boron	1000	964	96.4	80.0-120	
Calcium	10000	9870	98.7	80.0-120	
Chromium	1000	947	94.7	80.0-120	
Cobalt	1000	964	96.4	80.0-120	
Iron	10000	9740	97.4	80.0-120	
Magnesium	10000	10100	101	80.0-120	
Manganese	1000	940	94.0	80.0-120	
Nickel	1000	957	95.7	80.0-120	
Silver	200	178	89.2	80.0-120	
Sodium	10000	9800	98.0	80.0-120	

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07	(OS) L1221510-07 05/29/20 00:02 • (MS) R3532881-4 05/29/20 00:07 • (MSD) R3532881-5 05/29/20 00:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Aluminum	10000	ND	10100	10100	101	101	1	75.0-125			0.529	20	
Barium	1000	223	1180	1180	95.9	95.9	1	75.0-125			0.00880	20	
Boron	1000	ND	1070	1080	98.3	99.2	1	75.0-125			0.896	20	
	ACCOUNT:			PRO.	JECT:			SDG:		DATE/	TIME:		PAGE:
	SCS Engineers - KS			27213	167.19		L1	221510		07/10/20	0 12:10		34 of 41

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

QUALITY CONTROL SUMMARY L1221510-02,03,04,05,06,07,08,09

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/29/20 00:02 • (MS) R3532881-4 05/29/20 00:07 • (MSD) R3532881-5 05/29/20 00:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	143000	150000	150000	71.1	73.6	1	75.0-125	V	V	0.168	20
Chromium	1000	ND	957	956	95.7	95.6	1	75.0-125			0.133	20
Cobalt	1000	ND	979	980	97.9	98.0	1	75.0-125			0.136	20
Iron	10000	1240	11000	11000	97.1	97.4	1	75.0-125			0.265	20
Magnesium	10000	29800	38700	38700	89.3	89.6	1	75.0-125			0.0852	20
Manganese	1000	574	1500	1500	92.9	92.5	1	75.0-125			0.258	20
Nickel	1000	ND	975	968	97.5	96.8	1	75.0-125			0.715	20
Silver	200	ND	183	184	91.5	92.0	1	75.0-125			0.466	20
Sodium	10000	8090	17700	17900	96.4	97.7	1	75.0-125			0.720	20

Τс

ACCOUNT:	
SCS Engineers -	KS

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 35 of 41

QUALITY CONTROL SUMMARY

(MB) R3532742-1	05/28/20 16:12
	MB Result

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Antimony	U		1.32	4.00
Arsenic	U		0.735	2.00
Beryllium	U		0.454	2.00
Cadmium	U		0.478	1.00
Copper	U		2.50	5.00
Lead	U		2.49	5.00
Selenium	U		0.657	2.00
Thallium	U		0.460	2.00
Zinc	U		9.96	25.0

Laboratory Control Sample (LCS)

LCS) R3532742-2 05/28/20 16:15										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Antimony	50.0	46.9	93.7	80.0-120						
Arsenic	50.0	46.5	93.0	80.0-120						
Beryllium	50.0	46.3	92.7	80.0-120						
Cadmium	50.0	51.9	104	80.0-120						
Copper	50.0	42.9	85.8	80.0-120						
Lead	50.0	49.3	98.5	80.0-120						
Selenium	50.0	49.5	98.9	80.0-120						
Thallium	50.0	47.3	94.7	80.0-120						
Zinc	500	470	94.0	80.0-120						

L1221405-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
50.0	ND	48.4	49.5	96.7	99.0	1	75.0-125			2.33	20	
50.0	ND	48.3	48.2	94.8	94.6	1	75.0-125			0.221	20	
50.0	ND	46.2	46.8	92.3	93.5	1	75.0-125			1.31	20	
50.0	ND	51.1	51.7	102	103	1	75.0-125			1.06	20	
50.0	ND	42.4	42.7	84.8	85.3	1	75.0-125			0.682	20	
50.0	ND	48.8	50.2	97.5	100	1	75.0-125			2.80	20	
50.0	ND	50.6	50.7	101	101	1	75.0-125			0.00162	20	
50.0	ND	46.6	47.8	93.1	95.6	1	75.0-125			2.66	20	
500	ND	480	474	95.9	94.9	1	75.0-125			1.13	20	
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	50.0 ND 50.0 ND	50.0 ND 48.4 50.0 ND 48.3 50.0 ND 46.2 50.0 ND 51.1 50.0 ND 42.4 50.0 ND 48.8 50.0 ND 50.6 50.0 ND 50.6 50.0 ND 46.6	50.0 ND 48.4 49.5 50.0 ND 48.3 48.2 50.0 ND 46.2 46.8 50.0 ND 51.1 51.7 50.0 ND 42.4 42.7 50.0 ND 48.8 50.2 50.0 ND 50.6 50.7 50.0 ND 46.6 47.8	50.0 ND 48.4 49.5 96.7 50.0 ND 48.3 48.2 94.8 50.0 ND 46.2 46.8 92.3 50.0 ND 51.1 51.7 102 50.0 ND 42.4 42.7 84.8 50.0 ND 48.8 50.2 97.5 50.0 ND 50.6 50.7 101 50.0 ND 46.6 47.8 93.1	50.0 ND 48.4 49.5 96.7 99.0 50.0 ND 48.3 48.2 94.8 94.6 50.0 ND 46.2 46.8 92.3 93.5 50.0 ND 51.1 51.7 102 103 50.0 ND 42.4 42.7 84.8 85.3 50.0 ND 48.8 50.2 97.5 100 50.0 ND 46.6 50.7 101 101 50.0 ND 46.6 47.8 93.1 95.6	50 ND 48.4 49.5 96.7 99.0 1 50.0 ND 48.3 48.2 94.8 94.6 1 50.0 ND 46.2 46.8 92.3 93.5 1 50.0 ND 51.1 51.7 102 103 1 50.0 ND 42.4 42.7 84.8 85.3 1 50.0 ND 48.8 50.2 97.5 100 1 50.0 ND 50.6 50.7 101 101 1 50.0 ND 46.6 47.8 93.1 95.6 1	50.0 ND 48.4 49.5 96.7 99.0 1 75.0-125 50.0 ND 48.3 48.2 94.8 94.6 1 75.0-125 50.0 ND 46.2 46.8 92.3 93.5 1 75.0-125 50.0 ND 46.2 46.8 92.3 93.5 1 75.0-125 50.0 ND 51.1 51.7 102 103 1 75.0-125 50.0 ND 42.4 42.7 84.8 85.3 1 75.0-125 50.0 ND 48.8 50.2 97.5 100 1 75.0-125 50.0 ND 48.8 50.2 97.5 100 1 75.0-125 50.0 ND 50.6 50.7 101 101 1 75.0-125 50.0 ND 46.6 47.8 93.1 95.6 1 75.0-125	50.0ND48.449.596.799.0175.0-12550.0ND48.348.294.894.6175.0-12550.0ND46.246.892.393.5175.0-12550.0ND51.151.7102103175.0-12550.0ND42.442.784.885.3175.0-12550.0ND48.850.297.5100175.0-12550.0ND50.650.7101101175.0-12550.0ND46.647.893.195.6175.0-125	50.0ND48.449.596.799.0175.0-12550.0ND48.348.294.894.6175.0-12550.0ND46.246.892.393.5175.0-12550.0ND51.151.7102103175.0-12550.0ND42.442.784.885.3175.0-12550.0ND48.850.297.5100175.0-12550.0ND46.650.7101101175.0-12550.0ND46.647.893.195.6175.0-125	50.0ND48.449.596.799.0175.0-1252.3350.0ND48.348.294.894.6175.0-1250.22150.0ND46.246.892.393.5175.0-1251.3150.0ND51.151.7102103175.0-1251.0650.0ND42.442.784.885.3175.0-1250.68250.0ND48.850.297.5100175.0-1252.8050.0ND46.650.7101101175.0-1250.0016250.0ND46.647.893.195.6175.0-1252.66	50.0ND48.449.596.799.0175.0.1252.332050.0ND48.348.294.894.6175.0.1250.2212050.0ND46.246.892.393.5175.0.1251.312050.0ND51.151.7102103175.0.1251.062050.0ND42.442.784.885.3175.0.1250.6822050.0ND48.850.297.5100175.0.1252.802050.0ND48.850.297.5100175.0.1250.001622050.0ND46.650.7101101175.0.1252.662050.0ND46.647.893.195.6175.0.1252.6620

SCS Engineers - KS

27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 ²Tc ³Ss ⁴Cn ⁵Sr

Qc

36 of 41

ONE LAB. NATIONWIDE.

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1221510-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221510-07 05/28/20 16:32 • (MS) R3532742-6 05/28/20 16:35 • (MSD) R3532742-7 05/28/20 16:38												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Antimony	50.0	ND	47.0	47.9	94.0	95.9	1	75.0-125			2.01	20
Arsenic	50.0	7.68	54.3	54.5	93.3	93.7	1	75.0-125			0.401	20
Beryllium	50.0	ND	45.0	46.6	89.9	93.2	1	75.0-125			3.54	20
Cadmium	50.0	ND	49.5	49.7	99.1	99.4	1	75.0-125			0.348	20
Copper	50.0	ND	40.7	40.9	81.4	81.9	1	75.0-125			0.622	20
Lead	50.0	ND	48.5	49.5	97.0	99.1	1	75.0-125			2.07	20
Selenium	50.0	ND	49.4	49.6	98.9	99.3	1	75.0-125			0.444	20
Thallium	50.0	ND	46.9	48.2	93.9	96.5	1	75.0-125			2.76	20
Zinc	500	ND	464	468	92.8	93.5	1	75.0-125			0.770	20

⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Τс

Ss

Cn

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10 PAGE: 37 of 41

QUALITY CONTROL SUMMARY L1221510-08,09

(MB) R3532615-1	05/28/20 10:43	
	MB Result	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Antimony	U		1.32	4.00
Arsenic	U		0.735	2.00
Beryllium	U		0.454	2.00
Cadmium	U		0.478	1.00
Copper	U		2.50	5.00
Lead	U		2.49	5.00
Selenium	U		0.657	2.00
Thallium	U		0.460	2.00
Zinc	U		9.96	25.0

Laboratory Control Sample (LCS)

(LCS) R3532615-2 05/28	/20 10:46					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Antimony	50.0	52.0	104	80.0-120		
Arsenic	50.0	46.1	92.2	80.0-120		
Beryllium	50.0	47.4	94.7	80.0-120		
Cadmium	50.0	49.6	99.2	80.0-120		
Copper	50.0	50.8	102	80.0-120		
Lead	50.0	46.2	92.5	80.0-120		
Selenium	50.0	51.8	104	80.0-120		
Thallium	50.0	45.3	90.7	80.0-120		
Zinc	500	455	90.9	80.0-120		

L1221630-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Antimony	50.0	ND	53.1	56.9	106	114	1	75.0-125			6.88	20	
Arsenic	50.0	80.7	130	128	97.7	94.1	1	75.0-125			1.39	20	
Beryllium	50.0	ND	50.2	48.9	100	97.7	1	75.0-125			2.65	20	
Cadmium	50.0	ND	53.4	52.3	107	105	1	75.0-125			2.23	20	
Copper	50.0	7.63	57.9	55.5	101	95.6	1	75.0-125			4.36	20	
Lead	50.0	ND	47.7	47.9	95.4	95.8	1	75.0-125			0.407	20	
Selenium	50.0	6.53	64.5	64.7	116	116	1	75.0-125			0.333	20	
Thallium	50.0	ND	48.9	48.0	97.7	95.9	1	75.0-125			1.86	20	
Zinc	500	ND	476	457	95.2	91.5	1	75.0-125			3.98	20	
	ACCOUNT:			PPC	DJECT:			SDG:		DATE/	TIME		

SCS Engineers - KS

27213167.19

L1221510

07/10/20 12:10

Тс Ss Cn Sr

Qc GI

```
Â
```

Sc

GLOSSARY OF TERMS

₩

Тс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.19

SDG: L1221510 DATE/TIME: 07/10/20 12:10

PAGE: 39 of 41

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.19

L1221510

PAGE: 40 of 41

07/10/20 12:10

				Billing Information:					1	A	nalvsis	Contai	ner / Pre	eservativ	/e		24 ²	Chain of Custody	Page of													
SCS Engineers - KS 8575 W. 110th Street Over land Park, KS 66210 Report to:		8575 W. 110th Street			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210					8575 W. 110		h Street			th Street			5 W. 110th Street				ll	n	n			62				- Pace / Nettonal Ca	Analytical* Inter for Testing 8 innovelier
								il To:			x			8							12065 Lebanon Rd											
Jason Franks Project Description:			jfranks@s	csengineers.	harme barne	- he h		Pre		103	NO				72			Mount Juliet, TN 372 Phone: 615-758-585	8													
Evergy - latan Generating Station		City/State Collected:	WEST	De A		MT C		N-		Ę	E-H		1997 - 1997 1997 - 1997				100 - 100 100 - 100 100 - 100	Phone: 800-767-585 Fax: 615-758-5859	自然感													
Phone: 913-681-0030	Client Projec 27213167	ent Project # 213167.19		Lab Project	t# PKS-IATA	v	j	125mlHDPE-NoPres		250miHDPE-HNO3	50mIHDPE-HNO3							505 #12 21510 G007														
Collected by (print): JASON R. RANKS	Site/Facility	ID #		P.O. #	1				H2S04	*	** 250	VoPres	G	H2S04				Acctnum: AQL														
Collected by (signature): Rush? (Lab MUST Be Collected by (signature): Same Day Five		Day Five		Quote #				, F, SO4)	250miHDPE-H2SO4	Metals	Metals	250miHDPE-NoPres	TOC 250mlAmb-HCI	Amb-Add				Template: T136 Prelogin: P769	9368													
Immediately Packed on Ice N Y	Two D	ay 10 D.	ay (Rad Only)	Date r	Results Nee	160	No. of	ns (Cld,	250ml	Hardness, 1	Hardness, N	250ml	250ml	1L-Am				PM: 206 - Jeff C PB:	arr													
Sample ID	Comp/Grab	Matrix *	Depth	Date		ime	Cntrs	Anions	COD	Hard	Hard	TDS 2	TOC:	TOX				Shipped Via: Remarks	Sample # (lab only)													
MW-3	GRAG	GW	-	5/20	20 101	35	6	X	x	x		x	x	x			5		101													
MW-4		GW	-	1	M	35	6	x	x	x		x	x	x				3	07													
MW-5		GW	-			20	6	X	x	x	in the	x	x	x					03													
MW-1	and the second	GW	-			55	4		X		x		x	x			1.1.1	Martin -	04													
MW-2		GW	-		a subscription and the subscription of	55	4		x		x		x	x					05													
MW-6		GW	E			140	4		X		x		x	x					06													
MW-7		GW	-			30	4		X		x		x	x			1992.193		07													
MW-8		GW	-		12		4		X		X		X	X	1			and the second second	08													
DUPLICATE		GW	-		11 A	35	4		X		X		X	x	and and a second se				00													
MS/MSD		GW	5			40	4		X		X		X	x					2													
* Matrix: Re SS - Soil AIR - Air F - Filter H GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sa OT - Other Sa	,Cr,Co,Fe,N ,Na,Ni,Sb,	Mg,Mn,Na,N As,Be,Cd,Cu	e,Cd,Cu Zn	,Pb,Se	,TI,Zn	**		pH Flow		Temp Other		2	COC Si Bottle Correct	al Pr gned/ s arr t bot	le Receipt Che esent/Intact: Accurate: ive Intact: tles used: volume sent:	ANNA A A A A A A A A A A A A A A A A A																
Relinquished by : (Signature)	and the second	$\underline{-}$ Courier ate: 5/21/20	Time:		racking #	Signat	re)		300	11110	rip Blanl	Receiv	G	e / No D / Mec BR	хH	Preser	vatio	<u>If Applicabl</u> adspace: n Correct/Chec <0.5 mR/hr:	Y N													
Relipquished by : (Signature)		ite:	Time:	Re	eceived by:	(Signatu	re)				empt/	ñ°C	and the second second second	46	ed:	If preser	vation	required by Logi	n: Date/Time													
Relinquished by : (Signature)	Da	ite:	Time:	Re	eceived for	ab by: (S	Signatu	re)		D	ate:		Time	and have been a thread of		Hold:			Condition: NCF / OK													

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1221443 05/22/2020 27213167.20 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1221443 DATE/TIME: 05/31/20 15:07 PAGE: 1 of 19

TABLE OF CONTENTS

Cp: Cover Page	1	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
MW-1 L1221443-01	5	
MW-2 L1221443-02	6	
MW-6 L1221443-03	7	
MW-7 L1221443-04	8	
MW-8 L1221443-05	9	
DUPLICATE L1221443-06	10	
MW-9 L1221443-07	11	
MW-10 L1221443-08	12	
Qc: Quality Control Summary	13	
Mercury by Method 7470A	13	
Metals (ICP) by Method 6010B	14	
Metals (ICPMS) by Method 6020	16	
GI: Glossary of Terms	17	
Al: Accreditations & Locations	18	
Sc: Sample Chain of Custody	19	

*

SDG: L1221443 DATE/TIME: 05/31/20 15:07

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

⁴Cn

Sr

Qc

GI

ΆI

⁹Sc

	JANIFLL		MARI		ONLE	
MW-1 L1221443-01 GW			Collected by	Collected date/time 05/20/20 09:55	Received da 05/22/20 11:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 20:51	EL	Mt. Juliet, TI
MW-2 L1221443-02 GW			Collected by	Collected date/time 05/20/20 10:55	Received da 05/22/20 11:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	date/time 05/27/20 23:07	date/time 05/28/20 20:53	EL	Mt. Juliet, T
MW-6 L1221443-03 GW			Collected by	Collected date/time 05/20/20 09:40	Received da 05/22/20 11:•	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 20:56	EL	Mt. Juliet, T
MW-7 L1221443-04 GW			Collected by	Collected date/time 05/20/20 10:30	Received da 05/22/20 11:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 19:57	EL	Mt. Juliet, T
MW-8 L1221443-05 GW			Collected by	Collected date/time 05/20/20 12:00	Received da 05/22/20 11:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 20:59	EL	Mt. Juliet, T
DUPLICATE L1221443-06 GW			Collected by	Collected date/time 05/20/20 10:35	Received da 05/22/20 11:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1481516	1	05/27/20 23:07	05/28/20 21:01	EL	Mt. Juliet, T
MW-9 L1221443-07 GW			Collected by	Collected date/time 05/20/20 12:30	Received da 05/22/20 11:4	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:44	TCT	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 11:29	TRB	Mt. Juliet, T
Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG1481528 WG1481528	1 1	05/28/20 07:49 05/28/20 07:49	05/28/20 20:12 05/29/20 09:29	JPD JPD	Mt. Juliet, TI Mt. Juliet, TI
אופנסוג נוערואוגן עץ ואפנווטע 20ע	WG1481528	I	05/26/20 07:49	03123120 03123	JFD	wit. Jullet, T
MW-10 L1221443-08 GW			Collected by	Collected date/time 05/20/20 13:50	Received da 05/22/20 11:-	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Mercury by Method 7470A	WG1481265	1	05/23/20 21:56	05/26/20 14:46	TCT	Mt. Juliet, Tl
Metals (ICP) by Method 6010B	WG1481517	1	05/27/20 23:36	05/29/20 11:37	TRB	Mt. Juliet, TI
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/28/20 20:15	JPD	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1481528	1	05/28/20 07:49	05/29/20 09:32	JPD	Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
	27212107 20		11221442	05/04	120 15.07	

27213167.20

L1221443

SCS Engineers - KS

PAGE: 3 of 19

05/31/20 15:07

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1221443 DATE/TIME: 05/31/20 15:07

Collected date/time: 05/20/20 09:55

SAMPLE RESULTS - 01 L1221443

Ср

Metals (ICP) by Method 6010B

						 10
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		2
Lithium	51.5	15.0	1	05/28/2020 20:51	WG1481516	1
Molybdenum	ND	5.00	1	05/28/2020 20:51	WG1481516	

ACCOUNT:	
SCS Engineers - KS	

PROJECT: 27213167.20

SDG: L1221443

DATE/TIME: 05/31/20 15:07 PAGE: 5 of 19

Collected date/time: 05/20/20 10:55

SAMPLE RESULTS - 02

. , ,							I'C
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Lithium	52.8		15.0	1	05/28/2020 20:53	WG1481516	T
Molybdenum	ND		5.00	1	05/28/2020 20:53	WG1481516	

Collected date/time: 05/20/20 09:40

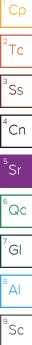
SAMPLE RESULTS - 03

							1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Lithium	34.2		15.0	1	05/28/2020 20:56	WG1481516	Tc
Molybdenum	ND		5.00	1	05/28/2020 20:56	WG1481516	
							2

Collected date/time: 05/20/20 10:30

SAMPLE RESULTS - 04

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Lithium	39.4		15.0	1	05/28/2020 19:57	WG1481516	Tc
Molybdenum	ND		5.00	1	05/28/2020 19:57	WG1481516	


ACCOUNT:	
SCS Engineers - KS	

IVI VV - O Collected date/time: 05/20/20 12:00

SAMPLE RESULTS - 05

							 I C
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Lithium	40.1		15.0	1	05/28/2020 20:59	WG1481516	T
Molybdenum	ND		5.00	1	05/28/2020 20:59	WG1481516	

SAMPLE RESULTS - 06

Ср

Тс

Ss

Cn

Qc

GI

ΆI

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Lithium	39.7		15.0	1	05/28/2020 21:01	WG1481516
Molybdenum	ND		5.00	1	05/28/2020 21:01	WG1481516

Cobalt

Lithium

Molybdenum

VI VV - 9 Collected date/time: 05/20/20 12:30

SAMPLE RESULTS - 07

*

Qc

Mercury by Method 7470A

wichedry by wic	IIIOU / F/ OA						1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		-
Mercury	ND		0.200	1	05/26/2020 14:44	WG1481265	-
Metals (ICP) by	Method 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4
Barium	109		5.00	1	05/29/2020 11:29	WG1481517	

05/29/2020 11:29

05/29/2020 11:29

05/29/2020 11:29

WG1481517

WG1481517 WG1481517

1

1

1

10.0

15.0

5.00

Metals (ICPMS) by Method 6020

ND

32.0

11.7

Metals (ICPINS) (by Method 6020						7
	Result	Qualifier	RDL	Dilution	Analysis	Batch	- ÍGI
Analyte	ug/l		ug/l		date / time		8
Antimony	ND		4.00	1	05/28/2020 20:12	WG1481528	Ĩ ĂI
Arsenic	19.6		2.00	1	05/28/2020 20:12	WG1481528	
Beryllium	ND		2.00	1	05/29/2020 09:29	WG1481528	°Sc
Cadmium	ND		1.00	1	05/28/2020 20:12	WG1481528	50
Lead	ND		5.00	1	05/28/2020 20:12	WG1481528	
Selenium	ND		2.00	1	05/28/2020 20:12	WG1481528	
Thallium	ND		2.00	1	05/28/2020 20:12	WG1481528	

SDG: L1221443

SAMPLE RESULTS - 08 L1221443

Qc

Collected date/time: 05/20/20 13:50 Mercury by Method 7470A

Mercury by Method	1/4/0A						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Mercury	ND		0.200	1	05/26/2020 14:46	WG1481265	
Metals (ICP) by Met	nod 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Barium	187		5.00	1	05/29/2020 11:37	WG1481517	
Chromium	ND		10.0	1	05/29/2020 11:37	WG1481517	
Cobalt	ND		10.0	1	05/29/2020 11:37	WG1481517	
Lithium	23.0		15.0	1	05/29/2020 11:37	WG1481517	
Molybdenum	25.3		5.00	1	05/29/2020 11:37	WG1481517	

Metals (ICPMS) by Method 6020

Metals (ICPMS) t	by Method 6020						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Antimony	ND		4.00	1	05/28/2020 20:15	<u>WG1481528</u>	
Arsenic	15.3		2.00	1	05/28/2020 20:15	WG1481528	
Beryllium	ND		2.00	1	05/29/2020 09:32	WG1481528	
Cadmium	ND		1.00	1	05/28/2020 20:15	WG1481528	
Lead	ND		5.00	1	05/28/2020 20:15	WG1481528	
Selenium	ND		2.00	1	05/28/2020 20:15	WG1481528	
Thallium	ND		2.00	1	05/28/2020 20:15	WG1481528	

WG1481265

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3531871-1 05/	/26/20 12:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.100	0.200

Laboratory Control Sample (LCS)

(LCS) R3531871-5 05/26	6/20 12:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	2.73	91.0	80.0-120	

QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3532814-1 0	5/28/20 19:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Lithium	U		5.74	15.0	
Molybdenum	U		1.04	5.00	

Laboratory Control Sample (LCS)

(LCS) R3532814-2 05/	/28/20 19:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lithium	1000	924	92.4	80.0-120	
Molybdenum	1000	958	95.8	80.0-120	

L1221405-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221405-09 05/28/20 19:47 • (MS) R3532814-4 05/28/20 19:52 • (MSD) R3532814-5 05/28/20 19:55													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Lithium	1000	ND	939	908	92.8	89.7	1	75.0-125			3.27	20	_
Molybdenum	1000	184	1160	1140	98.1	95.8	1	75.0-125			1.99	20	

L1221443-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221443-04 05/28/20 19:57 • (MS) R3532814-6 05/28/20 20:00 • (MSD) R3532814-7 05/28/20 20:02												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lithium	1000	39.4	986	989	94.6	94.9	1	75.0-125			0.273	20
Molybdenum	1000	ND	974	984	97.2	98.2	1	75.0-125			0.973	20

ACCOUNT:	
SCS Engineers -	KS

PROJECT: 27213167.20

SDG: L1221443 DATE/TIME: 05/31/20 15:07 PAGE: 14 of 19

QUALITY CONTROL SUMMARY L1221443-07,08

(MB) R3533271-1	05/29/20 11:06

(IVID) R5555271-1 US	/29/20 11.06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Barium	U		0.895	5.00
Chromium	U		5.00	10.0
Cobalt	U		0.807	10.0
Lithium	U		5.74	15.0
Molybdenum	1.05	J	1.04	5.00

Laboratory Control Sample (LCS)

(LCS) R3533271-2 C)5/29/20 11:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Barium	1000	957	95.7	80.0-120	
Chromium	1000	951	95.1	80.0-120	
Cobalt	1000	965	96.5	80.0-120	
Lithium	1000	938	93.8	80.0-120	
Molybdenum	1000	969	96.9	80.0-120	

L1221447-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221447-04 05/29/20 11:21 • (MS) R3533271-6 05/29/20 11:24 • (MSD) R3533271-7 05/29/20 11:26												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Barium	1000	220	1170	1180	94.9	96.3	1	75.0-125			1.19	20
Chromium	1000	ND	965	964	96.5	96.4	1	75.0-125			0.0506	20
Cobalt	1000	ND	979	993	97.8	99.2	1	75.0-125			1.40	20
Lithium	1000	44.0	981	994	93.7	95.0	1	75.0-125			1.27	20
Molybdenum	1000	ND	973	987	97.0	98.3	1	75.0-125			1.38	20

DATE/TIME: 05/31/20 15:07 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

QUALITY CONTROL SUMMARY

(MB) R3532742-1	05/28/20	16:	12	
	-		_	

()				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Antimony	U		1.32	4.00
Arsenic	U		0.735	2.00
Beryllium	U		0.454	2.00
Cadmium	U		0.478	1.00
Lead	U		2.49	5.00
Selenium	U		0.657	2.00
Thallium	U		0.460	2.00

Laboratory Control Sample (LCS)

(LCS) R3532742-2 05/2	8/20 16:15					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	ug/l	ug/l	%	%		
Antimony	50.0	46.9	93.7	80.0-120		8
Arsenic	50.0	46.5	93.0	80.0-120		A
Beryllium	50.0	46.3	92.7	80.0-120		9
Cadmium	50.0	51.9	104	80.0-120		Sc
Lead	50.0	49.3	98.5	80.0-120		
Selenium	50.0	49.5	98.9	80.0-120		
Thallium	50.0	47.3	94.7	80.0-120		

DATE/TIME: 05/31/20 15:07 PAGE: 16 of 19 Тс

Ss

Cn

Sr

Qc

GLOSSARY OF TERMS

*

Ср

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

PROJECT: 27213167.20

SDG: L1221443 DATE/TIME: 05/31/20 15:07

PAGE: 17 of 19

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alaska17-026NevadiArizonaAZ0612New HArkansas88-0469New JCalifornia2932New MColoradoTN00003New YConnecticutPH-0197North OFloridaE87487North OGeorgiaNELAPNorth OGeorgia^1923North OIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South ILouisianaAl30792TenneeLouisiana 1LA180010TexasMaineTN0003UtahMinne sota047-999-395WashirMinnesota047-999-395WashirMissouri340Wiscor	Alabama	40660	Nebras
ArizonaA20612New HArkansas88-0469New HCalifornia2932New MColoradoTN00003New MConnecticutPH-0197North GFloridaE87487North GGeorgiaNELAPNorth GGeorgia ¹ 923North GIdahoTN00003OhioIIllinois20008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010SouthLouisianaA130792TennesLouisiana 1LA180010TexasMaireTN0002TexasMarjand324UtahMinnesota047-999-395WashirMississippiTN00003West WMissouri340Wiscont			
Arkansas88-0469New JeCalifornia2932New MColoradoTN00003New YConnecticutPH-0197North GFloridaE87487North GGeorgiaNELAPNorth GGeorgia 1923North GIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010SouthLouisianaAl30792TennesLouisianaAl30792TennesMaineTN0002TexasMaineTN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West WMissouri340Wiscont			
California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN00003Illinois200008IndianaC-TN-01Iowa364Kentucky ¹⁶ 90010Kentucky ² 16LouisianaAl30792LouisianaAl30792Louisiana324MaineTN0003Minnesota047-999-395MinssispipiTN0003Missouri340Wiscouri340			
ColoradoTN00003New YConnecticutPH-0197North OFloridaE87487North OGeorgiaNELAPNorth OGeorgia 1923North OIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South OLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaine9958VirginiaMinnesota047-999-395WashirMississippiTN0003West WMissouri340Wiscouri			
ConnecticutPH-0197North GFloridaE87487North GGeorgiaNELAPNorth GGeorgia 1923North GIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South GLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaine324UtahMinnesota047-999-395WashirMississippiTN0003West WMissouri340Wiscort			
FloridaE87487North OGeorgiaNELAPNorth OGeorgia 1923North OIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South OLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaineM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West WMissouri340Wiscont			
GeorgiaNELAPNorth OGeorgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South DLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont			North C
Georgia 1923North IIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Georgia	NELAP	North C
IdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South ILouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinesota047-999-395WashirMississippiTN0003West VMissouri340Wiscort	•	923	North D
IndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South IKentucky ² 16South ILouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont		TN00003	Ohio–V
Iowa364PensyKansasE-10277RhodeKentucky ¹⁶ 90010South 0Kentucky ² 16South 0LouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Illinois	200008	Oklaho
KansasE-10277RhodeKansasE-10277South JKentucky ¹⁶ 90010South JLouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Indiana	C-TN-01	Oregon
Kentucky 1690010South IKentucky 216South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	lowa	364	Pennsy
Kentucky 216South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Kansas	E-10277	Rhode
Kentucky 216South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Kentucky ¹⁶	90010	South C
Louisiana 1LA180010TexasMaineTN0002Texas 1Maryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont		16	South E
MaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Louisiana	AI30792	Tennes
Maryland324UtahMassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN00003West VMissouri340Wiscont	Louisiana ¹	LA180010	Texas
MassachusettsM-TN003VermoMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN00003West VMissouri340Wiscont	Maine	TN0002	Texas ⁵
Michigan9958VirginiaMinnesota047-999-395WashirMississippiTN00003West VMissouri340Wiscont	Maryland	324	Utah
Minnesota047-999-395WashirMississippiTN00003West VMissouri340Wiscon	Massachusetts	M-TN003	Vermor
MississippiTN00003West VMissouri340Wiscon	Michigan	9958	Virginia
Missouri 340 Wiscon	Minnesota	047-999-395	Washin
	Mississippi	TN00003	West V
Montana CERT0086 Wyomi	Missouri	340	Wiscon
	Montana	CERT0086	Wyomii

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1221443

PAGE: 18 of 19

05/31/20 15:07

Τс Ss Cn Sr Qc Gl AI Sc

			Billing Infor	mation:	1				A	nalysis / C	ontaine	r / Preservativ	e		Chain of Custody	Page of
SCS Engineers - KS		Accounts 8575 W.			UC	UR	•						- Pace, Nettonel Ca	Analytical* Inter for Testing 8 innovation		
Overland Park, KS 66210			Email To:			1.									12065 Lebanon Rd	
Jason Franks				sengineers.com	n;jay.martin@ev	I							•		Mount Juliet, TN 37 Phone: 615-758-58 Phone: 800-767-58	58 77
Project Description: Evergy - latan Generating Station		City/State Collected:	11 JEST	ON ME	Please Cir PT MT C)3							Fax: 615-758-5859	
Phone: 913-681-0030	Client Project 27213167			Lab Project #	S-IATAN		EONH-	250mlHDPE-HNO3							sdg # 12: G00	All and a second s
Collected by (print): JASON R. FRANKS	Site/Facility	ID #		P.O. #			250miHDPE-HNO	MIHDF							Acctnum: AQ	
Collected by (signature): Clason R. Fromhs	Same	(Lab MUST Be Day Five Day 5 Da	Day	Quote #	ults Needed	1		6010 250							Template: T16 Prelogin: P77 PM: 206 - Jeff	0300
Immediately Packed on Ice N Y	Two D	Day 10 D	ay (Rad Only)	Dute nes	und necetu	No. of	Metals	I							PB;	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotrs	CCR N	Li, Mo							Shipped Via: Remarks	Sample # (lab only)
MW-1	BRAS	GW	T_	5/20/2	0 0955	1	-0	X						ľ		-01
MW-2	DATS	GW	-	1 1	1055	1		x								02
MW-6		GW	-		0940	1		X								03
MW-7		GW	-		1030	1		X								04
MW-8		GW	-		INDOO	1		X								05
DUPLICATE		GW			1039	- 1		x								06
MW7 MS/MSD		GW	-		IURIS	1		X								64
MW-9		GW	-		1230	1	X									07
MW-10		GW	-	J	1350	1	X									08
						J.A.										
	Remarks:CCR I metals - Hg	Metals - 601	0 Metals-B	a,Cr,Co,Li,Mo	6020 metals-S	ib,As,E	Se,Cd,P	b,Se,Tl	7470	pH _ Flow _		Temp Other	CC	C Seal	ample Receipt C Present/Intact med/Accurate: arrive intact: bottles used:	
Data Data Mana	Samples returne UPSFedI	ed via: ExCourie	r	Tra	cking #	+							sı V(ufficie DA Zerc	ent volume sent: <u>If Applicat</u> Headspace: ition Correct/Ch	ele Y N
Relinguished by : (Signature)		Date: 5/21/2	20 13	800 Ref	elved by: (Signa	the)	,51	130	~	Trip Blank	Receive	ed: Aes / No HCL / M TBR	BOH R	AD Scre	en <0.5 mR/hr:	<u>Y</u> N
Relinquished by : (Signature)		Date:	Tim	e: Rec	ceived by: (Signa	ture)				Temp! Hilde	7 °C	Bottles Rece			ation required by Lo	
Relinquished by : (Signature)		Date:	Tim	e: Rec	ceived for lab by	: (Signa	type)	\sim		Date: 5/11	1-2	Time:		old:		Condition: NCF / OK

T

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1221466 05/22/2020 27213167.20 Evergy - latan Gen Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

tidson

Donna Eidson Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1221466 DATE/TIME: 07/07/20 11:46

PAGE: 1 of 18

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-1 L1221466-01	6
MW-2 L1221466-02	7
MW-6 L1221466-03	8
MW-7 L1221466-04	9
MW-8 L1221466-05	10
MW-9 L1221466-06	11
MW-10 L1221466-07	12
DUPLICATE L1221466-08	13
Qc: Quality Control Summary	14
Radiochemistry by Method 904	14
Radiochemistry by Method SM7500Ra B M	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SDG: L1221466 DATE/TIME: 07/07/20 11:46

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-1 L1221466-01 Non-Potable Water			Collected by Jason R Franks	Collected date/time 05/20/20 09:55	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 17:45	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 17:45	RGT	Mt. Juliet, TN
			Collected by Jason R Franks	Collected date/time 05/20/20 10:55	Received da 05/22/20 09	
MW-2 L1221466-02 Non-Potable Water						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 17:45	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 17:45	RGT	Mt. Juliet, TN
MW-6 L1221466-03 Non-Potable Water			Collected by Jason R Franks	Collected date/time 05/20/20 09:40	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation	Analysis		Location
vietiou	DdlCII	Dilution	date/time	date/time	Analyst	LUCALION
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
MW-7 L1221466-04 Non-Potable Water			Collected by Jason R Franks	Collected date/time 05/20/20 10:30	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batch	Dilution	date/time	date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8 L1221466-05 Non-Potable Water			Jason R Franks	05/20/20 12:00	05/22/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-9 L1221466-06 Non-Potable Water			Jason R Franks	05/20/20 12:30	05/22/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN

PROJECT: 27213167.20

SDG: L1221466 DATE/TIME: 07/07/20 11:46

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

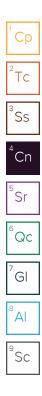
MW-10 L1221466-07 Non-Potable Water			Collected by Jason R Franks	Collected date/time 05/20/20 13:50	Received da 05/22/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1221466-08 Non-Potable Water			Jason R Franks	05/20/20 10:35	05/22/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Radiochemistry by Method 904	WG1488903	1	06/09/20 13:42	06/18/20 10:35	JMR	Mt. Juliet, TN
Radiochemistry by Method Calculation	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN
Radiochemistry by Method SM7500Ra B M	WG1493951	1	06/17/20 14:23	06/18/20 23:43	RGT	Mt. Juliet, TN

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

*

Ср

Tc


SDG: L1221466

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Donna Eidson Project Manager

SDG: L1221466 DATE/TIME: 07/07/20 11:46 PAGE:

5 of 18

IVI VV - I Collected date/time: 05/20/20 09:55

SAMPLE RESULTS - 01

Qc

Gl

Â

Sc

Radiochemistry by Method 904

· · · · · · · · · · · · · · · · · · ·	- ,						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-228	1.53		0.605	0.902	06/18/2020 10:35	WG1488903	
(T) Barium	95.6			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	97.2			79.0-136	06/18/2020 10:35	WG1488903	

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	 Cn
Analyte	pCi/l		+/-	pCi/l	date / time		5
Combined Radium	1.88		0.850	1.14	06/18/2020 17:45	WG1493951	ँSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-226	0.350		0.245	0.237	06/18/2020 17:45	WG1493951	
(T) Barium-133	96.8			30.0-143	06/18/2020 17:45	WG1493951	

SDG: L1221466

Collected date/time: 05/20/20 10:55

SAMPLE RESULTS - 02

*

Qc

Gl

Â

Sc

Radiochemistry by Method 904

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch		
Analyte	pCi/l		+/-	pCi/l	date / time			2
RADIUM-228	1.67		0.601	1.08	06/18/2020 10:35	WG1488903		ŤΤ
(T) Barium	83.9			62.0-143	06/18/2020 10:35	WG1488903		
(T) Yttrium	112			79.0-136	06/18/2020 10:35	WG1488903		³ Ss

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	(Cn
Analyte	pCi/l		+/-	pCi/l	date / time		5	
Combined Radium	1.91		0.824	1.35	06/18/2020 17:45	WG1493951	Ĩ	Sr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+ / -	pCi/l	date / time		
RADIUM-226	0.241		0.223	0.265	06/18/2020 17:45	WG1493951	
(T) Barium-133	81.0			30.0-143	06/18/2020 17:45	WG1493951	

Collected date/time: 05/20/20 09:40

SAMPLE RESULTS - 03

Qc

Gl

Â

Sc

Radiochemistry by Method 904

	· , · · · · · · · · · · · · · · · · · ·						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-228	0.713		0.662	1.15	06/18/2020 10:35	WG1488903	
(T) Barium	90.3			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	101			79.0-136	06/18/2020 10:35	WG1488903	

Radiochemistry by Method Calculation

Radiochemistry by Method Calculation								⁴ Cn
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch		
Analyte	pCi/l		+/-	pCi/l	date / time			5
Combined Radium	0.737		0.843	1.49	06/18/2020 23:43	WG1493951		ँSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier Uncertair	nty MDA	Analysis Date	Batch	
Analyte	pCi/l	+ / -	pCi/l	date / time		
RADIUM-226	0.0238	0.181	0.34	06/18/2020 23:43	WG1493951	
(T) Barium-133	89.3		30.0-143	06/18/2020 23:43	WG1493951	

Collected date/time: 05/20/20 10:30

SAMPLE RESULTS - 04

Qc

Gl

Â

Sc

Radiochemistry by Method 904

· · · · · · · · · · · · · · · · · · ·	- ,						L'Ca
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		2
RADIUM-228	0.741		0.529	0.9	06/18/2020 10:35	WG1488903	Tc
(T) Barium	96.4			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	110			79.0-136	06/18/2020 10:35	WG1488903	³Ss

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	C	n
Analyte	pCi/l		+/-	pCi/l	date / time		5	
Combined Radium	1.81		0.923	1.11	06/18/2020 23:43	WG1493951	ٽS	r

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	1.07		0.394	0.21	06/18/2020 23:43	WG1493951
(T) Barium-133	91.9			30.0-143	06/18/2020 23:43	WG1493951

IVI VV - O Collected date/time: 05/20/20 12:00

SAMPLE RESULTS - 05

Qc

Gl

Â

Sc

Radiochemistry by Method 904

	- ,						
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		2
RADIUM-228	0.651		0.609	0.951	06/18/2020 10:35	WG1488903	Tc
(T) Barium	91.4			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	101			79.0-136	06/18/2020 10:35	WG1488903	³ C c

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	 Cn
Analyte	pCi/l		+/-	pCi/l	date / time		5
Combined Radium	1.23		0.921	1.18	06/18/2020 23:43	WG1493951	ँSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-226	0.580		0.312	0.233	06/18/2020 23:43	WG1493951	
(T) Barium-133	84.3			30.0-143	06/18/2020 23:43	WG1493951	

Collected date/time: 05/20/20 12:30

SAMPLE RESULTS - 06

*

Qc

Gl

Â

Sc

Radiochemistry by Method 904

	,						- P
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		Ì
RADIUM-228	0.996		0.606	0.881	06/18/2020 10:35	WG1488903	
(T) Barium	96.2			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	104			79.0-136	06/18/2020 10:35	WG1488903	

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	 Cn
Analyte	pCi/l		+ / -	pCi/l	date / time		5
Combined Radium	1.30		0.855	1.15	06/18/2020 23:43	WG1493951	ଁSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch
Analyte	pCi/l		+/-	pCi/l	date / time	
RADIUM-226	0.309		0.249	0.267	06/18/2020 23:43	WG1493951
(T) Barium-133	87.1			30.0-143	06/18/2020 23:43	WG1493951

*

Qc

Gl

Â

Sc

Radiochemistry by Method 904

	,						 1 Cn
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	Cp
Analyte	pCi/l		+ / -	pCi/l	date / time		2
RADIUM-228	0.601		0.562	0.838	06/18/2020 10:35	WG1488903	Tc
(T) Barium	95.1			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	99.9			79.0-136	06/18/2020 10:35	WG1488903	³ Ss

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	 Cn
Analyte	pCi/l		+/-	pCi/l	date / time		5
Combined Radium	0.857		0.769	1.04	06/18/2020 23:43	WG1493951	ँSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+ / -	pCi/l	date / time		
RADIUM-226	0.256		0.207	0.205	06/18/2020 23:43	WG1493951	
(T) Barium-133	85.6			30.0-143	06/18/2020 23:43	WG1493951	

DUPLICATE

Collected date/time: 05/20/20 10:35

SAMPLE RESULTS - 08 L1221466

Qc

Gl

Â

Sc

Radiochemistry by Method 904

,	,						l'Cn
	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	Cp
Analyte	pCi/l		+/-	pCi/l	date / time		2
RADIUM-228	0.363		0.615	0.974	06/18/2020 10:35	WG1488903	Tc
(T) Barium	94.5			62.0-143	06/18/2020 10:35	WG1488903	
(T) Yttrium	95.9			79.0-136	06/18/2020 10:35	WG1488903	³ C c

Radiochemistry by Method Calculation

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	 Cn
Analyte	pCi/l		+/-	pCi/l	date / time		5
Combined Radium	0.544		0.860	1.32	06/18/2020 23:43	WG1493951	ຶSr

Radiochemistry by Method SM7500Ra B M

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-226	0.181		0.245	0.35	06/18/2020 23:43	WG1493951	
(T) Barium-133	90.4			30.0-143	06/18/2020 23:43	WG1493951	

Radiochemistry by Method 904

QUALITY CONTROL SUMMARY L1221466-01,02,03,04,05,06,07,08

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)			
(MB) R3541401-1 06	/18/20 10:35			
	MB Result	MB Qualifier	MB MDA	
Analyte	pCi/l		pCi/l	
Radium-228	-0.155		0.503	
(T) Barium	91.7			
(T) Yttrium	98.9			

L1221466-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1221466-04 06/18	/20 10:35 • (DUP)) R3541401-5	06/18/20 1					
	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/l	pCi/l		%			%	
Radium-228	0.741	-0.289	1	200	1.20		20	3
(T) Barium	96.4	92.0						
(T) Yttrium	110	97.6						

Laboratory Control Sample (LCS)

(LCS) R3541401-2 06/	/18/20 10:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-228	5.00	5.39	108	80.0-120	
(T) Barium			96.3		
(T) Yttrium			97.9		

L1221466-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221466-04 06/18/20 10:35 • (MS) R3541401-3 06/18/20 10:35 • (MSD) R3541401-4 06/18/20 10:35													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%
Radium-228	10.0	0.741	12.8	12.6	120	118	1	70.0-130			1.74		20
(T) Barium		96.4			91.4	98.0							
(T) Yttrium		110			91.0	99.1							

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.20	L1221466	07/07/20 11:46	14 of 18

Radiochemistry by Method SM7500Ra B M

QUALITY CONTROL SUMMARY L1221466-01,02,03,04,05,06,07,08

¹Cp ²Tc ³Ss

Cn

Sr

Qc

GI

Method Blank (MB)

(MB) R3541403-1 06	/18/20 17:45		
	MB Result	MB Qualifier	MB MDA
Analyte	pCi/l		pCi/l
Radium-226	-0.00599		0.0578
(T) Barium-133	83.6		

Laboratory Control Sample (LCS)

(LCS) R3541403-2 06	6/18/20 17:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-226	5.02	5.79	115	80.0-120	
(T) Barium-133			94.6		

L1221466-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221466-04 06/	<u> </u>	(1 1	,		1 X	50)							8
()	. ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits	AI
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%	9
Radium-226	20.1	1.07	21.1	22.4	99.4	106	1	75.0-125			5.99		20	Sc
(T) Barium-133		91.9			82.2	90.6								

L1221882-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1221882-01 06/19/2	(OS) L1221882-01 06/19/20 07:25 • (MS) R3541403-5 06/18/20 17:45 • (MSD) R3541403-6 06/18/20 17:45												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%
Radium-226	20.1	0.306	17.3	17.4	84.7	85.2	1	75.0-125			0.575		20
(T) Barium-133		102			92.1	94.4							

PROJECT: 27213167.20

SDG: L1221466 DATE/TIME: 07/07/20 11:46

PAGE: 15 of 18

GLOSSARY OF TERMS

*

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDA	Minimum Detectable Activity.
Rec.	Recovery.
RER	Replicate Error Ratio.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(T)	Tracer - A radioisotope of known concentration added to a solution of chemically equivalent radioisotopes at a known concentration to assist in monitoring the yield of the chemical separation.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: 27213167.20

SDG: L1221466 DATE/TIME: 07/07/20 11:46

PAGE: 16 of 18

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NE
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1221466

PAGE: 17 of 18

07/07/20 11:46

Τс Ss Cn Sr Qc Gl AI Sc

	Call States in a		Billing Infor	rmation:	L. C. Alternation		- (44. 44 A) (47. 4	Analysis / C	<u>ontainer / Preservative</u>	1	Chain of Custody	Page of
		8575 W.	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210							12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858		
eport to: ason Franks	jfranks			mail To: iranks@scsengineers.com;jay.martin@evergy.c								
roject Description: Evergy - latan Gen Station	i part di	City/State Collected:	WEST	DN.M	O Please C		HNO3				Phone: 800-767-58 Fax: 615-758-5859	回然時期
ohome: 913-681-0030	Client Project 27213167		7,1 (A) 8 (M) (A)	Lab Project #			E-Add H				sdg # 12 1 G01	
JASON R. FRANK	Site/Facility	ID #		P.O. #			11-HDPE				Acctnum: AQ	
Japon (2 - Thank			Day (Rad Only) Date Res		No. of	RA228				Template: T10 Prelogin: P76 PM: 206 - Jeff (PB: Shipped Via:	9506	
Sample ID	Comp/Grat	Matrix *	Depth	Date	Time	Cntrs	RA226,				Remarks	Sample # (lab only
MW-1	GRAB	NPW		5/20/2	0955	2	X					101
MW-2	1	NPW			1055	2	X					92
MW-6		NPW	-		0940	2	X					03
MW-7	7 2 7	NPW	_		1030	2	X					04
MW-8	384-	NPW			1200	2	X					05
MW-9		NPW	-		1230	2	X				the second second	06
MW-10	A 1994	NPW	-	NH PER	1350	2	X					07
DUPLICATE		NPW	-		1035	- 1 m	X					03
100 7MS/MSO	1	NPW	-		1040		X				3 d'	04
MSD	Y	_NPW		V		7	-*					
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: RA 2	226/228 - Re	port separa	itely and con	nbined.			pH	Temp Other	COC Seal COC Signe Bottles a Correct b	mple Receipt Ch Present/Intact: d/Accurate: rrive intact: ottles used:	
DW - Drinking Water Samples returned via: OT - Other UPSFedExCourier				acking.#					VOA Zero	t volume sent: <u>If Applicabl</u> Headspace:	e Y N	
Relinquished by : (Signature)	/	Date: 5/21/2	o 1	300	delved by: (Signa	kn	5/21 (6	Received: Yes (No) HCL / MeoH TBR	RAD Scree	ion Correct/Che n <0.5 mR/hr:	· _Y _N
Relinquished by : (Signature)		Date:	Time	e: Re	ceived by: (Signa	ature)		Temp!!	Bottles Received	f: If preservat	ion required by Log	in: Date/Time
Relinquished by : (Signature)		Date:	Time	e: Re	ceived for lab by	; (Signat	ure)	Date;	Time: Tw \$:00	Hold:		NCF) / OK

ATTACHMENT 1-4 July 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1239953 07/15/2020 27213167.20 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17

PAGE: 1 of 24

TABLE OF CONTENTS

₩	
¹ Cp	
² Tc	
^³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
⁹ Sc	

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary	3				
Cn: Case Narrative	5				
Sr: Sample Results	6				
MW-10 L1239953-01	6				
MW-104 L1239953-02	7				
DUPLICATE 1 L1239953-03	8				
MW-105 L1239953-04	9				
DUPLICATE 2 L1239953-05	10				
MW-109 L1239953-06	11				
DUPLICATE 3 L1239953-07	12				
MW-110 L1239953-08	13				
DUPLICATE 4 L1239953-09	14				
Qc: Quality Control Summary	15				
Gravimetric Analysis by Method 2540 C-2011	15				
Wet Chemistry by Method 9056A	16				
Metals (ICP) by Method 6010B	19				
GI: Glossary of Terms	21				
Al: Accreditations & Locations					
Sc: Sample Chain of Custody	23				

SDG: L1239953

PAGE: 2 of 24

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-10 L1239953-01 GW			Collected by Whit Martin	Collected date/time 07/13/20 09:35	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1510013	1	07/16/20 23:29	07/16/20 23:29	MSP	Mt. Juliet, TN
MW-104 L1239953-02 GW			Collected by Whit Martin	Collected date/time 07/13/20 13:00	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1510363	1	07/18/20 00:01	07/18/20 07:45	EL	Mt. Juliet, TN
DUPLICATE 1 L1239953-03 GW			Collected by Whit Martin	Collected date/time 07/13/20 13:00	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1510363	1	07/18/20 00:01	07/18/20 08:03	EL	Mt. Juliet, TN
MW-105 L1239953-04 GW			Collected by Whit Martin	Collected date/time 07/13/20 13:40	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1511173	1	07/18/20 07:28	07/18/20 08:14	TH	Mt. Juliet, TN
DUPLICATE 2 L1239953-05 GW			Collected by Whit Martin	Collected date/time 07/13/20 13:40	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1511173	1	07/18/20 07:28	07/18/20 08:14	TH	Mt. Juliet, TN
MW-109 L1239953-06 GW			Collected by Whit Martin	Collected date/time 07/13/20 11:25	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1510009 WG1510363	10 1	07/17/20 20:59 07/18/20 00:01	07/17/20 20:59 07/18/20 07:55	ELN EL	Mt. Juliet, TN Mt. Juliet, TN
DUPLICATE 3 L1239953-07 GW			Collected by Whit Martin	Collected date/time 07/13/20 11:25	Received date/time 07/15/20 08:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1510013 WG1510363	5 1	07/17/20 12:57 07/18/20 00:01	07/17/20 12:57 07/18/20 08:11	ELN EL	Mt. Juliet, TN Mt. Juliet, TN
MW-110 L1239953-08 GW			Collected by Whit Martin	Collected date/time 07/13/20 12:05	Received da 07/15/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1510013 WG1510364	1	07/17/20 00:02 07/19/20 23:32	07/17/20 00:02 07/20/20 13:54	MSP EL	Mt. Juliet, TN Mt. Juliet, TN

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 SCS Engineers - KS
 27213167.20
 L1239953
 07/22/20 22:17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received date	e/time
DUPLICATE 4 L1239953-09 GW	Whit Martin	07/13/20 12:05	07/15/20 08:3	0		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1510013	1	07/17/20 00:51	07/17/20 00:51	MSP	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1510363	1	07/18/20 00:01	07/18/20 08:13	EL	Mt. Juliet, TN

*

Ср

PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17 **PAGE**: 4 of 24

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17 PAGE: 5 of 24

*

Ср

Тс

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time		2	
Sulfate	47700		5000	1	07/16/2020 23:29	WG1510013	T	

Collected date/time: 07/13/20 13:00

SAMPLE RESULTS - 02 L1239953

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Calcium	59700		1000	1	07/18/2020 07:45	WG1510363	Tc

Гс

Metals (ICP) by Method 6010B

							 1'0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Calcium	61100		1000	1	07/18/2020 08:03	WG1510363	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ AI
⁹ Sc

*

Τс

Gravimetric Analysis by Method 2540 C-2011

							1.0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	`
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	711000		13300	1	07/18/2020 08:14	WG1511173	-

-
³ Ss
⁴Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Гс

Gravimetric Analysis by Method 2540 C-2011

	· · ·							1'
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte		ug/l		ug/l		date / time		2
Dissolved Solids		715000		13300	1	07/18/2020 08:14	WG1511173	-

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

SAMPLE RESULTS - 06 L1239953

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Sulfate	281000		50000	10	07/17/2020 20:59	WG1510009	
Metals (ICP) by	Method 6010B						
Metals (ICP) by	Method 6010B Result	Qualifier	RDL	Dilution	Analysis	Batch	
Metals (ICP) by Analyte		Qualifier	RDL ug/l	Dilution	Analysis date / time	Batch	

*

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Sulfate	294000		25000	5	07/17/2020 12:57	WG1510013	2
Metals (ICP) by	Method 6010B						з
Metals (ICP) by	Method 6010B Result	Qualifier	RDL	Dilution	Analysis	Batch	3
Metals (ICP) by		Qualifier	RDL ug/l	Dilution	Analysis date / time	Batch	

SAMPLE RESULTS - 08 L1239953

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		2
Chloride	23200		1000	1	07/17/2020 00:02	WG1510013	¯ ² Τι
Metals (ICP) by	Method 6010B						³ S
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4C
Boron	3710		200	1	07/20/2020 13:54	WG1510364	

SAMPLE RESULTS - 09 L1239953

¥

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Chloride	23400		1000	1	07/17/2020 00:51	<u>WG1510013</u>	2
Metals (ICP) by	Method 6010B						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4
Boron	3790		200		07/18/2020 08:13	WG1510363	

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1239953-04,05

Method Blank (MB)

(MB) R3550836-1 07	7/18/20 08:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1239902-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1239902-01 07/18/2	20 08:14 • (DUP)	R3550836-3	07/18/20	08:14		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	3450000	3620000	1	4.81		5

L1239953-05 Original Sample (OS) • Duplicate (DUP)

L1239953-05 Or	riginal Sample	e (OS) • Du	plicate	(DUP)			GI
(OS) L1239953-05 07/	//18/20 08:14 • (DUF	P) R3550836-	4 07/18/20	0 08:14			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	715000	687000	1	4.00		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3550836-2 0	7/18/20 08:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8380000	95.2	85.0-115	

DATE/TIME: 07/22/20 22:17 Cn

Sr

ິQc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3550811-1 07/17	7/20 08:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Sulfate	U		594	5000

L1239942-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1239942-01 07/17/2	20 17:42 • (DUP)	R3550811-5 (07/17/20 17	7:53		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	ND	ND	1	2.18		15

Laboratory Control Sample (LCS)

(LCS) R3550811-2 07/1	17/20 08:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	41000	102	80.0-120	

L1239916-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1239916-01 07/17/20	0 17:20 • (MS) R	3550811-4 07/	17/20 17:31				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	164000	211000	94.4	1	80.0-120	E

L1239953-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1239953-06 07/17/2	20 20:04 • (MS)	R3550811-6 C	7/17/20 20:15	• (MSD) R35508	811-7 07/17/20	20:26						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	275000	315000	319000	80.2	88.2	1	80.0-120	F	F	126	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.20	L1239953	07/22/20 22:17	16 of 24

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1239953-01,07,08,09

⁺Cn

Sr

Qc

GI

Method Blank (MB)

Method Biai	ik (ivid)				1
(MB) R3550475-1	07/16/20 17:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	Б
Analyte	ug/l		ug/l	ug/l	
Chloride	U		379	1000	
Sulfate	U		594	5000	

L1238681-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1238681-03 07/16/2	20 20:28 • (DUP) R3550475-3	07/16/20	20:45			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	ND	ND	1	0.000		15	
Sulfate	ND	ND	1	0.000		15	

L1239953-09 Original Sample (OS) • Duplicate (DUP)

L1239953-09 Or	iginal Sample	e (OS) • Du	iplicate	(DUP)			8
(OS) L1239953-09 07/	/17/20 00:51 • (DUF) R3550475-7	7 07/17/20	01:40			AI
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	°Sc
Analyte	ug/l	ug/l		%		%	50
Chloride	23400	23100	1	1.21		15	
Sulfate	190000	190000	1	0.0559	E	15	

Laboratory Control Sample (LCS)

(LCS) R3550475-2 07/16/	/20 17:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39500	98.8	80.0-120	
Sulfate	40000	39800	99.5	80.0-120	

L1238681-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1238681-05 07/16/2	20 21:01 • (MS) R	3550475-4 07	7/16/20 21:18				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	15700	66100	101	1	80.0-120	
Sulfate	50000	10700	61900	102	1	80.0-120	

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1239953

DATE/TIME: 07/22/20 22:17

PAGE: 17 of 24 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1239953-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1239953-08 07/17/2	0 00:02 • (MS)	R3550475-5	07/17/20 00:18	• (MSD) R3550	0475-6 07/17/2	0 00:34						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	23200	73700	73700	101	101	1	80.0-120			0.0700	15
Sulfate	50000	190000	233000	232000	85.6	84.4	1	80.0-120	E	E	0.256	15

PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17 PAGE: 18 of 24

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Bidi	ik (ivid)				
(MB) R3550923-	07/18/20 07:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		25.4	200	
Calcium	U		389	1000	

Laboratory Control Sample (LCS)

(LCS) R3550923-2 07/18	3/20 07:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	991	99.1	80.0-120	
Calcium	10000	10500	105	80.0-120	

L1239953-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1239953-02 07/18/2	0 07:45 • (MS)	R3550923-4 (07/18/20 07:50	• (MSD) R3550	0923-5 07/18/2	20 07:52							8
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	1230	2230	2190	100	96.0	1	75.0-125			1.90	20	
Calcium	10000	59700	69700	68600	100	89.3	1	75.0-125			1.56	20	

L1239953-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1239953-06 07/18/20 07:55 • (MS) R3550923-6 07/18/20 07:57 • (MSD) R3550923-7 07/18/20 08:00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	1340	2330	2280	98.9	93.8	1	75.0-125			2.20	20
Calcium	10000	87800	96700	95900	89.4	80.8	1	75.0-125			0.889	20

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17 PAGE: 19 of 24

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Тс

Ss

Ċn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3551331-1 07/20/2	0 13:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		25.4	200

Laboratory Control Sample (LCS)

(LCS) R3551331-2 07/2	20/20 13:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	962	96.2	80.0-120	

L1239953-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1239953-08 07/20)/20 13:54 • (MS) R3551331-4 0	7/20/20 13:59	• (MSD) R3551	331-5 07/20/2	0 14:02						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	3710	4670	4570	96.3	85.8	1	75.0-125			2.28	20

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1239953 DATE/TIME: 07/22/20 22:17 **PAGE**: 20 of 24

GLOSSARY OF TERMS

Тс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

PROJECT: 27213167.20

SDG: L1239953

DATE/TIME: 07/22/20 22:17

PAGE: 21 of 24

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
V evada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1239953

PAGE: 22 of 24

07/22/20 22:17

			Billing Infor	rmation:	- 5-2- 5-3				11.22	A	nalysis /	Contair	ner / Prese	ervative			Chain of Custody	Page of
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable			Pres Chk										Netional Ca	Analytical* inter for Testing 8 innovati	
Report to: Jason Franks				ifranks@scsengineers.com;jay.martin@evergy.c												100	12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	
Project Description: Evergy latan Generating Station	175.	City/State Collected:	I de- eld.			Please Cir PT MT C	cle:	1									Phone: 800-767-585 Fax: 615-758-5859	
Phone: 913-681-0030	Client Project 27213167		Lab Project # AQUAOPK						250mlHDPE-HNO3	PE-NoPres	res						SDG# (12399953 J J139	
Collected by (print): Whit Martin	Site/Facility	Site/Facility ID # P.O. #									PE-NoP	NoPres						Acctnum: AQUAOPKS
Collected by (signature): MAMMATA Immediately Packed on Ice N Y _X			lve Day		Date Results Needed		No. of	1 - 6010 250mlHDPE-HNO3			Sulfate 125mlHDPE-NoPres	250miHDPE-NoPres	250miHDPE-				Template: T136056 Prelogin: P784702 PM: 206 - Jeff Carr PB: Shipped Via:	
Sample ID	Comp/Gra	b Matrix *	Depth		Date	Time	Cntrs	Boron	Calcium	Chlo	Sulfa	TDS					Remarks	Sample # (lab only)
MW-10	Grab	GW		7/1	3/20	0935	1				X						1. a.	-01
MW-104	Grab	GW		7/1-	3/20	1300	1		X									02
MW-104 MS/MSD	Grab	GW		7/13	3/20	13000	1		X								- 22	02
DUPLICATE 1	Grab	GW		7/13	300	1300	1		X							2		03
MW-105	Grab	GW		7/1	3/20	1340	1					x						64
DUPLICATE 2	Grab	GW		7/1	220	1340	1					x				1		05
MW-109	Grab	GW		7/1	3/20	1125	2	X			X			J.			1000	06
MW-109 MS/MSD	Grab	GW		7/12	2/20	1130	2	x			X					14		06
DUPLICATE 3	Grab			11	3/20	1125	2	X			X							07
MW-110		GW		1-11	2/10	1205	2	X		X	1.000							08
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Grab Remarks: Samples return UPS _ Fed	Tracki		K		320		pH Flow	,	_ Temp _		COC S: Bottle Correct Suffic	Sample Receipt Checklist CoC Seal Present/Intact:NPY CoC Signed/Accurate:Y Bottles arrive intact:Y Correct bottles used:Y Sufficient volume sent:Y If Applicable					
Relinquished by : (Signature)	rea	Recei	/ed by: (Signat			000000000000000000000000000000000000000	Trip Blar	nk Recei			VOA Zero Headspace: Preservation Correct/Checked:N RAD Screen <0.5 mR/hr:YN							
Relinquished by : (Signature)	7 -14 -20 1323 Date: Time: 7-14-20 1888				1 /	ed by: (Signat	ture)	Temp. ACC Bottles Received							If preservation required by Login: Date/Ti			in: Date/Time
Relinquished by : (Signature)	Date: Time:				ved for lab by:	(Signa	Dature) Date:					Time:	F:30	Hold:			Condition: NCF / OR	

			Billing Infor	rmation:					A	nalvsis /	Contair	ner / Pre	servative			Chain of Custody	Page 2 of 2		
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210													Race/ Netional Ca	Analytical * new for Testing & innovatio		
Report to: Jason Franks	Email To: jfranks@sc											12065 Lebanon Rd Mount Juliet, TN 373 Phone: 615-758-585							
Project Description:		City/State	<u></u>		ircle:										Phone: 800-767-585 Fax: 615-758-5859				
Evergy latan Generating Station	Lollingt Deale	Collected:		Itah Project #	PT MT (03	1.67								leng n 1	1776663		
Phone: 913-681-0030	Client Proje 27213167			Lab Project # AQUAOPKS-IATAN			250mlHDPE-HNO3	03	Pres	Pres						SDG #	1239953		
Collected by (print):	Site/Facility	ID #		P.O. #				250mIHDPE-HNO3		Sulfate 125mIHDPE-NoPres	250miHDPE-NoPres					Acctnum: AQL			
Whit Martin Collected by (signature): Mat Martos		(Lab MUST Be Day Five		Quote #	Date Results Needed		0 250r			IHDP	DPE-1					Template: T130 Prelogin: P784			
Immediately Packed on Ice N Y X	Next	Day5 Day Day10 D	y (Rad Only) ay (Rad Only)	Date Resul			- 6010			125n	HIMO					PM: 206 - Jeff C PB:	arr		
	Comp/Gra	1	Depth	Date	Time	of Cntrs	Boron	Calcium	oric	fate						Shipped Via:			
Sample ID	Comp/Gra		1 ocpai		1		Boi	Cal	24	Sul	TDS					Remarks	Sample # (lab only)		
MW-110 MS/MSD	Grab	GW		7/13/20	1210	2	X		X						1	2 7.5	08		
DUPLICATE 4	Grab	GW		7/13/20	1205	2	x		x								69		
MW-105 MS/MSD	Grab	GW		7/13/20	1345	1					X					and the second sec	64		
				145746237 (7460)				<u>1.</u>											
	1. tre																		
																and the second second			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:	pH Temp Flow Other							Sample Receipt Checklist COC Seal Present/Intact: NP N COC Signed/Accurate: NP N Bottles arrive intact: N Correct bottles used: N Sufficient volume sent: Y N										
WW - WasteWater DW - Drinking Water OT - Other	Samples returned via: UPSFedExCourier Tracking.# 1845 4330 1989										If Applicable VOA Zero Headspace; Y								
Relinquished by : (Signature) Date: 7-14		Date: 7-14-	Time	Recet		Trip Blank Received: (95/ No						GL / MeoH	RAD Screen <0.5 mR/hr:						
Relinguished by : (Signature) Date: 7-14-20			20 19	Strength Rest Line And	Received by: (Signature) D Fad Ex						Temp? A C Bottles Received:					If preservation required by Login: Date/Time			
Relinquished by : (Signature)		Date:	Time		ved for lab by	: (Signat	hu	f		Date: Time: 8:30					:	Condition: NCF / OK			

Jared Morrison December 16, 2022

ATTACHMENT 1-5 August 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

September 02, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1255433 08/27/2020 27213167.20 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1255433 DATE/TIME: 09/02/20 11:05 PAGE: 1 of 18

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	

^BAI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-10 L1255433-01	5
DUPLICATE 1 L1255433-02	6
MW-104 L1255433-03	7
DUPLICATE 2 L1255433-04	8
MW-109 L1255433-05	9
MW-110 L1255433-06	10
DUPLICATE 3 L1255433-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SDG: L1255433 DATE/TIME: 09/02/20 11:05

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-10 L1255433-01 GW			Collected by Whit Martin	Collected date/time 08/25/20 12:45	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1533924	1	08/28/20 07:07	08/28/20 07:07	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
DUPLICATE1 L1255433-02 GW			Whit Martin	08/25/20 12:45	08/27/20 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1533924	1	08/28/20 07:39	08/28/20 07:39	LBR	Mt. Juliet, TN
MW-104 L1255433-03 GW			Collected by Whit Martin	Collected date/time 08/25/20 14:15	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1535076	1	09/01/20 18:24	09/02/20 02:50	TRB	Mt. Juliet, TN
DUPLICATE 2 L1255433-04 GW			Collected by Whit Martin	Collected date/time 08/25/20 14:15	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1535076	1	09/01/20 18:24	09/02/20 03:08	TRB	Mt. Juliet, TN
MW-109 L1255433-05 GW			Collected by Whit Martin	Collected date/time 08/25/20 15:05	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1533924	10	08/28/20 08:12	08/28/20 08:12	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1535076	1	09/01/20 18:24	09/02/20 03:16	TRB	Mt. Juliet, TN
MW-110 L1255433-06 GW			Collected by Whit Martin	Collected date/time 08/25/20 15:50	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1533924	1	08/28/20 08:23	08/28/20 08:23	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1535077	1	09/01/20 11:45	09/01/20 14:26	CCE	Mt. Juliet, TN
DUPLICATE 3 L1255433-07 GW			Collected by Whit Martin	Collected date/time 08/25/20 15:50	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1533924	5	08/28/20 09:06	08/28/20 09:06	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1535076	1	09/01/20 18:24	09/02/20 03:19	TRB	Mt. Juliet, TN

PROJECT: 27213167.20

SDG: L1255433 DATE/TIME: 09/02/20 11:05 PAGE: 3 of 18

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1255433 DATE/TIME: 09/02/20 11:05 PAGE: 4 of 18

SAMPLE RESULTS - 01

*

Ср

		·					 1'0
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Sulfate	47900		5000	1	08/28/2020 07:07	WG1533924	1

SAMPLE RESULTS - 02

*

Wet Chemistry by Method 9056A

	Result	Qualifier RD	_ Dilution	Analysis	Batch	'Ср
Analyte	ug/l	ug/		date / time		2
Sulfate	47800	50	00 1	08/28/2020 07:39	WG1533924	⁻Tc

	³ Ss
	⁴ Cn
	⁵Sr
	⁶ Qc
	⁷ Gl
1	
	⁸ Al
	9

Sc

IVI VV - I U 4 Collected date/time: 08/25/20 14:15

SAMPLE RESULTS - 03

Ср

Тс

Metals (ICP) by Method 6010B

							 l'c
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Calcium	61900		1000	1	09/02/2020 02:50	WG1535076	T

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1255433

PAGE: 7 of 18

SAMPLE RESULTS - 04

Τс

Metals (ICP) by Method 6010B

							1°C
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Calcium	62200		1000	1	09/02/2020 03:08	WG1535076	T

SAMPLE RESULTS - 05

*

Qc

GI

Â

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Sulfate	183000		50000	10	08/28/2020 08:12	WG1533924	
Metals (ICP) by	Method 6010B						
Metals (ICP) by	Method 6010B Result	Qualifier	RDL	Dilution	Analysis	Batch	
Metals (ICP) by Analyte		Qualifier	RDL ug/l	Dilution	Analysis date / time	Batch	

SAMPLE RESULTS - 06 L1255433

Qc

GI

Â

Sc

		•					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ct
Analyte	ug/l		ug/l		date / time		2
Chloride	20000		1000	1	08/28/2020 08:23	WG1533924	Tc
Metals (ICP) by	Method 6010B						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴ Cr
Boron	4130	01	200	1	09/01/2020 14:26	WG1535077	

SAMPLE RESULTS - 07

*

Qc

GI

Â

Sc

5 5							i (
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Chloride	18200		5000	5	08/28/2020 09:06	WG1533924	
Metals (ICP) by Me	ethod 6010B						3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		4
Boron	4100		200	1	09/02/2020 03:19	WG1535076	

WG1533924

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3565005-1	08/28/20 05:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		379	1000	
Sulfate	U		594	5000	

L1255046-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1255046-01 0	8/28/20 06:23 • (DU	P) R3565005	-3 08/28/2	20 06:34		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	ND	ND	1	0.000		15
Sulfate	16100	16900	1	4.57		15

L1255482-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1255482-06 08/28/	/20 12:00 • (DU	P) R3565005-	10 08/28/	20 12:33					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Chloride	20800	20600	1	1.01		15			
Sulfate	27800	27600	1	0.647		15			

Laboratory Control Sample (LCS)

(LCS) R3565005-2 08/28	3/20 05:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39900	99.8	80.0-120	
Sulfate	40000	39900	99.7	80.0-120	

L1255433-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-01 08/28/2	20 07:07 • (MS)	R3565005-4	08/28/20 07:1	8 • (MSD) R356	5005-5 08/28	3/20 07:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	16600	69200	67900	105	102	1	80.0-120			1.91	15
Sulfate	50000	47900	98500	97900	101	100	1	80.0-120			0.558	15

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.20	L1255433	09/02/20 11:05	12 of 18

⁵Sr ⁶Qc

GI

°Cn

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1255433-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-06 08/28/	20 08:23 • (MS) R3565005-6	08/28/20 08:	34 • (MSD) R35	65005-7 08/2	28/20 08:45						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	20000	71300	70500	103	101	1	80.0-120			1.23	15
Sulfate	50000	182000	232000	225000	101	87.4	1	80.0-120	E	E	2.92	15

L1255482-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255482-04 08/28/	20 11:17 • (MS) F	23565005-8 0	8/28/20 11:27	• (MSD) R3565	005-9 08/28/2	20 11:38						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8790	60500	60000	103	102	1	80.0-120			0.858	15
Sulfate	50000	80100	130000	130000	99.0	99.0	1	80.0-120	E	E	0.0218	15

DATE/TIME: 09/02/20 11:05

WG1535076

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

°Cn

GI

Method Blank (MB)

Method Bidi	ik (IVID)				
(MB) R3566413-1	09/02/20 02:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		25.4	200	
Calcium	U		389	1000	

Laboratory Control Sample (LCS)

Spike Amount LCS Result LCS Rec. Rec. Limits Analyte ug/l %		(LCS) R3566413-2 09/02	2/20 02:47					
nalyte ug/l ug/l % %			Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
	on 1000 981 98.1 80.0-120	Analyte	ug/l	ug/l	%	%		

L1255433-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-03 09/02/	20 02:50 • (MS	6) R3566413-4	09/02/20 02:5	55 • (MSD) R35	66413-5 09/02	2/20 02:58							⁸ Al
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	1190	2130	2130	94.0	94.0	1	75.0-125			0.00512	20	Sc
Calcium	10000	61900	70400	70700	85.7	87.8	1	75.0-125			0.297	20	

DATE/TIME: 09/02/20 11:05

WG1535077

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3566148-1 09/0	1/20 14:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		25.4	200	

Laboratory Control Sample (LCS)

(LCS) R3566148-2 09/0	01/20 14:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	974	97.4	80.0-120	

L1255433-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-06 09/01/2	DS) L1255433-06 09/01/20 14:26 • (MS) R3566148-4 09/01/20 14:31 • (MSD) R3566148-5 09/01/20 14:34											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	4130	5040	5050	91.5	92.0	1	75.0-125			0.0974	20

SDG: L1255433 DATE/TIME: 09/02/20 11:05

PAGE: 15 of 18

GLOSSARY OF TERMS

*

Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

O1 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

PROJECT: 27213167.20

SDG: L1255433 DATE/TIME: 09/02/20 11:05

PAGE: 16 of 18

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alahama	40660	Nahvas
Alabama		Nebras
Alaska	17-026	Nevada
Arizona	AZ0612	New H
Arkansas	88-0469	New Je
California	2932	New M
Colorado	TN00003	New Ye
Connecticut	PH-0197	North C
Florida	E87487	North 0
Georgia	NELAP	North 0
Georgia ¹	923	North [
Idaho	TN00003	Ohio-\
Illinois	200008	Oklaho
Indiana	C-TN-01	Oregor
lowa	364	Pennsy
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South (
Kentucky ²	16	South I
Louisiana	AI30792	Tennes
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virginia
Minnesota	047-999-395	Washin
Mississippi	TN00003	West V
Missouri	340	Wiscon
Montana	CERT0086	Wyomi

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1255433

PAGE: 17 of 18

09/02/20 11:05

			Billing Info	rmation:				-	Analysis / Container / Preservative Chain of Custody Pa					ody Page L of L			
8575 W. 110th Street Overland Park, KS 66210 Report to:		8575 W.	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210					62							12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858		
		Email To: jfranks@scsengineers.com;jay.martin				vergy.c				1							
Project Description: City/State Evergy - latan Generating Station Collected:		Weston, MO Please Cit PT MT C)3	EON							Phone: 800-767-5859 Fax: 615-758-5859			
Phone: 913-681-0030	Client Project # 27213167.20		,	Lab Proje		ATAN		E-HNC	PE-HN	Pres						sDG#[255433 1124	
Collected by (print): Whit Martin	Site/Facility ID #			P.O. #				250mHDPE-HNO3	OMIHD	PE-No	VoPres						QUAOPKS
ollected by (signature): What Market mmediately Packed on Ice N_Y_X		Day Five Day 5 Day ay 10 Day	ST Be Notified) Five Day 5 Day (Rad Only) 10 Day (Rad Only)				No.	- 6010	m - 6010 250mHDPE-HNO3	Chloride 125mHDPE-NoPres	125mlHDPE-NoPres				and and a second	Template: T Prelogin: P PM: 206 - Je PB:	789892
Sample ID	Comp/Grab	Matrix *	Depth	Da		Time	Cntrs	Boron	Calcium	Chlori	S04 1					Shipped Via Remarks	Sample # (lab only)
NW-10	Grab	GW	1	18/20	sho	1745	1				X				1. Sec.	a millioners.	I-AT
NW-10 MS/MSD	Grab	GW		UIE	100	1245	1				x	1	212				
DUPLICATE 1	Grab	Construction of the second				1245	1		124.13		x			· Z hay			-02
1W-104	Grab	GW				1415	1	1	X							Sec. 1	-03
IW-104 MS/MSD	Grab	GW				1415	1 i		X			1					
UPLICATE 2	Grab	GW				1415	1		x		1999					and the	-04
IW-109	Grab	GW		1		1505	2	X			X					er Kaiper - An	-05
IW-110	Grub	GW				1550	2	X	Sec.	X	in a			945 -	i de	1	-06
IW-110 MS/MSD	Grab	GW	1			1950	2	X		X							
UPLICATE 3	Grab	GW			Second	1950	2	X	and a	X	100			funder			-67
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay VW - WasteWater	Remarks:			rit Geferk		-					pH Flow	ALT .	Temp	- Co	C Seal P C Signed ottles ar orrect bo	ole Receipt resent/Intac /Accurate: rive intact ttles used:	t: NP Y N
DW - Drinking Water Samples returned via: DT - Other UPS FedEx Courier Relinquished by (Signature) Date;		Tracking # 1840				15	L	000000000000000000000000000000000000000	018	50 Trip Blank Received: Yes //Ng			VC P1	Sufficient volume sent: If Applicable VOA Zero Headspace: Preservation Correct/Checked: N			
applicate	+ 13 A	3/26/20	7 12	240	10	lan h	li	w	26-0				HCL / Meol TBR	R7	4D Screen	<0.5 mR/hr	: <u> </u>
elinquished by : (Signature)	D	late:	Time	()	Receive	ed by: (Signat	ture)				4.3-5	5 °C	Bottles Received	f: If	preservatio	in required by	Login: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Origer,	Receive	ed for lab by:	(Signat	ure)			Date:	ze	Time: BC	Ho	old:		Condition: NCF / Ø

alter i Strandar Liferation

ANALYTICAL REPORT

September 03, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description:

L1255449 08/27/2020 27213167.20 Evergy latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1255449

DATE/TIME: 09/03/20 08:49

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	

GI

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-10 L1255449-01	5
MW-104 L1255449-02	6
MW-109 L1255449-03	7
MW-110 L1255449-04	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 2320 B-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLES		IAR I		ONEL	AD. NATIONW
MW-10 L1255449-01 GW			Collected by Whit Martin	Collected date/time 08/25/20 12:45	Received da 08/27/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1534047	1	08/29/20 23:39	08/29/20 23:39	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1533924	1	08/28/20 09:17	08/28/20 09:17	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1536087	1	09/02/20 10:42	09/02/20 12:22	CCE	Mt. Juliet, TN
MW-104 L1255449-02 GW			Collected by Whit Martin	Collected date/time 08/25/20 14:15	Received da 08/27/20 09	
	Detek	Dilution	Due a cuetta a	Arraharia	Arrahart	Leasting
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1534047	1	08/29/20 23:55	08/29/20 23:55	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1533924	1	08/28/20 09:28	08/28/20 09:28	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1533924	10	08/28/20 09:39	08/28/20 09:39	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1536087	1	09/02/20 10:42	09/02/20 12:37	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
MW-109 L1255449-03 GW			Whit Martin	08/25/20 15:05	08/27/20 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2320 B-2011	WG1534047	1	08/30/20 00:05	08/30/20 00:05	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1533924	1	08/28/20 09:50	08/28/20 09:50	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1536087	1	09/02/20 10:42	09/02/20 12:40	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
			Whit Martin	08/25/20 15:50	08/27/20 09	:30
MW-110 L1255449-04 GW						
	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method			Preparation date/time	Analysis date/time		
MW-110 L1255449-04 GW Method Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9056A	Batch WG1534047 WG1534488	Dilution 1 10	Preparation	Analysis	Analyst MCG ELN	Location Mt. Juliet, TN Mt. Juliet, TN

SDG: L1255449

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1255449 DATE/TIME: 09/03/20 08:49 PAGE: 4 of 16

SAMPLE RESULTS - 01 L1255449

Cn

Qc

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	589000		20000	1	08/29/2020 23:39	<u>WG1534047</u>	Tc
Alkalinity,Carbonate	ND		20000	1	08/29/2020 23:39	<u>WG1534047</u>	
Sample Narrative:							³ Ss

Sample Narrative:

L1255449-01 WG1534047: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	16400		1000	1	08/28/2020 09:17	WG1533924

Metals (ICP) by Method 6010B

Metals (ICP) by M	lethod 6010B						7
	Result	Qualifier	RDL	Dilution	Analysis	Batch	— G
Analyte	ug/l		ug/l		date / time		8
Calcium	163000	<u>01 V</u>	1000	1	09/02/2020 12:22	WG1536087	Ă
Magnesium	59100	01	1000	1	09/02/2020 12:22	WG1536087	
Potassium	4510		2000	1	09/02/2020 12:22	WG1536087	°Sc
Sodium	11900		3000	1	09/02/2020 12:22	WG1536087	50

Collected date/time: 08/25/20 14:15

SAMPLE RESULTS - 02 L1255449

Cn

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	223000		20000	1	08/29/2020 23:55	WG1534047	Tc
Alkalinity,Carbonate	ND		20000	1	08/29/2020 23:55	WG1534047	
							³ Ss

Sample Narrative:

L1255449-02 WG1534047: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	°Sr
Analyte	ug/l		ug/l		date / time		
Chloride	22800		1000	1	08/28/2020 09:28	WG1533924	6 0 C
Sulfate	126000		50000	10	08/28/2020 09:39	<u>WG1533924</u>	Qc
							7
Metals (ICP) by M	Vethod 6010B						GI

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	8
Analyte	ug/l		ug/l		date / time		ັΑΙ
Magnesium	13000		1000	1	09/02/2020 12:37	WG1536087	
Potassium	3760		2000	1	09/02/2020 12:37	WG1536087	9 20
Sodium	79600		3000	1	09/02/2020 12:37	WG1536087	50

SDG: L1255449

DATE/TIME: 09/03/20 08:49 PAGE:

6 of 16

Collected date/time: 08/25/20 15:05

SAMPLE RESULTS - 03

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	197000		20000	1	08/30/2020 00:05	WG1534047	Tc
Alkalinity,Carbonate	ND		20000	1	08/30/2020 00:05	WG1534047	
Cample Navrative							³ Ss

Sample Narrative:

L1255449-03 WG1534047: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	25200		1000	1	08/28/2020 09:50	WG1533924

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	GI
Analyte	ug/l		ug/l		date / time		8
Calcium	62300		1000	1	09/02/2020 12:40	WG1536087	Ă
Magnesium	12900		1000	1	09/02/2020 12:40	WG1536087	
Potassium	5780		2000	1	09/02/2020 12:40	WG1536087	°Sc
Sodium	96000		3000	1	09/02/2020 12:40	WG1536087	50

Collected date/time: 08/25/20 15:50

SAMPLE RESULTS - 04

Cn

Qc

7

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Alkalinity,Bicarbonate	293000		20000	1	08/30/2020 00:16	WG1534047	Tc
Alkalinity,Carbonate	ND		20000	1	08/30/2020 00:16	WG1534047	
Comple Newstine							³ Ss

Sample Narrative:

L1255449-04 WG1534047: Endpoint pH 4.5

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	179000		50000	10	08/29/2020 12:52	WG1534488

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	G
Analyte	ug/l		ug/l		date / time		8
Calcium	37000		1000	1	09/02/2020 14:44	WG1536087	ĬAĬ
Magnesium	6680		1000	1	09/02/2020 14:44	WG1536087	
Potassium	6050		2000	1	09/02/2020 14:44	WG1536087	⁹ Sc
Sodium	176000		3000	1	09/02/2020 14:44	WG1536087	

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

IVIELITOU DIALIK (IV				
(MB) R3565352-1 08/2	9/20 16:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity,Carbonate	U		8450	20000
ikalinity,CarDOllate	U		0400	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

L1254487-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1254487-01 08/29	9/20 16:26 • (DUP) R3565352-3	3 08/29/20	D 16:34					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Alkalinity,Bicarbonate	249000	249000	1	0.255		20			
Alkalinity,Carbonate	ND	ND	1	0.000		20			

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1255084-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1255084-01 08/29/	20 23:19 • (DUP	9) R3565352-6	6 08/29/2	0 23:29		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	22000	21900	1	0.607		20
Alkalinity,Carbonate	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.20

SDG: L1255449 DATE/TIME: 09/03/20 08:49

PAGE: 9 of 16 ⁺Cn

WG1533924

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

(MB) R3565005-1	08/28/20 05:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Sulfate	U		594	5000
Suifate	U		594	5000

L1255046-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1255046-01 08	8/28/20 06:23 • (DU	P) R3565005	-3 08/28/2	20 06:34					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	ug/l	ug/l		%		%			
Chloride	ND	ND	1	0.000		15			
Sulfate	16100	16900	1	4.57		15			

L1255482-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1255482-06 08/28	/20 12:00 • (DU	P) R3565005-	10 08/28	20 12:33				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	ug/l	ug/l		%		%		
Chloride	20800	20600	1	1.01		15		
Sulfate	27800	27600	1	0.647		15		

Laboratory Control Sample (LCS)

(LCS) R3565005-2 08/28/20 05:19												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
Chloride	40000	39900	99.8	80.0-120								
Sulfate	40000	39900	99.7	80.0-120								

L1255433-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-01 08/28/20 07:07 • (MS) R3565005-4 08/28/20 07:18 • (MSD) R3565005-5 08/28/20 07:28												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	16600	69200	67900	105	102	1	80.0-120			1.91	15
Sulfate	50000	47900	98500	97900	101	100	1	80.0-120			0.558	15

ACCOUNT:	
SCS Engineers - KS	

PROJECT: 27213167.20

SDG: L1255449 DATE/TIME: 09/03/20 08:49 PAGE: 10 of 16

ONE LAB. NATIONWIDE.

¹Cp

⁺Cn

Sr

Qc

GI

Â

Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

- X

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1255433-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255433-06 08/28/	(OS) L1255433-06 08/28/20 08:23 • (MS) R3565005-6 08/28/20 08:34 • (MSD) R3565005-7 08/28/20 08:45														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%			
Chloride	50000	20000	71300	70500	103	101	1	80.0-120			1.23	15			
Sulfate	50000	182000	232000	225000	101	87.4	1	80.0-120	E	E	2.92	15			

L1255482-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255482-04 08/28/	(OS) L1255482-04 08/28/20 11:17 • (MS) R3565005-8 08/28/20 11:27 • (MSD) R3565005-9 08/28/20 11:38													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Chloride	50000	8790	60500	60000	103	102	1	80.0-120			0.858	15		
Sulfate	50000	80100	130000	130000	99.0	99.0	1	80.0-120	E	E	0.0218	15		

SDG: L1255449 DATE/TIME: 09/03/20 08:49

WG1534488

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1255449-04

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3565413-1 08/29/20 09:23								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Sulfate	U		594	5000				

L1255052-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1255052-01 08/29/	DS) L1255052-01 08/29/20 10:49 • (DUP) R3565413-3 08/29/20 11:06											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	ug/l	ug/l		%		%						
Sulfate	506000	509000	10	0.607		15						

L1255539-09 Original Sample (OS) • Duplicate (DUP)

L1255539-09 Orig	inal Sample	(OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1255539-09 08/29)/20 15:46 • (DUI	P) R3565413-6	6 08/29/2	0 16:04			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Sulfate	314000	315000	1	0.227	E	15	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3565413-2 08/29	/20 09:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	43000	107	80.0-120	

L1255315-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255315-01 08/29/2	20 11:23 • (MS) R	3565413-4 08	3/29/20 11:40 •	(MSD) R35654	13-5 08/29/20	D 11:58						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%

L1255620-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1255620-02 08/29/2	20 16:56 • (MS)	R3565413-7 (08/29/20 17:11				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	64100	117000	105	1	80.0-120	E

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	27213167.20	L1255449	09/03/20 08:49	12 of 16

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Ср

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3566516-1 09/0	2/20 12:17
----------------------	------------

	MB Result	MB Qualifier	MB MDL	MB RDL	
alyte	ug/l		ug/l	ug/l	
Calcium	U		389	1000	
Magnesium	U		111	1000	
Potassium	U		510	2000	
Sodium	U		1400	3000	

Laboratory Control Sample (LCS)

(LCS) R3566516-2 09/02	2/20 12:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9870	98.7	80.0-120	
Magnesium	10000	9390	93.9	80.0-120	
Potassium	10000	9370	93.7	80.0-120	
Sodium	10000	10100	101	80.0-120	

L1255449-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255449-01 09/02/	'20 12:22 • (MS)	R3566516-4 C	09/02/20 12:2	7 • (MSD) R356	6516-5 09/0	2/20 12:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	163000	168000	167000	49.3	47.8	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.0895	20
Magnesium	10000	59100	67600	67500	84.9	83.4	1	75.0-125			0.217	20
Potassium	10000	4510	14100	13900	95.7	94.3	1	75.0-125			1.03	20
Sodium	10000	11900	21700	21600	98.3	97.3	1	75.0-125			0.478	20

SDG: L1255449 DATE/TIME: 09/03/20 08:49

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

The sample concentration is too high to evaluate accurate spike recoveries.

V

PROJECT: 27213167.20

SDG: L1255449 DATE/TIME: 09/03/20 08:49

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1255449

09/03/20 08:49

	Billing Informat			ormation:	nation:			Analysis / Container / Preservative						CH	Chain of Custody Page of		
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210		Accounts Payable 8575 W. 110th Stree Overland Park, KS 66				Pres Chk		52	10110101000000	5	-					Pace Analytical*	
				66210			VO3				oPres			1	/ Netional Can	ter for Testing & Innovation	
Jason Franks				il To: .ks@scsengineers.com;jay.martin@evergy.c											M	2065 Lebanon Rd Iount Juliet, TN 371 hone: 615-758-5858	
Project Description: Evergy latan Generating Station		City/State Collected:	Veston	MO	Please PT MT	Circle:	res	HH	Pres	INO3	6	PE-N				hone: 800-767-5859 ax: 615-758-5859	
Phone: 913-681-0030	Client Project # 27213167.20 Site/Facility ID #		Lab Project # AQUAOPKS-IATAN P.O. #			125mlHDPE-NoPres	10 250mlHDPE-HNO3	Chloride - 9056 125mlHDPE-NoPres	6010 250mlHDPE-HN03	125mlHDPE-NoPres	125mlHDPE-NoPres			SI	DG # //	255449	
Collected by (print): Whit Martin											9056 125				Acctnum: AQUAOPKS		
Collected by (signature): What Market Immediately Packed on Ice N Y _X	SameNext	? (Lab MUST Be Notified) te Day Five Day t Day 5 Day (Rad Only) to Day 10 Day (Rad Only) te Day		Quote # Date Results Needer Sta		No. of	ALKBI, ALKCA 1251	Mg, Na - 6010	ide - 9056 12	Mg, Na - 6010 2	100	Chlaride - 90			Template:T1528 Prelogin: P7898 PM: 206 - Jeff Car PB:		896
Sample ID	Comp/Gra	b Matrix *	Depth	Date	Time	Critrs	ALKBI	Ca, K,	Chlor	K, Mg	S04 -	S04,			St	hipped Via: Remarks	Sample # (lab only)
MW-10	Grab	GW		8/25/2	01249	3	X	X	X								-0)
MW-104	Grad	GW		8/25/20	0 1415	3	X			X		X				and the second second	62
MW-109	Grab			Black	0 1509	3	X	X	x								03
MW-110	Grak			8/25/20	2 1550	3	X	X			X						ou
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact:NP _ YN COC Signed/Accurate:N Bottles arrive intact:N Correct bottles used:N				
DW - Drinking Water OT - Other	Samples returned via: Tracking # (8 4)											Sufficien VOA Zero			ent vol <u>11</u> 10 Heads	lume sent: <u>f Applicable</u> space:	
			Time: 1270 Received by (Signature) &				1240			Trip Blank Received: Yes / (No/ HCL / MeoH TBR			Preservation Correct/Checked:N RAD Screen <0.5 mR/hr:YN				
Relinquished by : (Signature)	Date: Time			e: Rece	Received by: (Signature)				1	Tether 115 °C Bottles Received: 4,3.5=3,8 (2				If preservation required by Login: Date/Time			
Relinquished by : (Signature) Date:		Time	e: Rece	Received for lab by: (Signature)					Date:	7-20	Time 95	1: 30				Condition: NCF / OK	

Jared Morrison December 16, 2022

ATTACHMENT 1-6 November 2020 Sampling Event Laboratory Report

ANALYTICAL REPORT

November 20, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1284237 11/11/2020 27213167.20 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	

GI

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1284237-01	5
MW-2 L1284237-02	6
MW-6 L1284237-03	7
MW-7 L1284237-04	8
MW-8 L1284237-05	9
DUPLICATE L1284237-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SDG: L1284237 DATE/TIME: 11/20/20 11:17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-1 L1284237-01 GW			Collected by Jason R Franks	Collected date/time 11/09/20 14:10	11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 17:56	11/18/20 17:56	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576871	1	11/16/20 22:11	11/17/20 17:04	EL	Mt. Juliet, TN
MW-2 L1284237-02 GW			Collected by Jason R Franks	Collected date/time 11/09/20 14:55	Received dat 11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 18:14	11/18/20 18:14	ST	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	5	11/18/20 18:33	11/18/20 18:33	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576871	1	11/16/20 22:11	11/17/20 17:07	EL	Mt. Juliet, TN
MW-6 L1284237-03 GW			Collected by Jason R Franks	Collected date/time 11/09/20 12:50	Received dat 11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 18:51	11/18/20 18:51	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576871	1	11/16/20 22:11	11/17/20 15:57	EL	Mt. Juliet, TN
MW-7 L1284237-04 GW			Collected by Jason R Franks	Collected date/time 11/09/20 13:20	Received dat 11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 20:23	11/18/20 20:23	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576871	1	11/16/20 22:11	11/17/20 17:10	EL	Mt. Juliet, TN
MW-8 L1284237-05 GW			Collected by Jason R Franks	Collected date/time 11/09/20 12:40	Received dat 11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 21:00	11/18/20 21:00	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576873	1	11/16/20 21:09	11/17/20 11:03	CCE	Mt. Juliet, TN
DUPLICATE L1284237-06 GW			Collected by Jason R Franks	Collected date/time 11/09/20 12:50	Received dat 11/11/20 12:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578077	1	11/18/20 21:19	11/18/20 21:19	ST	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576873	1	11/16/20 21:09	11/17/20 11:06	CCE	Mt. Juliet, TN

PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1284237 DATE/TIME: 11/20/20 11:17 PAGE: 4 of 18

SAMPLE RESULTS - 01 L1284237

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Anarysis by Metriod 2040 C-2011								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time			2
Dissolved Solids	520000	<u>13</u>	10000	1	11/15/2020 14:37	WG1576584		Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 14:10

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L		
Analyte	ug/l		ug/l		date / time		4		
Chloride	5240		1000	1	11/18/2020 17:56	WG1578077			
Fluoride	271		150	1	11/18/2020 17:56	<u>WG1578077</u>	9		
Sulfate	30900		5000	1	11/18/2020 17:56	WG1578077			

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 17:04	WG1576871
Calcium	134000		1000	1	11/17/2020 17:04	WG1576871

SAMPLE RESULTS - 02 L1284237

¥

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

Gravinetie Anarysis by Method 20+0 C 2011								1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time			2
Dissolved Solids	640000		10000	1	11/15/2020 14:37	WG1576584		⁻ Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 14:55

Wet Chemistry by Method 9056A									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time			⁴ Cn	
Chloride	7030		1000	1	11/18/2020 18:14	WG1578077		CII	
Fluoride	313		150	1	11/18/2020 18:14	WG1578077	-	5	
Sulfate	129000		25000	5	11/18/2020 18:33	WG1578077		ဳSr	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 17:07	WG1576871
Calcium	167000		1000	1	11/17/2020 17:07	WG1576871

SAMPLE RESULTS - 03 L1284237

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

						 I'C
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		2
Dissolved Solids	548000	10000	1	11/15/2020 14:37	WG1576584	T

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 12:50

	Result	Qualifier	RDL	Dilution	Analysis	Datab
		Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	548000		10000	1	11/15/2020 14:37	WG1576584
Wet Chemistry by	Mothod 9056	\ \				
wet chemistry b		7				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ug/l 1600		ug/l 1000	1	date / time 11/18/2020 18:51	WG1578077
•			-	1		WG1578077 WG1578077

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 15:57	WG1576871
Calcium	160000		1000	1	11/17/2020 15:57	WG1576871

SAMPLE RESULTS - 04 L1284237

¥

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	· · ·					 I C
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		 2
Dissolved Solids	453000	10000	1	11/15/2020 14:37	WG1576584	T

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 13:20

	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time				
Dissolved Solids	453000		10000	1	11/15/2020 14:37	WG1576584			
Wet Chemistry by	Method 90564	Ą							
	Result		RDL	Dilution	Analycic	Datch			
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l		date / time				
,	ugn		ag,.		date / time				
Chloride	3180		1000	1	11/18/2020 20:23	WG1578077			
			-	1		WG1578077 WG1578077			

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 17:10	WG1576871
Calcium	132000		1000	1	11/17/2020 17:10	WG1576871

SAMPLE RESULTS - 05 L1284237

¥

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

						I C
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		 2
Dissolved Solids	571000	10000	1	11/15/2020 14:37	WG1576584	ΓT

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 12:40

			/11			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	571000		10000	1	11/15/2020 14:37	WG1576584
Wet Chemistry b	v Method 90564	Ą				
	Result		RDL	Dilution	Analysis	Datab
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	9920		1000	1	11/18/2020 21:00	WG1578077
Fluoride	357		150	1	11/18/2020 21:00	WG1578077
Sulfate	50500		5000	1	11/18/2020 21:00	WG1578077
Juitate	58500					

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 11:03	WG1576873
Calcium	158000		1000	1	11/17/2020 11:03	WG1576873

SAMPLE RESULTS - 06 L1284237

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 C
Analyte	ug/l	ug/l		date / time		 2
Dissolved Solids	557000	10000	1	11/15/2020 14:37	WG1576584	¯Τα

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l		date / time						
Dissolved Solids	557000		10000	1	11/15/2020 14:37	WG1576584					
Wet Chemistry by	Method 90564	7									
Wet enemistry by											
	Result	Qualifier	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l		date / time						
			1000	1	11/10/2020 21:10	WC1E70077					
Chloride	1580		1000	I	11/18/2020 21:19	WG1578077					
Chloride Fluoride	1580 304		150	1	11/18/2020 21:19	WG1578077 WG1578077					

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 11:06	WG1576873
Calcium	162000		1000	1	11/17/2020 11:06	WG1576873

WG1576584

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1284237-01,02,03,04,05,06

Τс

Ss

°Cn

Sr

ິQc

Method Blank (MB)

(MB) R3593450-1 11/15	5/20 14:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1284237-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1284237-01 11/15/2	0 14:37 • (DUP) F	R3593450-3	11/15/20 14:	37		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	520000	490000	1	5.94	J3	5

L1284370-01 Original Sample (OS) • Duplicate (DUP)

L1284370-01 Orig	ginal Sample	(OS) • Du	plicate (DUP)			7
(OS) L1284370-01 11/15/	20 14:37 • (DUP)	R3593450-4	11/15/20 14	:37			L
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	8
Analyte	ug/l	ug/l		%		%	L
Dissolved Solids	213000	176000	1	19.0	<u>J3</u>	5	9

Laboratory Control Sample (LCS)

(LCS) R3593450-2 11/	15/20 14:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8270000	94.0	77.4-123	

DATE/TIME: 11/20/20 11:17

PAGE: 11 of 18 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1284237-01,02,03,04,05,06

Ср

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(1016) R5594545-1 11/16/20 10.51	(MB) R3594543-1	11/18/20 10:51
----------------------------------	-----------------	----------------

Analyte	ug/l				
	- 5	ug/l	ug/l		
Chloride	U	379	1000		
Fluoride	U	64.0	150		
Sulfate	U	594	5000		

L1284237-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1284237-04	11/18/20 20.23 •	(DUP) R3594543-7	11/18/20 20.42
(00) L1207207-07	11/10/20 20.23	(001) (000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	11/10/20 20.42

	(-)					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	3180	3170	1	0.258		15
Fluoride	288	296	1	2.54		15
Sulfate	34000	33900	1	0.142		15

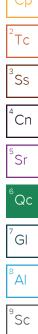
Laboratory Control Sample (LCS)

(LCS) R3594543-2 11/18/2	20 11:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39700	99.2	80.0-120	
Fluoride	8000	8300	104	80.0-120	
Sulfate	40000	40200	100	80.0-120	

L1284227-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1284227-01 11/18/20	OS) L1284227-01 11/18/20 15:10 • (MS) R3594543-4 11/18/20 15:29											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	ug/l	ug/l	ug/l	%		%						
Chloride	50000	ND	53400	105	1	80.0-120						
Fluoride	5000	ND	5230	103	1	80.0-120						
Sulfate	50000	103000	154000	102	1	80.0-120	E					

L1284237-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


(OS) L1284237-03	DS) L1284237-03 11/18/20 18:51 • (MS) R3594543-5 11/18/20 19:10 • (MSD) R3594543-6 11/18/20 19:28												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	1600	48900	48800	94.5	94.3	1	80.0-120			0.192	15	
Fluoride	5000	308	4950	4940	92.9	92.7	1	80.0-120			0.146	15	
		PRC	JECT:		SDG:			DATE/	TIME:		PAGE:		
SCS Engineers - KS				27213167.20			L1:	284237		11/20/2	0 11:17		12 of 18

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1284237-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1284237-03 11/18/20	(OS) L1284237-03 11/18/20 18:51 • (MS) R3594543-5 11/18/20 19:10 • (MSD) R3594543-6 11/18/20 19:28													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Sulfate	50000	24800	73400	73400	97.2	97.1	1	80.0-120			0.0673	15		

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17 PAGE: 13 of 18

WG1576871

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1284237-01,02,03,04

⁺Cn

GI

Â

Sc

Method Blank (MB)

(MB) R3594218-1	11/17/20 15:52				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Boron	U		20.0	200	
Calcium	U		79.3	1000	³ SS
					53

Laboratory Control Sample (LCS)

(LCS) R3594218-2	11/17/20 15:55					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	CS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	960	96.0	80.0-120		
Calcium	10000	9810	98.1	80.0-120		

L1284237-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1284237-03 11/17/20) 15:57 • (MS) R3	3594218-4 11/17	7/20 16:03 • (N	ISD) R3594218	-5 11/17/20 16:	05							8
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	g
Boron	1000	ND	1090	1070	101	99.5	1	75.0-125			1.76	20	·
Calcium	10000	160000	170000	171000	104	110	1	75.0-125			0.314	20	

ACCOUNT:	
SCS Engineers - I	KS

PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17

PAGE: 14 of 18

WG1576873

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

⁺Cn

GI

Method Blank (MB)

(MB) R3594035-1	11/17/20 10:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		20.0	200	
Calcium	U		79.3	1000	

Laboratory Control Sample (LCS)

(LCS) R3594035-2 11/	17/20 10:50					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	999	99.9	80.0-120		
Calcium	10000	10700	107	80.0-120		

L1284240-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(C	S) L1284240-02 11/17/20) 10:53 • (MS) R	3594035-4 11/	17/20 10:58 • (I	MSD) R359403	5-5 11/17/20 11:	:01							⁸ Al	Ē
		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		I.
Ar	alyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9	
Bc	ron	1000	ND	1100	1110	98.0	98.5	1	75.0-125			0.473	20	SC	
Ca	llcium	10000	158000	164000	163000	60.8	57.5	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.201	20		

ACCOUNT:	
SCS Engineers - K	S

PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17

PAGE: 15 of 18

GLOSSARY OF TERMS

*

Ср

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J3	The associated batch QC was outside the established quality control range for precision.

V The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.20

SDG: L1284237 DATE/TIME: 11/20/20 11:17

PAGE: 16 of 18

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebras
Alaska	17-026	Nevad
Arizona	AZ0612	New H
Arkansas	88-0469	New Je
California	2932	New M
Colorado	TN00003	New Y
Connecticut	PH-0197	North (
Florida	E87487	North (
Georgia	NELAP	North (
Georgia ¹	923	North I
ldaho	TN00003	Ohio-V
Illinois	200008	Oklaho
Indiana	C-TN-01	Oregor
lowa	364	Pennsy
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South I
Louisiana	AI30792	Tennes
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virginia
Minnesota	047-999-395	Washir
Mississippi	TN00003	West V
Missouri	340	Wiscor
Montana	CERT0086	Wyomi

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1284237

11/20/20 11:17

The state of the s	I mark alt.	14 M	Billing Info	rmation:			-		A	nalvsis / C	ontainer /	Preservativ	/e		Chain of Cu	ustody	Page of
			, to co arres i a jarora			Pres Chk	Contraction of the local division of the loc	5							- Providence	2 ace A tional Cant	nalytical * er for Vesting & Innovatio
ason Franks		Email To: jfranks@scsengineers.com;jay.martin@eve				Pres								12065 Leban Mount Juliet, Phone: 615-7	, TN 3712 758-5858		
Project Description: Evergy - latan Generating Station		City/State Collected:	WES	NJ, KUT	Please C	ET	-NC								Phone: 800-7 Fax: 615-758		首監護
hone: 913-681-0030	Client Project 27213167.			Lab Project # AQUAOPKS-	IATAN		125mlHDPE-NoPres	-HNO3									1237 45
TASAN R. FRANKS	Site/Facility I	D #	4 4	P.O. #				IHDPE-	VoPres						Tab Acctnum:		
Jason R. January Jason R. Johnson	Rush? (Lab MUST Be N Same Day Five Day Next Day 5 Day (Date Results Needed		Anions (Cld, F, SO4)	6010 250mIHDPE-HNO3	250miHDPE-NoPres						Prelogin: I	Template: T136059 Prelogin: P805776 PM: 206 - Jeff Carr	
Packed on Ice N Y	Three [1	T The second	57	1	of Cntrs	SUC	Ca - 6	250						Shipped V	/ia:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time		Anic	B, C	TDS						Remark	ks	Sample # (lab only)
NW-1	GRAG	GW	-	11/9/20	1410	3	X	X	X						2.77 - 1.72 - 1.72 2.75		- 01
MW-2 .	1	GW	-		1455	3	X	x	x						and the second	-	02
MM-6	34	GW		1.46	1250	3	X	x	x								03
viw-7		GW	1 months		1320	3	X	X	X						the star		04
NM-8		GW	-		1240	3	X	X	X				1		- 11/1-11	1.20	05
DUPLICATE	1	GW	and the	NI	1250	3	X	X	x	and a							06
MS / MSD		GW		V	1250	3	X	x	X								03
	in an			L.									2 2 - 0				
		(Constant		Real and	1.1.1			1									
ss - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - Waste Water	Remarks: Samples returned UPSFedEx			Track	ng#					pH		emp		COC Seal COC Sign Bottles Correct Sufficient	arrive intac bottles used nt volume se <u>If Appli</u>	act: t: l: mt:	Klist NP Y N ZY N ZY N ZY N ZY N
Relinquished by : (Signatu) e)	Notecoder/New Sectors Stagened	ate:	/ Time	28 A	ed by (Signat		-			frip Blank f		Yes / No HCL / Mec TBR	H	Preserva RAD Scre	Headspace: tion Correct en <0.5 mR/h	ır:	<u>Y</u> N
Relinguished by : (Signature)	Di	ater Lí lo jé	20 K	00 F.	ved by: (Signat					remp: 3.2-0.1		iottles Receiva			tion required by	y login	Date/Time
Relinquished by : (Signature)	Di	ate:	Time	: Recei	red for lab by:	~7	Contraction Contraction Input			Date:	T D	ime: 1240		Hold:			Condition: NCF / OV

land and the

ANALYTICAL REPORT

November 22, 2020

SCS Engineers - KS

Sample Delivery Group: Samples Received: Project Number: Description: L1284240 11/11/2020 27213167.20 Evergy - latan Generating Station

Report To:

Jason Franks 8575 W. 110th Street Overland Park, KS 66210

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1284240 DATE/TIME: 11/22/20 08:33

E: 33

TABLE OF CONTENTS

1 2

₩	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	

Sr

Qc

GI

ΆI

Sc

Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
MW-9 L1284240-01	5	
MW-10 L1284240-02	6	
Qc: Quality Control Summary	7	
Gravimetric Analysis by Method 2540 C-2011	7	
Wet Chemistry by Method 9056A	8	
Metals (ICP) by Method 6010B	10	
GI: Glossary of Terms	11	
Al: Accreditations & Locations	12	
Sc: Sample Chain of Custody	13	

Cp: Cover Page

Tc: Table of Contents

SDG: L1284240 DATE/TIME: 11/22/20 08:33

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received dat	e/time
MW-9 L1284240-01 GW			Jason R Franks	11/09/20 14:45	11/11/20 12:40)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578226	1	11/21/20 00:43	11/21/20 00:43	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1576873	1	11/16/20 21:09	11/17/20 11:09	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
MW-10 L1284240-02 GW			Jason R Franks	11/09/20 13:55	11/11/20 12:40	1
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1576584	1	11/15/20 06:42	11/15/20 14:37	TH	Mt. Juliet, TN
		4	11/21/20 01:34	11/21/20 01:34	MCG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1578226	1	11/21/20 01.34	11/21/20 01.54	IVICO	wit. Juliet, IN

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

*

Ср

Tc

SDG: L1284240

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

ACCOUNT: SCS Engineers - KS PROJECT: 27213167.20

SDG: L1284240

40

DATE/TIME: 11/22/20 08:33

PAGE: 4 of 13

SAMPLE RESULTS - 01 L1284240

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

			· · ·				1 ·	0
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ct
Analyte	ug/l		ug/l		date / time			
Dissolved Solids	475000		10000	1	11/15/2020 14:37	WG1576584	2	To
Wet Chemistry by	/ Method 9056A	A					3	Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time		4	
Chloride	1300	В	1000	1	11/21/2020 00:43	WG1578226		Ci
Fluorido	324		150	1	11/21/2020 00.43	WC1578226		

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 14:45

	*						1 3 3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		⁴Cn
Chloride	1300	B	1000	1	11/21/2020 00:43	WG1578226	CII
Fluoride	324		150	1	11/21/2020 00:43	WG1578226	5
Sulfate	17400		5000	1	11/21/2020 00:43	WG1578226	Sr

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 11:09	WG1576873
Calcium	123000		1000	1	11/17/2020 11:09	WG1576873

SAMPLE RESULTS - 02 L1284240

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	3						I'C
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	645000		10000	1	11/15/2020 14:37	WG1576584	Tc

Wet Chemistry by Method 9056A

Collected date/time: 11/09/20 13:55

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	645000		10000	1	11/15/2020 14:37	WG1576584	
Net Chemistry by	Mathad QOEE/	\					
Wet Chemistry by			RDL	Dilution	Analysis	Batch	
Analyte	Result	A Qualifier	RDL ug/l	Dilution	Analysis date / time	Batch	
	Result			Dilution 1		<u>Batch</u> WG1578226	
Analyte	Result ug/l		ug/l	Dilution 1 1	date / time		

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/17/2020 10:53	WG1576873
Calcium	158000	\vee	1000	1	11/17/2020 10:53	WG1576873

WG1576584

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1284240-01,02

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

ິQc

Method Blank (MB)

(MB) R3593450-1 11/15/2	20 14:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1284237-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1284237-01 11/1	15/20 14:37 • (DUP)	R3593450-3	11/15/20 14:	37		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	520000	490000	1	5.94	<u>J3</u>	5

L1284370-01 Original Sample (OS) • Duplicate (DUP)

L1284370-01 Orig	ginal Sample	(OS) • Du	plicate (DUP)			7
(OS) L1284370-01 11/15/	20 14:37 • (DUP)	R3593450-4	11/15/20 14	:37			L
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	8
Analyte	ug/l	ug/l		%		%	L
Dissolved Solids	213000	176000	1	19.0	<u>J3</u>	5	9

Laboratory Control Sample (LCS)

(LCS) R3593450-2 11/	/15/20 14:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8270000	94.0	77.4-123	

DATE/TIME: 11/22/20 08:33 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Ср

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3595861-1	11/20/20 22:48

MB Result	MB Qualifier	MB MDL	MB RDL	
ug/l		ug/l	ug/l	
447	J	379	1000	
U		64.0	150	
U		594	5000	
	ug/l	ug/l	ug/l ug/l 447 <u>J</u> 379 U 64.0	ug/l ug/l ug/l 447 J 379 1000 U 64.0 150

L1284109-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1284109-01	11/20/20	23.26	(DUP)	R3595861-3	11/20/20 23:39
(00) L120+100 01	11/20/20	20.20		100000000	11/20/20 20.00

()	(-)					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	9110	9020	1	1.01		15
Fluoride	ND	ND	1	19.3	<u>P1</u>	15
Sulfate	6210	6150	1	0.872		15

L1284370-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1284370-07 11/21/20	(OS) L1284370-07 11/21/20 04:11 • (DUP) R3595861-7 11/21/20 04:24										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	33000	33100	1	0.269		15					
Fluoride	ND	160	1	15.6	<u>P1</u>	15					
Sulfate	27200	27500	1	0.793		15					

Laboratory Control Sample (LCS)

(LCS) R3595861-2 11/20/	CS) R3595861-2 11/20/20 23:00									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Chloride	40000	39600	99.1	80.0-120						
Fluoride	8000	7900	98.7	80.0-120						
Sulfate	40000	40000	99.9	80.0-120						

ACCOUNT:
SCS Engineers - KS

PROJECT: 27213167.20

DATE/TIME: 11/22/20 08:33

PAGE: 8 of 13

QUALITY CONTROL SUMMARY

L1284110-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1284110-01 11/20/2	0 23:52 • (MS) R	3595861-4 11/2	1/20 00:05				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	80500	134000	107	1	80.0-120	E
Fluoride	5000	153	5740	112	1	80.0-120	
Sulfate	50000	6110	63400	115	1	80.0-120	

L1284240-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1284240-02 11/21/20 01:34 • (MS) R3595861-5 11/21/20 01:47 • (MSD) R3595861-6 11/21/20 02:00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	16700	73100	73800	113	114	1	80.0-120			0.959	15
Fluoride	5000	476	5910	5980	109	110	1	80.0-120			1.23	15
Sulfate	50000	42300	97100	98800	110	113	1	80.0-120			1.71	15

DATE/TIME: 11/22/20 08:33

WG1576873

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1284240-01,02

*

⁺Cn

GI

Method Blank (MB)

Method Blar	ik (MB)				
(MB) R3594035-1	11/17/20 10:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		20.0	200	
Calcium	U		79.3	1000	

Laboratory Control Sample (LCS)

(LCS) R3594035-2 1	11/17/20 10:50					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	999	99.9	80.0-120		
Calcium	10000	10700	107	80.0-120		

L1284240-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	iginal sample		unx opine		ix opine D	uplicate (ii	150)							
(OS) L1284240-02 11/17/20 10:53 • (MS) R3594035-4 11/17/20 10:58 • (MSD) R3594035-5 11/17/20 11:01													⁸ AI	
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												<i></i>		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		9
Boron	1000	ND	1100	1110	98.0	98.5	1	75.0-125			0.473	20		SC
Calcium	10000	158000	164000	163000	60.8	57.5	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.201	20		

ACCOUNT:	
SCS Engineers -	KS

PROJECT: 27213167.20

SDG: L1284240

DATE/TIME: 11/22/20 08:33

PAGE: 10 of 13

GLOSSARY OF TERMS

*

Τс

ŚS

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 27213167.20

SDG: L1284240

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshir
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

27213167.20

L1284240

11/22/20 08:33

SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210 Report to:			Billing Information:				Analysis / Container / Preservative				Chain of Custody Page of				
		Accounts Payable 8575 W. 110th Street Overland Park, KS 66210		Pres Chk		ů						- Pace	Analytical* Senter for Testing & Innoveti		
		Report to:		Email To: jfranks@scsengineers.com;jay.martin@e		Email To: jfranks@scsengineers.com;jay.martin@evergy.c									
Project Description: Evergy - latan Generating Station	-/	City/State Collected:	WESTON, MO Please Cir PT MTC				HON-							Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
Phone: 913-681-0030	Client Project 27213167.		Lab Project #		market market and the second s		125mlHDPE-NoPres	HNO3						SDG # 12	342 <i>40</i> -244
Collected by (print): DASUN R. FRANK	Site/Facility I	e/Facility ID # P.O. #		P.O. #				HDPE-	oPres					Table Acctnum: AQ	
Collected by (signature):	Client Project # Lab Project # AQUAOPKS-IATAN Contraction 27213167.20 AQUAOPKS-IATAN Hitting Stress Saudon Stress Site/Facility ID # P.O. # Contraction Saudon Stress Site/Facility ID # P.O. # Contraction Contraction Site/Facility ID # P.O. # Contraction Contraction Same Day Five Day Solar (Rad Only) Date Results Needed Solar (Solar Only) Three Day STO STO Step Stress Step Stress			Template:T166691 Prelogin: P805779											
Imphediately Packed on Ice N Y	Next Da	10 Da	r (Rad Only) ay (Rad Only)	Date Result		No. of	s (Cld,	- 6010	SomiH					PM: 206 - Jeff Carr PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anions	B, Ca	TDS 2					Shipped Via: Remarks	Sample # (lab only
MW-9	GRAB	GW		11/9/20	And in case of the second second	3	x	X	X						-01
	GRAB	GW	-	11/9/20	1355	3	X	X	X						02
	-														
						- 1964		49-5-31 2							
	1														
				States and										1.200	
55 - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay NW - WasteWater DW - Diricking Water	marks:									pH Flow	Temp Other		COC Seal COC Signe Bottles a Correct h	ample Receipt Ch Present/Intact ed/Accurate: arrive intact: bottles used:	
Sar Sar	UPS FedEx	Courier	 Time: /0	- Trackin Receive	g.# 2d by: (Signati	ıre)				Trip Blank Ri	eceived: Ye	CL / MeoH	VOA Zero Preservat	nt volume sent: <u>If Applicab</u> Headspace: tion Correct/Che en <0.5 mR/hr:	¥ N
Relinquished by : (Signature)	Dat	10/20	Time:	Receive	ed by: (Signatu	ure)				Temp: 3.2-0.13		BR s Received:	If preserval	tion required by Log	in: Date/Time
Relinquished by : (Signature)	Dat	And a real of the second s	Time:	the same set of the same set o	d for lab by:	șienatu M				Date:	Time	240	Hold:		Condition: NCF / OV

,

Jared Morrison December 16, 2022

ATTACHMENT 2 Statistical Analyses

Jared Morrison December 16, 2022

ATTACHMENT 2-1

Fall 2019 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

March 10, 2020

To: latan Generating Station 20250 State Route 45 N Platte County, Missouri Evergy Metro, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Fall 2019 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on November 4, 2019. Review and validation of the results from the November 2019 Detection Monitoring Event was completed on December 12, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 15, 2020 and February 4, 2020.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-1.

Constituent/Monitoring Well	*UPL	Observation November 4, 2019	1st Verification January 15, 2020	2nd Verification February 4, 2020	
Fluoride					
MW-1	0.3201	0.488	0.326	0.329	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified a SSI above the background prediction limit for fluoride in monitoring well MW-1.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the

sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 10, 2020

ATTACHMENT 1

Sanitas[™] Output

Sanitas $^{\mbox{\tiny W}}$ v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-1 background 0.24 MW-1 compliance 0.18 ng/L Limit = 0.20.12 10000-<u>1</u>0000 0 -0--0 0.06 0 8/18/16 4/9/17 11/30/17 7/22/18 3/14/19 11/4/19

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 2/25/2020 9:43 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

0.3 MW-10 background 0.24 MW-10 compliance 0.18 mg/L Limit = 0.20.12 10000-10000 -0--0 -0 0.06 0 4/9/17 11/30/17 7/22/18 3/14/19 11/4/19 8/18/16

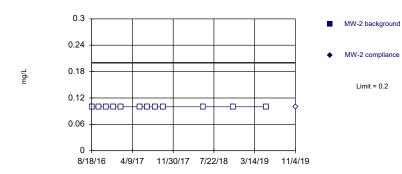
Prediction Limit

Intrawell Non-parametric

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 2/25/2020 9:43 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Non-parametric

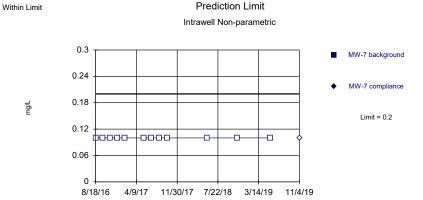
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-6 background 0.24 MW-6 compliance 0.18 mg/L Limit = 0.2 0.12 00000-0000 ------0--0 0.06

0

8/18/16

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


4/9/17 11/30/17 7/22/18 3/14/19 11/4/19

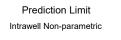
Constituent: Boron Analysis Run 2/25/2020 9:44 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

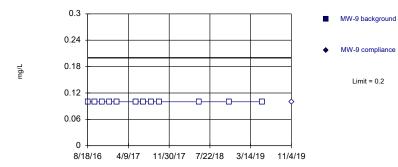
Constituent: Boron Analysis Run 2/25/2020 10:03 AM View: CCR LF III

1	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6
8/18/2016	<0.2		<0.2		<0.2		<0.2	
9/29/2016	<0.2		<0.2		<0.2		<0.2	
11/9/2016	<0.2		<0.2		<0.2		<0.2	
12/21/2016	<0.2		<0.2		<0.2		<0.2	
2/3/2017	<0.2		<0.2		<0.2		<0.2	
5/24/2017	<0.2		<0.2		<0.2		<0.2	
7/5/2017	<0.2		<0.2		<0.2		<0.2	
8/17/2017	<0.2		<0.2		<0.2		<0.2	
10/5/2017	<0.2		<0.2		<0.2		<0.2	
5/21/2018	<0.2		<0.2		<0.2		<0.2	
11/12/2018	<0.2		<0.2		<0.2		<0.2	
5/20/2019	<0.2		<0.2		<0.2		<0.2	
11/4/2019		<0.2		<0.2		<0.2		<0.2

Sanitas $^{\mbox{\tiny W}}$ v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

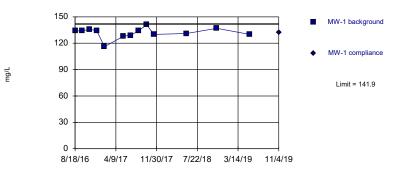

Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-8 background 0.24 MW-8 compliance 0.18 mg/L Limit = 0.20.12 10000-10000 -0--0 -0 0.06 0 4/9/17 11/30/17 7/22/18 3/14/19 11/4/19 8/18/16

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

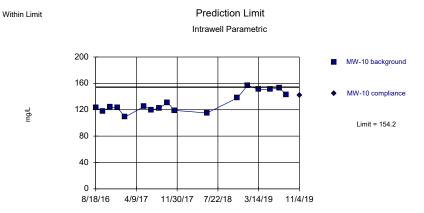
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Prediction Limit

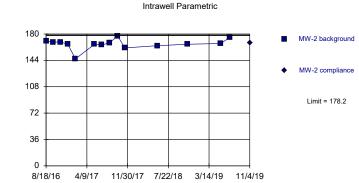


Background Data Summary: Mean=131.8, Std. Dev.=5.97, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8766, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

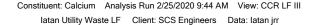
Constituent: Boron, Calcium Analysis Run 2/25/2020 10:03 AM View: CCR LF III

					Ũ			
1	MW-7	MW-7	MW-8	MW-8	MW-9	MW-9	MW-1	MW-1
8/18/2016	<0.2		<0.2		<0.2		134	
9/29/2016	<0.2		<0.2		<0.2		134	
11/9/2016	<0.2		<0.2		<0.2		136	
12/21/2016	<0.2		<0.2		<0.2		134	
2/3/2017	<0.2		<0.2		<0.2		116	
5/24/2017	<0.2		<0.2		<0.2		128	
7/5/2017	<0.2		<0.2		<0.2		129	
8/17/2017	<0.2		<0.2		<0.2		134	
10/5/2017	<0.2		<0.2		<0.2		141	
11/14/2017							130	
5/21/2018	<0.2		<0.2		<0.2		131	
11/12/2018	<0.2		<0.2		<0.2		137	
5/20/2019	<0.2		<0.2		<0.2		130	
11/4/2019		<0.2		<0.2		<0.2		132

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=130.7, Std. Dev.=15.04, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8963, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.


mg/L

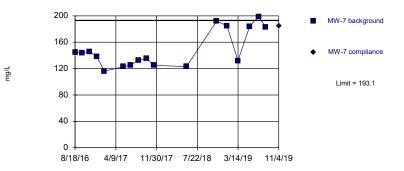
Prediction Limit

Background Data Summary: Mean=166.4, Std. Dev.=7.175, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8366, critical = 0.825. Kappa = 1.648 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Calcium Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

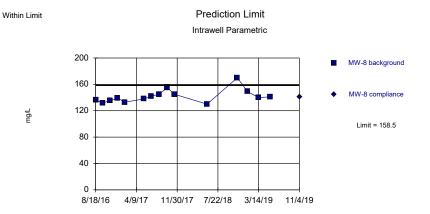
Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=144.7, Std. Dev.=7.032, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9678, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

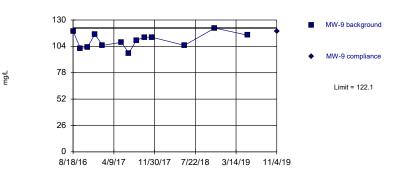


Background Data Summary (based on square root transformation): Mean=12.15, Std. Dev.=1.12, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8573, critical = 0.851. Kappa = 1.561 (c=7, wert, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 2/25/2020 10:03 AM View: CCR LF III

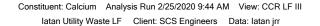
MW-10 MW-2 MW-2 MW-6 MW-6 MW-7 MW-7											
	8/18/2016	123		170		142		145			
	9/29/2016	118		169		139		144			
	11/9/2016	124		169		142		146			
	12/21/2016	123		166		146		138			
	2/3/2017	109		146		136		116			
	5/24/2017	125		166		150		123			
	7/5/2017	120		165		147		125			
	8/17/2017	122		168		150		133			
	10/5/2017	131		177		157		135			
	11/14/2017	119		161		151		125			
	5/21/2018	115		164		150		123			
	11/12/2018	138		166		147		192			
	1/10/2019	157						185			
	3/14/2019	151						132			
	5/20/2019	151		167		131		184			
	7/11/2019	153		175		138		199			
	8/20/2019	143						183			
	11/4/2019		142		168		134		185		

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=142, Std. Dev.=10.21, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8744, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG



Prediction Limit Intrawell Parametric

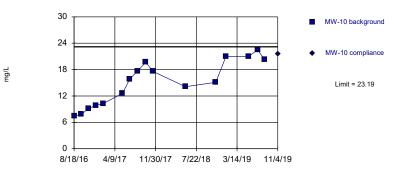
Background Data Summary: Mean=109.9, Std. Dev.=7.272, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9797, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

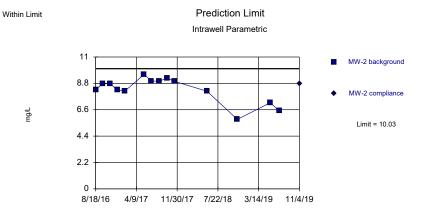
Prediction Limit Intrawell Parametric



MW-1 compliance

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

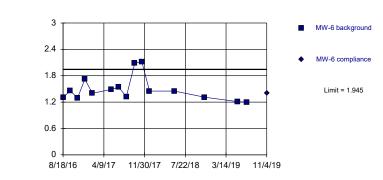

Background Data Summary: Mean=15.12, Std. Dev.=5.1, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Background Data Summary: Mean=5.966, Std. Dev.=0.4435, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9436, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium, Chloride Analysis Run 2/25/2020 10:03 AM View: CCR LF III

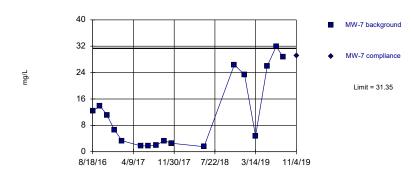
adan oliny waste Er Gilent. Goo Ergineers Data, talan jir										
1	MW-8	MW-8	MW-9	MW-9	MW-1	MW-1	MW-10	MW-10		
8/18/2016	136		119		5.93		7.47			
9/29/2016	132		102		6.07		7.83			
11/9/2016	135		103		5.95		9.15			
12/21/2016	139		116		5.97		9.84			
2/3/2017	133		105		6		10.3			
5/24/2017	138		108		5.61		12.6			
7/5/2017	142		97.2		5.78		15.9			
8/17/2017	145		110		6.13		17.6			
10/5/2017	155		113		6.75		19.7			
11/14/2017	145		113		6.73		17.6			
12/29/2017					6.27					
5/21/2018	130		105		5.63		14.1			
11/12/2018	170		122		5.04		15.1			
1/10/2019	149						21			
3/14/2019	140									
5/20/2019	141		115		5.66		21			
7/11/2019							22.5			
8/20/2019							20.3			
11/4/2019		141		119		6.61		21.6		

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=8.253, Std. Dev.=1.076, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8719, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

mg/L

Prediction Limit

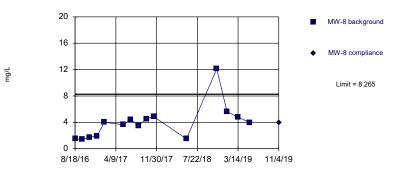

Background Data Summary (based on square root transformation): Mean=1.216, Std. Dev.=0.1104, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8387, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Chloride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

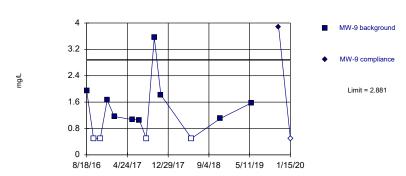


Background Data Summary (based on square root transformation): Mean=3.057, Std. Dev.=1.629, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8683, critical = 0.851. Kappa = 1.551 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

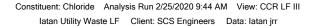
Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=1.907, Std. Dev.=0.5992, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8695, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

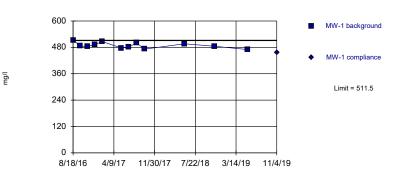

Constituent: Chloride Analysis Run 2/25/2020 10:03 AM View: CCR LF III

MW-2 MW-2 MW-6 MW-6 MW-7 MW-7 MW-8 MW-8												
	8/18/2016	8.26		1.31		12.3		1.5				
	9/29/2016	8.79		1.46		13.9		1.42				
	11/9/2016	8.76		1.29		11.1		1.76				
	12/21/2016	8.24		1.72		6.64		1.89				
	2/3/2017	8.17		1.4		3.32		4.02				
	5/24/2017	9.54		1.49		1.76		3.63				
	7/5/2017	8.99		1.54		1.81		4.44				
	8/17/2017	8.98		1.32		2		3.53				
	10/5/2017	9.23		2.09		3.32		4.55				
	11/14/2017	8.97		2.12		2.58		4.86				
	12/29/2017			1.45								
	5/21/2018	8.14		1.45		1.54		1.5				
	11/12/2018	5.79		1.31		26.4		12.1				
	1/10/2019					23.3		5.63				
	3/14/2019					4.77		4.79				
	5/20/2019	7.18		1.21		26		3.98				
	7/11/2019	6.5		1.2		31.9						
	8/20/2019					28.7						
	11/4/2019		8.77		1.4		29.1		3.99			

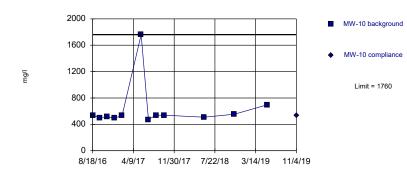

Sanitas^w v.9.6.25 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

Background Data Summary (after Aitchison's Adjustment): Mean=1.151, Std. Dev.=1.028, n=13, 30.77% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.



Intrawell Parametric

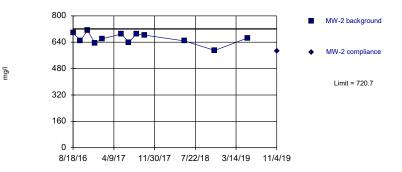

Background Data Summary: Mean=488.6, Std. Dev.=13.34, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9663, critical = 0.805. Kappa = 1.716 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: Dissolved Solids Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

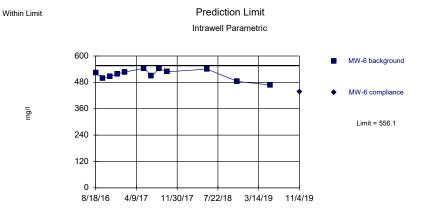
Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

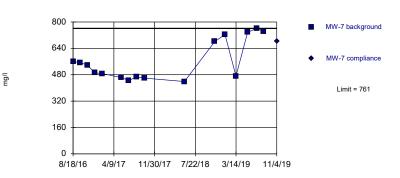
Prediction Limit


Background Data Summary: Mean=663.3, Std. Dev.=33.46, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9501, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Chloride, Dissolved Solids Analysis Run 2/25/2020 10:03 AM View: CCR LF III

					-			
I	MW-9	MW-9	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2
8/18/2016	1.95		513		532		696	
9/29/2016	<1		486		502		651	
11/9/2016	<1		484		516		711	
12/21/2016	1.66		493		497		636	
2/3/2017	1.16		506		531		661	
5/24/2017	1.07		477		1760		690	
7/5/2017	1.06		481		474		638	
8/17/2017	<1		500		539		690	
10/5/2017	3.57		472		539		683	
11/14/2017	1.82							
5/21/2018	<1		496		509		648	
11/12/2018	1.1		485		554		590	
5/20/2019	1.57		470		697		666	
11/4/2019		3.88		457		534		585
1/15/2020		<1 1st Verification	I					


Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=515.5, Std. Dev.=23.66, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

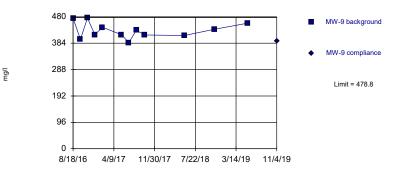

Constituent: Dissolved Solids Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Dissolved Solids Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

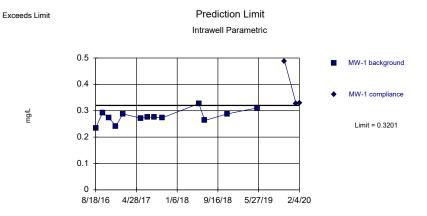
Prediction Limit



Background Data Summary: Mean=500.3, Std. Dev.=28.83, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9522, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

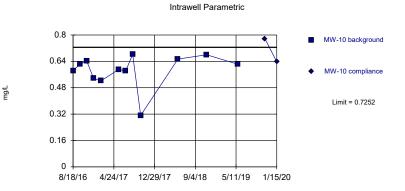
Prediction Limit Intrawell Parametric



Background Data Summary: Mean=429.7, Std. Dev.=28.65, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 2/25/2020 10:03 AM View: CCR LF III

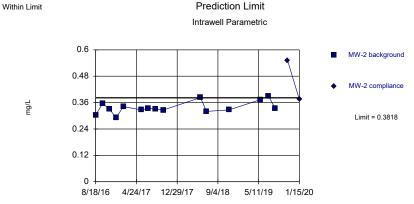
			,					
	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8	MW-9	MW-9
8/18/2016	522		560		494		475	
9/29/2016	498		554		517		398	
11/9/2016	506		538		471		476	
12/21/2016	519		492		493		415	
2/3/2017	527		487		515		442	
5/24/2017	544		462		485		415	
7/5/2017	508		445		500		386	
8/17/2017	542		466		504		431	
10/5/2017	528		459		505		414	
5/21/2018	540		439		437		412	
11/12/2018	484		681		563		435	
1/10/2019			724		502			
3/14/2019			472					
5/20/2019	468		737		518		457	
7/11/2019			761					
8/20/2019			743					
11/4/2019		437		682		465		392


Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.278, Std. Dev.=0.02501, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

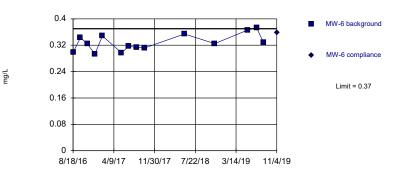


Prediction Limit

Background Data Summary (based on square transformation): Mean=0.3525, Std. Dev.=0.1011, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

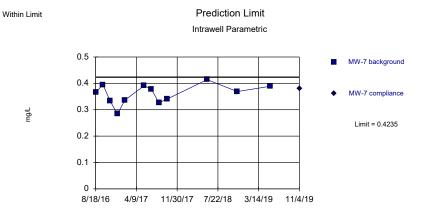
Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=0.3379, Std. Dev.=0.02721, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric



Background Data Summary: Mean=0.3279, Std. Dev.=0.02554, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9487, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 2/25/2020 10:03 AM View: CCR LF III

			latan u		ient. 303 Engineers	Data. Iatari jii		
1	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6
8/18/2016	0.234		0.584		0.303		0.298	
9/29/2016	0.292		0.622		0.356		0.343	
11/9/2016	0.274		0.642		0.331		0.324	
12/21/2016	0.241		0.538		0.292		0.293	
2/3/2017	0.288		0.521		0.342		0.348	
5/24/2017	0.272		0.591		0.327		0.297	
7/5/2017	0.275		0.582		0.334		0.317	
8/17/2017	0.276		0.682		0.332		0.313	
10/5/2017	0.273		0.312		0.326		0.312	
5/21/2018	0.327		0.654		0.383		0.354	
6/26/2018	0.263				0.32			
11/12/2018	0.288		0.68		0.327		0.325	
5/20/2019	0.311		0.623		0.373		0.366	
7/11/2019					0.389		0.373	
8/20/2019					0.333		0.328	
11/4/2019		0.488		0.777		0.552		0.359
1/15/2020		0.326 1st Verifica	tion	0.637 1st Verifica	ition	0.374 1st Verifica	ition	
2/4/2020		0.329 2nd Verific	ation					

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

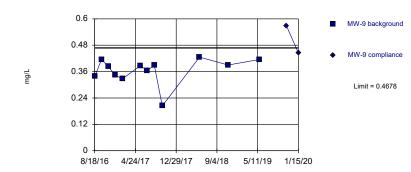
Background Data Summary: Mean=0.3603, Std. Dev.=0.03685, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

ng/L

Prediction Limit

Intrawell Parametric

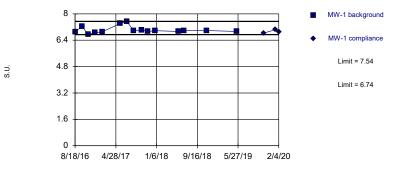

Background Data Summary: Mean=0.4189, Std. Dev.=0.02467, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8902, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Fluoride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

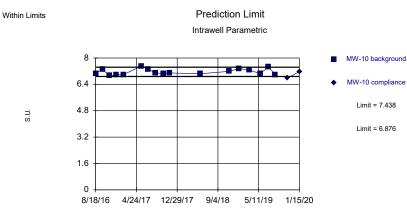


Background Data Summary: Mean=0.3653, Std. Dev.=0.05978, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8122, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05123). Report alpha = 0.001075.

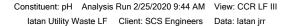
Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit Intrawell Non-parametric

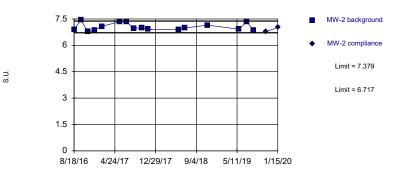


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Fluoride, pH Analysis Run 2/25/2020 10:03 AM View: CCR LF III

			latari o		Interior Engineero	buta. latan jii			
1	MW-7	I MW-7	MW-8	MW-8	MW-9	MW-9	MW-1	MW-1	I
8/18/2016	0.366		0.438		0.338		6.89		
9/29/2016	0.395		0.439		0.415		7.24		
11/9/2016	0.333		0.415		0.383		6.74		
12/21/2016	0.284		0.461		0.344		6.86		
2/3/2017	0.337		0.407		0.327		6.91		
5/24/2017	0.391		0.391		0.387		7.41		
7/5/2017	0.378		0.391		0.364		7.54		
8/17/2017	0.326		0.406		0.39		6.98		
10/5/2017	0.341		0.396		0.204		7.03		
11/14/2017							6.93		
12/29/2017							6.98		
5/21/2018	0.414		0.441		0.426		6.93		
6/26/2018							6.99		
11/12/2018	0.369		0.396		0.39		6.99		
5/20/2019	0.389		0.446		0.415		6.93		
11/4/2019		0.381		0.431		0.567		6.84	
1/15/2020						0.445 1st Verifica	ation	7.04	Extra Sample
2/4/2020								6.91	Extra Sample

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=7.157, Std. Dev.=0.18, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.0906, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit

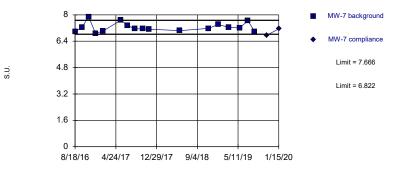
Background Data Summary: Mean=7.048, Std. Dev.=0.2096, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8784, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: pH Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan irr

Sanitas[™] v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit

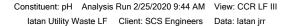


Background Data Summary: Mean=7.243, Std. Dev.=0.2171, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9298, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

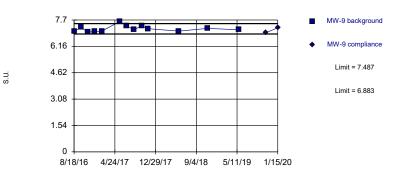
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.244, Std. Dev=0.2706, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.851. Kappa = 1.561 (c=7), w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Constituent: pH Analysis Run 2/25/2020 10:03 AM View: CCR LF III

			latari c		ient. 000 Engineera	b Data. Iatari jii			
	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7	
8/18/2016	7.06		6.9		7.18		6.97		
9/29/2016	7.31		7.45		6.97		7.25		
11/9/2016	6.93		6.79		7.72		7.87		
12/21/2016	6.96		6.85		6.99		6.88		
2/3/2017	6.99		7.08		7.1		7.01		
5/24/2017	7.51		7.35		7.49		7.67		
7/5/2017	7.31		7.33		7.46		7.36		
8/17/2017	7.1		6.97		7.47		7.15		
10/5/2017	7.05		7		7.2		7.15		
11/14/2017	7.09		6.91		7.14		7.13		
12/29/2017					7.02				
5/21/2018	7.04		6.9		7.08		7.04		
6/26/2018			6.99						
11/12/2018	7.19		7.15		7.27		7.18		
1/10/2019	7.36						7.42		
3/14/2019	7.27						7.24		
5/20/2019	7.05		6.92		7.43		7.21		
7/11/2019	7.46		7.33		7.29		7.63		
8/20/2019	6.99		6.85		7.07		6.99		
11/4/2019		6.78		6.77		6.87		6.77	
1/15/2020		7.18 1st Verificat	ion	7.02 Extra Sampl	e	7.26 1st Verificat	tion	7.15 1	st Verification

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Prediction Limit Intrawell Parametric

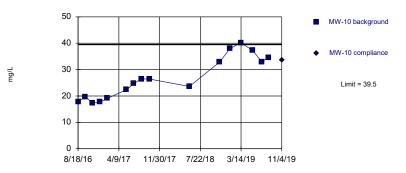
Background Data Summary: Mean=7.185, Std. Dev.=0.1795, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: pH Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan irr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Within Limit

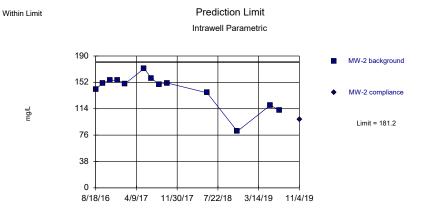
Prediction Limit Intrawell Parametric



Limit = 39.1

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric


Background Data Summary: Mean=26.95, Std. Dev.=7.937, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Background Data Summary: Mean=32.62, Std. Dev.=3.775, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8898, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH, Sulfate Analysis Run 2/25/2020 10:03 AM View: CCR LF III

MW-8 MW-8 MW-9 MW-9 MW-1 MW-10 MW-10											
8/18/2016	7.1		7.02		32.4		17.8				
9/29/2016	7.32		7.28		35.3		19.7				
11/9/2016	8.24		6.99		33.2		17.4				
12/21/2016	7.1		7.02		36.2		17.7				
2/3/2017	7.13		7.05		36.9		19.1				
5/24/2017	7.66		7.61		27.4		22.4				
7/5/2017	7.44		7.37		34.2		24.7				
8/17/2017	7.27		7.13		35.2		26.5				
10/5/2017	7.25		7.35		34.5		26.4				
11/14/2017	7.24		7.19								
5/21/2018	7.17		7.05		32.6		23.6				
11/12/2018	7.15		7.21		24.6		32.9				
1/10/2019	7.57						38				
3/14/2019	7.38						40.1				
5/20/2019	7.11		7.13		28.9		37.3				
7/11/2019							33				
8/20/2019							34.6				
11/4/2019		7.07		6.96		22.3		33.6			
1/15/2020		7.31 1st Ve	erification	7.24 Extra	Sample						

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=141, Std. Dev.=23.93, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

mg/L

Prediction Limit Intrawell Parametric

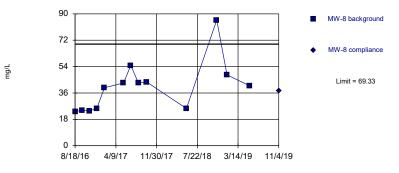
Background Data Summary: Mean=30.21, Std. Dev.=5.456, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

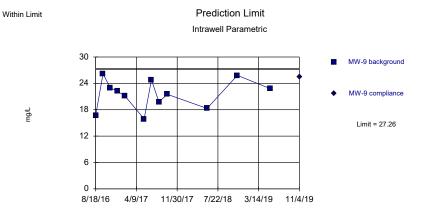
Within Limit

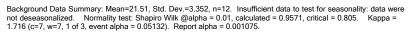

Prediction Limit Intrawell Parametric

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=40.07, Std. Dev.=17.39, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8273, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Background Data Summary (based on square root transformation): Mean=8.273, Std. Dev.=3.445, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8729, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: Sulfate Analysis Run 2/25/2020 9:44 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 2/25/2020 10:03 AM View: CCR LF III

	1	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8
	8/18/2016	142		30.2		70.2		23.3	
	9/29/2016	151		33.5		70.6		24.2	
	11/9/2016	155		31.4		62.6		23.8	
	12/21/2016	155		28.6		50		25.5	
	2/3/2017	150		28.5		41.9		39.6	
	5/24/2017	172		32.7		16.2		42.8	
	7/5/2017	158		37.2		19.5		54.8	
	8/17/2017	149		37.6		34.1		43	
	10/5/2017	151		34.5		24.3		43.4	
	5/21/2018	137		30.9		23.8		25.4	
	11/12/2018	81.5		27.3		149		85.8	
	1/10/2019					159		48.4	
	3/14/2019					33.9			
	5/20/2019	119		20.2		166		40.9	
	7/11/2019	112		20.1		186			
	8/20/2019					166			
	11/4/2019		98.8		20.2		170		37.6

Sanitas™ v.9.6.25 Sanitas software licensed to SCS Engineers. UG

Constituent: Sulfate Analysis Run 2/25/2020 9:44 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Constituent: Sulfate Analysis Run 2/25/2020 10:03 AM View: CCR LF III

	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
10/5/2017	21.5	
5/21/2018	18.3	
11/12/2018	25.8	
5/20/2019	22.8	
11/4/2019		25.4

latan Utility Waste LF Client: SCS Engineers Data: latan jrr Printed 2/25/2020, 10:03 AM

				Ū.	Data. latan j			20/2020, 10	7.00 AM		
<u>Constituent</u>	Well	<u>Upper Lim.</u>	Lower Lim.	Date	Observ.		<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-1	0.2	n/a	11/4/2019	0.1ND		12	100	n/a		()
Boron (mg/L)	MW-10	0.2	n/a	11/4/2019	0.1ND		12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	11/4/2019	0.1ND		12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	11/4/2019	0.1ND		12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	11/4/2019	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	11/4/2019	0.1ND		12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	11/4/2019	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	141.9	n/a	11/4/2019	132	No	13	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-10	154.2	n/a	11/4/2019	142	No	17	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-2	178.2	n/a	11/4/2019	168	No	14	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-6	156.3	n/a	11/4/2019	134	No	14	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-7	193.1	n/a	11/4/2019	185	No	17	0	sqrt(x)	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-8	158.5	n/a	11/4/2019	141	No	15	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122.1	n/a	11/4/2019	119	No	13	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.697	n/a	11/4/2019	6.61	No	14	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-10	23.19	n/a	11/4/2019	21.6	No	16	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-2	10.03	n/a	11/4/2019	8.77	No	14	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.945	n/a	11/4/2019	1.4	No	15	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-7	31.35	n/a	11/4/2019	29.1	No	17	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-8	8.265	n/a	11/4/2019	3.99	No	15	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.881	n/a	1/15/2020	0.5ND	No	13	30.77	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	511.5	n/a	11/4/2019	457	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	11/4/2019	534	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	720.7	n/a	11/4/2019	585	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	556.1	n/a	11/4/2019	437	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	761	n/a	11/4/2019	682	No	16	0	n/a	0.001026	NP Intra (normality)
Dissolved Solids (mg/l)	MW-8	548.8	n/a	11/4/2019	465	No	13	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	478.8	n/a	11/4/2019	392	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.3201	n/a	2/4/2020	0.329	Yes	13	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.7252	n/a	1/15/2020	0.637	No	12	0	x^2	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.3818	n/a	1/15/2020	0.374	No	15	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.37	n/a	11/4/2019	0.359	No	14	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.4235	n/a	11/4/2019	0.381	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.4612	n/a	11/4/2019	0.431	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.4678	n/a	1/15/2020	0.445	No	12	0	No	0.001075	Param Intra 1 of 3
pH (S.U.)	MW-1	7.54	6.74	2/4/2020	6.91	No	15	0	n/a	0.002625	NP Intra (normality)
pH (S.U.)	MW-10	7.438	6.876	1/15/2020	7.18	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-2	7.379	6.717	1/15/2020	7.02	No	16	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-6	7.586	6.899	1/15/2020	7.26	No	16	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-7	7.666	6.822	1/15/2020	7.15	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-8	8.24	7.1	1/15/2020	7.31	No	15	0	n/a	0.002625	NP Intra (normality)
pH (S.U.)	MW-9	7.487	6.883	1/15/2020	7.24	No	13	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/L)	MW-1	39.1	n/a	11/4/2019	22.3	No	12	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-10	39.5	n/a	11/4/2019	33.6	No	16	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-2	181.2	n/a	11/4/2019	98.8	No	13	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.39	n/a	11/4/2019	20.2		13	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-7	188.2	n/a	11/4/2019	170		16	0	sqrt(x)	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-8	69.33	n/a	11/4/2019	37.6		13	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-9	27.26	n/a	11/4/2019	25.4		12	0	No	0.001075	Param Intra 1 of 3

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 10, 2020

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
🔘 In	ndividual Ob	oservations							
\bigcirc M	lean of Eac	:h:	 Month 						
\bigcirc M	ledian of Ea	ach:	Seasor	n					
Setup	Seasons	ace Handling. Process Resa							

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
 Bla Fou Fou Fou Fou Tou Constant Constant	ick and Whi ur Plots Per Always Com Include Tick Use Constitu aw Border Au arge/Reduct arge/Reduct de Margins (e CAS# (No uncate File N dude Limit Li ow Deselect	te Output Page Ibine Data Pa & Marks on D uent Name fo round Text Re ce Fonts (Grap ce Fonts (Data (on reports with t Const. Name Vames to 20 nes when fou ted Data on T ted Data on a	iges ata Page r Graph Title eports and Da phs): a/Text Report chout explicit s	ta Pages 100% s): 100% etting) se ighter ✓	 ✓ Proi Rou Use Indi Sho This Zou Output Less No Mo	mpt to Overwrit und Limits to er-Set Scale icate Backgrou ow Exact Dates ck Plot Lines om Factor: 20 Decimal Precision mal Precision ire Precision	te/Append Si 2 Sig. Digits (und Data s 00% ~	ummary Ta (when not	ables set in data file)
Printer	Adobe PD	c .		⊻ S	tore Print Jobs in	maluple consu	ituenit mode	Store /	VIPrint Jobs
rnnier.	Adobe PDI								· Finiters

Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests	
Use Modified	Alpha (0.02							
✓ Test Residuals For Normality (Parametric test only) using Shapiro-Wilk/Francia ✓ at Alpha = 0.01 ✓									
Continue	Parametric if U	Jnable to Norr	nalize						
 Never Tran Use Specifi Use Best W 	r of Powers or No Transfo sform ic Transformati	omation							
Use Non-Parametric Test (Sen's Slope/Mann-Kendall) when Non-Detects Percent > 75									
Include 95.	Include 95. % Confidence Interval around Trend Line								
Automatically	Remove Outli	ers (Parametri	c test only)						
Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope / Mann-Kendall (the non-parametric alternative) is available as a report in its own right, under Analysis->Intrawell->Trend.									

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests	
Use Aito	chison's Ad onal Furthe	netric Test wh ljustment ∨ r Refinement:	Use	cts Percent > 5 etects Percent >	at Alpha = 0.01 50 15 then NDs % >	at Alpha = 0.01 Image: Transformation Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Distribution of the second structure Image: Dis				
Desea	asonalize (Ir Seasonality Seasonality	ntra- and Inter y Is Detected	Well) Or Insufficient		90 □ Plot Transformed Values IntraWell Other □ Stop if Background Trend Detected at Alpha = 0.05 ∨ ♥ Plot Background Data Override Standard Deviation:					
- Facility Statisti Downg - Sampli Comp - 1	r α tuents Anal gradient (Co ng Plan paring Ind of 1 C	Non-Parametr tions per Year yzed: ompliance) W ividual Obsen) 1 of 2 (ified California	ells: vations	2 7 7 0 1 of 4	 2-Tailed Show D Non-Parame Non-Parame O Highes Most R 	tically Remove I Test Mode Deselected Dat	a Lighter Highest Bac n 100% Non est Backgro vailable, or	d Outliers		

Data Output Trend Test Control Cht Prediction Lim Tolerance	Lim Conf/Tol Int ANOVA Welchs Other Tests							
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney								
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney								
Outlier Tests								
 EPA 1989 Outlier Screening (fixed alpha of 0.05) 	C EPA 1989 Outlier Screening (fixed alpha of 0.05)							
Dixon's at α= 0.05 v or if n > 22 v Rosner's at α= 0.01 v Use EPA Screening to establish Suspected Outliers								
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use	Ladder of Powers to achieve Best W Stat							
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1	Test For Normality using Shapiro-Wilk/Francia \checkmark at Alpha = 0.1 \checkmark							
Stop if Non-Normal	Stop if Non-Normal							
O Continue with Parametric Test if Non-Normal	O Continue with Parametric Test if Non-Normal							
O Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers to achieve Best W Stat							
No Outlier If Less Than 3.0 Times Median								
Apply Rules found in Ohio Guidance Document 0715								
Combine Background Wells on the Outlier Report								
Piper, Stiff Diagram								
Combine Wells	✓ Label Constituents							
Combine Dates	✓ Label Axes							
Use Default Constituent Names	Note Cation-Anion Balance (Piper only)							
Use Constituent Definition File Edit								

ATTACHMENT 2-2

Spring 2020 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

September 28, 2020

To: latan Generating Station 20250 State Route 45 N Platte County, Missouri Evergy Metro, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2020 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 20, 2020. Review and validation of the results from the May 2020 Detection Monitoring Event was completed on June 29, 2020, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 13, 2020 and August 25, 2020.

The completed statistical evaluation identified one Appendix III constituent above the prediction limit established for monitoring well MW-10.

Constituent/Monitoring Well	*UPL	Observation May 20, 2020	1st Verification July 13, 2020	2nd Verification August 25, 2020	
Sulfate					
MW-10	39.5	43.1	47.7	47.9	

*UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified a SSI above the background prediction limit for sulfate in monitoring well MW-10.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas[™] Output:

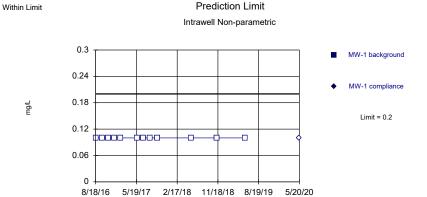
Statistical evaluation output from Sanitas[™] for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the

Iatan Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2020 Page 2 of 2

sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.


Revision Number	Revision Date	Attachment Revised	Summary of Revisions

latan Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2020

ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

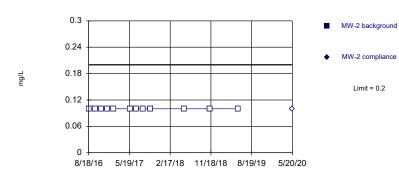
Intrawell Non-parametric 0.3 MW-10 background 0.24 MW-10 compliance 0.18 mg/L Limit = 0.20.12 10000-000--0 -0 0.06 0 8/18/16 5/19/17 2/17/18 11/18/18 8/19/19 5/20/20

Prediction Limit

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

0.06

Hollow symbols indicate censored values.


Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

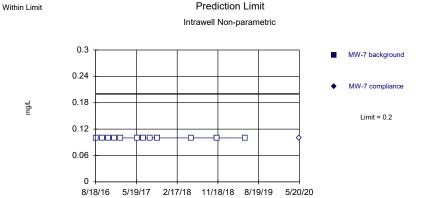
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Prediction Limit Within Limit Intrawell Non-parametric 0.3 MW-6 background 0.24 0.18 mg/L 0.12 10000-0000---0

> 0 8/18/16 5/19/17 2/17/18 11/18/18 8/19/19 5/20/20

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

MW-6 compliance

Limit = 0.2


Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Boron Analysis Run 9/9/2020 9:18 AM View: CCR LF III

					-	-		
	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6
8/18/2016	<0.2		<0.2		<0.2		<0.2	
9/29/2016	<0.2		<0.2		<0.2		<0.2	
11/9/2016	<0.2		<0.2		<0.2		<0.2	
12/21/2016	<0.2		<0.2		<0.2		<0.2	
2/3/2017	<0.2		<0.2		<0.2		<0.2	
5/24/2017	<0.2		<0.2		<0.2		<0.2	
7/5/2017	<0.2		<0.2		<0.2		<0.2	
8/17/2017	<0.2		<0.2		<0.2		<0.2	
10/5/2017	<0.2		<0.2		<0.2		<0.2	
5/21/2018	<0.2		<0.2		<0.2		<0.2	
11/12/2018	<0.2		<0.2		<0.2		<0.2	
5/20/2019	<0.2		<0.2		<0.2		<0.2	
5/20/2020		<0.2		<0.2		<0.2		<0.2

Sanitas $^{\mbox{\tiny W}}$ v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

 0.3
 Intrawell Non-parametric

 0.24
 MW-8 background

 0.24
 MW-8 compliance

 0.12
 Intravell Non-parametric

 0.13
 Intravell Non-parametric

 0.14
 Intravell Non-parametric

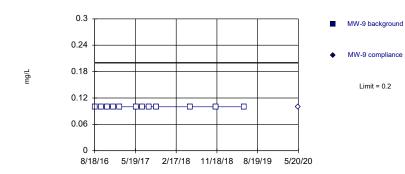
 0.15
 Intravell Non-parametric

 0.16
 Intravell Non-parametric

 0.17
 Intravell Non-parametric

 0.18
 Intravell Non-parametric

 0.19
 Intravell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

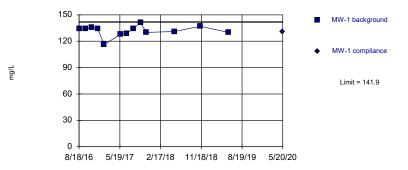
Constituent: Boron Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas¹⁹ v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

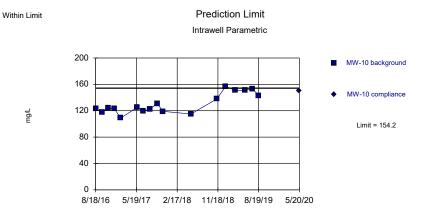

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Hollow symbols indicate censored values.

Within Limit

Within Limit

Prediction Limit

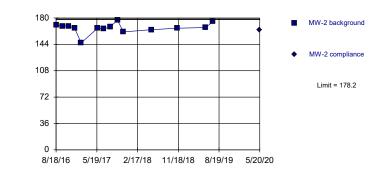


Background Data Summary: Mean=131.8, Std. Dev.=5.97, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8766, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Boron, Calcium Analysis Run 9/9/2020 9:18 AM View: CCR LF III

	MW-7	MW-7	MW-8	MW-8	MW-9	MW-9	MW-1	MW-1		
8/18/2016	<0.2		<0.2		<0.2		134			
9/29/2016	<0.2		<0.2		<0.2		134			
11/9/2016	<0.2		<0.2		<0.2		136			
12/21/2016	<0.2		<0.2		<0.2		134			
2/3/2017	<0.2		<0.2		<0.2		116			
5/24/2017	<0.2		<0.2		<0.2		128			
7/5/2017	<0.2		<0.2		<0.2		129			
8/17/2017	<0.2		<0.2		<0.2		134			
10/5/2017	<0.2		<0.2		<0.2		141			
11/14/2017							130			
5/21/2018	<0.2		<0.2		<0.2		131			
11/12/2018	<0.2		<0.2		<0.2		137			
5/20/2019	<0.2		<0.2		<0.2		130			
5/20/2020		<0.2		<0.2		<0.2		131		

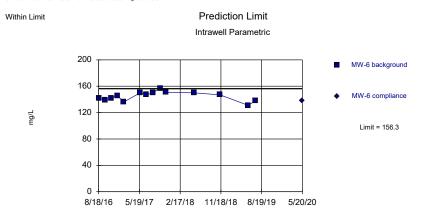
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=130.7, Std. Dev.=15.04, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8963, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

mg/L

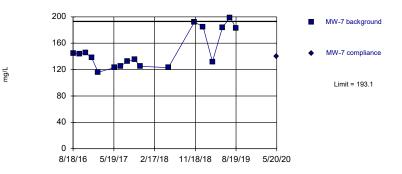

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=166.4, Std. Dev.=7.175, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8366, critical = 0.825. Kappa = 1.648 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Calcium Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Calcium Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

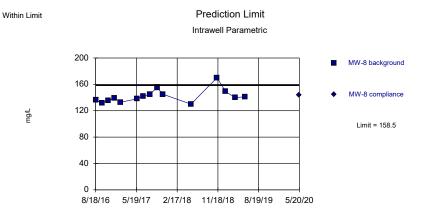
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=144.7, Std. Dev.=7.032, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9678, critical = 0.8525. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric



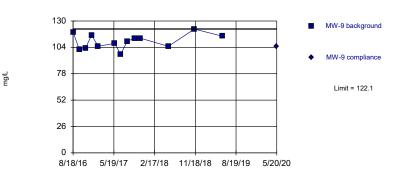
Background Data Summary (based on square root transformation): Mean=12.15, Std. Dev.=1.12, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8573, critical = 0.851. Kappa = 1.561 (c=7, wer7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/9/2020 9:19 AM View: CCR LF III

I	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7		
8/18/2016	123		170		142		145			
9/29/2016	118		169		139		144			
11/9/2016	124		169		142		146			
12/21/2016	123		166		146		138			
2/3/2017	109		146		136		116			
5/24/2017	125		166		150		123			
7/5/2017	120		165		147		125			
8/17/2017	122		168		150		133			
10/5/2017	131		177		157		135			
11/14/2017	119		161		151		125			
5/21/2018	115		164		150		123			
11/12/2018	138		166		147		192			
1/10/2019	157						185			
3/14/2019	151						132			
5/20/2019	151		167		131		184			
7/11/2019	153		175		138		199			
8/20/2019	143						183			
5/20/2020		150		164		138		140		

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=142, Std. Dev.=10.21, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8744, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=109.9, Std. Dev.=7.272, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9797, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

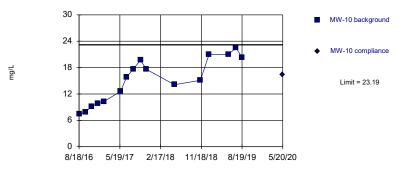
Constituent: Calcium Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Calcium Analysis Run 9/9/2020 9:14 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

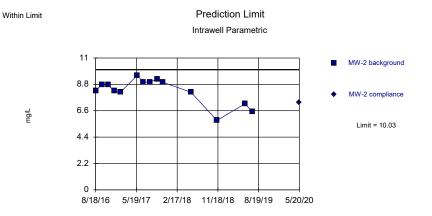


MW-1 compliance

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=15.12, Std. Dev.=5.1, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

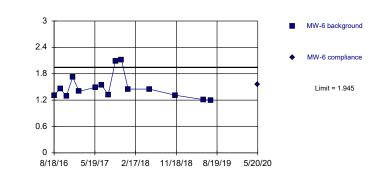

Background Data Summary: Mean=5.966, Std. Dev.=0.4435, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9436, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Calcium, Chloride Analysis Run 9/9/2020 9:19 AM View: CCR LF III

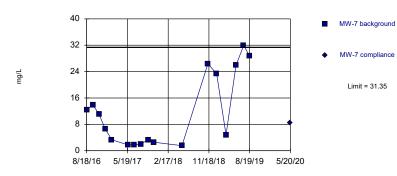
MW-8 MW-8 MW-9 MW-9 MW-1 MW-10 MW-10											
8/18/2016	136		119		5.93		7.47				
9/29/2016	132		102		6.07		7.83				
11/9/2016	135		103		5.95		9.15				
12/21/2016	139		116		5.97		9.84				
2/3/2017	133		105		6		10.3				
5/24/2017	138		108		5.61		12.6				
7/5/2017	142		97.2		5.78		15.9				
8/17/2017	145		110		6.13		17.6				
10/5/2017	155		113		6.75		19.7				
11/14/2017	145		113		6.73		17.6				
12/29/2017					6.27						
5/21/2018	130		105		5.63		14.1				
11/12/2018	170		122		5.04		15.1				
1/10/2019	149						21				
3/14/2019	140										
5/20/2019	141		115		5.66		21				
7/11/2019							22.5				
8/20/2019							20.3				
5/20/2020		144		105		5.6		16.4			

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=8.253, Std. Dev.=1.076, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8719, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

mg/L

Prediction Limit

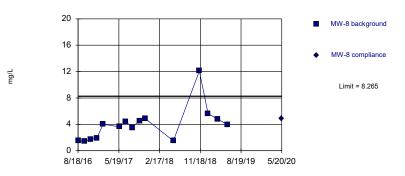

Background Data Summary (based on square root transformation): Mean=1.216, Std. Dev.=0.1104, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8387, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Chloride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

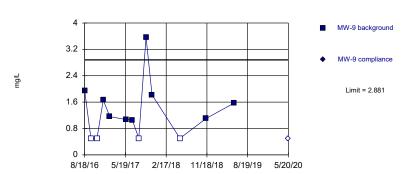


Background Data Summary (based on square root transformation): Mean=3.057, Std. Dev.=1.629, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8683, critical = 0.851. Kappa = 1.551 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

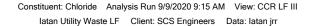
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

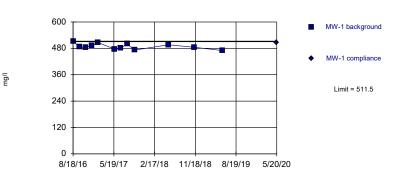
Background Data Summary (based on square root transformation): Mean=1.907, Std. Dev.=0.5992, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8695, critical = 0.835. Kappa = 1.615 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Constituent: Chloride Analysis Run 9/9/2020 9:19 AM View: CCR LF III

	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8	
8/18/2016	8.26		1.31		12.3		1.5		
9/29/2016	8.79		1.46		13.9		1.42		
11/9/2016	8.76		1.29		11.1		1.76		
12/21/2016	8.24		1.72		6.64		1.89		
2/3/2017	8.17		1.4		3.32		4.02		
5/24/2017	9.54		1.49		1.76		3.63		
7/5/2017	8.99		1.54		1.81		4.44		
8/17/2017	8.98		1.32		2		3.53		
10/5/2017	9.23		2.09		3.32		4.55		
11/14/2017	8.97		2.12		2.58		4.86		
12/29/2017			1.45						
5/21/2018	8.14		1.45		1.54		1.5		
11/12/2018	5.79		1.31		26.4		12.1		
1/10/2019					23.3		5.63		
3/14/2019					4.77		4.79		
5/20/2019	7.18		1.21		26		3.98		
7/11/2019	6.5		1.2		31.9				
8/20/2019					28.7				
5/20/2020		7.28		1.55		8.49		4.89	

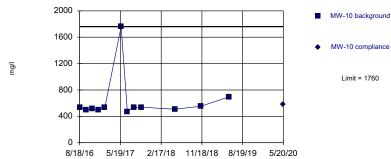

Sanitas^w v.9.6.27 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values. Within Limit

Background Data Summary (after Aitchison's Adjustment): Mean=1.151, Std. Dev.=1.028, n=13, 30.77% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.



Intrawell Parametric

Background Data Summary: Mean=488.6, Std. Dev.=13.34, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9663, critical = 0.805. Kappa = 1.716 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

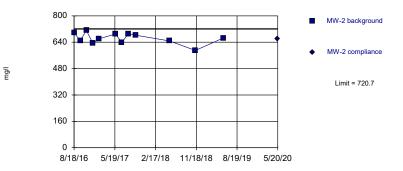

> Constituent: Dissolved Solids Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

deseasonalized.

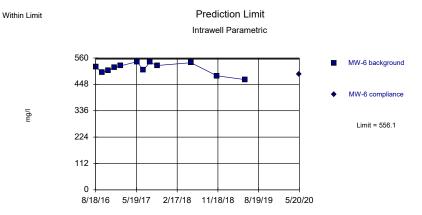
Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

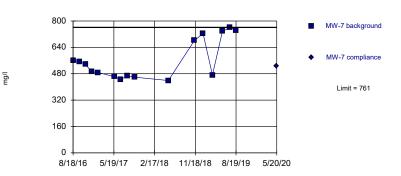
Prediction Limit


Background Data Summary: Mean=663.3, Std. Dev.=33.46, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9501, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Chloride, Dissolved Solids Analysis Run 9/9/2020 9:19 AM View: CCR LF III

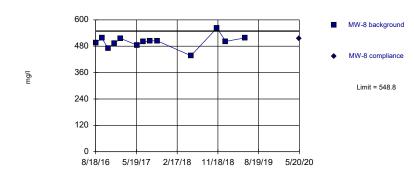
					-	-		
I	MW-9	MW-9	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2
8/18/2016	1.95		513		532		696	
9/29/2016	<1		486		502		651	
11/9/2016	<1		484		516		711	
12/21/2016	1.66		493		497		636	
2/3/2017	1.16		506		531		661	
5/24/2017	1.07		477		1760		690	
7/5/2017	1.06		481		474		638	
8/17/2017	<1		500		539		690	
10/5/2017	3.57		472		539		683	
11/14/2017	1.82							
5/21/2018	<1		496		509		648	
11/12/2018	1.1		485		554		590	
5/20/2019	1.57		470		697		666	
5/20/2020		<1		507		585		659


Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=515.5, Std. Dev.=23.66, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Non-parametric

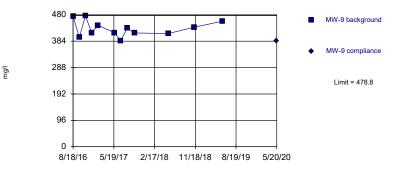

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.002051. Individual comparison alpha = 0.001026 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Dissolved Solids Analysis Run 9/9/2020 9:15 AM View: CCR LF III Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr Constituent: Dissolved Solids Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

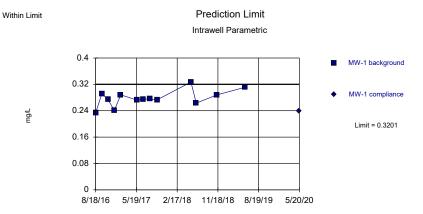
Prediction Limit Intrawell Parametric



Background Data Summary: Mean=500.3, Std. Dev.=28.83, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9522, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

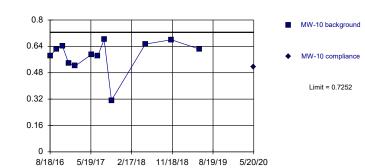
Prediction Limit



Background Data Summary: Mean=429.7, Std. Dev.=28.65, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 9/9/2020 9:19 AM View: CCR LF III

	1	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8	MW-9	MW-9
	8/18/2016	522		560		494		475	
	9/29/2016	498		554		517		398	
	11/9/2016	506		538		471		476	
	12/21/2016	519		492		493		415	
	2/3/2017	527		487		515		442	
	5/24/2017	544		462		485		415	
	7/5/2017	508		445		500		386	
	8/17/2017	542		466		504		431	
	10/5/2017	528		459		505		414	
	5/21/2018	540		439		437		412	
	11/12/2018	484		681		563		435	
	1/10/2019			724		502			
	3/14/2019			472					
	5/20/2019	468		737		518		457	
	7/11/2019			761					
	8/20/2019			743					
	5/20/2020		491		525		516		385

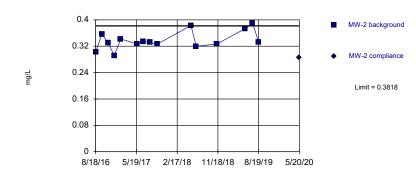

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.278, Std. Dev.=0.02501, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

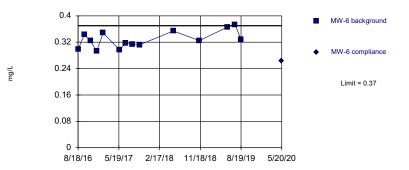

Background Data Summary (based on square transformation): Mean=0.3525, Std. Dev.=0.1011, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit


Background Data Summary: Mean=0.3379, Std. Dev.=0.02721, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.835. Kappa = 1.615 (=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

mg/L

Prediction Limit Intrawell Parametric



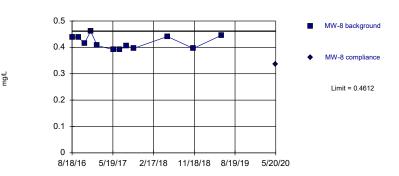
Background Data Summary: Mean=0.3279, Std. Dev.=0.02554, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9487, critical = 0.825. Kappa = 1.648 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/9/2020 9:19 AM View: CCR LF III

			10	atan otinty waste Er	Client. 000 Eng	ineers Data. latan	.)		
	MW-1	MW-1	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6	
8/18/2016	0.234		0.584		0.303		0.298		
9/29/2016	0.292		0.622		0.356		0.343		
11/9/2016	0.274		0.642		0.331		0.324		
12/21/2016	0.241		0.538		0.292		0.293		
2/3/2017	0.288		0.521		0.342		0.348		
5/24/2017	0.272		0.591		0.327		0.297		
7/5/2017	0.275		0.582		0.334		0.317		
8/17/2017	0.276		0.682		0.332		0.313		
10/5/2017	0.273		0.312		0.326		0.312		
5/21/2018	0.327		0.654		0.383		0.354		
6/26/2018	0.263				0.32				
11/12/2018	0.288		0.68		0.327		0.325		
5/20/2019	0.311		0.623		0.373		0.366		
7/11/2019					0.389		0.373		
8/20/2019					0.333		0.328		
5/20/2020		0.24		0.517		0.286		0.264	

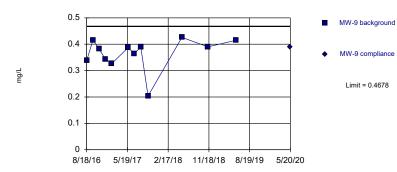
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.3603, Std. Dev.=0.03685, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.001075.


Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

Intrawell Parametric

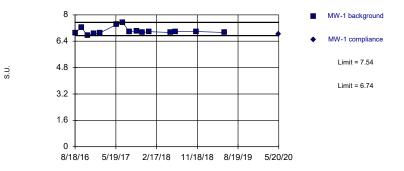

Background Data Summary: Mean=0.4189, Std. Dev.=0.02467, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8902, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Fluoride Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

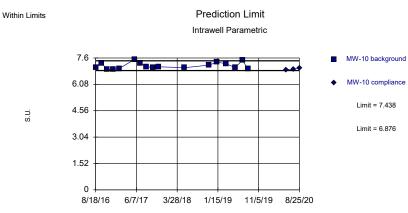
Prediction Limit



Background Data Summary: Mean=0.3653, Std. Dev.=0.05978, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8122, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Non-parametric

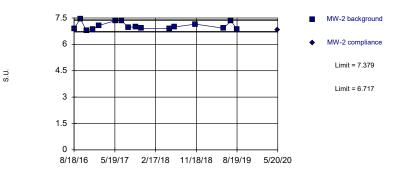


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Fluoride, pH Analysis Run 9/9/2020 9:19 AM View: CCR LF III

							Data: latan jn		
	1	MW-7	I MW-7	MW-8	I MW-8	MW-9	I MW-9	MW-1	MW-1
8/	18/2016	0.366		0.438		0.338		6.89	
9/	29/2016	0.395		0.439		0.415		7.24	
11	/9/2016	0.333		0.415		0.383		6.74	
12	2/21/2016	0.284		0.461		0.344		6.86	
2/	3/2017	0.337		0.407		0.327		6.91	
5/	24/2017	0.391		0.391		0.387		7.41	
7/	5/2017	0.378		0.391		0.364		7.54	
8/	17/2017	0.326		0.406		0.39		6.98	
10)/5/2017	0.341		0.396		0.204		7.03	
11	/14/2017							6.93	
12	2/29/2017							6.98	
5/	21/2018	0.414		0.441		0.426		6.93	
6/	26/2018							6.99	
11	/12/2018	0.369		0.396		0.39		6.99	
5/	20/2019	0.389		0.446		0.415		6.93	
5/	20/2020		0.291		0.336		0.389		6.81

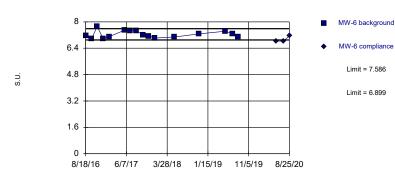
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=7.157, Std. Dev.=0.18, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.0906, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Sanitas[™] v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit

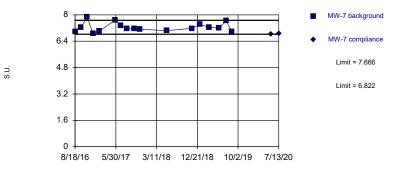

Background Data Summary: Mean=7.048, Std. Dev.=0.2096, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8784, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

> Constituent: pH Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan irr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limits

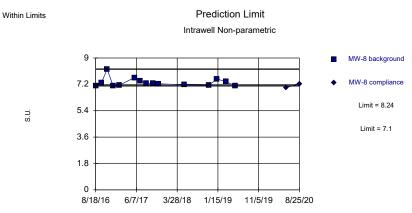
Prediction Limit Intrawell Parametric



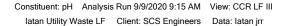
Background Data Summary: Mean=7.243, Std. Dev.=0.2171, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9298, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

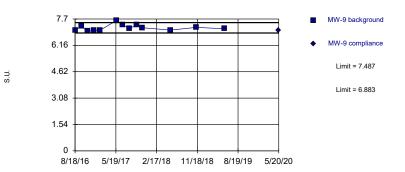


Background Data Summary: Mean=7.244, Std. Dev.=0.2706, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @aipha = 0.01, calculated = 0.916, critical = 0.851. Kappa = 1.561 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.


Constituent: pH Analysis Run 9/9/2020 9:19 AM View: CCR LF III

latan Utility Waste LF Client: SCS Engineers Data: latan jrr										
	MW-10	MW-10	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7		
8/18/2016	7.06		6.9		7.18		6.97			
9/29/2016	7.31		7.45		6.97		7.25			
11/9/2016	6.93		6.79		7.72		7.87			
12/21/2016	6.96		6.85		6.99		6.88			
2/3/2017	6.99		7.08		7.1		7.01			
5/24/2017	7.51		7.35		7.49		7.67			
7/5/2017	7.31		7.33		7.46		7.36			
8/17/2017	7.1		6.97		7.47		7.15			
10/5/2017	7.05		7		7.2		7.15			
11/14/2017	7.09		6.91		7.14		7.13			
12/29/2017					7.02					
5/21/2018	7.04		6.9		7.08		7.04			
6/26/2018			6.99							
11/12/2018	7.19		7.15		7.27		7.18			
1/10/2019	7.36						7.42			
3/14/2019	7.27						7.24			
5/20/2019	7.05		6.92		7.43		7.21			
7/11/2019	7.46		7.33		7.29		7.63			
8/20/2019	6.99		6.85		7.07		6.99			
5/20/2020		6.92		6.81		6.83		6.82		
7/13/2020		6.96 Extra Sample	e			6.84 1st Verificatio		6.87 1st Verification Sample		
8/25/2020		7 Extra Sample	1			7.15 2nd Verificat	ion Sample			

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 15 background values. Well-constituent pair annual alpha = 0.005248. Individual comparison alpha = 0.002625 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Within Limits

Prediction Limit Intrawell Parametric


Background Data Summary: Mean=7.185, Std. Dev.=0.1795, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: pH Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Within Limit

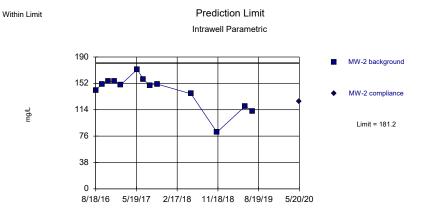

Prediction Limit Intrawell Parametric

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=26.95, Std. Dev.=7.937, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

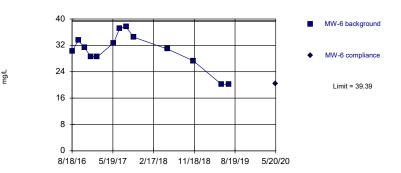
Background Data Summary: Mean=32.62, Std. Dev.=3.775, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8898, critical = 0.805. Kappa = 1.716 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: Sulfate Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

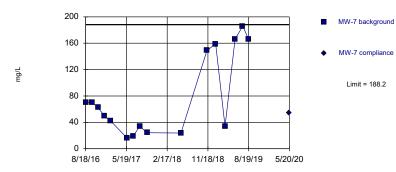
Constituent: Sulfate Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: pH, Sulfate Analysis Run 9/9/2020 9:19 AM View: CCR LF III

MW-8 MW-9 MW-9 MW-1 MW-10 MW-10												
8/18/2016	7.1		7.02		32.4		17.8					
9/29/2016	7.32		7.28		35.3		19.7					
11/9/2016	8.24		6.99		33.2		17.4					
12/21/2016	7.1		7.02		36.2		17.7					
2/3/2017	7.13		7.05		36.9		19.1					
5/24/2017	7.66		7.61		27.4		22.4					
7/5/2017	7.44		7.37		34.2		24.7					
8/17/2017	7.27		7.13		35.2		26.5					
10/5/2017	7.25		7.35		34.5		26.4					
11/14/2017	7.24		7.19									
5/21/2018	7.17		7.05		32.6		23.6					
11/12/2018	7.15		7.21		24.6		32.9					
1/10/2019	7.57						38					
3/14/2019	7.38						40.1					
5/20/2019	7.11		7.13		28.9		37.3					
7/11/2019							33					
8/20/2019							34.6					
5/20/2020		6.98		7.02		27.6		43.1				
7/13/2020								47.7	1st Verification Sample			
8/25/2020		7.23 1st Verificat	ion Sample					47.9	2nd Verification Sample			


Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

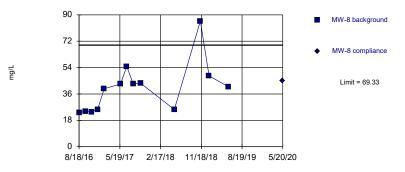
Background Data Summary: Mean=141, Std. Dev.=23.93, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Background Data Summary: Mean=30.21, Std. Dev.=5.456, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.814. Kappa = 1.682 (c=7, we7, 1 of 3, event alpha = 0.05132). Report alpha = 0.00175.

Constituent: Sulfate Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr Constituent: Sulfate Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

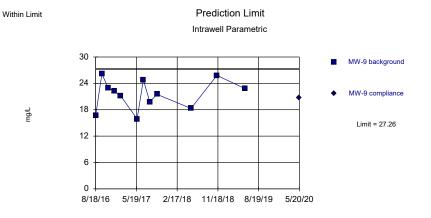
Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

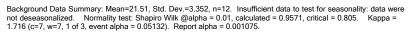
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=8.273, Std. Dev.=3.445, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8729, critical = 0.844. Kappa = 1.581 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075. Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Prediction Limit




Background Data Summary: Mean=40.07, Std. Dev.=17.39, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8273, critical = 0.814. Kappa = 1.682 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 9/9/2020 9:19 AM View: CCR LF III

1	MW-2	MW-2	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8		
8/18/2016	142		30.2		70.2		23.3			
9/29/2016	151		33.5		70.6		24.2			
11/9/2016	155		31.4		62.6		23.8			
12/21/2016	155		28.6		50		25.5			
2/3/2017	150		28.5		41.9		39.6			
5/24/2017	172		32.7		16.2		42.8			
7/5/2017	158		37.2		19.5		54.8			
8/17/2017	149		37.6		34.1		43			
10/5/2017	151		34.5		24.3		43.4			
5/21/2018	137		30.9		23.8		25.4			
11/12/2018	81.5		27.3		149		85.8			
1/10/2019					159		48.4			
3/14/2019					33.9					
5/20/2019	119		20.2		166		40.9			
7/11/2019	112		20.1		186					
8/20/2019					166					
5/20/2020		126		20.4		54.4		45		

Sanitas™ v.9.6.27 Sanitas software licensed to SCS Engineers. UG

Constituent: Sulfate Analysis Run 9/9/2020 9:15 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Constituent: Sulfate Analysis Run 9/9/2020 9:19 AM View: CCR LF III

	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
10/5/2017	21.5	
5/21/2018	18.3	
11/12/2018	25.8	
5/20/2019	22.8	
5/20/2020		20.7

latan Utility Waste LF Client: SCS Engineers Data: latan jrr Printed 9/9/2020, 9:19 AM

				_				3/3/2020, 9			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>		Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-1	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-10	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	5/20/2020	0.1ND	No	12	100	n/a		NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	141.9	n/a	5/20/2020	131	No	13	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-10	154.2	n/a	5/20/2020	150	No	17	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-2	178.2	n/a	5/20/2020	164	No	14	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-6	156.3	n/a	5/20/2020	138	No	14	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-7	193.1	n/a	5/20/2020	140	No	17	0	sqrt(x)	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-8	158.5	n/a	5/20/2020	144	No	15	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122.1	n/a	5/20/2020	105	No	13	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.697	n/a	5/20/2020	5.6	No	14	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-10	23.19	n/a	5/20/2020	16.4	No	16	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-2	10.03	n/a	5/20/2020	7.28	No	14	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.945	n/a	5/20/2020	1.55	No	15	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-7	31.35	n/a	5/20/2020	8.49	No	17	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-8	8.265	n/a	5/20/2020	4.89	No	15	0	sqrt(x)	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.881	n/a	5/20/2020	0.5ND	No	13	30.77	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	511.5	n/a	5/20/2020	507	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	5/20/2020	585	No	12	0	n/a	0.002173	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	720.7	n/a	5/20/2020	659	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	556.1	n/a	5/20/2020	491	No	12	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	761	n/a	5/20/2020	525	No	16	0	n/a	0.001026	NP Intra (normality)
Dissolved Solids (mg/l)	MW-8	548.8	n/a	5/20/2020	516	No	13	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	478.8	n/a	5/20/2020	385	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.3201	n/a	5/20/2020	0.24	No	13	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.7252	n/a	5/20/2020	0.517	No	12	0	x^2	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.3818	n/a	5/20/2020	0.286	No	15	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.37	n/a	5/20/2020	0.264	No	14	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.4235	n/a	5/20/2020	0.291	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.4612	n/a	5/20/2020	0.336	No	12	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.4678	n/a	5/20/2020	0.389	No	12	0	No	0.001075	Param Intra 1 of 3
pH (S.U.)	MW-1	7.54	6.74	5/20/2020	6.81	No	15	0	n/a	0.002625	NP Intra (normality)
pH (S.U.)	MW-10	7.438	6.876	8/25/2020	7	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-2	7.379	6.717	5/20/2020	6.81	No	16	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-6	7.586	6.899	8/25/2020	7.15	No	16	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-7	7.666	6.822	7/13/2020	6.87	No	17	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-8	8.24	7.1	8/25/2020	7.23	No	15	0	n/a	0.002625	NP Intra (normality)
pH (S.U.)	MW-9	7.487	6.883	5/20/2020	7.02	No	13	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/L)	MW-1	39.1	n/a	5/20/2020	27.6	No	12	0	No		Param Intra 1 of 3
Sulfate (mg/L)	MW-10	39.5	n/a	8/25/2020	47.9	Yes	16	0	No		Param Intra 1 of 3
Sulfate (mg/L)	MW-2	181.2	n/a	5/20/2020	126	No	13	0	No		Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.39	n/a	5/20/2020	20.4	No	13	0	No		Param Intra 1 of 3
Sulfate (mg/L)	MW-7	188.2	n/a	5/20/2020	54.4	No	16	0	sqrt(x)		Param Intra 1 of 3
Sulfate (mg/L)	MW-8	69.33	n/a	5/20/2020	45	No	13	0	No		Param Intra 1 of 3
Sulfate (mg/L)	MW-9	27.26	n/a n/a	5/20/2020	20.7	No	12	0	No		Param Intra 1 of 3
(•						-			

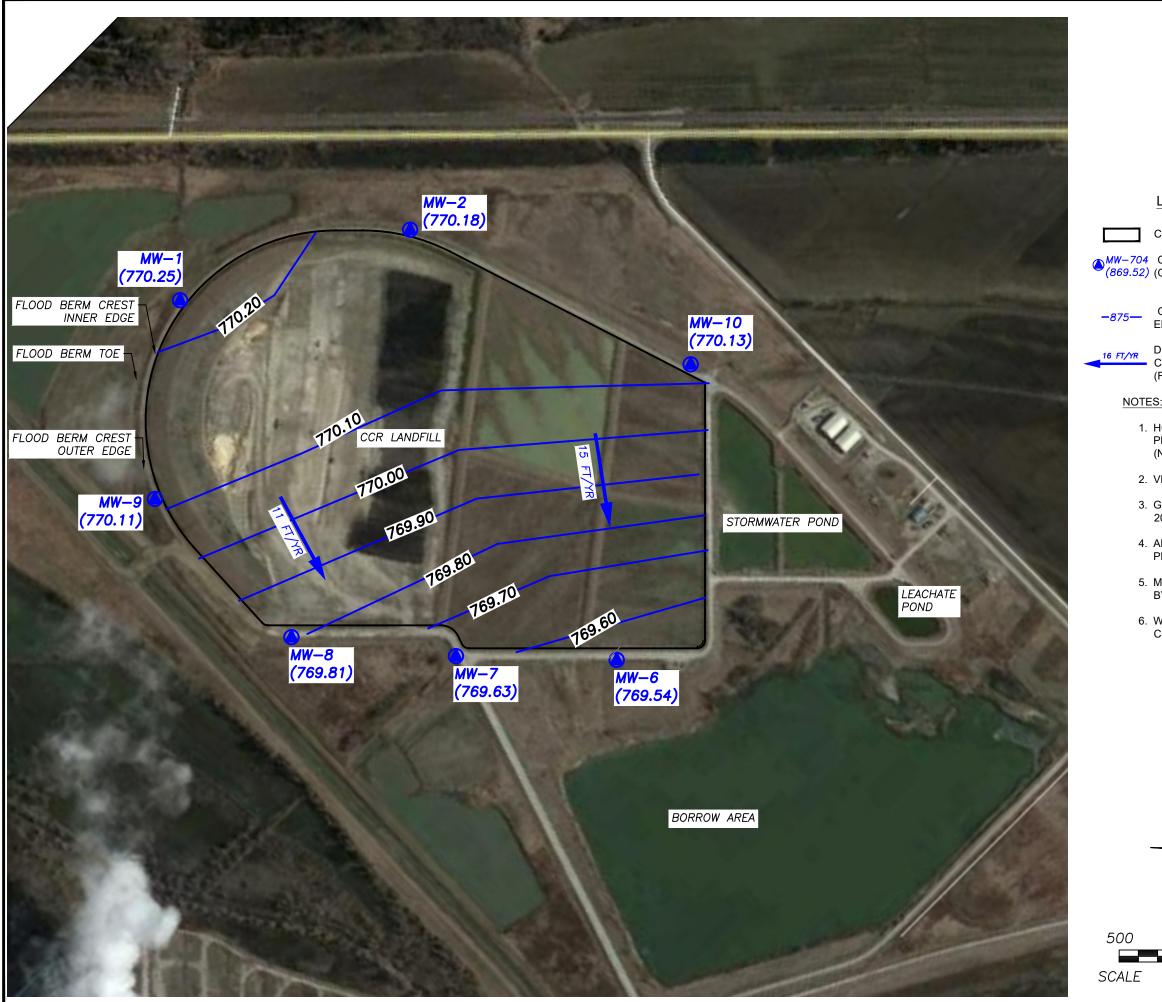
Iatan Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2020

ATTACHMENT 2

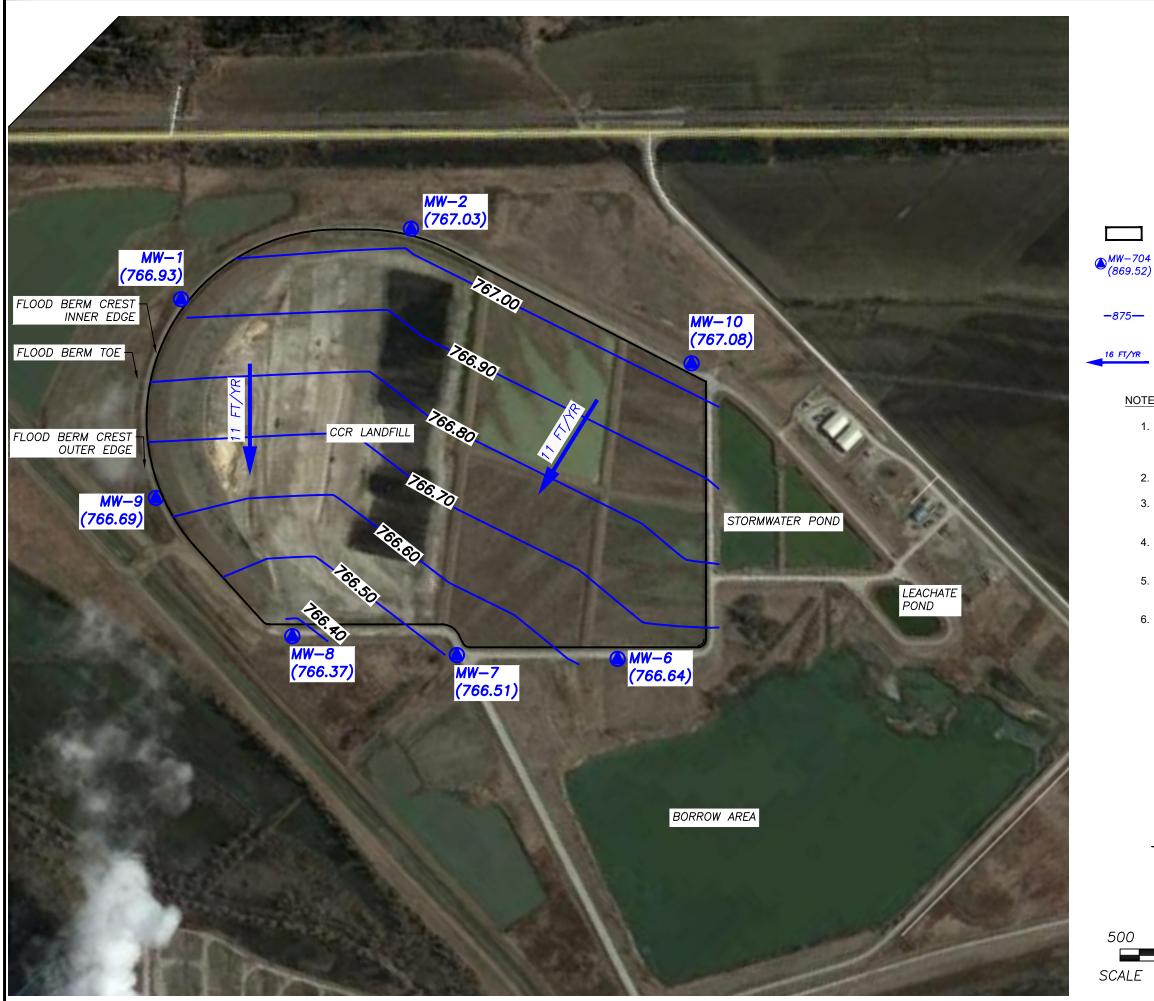
Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
🔘 In	ndividual Ob	oservations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	n					
Setup	Seasons	ace Handling. Process Resa							

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
 Bla Fou Fou Fou Fou Tou Constant Constant	ick and Whi ur Plots Per Always Com Include Tick Use Constitu aw Border Au arge/Reduct arge/Reduct de Margins (e CAS# (No uncate File N dude Limit Li ow Deselect	te Output Page Ibine Data Pa & Marks on D uent Name fo round Text Re ce Fonts (Grap ce Fonts (Data (on reports with t Const. Name Vames to 20 nes when fou ted Data on T ted Data on a	iges ata Page r Graph Title eports and Da phs): a/Text Report chout explicit s	ta Pages 100% s): 100% etting) se ighter >	 ✓ Proi Rou Use Indi Sho This Zou Output Less No Mo	mpt to Overwrit und Limits to er-Set Scale icate Backgrou ow Exact Dates ck Plot Lines om Factor: 20 Decimal Precision mal Precision ire Precision	te/Append Si 2 Sig. Digits (und Data s 00% ~	ummary Ta (when not	ables set in data file)
Printer	Adobe PD	c .		⊻ S	tore Print Jobs in	maluple consu	ituenit mode	Store /	VIPrint Jobs
rnnier.	Adobe PDI								· Finiters


Data Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Use Modified	Alpha (0.02						
🗹 Test Residua	ls For Normality	y (Parametric	test only) using) Shapiro-Wilk/Fr	ancia 🗸 🗸	at Alpha	= 0.01	\sim
Continue	Parametric if U	Jnable to Norr	nalize					
 Never Tran Use Specifi Use Best W 	r of Powers 9 or No Transfo sform ic Transformati	omation						
Use Non-Parame	tric Test (Sen'	s Slope/Manr	-Kendall) when I	Non-Detects Perc	cent > 75			
Include 95.	% Confidence	e Interval arou	und Trend Line					
Automatically	Remove Outli	ers (Parametri	c test only)					
Note: there is no "/ Mann-Kendall (the								's Slope /

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
 Test for Normality using Shapiro-Wilk/Francia at Alpha = 0.01 Use Non-Parametric Test when Non-Detects Percent > 50 Natural Log or No Transformation Never Transform Use Specific Transformation:												
Desea	asonalize (Ir Seasonality Seasonality	ntra- and Inter y Is Detected	Well) Or Insufficient		IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation:							
- Facility Statisti Downg - Sampli Comp - 1	r α tuents Anal gradient (Co ng Plan paring Ind of 1 C	Non-Parametr tions per Year yzed: ompliance) W ividual Obsen) 1 of 2 (ified California	ells: vations	2 7 7 0 1 of 4	 ☐ 2-Tailed ✓ Show D Non-Parame Non-Parame O Highes ④ Most R 	tically Remove I Test Mode Deselected Dat	a Lighter Highest Bac n 100% Non est Backgro vailable, or	d Outliers				


Data Output Trend Test Control Cht Prediction Lim Tolerance	Lim Conf/Tol Int ANOVA Welchs Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney	
Use Modified Alpha 2-Tailed Test Mode	Combine Background Wells on Mann-Whitney
Outlier Tests	
 EPA 1989 Outlier Screening (fixed alpha of 0.05) 	
• Dixon's at $\alpha = 0.05 \lor$ or if n > 22 \lor Rosner's at $\alpha = 0.01 \lor$	Use EPA Screening to establish Suspected Outliers
O Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use	Ladder of Powers to achieve Best W Stat
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1	~
Stop if Non-Normal	
O Continue with Parametric Test if Non-Normal	
O Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use	Ladder of Powers to achieve Best W Stat
No Outlier If Less Than 3.0 Times Median	
Apply Rules found in Ohio Guidance Document 0715	
Combine Background Wells on the Outlier Report	
Piper, Stiff Diagram	
Combine Wells	✓ Label Constituents
Combine Dates	✓ Label Axes
Use Default Constituent Names	Note Cation-Anion Balance (Piper only)
Use Constituent Definition File Edit	

Jared Morrison December 16, 2022

ATTACHMENT 3 Groundwater Potentiometric Surface Maps

	CK. BY	ı	1	1	ı	•	1
LEGEND CCR UNIT BOUNDARY (APPROXIMATE LIMITS) CCR GROUNDWATER MONITORING SYSTEM WELLS (GROUNDWATER ELEVATION) GROUNDWATER POTENTIOMETRIC SURFACE ELEVATIONS DIRECTION OF GROUNDWATER FLOW AND CALCULATED GROUNDWATER FLOW RATE	REV DATE	POLENTIOMETRIC SURFACE MAP			2020 GROUNDWATER MONITORING AND 🔶 -	CORRECTIVE ACTION REPORT ADDENDLIM 🖂 🗧 📔 👘	
(FEET/YEAR)			エンン	PROJECT TITLE	GROUN	RECTIVE.	. –
HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM WEST ZONE (NAD 83)	SHEET TITLE			PROJEC	2020	CORF	:: ; ; ;
VERTICAL DATUM: NAVD 88							
GOOGLE EARTH IMAGE DATED FEBRUARY 20, 2020		<u> </u>		ALION			
APPROXIMATE BOUNDARY LOCATION PROVIDED BY BURNS & MCDONNELL				יוואפ אוי	ISSOURI		
MONITORING WELL LOCATIONS PROVIDED BY SHAFFER, KLINE, & WARREN WATER LEVEL MEASUREMENTS		EVERGV MET		ATAN GENERALING STATION	IATAN, MIS		
COMPLETED ON MAY 20, 2020	CLIENT						
Hunt NORTH 0 500 1000		FIL cor m	DNR F16	PH. (913) 681-0030 FAX. (913) 681-00	Y20 VI	2/21310/.20 DSN. BY: TO.W. CHK. BY: IDD	
FEET	FIGUR	REN	10.	2			

	I I BK.	
LEGEND CCR UNIT BOUNDARY (APPROXIMATE LIMITS) CCR GROUNDWATER MONITORING SYSTEM WELLS (GROUNDWATER ELEVATION) GROUNDWATER POTENTIOMETRIC SURFACE ELEVATIONS DIRECTION OF GROUNDWATER FLOW AND CALCULATED GROUNDWATER FLOW RATE (FEET/YEAR) ES: HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM WEST ZONE	SHEET IITLE POTENTIOMETRIC SURFACE MAP CCR LANDFILL (NOVEMBER 2020) CCR LANDFILL (NOVEMBER 2020)	PROJECT TILE 2020 GROUNDWATER MONITORING AND Δ - CORRECTIVE ACTION REPORT ADDENDUM Δ -
(NAD 83) VERTICAL DATUM: NAVD 88		
GOOGLE EARTH IMAGE DATED FEBRUARY 20, 2020		NOL
APPROXIMATE BOUNDARY LOCATION PROVIDED BY BURNS & MCDONNELL	RO, INC.	IATAN GENERATING STATION IATAN, MISSOURI
. MONITORING WELL LOCATIONS PROVIDED BY SHAFFER, KLINE, & WARREN	EVERGY MET	GENERATING ST IATAN, MISSOURI
. WATER LEVEL MEASUREMENTS COMPLETED ON NOVEMBER 9, 2020	EVERG	IATAN G IA
	CLIENT	
PLANT NORTH 0 500 1000	CADD FILE:	fic 2 nov20 v3.0116 12/22
FEET	FIGURE NO	3