2019 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

Evergy Metro, Inc. (f/k/a Kansas City Power & Light Co.)

SCS ENGINEERS

27213167.19 | January 2020, Revised December 16, 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

2019 Groundwater Monitoring and Corrective Action Report

Revision Number	Revision Date	Revision Section	Summary of Revisions
1 Turnber		NIA	Ovidinal Danaut
U	January 2020	NA	Original Report.
1	December 16, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sect	ion		Paj	ge
CERT	IFICA	ΓΙΟNS		i
1			ON	
2	§ 25	7.90(e)	ANNUAL REPORT REQUIREMENTS	1
	2.1	§ 257.	.90(e)(1) Site Map	1
	2.2	§ 257.	.90(e)(2) Monitoring System Changes	1
	2.3	§ 257.	.90(e)(3) Summary of Sampling Events	2
	2.4	§ 257.	.90(e)(4) Monitoring Transition Narrative	2
	2.5	§ 257.	.90(e)(5) Other Requirements	2
		2.5.1	§ 257.90(e) Program Status	2
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency.	3
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	3
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequence	•
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	4
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	4
3	GENI	ERAL CO	DMMENTS	5

Appendices

Appendix A Figures

Figure 1: Site Map

Appendix B Tables

- Table 1: Appendix III Detection Monitoring Results
- Table 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstration

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2019).
- C.2. CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2019).

Addendum 1 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared for Evergy Metro, Inc. (f/k/a Kansas City Power & Light Company) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2019.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2019). Samples collected in 2019 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include Fall 2018 semiannual detection monitoring event verification data taken in 2019; Spring 2019 semiannual detection monitoring data; and the initial Fall 2019 semiannual detection monitoring data.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2019. Only detection monitoring was conducted in 2019.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2018 verification sampling and analyses per the certified statistical method,
- b. completion of the statistical evaluation of the Fall 2018 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2018 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2018 semiannual detection monitoring sampling and analysis event,

- e. completion of the Spring 2019 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2019 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. completion of a successful alternative source demonstration for the Spring 2019 semiannual detection monitoring sampling and analysis event, and
- h. initiation of the Fall 2019 semiannual detection monitoring sampling and analysis event.

Projection of Key Activities for the Upcoming Year (2020).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2019 detection monitoring sampling and analysis event. Semiannual Spring and Fall 2020 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2020 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as **Appendix C**:

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2019).
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2019).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

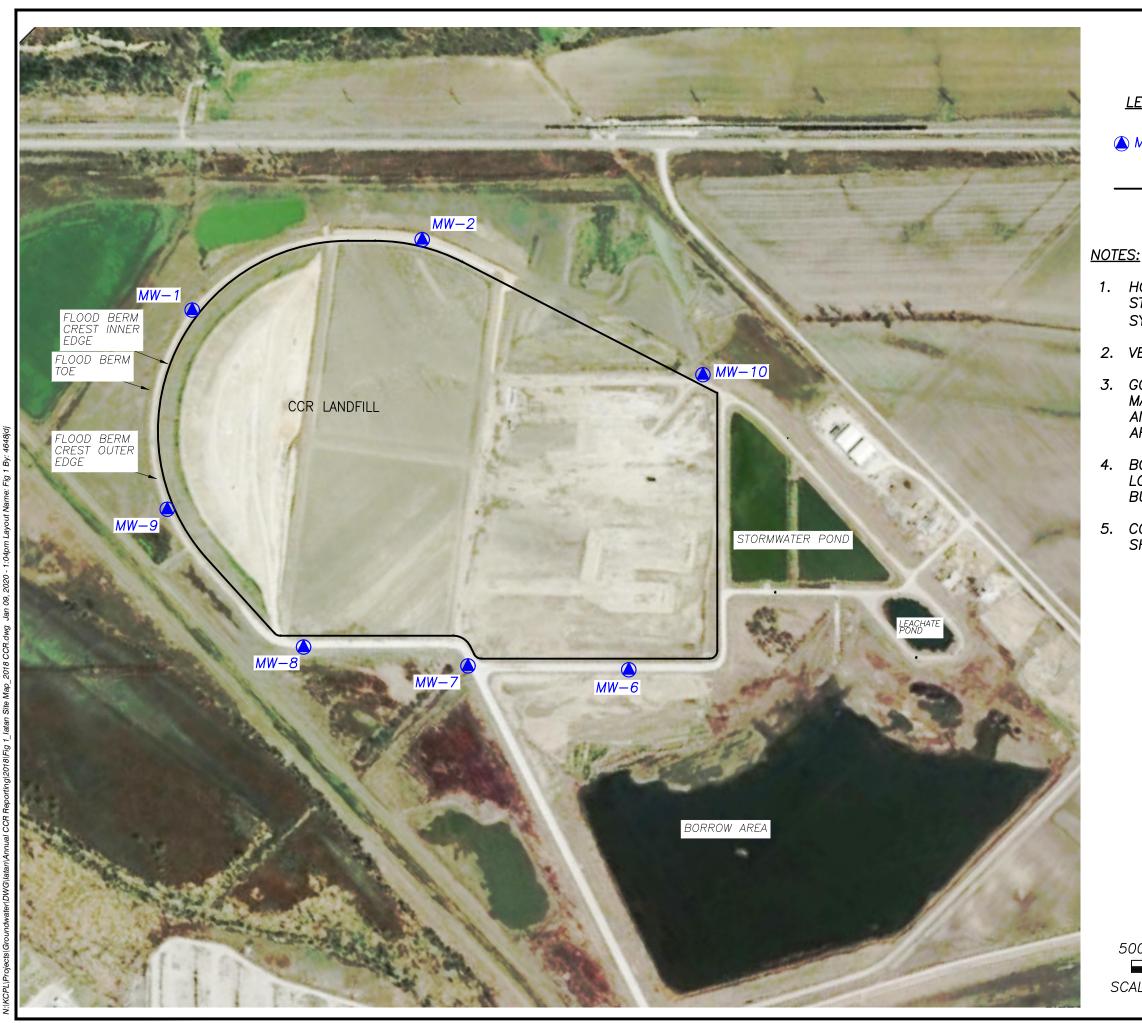
2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that

the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

3 GENERAL COMMENTS

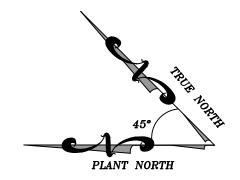

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the latan Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES

Figure 1: Site Map



LEGEND:

CCR GROUNDWATER MONITORING WELL SYSTEM

CCR LANDFILL UNIT BOUNDARY

- 1. HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM, WEST ZONE (NAD 83)
- 2. VERTICAL DATUM: NAVD 88
- 3. GOOGLE EARTH IMAGE DATED MARCH 27, 2017. BOUNDARY AND MONITOR WELL LOCATIONS ARE APPROXIMATE
- 4. BOUNDARY AND MONITOR WELL LOCATIONS PROVIDED BY BURNS & MCDONNELL
- 5. CCR LANDFILL UNIT BOUNDARY SHOWN IS APPROXIMATE.

EVERGY METRO, INC IATAN GENERATING STATION WESTON, MISSOURI

SCS ENGINEERS

CADD FILE: FIG 1_IATAN SITE MAP_2018 CORDING

1/07/20 FIGURE NO.

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 CCR Landfill Appendix III Detection Monitoring Results Evergy latan Generating Station

				Appei	ndix III Consti	tuents		
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	pH (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-1	05/20/19	<0.200	130	5.66	0.311	6.93	28.9	470
MW-1	11/04/19	<0.200	132	6.61	0.488	6.84	22.3	457
MW-2	05/20/19	<0.200	167	7.18	0.373	6.92	119	666
MW-2	07/11/19				*0.389	**7.33		
MW-2	08/20/19				*0.333	**6.85		
MW-2	11/04/19	<0.200	168	8.77	0.552	6.77	98.8	585
MW-6	05/20/19	<0.200	131	1.21	0.366	7.43	20.2	468
MW-6	07/11/19				*0.373	**7.29		
MW-6	08/20/19				*0.328	**7.07		
MW-6	11/04/19	<0.200	134	1.40	0.359	6.87	20.2	437
MW-7	01/10/19		*185	*23.3		**7.42	*159	*724
MW-7	03/14/19		*132	*4.77		**7.24	*33.9	*472
MW-7	05/20/19	<0.200	184	26.0	0.389	7.21	166	737
MW-7	07/11/19		*199	*31.9		**7.63	*186	*761
MW-7	08/20/19		*183	*28.7		**6.99	*166	*743
MW-7	11/04/19	<0.200	185	29.1	0.381	6.77	170	682
MW-8	01/10/19		*149	*5.63		**7.57	*48.4	*502
MW-8	03/14/19		*140	*4.79		**7.38		
MW-8	05/20/19	<0.200	141	3.98	0.446	7.11	40.9	518
MW-8	11/04/19	<0.200	141	3.99	0.431	7.07	37.6	465
MW-9	05/20/19	<0.200	115	1.57	0.415	7.13	22.8	457
MW-9	11/04/19	<0.200	119	3.88	0.567	6.96	25.4	392
MW-10	01/10/19		*157			**7.36	*38.0	
MW-10	03/14/19		*151			**7.27	*40.1	
MW-10	05/20/19	<0.200	151	21.0	0.623	7.05	37.3	697
MW-10	07/11/19		*153	*22.5		**7.46	*33.0	
MW-10	08/20/19		*143	*20.3		**6.99	*34.6	
MW-10	11/04/19	<0.200	142	21.6	0.777	6.78	33.6	534

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

mg/L - miligrams per liter

pCi/L - picocuries per liter

S.U. - Standard Units

--- Not Sampled

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

Table 2
CCR Landfill
Detection Monitoring Field Measurements
KCP&L latan Generating Station

Well Number	Sample Date	pH (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-1	05/20/19	6.93	811	12.09	29.7	-165	0.00	15.60	773.09
MW-1	11/04/19	6.84	771	13.97	28.3	-101	0.49	16.39	772.30
MW-2	05/20/19	6.92	979	12.24	24.8	-127	0.00	16.38	773.23
MW-2	07/11/19	**7.33	1040	16.95	29.0	-119	0.83	16.08	773.53
MW-2	08/20/19	**6.85	993	16.08	3.4	-25	0.00	17.28	772.33
MW-2	11/04/19	6.77	955	14.53	10.8	-109	1.27	17.21	772.40
MW-6	05/20/19	7.43	785	13.94	2.9	-133	0.41	16.05	773.60
MW-6	07/11/19	**7.29	1100	26.58	5.3	-107	1.48	15.36	774.29
MW-6	08/20/19	**7.07	784	16.41	0.0	-33	0.00	17.09	772.56
MW-6	11/04/19	6.87	789	14.06	0.0	118	1.15	16.73	772.92
MW-7	01/10/19	**7.42	1090	13.09	16.0	-73	1.04	19.65	770.00
MW-7	03/14/19	**7.24	838	13.92	0.4	-91	0.47	20.37	769.28
MW-7	05/20/19	7.21	1050	13.43	0.0	-100	0.47	16.33	773.32
MW-7	07/11/19	**7.63	1160	14.91	0.6	-84	0.53	15.63	774.02
MW-7	08/20/19	**6.99	1090	15.58	0.0	-3	0.00	17.28	772.37
MW-7	11/04/19	6.77	1070	13.41	0.0	69	0.85	17.04	772.61
MW-8	01/10/19	**7.57	882	11.42	4.6	-90	1.48	19.47	770.24
MW-8	03/14/19	**7.38	868	13.91	0.2	-89	0.41	19.98	769.73
MW-8	05/20/19	7.11	802	12.53	0.0	-121	0.00	16.67	773.04
MW-8	11/04/19	7.07	784	13.94	11.0	-72	1.04	17.50	772.21
MW-9	05/20/19	7.13	755	12.23	0.5	-165	0.00	16.85	773.05
MW-9	11/04/19	6.96	733	13.66	42.9	-119	0.57	17.72	772.18
MW-10	01/10/19	**7.36	1140	12.68	3.7	-91	1.91	19.32	770.14
MW-10	03/14/19	**7.27	1180	11.97	11.0	-80	7.29	19.50	769.96
MW-10	05/20/19	7.05	1060	11.81	0.0	-14	0.00	16.15	773.31
MW-10	07/11/19	**7.46	1100	16.59	0.0	-57	0.83	15.77	773.69
MW-10	08/20/19	**6.99	1040	16.3	0.0	31	0.00	17.05	772.41
MW-10	11/04/19	6.78	999	13.4	8.3	49	0.92	16.96	772.50

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

 μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATION

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2019)
- C.2. CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2019)

C.1	CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2018 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (June 2019)

CCR LANDFILL GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2018 GROUNDWATER MONITORING EVENT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

Kansas City Power & Light Company

Presented By:

SCS ENGINEERS

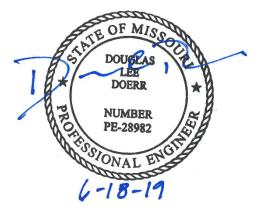
8575 West 110th Street, Suite 100

Overland Park, Kansas 66210

June 2019

File No. 27213167.18

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	ction	Page
CEF	RTIFICATIONS	i
1	Regulatory Framework	
2		
3	Alternative Source Demonstration	2
	3.1 Upgradient Well Location	2
	3.2 Box and Whiskers Plots	
	3.3 Piper Diagram Plots	3
	3.4 Time Series Plots	
4	Conclusion	3
5	General Comments	4

Appendices

Appendix A Figure 1

Appendix B Box and Whiskers Plots

Appendix C Piper Diagram

Appendix D Time Series Plots

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at Kansas City Power & Light Company's (KCP&L) latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Groundwater samples were collected on November 12, 2018. Review and validation of the results from the November 2018 Detection Monitoring Event was completed on December 21, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 10, 2019 and March 14, 2019.

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits. The prediction limit for calcium in monitoring well MW-10 is 131.1 mg/L. The detection monitoring sample was reported at 138 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 157 mg/L. The second verification re-sample was collected on March 14, 2019 with a result of 151 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring well MW-10 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

The prediction limit for sulfate in monitoring well MW-10 is 27.78 mg/L. The detection monitoring sample was reported at 32.9 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 38.0 mg/L. The second verification re-sample was collected on March 14, 2019 with a result of 40.1 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-10 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for calcium and sulfate in monitoring well MW-10.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the latan Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT WELL LOCATION

Figure 1 in Appendix A shows a potentiometric surface contour map indicating the direction of groundwater flow at the CCR Landfill at the time of sampling. Monitoring well MW-10 is generally located upgradient from the CCR Landfill depending on river stage. During this detection monitoring sampling event, MW-10 was upgradient and essentially on a groundwater ridge trending from MW-7 to MW-10. The primary direction of groundwater flow was away from the ridge to the southwest and to the northeast which makes MW-10 primarily upgradient from the CCR Landfill indicating the SSIs are not likely caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill likely caused the SSI over background levels for calcium and sulfate, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Although an SSI was only identified in upgradient well MW-10, box and whiskers plots for calcium and sulfate in the CCR groundwater monitoring system wells were prepared to allow comparison of these constituent concentrations between wells. The comparison between wells indicates these constituent concentrations in upgradient well MW-10 are within or even below the range of concentrations from the other wells. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix B**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3). Chloride was inadvertently not analyzed for the January 10, 2019 sample so the chloride concentration from the November 2018 sampling event (15.1 mg/L) and the May 20, 2019 sampling event (21 mg/L) were used to construct two piper diagrams to represent the January 10, 2019 piper plot for MW-10. The two different chloride concentrations made little difference in the piper plots.

A piper diagram generated for MW-10 and landfill leachate is provided in **Appendix C** and indicates the groundwater from this well has not changed and does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for calcium and sulfate or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.4 TIME SERIES PLOTS

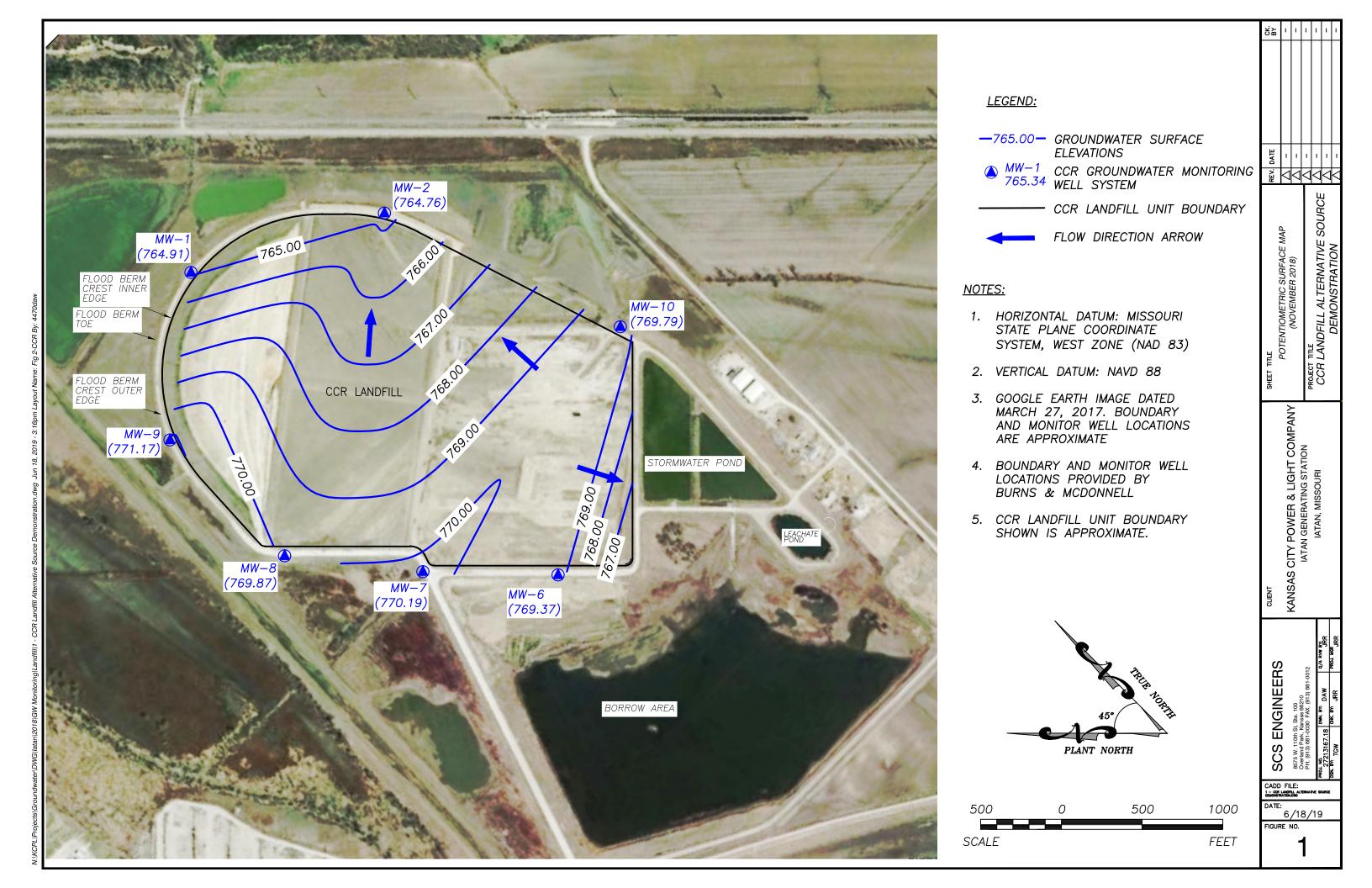
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for the CCR monitoring system wells indicate calcium and sulfate concentrations in MW-10 are within the range of concentrations for the other wells. This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix D**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

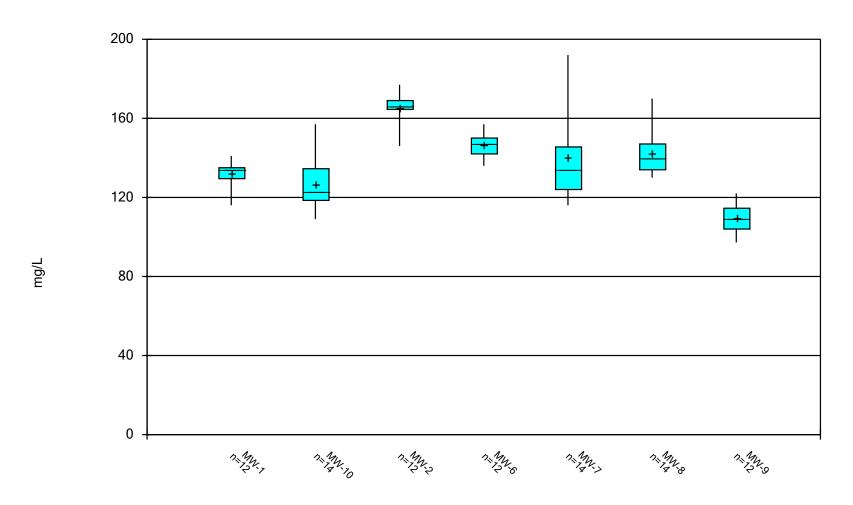
Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the latan Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

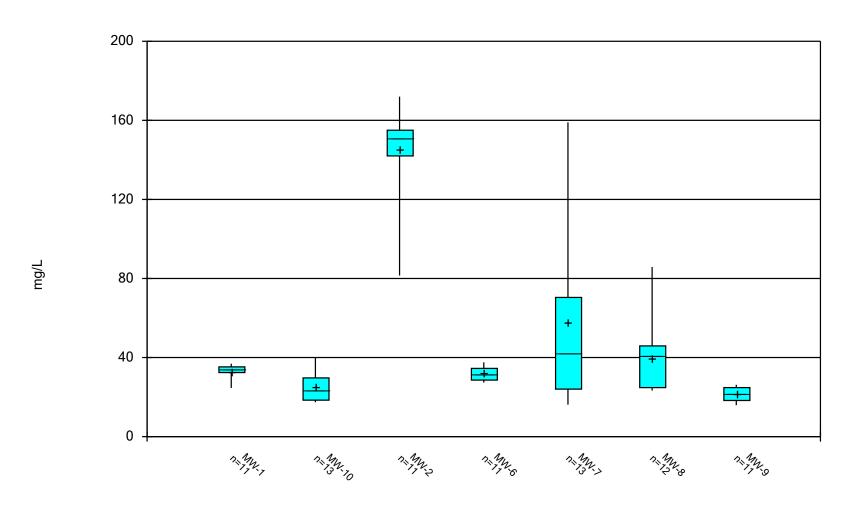

Figure 1

Appendix B

Box and Whiskers Plots

Box & Whiskers Plot

Constituent: Calcium Analysis Run 4/10/2019 11:49 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr


Box & Whiskers Plot

Constituent: Calcium (mg/L) Analysis Run 4/10/2019 11:52 AM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
8/18/2016	134	123	170	142	145	136	119
9/29/2016	134	118	169	139	144	132	102
11/9/2016	136	124	169	142	146	135	103
12/21/2016	134	123	166	146	138	139	116
2/3/2017	116	109	146	136	116	133	105
5/24/2017	128	125	166	150	123	138	108
7/5/2017	129	120	165	147	125	142	97.2
8/17/2017	134	122	168	150	133	145	110
10/5/2017	141	131	177	157	135	155	113
11/14/2017	130	119	161	151	125	145	113
5/21/2018	131	115	164	150	123	130	105
11/12/2018	137	138	166	147	192	170	122
1/10/2019		157			185	149	
3/14/2019		151			132	140	
Median	134	123	166	147	134	139.5	109
LowerQ.	129.5	118.5	164.5	142	124	134	104
UpperQ.	135	134.5	169	150	145.5	147	114.5
Min	116	109	146	136	116	130	97.2
Max	141	157	177	157	192	170	122
Mean	132	126.8	165.6	146.4	140.1	142.1	109.4

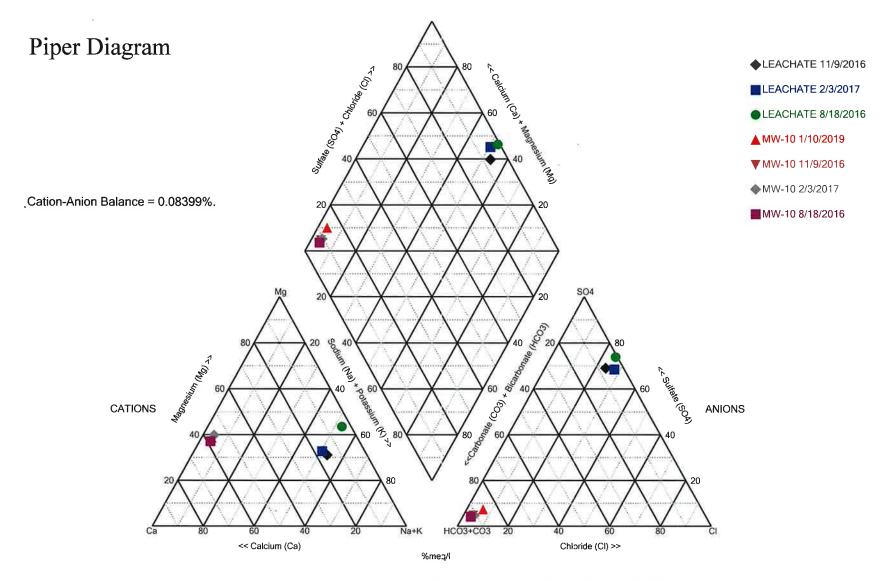
Box & Whiskers Plot

Constituent: Sulfate Analysis Run 4/10/2019 11:49 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Box & Whiskers Plot

Constituent: Sulfate (mg/L) Analysis Run 4/10/2019 11:52 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
8/18/2016	32.4	17.8	142	30.2	70.2	23.3	16.7
9/29/2016	35.3	19.7	151	33.5	70.6	24.2	26.2
11/9/2016	33.2	17.4	155	31.4	62.6	23.8	23
12/21/2016	36.2	17.7	155	28.6	50	25.5	22.2
2/3/2017	36.9	19.1	150	28.5	41.9	39.6	21.1
5/24/2017	27.4	22.4	172	32.7	16.2	42.8	15.9
7/5/2017	34.2	24.7	158	37.2	19.5	54.8	24.8
8/17/2017	35.2	26.5	149	37.6	34.1	43	19.8
10/5/2017	34.5	26.4	151	34.5	24.3	43.4	21.5
5/21/2018	32.6	23.6	137	30.9	23.8	25.4	18.3
11/12/2018	24.6	32.9	81.5	27.3	149	85.8	25.8
1/10/2019		38			159	48.4	
3/14/2019		40.1			33.9		
Median	34.2	23.6	151	31.4	41.9	41.2	21.5
LowerQ.	32.4	18.45	142	28.6	24.05	24.8	18.3
UpperQ.	35.3	29.7	155	34.5	70.4	45.9	24.8
Min	24.6	17.4	81.5	27.3	16.2	23.3	15.9
Max	36.9	40.1	172	37.6	159	85.8	26.2
Mean	32.95	25.1	145.6	32.04	58.08	40	21.39


Box & Whiskers Plot

Constituent
Calcium (mg/L)
Sulfate (mg/L)

	latan Utility Waste LF	Client: SCS	Engineers [Data: latan jrr P	rinted 4/10/2019, 1	1:52 AM			
Wel	<u>N</u>	<u>Me</u>	an S	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	<u>%NDs</u>
MW	-1 12	2 132	2 (6.208	1.792	134	116	141	0
MW	-10 14	4 126	5.8	13.43	3.589	123	109	157	0
MW	-2 12	2 169	5.6	7.305	2.109	166	146	177	0
MW	-6 12	2 146	6.4	5.838	1.685	147	136	157	0
MW	-7 14	4 140	0.1 2	22.45	6	134	116	192	0
MW	-8 14	4 142	2.1	10.59	2.831	139.5	130	170	0
MW	-9 12	2 109	9.4	7.422	2.143	109	97.2	122	0
MW	-1 11	1 32.	95	3.765	1.135	34.2	24.6	36.9	0
MW	-10 13	3 25.	1 7	7.627	2.115	23.6	17.4	40.1	0
MW	-2 11	1 145	5.6 2	23.05	6.949	151	81.5	172	0
MW	-6 11	1 32.	04	3.436	1.036	31.4	27.3	37.6	0
MW	-7 13	3 58.	08 4	46.39	12.87	41.9	16.2	159	0
MW	-8 12	2 40		18.17	5.244	41.2	23.3	85.8	0
MW	-9 11	1 21.	39	3.49	1.052	21.5	15.9	26.2	0

Appendix C

Piper Diagram

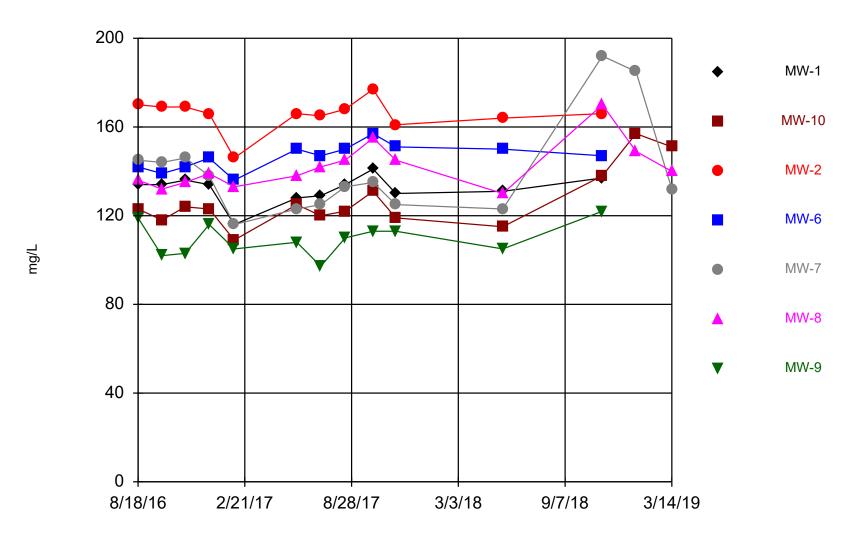
Analysis Run 6/4/2019 9:39 AM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Page 2

Piper Diagram

Analysis Run 6/4/2019 9:39 AM View: CCR LF III


Iatan Utility Waste LF Client: SCS Engineers Data: latan jrr

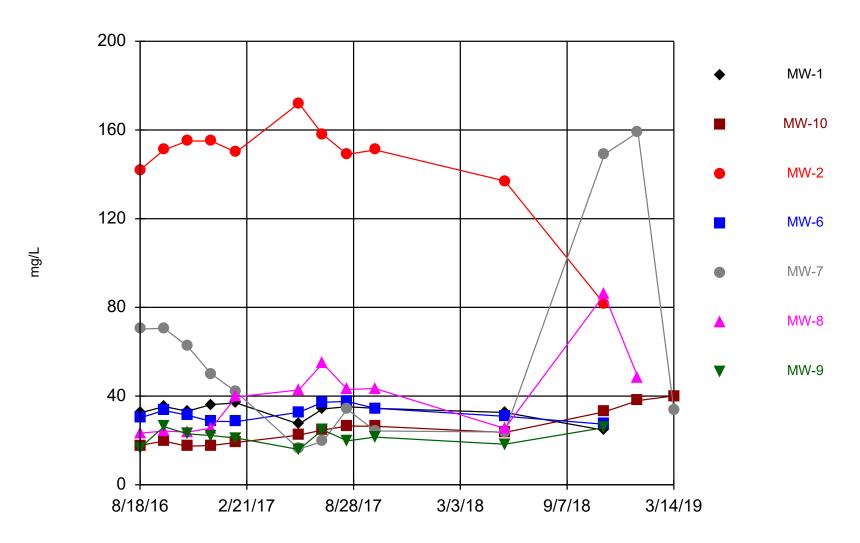
Totals (ppm)	Na	K	Ca	Mg	Cl	\$04	HCO3	C03
MW-10 8/18/2016	7.77	4.45	123	47.3	7.47	17.8	480	10
MW-10 11/9/2016	7.11	4.02	124	47.3	9,15	17.4	428	10
MW-10 2/3/2017	7.2	3.93	109	46.7	10.3	19.1	442	10
MW-10 1/10/2019	8.51	5.08	157	64.3	21	38	555	10
LEACHATE 8/18/2016	9250	689	573	4240	6990	28000	644	10
LEACHATE 11/9/2016	1230	90.7	334	398	876	3460	480	10
LEACHATE 2/3/2017	1880	121	560	671	1760	6070	505	10

Appendix D

Time Series Plots

Time Series

Constituent: Calcium Analysis Run 4/10/2019 11:52 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr


Time Series

Constituent: Calcium (mg/L) Analysis Run 4/10/2019 11:53 AM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
8/18/2016	134	123	170	142	145	136	119
9/29/2016	134	118	169	139	144	132	102
11/9/2016	136	124	169	142	146	135	103
12/21/2016	134	123	166	146	138	139	116
2/3/2017	116	109	146	136	116	133	105
5/24/2017	128	125	166	150	123	138	108
7/5/2017	129	120	165	147	125	142	97.2
8/17/2017	134	122	168	150	133	145	110
10/5/2017	141	131	177	157	135	155	113
11/14/2017	130	119	161	151	125	145	113
5/21/2018	131	115	164	150	123	130	105
11/12/2018	137	138	166	147	192	170	122
1/10/2019		157			185	149	
3/14/2019		151			132	140	

Time Series

Constituent: Sulfate Analysis Run 4/10/2019 11:52 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Time Series

Constituent: Sulfate (mg/L) Analysis Run 4/10/2019 11:53 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
	IVIVV-I	IVIVV-1U	IVI VV-Z	IVIVV-O	IVIVV-7	IVIVV-0	WW-9
8/18/2016	32.4	17.8	142	30.2	70.2	23.3	16.7
9/29/2016	35.3	19.7	151	33.5	70.6	24.2	26.2
11/9/2016	33.2	17.4	155	31.4	62.6	23.8	23
12/21/2016	36.2	17.7	155	28.6	50	25.5	22.2
2/3/2017	36.9	19.1	150	28.5	41.9	39.6	21.1
5/24/2017	27.4	22.4	172	32.7	16.2	42.8	15.9
7/5/2017	34.2	24.7	158	37.2	19.5	54.8	24.8
8/17/2017	35.2	26.5	149	37.6	34.1	43	19.8
10/5/2017	34.5	26.4	151	34.5	24.3	43.4	21.5
5/21/2018	32.6	23.6	137	30.9	23.8	25.4	18.3
11/12/2018	24.6	32.9	81.5	27.3	149	85.8	25.8
1/10/2019		38			159	48.4	
3/14/2019		40.1			33.9		

C.2.	CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2019 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (December 2019)

CCR LANDFILL GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2019 GROUNDWATER MONITORING EVENT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

Evergy Metro, Inc.

Presented By:

SCS ENGINEERS

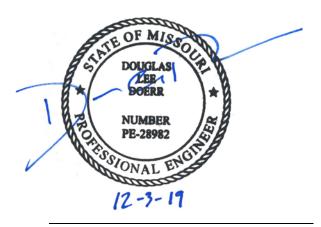
8575 West 110th Street, Suite 100 Overland Park, Kansas 66210

December 2019

File No. 27213167.18

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.



John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the latan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

i

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	tion		Page
CER	TIFICA	ATIONS	i
1	Reg	ulatory Framework	1
2	Stat	tistical Results	
3	Alte	ernative Source Demonstration	2
	3.1	Upgradient/Cross Gradient Well Location	2
	3.2	Representativenes of Background	2
	3.3	Box and Whiskers Plots	3
	3.4	Piper Diagram Plots	3
4	Con	nclusion	4
5	Gen	neral Comments	4

Appendices

Aρ	pendix	Α	Figure	1

Appendix B Missouri River Stage Hydrograph and Google Maps Aerial Photograph

Appendix C Box and Whiskers Plots Piper Diagram

Appendix D Piper Diagram

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 20, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on June 28, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 11, 2019 and August 20, 2019.

The completed statistical evaluation identified seven Appendix III constituents above their respective prediction limit in monitoring wells MW-7 and MW-10.

Constituent/Monitoring Well	*UPL	Observation May 20, 2019	1st Verification July 11, 2019	2nd Verification August 20, 2019
Calcium				
MW-7	157.1	184	199	183
MW-10	131.1	151	153	143
Chloride				
MW-7	17.12	26	31.9	28.7
MW-10	18.96	21	22.5	20.3

Constituent/Monitoring Well	*UPL	Observation May 20, 2019	1st Verification July 11, 2019	2nd Verification August 20, 2019
Sulfate				
MW-7	89.64	166	186	166
MW-10	27.78	37.3	33.0	34.6
Total Dissolved Solids				
MW-7	591.5	737	761	743

^{*}UPL - Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified SSIs above the background prediction limits for calcium, chloride, sulfate and total dissolved solids (TDS) in monitoring well MW-7 and for calcium, chloride, and sulfate in monitoring well MW-10.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSIs for the CCR Landfill at the latan Generating Station, there are multiple lines of supporting evidence to indicate the above SSIs were not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT/CROSS GRADIENT WELL LOCATION

Figure 1 in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at the CCR Landfill at the time of sampling. Monitoring wells MW-7 and MW-10 were generally located upgradient or cross gradient from the CCR Landfill at the time of the detection sampling event. During this detection monitoring sampling event, groundwater elevation in MW-7 and MW-10 were within 0.01 feet of each other even though the wells are located on opposite sides of the landfill. The primary direction of groundwater flow was to the north and west, which makes neither well downgradient from the CCR Landfill, indicating the SSIs are not likely caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill likely caused the SSI over background levels for calcium, chloride, sulfate and total dissolved solids, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.2 REPRESENTATIVENES OF BACKGROUND

Representativeness is defined as the level of how well or how accurately a sample set reflects actual or natural conditions. If the upper and lower prediction limits for the background concentrations of calcium, chloride, sulfate and total dissolved solids in monitoring well MW-7 and for calcium, chloride, and sulfate in monitoring well MW-10, represents the entire population of historical concentrations in these wells and constituents under all natural conditions, including low river stages, high river stages, flooding, drought, etc., the background data set would have good representativeness. However, due to the inherent constraints of the CCR Final Rule, and the limited number of background data points over a

limited period of time, the background data set for these wells and constituents does not exhibit good representativeness. The background data set does not include data collected under the full spectrum of natural conditions such as those experienced during and after the historic Missouri River flooding in the spring and fall of 2019 in which the area around the landfill was inundated three times during parts of March-April, May-June, and September-October. A hydrograph of the Missouri River stage at St. Joseph, Missouri, showing the river stage during the time period in which background data was collected and the time period when compliance data points were collected is provided in Appendix B. This indicates that the river elevation and subsequently the groundwater elevation was significantly lower during background sampling than the May 2019 sampling event. Additionally, in Appendix B is a Google Maps aerial photograph of the landfill and surrounding area shortly after the peak river elevation in March. This indicates that the river water was encroaching on the landfill and well network during the May 2019 sampling event. Such significant fluctuation in river elevations and groundwater elevations impact the groundwater characteristics. The upper and lower prediction limits for these wells and constituents were calculated from eight data points between August 18, 2016 and August 17, 2017 and is not believed to be representative of the entire population of concentrations for these wells and constituents under the infrequent but naturally occurring condition of flooding. This demonstrates that a source other than the CCR Landfill could have caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.3 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Although SSIs were only identified in monitoring wells MW-7 and MW-10, box and whiskers plots for calcium, chloride, sulfate, and TDS in all CCR groundwater monitoring system wells were prepared to allow comparison of these constituent concentrations between wells, surface water in the borrow area, and water from the facility's collector well near the river. The comparison of these constituents between wells, surface water, and the collector well indicates the constituent concentrations in MW-7 and MW-10 are generally near, within, or even below the range of concentrations from the other wells, surface water or the collector well. This demonstrates that a source other than the CCR Landfill could have caused the SSI over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix C**.

3.4 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and

facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

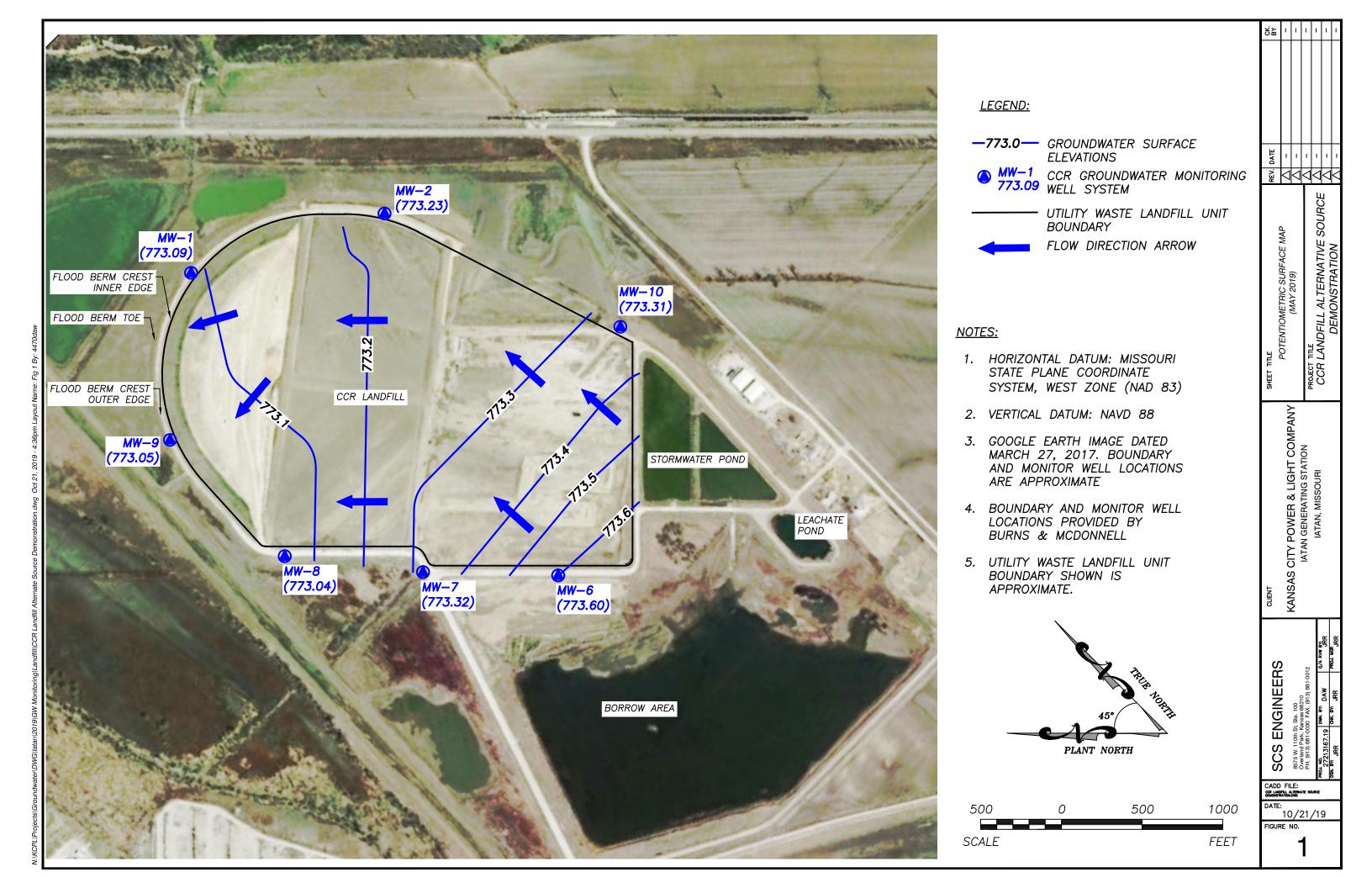
A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO₄), Carbonate (CO₃), and Bicarbonate (HCO₃).

A piper diagram generated for MW-7, MW-10, the collector well, and leachate is provided in **Appendix** D and indicates the groundwater from the monitoring wells are similar and the collector well water plots slightly different from the monitoring wells but neither the groundwater nor the collector well water plot near the area the leachate plots. Therefore, these waters do not exhibit the same geochemical characteristics as the leachate. The groundwater, collector well and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS


This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the latan Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represents that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not

to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

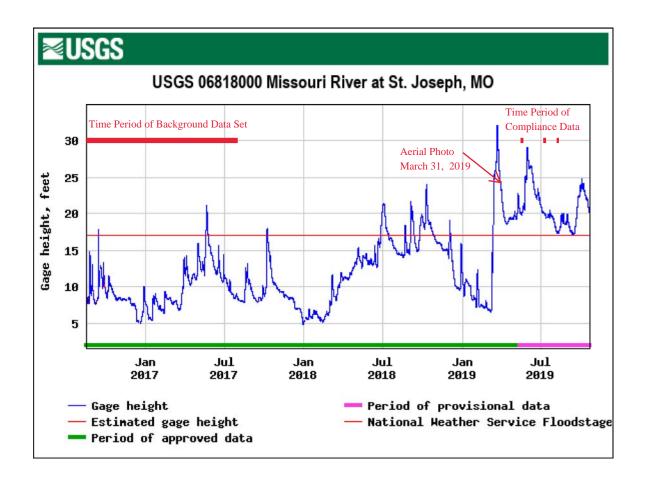
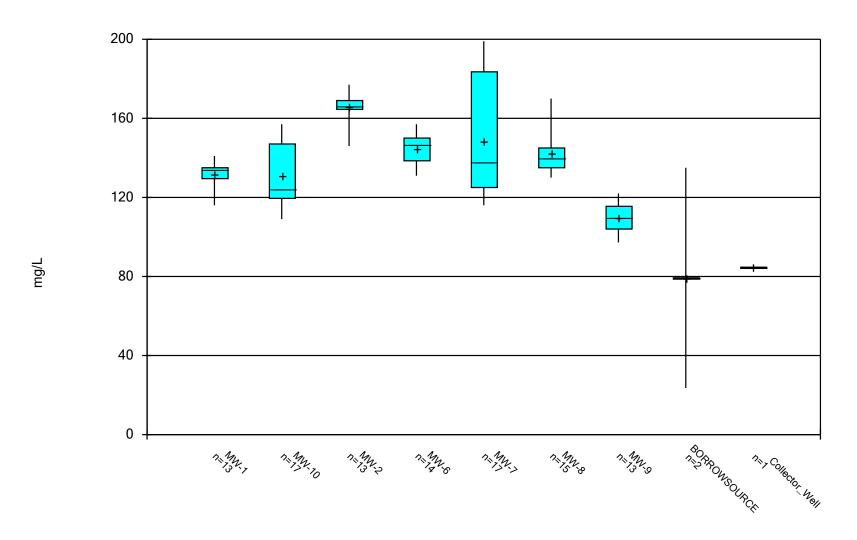

Appendix A

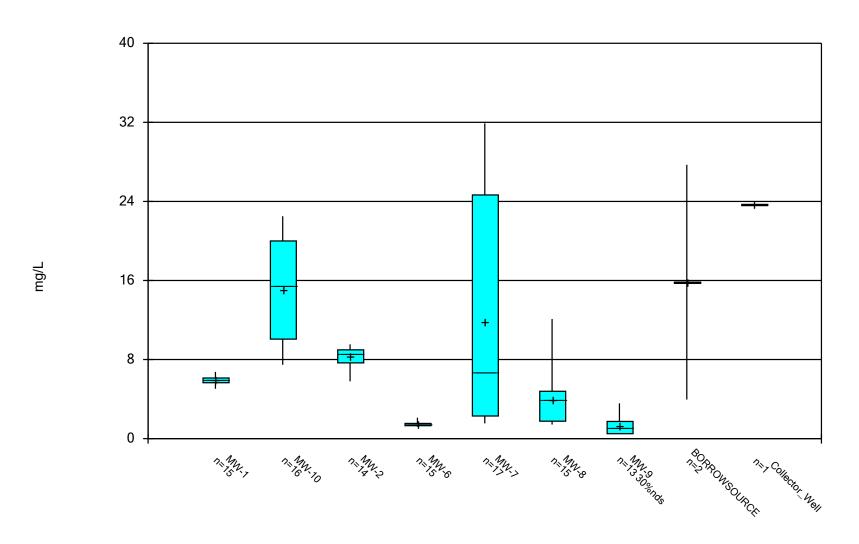

Figure 1

Appendix B


Missouri River Stage Hydrograph and Google Maps Aerial Photograph

Appendix C Box and Whiskers Plots

Box & Whiskers Plot

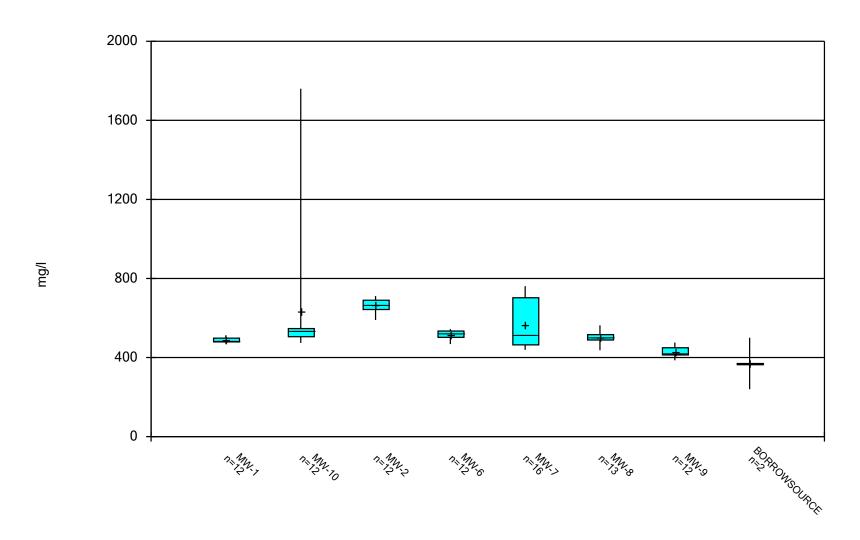

Constituent: Calcium Analysis Run 10/21/2019 11:29 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Box & Whiskers Plot

Constituent: Calcium (mg/L) Analysis Run 10/21/2019 12:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9	BORROWSOURC	ECollector_Well
6/17/2016									84.7
8/18/2016	134	123	170	142	145	136	119		
9/29/2016	134	118	169	139	144	132	102		
11/9/2016	136	124	169	142	146	135	103		
12/21/2016	134	123	166	146	138	139	116		
2/3/2017	116	109	146	136	116	133	105		
5/24/2017	128	125	166	150	123	138	108		
7/5/2017	129	120	165	147	125	142	97.2		
8/17/2017	134	122	168	150	133	145	110	23.6	
10/5/2017	141	131	177	157	135	155	113	135	
11/14/2017	130	119	161	151	125	145	113		
5/21/2018	131	115	164	150	123	130	105		
11/12/2018	137	138	166	147	192	170	122		
1/10/2019		157			185	149			
3/14/2019		151			132	140			
5/20/2019	130	151	167	131	184	141	115		
7/11/2019		153	175 (i)	138	199				
8/20/2019		143			183				
Median	134	124	166	146.5	138	140	110	79.3	84.7
LowerQ.	129.5	119.5	164.5	138.5	125	135	104	79.3	84.7
UpperQ.	135	147	169	150	183.5	145	115.5	79.3	84.7
Min	116	109	146	131	116	130	97.2	23.6	84.7
Max	141	157	177	157	199	170	122	135	84.7
Mean	131.8	130.7	165.7	144.7	148.7	142	109.9	79.3	84.7

Box & Whiskers Plot


Constituent: Chloride Analysis Run 10/21/2019 11:30 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

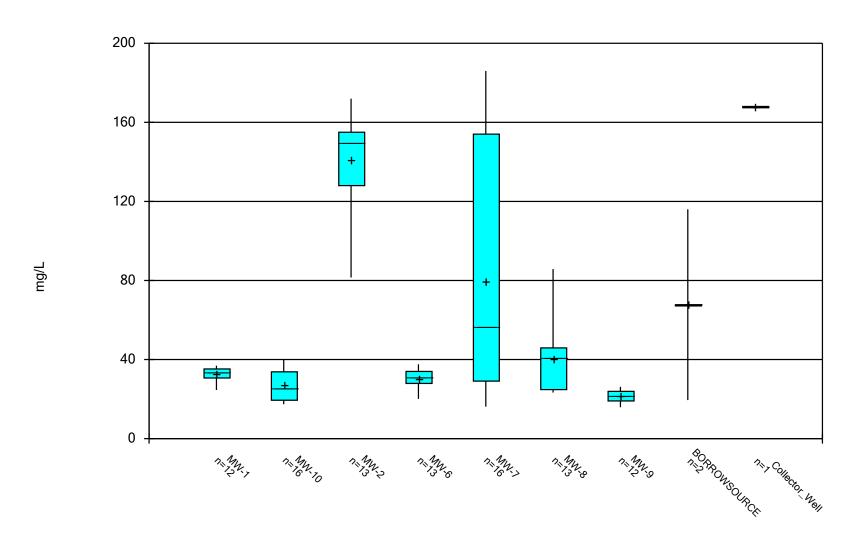
Box & Whiskers Plot

Constituent: Chloride (mg/L) Analysis Run 10/21/2019 12:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9	BORROWSOURC	ECollector_Well
6/17/2016									23.7
8/18/2016	5.93	7.47	8.26	1.31	12.3	1.5	1.95		
9/29/2016	6.07	7.83	8.79	1.46	13.9	1.42	<1		
11/9/2016	5.95	9.15	8.76	1.29	11.1	1.76	<1		
12/21/2016	5.97	9.84	8.24	1.72	6.64	1.89	1.66		
2/3/2017	6	10.3	8.17	1.4	3.32	4.02	1.16		
5/24/2017	5.61	12.6	9.54	1.49	1.76	3.63	1.07		
7/5/2017	5.78	15.9	8.99	1.54	1.81	4.44	1.06		
8/17/2017	6.13	17.6	8.98	1.32	2	3.53	<1	3.96	
10/5/2017	6.75	19.7	9.23	2.09	3.32	4.55	3.57	27.7	
11/14/2017	6.73	17.6	8.97	2.12	2.58	4.86	1.82		
12/29/2017	6.27			1.45					
12/30/2017	5.99								
5/21/2018	5.63	14.1	8.14	1.45	1.54	1.5	<1		
11/12/2018	5.04	15.1	5.79	1.31	26.4	12.1	1.1		
1/10/2019		21			23.3	5.63			
3/14/2019					4.77	4.79			
5/20/2019	5.66	21	7.18	1.21	26	3.98	1.57		
7/11/2019		22.5	6.5	1.2	31.9				
8/20/2019		20.3			28.7				
Median	5.97	15.5	8.51	1.45	6.64	3.98	1.1	15.83	23.7
LowerQ.	5.66	10.07	7.66	1.31	2.29	1.76	0.5	15.83	23.7
UpperQ.	6.13	20	8.985	1.54	24.65	4.79	1.74	15.83	23.7
Min	5.04	7.47	5.79	1.2	1.54	1.42	0.5	3.96	23.7
Max	6.75	22.5	9.54	2.12	31.9	12.1	3.57	27.7	23.7
Mean	5.967	15.12	8.253	1.491	11.84	3.973	1.305	15.83	23.7

Box & Whiskers Plot

Constituent: Dissolved Solids Analysis Run 10/21/2019 11:30 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr


Box & Whiskers Plot

Constituent: Dissolved Solids (mg/l) Analysis Run 10/21/2019 12:39 PM View: CCR LF III

latan Utility Waste LF Client: SCS Engineers Data: latan jrr

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9	BORROWSOURCE
8/18/2016	513	532	696	522	560	494	475	
9/29/2016	486	502	651	498	554	517	398	
11/9/2016	484	516	711	506	538	471	476	
12/21/2016	493	497	636	519	492	493	415	
2/3/2017	506	531	661	527	487	515	442	
5/24/2017	477	1760	690	544	462	485	415	
7/5/2017	481	474	638	508	445	500	386	
8/17/2017	500	539	690	542	466	504	431	240
10/5/2017	472	539	683	528	459	505	414	500
5/21/2018	496	509	648	540	439	437	412	
11/12/2018	485	554	590	484	681	563	435	
1/10/2019					724	502		
3/14/2019					472			
5/20/2019	470	697	666	468	737	518	457	
7/11/2019					761			
8/20/2019					743			
Median	485.5	531.5	663.5	520.5	515	502	423	370
LowerQ.	479	505.5	643	502	464	489	413	370
UpperQ.	498	546.5	690	534	702.5	516	449.5	370
Min	470	474	590	468	439	437	386	240
Max	513	1760	711	544	761	563	476	500
Mean	488.6	637.5	663.3	515.5	563.8	500.3	429.7	370

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 10/21/2019 11:30 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

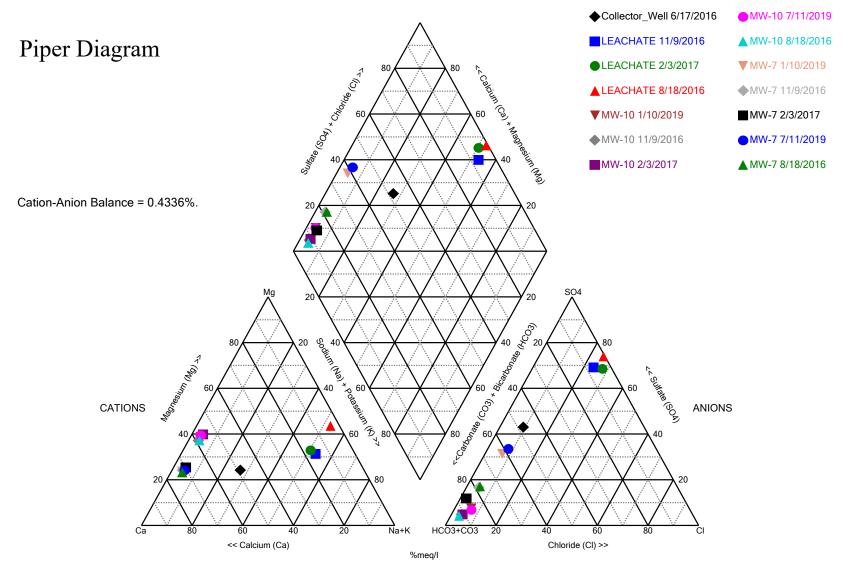
Box & Whiskers Plot

Constituent: Sulfate (mg/L) Analysis Run 10/21/2019 12:39 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9	BORROWSOURC	CECollector_Well
								168
32.4	17.8	142	30.2	70.2	23.3	16.7		
35.3	19.7	151	33.5	70.6	24.2	26.2		
33.2	17.4	155	31.4	62.6	23.8	23		
36.2	17.7	155	28.6	50	25.5	22.2		
36.9	19.1	150	28.5	41.9	39.6	21.1		
27.4	22.4	172	32.7	16.2	42.8	15.9		
34.2	24.7	158	37.2	19.5	54.8	24.8		
35.2	26.5	149	37.6	34.1	43	19.8	19.5	
34.5	26.4	151	34.5	24.3	43.4	21.5	116	
32.6	23.6	137	30.9	23.8	25.4	18.3		
24.6	32.9	81.5	27.3	149	85.8	25.8		
	38			159	48.4			
	40.1			33.9				
28.9	37.3	119	20.2	166	40.9	22.8		
	33	112	20.1	186				
	34.6			166				
33.7	25.55	150	30.9	56.3	40.9	21.85	67.75	168
30.65	19.4	128	27.9	29.1	24.8	19.05	67.75	168
35.25	33.8	155	34	154	45.9	23.9	67.75	168
24.6	17.4	81.5	20.1	16.2	23.3	15.9	19.5	168
36.9	40.1	172	37.6	186	85.8	26.2	116	168
32.62	26.95	141	30.21	79.57	40.07	21.51	67.75	168
	32.4 35.3 33.2 36.2 36.9 27.4 34.2 35.2 34.5 32.6 24.6 28.9 33.7 30.65 35.25 24.6 36.9	32.4 17.8 35.3 19.7 33.2 17.4 36.2 17.7 36.9 19.1 27.4 22.4 34.2 24.7 35.2 26.5 34.5 26.4 32.6 23.6 24.6 32.9 38 40.1 28.9 37.3 33 34.6 33.7 25.55 30.65 19.4 35.25 33.8 24.6 17.4 36.9 40.1	32.4 17.8 142 35.3 19.7 151 33.2 17.4 155 36.2 17.7 155 36.9 19.1 150 27.4 22.4 172 34.2 24.7 158 35.2 26.5 149 34.5 26.4 151 32.6 23.6 137 24.6 32.9 81.5 38 40.1 28.9 37.3 119 33 112 34.6 33.7 25.55 150 30.65 19.4 128 35.25 33.8 155 24.6 17.4 81.5 36.9 40.1 172	32.4 17.8 142 30.2 35.3 19.7 151 33.5 33.2 17.4 155 31.4 36.2 17.7 155 28.6 36.9 19.1 150 28.5 27.4 22.4 172 32.7 34.2 24.7 158 37.2 35.2 26.5 149 37.6 34.5 26.4 151 34.5 32.6 23.6 137 30.9 24.6 32.9 81.5 27.3 38 40.1 28.9 37.3 119 20.2 33 112 20.1 34.6 33.7 25.55 150 30.9 30.65 19.4 128 27.9 35.25 33.8 155 34 24.6 17.4 81.5 20.1 36.9 40.1 172 37.6	32.4 17.8 142 30.2 70.2 35.3 19.7 151 33.5 70.6 33.2 17.4 155 31.4 62.6 36.2 17.7 155 28.6 50 36.9 19.1 150 28.5 41.9 27.4 22.4 172 32.7 16.2 34.2 24.7 158 37.2 19.5 35.2 26.5 149 37.6 34.1 34.5 26.4 151 34.5 24.3 32.6 23.6 137 30.9 23.8 24.6 32.9 81.5 27.3 149 38 159 40.1 33.9 20.2 166 33.7 25.55 150 30.9 56.3 30.65 19.4 128 27.9 29.1 35.25 33.8 155 34 154 24.6 17.4 81.5 20.1 16.2 36.9 40.1 172 37.6 186	32.4 17.8 142 30.2 70.2 23.3 35.3 19.7 151 33.5 70.6 24.2 33.2 17.4 155 31.4 62.6 23.8 36.2 17.7 155 28.6 50 25.5 36.9 19.1 150 28.5 41.9 39.6 27.4 22.4 172 32.7 16.2 42.8 34.2 24.7 158 37.2 19.5 54.8 35.2 26.5 149 37.6 34.1 43 34.5 26.4 151 34.5 24.3 43.4 32.6 23.6 137 30.9 23.8 25.4 24.6 32.9 81.5 27.3 149 85.8 38 159 48.4 40.1 33.9 28.9 159 48.4 33.7 25.55 150 30.9 56.3 40.9 30.65 19.4 128 27.9 29.1 24.8 35.25 33.8 <td>32.4 17.8 142 30.2 70.2 23.3 16.7 35.3 19.7 151 33.5 70.6 24.2 26.2 33.2 17.4 155 31.4 62.6 23.8 23 36.2 17.7 155 28.6 50 25.5 22.2 36.9 19.1 150 28.5 41.9 39.6 21.1 27.4 22.4 172 32.7 16.2 42.8 15.9 34.2 24.7 158 37.2 19.5 54.8 24.8 35.2 26.5 149 37.6 34.1 43 19.8 34.5 26.4 151 34.5 24.3 43.4 21.5 32.6 23.6 137 30.9 23.8 25.4 18.3 24.6 32.9 81.5 27.3 149 85.8 25.8 38 15 27.3 149 85.8 25.8 40.1 33.9 25.5 150 30.9 56.3 40.9 22.8</td> <td>32.4 17.8 142 30.2 70.2 23.3 16.7 35.3 19.7 151 33.5 70.6 24.2 26.2 33.2 17.4 155 31.4 62.6 23.8 23 36.2 17.7 155 28.6 50 25.5 22.2 36.9 19.1 150 28.5 41.9 39.6 21.1 27.4 22.4 172 32.7 16.2 42.8 15.9 34.2 24.7 158 37.2 19.5 54.8 24.8 35.2 26.5 149 37.6 34.1 43 19.8 19.5 34.5 26.4 151 34.5 24.3 43.4 21.5 116 32.6 23.6 137 30.9 23.8 25.4 18.3 24.6 32.9 81.5 27.3 149 85.8 25.8 38 159 48.4 40.9 22.8 28.9 37.3 119 20.2 166 40.9 22.8</td>	32.4 17.8 142 30.2 70.2 23.3 16.7 35.3 19.7 151 33.5 70.6 24.2 26.2 33.2 17.4 155 31.4 62.6 23.8 23 36.2 17.7 155 28.6 50 25.5 22.2 36.9 19.1 150 28.5 41.9 39.6 21.1 27.4 22.4 172 32.7 16.2 42.8 15.9 34.2 24.7 158 37.2 19.5 54.8 24.8 35.2 26.5 149 37.6 34.1 43 19.8 34.5 26.4 151 34.5 24.3 43.4 21.5 32.6 23.6 137 30.9 23.8 25.4 18.3 24.6 32.9 81.5 27.3 149 85.8 25.8 38 15 27.3 149 85.8 25.8 40.1 33.9 25.5 150 30.9 56.3 40.9 22.8	32.4 17.8 142 30.2 70.2 23.3 16.7 35.3 19.7 151 33.5 70.6 24.2 26.2 33.2 17.4 155 31.4 62.6 23.8 23 36.2 17.7 155 28.6 50 25.5 22.2 36.9 19.1 150 28.5 41.9 39.6 21.1 27.4 22.4 172 32.7 16.2 42.8 15.9 34.2 24.7 158 37.2 19.5 54.8 24.8 35.2 26.5 149 37.6 34.1 43 19.8 19.5 34.5 26.4 151 34.5 24.3 43.4 21.5 116 32.6 23.6 137 30.9 23.8 25.4 18.3 24.6 32.9 81.5 27.3 149 85.8 25.8 38 159 48.4 40.9 22.8 28.9 37.3 119 20.2 166 40.9 22.8

Box & Whiskers Plot

Constituent


Calcium (mg/L)
Chloride (mg/L)
Chloride (mg/L)
Chloride (mg/L)
Chloride (mg/L)
Chloride (mg/L)
Chloride (mg/L)

Chloride (mg/L) Chloride (mg/L) Chloride (mg/L) Dissolved Solids (mg/l) Sulfate (mg/L)

\A/-II	N.I	M	Ct-l D	O44 E	Manatina.	N 41:	M	0/ 51
Well	N	<u>Mean</u>	Std. Dev.	Std. Err.	Median	Min.	Max.	<u>%N</u>
MW-1	13	131.8	5.97	1.656	134	116	141	0
MW-10	17	130.7	15.04	3.648	124	109	157	0
MW-2	13	165.7	7.005	1.943	166	146	177	0
MW-6	14	144.7	7.032	1.879	146.5	131	157	0
MW-7	17	148.7	27.98	6.787	138	116	199	0
MW-8	15	142	10.21	2.637	140	130	170	0
MW-9	13	109.9	7.272	2.017	110	97.2	122	0
BORROWSOURCE	2	79.3	78.77	55.7	79.3	23.6	135	0
Collector	1	84.7	0	0	84.7	84.7	84.7	0
MW-1	15	5.967	0.4274	0.1103	5.97	5.04	6.75	0
MW-10	16	15.12	5.1	1.275	15.5	7.47	22.5	0
MW-2	14	8.253	1.076	0.2876	8.51	5.79	9.54	0
MW-6	15	1.491	0.2829	0.07305	1.45	1.2	2.12	0
MW-7	17	11.84	11.04	2.677	6.64	1.54	31.9	0
MW-8	15	3.973	2.661	0.687	3.98	1.42	12.1	0
MW-9	13	1.305	0.8553	0.2372	1.1	0.5	3.57	30.7
BORROWSOURCE	2	15.83	16.79	11.87	15.83	3.96	27.7	0
Collector	1	23.7	0	0	23.7	23.7	23.7	0
MW-1	12	488.6	13.34	3.85	485.5	470	513	0
MW-10	12	637.5	357.8	103.3	531.5	474	1760	0
MW-2	12	663.3	33.46	9.659	663.5	590	711	0
MW-6	12	515.5	23.66	6.831	520.5	468	544	0
MW-7	16	563.8	121.5	30.36	515	439	761	0
MW-8	13	500.3	28.83	7.995	502	437	563	0
MW-9	12	429.7	28.65	8.27	423	386	476	0
BORROWSOURCE	2	370	183.8	130	370	240	500	0
MW-1	12	32.62	3.775	1.09	33.7	24.6	36.9	0
MW-10	16	26.95	7.937	1.984	25.55	17.4	40.1	0
MW-2	13	141	23.93	6.636	150	81.5	172	0
MW-6	13	30.21	5.456	1.513	30.9	20.1	37.6	0
MW-7	16	79.57	62.23	15.56	56.3	16.2	186	0
MW-8	13	40.07	17.39	4.824	40.9	23.3	85.8	0
MW-9	12	21.51	3.352	0.9676	21.85	15.9	26.2	0
BORROWSOURCE	2	67.75	68.24	48.25	67.75	19.5	116	0
Collector	1	168	0	0	168	168	168	0

Appendix D

Piper Diagram

Analysis Run 10/21/2019 12:47 PM View: CCR LF III

Piper Diagram

Analysis Run 10/21/2019 12:49 PM View: CCR LF III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Totals (ppm)	Na	K	Ca	Mq	Cl	S04	HCO3	CO3
MW-10 8/18/2016	7.77	4.45	123	47.3	7.47	17.8	480	10
MW-10 11/9/2016	7.11	4.02	124	47.3	9.15	17.4	428	10
MW-10 2/3/2017	7.2	3.93	109	46.7	10.3	19.1	442	10
MW-10 1/10/2019	8.51	5.08	157	64.3	21	38	555	10
MW-10 7/11/2019	8.12	5.11	153	63.8	22.5	33	537	10
MW-7 8/18/2016	6.92	5.9	145	27.5	12.3	70.2	398	10
MW-7 11/9/2016	6.72	5.56	146	29.3	11.1	62.6	368	10
MW-7 2/3/2017	6.29	5.3	116	25.4	3.32	41.9	375	10
MW-7 1/10/2019	8.87	6.61	185	36.8	23.3	159	386	10
MW-7 7/11/2019	12.3	7.2	199	40.9	31.9	186	404	10
LEACHATE 8/18/2016	9250	689	573	4240	6990	28000	644	10
LEACHATE 11/9/2016	1230	90.7	334	398	876	3460	480	10
LEACHATE 2/3/2017	1880	121	560	671	1760	6070	505	10
Collector_Well 6/17/2016	49.6	6.96	84.7	25.3	23.7	168	221	10

ADDENDUM 1

2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

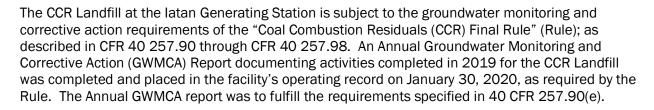
SCS ENGINEERS

December 16, 2022 File No. 27213167.19

To: Evergy Metro, Inc.

Jared Morrison - Director, Water and Waste Programs

From: SCS Engineers


Douglas L. Doerr, P.E. John R. Rockhold, P.G.

Subject: 2019 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

Evergy Metro, Inc.

CCR Landfill

latan Generating Station - Platte County, Missouri

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- January 2019 First verification sampling for the Fall 2018 detection monitoring event.
- March 2019 Second verification sampling for the Fall 2018 detection monitoring event.
- o May 2019 Spring 2019 semiannual detection monitoring sampling event.
- July 2019 First verification sampling for the Spring 2019 detection monitoring sampling event.
- August 2019 Second verification sampling for the Spring 2019 detection monitoring sampling event.
- o November 2019 Fall 2019 semiannual detection monitoring sampling event.

Attachment 2 - Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2019 included the following:

- Fall 2018 semiannual detection monitoring statistical analyses.
- o Spring 2019 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o May 2019 Spring 2019 semiannual detection monitoring sampling event.
- o November 2019 Fall 2019 semiannual detection monitoring sampling event.

ATTACHMENT 1 Laboratory Analytical Reports

ATTACHMENT 1-1 January 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT

January 18, 2019

SCS Engineers - KS

Sample Delivery Group:

L1060261

Samples Received:

01/11/2019

Project Number:

27213167.18

Description:

KCP&L latan Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-7 L1060261-01	5
MW-8 L1060261-02	6
MW-10 L1060261-03	7
DUPLICATE L1060261-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ss

MW-7 L1060261-01 GW			Collected by G. Penaflor	Collected date/time 01/10/19 12:55	Received date/time 01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Mediod	Batch	Dilution	date/time	date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1223225	1	01/16/19 15:22	01/16/19 15:50	AJS
Wet Chemistry by Method 9056A	WG1222799	1	01/17/19 20:11	01/17/19 20:11	ELN
Wet Chemistry by Method 9056A	WG1222799	5	01/18/19 11:10	01/18/19 11:10	ELN
Metals (ICP) by Method 6010B	WG1222775	1	01/15/19 09:12	01/15/19 17:56	TRB
			Collected by	Collected date/time	Received date/time
MW-8 L1060261-02 GW			G. Penaflor	01/10/19 12:10	01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1223225	1	01/16/19 15:22	01/16/19 15:50	AJS
Wet Chemistry by Method 9056A	WG1222799	1	01/17/19 20:43	01/17/19 20:43	ELN
Metals (ICP) by Method 6010B	WG1222775	1	01/15/19 09:12	01/15/19 17:31	TRB
			Collected by	Collected date/time	Received date/time
MW-10 L1060261-03 GW			G. Penaflor	01/10/19 11:25	01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1222799	1	01/17/19 21:27	01/17/19 21:27	ELN
Metals (ICP) by Method 6010B	WG1222775	1	01/15/19 09:12	01/15/19 17:58	TRB
			Collected by	Collected date/time	Received date/time
DUPLICATE L1060261-04 GW			G. Penaflor	01/10/19 12:15	01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1223225	1	01/16/19 15:22	01/16/19 15:50	AJS
Wet Chemistry by Method 9056A	WG1222799	1	01/17/19 21:38	01/17/19 21:38	ELN

WG1222775

SAMPLE SUMMARY

Metals (ICP) by Method 6010B

01/15/19 09:12

01/15/19 18:01

TRB

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been

knowingly withheld that would affect the quality of the data.

Wubb law

Ср

²Tc

Jeff Carr Project Manager

L1060261

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 12:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	724000		13300	1	01/16/2019 15:50	WG1223225

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	23300		1000	1	01/17/2019 20:11	WG1222799
Sulfate	159000		25000	5	01/18/2019 11:10	WG1222799

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	185000		1000	1	01/15/2019 17:56	WG1222775

Cn

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 12:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	502000		10000	1	01/16/2019 15:50	WG1223225

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5630		1000	1	01/17/2019 20:43	WG1222799
Sulfate	48400		5000	1	01/17/2019 20:43	WG1222799

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	149000	O1 V	1000	1	01/15/2019 17:31	WG1222775

SAMPLE RESULTS - 03 L1060261

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 11:25

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	38000		5000	1	01/17/2019 21:27	WG1222799

³Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	157000		1000	1	01/15/2019 17:58	WG1222775

SAMPLE RESULTS - 04 L1060261

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 12:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	511000		10000	1	01/16/2019 15:50	WG1223225

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5790		1000	1	01/17/2019 21:38	WG1222799
Sulfate	49600		5000	1	01/17/2019 21:38	WG1222799

³Ss

Metals (ICP) by Method 6010B

	Result	Result <u>Qualifier</u> I		Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	147000		1000	1	01/15/2019 18:01	WG1222775

СQс

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1060261-01,02,04

Method Blank (MB)

(MB) R3376673-1 01/16/19	9 15:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1060341-01 Original Sample (OS) • Duplicate (DUP)

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
A	Analyte	ug/l	ug/l		%		%
[Dissolved Solids	49000	49000	1	0.000		5

Laboratory Control Sample (LCS)

(LCS) R3376673-2 01/16/19 15:50

(LC3) K3370073-2 01/10/1.	Spike Amount	LCS Resu	t LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8810000	100	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1060261-01,02,03,04

Method Blank (MB)

Chloride

(MB) R3376928-1 01/1	17/19 10:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	U		51.9	1000	
Sulfate	U		77.4	5000	

<u>ср</u>

L1060180-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1060180-01 01/17/19 16:40 • (DUP) R3376928-3 01/17/19 16:51											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					

1

0.834

41900

QC 7

L1060261-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1060261-02 01/17/19 20:43 • (DUP) R3376928-5 01/17/19 20:54

42200

(00) 21000201 02 01/1/15	(801) 1000201 02 01/1/10 20.10 (801) 1000700220 0 01/1/10 20.01										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	5630	5650	1	0.367		15					
Sulfate	48400	48800	1	0.835		15					

15

L1060180-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1060180-01 01/18/19 10:26 • (DUP) R3376928-8 01/18/19 10:37

(Original Result				DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	117000	115000	5	1.88		15

Laboratory Control Sample (LCS)

(LCS) R3376928-2 01/17/19 10:56

(200) 110070020 2 01/1//	15 10.50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	37600	94.1	80.0-120	
Sulfate	40000	38300	95.7	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1060261-01,02,03,04

L1060180-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1060180-01 01/17/19 16:40 • (MS) R3376928-4 01/17/19 17:02

(,	, ,	Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%	2	%	mo quamor
Chloride	50000	42200	86000	87.5	1	80.0-120	
Sulfate	50000	110000	150000	79.8	1	80 0-120	F.J6

L1060261-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1060261-02 01/17/19 20:43 • (MS) R3376928-6 01/17/19 21:05 • (MSD) R3376928-7 01/17/19 21:16

(00) 2.00020. 02 0	(100) 21000201 02 04 14 16 2010 (110) 1100 1100 1100 1100 1100 1100											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	5630	53500	53500	95.7	95.7	1	80.0-120			0.0206	15
Sulfate	50000	48400	93200	93000	89.5	89.2	1	80.0-120			0.208	15

PAGE:

11 of 15

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1060261-01,02,03,04

Method Blank (MB)

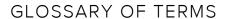
(MB) R3376054-1	01/15/19 17:23
	MB Re

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376054-2	01/15/19 17:26 •	(I CSD) R3376(254-3	01/15/19 17:28

, ,	•	•								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	10500	10400	105	104	80.0-120			0.948	20


(OS) L1060261-02 01/15/19 17:31 • (MS) R3376054-5 01/15/19 17:36 • (MSD) R3376054-6 01/15/19 17:39

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	149000	156000	156000	66.8	75.5	1	75.0-125	V		0.558	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

, 10010110110110 0111	
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	\Box	escription

	•
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

14 of 15

CS Engineers - KS			Billing Inf	ormation:		100	-	-	111	Analysis / Co	ontainer / Pr	eservative	E L	Chain of Custod	fy Page of			
S Engineers - KS W. 110th Street and Park, KS 66210			8575 W	ts Payable 7. 110th Street nd Park, KS 66		Pres Chk	22							B				
eport to: asors Franks	1			jfranks@scsengir n@kcpl.com;	neers.com;									12065 Lebanon Rd	note:			
roject Description: KCP&L latan Genera	nting Station		1	City/State Collected:			33	es						Mount Juliet, TN 3 Phone: 615-758-51 Phone: 800-767-51 Fax: 615-758-5859	858 859			
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213167 .		7	Lab Project # AQUAOPKS-IATAN		7	250mlHDPE-HNO	125mlHDPE-NoPres	5					L# L/00	60261 120			
Collected by (print): 6. Penation and by (signature)	Site/Facility II)#		P.O. #			OmlH	MIMD	NoPre	VoPre				Acctnum: AQ	UAOPKS			
Immediately Packed on Ice N_ Y	Same D		Day	d Only) Date Results Needed		Date Results Needed		No.		S04	125mlHDPE-NoPres	50mlHDPE-NoPres				Prelogin: P68 TSR: 206 - Jeff	Template: T136056 Prelogin: P689215 TSR: 206 - Jeff Carr	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	Calcium	Chloride,	504 12	TDS 250				PB: Shipped Via:				
MW-7	Coup	GW		1/10/19	1255	3	X	X	S	X				Remarks	Sample # (lab on)			
MW-8	1	GW		1/10/19	1210	3	X	X	8 8	X				200	-01			
MW-10		GW		1110/19	1125	2	X	150	x		12.0			The second	27			
DUPLICATE	ges 1	GW		1110/19	1215	3	X	X		x					-0			
MS/MSD	4	GW		1/10/19	1330	3	X	x		х					-01			
					1000													
					199													
SS - Soil AIR - Air F - Filter	Remarks:									рн	Temp		COC Seal	ample Receipt Ch Present/Intact:	ecklist			
ww - WasteWater pw - Drinking Water or - Other	Samples returnUPSFee	ied via: IExCouri	er	Tr	acking# VSI	0 1	661	-	760	Flow_	Other		Bottles Correct	arrive intact: bottles used: int volume sent:				
Relingdished by : (Signature)	er	Date:	9 1	me: Re	eceived by: (Signatu	are)		ell	-	rip Blank Re	1	s /No ICL /MeaH BR	VOA Zero Preserva	If Applicabl Neadspace: tion Correct/Che	v .			
Relinquished by : (Signature)		Date:	Ti	me: Ré	celved by: (Signatu	irei D	4	V	T	emp:-0.2 2./ 1.8	C Bottle	es Received:	If preserva	ition required by Logi	in: Date/Time			
Reinquished by : (Signature)		Date:	Tir	me: Re	ceived for lab by: (Sgnatu	re)_		0	ate:	Time		Hold:		Condition:			

ATTACHMENT 1-2 March 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT March 25, 2019

SCS Engineers - KS

Sample Delivery Group:

L1079198

Samples Received:

03/15/2019

Project Number:

27213167.18

Description:

KCP&L latan Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-7 L1079198-01	5
MW-8 L1079198-02	6
MW-10 L1079198-03	7
DUPLICATE L1079198-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

			Collected by	Collected date/time	Received da	te/time
MW-7 L1079198-01 GW			Whit Martin	03/14/19 10:00	03/15/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1253144	1	03/21/19 20:41	03/21/19 21:04	MMF	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1252510	1	03/20/19 22:10	03/20/19 22:10	ELN	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1250678	1	03/19/19 02:11	03/19/19 09:34	TRB	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-8 L1079198-02 GW			Whit Martin	03/14/19 10:55	03/15/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1252510	1	03/21/19 04:15	03/21/19 04:15	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1250678	1	03/19/19 02:11	03/19/19 10:57	TRB	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-10 L1079198-03 GW			Whit Martin	03/14/19 11:40	03/15/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1252510	1	03/21/19 04:31	03/21/19 04:31	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1250678	1	03/19/19 02:11	03/19/19 11:00	TRB	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1079198-04 GW			Whit Martin	03/14/19 10:00	03/15/19 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1253144	1	03/21/19 20:41	03/21/19 21:04	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1252510	1	03/21/19 04:47	03/21/19 04:47	ELN	Mt. Juliet, T

WG1250678

1

03/19/19 02:11

03/19/19 11:03

TRB

Mt. Juliet, TN

Metals (ICP) by Method 6010B

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Wubb law

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 03/14/19 10:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	472000		10000	1	03/21/2019 21:04	<u>WG1253144</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	4770		1000	1	03/20/2019 22:10	WG1252510
Sulfate	33900		5000	1	03/20/2019 22:10	WG1252510

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	132000	\vee	1000	1	03/19/2019 09:34	WG1250678

Cn

Analyte

Calcium

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 03/14/19 10:55

Metals (ICP) by Method 6010B

Result

140000

ug/l

Qualifier

RDL

ug/l

1000

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	4790		1000	1	03/21/2019 04:15	WG1252510

Dilution

Analysis

date / time

03/19/2019 10:57

Batch

WG1250678

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 03/14/19 11:40

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Sulfate	40100		5000	1	03/21/2019 04:31	WG1252510

Ss

	Result	<u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	151000		1000	1	03/19/2019 11:00	WG1250678

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 03/14/19 10:00

L1079198

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	492000		10000	1	03/21/2019 21:04	WG1253144

Cρ

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5000		1000	1	03/21/2019 04:47	WG1252510
Sulfate	36300		5000	1	03/21/2019 04:47	WG1252510

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	132000		1000	1	03/19/2019 11:03	WG1250678

СQс

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1079198-01,04

Method Blank (MB)

(MB) R3394345-1 03/21/	19 21:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

³Ss

[†]Cn

L1079881-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1079881-09 C	03/21/19 21:04 · (E	DUP) R3394345-3	03/21/19 21:04
--------------------	---------------------	-----------------	----------------

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1710000	1810000	1	5.70	J3	5

Laboratory Control Sample (LCS)

(LCS	R3394345-2	03/21/19	21:04

(LCS) R3394345-2 03/21/1	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8570000	97.4	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1079198-01,02,03,04

Method Blank (MB)

(MAD) D2202027 1 02/20/40	21.01			
(MB) R3393627-1 03/20/19	21:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Sulfate	U		77.4	5000

(OS) L1079198-01 03/20/19 22:10 • (DUP) R3393627-3 03/20/19 22:25

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4770	4760	1	0.273		15
Sulfate	33900	33900	1	0.109		15

(OS) L1078975-06 03/21/19 00:17 • (DUP) R3393627-6 03/21/19 00:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	ND	0.000	1	0.000		15
Sulfate	ND	0.000	1	0.000		15

Laboratory Control Sample (LCS)

(LCS) P3393627-2 03/20/19 21:17

(LCS) R3393627-2 U3/20	0/19 21:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40800	102	80.0-120	
Sulfate	40000	41200	103	80.0-120	

L1079198-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L10/9198-01 03/20/1	19 22:10 • (MS) F	3393627-4 03	3/20/19 22:41 •	(MSD) R33936	27-5 03/20/19	22:5/						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	4770	56300	56600	103	104	1	80.0-120			0.569	15
Sulfate	50000	33900	84400	84700	101	102	1	80.0-120			0.336	15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1079198-01,02,03,04

L1078975-06 Original Sample (OS) • Matrix Spike (MS)

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	ND	51100	102	1	80.0-120	
Sulfate	50000	ND	51300	103	1	80 O-120	

DATE/TIME:

03/25/19 09:07

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1079198-01,02,03,04

Method Blank (MB)

Analyte Calcium

(MB) R3392979-1	03/19/19 09:26	
	MB Result	1

MB Result	MB Qualifier	MB MDL	MB RDL
ug/l		ug/l	ug/l
U		46.3	1000

¹Cp

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

11 0	C 070202070 2	03/19/19 09:29 •	(I CCD	D2202070 2	02/10/10 00:21
(L(JO) ROOBZB/B-Z	03/19/19 09.29 • 1	LCSD) K33929/9-3	03/19/19 09.31

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	9820	9750	98.2	97.5	80.0-120			0.755	20

⁶Qc

(OS) L1079198-01 03/19/19 09:34 • (MS) R3392979-5 03/19/19 09:39 • (MSD) R3392979-6 03/19/19 09:42

(00) 2:070:00 0: 00/:0	,	.00020700	0, 10, 10 00.00	(0,0000000000000000000000000000000000000	00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	132000	138000	138000	60.4	60.9	1	75.0-125	V	V	0.0373	20

PAGE:

12 of 15

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

	Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description	Qual	ifier	Descri	ptio
-----------------------	------	-------	--------	------

J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

DATE/TIME:

03/25/19 09:07

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

			Billing Info	rmatio	n:						Analysis	/ Conta	niner / Preservati	ve		Chain of Co	ustody	Page of			
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W.	o i dyddic			Pre	[3] [1] \$100 (100 (100 (100 (100 (100 (100 (100								Na	2 ational Cen	ter for Testing & Innovation			
Report to: Jason Franks				ail To: jfranks@scsengineers.com; .martin@kcpl.com;			1	4 4								12065 Lebar Mount Juliet Phone: 615-	t, TN 371				
Project Description: KCP&L latan Generating S		11.8			City/State Collected:				y/State		03 <		res						Phone: 800- Fax: 615-758	767-5859	
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213167.1				Lab Project # AQUAOPKS-IATAN			250mlHDPE-HNO3	oPres	125mlHDPE-NoPres	S	S				L#	100	079198			
Collected by (print): Whit Martin	Site/Facility ID)#		P.O. 4	P.O. #			Omithe Ope-No		SmIHD	NoPre	NoPre				Acctnum: AQUAOPKS					
Collected by (signature): What Wark	Rush? (Lab MUST Be Not Same Day Five Day Next Day 5 Day (Rac				me Day Five Day xt Day 5 Day (Rad Only)		Date Resi	ults Needed		6010 2	125mlHDPE-NoPres	504	125mlHDPE-NoPres	250mlHDPE-NoPres				Prelogin:	P698	269	
Immediately Packed on Ice N Y X	Two Day			Sta				ium.	Chloride	Chloride,	125n	250m		PB:							
Sample ID	Comp/Grab	Matrix *	Depth	garries.	Date	Time	Cntr	Calcium	Chlo	Chlo	504	TDS				Shipped \		Sample # (lab only)			
MW-7	Grab	GW		3/	14/19	1000	3	X		X	1	X		732				-91			
MW-8	Grab	GW		13/	14/19	1055	2	X	X									-07			
MW-10	Grab	GW		3/	14/19	1140	2	X	7 642 49		X					3,		- 0			
DUPLICATE	Grab	GW		3/	14/19	1000	3	X	the fi	X	130	X						-01			
MW-7 MS/MSD	Grab	GW	Angel Company	3/	14/19	1005	3	X		X	1861	X						-0			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flov	<u> </u>	Temp		COC Sea COC Sig Bottles	Sample Receip al Present/In gned/Accurate s arrive inta	tact: : ct:	ecklist NP Y N				
DW - Drinking Water OT - Other	Samples return	ned via: dEx Cou	ırier		8 Tr	acking#									Suffici	bottles use lent volume s If Appl	ent:				
Relinquished by : (Signature)		3/14/	* 12.2525 Arr 2 (no. 11 no. 12 de la d	Time:	_ /	ceived by: (Sign	ature)	Í				Trip Blank Received: Yes / No Hoc / MeoH			Preservation Correct/Checked: Y N RAD SCREEN: <0.5 mR/hr						
Relinquished by : (Signature)		Date:	g/88577	lime:	11-7-50	eduved by: (Sign					Temp:/		°C Bottles Recei		If presen	vation required b	by Logi	n: Date/Time			
Relinquished by : (Signature)		Date:		Γime:	Re	eceived for lab by	by: (Signature) Date: Time: Hold:					Condition: NCF / OK									

ATTACHMENT 1-3 May 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT

May 29, 2019

SCS Engineers - KS

Project Number:

Sample Delivery Group: L1100809

Samples Received: 05/21/2019 27213167.18

Description: KCP&L latan Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1100809-01	5
MW-2 L1100809-02	6
MW-6 L1100809-03	7
MW-7 L1100809-04	8
MW-8 L1100809-05	9
DUPLICATE L1100809-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
Gl: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

ONE	LAB.	NATI	ONW	/IDE.

MW-1 L1100809-01 GW			Collected by G. Penaflor	Collected date/time 05/20/19 11:00	Received date 05/21/19 08:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1286119	1	05/25/19 11:35	05/25/19 12:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 17:14	05/28/19 17:14	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:44	TRB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1100809-02 GW			G. Penaflor	05/20/19 12:00	05/21/19 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1286119	1	05/25/19 11:35	05/25/19 12:07	MMF	Mt. Juliet, TN
Not Chamieta hu Mathad OOFCA	WG1286594	1	05/28/19 17:49	05/28/19 17:49	ELN	Mt. Juliet, TN
wet Chemistry by Method 9056A	1101200001					
• •	WG1286594	5	05/29/19 09:59	05/29/19 09:59	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B		5 1	05/29/19 09:59 05/24/19 10:25	05/29/19 09:59 05/25/19 10:52	ELN TRB	Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594					Mt. Juliet, TN

SAMPLE SUMMARY

Cn

Sr

СQс

Gl

MW-7 L1100809-04 G\

MW-8 L1100809-05 GW

Gravimetric Analysis by Method 2540 C-2011

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Method

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1286119	1	05/25/19 11:35	05/25/19 12:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 19:35	05/28/19 19:35	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	5	05/29/19 10:16	05/29/19 10:16	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:49	TRB	Mt. Juliet, TN

Batch

WG1286119

WG1286594

WG1284393

Dilution

1

1

Preparation

05/25/19 11:35

05/28/19 19:18

05/24/19 10:25

Collected by

G. Penaflor

date/time

Collected by	Collected date/time	Received date/time
G. Penaflor	05/20/19 09:40	05/21/19 08:00

Analysis

date/time

05/25/19 12:07

05/28/19 19:18

05/25/19 11:47

05/20/19 13:45

Analyst

MMF

ELN

TRB

05/21/19 08:00

Collected date/time Received date/time

Location

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1286119	1	05/25/19 11:35	05/25/19 12:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 19:53	05/28/19 19:53	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:52	TRB	Mt. Juliet, TN

Collected by	Collected date/time	Received date/time
G. Penaflor	05/20/19 12:00	05/21/19 08:00

DUPLICATE L1100809-06 GW			O. I Chanol	03/20/13 12.00	03/21/19 00.0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1286119	1	05/25/19 11:35	05/25/19 12:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 20:10	05/28/19 20:10	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	5	05/29/19 10:34	05/29/19 10:34	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:54	TRB	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 11:00

L1100809

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	470000		10000	1	05/25/2019 12:07	WG1286119

²TC

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5660		1000	1	05/28/2019 17:14	WG1286594
Fluoride	311		100	1	05/28/2019 17:14	WG1286594
Sulfate	28900		5000	1	05/28/2019 17:14	WG1286594

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 11:44	WG1284393
Calcium	130000		1000	1	05/25/2019 11:44	WG1284393

СQс

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	666000		10000	1	05/25/2019 12:07	WG1286119

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	7180		1000	1	05/28/2019 17:49	WG1286594
Fluoride	373		100	1	05/28/2019 17:49	WG1286594
Sulfate	119000		25000	5	05/29/2019 09:59	WG1286594

Ss

Cn

⁵ Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 10:52	WG1284393
Calcium	167000	\vee	1000	1	05/25/2019 10:52	WG1284393

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 13:05

L1100809

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	468000		10000	1	05/25/2019 12:07	WG1286119

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1210		1000	1	05/28/2019 19:18	WG1286594
Fluoride	366		100	1	05/28/2019 19:18	WG1286594
Sulfate	20200		5000	1	05/28/2019 19:18	WG1286594

Metals (ICP) by Method 6010B

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	ug/l		date / time	
Boron	ND	200	1	05/25/2019 11:47	WG1284393
Calcium	131000	1000	1	05/25/2019 11:47	WG1284393

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 13:45

L1100809

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	737000		13300	1	05/25/2019 12:07	WG1286119

²TC

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	26000		1000	1	05/28/2019 19:35	WG1286594
Fluoride	389		100	1	05/28/2019 19:35	WG1286594
Sulfate	166000		25000	5	05/29/2019 10:16	WG1286594

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 11:49	WG1284393
Calcium	184000		1000	1	05/25/2019 11:49	WG1284393

Cn

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 09:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	518000		10000	1	05/25/2019 12:07	WG1286119

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3980		1000	1	05/28/2019 19:53	WG1286594
Fluoride	446		100	1	05/28/2019 19:53	WG1286594
Sulfate	40900		5000	1	05/28/2019 19:53	WG1286594

³Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 11:52	WG1284393
Calcium	141000		1000	1	05/25/2019 11:52	WG1284393

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	646000		10000	1	05/25/2019 12:07	WG1286119

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	7230		1000	1	05/28/2019 20:10	WG1286594
Fluoride	375		100	1	05/28/2019 20:10	WG1286594
Sulfate	119000		25000	5	05/29/2019 10:34	WG1286594

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 11:54	WG1284393
Calcium	166000		1000	1	05/25/2019 11:54	WG1284393

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1100809-01,02,03,04,05,06

Method Blank (MB)

(MB) R3415887-1 05/25/	19 12:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

L1100809-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	470000	471000	1	0.213		5

Laboratory Control Sample (LCS)

(LCS) R3415887-2 05/25/19 12:07

(LCS) R3415887-2 U5/					LC
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8580000	97.5	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1100809-01,02,03,04,05,06

Method Blank (MB)

(MB) R3415815-1 O	5/28/19 09:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1100809-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1100809-01 05/28/19 17:14 • (DUP) R3415815-3 05/28/19 17:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	5660	5660	1	0.00883		15
Fluoride	311	310	1	0.322		15
Sulfate	28900	28800	1	0.175		15

L1100823-02 Original Sample (OS) • Duplicate (DUP)

(OS) | 1100823-02 05/28/19 22:31 • (DLIP) R3415815-8 05/28/19 22:49

(03) 1100023 02 03/20/	13 22.51 - (DOI)	110-10010 0	03/20/13/2	22.73		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	34100	34100	1	0.201		15
Fluoride	766	764	1	0.288		15
Sulfate	234000	234000	1	0.0105	Е	15

Sc

Laboratory Control Sample (LCS)

// CC/ D2/15015 2 05/20/10 00:20

(LCS) R3415815-2 U5/2	18/19/09:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39900	99.7	80.0-120	
Fluoride	8000	8040	101	80.0-120	
Sulfate	40000	40100	100	80.0-120	

Analyte

Chloride

Fluoride

Sulfate

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

RPD Limits

%

15

15

15

Wet Chemistry by Method 9056A

L1100809-01,02,03,04,05,06

L1100809-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1100823-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

ug/l

83700

5860

271000

MSD Result

ug/l

83500

5850

272000

MS Rec.

%

98.9

102

74.8

(OS) L1100823-01 05/28/19 21:03 • (MS) R3415815-6 05/28/19 21:21 • (MSD) R3415815-7 05/28/19 22:14

Spike Amount Original Result MS Result

ug/l

764

34200

234000

ug/l

50000

5000

50000

(OS) L1100809-02 05/28/19 17:49 • (MS) R3415815-4 05/28/19 18:42 • (MSD) R3415815-5 05/28/19 19:00

` '	` '			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	7180	59300	59000	104	104	1	80.0-120			0.519	15
Fluoride	5000	373	5580	5560	104	104	1	80.0-120			0.307	15
Sulfate	50000	121000	167000	166000	90.9	90.6	1	80.0-120	<u>E</u>	<u>E</u>	0.117	15

MSD Rec.

%

98.5

102

75.5

Dilution

1

Rec. Limits

80.0-120

80.0-120

80.0-120

%

MS Qualifier

ΕV

MSD Qualifier

ΕV

RPD

0.276

0.263

0.126

%

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1100809-01,02,03,04,05,06

Method Blank (MB)

(MB) R3415021-1 05	5/25/19 10:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	293	<u>J</u>	46.3	1000

[†]Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3415021-2 05/25/	719 10:47 • (LCSL)) R3415021-3	05/25/19 10:49	9						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	974	951	97.4	95.1	80.0-120			2.35	20
Calcium	10000	9930	9690	99.3	96.9	80.0-120			2.46	20

L1100809-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100809-02 05/25/19 10:52 • (MS) R3415021-5 05/25/19 10:57 • (MSD) R3415021-6 05/25/19 10:59												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	1120	1140	95.3	97.3	1	75.0-125			1.76	20
Calcium	10000	167000	175000	174000	81.4	71.7	1	75.0-125		V	0.560	20

L1100823-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100823-01 05/25/19 11:02 • (MS) R3415021-7 05/25/19 11:04 • (MSD) R3415021-8 05/25/19 11:06												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	2130	3040	3070	91.5	94.3	1	75.0-125			0.916	20
Calcium	10000	66800	75900	75400	91.9	86.6	1	75.0-125			0.692	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbreviations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

			Billing Information:			1 7			/	Analysis /	Contai	ner / Preser	vative			Chain of Custody	Page of
SCS Engineers - KS B575 W. 110th Street Overland Park, KS 66210		Accounts Payable 8575 W. 110th Str Overland Park, KS		110th Street	.0	Pres Chk	. 4								4	National Co	nter for Testing & Innovation
Report to: Jason Franks			jay.martin	franks@scsenginee @kcpl.com;	ers.com;		res									12065 Lebanon Rd Mount Juliet, TN 37	
Project Description: KCP&L latan Gene	erating Station		City/State Weston, M		10	E-NoP	12								Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859		
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213167 .			Lab Project # AQUAOPKS-IATAN			SmIHDPE-NoPres	250mIHDPE-HNO3								B18	100809
Collected by (print): 6 Penaflor	Site/Facility II) #		P.O. #			12	HDPE	oPres				2.0			Acctnum: AQI	and the state of t
Collected by (signature): Immediately Packed on Ice N Y	Same D		Day	Quote # Date Resu	lts Needed	No.	Anions (Cld, F, SO4)	- 6010 250ml	250mlHDPE-No							Template: T13 Prelogin: P70 TSR: 206 - Jeff PB:	6059 9 07 6
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	nion	Ca	TDS 2							Shipped Via:	
MW-1	GRAB	GW		E la alla	1100	3	X	ω X	X						-	Remarks	Sample # (lab only)
MW-2	GRAD	GW		5/20/19	1200	3	X	X	X								-01
MW-6		GW			1305	3	X	X	X								- 93
MW-7		GW			1245	3	X	X	X						, che		- 00
MW-8		GW			0940	3	X	X	X								- 85
DUPLICATE	++-	GW			1200	3	X	X	X								-0,
MW-2 MS/MSD	1	GW		1	1205	3	X	X	X								_01
					120												
			47-		77												
																1	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater WW - WasteWater DW - Drinking Water	Remarks:								pH Flow		Temp Other		COC S: Bottle	eal Prigned, es arrect bot	/Accurate: rive intact: ttles used:	: NP Y N	
OT - Other		turned via: FedExCourier Tracking #			cking# [_]	/1	0/	0.0	1							volume sent: If Applicab	X N
Relinguished by Signature	h			ceived by: (Signat	(ure)	Tre	ne	0	Trip Blar	nk Rece	ived: Yes/ HCI TBR	-/MeoH	Prese	Preservation Correct/Checked: Y N RAD SCREEN: <0.5 mR/hr			
Relinquished by: (Signature)	//	Date: 5-20	19	ime: 1738	wed by: (Signat	ture)				Temp: 1-	13BF		Received:	If prese	ervatio	n required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	, T	ime: Red	ceived for lab by:	(Signat	ure)	1. ±7	1. 1/4	Date: 5/2	1/10	Time:	60	Hold:		/ A.	Condition: NCF / OK

ANALYTICAL REPORT

May 29, 2019

SCS Engineers - KS

Sample Delivery Group: L1100821

Samples Received: 05/21/2019

27213167.18 Project Number:

Description: KCP&L latan Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-9 L1100821-01	5
MW-10 L1100821-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc. Sample Chain of Custody	13

PAGE:

2 of 13

			Collected by	Collected date/time	Received date/time	
MW-9 L1100821-01 GW			G. Penaflor	05/20/19 10:40	05/21/19 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1285406	1	05/24/19 11:02	05/24/19 12:19	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 20:28	05/28/19 20:28	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:57	TRB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-10 L1100821-02 GW			G. Penaflor	05/20/19 14:30	05/21/19 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1285406	1	05/24/19 11:02	05/24/19 12:19	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1286594	1	05/28/19 20:46	05/28/19 20:46	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1284393	1	05/24/19 10:25	05/25/19 11:59	TRB	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 10:40

L1100821

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	457000		10000	1	05/24/2019 12:19	WG1285406

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1570		1000	1	05/28/2019 20:28	WG1286594
Fluoride	415		100	1	05/28/2019 20:28	WG1286594
Sulfate	22800		5000	1	05/28/2019 20:28	WG1286594

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/25/2019 11:57	WG1284393
Calcium	115000		1000	1	05/25/2019 11:57	WG1284393

ONE LAB. NATIONWIDE.

Collected date/time: 05/20/19 14:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	697000		13300	1	05/24/2019 12:19	WG1285406

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	21000		1000	1	05/28/2019 20:46	WG1286594
Fluoride	623		100	1	05/28/2019 20:46	WG1286594
Sulfate	37300		5000	1	05/28/2019 20:46	WG1286594

Metals (ICP) by Method 6010B

	Result	Qualifier RDL	Dilution	Analysis	Batch
Analyte	ug/l	ug/l		date / time	
Boron	ND	200	1	05/25/2019 11:59	WG1284393
Calcium	151000	1000	1	05/25/2019 11:59	WG1284393

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1100821-01,02

Method Blank (MB)

(MB) R3415467-1 05/24/19 12:19										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Dissolved Solids	U		2820	10000						

[†]Cn

-	00	11100824 03	05/24/19 12:19 •	וח)	D2/15/67 2	05/24/10 12:10
- (U3	L1100624-03	05/24/19 12.19 •	(DUP)) K341340/-3	05/24/19 12.19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1120000	1110000	1	0.898		5

(LCS	R3415467-2	05/24/19	12:19

(LCS) NS413407-2 03/24/	Spike Amount	LCS F	Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l		%	%
Dissolved Solids	8800000	8920		101	85.0-115

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1100821-01,02

Method Blank (MB)

(MB) R3415815-1 05/28/1	19 09:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1100809-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1100809-01 05/28/19 17:14 • (DUP) R3415815-3 05/28/19 17:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	5660	5660	1	0.00883		15
Fluoride	311	310	1	0.322		15
Sulfate	28900	28800	1	0.175		15

L1100823-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1100823-02 05/28/19 22:31 • (DUP) R3415815-8 05/28/19 22:49

(03) 1100023 02 03/20/	13 22.51 - (DOI)	110-10010 0	03/20/13/2	22.73		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	34100	34100	1	0.201		15
Fluoride	766	764	1	0.288		15
Sulfate	234000	234000	1	0.0105	Е	15

Sc

Laboratory Control Sample (LCS)

(I CS) P3/15815-2 05/28/19 09:30

(LCS) R3415815-2 U5/28	C5) R3415815-2 05/28/19 09.30											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
Chloride	40000	39900	99.7	80.0-120								
Fluoride	8000	8040	101	80.0-120								
Sulfate	40000	40100	100	80.0-120								

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1100809-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100809-02 05/28/19 17:49 • (MS) R3415815-4 05/28/19 18:42 • (MSD) R3415815-5 05/28/19 19:00

(,														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Chloride	50000	7180	59300	59000	104	104	1	80.0-120			0.519	15		
Fluoride	5000	373	5580	5560	104	104	1	80.0-120			0.307	15		
Sulfate	50000	121000	167000	166000	90.9	90.6	1	80.0-120	Е	Е	0.117	15		

L1100823-01 Original Sample	(OS) • Matrix	Spike (MS) • N	Matrix Spike	Duplicate (MSD)
-----------------------------	---------------	----------------	--------------	-----------------

(OS) L1100823-01 05/28/19 21:03 • (MS) R3415815-6 05/28/19 21:21 • (MSD) R3415815-7 05/28/19 22:14

(,														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		
Chloride	50000	34200	83700	83500	98.9	98.5	1	80.0-120			0.276	15		
Fluoride	5000	764	5860	5850	102	102	1	80.0-120			0.263	15		
Sulfate	50000	234000	271000	272000	74.8	75.5	1	80.0-120	ΕV	ΕV	0.126	15		

PAGE:

9 of 13

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1100821-01,02

Method Blank (MB)

Analyte

Boron

(MB) R3415021-1 05/25/19 10:45 MB Qualifier

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

MB MDL

ug/l

12.6

MB RDL

ug/l

200

(LCS) R3415021-2 05/25/19 10:47 • (LCSD) R3415021-3 05/25/19 10:49

MB Result

ug/l

U

` '	,	,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	974	951	97.4	95.1	80.0-120			2.35	20
Calcium	10000	9930	9690	99.3	96.9	80.0-120			2.46	20

L1100809-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1100809 02 05/25/19 10:52 - (MS) P3/15021 5 05/25/19 10:57 - (MSD) P3/15021 6 05/25/19 10:59

(OS) L1100809-02 05/25/	/19 10:52 • (IVIS)	R3415UZ1-5 U	5/25/19 10:57	• (IVISD) R3415C	121-6 05/25/1	9 10:59						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	1120	1140	95.3	97.3	1	75.0-125			1.76	20
Calcium	10000	167000	175000	174000	81.4	71.7	1	75.0-125		V	0.560	20

L1100823-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100823-01 05/25/19 11:02 • (MS) R3415021-7 05/25/19 11:04 • (MSD) R3415021-8 05/25/19 11:06

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	2130	3040	3070	91.5	94.3	1	75.0-125			0.916	20
Calcium	10000	66800	75900	75400	91.9	86.6	1	75.0-125			0.692	20

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

, no or o tradition to arre	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Description Qualifier

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

DATE/TIME:

05/29/19 15:52

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

				Billing Information:				Analysis / Contai				Preservative		Chain of Custody Page of	
			Accounts Payable 8575 W. 110th Street										0		
				d Park, KS 662		T we							Net onel Co	enter for Testing & Innovation	
Report to: Jason Franks			jay.martin	mail To: jfranks@scsengineers.com; ay.martin@kcpl.com;			res							12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	
Project Description: KCP&L latan Gener	ating Station			City/State Collected:	J	E-NoF	(2)					7	Phone: 800-767-58 Fax: 615-758-5859		
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213167.			Lab Project # AQUAOPKS-	IATAN	170 m	SmIHDPE-NoPres	- 6010 250mlHDPE-HNO3	9				4.0 4.1 2.1	B181	15800
Collected by (print);	Site/Facility ID)#		P.O.#			504) 125	JHDP!	NoPre					Acctnum: AQ	
Collected by (signature):			Day	Quote #		L.	3 250m	250mlHDPE-NoPres					Prelogin: P71	Template: T136056 Prelogin: P710043	
Immediately Packed on Ice N Y	Two Day	10 D	ay (Rad Only)	St	ults Needed	No. of	ns (Cld,	- 601	250ml					TSR: 206 - Jeff PB:	Carr
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anions	B, Ca	TDS					Shipped Via:	Sample # (lab only)
MW-9	GRAB	GW	1	5/20	1040	3	X	X	X					-	-01
MW-10	GRAB	GW		5/20	1430	3	X	Х	X						- 01
													4		
							1								
						13.0									
					1										
		E. S	1												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:				1					рн _		emp	COC S:	Sample Receipt Co eal Present/Intact igned/Accurate:	Y NP Y N
WW - WasteWater DW - Drinking Water OT - Other	Samples return	ned via: dEx Cou	rier	Т	racking #]]	///	2/	0.	4	Flow_	(Other	Correc	es arrive intact: ct bottles used: cient volume sent: If Applical	
Relinquisped by : (Signature)	h	Date: 5/20	119	1539	eceived by: (Signa	A	n	W	6	Trip Blank I	Received:	Yes / No HCL / Meol- TBR	Prese	ero Headspace: rvation Correct/Ch RAD SCREEN: <	/
Relinquished by : (Signature)	1	Date: 5201	T	ime: / 230	celved by: (Signa	ture	-/~	The to point		Temp: A3	TF°C	Bottles Received:	If prese	ervation required by Lo	gin: Date/Time
Relinquished by: (Signature)	The state of the s	Date:	1	ime: R	eceived for lab by	: (Signat	ure)			Date: 5/11/		Time:	Hold:		Conditions NCF / OK

ATTACHMENT 1-4 July 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT

July 22, 2019

SCS Engineers - KS

Project Number:

Sample Delivery Group: L1118343

Samples Received: 07/13/2019

Description: KCP&L latan Generating Station

27213167.18

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

¹Cp

Entire Report Reviewed By:

Heavils relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approved for the absoratory. Where applicables sampling conducted by Pare National is performed per guidance provides in absoratory standard operating procedures 96:300, 06:303, and 06:034.

18

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-2 L1118343-01	5
MW-6 L1118343-02	6
DUPLICATE 1 L1118343-03	7
MW-7 L1118343-04	8
DUPLICATE 2 L1118343-05	9
MW-10 L1118343-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17

Sc: Sample Chain of Custody

MW-2 L1118343-01 GW			Collected by G. Penaflor	Collected date/time 07/11/19 15:30	Received da 07/13/19 08:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1313330	1	07/19/19 00:07	07/19/19 00:07	LDC	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-6 L1118343-02 GW			G. Penaflor	07/11/19 15:05	07/13/19 08:4	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1313330	1	07/19/19 00:36	07/19/19 00:36	LDC	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 1 L1118343-03 GW			G. Penaflor	07/11/19 15:10	07/13/19 08:4	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1313823	1	07/19/19 03:51	07/19/19 03:51	ELN	Mt. Juliet, T
			Collected by G. Penaflor	Collected date/time 07/11/19 16:10	Received da 07/13/19 08:4	
MW-7 L1118343-04 GW			G. Pelialioi	07/11/19 16.10	07/13/19 06.4	+3
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1311324	1	07/15/19 10:18	07/15/19 10:47	TH	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1313823	1	07/19/19 04:24	07/19/19 04:24	ELN	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1313823	5	07/19/19 12:08	07/19/19 12:08	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1311358	1	07/15/19 22:37	07/18/19 20:44	CCE	Mt. Juliet, T
			Collected by	Collected date/time		
DUPLICATE 2 L1118343-05 GW			G. Penaflor	07/11/19 16:15	07/13/19 08:4	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1311324	1	07/15/19 10:18	07/15/19 10:47	TH	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1313823	1	07/19/19 05:13	07/19/19 05:13	ELN	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1313823	5	07/19/19 12:24	07/19/19 12:24	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1311358	1	07/15/19 22:37	07/18/19 21:11	CCE	Mt. Juliet, T
			Collected by	Collected date/time		
MW-10 L1118343-06 GW			G. Penaflor	07/11/19 16:45	07/13/19 08:4	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1313823	1	07/19/19 05:30	07/19/19 05:30	ELN	Mt. Juliet, 7
Motole (ICD) by Mothed CO10D	WC12112E0	1	07/15/10 22:27	07/10/10 21/14	CCE	MA Lulian T

Metals (ICP) by Method 6010B

WG1311358

1

07/15/19 22:37

07/18/19 21:14

CCE

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ср

Jeff Carr Project Manager

Tubb lan

MW-2

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

果

Collected date/time: 07/11/19 15:30

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Fluoride	389		100	1	07/19/2019 00:07	WG1313330	

ONE LAB. NATIONWIDE.

Collected date/time: 07/11/19 15:05

L1118343

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Fluoride	373		100	1	07/19/2019 00:36	WG1313330	

DUPLICATE 1

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

*

Collected date/time: 07/11/19 15:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Fluoride	338		100	1	07/19/2019 03:51	<u>WG1313823</u>

ONE LAB. NATIONWIDE.

Collected date/time: 07/11/19 16:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	761000		13300	1	07/15/2019 10:47	<u>WG1311324</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	31900		1000	1	07/19/2019 04:24	WG1313823
Sulfate	186000		25000	5	07/19/2019 12:08	WG1313823

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	199000	<u>01 V</u>	1000	1	07/18/2019 20:44	WG1311358

Cn

ONE LAB. NATIONWIDE.

Collected date/time: 07/11/19 16:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	803000		13300	1	07/15/2019 10:47	WG1311324

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	31800		1000	1	07/19/2019 05:13	WG1313823
Sulfate	185000		25000	5	07/19/2019 12:24	WG1313823

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	200000		1000	1	07/18/2019 21:11	WG1311358

СQс

Cn

ONE LAB. NATIONWIDE.

Collected date/time: 07/11/19 16:45

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	22500		1000	1	07/19/2019 05:30	WG1313823
Sulfate	33000		5000	1	07/19/2019 05:30	WG1313823

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	153000		1000	1	07/18/2019 21:14	WG1311358

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1118343-04,05

Method Blank (MB)

(MB) R3431148-1 07/15/19 10:47

(/				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

(OS) L1118217-01 07/15/19 10:47 • (DUP) R3431148-3 07/15/19 10:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	606000	612000	1	0.985		5

(LCS) R3431148-2 07/15/19 10:47

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118343-01,02

Method Blank (MB)

(MB) R3432177-1 07/18/19	9 23:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Fluoride	U		9.90	100

L1118343-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1118343-01 07/19/19 00:07 • (DUP) R3432177-3 07/19/19 00:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	389	387	1	0.412		15

Cn

(OS) | 1118357-35 07/19/19 06:22 . (DI IP) P3/132177-6 07/19/19 06:36

(O3) E1116337-33 07/19/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	111	110	1	1.36		15

Laboratory Control Sample (LCS)

(LCS) R3432177-2 07/18/19 23:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Fluoride	8000	8130	102	80.0-120	

L1118343-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1118343-02 07/19/19 00:36 • (MS) R3432177-4 07/19/19 00:50 • (MSD) R3432177-5 07/19/19 01:05

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Fluoride	5000	373	5470	5510	102	103	1	80.0-120			0.715	15	

L1118357-35 Original Sample (OS) • Matrix Spike (MS)

'OS) I 1118357-35	07/19/19	06.22 •	(MS) R3432177-7	07/19/19	06.51

(OS) LI118357-35 07/19/19	06.22 • (IVIS) R.	34321/7-/ 0//	19/19 06:51				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Fluoride	5000	111	5270	103	1	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118343-03,04,05,06

Method Blank (MB)

(MB) R3432453-1 07/1	9/19 03:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	501	<u>J</u>	51.9	1000
Fluoride	U		9.90	100
Sulfate	437	<u>J</u>	77.4	5000

L1118343-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1118343-03 07/19/19 03:51 • (DUP) R3432453-3 07/19/19 04:08

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1210	1200	1	1.16		15
Fluoride	338	337	1	0.296		15
Sulfate	20500	20500	1	0.259		15

L1118365-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1118365-06 07/19/19 08:30 • (DUP) R3432453-6 07/19/19 08:47

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1460	1450	1	0.364		15
Fluoride	502	503	1	0.159		15

Sc

L1118365-06 Original Sample (OS) • Duplicate (DUP)

(OC) | 111036E O6 O7/10/10 13:14 . (DLID) D3/133/E3 9 O7/10/10 13:20

(O5) LIII8365-06 07/19/1	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	168000	168000	5	0.301		15

Laboratory Control Sample (LCS)

(LCS) R3432453-2 07/19/	19 03:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39500	98.8	80.0-120	
Fluoride	8000	8280	104	80.0-120	
Sulfate	40000	39200	98.0	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1118343-03,04,05,06

L1118343-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1118343-04 07/19/19 04:24 • (MS) R3432453-4 07/19/19 04:40 • (MSD) R3432453-5 07/19/19 04:57

(00) 211100 10 0 1 0771071	0 0 (0)	0.02.00 . 0,	, , , , , , , , , , , , , , , , , , , ,	(00 0 077.07.	0 0 1.07						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	31900	83600	83500	103	103	1	80.0-120			0.0558	15
Fluoride	5000	346	5540	5550	104	104	1	80.0-120			0.261	15
Sulfate	50000	196000	242000	242000	91.3	91.0	1	80.0-120	Е	Е	0.0465	15

L1118365-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1118365-06 07/19/19 08:30 • (MS) R3432453-7 07/19/19 09:03

(03) [1110303-00 07/13/1	3 00.30 ° (IVIS) IV	(3432433-7 07	/13/13 03.03				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	1460	53300	104	1	80.0-120	
Fluoride	5000	502	5780	106	1	80.0-120	
Sulfate	50000	179000	225000	91.3	1	80.0-120	Е

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1118343-04,05,06

Method Blank (MB)

(MB) R3432163-1 07/18/19 20:37

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		46.3	1000

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3432163-2 07/18/19 20:39 • (LCSD) R3432163-3 07/18/19 20:42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	10100	10300	101	103	80.0-120			1.56	20

⁶Qc

(OS) L1118418-03 07/18/19 20:54 • (MS) R3432163-6 07/18/19 20:56 • (MSD) R3432163-7 07/18/19 20:58

(,	Spike Amount		·	•	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	72600	81100	80700	85.5	81.8	1	75.0-125			0.455	20

L1118343-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1118343-04 07/18/19 20:44 • (MS) R3432163-5 07/18/19 20:49 • (MSD) R3432163-8 07/18/19 20:51

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	199000	207000	207000	79.1	73.3	1	75.0-125		V	0.282	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifie	٥r	D	es	cri	n	tio	\cap	n
Qualific	-1	$\overline{}$	$C_{\mathcal{O}}$	CII	Μ	CI.	0	

	<u>'</u>
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Ss

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ACCOUNT:

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PROJECT: SDG: DATE/TIME: L1118343 27213167.18 07/22/19 13:14

PAGE:

17 of 18

		y-	Billing Info	ormation:		T			. 1	Analysis /	Conta	iner / Prese	rvative			Chain of Custody	Page of
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210		8575 W. 1		Accounts Payable 8575 W. 110th Street Overland Park, KS 66210		Pres Chk										Pace / National Co	Analytical® Inter for Testing & Innovation
Report to: Jason Franks			Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;			2										12065 Lebanon Rd Mount Juliet, TN 37	122
Project Description: KCP&L latan General	rating Station		lead balds	City/State Collected:	bab baal.@l.a.	1	2	res								Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
Phone: 913-681-0030 Fax: 913-681-0012	Client Project 27213167.			Lab Project # AQUAOPKS	-IATAN		HN03 <	125mlHDPE-NoPres	loPres							L# UI	18 343
Collected by (print): G. Penaflor	Site/Facility II)#		P.O.#			DPE-H	MIHDE	IDPE-N	NoPres		-				Acctnum: AQL	JAOPKS
Collected by (signature);	Same Da	The second secon	Day	y .			250mlHDPE-	504 125	125mlHDPE-NoPres	250mIHDPE-NoPres		2000 - 1950 2000	A.		<i>A</i> :	Template: T15 Prelogin: P71	9339
Immediately Packed on Ice N Y X	Next Da	Day 10 Day (Rad Only)		Date Res			6010 2	S = =						TSR: 206 - Jeff (Carr		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Ca - (hlor	007	TDS						Shipped Via:	Sample # (lab only)
MW-2	TARAR	GW		7/11/19	1530	1	O	0	X	-					100	-	-01
MW-6	1 1 2	GW	3	1	1505	1		1	X								-0
DUPLICATE 1		GW		191	1510	1			X								- 6
MW6 MS/MSD	1	GW	# # 7E neg		1515	1			X	10			0.81		77.44	4 15 . VIII	-02-0
MW-7		GW			1610	3	X	Х		Х						1 3 2	.d4 a
MW-7 MS/MSD	I de	GW	Y Barry		1620	3	X	Х		х							. DY 05 8
DUPLICATE 2	100	GW	200		1615	3	X	Х		Х						-	-05
MW-10	V	GW		V	1645	2	X	Х				2-1	a.				.06
Matrix: SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water DT - Other	Samples return UPS Fee	ned via: dExCour	ier	Т	racking#					pH Flow		Temp _ Other _		COC S Bottl Corre Suffi	eal Pigned es ar ct bo	ple Reseipt Cl resent/Intact /Accurate: rive intact: ttles used: volume sent: If Applicab	Y NP Y N
Relinguished by : (Signature)	11	Date: 7/12/	19	1338/	eceived by: (Signat	Son	7 د	-12-		Trip Blar		HC TB		Prese	RAD	eadspace: on Correct/Ch	0.5 mR/hr
elinguistied by : (Signature)	6	7/12/	19	1700 R	eceived by: (Signat	ure)				Temp: 4.741	×4.8	°C Bottles	Received:	If pres	ervatio	on required by Lo	gin: Date/Time
elinquished by : (Signature)		Date:	I I	ime: R	eceived for lab by:	(Signat	ure)			Date:	13	Time:	:45	Hold:			Condition: NCF / OK

ATTACHMENT 1-5 August 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT

August 28, 2019

SCS Engineers - KS

Project Number:

Sample Delivery Group: L1131379

Samples Received: 08/21/2019 27213167.19

Description: KCP&L latan Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-2 L1131379-01	5
MW-6 L1131379-02	6
DUPLICATE 1 L1131379-03	7
MW-7 L1131379-04	8
DUPLICATE 2 L1131379-05	9
MW-10 L1131379-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

MW-2 L1131379-01 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 12:05	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 14:04	08/22/19 14:04	ST	Mt. Juliet, TN
MW-6 L1131379-02 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 13:10	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 14:21	08/22/19 14:21	ST	Mt. Juliet, Ti
DUPLICATE 1 L1131379-03 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 13:10	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 15:10	08/22/19 15:10	ST	Mt. Juliet, TI
MW-7 L1131379-04 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 12:35	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1332902	1	08/25/19 09:19	08/25/19 09:41	TH	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 15:26	08/22/19 15:26	ST	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1332945	5	08/22/19 19:49	08/22/19 19:49	ST	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1332889	1	08/22/19 20:10	08/23/19 08:45	TRB	Mt. Juliet, T
DUPLICATE 2 L1131379-05 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 12:35	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1332902	1	08/25/19 09:19	08/25/19 09:41	TH	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 16:48	08/22/19 16:48	ST	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1332945	5	08/22/19 20:05	08/22/19 20:05	ST	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1332889	1	08/22/19 20:10	08/23/19 09:30	TRB	Mt. Juliet, T
MW-10 L1131379-06 GW			Collected by Jason R. Franks	Collected date/time 08/20/19 11:35	Received da 08/21/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1332945	1	08/22/19 17:05	08/22/19 17:05	ST	Mt. Juliet, T
Maria (ICP) L. Maria L. COMOR	WO1332343	1	00/22/10 17:00	00/22/10 17.00	71	ivit. Julict, I

Sr

Metals (ICP) by Method 6010B

WG1332889

1

08/22/19 20:10

TRB

08/23/19 09:32

Mt. Juliet, TN

appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my

knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been

All sample aliquots were received at the correct temperature, in the proper containers, with the

knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 08/20/19 12:05

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Fluoride	333		100	1	08/22/2019 14:04	WG1332945

ONE LAB. NATIONWIDE.

Collected date/time: 08/20/19 13:10

L1131379

1131379

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Fluoride	328		100	1	08/22/2019 14:21	WG1332945	

DUPLICATE 1

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 08/20/19 13:10

Wet Chemistry by Method 9056A

L113137

-	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Fluoride	330		100	1	08/22/2019 15:10	WG1332945

ONE LAB. NATIONWIDE.

Collected date/time: 08/20/19 12:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	743000		13300	1	08/25/2019 09:41	WG1332902

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	28700		1000	1	08/22/2019 15:26	WG1332945
Sulfate	166000		25000	5	08/22/2019 19:49	WG1332945

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	183000	O1	1000	1	08/23/2019 08:45	WG1332889

ONE LAB. NATIONWIDE.

Collected date/time: 08/20/19 12:35

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	751000		13300	1	08/25/2019 09:41	WG1332902

Ss

4	I
⁴Cn	

Analyte	ug/l	ug/l		date / time	
Dissolved Solids	751000	13300	1	08/25/2019 09:41	WG1332902
Wet Chemistry by Metho	od 9056A				

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	28800		1000	1	08/22/2019 16:48	WG1332945
Sulfate	167000		25000	5	08/22/2019 20:05	WG1332945

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	185000		1000	1	08/23/2019 09:30	WG1332889

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

Collected date/time: 08/20/19 11:35

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	20300		1000	1	08/22/2019 17:05	WG1332945
Sulfate	34600		5000	1	08/22/2019 17:05	WG1332945

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	143000		1000	1	08/23/2019 09:32	WG1332889

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1131379-04,05

Method Blank (MB)

(MB) R3444278-1 08/25/	19 09:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

[†]Cn

(OS) L1130960-01 08/25/19 09:41 • (DUP) R3444278-3 08/25/19 09:41

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	779000	776000	1	0.343		5	

(LCS) R3444278-2 08/25/19 09:41

(LCS) KS444270-2 00/23/	Spike Amount	LCS Res	sult LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	854000	97.0	85.0-115

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1131379-01,02,03,04,05,06

Method Blank (MB)

(MB) R3443434-1 C	08/22/19 08:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1131208-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1131208-01 08/22/19 11:20 • (DUP) R3443434-3 08/22/19 11:37

,	, ,					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4780	4890	1	2.36		15
Fluoride	ND	63.1	1	0.000		15
Sulfate	ND	730	1	0.000		15

L1131383-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1131383-04 08/22/19 18:43 • (DLIP) R3443434-10 08/22/19 19:00

(03) 1131303 04 00/22/1	15 10.45 - (DOI)	10-1-0-10-10	00/22/13	13.00		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	57900	57800	1	0.213		15
Fluoride	214	213	1	0.0468		15
Sulfate	1870000	1870000	1	0.0774	Е	15

1	
	9
	ے کا
	50

Laboratory Control Sample (LCS)

(I CS) P3///3//3/-2 08/22/19 08:4/

(LCS) R3443434-2 U8/22	2/19 08:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39100	97.8	80.0-120	
Fluoride	8000	8070	101	80.0-120	
Sulfate	40000	39200	98.0	80.0-120	

08/28/19 14:15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1131379-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1131379-02 08/22/19 14:21 • (MS) R3443434-4 08/22/19 14:37 • (MSD) R3443434-5 08/22/19 14:54

,	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	1270	51600	51000	101	99.5	1	80.0-120			1.11	15
Fluoride	5000	328	5320	5300	99.8	99.4	1	80.0-120			0.379	15
Sulfate	50000	20700	71400	70800	101	100	1	80 0-120			0.859	15

L1131379-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1131379-04 08/22/19 15:26 • (MS) R3443434-6 08/22/19 15:43 • (MSD) R3443434-7 08/22/19 15:59

(03) 1131373 04 00	3/22/13 13.20 - (1113) 13	3443434 0 00	722/13 13.43	· (IVISD) 1(5+15-	154 / 00/22/	15 15.55						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	28700	78700	79000	100	101	1	80.0-120			0.353	15
Fluoride	5000	342	5300	5370	99.2	101	1	80.0-120			1.27	15
Sulfate	50000	176000	221000	221000	89.9	90.2	1	80.0-120	<u>E</u>	E	0.0595	15

PAGE:

L1131383-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1131383-03 08/22/19 17:54 • (MS) R3443434-8 08/22/19 18:11 • (MSD) R3443434-9 08/22/19 18:27

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	57900	106000	106000	96.7	96.9	1	80.0-120	<u>E</u>	<u>E</u>	0.108	15
Fluoride	5000	140	4780	4800	92.9	93.2	1	80.0-120			0.323	15
Sulfate	50000	1860000	1850000	1850000	0.000	0.000	1	80 0-120	FV	FV	0.0663	15

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1131379-04,05,06

Method Blank (MB)

(MB) R3443622-1 08/23/19 08:37 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Calcium 46.3 1000

(LCS) R3443622-2 08/23/19 08:40 • (LCSD) R3443622-3 08/23/19 08:42

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Calcium	10000	9780	9720	97.8	97.2	80.0-120			0.654	20

(OS) L1131379-04 08/23/19 08:45 • (MS) R3443622-5 08/23/19 08:50 • (MSD) R3443622-6 08/23/19 08:52

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	183000	191000	193000	79.6	104	1	75.0-125			1.24	20

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

, 10.0.10 V.10.1.10 G.1.10	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
01	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

DATE/TIME:

08/28/19 14:15

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

	, 1		Billing Info	ormation:		86 E					Analysis /	Container	/ Prese	rvative				Chain of Custody	Page of	
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210													P. National Co	nter for Testing & Innovatio			
Report to: Jason Franks			jay.martir	Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;														12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-585		
Project Description: KCP&L latan Gen	nerating Statio	City/State Collected:	NESTO			Please Circ PT MT CT			Pres									Phone: 800-767-585 Fax: 615-758-5859	1379	
Phone: 913-681-0030 Fax: 913-681-0012	27213167	争		AQUAC		ATAN		INO3	HDPE-NoPres	NoPres	10							D05		
Collected by (print):	Site/Facility I	D#		P.O. #				IDPE-H	3	HDPE-	NoPre		1000					Acctnum: AQL		
Collected by (signature): Immediately Packed on Ice N Y	Rush? (Day 10 Day (Rad Only)		y Date Results Ne		y Rad Only) Date Results Needed		No. of	6010 250mlHDPE-HNO3	Chloride, SO4 125	FLUORIDE 125mlHDPE-NoPres	250mlHDPE-NoPres							Prelogin: P724 PM: 206 - Jeff C PB: Shipped Via:	1452
Sample ID	Comp/Grab	Matrix *	Depth	Dat	te	Time	Cntrs	Ca - 6	hor	007	TDS							Remarks	Sample # (lab only)	
MW-2	GRAL	GW		8/2	0/19	1205	1	U	0	X	F								1-1	
MW-6		GW				1318	1			X									-2	
DUPLICATE 1		GW				1310	1			X				-					-3	
mus lo MS / MSD		GW				1310	1			X										
MW-7		GW				1235	3	X	х		X								-4	
MW-7 MS/MSD	12	GW				1235	3	X	Х		Х						-	100		
DUPLICATE 2		GW				1235	3	X	Х		X								-9	
MW-10		GW				1135	2	X	Х									920	-6	
	V																			
* Matrix:	Remarks:										pH		Temp	-21		coc s		ole Receipt Coresent/Intact		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	,										Flow		Other		_	COC S Bottl Corre	igned es ar ct bo	/Accurate: rive intact: ttles used:	A _	
DW - Drinking Water OT - Other	Samples retu UPS F	rned via: edEx Cou	urier			acking# 47	94	1 8	343	39	220	P. BOND WATER SHOPE TO SHOP				VOA Z	ero H	volume sent: If Applicab eadspace:	ole Y	
Relinquished by): (Signature)	10	Date:	10	Time: 1470	1	eceived by: (Signa	m/	Rul	1		Trip Blar	k Receive		CL / Meo	н	RAD S	creen	on Correct/Ch <0.5 mR/hr:	Z1 _	
Relinguished by: (Signature)	rd	Date: // 2	20/19	830	Re	eceived by: (Signa	ture)	-			Temp: S. Y.	123.55°	Bottles	Receive 15	ed:	If pres	ervatio	on required by Lo	gin: Date/Time	
Relipquished by : (Signature)		Date:		Time:	Re	eceived for lab by	: (Signa	ture)	1	Д	Date:	1	Time:			Hold:			Condition: NCF / OK	

ATTACHMENT 1-6 November 2019 Sampling Event Laboratory Report

ANALYTICAL REPORT

November 12, 2019

SCS Engineers - KS

Sample Delivery Group: L1157654

Samples Received: 11/06/2019

Project Number: 27213167.18

Description: KCP&L latan Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Ср

Entire Report Reviewed By:

Heads relate only to the items tested or collinated and are reported as runned values. This test report shall not be reproduced, occord in full, without written approacil of the laboratory. When applicable, semipring conducted by Paco Arribytical National is performed per guidance provided in laboratory standard operating procedures ENVSOP MTLL0068 and ENVSOPATILL0068. When sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-9 L1157654-01	5
MW-10 L1157654-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

			Collected by	Collected date/time	Received dat	
MW-9 L1157654-01 GW			Jason R. Franks	11/04/19 13:05	11/06/19 08:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376488	1	11/10/19 07:21	11/10/19 09:34	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 02:36	11/07/19 02:36	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376677	1	11/10/19 13:56	11/11/19 18:02	EL	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	:e/time
MW-10 L1157654-02 GW			Jason R. Franks	11/04/19 13:50	11/06/19 08:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376488	1	11/10/19 07:21	11/10/19 09:34	TH	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 02:49	11/07/19 02:49	ELN	Mt. Juliet, TN

1 Cp

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

11/12/19 08:44

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 13:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	392000		10000	1	11/10/2019 09:34	WG1376488

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3880		1000	1	11/07/2019 02:36	WG1375990
Fluoride	567		100	1	11/07/2019 02:36	WG1375990
Sulfate	25400		5000	1	11/07/2019 02:36	WG1375990

³Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 18:02	WG1376677
Calcium	119000		1000	1	11/11/2019 18:02	WG1376677

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 13:50

L1157654

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	534000		10000	1	11/10/2019 09:34	WG1376488

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	21600		1000	1	11/07/2019 02:49	WG1375990
Fluoride	777		100	1	11/07/2019 02:49	WG1375990
Sulfate	33600		5000	1	11/07/2019 02:49	WG1375990

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 18:05	WG1376677
Calcium	142000		1000	1	11/11/2019 18:05	WG1376677

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1157654-01,02

Method Blank (MB)

(MB) R3470617-1 11/10/19 C	9:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

(OS) L1157537-01 11/10/19 09:34 • (DUP) R3470617-3 11/10/19 09:34

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2490000	2550000	1	2.38		5

(LCS) R3470617-2 11/10/19 09:34

	Spike Amount LCS Result	LCS Rec.	Rec. Limits	LCS C
Analyte	ug/l ug/l	%	%	-
Dissolved Solids	8800000 8070000	91.7	85.0-115	

PAGE:

7 of 13

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1157654-01,02

Method Blank (MB)

Sulfate

(MB) R3469401-1 11/06	5/19 21:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	125	<u>J</u>	51.9	1000
Fluoride	U		9.90	100

L1157549-02 Original Sample (OS) • Duplicate (DUP)

77.4

5000

(OS) L1157549-02 11/06/19 23:46 • (DUP) R3469401-3 11/06/19 23:59

209

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	19700	19800	1	0.394		15
Fluoride	77.2	81.6	1	5.54	<u>J</u>	15
Sulfate	18400	18400	1	0.110		15

⁵Sr

L1157657-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1157657-05 11/07/19 05:00 • (DUP) R3469401-8 11/07/19 05:13

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	3990	4000	1	0.310		15
Fluoride	431	436	1	1.20		15
Sulfate	37600	38200	1	1.67		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3469401-2 11/06/19 21:18

(LCS) R3469401-2 11/06	/19 21.18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	98.0	80.0-120	
Fluoride	8000	7920	99.0	80.0-120	
Sulfate	40000	39400	98.4	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1157549-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1157549-02 11/06/19 23:46 • (MS) R3469401-4 11/07/19 00:12 • (MSD) R3469401-5 11/07/19 00:51

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	19700	69600	71600	99.7	104	1	80.0-120			2.79	15
Fluoride	5000	77.2	5150	5330	102	105	1	80.0-120			3.40	15
Sulfate	50000	18400	67800	70500	98.6	104	1	80.0-120			3.96	15

L1157657-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1157657-04 11/07/19 04:20 • (MS) R3469401-6 11/07/19 04:33 • (MSD) R3469401-7 11/07/19 04:46

(00) 110/00/ 01 11/0//10	01.20 (1110) 11	0 100 101 0 11/0	77713 0 1.00 (1	110D) 110 100 10	11, 11,07,13	1. 10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	29100	74900	77100	91.4	95.9	1	80.0-120			2.96	15
Fluoride	5000	381	5040	5320	93.1	98.9	1	80.0-120			5.59	15
Sulfate	50000	166000	184000	204000	36.6	77.2	1	80.0-120	EJ6	EJ6	10.5	15

PAGE:

9 of 13

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1157654-01,02

Method Blank (MB)

Calcium

(MB) R3470812-1 11/	/11/19 17:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200

[†]Cn

46.3

1000

(LCS) R34/0812-2	11/11/19 17:25 • (LCSD) F	34/0812-3	11/11/19 17:28
	Spike Amount	LCS Result	LCSD Resul

U

(200) 110 17 00 12 2 17 17 17	20 (2002)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	907	906	90.7	90.6	80.0-120			0.0138	20
Calcium	10000	9520	9480	95.2	94.8	80.0-120			0.373	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	2 Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

DATE/TIME:

11/12/19 08:44

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

			Billing Info	ormation:				1	1	Analysis / Con	tainer / Pr	eservative	1	T	Chain of Custody	Page of
CS Engineers - KS 575 VV. 110th Street Overland Park, KS 66210		8575 W	Accounts Payable Price Ch											National C	enter for Testing & Innoval	
		Overland Park, KS 66210														
eport to: ason Franks				Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;											12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58: Phone: 800-767-58:	58 55 20
oject escription: KCP&L latan Genera	ting Statio	City/State Collected:	WEST	TON, M	PT MT C		PE-NG	3 2							Fax: 615-758-5859	7654
none: 913-681-0030 ax: 913-681-0012	27213167.1			AQUAOPKS	-IATAN		5mIHDPE-NoPres	E-HNC	S						SDG# //	B108
ollected by (print) R. FRANK	Site/Facility ID	#		P.O.#			12	10	50mIHDPE-NoPres	SOLUTION OF THE STATE OF THE ST					Acctnum: AQI	
ollected by (signature):	Rush? (L	y Five	F Be Notified) Quote # Five Day				F, SO4)	F, SO 250m	HDPE-				Template: T136056 Prelogin: P736893		6893	
mmediately packed on ice N Y	Next Day 5 Day (Rad Only 10 Day (Rad Onl 10 Three Day			Date Re	Date Results Needed		S (Cld	9	50mlk						PM: 206 - Jeff (Carr
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cnt	Anion	Ca	TDS 2						Shipped Via:	Sample # (lab onl
MW-9	GKAB	GW		11/4/10	1305		3 X	X	X							-01
MW-10	1	GW		V	1350	=	3 X	X	X						4.00	-0)
	90		A CALLED TO A	- 1-1 - Expendent (44, 174, 181							1 1 1 1 1 1 1 1 1 1	- Gr. //		L-19-galita	gradien (Special of Special Con-	
			1	1 2 3800	F CAR WAR							0.07				
			100000											3-7-7	granitation of	
	1								-							
									-							
				4 72 75 2					1							1
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:							pH Temp					COC S	Sample Receipt Checklist COC Seal Present/Intact: NP Y COC Signed/Accurate: Bottles arrive intact: Correct bottles used:		
DW - Drinking Water Samples returned via: OT - Other UPSFedExCo			urier	urier Tracking #				SW					Sufficient volume sent: If Applicable VOA Zero Headspace:		oley _	
Refinquished by : (Signature)	le	Date:	/19	Time: 1245	Received by: (Sign	Ost !) '	11-5-	19	Trip Blank R		HCL / MeoH TBR			on Correct/Ch <0.5 mR/hr:	necked: Y
Refinalished by: (Signature) Date:		1/19	Time: 1860	Received by: (Sign	nature)			Temp: °C Bottles Received:			If preservation required by Login: Date/Time				
Relinquished by : (Signature)		Date:		Time:	Received for lab b	oy: (Sig	rature)	,		Date: 11/10		me:	Hold:			Condition: NCF / OK

ANALYTICAL REPORT

November 12, 2019

SCS Engineers - KS

Sample Delivery Group: L1157657

Samples Received: 11/06/2019

Project Number: 27213167.18

Description: KCP&L latan Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb law

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace

Ср

17

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1157657-01	5
MW-2 L1157657-02	6
MW-6 L1157657-03	7
MW-7 L1157657-04	8
MW-8 L1157657-05	9
DUPLICATE 1 L1157657-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16

Sc: Sample Chain of Custody

SAMPLE SUMMARY

Collected by

ONE	ΙΔΒ	ΝΔΤ	IONWI	7

Collected date/time Received date/time

MW-1 L1157657-01 GW			Jason R Franks	11/04/19 12:20	11/06/19 08:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 03:28	11/07/19 03:28	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 18:53	TRB	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	time/time
MW-2 L1157657-02 GW			Jason R Franks	11/04/19 11:35	11/06/19 08:00)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

MW-2 L1157657-02 GW	Jason R Franks	11/04/19 11:35	11/06/19 08:00			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 03:41	11/07/19 03:41	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	5	11/07/19 03:54	11/07/19 03:54	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 19:01	TRB	Mt. Juliet, TN

	Collected by	Collected date/time	Received date/time
MW-6 L1157657-03 GW	Jason R Franks	11/04/19 11:50	11/06/19 08:00

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 04:07	11/07/19 04:07	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 19:04	TRB	Mt. Juliet, TN

Collected by Collected date/time Received date/time Jason R Franks 11/04/19 12:50 11/06/19 08:00 MW-7 L1157657-04 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 04:20	11/07/19 04:20	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	5	11/07/19 10:31	11/07/19 10:31	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 18:02	TRB	Mt. Juliet, TN

Collected by Collected date/time Received date/time Jason R Franks 11/04/19 13:40 11/06/19 08:00 MW-8 L1157657-05 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 05:00	11/07/19 05:00	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 19:07	TRB	Mt. Juliet, TN

Collected by Collected date/time Received date/time Jason R Franks 11/04/19 12:50 11/06/19 08:00 **DUPLICATE 1 L1157657-06 GW**

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1376130	1	11/07/19 12:23	11/07/19 13:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	1	11/07/19 05:26	11/07/19 05:26	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1375990	5	11/07/19 10:45	11/07/19 10:45	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1376683	1	11/10/19 13:53	11/11/19 19:10	TRB	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Wubb law

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 12:20

L1157657

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	457000		10000	1	11/07/2019 13:46	WG1376130

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	6610		1000	1	11/07/2019 03:28	WG1375990
Fluoride	488		100	1	11/07/2019 03:28	WG1375990
Sulfate	22300		5000	1	11/07/2019 03:28	WG1375990

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 18:53	WG1376683
Calcium	132000		1000	1	11/11/2019 18:53	WG1376683

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 11:35

L1157657

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	585000		10000	1	11/07/2019 13:46	WG1376130

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8770		1000	1	11/07/2019 03:41	WG1375990
Fluoride	552		100	1	11/07/2019 03:41	WG1375990
Sulfate	98800		25000	5	11/07/2019 03:54	WG1375990

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 19:01	WG1376683
Calcium	168000		1000	1	11/11/2019 19:01	WG1376683

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 11:50

L1157657

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	437000		10000	1	11/07/2019 13:46	<u>WG1376130</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1400		1000	1	11/07/2019 04:07	WG1375990
Fluoride	359		100	1	11/07/2019 04:07	WG1375990
Sulfate	20200		5000	1	11/07/2019 04:07	WG1375990

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 19:04	WG1376683
Calcium	134000		1000	1	11/11/2019 19:04	WG1376683

MW-7

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 12:50

L1157657

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	682000		10000	1	11/07/2019 13:46	WG1376130

²TC

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	29100		1000	1	11/07/2019 04:20	WG1375990
Fluoride	381		100	1	11/07/2019 04:20	WG1375990
Sulfate	170000		25000	5	11/07/2019 10:31	WG1375990

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 18:02	WG1376683
Calcium	185000	O1 V	1000	1	11/11/2019 18:02	WG1376683

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 13:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	465000		10000	1	11/07/2019 13:46	<u>WG1376130</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	3990		1000	1	11/07/2019 05:00	WG1375990
Fluoride	431		100	1	11/07/2019 05:00	WG1375990
Sulfate	37600		5000	1	11/07/2019 05:00	WG1375990

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 19:07	WG1376683
Calcium	141000		1000	1	11/11/2019 19:07	WG1376683

ONE LAB. NATIONWIDE.

Collected date/time: 11/04/19 12:50

L1157657

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	674000		10000	1	11/07/2019 13:46	WG1376130

²TC

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	30800		1000	1	11/07/2019 05:26	WG1375990
Fluoride	630		100	1	11/07/2019 05:26	WG1375990
Sulfate	169000		25000	5	11/07/2019 10:45	WG1375990

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/11/2019 19:10	WG1376683
Calcium	188000		1000	1	11/11/2019 19:10	WG1376683

Cn

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1157657-01,02,03,04,05,06

Method Blank (MB)

(MB) R3469996-1 11/07	/19 13:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

(OS) L1157688-03 11/07/19 13:46 • (DUP) R3469996-3 11/07/19 13:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1030000	1120000	1	8.36	.13	5

(LCS) R3469996-2 11/07/19 13:46

(200) 110400000 2 11/07/15	Spike Amount	LCS Resul	LCS Rec.	Rec. Limits	LCS Q
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8500000	96.6	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1157657-01,02,03,04,05,06

Method Blank (MB)

(MB) R3469401-1 11/06/19 21:05

()					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	125	<u>J</u>	51.9	1000	
Fluoride	U		9.90	100	
Sulfate	209	<u>J</u>	77.4	5000	

L1157549-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1157549-02 11/06/19 23:46 • (DUP) R3469401-3 11/06/19 23:59

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	19700	19800	1	0.394		15
Fluoride	77.2	81.6	1	5.54	<u>J</u>	15
Sulfate	18400	18400	1	0.110		15

L1157657-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1157657-05 11/07/19 05:00 • (DUP) R3469401-8 11/07/19 05:13

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	3990	4000	1	0.310		15
Fluoride	431	436	1	1.20		15
Sulfate	37600	38200	1	1.67		15

Sc

Laboratory Control Sample (LCS)

(I CS) P3/169/101-2 11/06/19 21:18

(LCS) R3469401-2 11/06/	19 21.18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	98.0	80.0-120	
Fluoride	8000	7920	99.0	80.0-120	
Sulfate	40000	39400	98.4	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1157657-01,02,03,04,05,06

L1157549-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1157549-02 11/06/19 23:46 • (MS) R3469401-4 11/07/19 00:12 • (MSD) R3469401-5 11/07/19 00:51

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	19700	69600	71600	99.7	104	1	80.0-120			2.79	15
Fluoride	5000	77.2	5150	5330	102	105	1	80.0-120			3.40	15
Sulfato	50000	19/100	67800	70500	986	104	1	90 0 120			3.06	15

L1157657-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1157657-04 11/07/19 04:20 • (MS) R3469401-6 11/07/19 04:33 • (MSD) R3469401-7 11/07/19 04:46

(03) 113/03/ 04 11/0//	/13 04.20 · (IVIS) I	3-03-010 1/0	37713 04.55 - ((14101) 11040540	11 / 11/07/13 0	1.10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	29100	74900	77100	91.4	95.9	1	80.0-120			2.96	15
Fluoride	5000	381	5040	5320	93.1	98.9	1	80.0-120			5.59	15
Sulfate	50000	166000	184000	204000	36.6	77.2	1	80.0-120	E J6	E J6	10.5	15

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1157657-01,02,03,04,05,06

Method Blank (MB)

(MB) R3470824-1 11/11/19	17:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	H		16.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3470824-2 11/11/19	17:56 • (LCSD)	R3470824-3	11/11/19 17:59							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	964	956	96.4	95.6	80.0-120			0.841	20
Calcium	10000	9820	9760	98.2	97.6	80.0-120			0.566	20

L1157657-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1157657-04 11/11/19 18:02 • (MS) R3470824-5 11/11/19 18:07 • (MSD) R3470824-6 11/11/19 18:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	1100	1130	93.9	97.5	1	75.0-125			3.17	20
Calcium	10000	185000	190000	191000	47 7	62.5	1	75 0-125	V	V	0.780	20

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Description

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

16 of 17

The second secon			Billing Inform	nation:					Ana	alvsis / C	ontaine	r / Prese	ervative	T			Chain of Custody	Page of
			Accounts Payable 8575 W. 110th Street														National Center	or Testing & Innovation
75 . 110th Street verland Park, KS 66210			Overland													nwsn		
EO:	22 (199 24 (199		Email To: jfr		oPres	8									12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859			
t KCP&L latan Genera	ting Statio	City/State Collected:	WESTO.	e: ET	PE-No	V									Fax: 615-758-5859 SDG # 115	7657		
913-681-0030 913-681-0012	Client Project # 27213167.1			Lab Project # AQUAOPKS	-IATAN		SmIHDPE-NoPres	E-HNC	S								Tabl B1	09
ad by (print):	Site/Facility ID	#			12	250m1HDPE-HNO3	NoPre					Acctnum: AQUAOPKS Template:T136059						
ollected by (signature): ORDER PROPERTY SAME DAY Next DAY SET D		y Five 5 Da		# Date Results Needed		(Cld, F, SO4)	6010 250n	50mlHDPE-NoPres		****						Prelogin: P736892 PM: 206 - Jeff Carr PB:		
ked on Ice N Y	Three Da		Depth	Date	Time	of Cntrs	ns	Ca -	TDS 250								Shipped Via:	Sample # (lab only)
		GW	1.1.1.	1 []	1220	3	X	X B	X				44					-01
W-1	GRAO	GW	144	9 11/4/19	1135	3	X	X	X								7.57	-07
1W-2		GW	1=		1150	3	X	X	X		¥							-03
∩W-6		GW	1		1250	3	X	X	X								Control by Control	-04
∩W-7		GW			1340		Х	X	X									-65
NW-8		GW			1250	TOTAL CONTROL OF THE	X	X	X							-		104
MW7 MS/MSD		GW		1	1255		X	X	X			gii 2 3						
											<i>37</i> 7.							
			1000		The lates of the l				-									280
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:									pH	7	Ten Oth			COC S	Seal P Signed Les ar	ple Receipt Cheresent/Intact //Accurate: rrive intact: ottles used:	NP Y N
WW-WasteWater pW-Drinking Water of-Other Reliviquished by : (Signature)	Samples returned via: UPSFedExCourier Date:Time:Received by: (Signate)							SW re) 11-5-19 Trip Blan				Trip Blank Received: Yes / Web HCL / MeoH) MeoH	Sufficient volume sent: If Applicable VOA Zero Headspace: Preservation Correct/Checked:			ecked: Y N
Relinquished by: (Signature)) Date:		5/19 1345 Wachels Time: Received by: (Signature					124	15	Temp:		°G2 BC	TBR ottles Rec		If pre	servati	on required by Lo	gin: Date/Time	
gelinduished by : (Signature)		Date:	///	1800 Time:	Received for lab	by: (Sign	hature)	1/2	1	Date:	10	Ti	me:	2	Hold:			Condition? NCF / OK

ATTACHMENT 2 Statistical Analyses

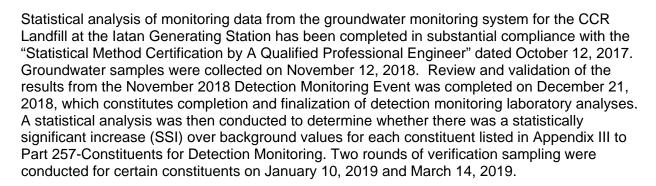
ATTACHMENT 2-1

Fall 2018 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

March 22, 2019

To: latan Generating Station 20250 State Route 45 N


Platte County, Missouri

Kansas City Power & Light Company

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill

Fall 2018 Semiannual Detection Monitoring 40 CFR 257.94

The completed statistical evaluation identified two Appendix III constituents above their respective prediction limits. The prediction limit for calcium in monitoring well MW-10 is 131.1 mg/L. The detection monitoring sample was reported at 138 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 157 mg/L. The second verification re-sample was collected on March 14, 2019 with a result of 151 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for calcium from monitoring well MW-10 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

The prediction limit for sulfate in monitoring well MW-10 is 27.78 mg/L. The detection monitoring sample was reported at 32.9 mg/L. The first verification re-sample was collected on January 10, 2019 with a result of 38.0 mg/L. The second verification re-sample was collected on March 14, 2019 with a result of 40.1 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring sample for sulfate from monitoring well MW-10 exceeds its prediction limit and is a confirmed statistically significant increase (SSI) over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The

Iatan Generating Station
Determination of Statistically Significant Increases
CCR Landfill
March 22, 2019
Page 2 of 2

statistical evaluation identified an SSI above the background prediction limit for calcium and sulfate in monitoring well MW-10.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

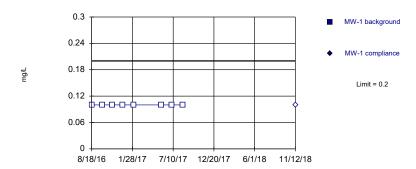
Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1st verification re-sample result (when applicable), 2nd verification re-sample result (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 22, 2019


ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas¹¹⁰ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

0.06

Within Limit

Intrawell Non-parametric

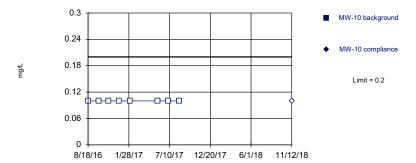
0.3

0.24

0.18

0.12

Limit = 0.2

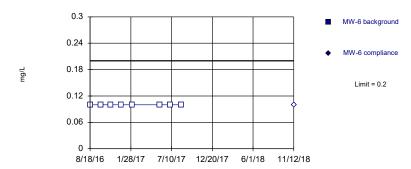

8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas w v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/22/2019 5:11 PM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan jrr

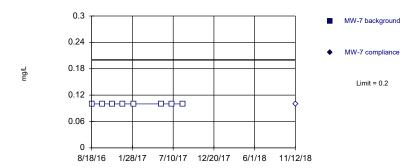
Sanitas $^{\text{\tiny{IM}}}$ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonalize data were not deseasonalized.

	MW-1	MW-1
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

	MW-10	MW-10
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

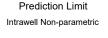

	MW-2	MW-2
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

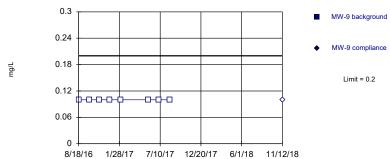
	MW-6	MW-6
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

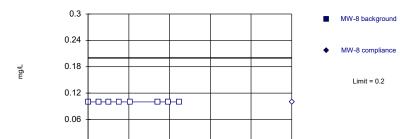



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas¹¹⁰ v.9.6.12 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

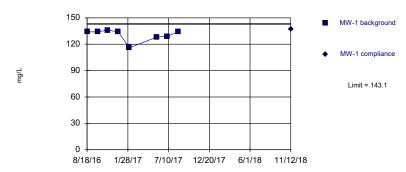
Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas w v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric


8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 3/22/2019 5:11 PM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=17100, Std. Dev.=1642, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7554, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-7	MW-7
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

	MW-8	MW-8
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

	MW-9	MW-9
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
11/12/2018		<0.2

	MW-1	MW-1
8/18/2016	134	
9/29/2016	134	
11/9/2016	136	
12/21/2016	134	
2/3/2017	116	
5/24/2017	128	
7/5/2017	129	
8/17/2017	134	
11/12/2018		137

Exceeds Limit

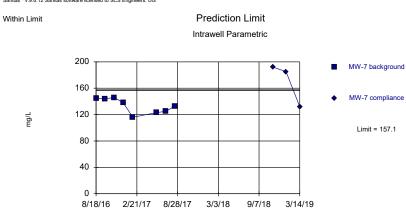
Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG **Prediction Limit**

Background Data Summary: Mean=120.5, Std. Dev.=5.155, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7951, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Calcium Analysis Run 3/22/2019 5:11 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=144, Std. Dev.=5.099, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normalify test: Shapiro Wilk @alpha = 0.01, calculated = 0.9356, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.



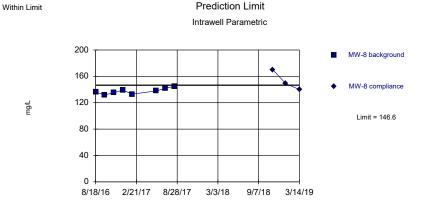
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Calcium Analysis Run 3/22/2019 5:11 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=133.8, Std. Dev.=11.39, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9082, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

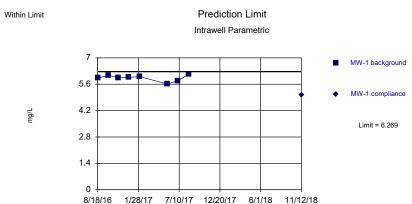
	MW-10	MW-10	
8/18/2016	123		
9/29/2016	118		
11/9/2016	124		
12/21/2016	123		
2/3/2017	109		
5/24/2017	125		
7/5/2017	120		
8/17/2017	122		
11/12/2018		138	
1/10/2019		157 1st ve	erification re-sample
3/14/2019		151 2nd v	erification re-sample


	MW-2	MW-2
8/18/2016	170	
9/29/2016	169	
11/9/2016	169	
12/21/2016	166	
2/3/2017	146	
5/24/2017	166	
7/5/2017	165	
8/17/2017	168	
11/12/2018		166

	MW-6	MW-6
8/18/2016	142	
9/29/2016	139	
11/9/2016	142	
12/21/2016	146	
2/3/2017	136	
5/24/2017	150	
7/5/2017	147	
8/17/2017	150	
11/12/2018		147

	MW-7	MW-7	
8/18/2016	145		
9/29/2016	144		
11/9/2016	146		
12/21/2016	138		
2/3/2017	116		
5/24/2017	123		
7/5/2017	125		
8/17/2017	133		
11/12/2018		192	
1/10/2019		185	1st verification re-sample
3/14/2019		132	2nd verification re-sample

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG


Within Limit

Background Data Summary: Mean=137.5, Std. Dev.=4.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9624, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=5.93, Std. Dev.=0.1654, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9207, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

130 MW-9 background

• MW-9 compliance

78

52

26

8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Prediction Limit

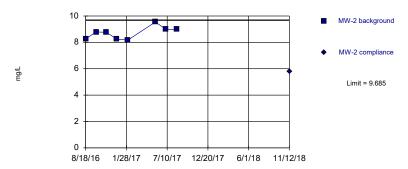
Intrawell Parametric

Background Data Summary: Mean=107.5, Std. Dev.=7.308, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9668, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=11.34, Std. Dev.=3.722, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8939, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


	MW-8	MW-8	
8/18/2016	136		
9/29/2016	132		
11/9/2016	135		
12/21/2016	139		
2/3/2017	133		
5/24/2017	138		
7/5/2017	142		
8/17/2017	145		
11/12/2018		170	
1/10/2019		149	1st verification re-sample
3/14/2019		140	2nd verification re-sample

	MW-9	MW-9
8/18/2016	119	
9/29/2016	102	
11/9/2016	103	
12/21/2016	116	
2/3/2017	105	
5/24/2017	108	
7/5/2017	97.2	
8/17/2017	110	
11/12/2018		122

	MW-1	MW-1
8/18/2016	5.93	
9/29/2016	6.07	
11/9/2016	5.95	
12/21/2016	5.97	
2/3/2017	6	
5/24/2017	5.61	
7/5/2017	5.78	
8/17/2017	6.13	
11/12/2018		5.04

	MW-10	MW-10
8/18/2016	7.47	
9/29/2016	7.83	
11/9/2016	9.15	
12/21/2016	9.84	
2/3/2017	10.3	
5/24/2017	12.6	
7/5/2017	15.9	
8/17/2017	17.6	
11/12/2018		15.1

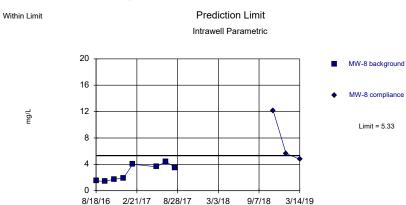
Background Data Summary: Mean=8.716, Std. Dev.=0.4727, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.911, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=6.604, Std. Dev.=5.131, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8394, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=1.441, Std. Dev.=0.1448, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.01075.

Constituent: Chloride Analysis Run 3/22/2019 5:11 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=2.774, Std. Dev.=1.248, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8496, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-2	MW-2
8/18/2016	8.26	
9/29/2016	8.79	
11/9/2016	8.76	
12/21/2016	8.24	
2/3/2017	8.17	
5/24/2017	9.54	
7/5/2017	8.99	
8/17/2017	8.98	
11/12/2018		5.79

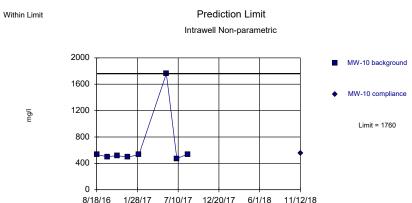
	MW-6	MW-6
8/18/2016	1.31	
9/29/2016	1.46	
11/9/2016	1.29	
12/21/2016	1.72	
2/3/2017	1.4	
5/24/2017	1.49	
7/5/2017	1.54	
8/17/2017	1.32	
11/12/2018		1.31


	MW-7	MW-7	7
8/18/2016	12.3		
9/29/2016	13.9		
11/9/2016	11.1		
12/21/2016	6.64		
2/3/2017	3.32		
5/24/2017	1.76		
7/5/2017	1.81		
8/17/2017	2		
11/12/2018		26.4	
1/10/2019		23.3	1st verification re-sample
3/14/2019		4.77	2nd verification re-sample

	MW-8	MW-8	
8/18/2016	1.5		
9/29/2016	1.42		
11/9/2016	1.76		
12/21/2016	1.89		
2/3/2017	4.02		
5/24/2017	3.63		
7/5/2017	4.44		
8/17/2017	3.53		
11/12/2018		12.1	
1/10/2019		5.63	1st verification re-sample
3/14/2019		4.79	2nd verification re-sample

Hollow symbols indicate censored values.

Within Limit


Prediction Limit Intrawell Parametric

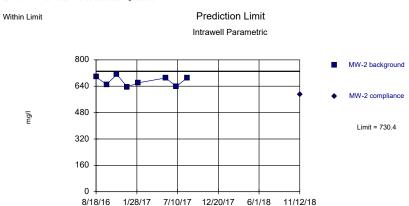
Background Data Summary (after Aitchison's Adjustment): Mean=0.8625, Std. Dev.=0.7765, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8801, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Chloride Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



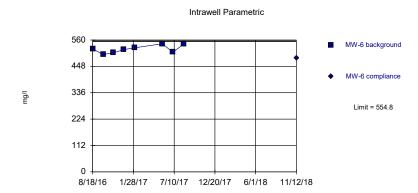
Background Data Summary: Mean=492.5, Std. Dev.=12.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9433, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Dissolved Solids Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=671.6, Std. Dev.=28.68, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9045, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-9	MW-9
8/18/2016	1.95	
9/29/2016	<1	
11/9/2016	<1	
12/21/2016	1.66	
2/3/2017	1.16	
5/24/2017	1.07	
7/5/2017	1.06	
8/17/2017	<1	
11/12/2018		1.1

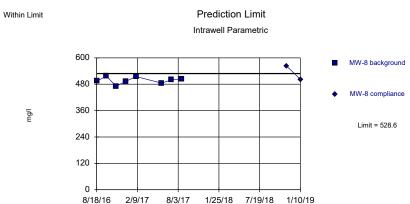

	MW-1	MW-1
8/18/2016	513	
9/29/2016	486	
11/9/2016	484	
12/21/2016	493	
2/3/2017	506	
5/24/2017	477	
7/5/2017	481	
8/17/2017	500	
11/12/2018		485

	MW-10	MW-10
8/18/2016	532	
9/29/2016	502	
11/9/2016	516	
12/21/2016	497	
2/3/2017	531	
5/24/2017	1760	
7/5/2017	474	
8/17/2017	539	
11/12/2018		554

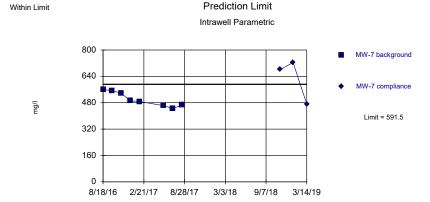
	MW-2	MW-2
8/18/2016	696	
9/29/2016	651	
11/9/2016	711	
12/21/2016	636	
2/3/2017	661	
5/24/2017	690	
7/5/2017	638	
8/17/2017	690	
11/12/2018		590

Within Limit

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

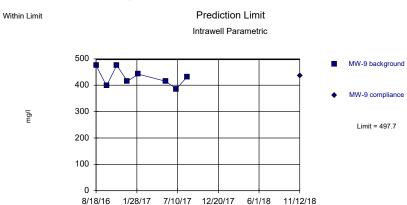


Prediction Limit


Background Data Summary: Mean=520.8, Std. Dev.=16.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9434, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=497.4, Std. Dev.=15.24, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9638, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

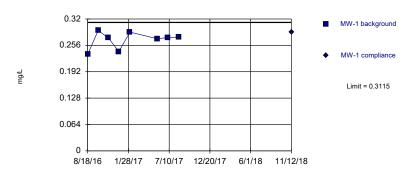
Background Data Summary: Mean=500.5, Std. Dev.=44.43, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9004, critical = 0.749. Kappa = 0.49 (e-7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=429.8, Std. Dev.=33.16, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9264, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-6	MW-6
8/18/2016	522	
9/29/2016	498	
11/9/2016	506	
12/21/2016	519	
2/3/2017	527	
5/24/2017	544	
7/5/2017	508	
8/17/2017	542	
11/12/2018		484

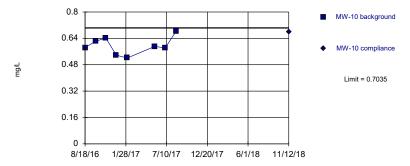

	MW-7	MW-7		
8/18/2016	560			
9/29/2016	554			
11/9/2016	538			
12/21/2016	492			
2/3/2017	487			
5/24/2017	462			
7/5/2017	445			
8/17/2017	466			
11/12/2018		681		
1/10/2019		724	1st verification re-sample	
3/14/2019		472	2nd verification re-sample	

	MW-8	MW-8	
8/18/2016	494		
9/29/2016	517		
11/9/2016	471		
12/21/2016	493		
2/3/2017	515		
5/24/2017	485		
7/5/2017	500		
8/17/2017	504		
11/12/2018		563	
1/10/2019		502	1st verification re-sample

	MW-9	MW-9
8/18/2016	475	
9/29/2016	398	
11/9/2016	476	
12/21/2016	415	
2/3/2017	442	
5/24/2017	415	
7/5/2017	386	
8/17/2017	431	
11/12/2018		435

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.269, Std. Dev.=0.02076, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8526, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: Fluoride Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 0.37 MW-2 background 0.296 MW-2 compliance 0.222 Limit = 0.3692 0.148 0.074 8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Background Data Summary: Mean=0.3271, Std. Dev.=0.02055, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9268, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Prediction Limit Within Limit Intrawell Parametric

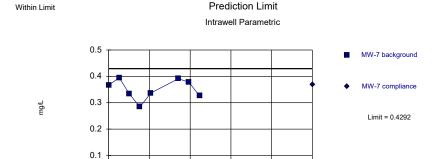
Background Data Summary: Mean=0.5953, Std. Dev.=0.05283, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9706, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Fluoride Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 0.36 ■ MW-6 background 0.288 MW-6 compliance 0.216 Limit = 0.3593 0.144 0.072 8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Background Data Summary: Mean=0.3166, Std. Dev.=0.02083, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

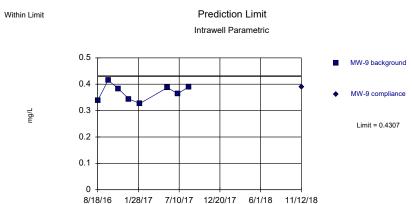

		MW-1	MW-1
8/1	8/2016	0.234	
9/2	9/2016	0.292	
11/	9/2016	0.274	
12/	21/2016	0.241	
2/3	/2017	0.288	
5/2	4/2017	0.272	
7/5	/2017	0.275	
8/1	7/2017	0.276	
11/	12/2018		0.288

	MW-10	MW-10
8/18/2016	0.584	
9/29/2016	0.622	
11/9/2016	0.642	
12/21/2016	0.538	
2/3/2017	0.521	
5/24/2017	0.591	
7/5/2017	0.582	
8/17/2017	0.682	
11/12/2018		0.68

	MW-2	MW-2
8/18/2016	0.303	
9/29/2016	0.356	
11/9/2016	0.331	
12/21/2016	0.292	
2/3/2017	0.342	
5/24/2017	0.327	
7/5/2017	0.334	
8/17/2017	0.332	
11/12/2018		0.327

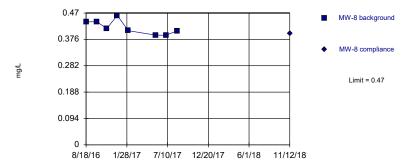
	MW-6	MW-6
8/18/2016	0.298	
9/29/2016	0.343	
11/9/2016	0.324	
12/21/2016	0.293	
2/3/2017	0.348	
5/24/2017	0.297	
7/5/2017	0.317	
8/17/2017	0.313	
11/12/2018		0.325

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG



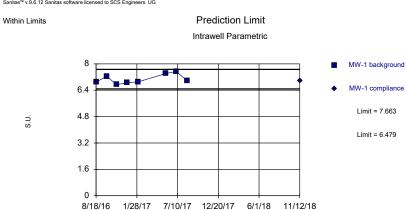
8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Background Data Summary: Mean=0.3513, Std. Dev.=0.03803, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9335, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: Fluoride Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.3685, Std. Dev.=0.03036, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9498, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=0.4185, Std. Dev.=0.02513, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

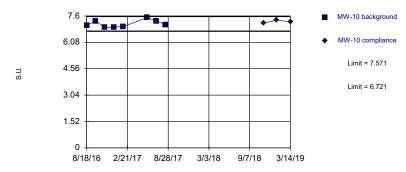
> Constituent: Fluoride Analysis Run 3/22/2019 5:12 PM View: CCR LF III

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=7.071, Std. Dev.=0.289, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8946, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-7	MW-7
8/18/2016	0.366	
9/29/2016	0.395	
11/9/2016	0.333	
12/21/2016	0.284	
2/3/2017	0.337	
5/24/2017	0.391	
7/5/2017	0.378	
8/17/2017	0.326	
11/12/2018		0.369

	MW-8	MW-8
8/18/2016	0.438	
9/29/2016	0.439	
11/9/2016	0.415	
12/21/2016	0.461	
2/3/2017	0.407	
5/24/2017	0.391	
7/5/2017	0.391	
8/17/2017	0.406	
11/12/2018		0.396


	MW-9	MW-9
8/18/2016	0.338	
9/29/2016	0.415	
11/9/2016	0.383	
12/21/2016	0.344	
2/3/2017	0.327	
5/24/2017	0.387	
7/5/2017	0.364	
8/17/2017	0.39	
11/12/2018		0.39

	MW-1	MW-1
8/18/2016	6.89	
9/29/2016	7.24	
11/9/2016	6.74	
12/21/2016	6.86	
2/3/2017	6.91	
5/24/2017	7.41	
7/5/2017	7.54	
8/17/2017	6.98	
11/12/2018		6.99

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit

Background Data Summary: Mean=7.146, Std. Dev.=0.2075, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8964, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

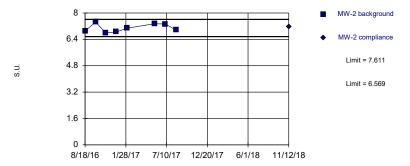
Constituent: pH Analysis Run 3/22/2019 5:12 PM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-6 background


MW-6 compliance
Limit = 7.859

Limit = 6.736

8/18/16 1/28/17 7/10/17 12/20/17 6/1/18 11/12/18

Background Data Summary: Mean=7.298, Std. Dev.=0.2742, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.09, Std. Dev.=0.2544, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9007, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan irr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-7 background

MW-7 compliance
Limit = 7.985
Limit = 6.555

8/18/16 2/21/17 8/28/17 3/3/18

Background Data Summary: Mean=7.27, Std. Dev =0.349, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9233, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

9/7/18

	MW-10	MW-1	0
8/18/2016	7.06		
9/29/2016	7.31		
11/9/2016	6.93		
12/21/2016	6.96		
2/3/2017	6.99		
5/24/2017	7.51		
7/5/2017	7.31		
8/17/2017	7.1		
11/12/2018		7.19	
1/10/2019		7.36	extra sample
3/14/2019		7.27	extra sample

	MW-2	MW-2
8/18/2016	6.9	
9/29/2016	7.45	
11/9/2016	6.79	
12/21/2016	6.85	
2/3/2017	7.08	
5/24/2017	7.35	
7/5/2017	7.33	
8/17/2017	6.97	
11/12/2018		7.15

	MW-6	MW-6
8/18/2016	7.18	
9/29/2016	6.97	
11/9/2016	7.72	
12/21/2016	6.99	
2/3/2017	7.1	
5/24/2017	7.49	
7/5/2017	7.46	
8/17/2017	7.47	
11/12/2018		7.27

	MW-7	MW-7	
8/18/2016	6.97		
9/29/2016	7.25		
11/9/2016	7.87		
12/21/2016	6.88		
2/3/2017	7.01		
5/24/2017	7.67		
7/5/2017	7.36		
8/17/2017	7.15		
11/12/2018		7.18	
1/10/2019		7.42	extra sample
3/14/2019		7.24	extra sample

Within Limits Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=7.408, Std. Dev.=0.3874, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8126, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

9/7/18 3/14/19

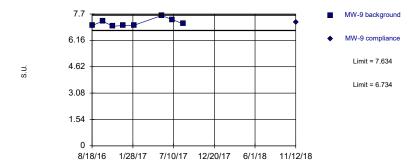
8/18/16 2/21/17 8/28/17 3/3/18

Constituent: pH Analysis Run 3/22/2019 5:12 PM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

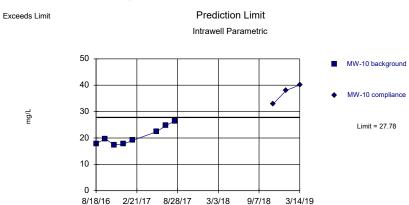
MW-1 background


MW-1 compliance

Limit = 40

Background Data Summary: Mean=33.85, Std. Dev.=3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8631, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG


Within Limits Prediction Limit
Intrawell Parametric

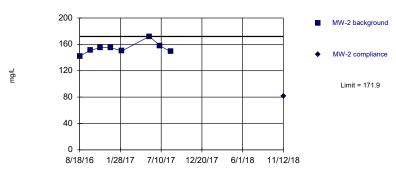
Background Data Summary: Mean=7.184, Std. Dev.=0.2196, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alipha = 0.011, calculated = 0.8503, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.01075.

Constituent: pH Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=20.66, Std. Dev.=3.472, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8679, critical = 0.749. Kappa = 2.049 (e-7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-8	MW-8	
8/18/2016	7.1		
9/29/2016	7.32		
11/9/2016	8.24		
12/21/2016	7.1		
2/3/2017	7.13		
5/24/2017	7.66		
7/5/2017	7.44		
8/17/2017	7.27		
11/12/2018		7.15	
1/10/2019		7.57	extra sample
3/14/2019		7.38	extra sample


	MW-9	MW-9
8/18/2016	7.02	
9/29/2016	7.28	
11/9/2016	6.99	
12/21/2016	7.02	
2/3/2017	7.05	
5/24/2017	7.61	
7/5/2017	7.37	
8/17/2017	7.13	
11/12/2018		7.21

	MW-1	MW-1
8/18/2016	32.4	
9/29/2016	35.3	
11/9/2016	33.2	
12/21/2016	36.2	
2/3/2017	36.9	
5/24/2017	27.4	
7/5/2017	34.2	
8/17/2017	35.2	
11/12/2018		24.6

	MW-10	MW-10)
8/18/2016	17.8		
9/29/2016	19.7		
11/9/2016	17.4		
12/21/2016	17.7		
2/3/2017	19.1		
5/24/2017	22.4		
7/5/2017	24.7		
8/17/2017	26.5		
11/12/2018		32.9	
1/10/2019		38	1st verification re-sample
3/14/2019		40.1	2nd verification re-sample

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=154, Std. Dev.=8.751, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric


MW-7 background

MW-7 compliance

Limit = 89.64

Background Data Summary: Mean=45.64, Std. Dev.=21.48, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9157, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=32.46, Std. Dev.=3.522, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9073, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

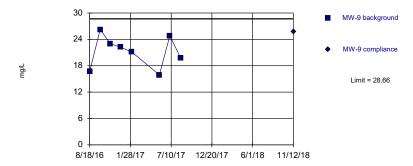
Constituent: Sulfate Analysis Run 3/22/2019 5:12 PM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=34.63, Std. Dev.=11.99, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8458, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-2	MW-2
8/18/2016	142	
9/29/2016	151	
11/9/2016	155	
12/21/2016	155	
2/3/2017	150	
5/24/2017	172	
7/5/2017	158	
8/17/2017	149	
11/12/2018		81.5

	MW-6	MW-6
8/18/2016	30.2	
9/29/2016	33.5	
11/9/2016	31.4	
12/21/2016	28.6	
2/3/2017	28.5	
5/24/2017	32.7	
7/5/2017	37.2	
8/17/2017	37.6	
11/12/2018		27.3


	MW-7	MW-7	
8/18/2016	70.2		
9/29/2016	70.6		
11/9/2016	62.6		
12/21/2016	50		
2/3/2017	41.9		
5/24/2017	16.2		
7/5/2017	19.5		
8/17/2017	34.1		
11/12/2018		149	
1/10/2019		159	1st verification re-sample
3/14/2019		33.9	2nd verification re-sample

	MW-8	MW-8	3
8/18/2016	23.3		
9/29/2016	24.2		
11/9/2016	23.8		
12/21/2016	25.5		
2/3/2017	39.6		
5/24/2017	42.8		
7/5/2017	54.8		
8/17/2017	43		
11/12/2018		85.8	
1/10/2019		48.4	1st verific

Sanitas™ v.9.6.12 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=21.21, Std. Dev.=3.635, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9584, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
11/12/2018		25.8

		lat	an Utility Waste	e LF Client: SCS Engineer	s Data: lata	n jrr 🗆	Printed 3	3/22/2019,	5:15 PM		
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-1	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-10	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	11/12/2018	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	143.1	n/a	11/12/2018	137	No	8	0	x^2	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-10	131.1	n/a	3/14/2019	151	Yes	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-2	170	n/a	11/12/2018	166	No	8	0	n/a	0.005912	NP Intra (normality)
Calcium (mg/L)	MW-6	154.4	n/a	11/12/2018	147	No	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-7	157.1	n/a	3/14/2019	132	No	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-8	146.6	n/a	3/14/2019	140	No	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122.5	n/a	11/12/2018	122	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.269	n/a	11/12/2018	5.04	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-10	18.96	n/a	11/12/2018	15.1	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-2	9.685	n/a	11/12/2018	5.79	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.738	n/a	11/12/2018	1.31	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-7	17.12	n/a	3/14/2019	4.77	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-8	5.33	n/a	3/14/2019	4.79	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.453	n/a	11/12/2018	1.1	No	8	37.5	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	518.7	n/a	11/12/2018	485	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	11/12/2018	554	No	8	0	n/a	0.005912	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	730.4	n/a	11/12/2018	590	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	554.8	n/a	11/12/2018	484	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	591.5	n/a	3/14/2019	472	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-8	528.6	n/a	1/10/2019	502	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	497.7	n/a	11/12/2018	435	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.3115	n/a	11/12/2018	0.288	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.7035	n/a	11/12/2018	0.68	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.3692	n/a	11/12/2018	0.327	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.3593	n/a	11/12/2018	0.325	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.4292	n/a	11/12/2018	0.369	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.47	n/a	11/12/2018	0.396	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.4307	n/a	11/12/2018	0.39	No	8	0	No	0.001075	Param Intra 1 of 3
pH (S.U.)	MW-1	7.663	6.479	11/12/2018	6.99	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-10	7.571	6.721	3/14/2019	7.27	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-2	7.611	6.569	11/12/2018	7.15	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-6	7.859	6.736	11/12/2018	7.27	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-7	7.985	6.555	3/14/2019	7.24	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-8	8.201	6.614	3/14/2019	7.38	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-9	7.634	6.734	11/12/2018	7.21	No	8	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/L)	MW-1	40	n/a	11/12/2018	24.6	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-10	27.78	n/a	3/14/2019	40.1	Yes	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-2	171.9	n/a	11/12/2018	81.5	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.68	n/a	11/12/2018	27.3	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-7	89.64	n/a	3/14/2019	33.9	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-8	59.19	n/a	1/10/2019	48.4	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-9	28.66	n/a	11/12/2018	25.8	No	8	0	No	0.001075	Param Intra 1 of 3

latan Generating Station Determination of Statistically Significant Increases CCR Landfill March 22, 2019

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	1					
Non I	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

_	_
Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
 ✓ Enlarge/Reduce Fonts (Graphs): 100% ✓ Enlarge/Reduce Fonts (Data/Text Reports): 100% 	Zoom Factor: 200% V
Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	Less Precision
☐ Truncate File Names to 20 Characters	Normal Precision More Precision
Include Limit Lines when found in Database	C Note i recision
☑ Show Deselected Data on Time Series Lighter ∨	
Show Deselected Data on all Data Pages Lighter	~
Setup Symbols and Colors	
⊡	Store Print Jobs in Multiple Constituent Mode Store All Print Jobs
Printer: Adobe PDF	∨ Printers

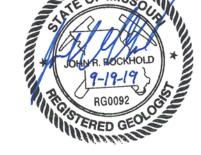
Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output Trend Test Control Cht Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
			nsformation Use Ladder	r of Powers				
✓ Test for Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.01 ∨ ○ Natural Log or No Transform								
✓ Use Non-Parametric Test when Non-Detects Percent >	50	0	Never Tran	sform				
Use Aitchison's Adjustment v when Non-Detects Percent >	15	0	Use Specific Transformation: Natural Log					
Optional Further Refinement: Use	when NDs % >	50	Use Best W	/ Statistic				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	90		Plot Transfo	omed Value	es			
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation: Override DF: Override Kappa:							
Always Use Non-Parametric								
Facility α Statistical Evaluations per Year: 2 Constituents Analyzed: 7 Downgradient (Compliance) Wells: 7 Sampling Plan	 ☐ Automatically Remove Background Outliers ☐ 2-Tailed Test Mode ☑ Show Deselected Data Lighter ∨ Non-Parametric Limit = Highest Background Value ∨ 							
Comparing Individual Observations 1 of 1 1 of 2 1 of 3 1 of 4 2 of 4 ("Modified California")	Non-Parametric Limit when 100% Non-Detects: Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)							
				-	-			

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
_	Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney Use Modified Alpha 2-Tailed Test Mode								
O E	Outlier Tests Outlier Tests EPA 1989 Outlier Screening (fixed alpha of 0.05) Dixon's at $\alpha = 0.05 \lor \text{or if n} > 22 \lor \text{Rosner's at } \alpha = 0.01 \lor \text{Use EPA Screening to establish Suspected Outliers}$								
O T	ukey's Outl	lier Screening,	with IQR Mul	tiplier = 3.0	Use Ladd	ler of Powers to	achieve B	Best W Stat	
_ () () () () () ()	 ✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1 ⑥ Stop if Non-Normal ⑥ Continue with Parametric Test if Non-Normal ⑥ Tukey's if Non-Normal, with IQR Multiplier = 3.0 ⑥ Use Ladder of Powers to achieve Best W Stat ☑ No Outlier If Less Than 3.0 Times Median ☐ Apply Rules found in Ohio Guidance Document 0715 ☐ Combine Background Wells on the Outlier Report 								
	Piper, Stiff Diagram Combine Wells								
	Combine Da				$ \overline{\mathbf{z}} $				
_		Constituent Nuent Definition			✓	Note Cation-	Anion Balan	ice (Piper o	nly)

ATTACHMENT 2-2

Spring 2019 Semiannual Detection Monitoring Statistical Analyses


MEMORANDUM

September 19, 2019

To: latan Generating Station 20250 State Route 45 N Platte County, Missouri

Kansas City Power & Light Company

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2019 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 20, 2019. Review and validation of the results from the May 2019 Detection Monitoring Event was completed on June 28, 2019, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 11, 2019 and August 20, 2019.

The completed statistical evaluation identified four Appendix III constituents (calcium, chloride, total dissolved solids, sulfate) above their respective prediction limits.

The prediction limit for calcium in monitoring well MW-7 is 157.1 mg/L. The detection monitoring sample was reported at 184 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 199 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 183 mg/L.

The prediction limit for calcium in monitoring well MW-10 is 131.1 mg/L. The detection monitoring sample was reported at 151 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 153 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 143 mg/L.

The prediction limit for chloride in monitoring well MW-7 is 17.12 mg/L. The detection monitoring sample was reported at 26 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 31.9 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 28.7 mg/L.

The prediction limit for chloride in monitoring well MW-10 is 18.96 mg/L. The detection monitoring sample was reported at 21.0 mg/L. The first verification re-sample was collected on

latan Generating Station
Determination of Statistically Significant Increases
CCR Landfill
September 19, 2019
Page 2 of 2

July 11, 2019 with a result of 22.5 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 20.3 mg/L.

The prediction limit for total dissolved solids in monitoring well MW-7 is 591.5 mg/L. The detection monitoring sample was reported at 737 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 761 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 743 mg/L.

The prediction limit for sulfate in monitoring well MW-7 is 89.64 mg/L. The detection monitoring sample was reported at 166 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 186 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 166 mg/L.

The prediction limit for sulfate in monitoring well MW-10 is 27.78 mg/L. The detection monitoring sample was reported at 37.3 mg/L. The first verification re-sample was collected on July 11, 2019 with a result of 33.0 mg/L. The second verification re-sample was collected on August 20, 2019 with a result of 34.6 mg/L.

Therefore, in accordance with the Statistical Method Certification, the detection monitoring samples for calcium, chloride, total dissolved solids, and sulfate from monitoring well MW-7 exceed their prediction limits and are confirmed SSIs over background. Additionally, the detection monitoring samples for calcium, chloride, and sulfate from monitoring well MW-10 exceed their prediction limits and are confirmed SSIs over background.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified SSIs above the background prediction limits for calcium, chloride, total dissolved solids and sulfate in monitoring well MW-7 and for calcium, chloride, and sulfate in monitoring well MW-10.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

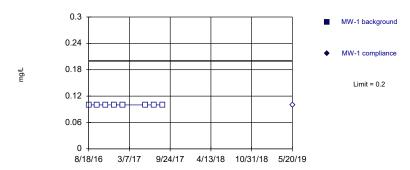
Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

latan Generating Station Determination of Statistically Significant Increases CCR Landfill September 19, 2019 Page 2 of 2

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

latan Generating Station Determination of Statistically Significant Increases CCR Landfill September 19, 2019


ATTACHMENT 1

Sanitas™ Output

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/17/2019 8:38 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

8/18/16 3/7/17

Within Limit

Intrawell Non-parametric

O.3

MW-2 background

MW-2 compliance

O.12

O.12

O.06

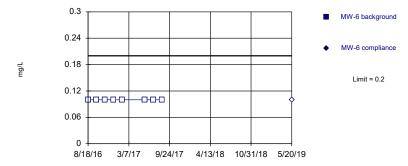
Limit = 0.2

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

9/24/17 4/13/18 10/31/18 5/20/19

Sanitas N v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 9/17/2019 8:38 AM View: CCR LF III

latan Utility Waste LF Client: SCS Engineers Data: latan jrr

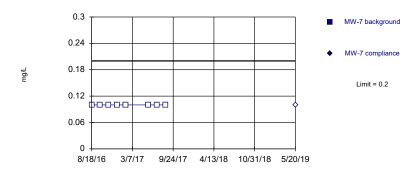
 $\mbox{Sanitas} \mbox{\ensuremath{^{\text{IV}}}} \ v. 9.6.23 \ \mbox{Sanitas} \ \mbox{software licensed to SCS Engineers. UG} \ \mbox{Hollow symbols indicate censored values.}$

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonalize data were not deseasonalized.

	MW-1	MW-1
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

	MW-10	MW-10
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2


	MW-2	MW-2
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

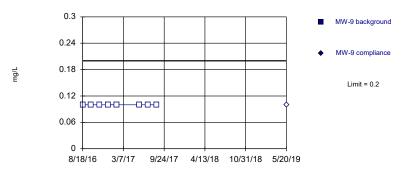
	MW-6	MW-6
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

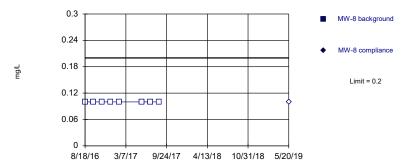
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Constituent: Boron Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Prediction Limit

Intrawell Non-parametric

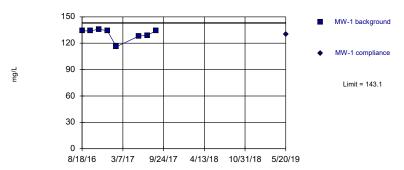
 $\label{eq:solution} Sanitas^{\text{\tiny{MV}}} \ v.9.6.23 \ Sanitas \ software \ licensed \ to \ SCS \ Engineers. \ UG \\ Hollow \ symbols \ indicate \ censored \ values.$


Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas³⁴ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

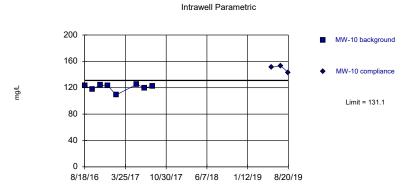
Constituent: Boron Analysis Run 9/17/2019 8:39 AM View: CCR LF III

latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on square transformation): Mean=17100, Std. Dev.=1642, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7554, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


	MW-7	MW-7
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

	MW-8	MW-8
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

	MW-9	MW-9
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/20/2019		<0.2

	MW-1	MW-1
8/18/2016	134	
9/29/2016	134	
11/9/2016	136	
12/21/2016	134	
2/3/2017	116	
5/24/2017	128	
7/5/2017	129	
8/17/2017	134	
5/20/2019		130

Exceeds Limit Prediction Limit

Background Data Summary: Mean=120.5, Std. Dev.=5.155, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.7951, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

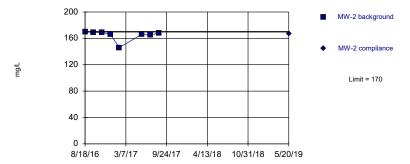
Constituent: Calcium Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

MW-6 background

MW-6 compliance


MW-6 compliance

Limit = 154.4

Background Data Summary: Mean=144, Std. Dev.=5.099, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9356, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Calcium Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=133.8, Std. Dev.=11.39, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9082, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-10	MW-10)
8/18/2016	123		
9/29/2016	118		
11/9/2016	124		
12/21/2016	123		
2/3/2017	109		
5/24/2017	125		
7/5/2017	120		
8/17/2017	122		
5/20/2019		151	
7/11/2019		153	1st Verification Sample
8/20/2019		143	2nd Verification Sample

	MW-2	MW-2
8/18/2016	170	
9/29/2016	169	
11/9/2016	169	
12/21/2016	166	
2/3/2017	146	
5/24/2017	166	
7/5/2017	165	
8/17/2017	168	
5/20/2019		167

	MW-6	MW-6	
8/18/2016	142		
9/29/2016	139		
11/9/2016	142		
12/21/2016	146		
2/3/2017	136		
5/24/2017	150		
7/5/2017	147		
8/17/2017	150		
5/20/2019		131	
7/11/2019		138	Extra Sample

	MW-7	MW-7	
8/18/2016	145		
9/29/2016	144		
11/9/2016	146		
12/21/2016	138		
2/3/2017	116		
5/24/2017	123		
7/5/2017	125		
8/17/2017	133		
5/20/2019		184	
7/11/2019		199	1st verification sample
8/20/2019		183	2nd verification sample

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=137.5, Std. Dev.=4.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapino Wilk @alpha = 0.01, calculated = 0.9624, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

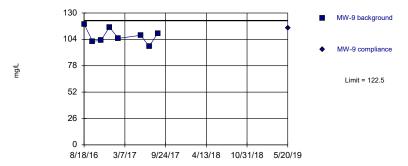
6.3

MW-1 background

MW-1 compliance

3.78

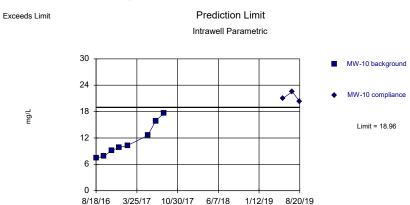
2.52


1.26

0

8/18/16 3/7/17 9/24/17 4/13/18 10/31/18 5/20/19

Background Data Summary: Mean=5.93, Std. Dev.=0.1654, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9207, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

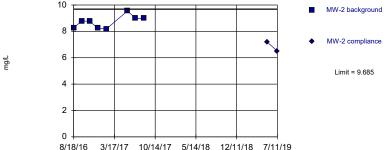

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=107.5, Std. Dev.=7.308, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9668, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Calcium Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=11.34, Std. Dev.=3.722, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8939, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


	MW-8	MW-8
8/18/2016	136	
9/29/2016	132	
11/9/2016	135	
12/21/2016	139	
2/3/2017	133	
5/24/2017	138	
7/5/2017	142	
8/17/2017	145	
5/20/2019		141

	MW-9	MW-9
8/18/2016	119	
9/29/2016	102	
11/9/2016	103	
12/21/2016	116	
2/3/2017	105	
5/24/2017	108	
7/5/2017	97.2	
8/17/2017	110	
5/20/2019		115

	MW-1	MW-1
8/18/2016	5.93	
9/29/2016	6.07	
11/9/2016	5.95	
12/21/2016	5.97	
2/3/2017	6	
5/24/2017	5.61	
7/5/2017	5.78	
8/17/2017	6.13	
5/20/2019		5.66

	MW-10	MW-10	
8/18/2016	7.47		
9/29/2016	7.83		
11/9/2016	9.15		
12/21/2016	9.84		
2/3/2017	10.3		
5/24/2017	12.6		
7/5/2017	15.9		
8/17/2017	17.6		
5/20/2019		21	
7/11/2019		22.5	1st verification sample
8/20/2019		20.3	2nd verification sample

Background Data Summary: Mean=8.716, Std. Dev.=0.4727, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.911, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Chloride Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

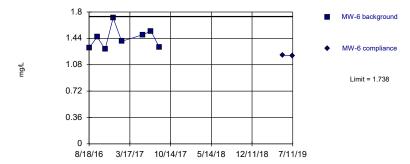
Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Exceeds Limit
Intrawell Parametric

40

32

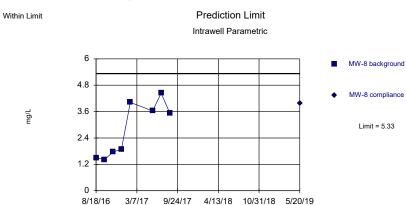
MW-7 background


MW-7 compliance

Limit = 17.12

Background Data Summary: Mean=6.604, Std. Dev.=5.131, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.8394, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG



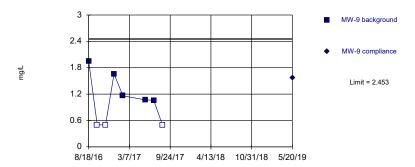
Background Data Summary: Mean=1.441, Std. Dev.=0.1448, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.749. Kappa = 0.499 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001074.

Constituent: Chloride Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=2.774, Std. Dev.=1.248, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8496, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

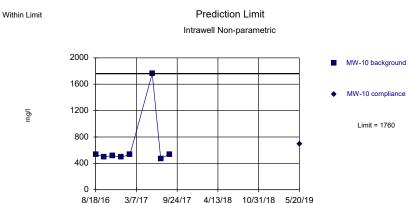
	MW-2	MW-2	
8/18/2016	8.26		
9/29/2016	8.79		
11/9/2016	8.76		
12/21/2016	8.24		
2/3/2017	8.17		
5/24/2017	9.54		
7/5/2017	8.99		
8/17/2017	8.98		
5/20/2019		7.18	
7/11/2019		6.5	extra sample


8/18/2016 1.31 9/29/2016 1.46 11/9/2016 1.29
11/9/2016 1.29
12/21/2016 1.72
2/3/2017 1.4
5/24/2017 1.49
7/5/2017 1.54
8/17/2017 1.32
5/20/2019 1.21
7/11/2019 1.2 extra sa

	MW-7	MW-7	
8/18/2016	12.3		
9/29/2016	13.9		
11/9/2016	11.1		
12/21/2016	6.64		
2/3/2017	3.32		
5/24/2017	1.76		
7/5/2017	1.81		
8/17/2017	2		
5/20/2019		26	
7/11/2019		31.9	1st verification sample
8/20/2019		28.7	2nd verification sample

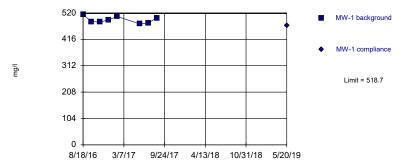
	MW-8	MW-8
8/18/2016	1.5	
9/29/2016	1.42	
11/9/2016	1.76	
12/21/2016	1.89	
2/3/2017	4.02	
5/24/2017	3.63	
7/5/2017	4.44	
8/17/2017	3.53	
5/20/2019		3.98

Within Limit



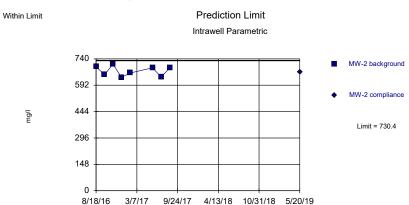
Background Data Summary (after Aitchison's Adjustment): Mean=0.8625, Std. Dev.=0.7765, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8801, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Chloride Analysis Run 9/17/2019 8:39 AM View: CCR LF III


Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005912 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

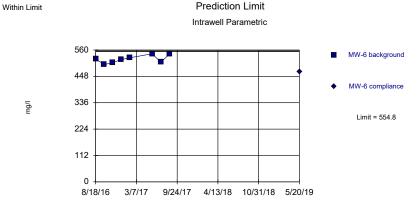


Background Data Summary: Mean=492.5, Std. Dev.=12.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9433, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Dissolved Solids Analysis Run 9/17/2019 8:39 AM View: CCR LF III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

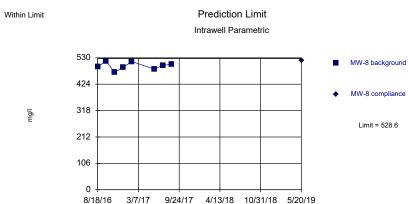
Background Data Summary: Mean=671.6, Std. Dev.=28.68, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9045, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

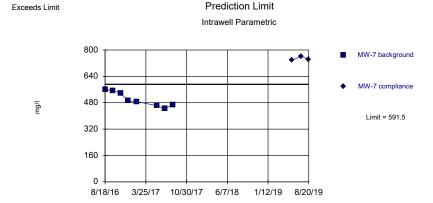

	MW-9	MW-9
8/18/2016	1.95	
9/29/2016	<1	
11/9/2016	<1	
12/21/2016	1.66	
2/3/2017	1.16	
5/24/2017	1.07	
7/5/2017	1.06	
8/17/2017	<1	
5/20/2019		1.57

	MW-1	MW-1
8/18/2016	513	
9/29/2016	486	
11/9/2016	484	
12/21/2016	493	
2/3/2017	506	
5/24/2017	477	
7/5/2017	481	
8/17/2017	500	
5/20/2019		470

	MW-10	MW-10
8/18/2016	532	
9/29/2016	502	
11/9/2016	516	
12/21/2016	497	
2/3/2017	531	
5/24/2017	1760	
7/5/2017	474	
8/17/2017	539	
5/20/2019		697

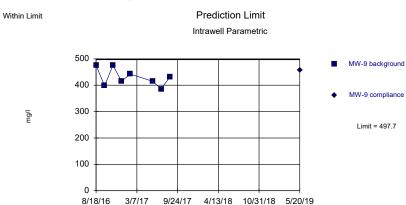
	MW-2	MW-2
8/18/2016	696	
9/29/2016	651	
11/9/2016	711	
12/21/2016	636	
2/3/2017	661	
5/24/2017	690	
7/5/2017	638	
8/17/2017	690	
5/20/2019		666


Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG


Background Data Summary: Mean=520.8, Std. Dev.=16.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9434, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

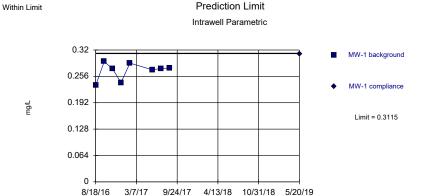

Background Data Summary: Mean=497.4, Std. Dev.=15.24, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9638, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Background Data Summary: Mean=500.5, Std. Dev.=44.43, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.9004, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Dissolved Solids Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

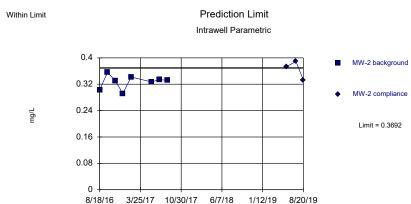
Background Data Summary: Mean=429.8, Std. Dev.=33.16, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9264, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


	MW-6	MW-6
8/18/2016	522	
9/29/2016	498	
11/9/2016	506	
12/21/2016	519	
2/3/2017	527	
5/24/2017	544	
7/5/2017	508	
8/17/2017	542	
5/20/2019		468

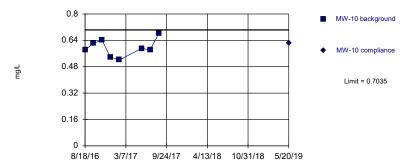
	MW-7	MW-7	
8/18/2016	560		
9/29/2016	554		
11/9/2016	538		
12/21/2016	492		
2/3/2017	487		
5/24/2017	462		
7/5/2017	445		
8/17/2017	466		
5/20/2019		737	
7/11/2019		761	1st verification sample
8/20/2019		743	2nd verification sample

	MW-8	MW-8
8/18/2016	494	
9/29/2016	517	
11/9/2016	471	
12/21/2016	493	
2/3/2017	515	
5/24/2017	485	
7/5/2017	500	
8/17/2017	504	
5/20/2019		518

	MW-9	MW-9
8/18/2016	475	
9/29/2016	398	
11/9/2016	476	
12/21/2016	415	
2/3/2017	442	
5/24/2017	415	
7/5/2017	386	
8/17/2017	431	
5/20/2019		457

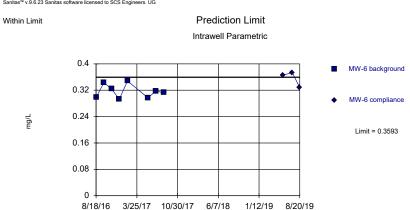

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.269, Std. Dev.=0.02076, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8526, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: Fluoride Analysis Run 9/17/2019 8:39 AM View: CCR LF III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.3271, Std. Dev.=0.02055, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9268, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.



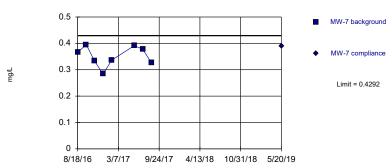
Background Data Summary: Mean=0.5953, Std. Dev.=0.05283, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9706, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: Fluoride Analysis Run 9/17/2019 8:39 AM View: CCR LF III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.3166, Std. Dev.=0.02083, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-1	MW-1
8/18/2016	0.234	
9/29/2016	0.292	
11/9/2016	0.274	
12/21/2016	0.241	
2/3/2017	0.288	
5/24/2017	0.272	
7/5/2017	0.275	
8/17/2017	0.276	
5/20/2019		0.311


	MW-10	MW-10
8/18/2016	0.584	
9/29/2016	0.622	
11/9/2016	0.642	
12/21/2016	0.538	
2/3/2017	0.521	
5/24/2017	0.591	
7/5/2017	0.582	
8/17/2017	0.682	
5/20/2019		0.623

	MW-2	MW-2	
8/18/2016	0.303		
9/29/2016	0.356		
11/9/2016	0.331		
12/21/2016	0.292		
2/3/2017	0.342		
5/24/2017	0.327		
7/5/2017	0.334		
8/17/2017	0.332		
5/20/2019		0.373	
7/11/2019		0.389	1st verification sample
8/20/2019		0.333	2nd verification sample

	MW-6	MW-6	
8/18/2016	0.298		
9/29/2016	0.343		
11/9/2016	0.324		
12/21/2016	0.293		
2/3/2017	0.348		
5/24/2017	0.297		
7/5/2017	0.317		
8/17/2017	0.313		
5/20/2019		0.366	
7/11/2019		0.373	1st verification sample
8/20/2019		0.328	2nd verification sample

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.3513, Std. Dev=0.03803, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9335, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit
Intrawell Parametric

0.5

0.4

0.4

0.3

0.2

0.1

0.1

0.8/18/16 3/7/17 9/24/17 4/13/18 10/31/18 5/20/19

Background Data Summary: Mean=0.3685, Std. Dev=0.03036, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9498, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.4185, Std. Dev.=0.02513, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Fluoride Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

8/18/16 3/7/17

Within Limits

Prediction Limit
Intrawell Parametric

MW-1 background

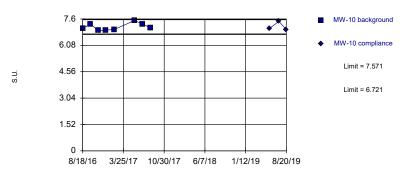
MW-1 compliance
Limit = 7.663

Limit = 6.479

Background Data Summary: Mean=7.071, Std. Dev.=0.289, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8946, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

9/24/17 4/13/18 10/31/18 5/20/19

	MW-7	MW-7
8/18/2016	0.366	
9/29/2016	0.395	
11/9/2016	0.333	
12/21/2016	0.284	
2/3/2017	0.337	
5/24/2017	0.391	
7/5/2017	0.378	
8/17/2017	0.326	
5/20/2019		0.389


	MW-8	MW-8
8/18/2016	0.438	
9/29/2016	0.439	
11/9/2016	0.415	
12/21/2016	0.461	
2/3/2017	0.407	
5/24/2017	0.391	
7/5/2017	0.391	
8/17/2017	0.406	
5/20/2019		0.446

	MW-9	MW-9
8/18/2016	0.338	
9/29/2016	0.415	
11/9/2016	0.383	
12/21/2016	0.344	
2/3/2017	0.327	
5/24/2017	0.387	
7/5/2017	0.364	
8/17/2017	0.39	
5/20/2019		0.415

	MW-1	MW-1
8/18/2016	6.89	
9/29/2016	7.24	
11/9/2016	6.74	
12/21/2016	6.86	
2/3/2017	6.91	
5/24/2017	7.41	
7/5/2017	7.54	
8/17/2017	6.98	
5/20/2019		6.93

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

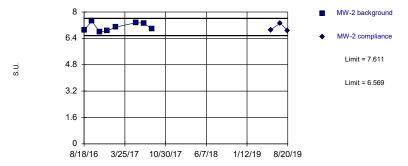
Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.146, Std. Dev.=0.2075, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8964, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH Analysis Run 9/17/2019 8:39 AM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limits


Prediction Limit
Intrawell Parametric

MW-6 background

MW-6 compliance
Limit = 7.859
Limit = 6.736

Background Data Summary: Mean=7.298, Std. Dev.=0.2742, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.09, Std. Dev.=0.2544, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.010, calculated = 0.9007, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: pH Analysis Run 9/17/2019 8:39 AM View: CCR LF III
latan Utility Waste LF Client: SCS Engineers Data: latan irr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

1.6

Within Limits

Prediction Limit
Intrawell Parametric

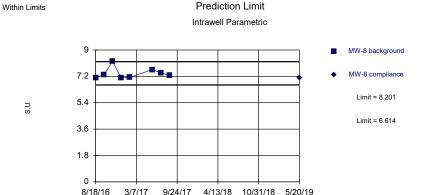
MW-7 background

MW-7 compliance
Limit = 7.985
Limit = 6.555

8/18/16 3/25/17 10/30/17 6/7/18

Background Data Summary: Mean=7.27, Std. Dev =0.349, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9233, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

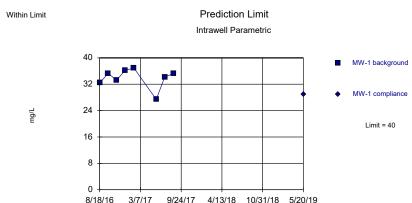
1/12/19 8/20/19


	MW-10	MW-10	
8/18/2016	7.06		
9/29/2016	7.31		
11/9/2016	6.93		
12/21/2016	6.96		
2/3/2017	6.99		
5/24/2017	7.51		
7/5/2017	7.31		
8/17/2017	7.1		
5/20/2019		7.05	
7/11/2019		7.46	extra sample
8/20/2019		6.99	extra sample

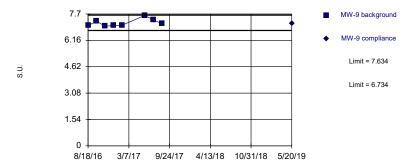
	MW-2	MW-2	
8/18/2016	6.9		
9/29/2016	7.45		
11/9/2016	6.79		
12/21/2016	6.85		
2/3/2017	7.08		
5/24/2017	7.35		
7/5/2017	7.33		
8/17/2017	6.97		
5/20/2019		6.92	
7/11/2019		7.33	extra sample
8/20/2019		6.85	extra sample

	MW-6	MW-6	
8/18/2016	7.18		
9/29/2016	6.97		
11/9/2016	7.72		
12/21/2016	6.99		
2/3/2017	7.1		
5/24/2017	7.49		
7/5/2017	7.46		
8/17/2017	7.47		
5/20/2019		7.43	
7/11/2019		7.29	extra sample
8/20/2019		7.07	extra sample

	MW-7	MW-7	
8/18/2016	6.97		
9/29/2016	7.25		
11/9/2016	7.87		
12/21/2016	6.88		
2/3/2017	7.01		
5/24/2017	7.67		
7/5/2017	7.36		
8/17/2017	7.15		
5/20/2019		7.21	
7/11/2019		7.63	extra sample
8/20/2019		6.99	extra sample

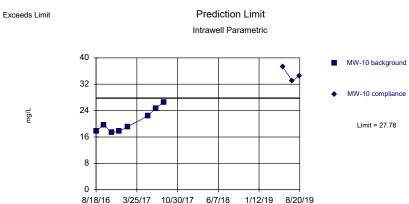

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=7.408, Std. Dev.=0.3874, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8126, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


> Constituent: pH Analysis Run 9/17/2019 8:39 AM View: CCR LF III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=33.85, Std. Dev.=3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normalify test: Shapiro Wilk @alpha = 0.01, calculated = 0.8631, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Prediction Limit Within Limits Intrawell Parametric

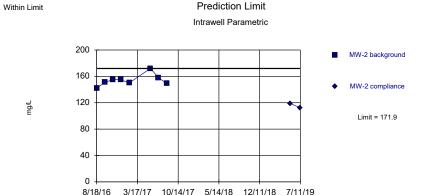
Background Data Summary: Mean=7.184, Std. Dev.=0.2196, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8503, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

> Constituent: pH Analysis Run 9/17/2019 8:39 AM View: CCR LF III

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=20.66, Std. Dev.=3.472, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8679, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-8	MW-8
8/18/2016	7.1	
9/29/2016	7.32	
11/9/2016	8.24	
12/21/2016	7.1	
2/3/2017	7.13	
5/24/2017	7.66	
7/5/2017	7.44	
8/17/2017	7.27	
5/20/2019		7.11

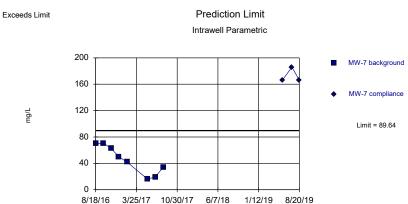

	MW-9	MW-9
8/18/2016	7.02	
9/29/2016	7.28	
11/9/2016	6.99	
12/21/2016	7.02	
2/3/2017	7.05	
5/24/2017	7.61	
7/5/2017	7.37	
8/17/2017	7.13	
5/20/2019		7.13

	MW-1	MW-1
8/18/2016	32.4	
9/29/2016	35.3	
11/9/2016	33.2	
12/21/2016	36.2	
2/3/2017	36.9	
5/24/2017	27.4	
7/5/2017	34.2	
8/17/2017	35.2	
5/20/2019		28.9

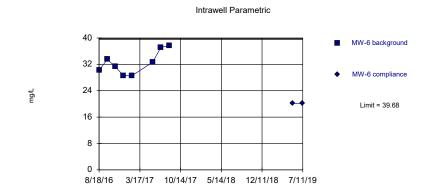
	MW-10	MW-10	
8/18/2016	17.8		
9/29/2016	19.7		
11/9/2016	17.4		
12/21/2016	17.7		
2/3/2017	19.1		
5/24/2017	22.4		
7/5/2017	24.7		
8/17/2017	26.5		
5/20/2019		37.3	
7/11/2019		33	1st verification sample
8/20/2019		34.6	2nd verification sample

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit



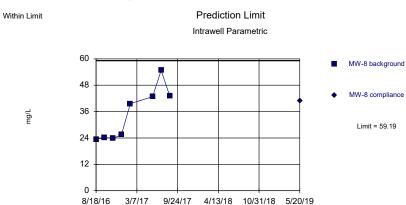
Background Data Summary: Mean=154, Std. Dev.=8.751, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.


Constituent: Sulfate Analysis Run 9/17/2019 8:39 AM View: CCR LF III

latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=45.64, Std. Dev.=21.48, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9157, critical = 0.749. Kappa = 2.049 (e=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.



Prediction Limit

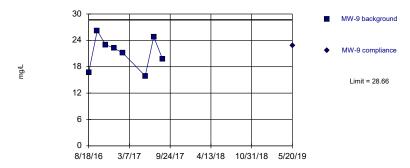
Background Data Summary: Mean=32.46, Std. Dev.=3.522, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9073, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

Constituent: Sulfate Analysis Run 9/17/2019 8:39 AM View: CCR LF III latan Utility Waste LF Client: SCS Engineers Data: latan jrr

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=34.63, Std. Dev.=11.99, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8458, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-6	MW-6	
8/18/2016	30.2		
9/29/2016	33.5		
11/9/2016	31.4		
12/21/2016	28.6		
2/3/2017	28.5		
5/24/2017	32.7		
7/5/2017	37.2		
8/17/2017	37.6		
5/20/2019		20.2	
7/11/2019		20.1	extra sample


	MW-7	MW-7	
8/18/2016	70.2		
9/29/2016	70.6		
11/9/2016	62.6		
12/21/2016	50		
2/3/2017	41.9		
5/24/2017	16.2		
7/5/2017	19.5		
8/17/2017	34.1		
5/20/2019		166	
7/11/2019		186	1st verification sample
8/20/2019		166	2nd verification sample

	MW-8	MW-8
8/18/2016	23.3	
9/29/2016	24.2	
11/9/2016	23.8	
12/21/2016	25.5	
2/3/2017	39.6	
5/24/2017	42.8	
7/5/2017	54.8	
8/17/2017	43	
5/20/2019		40.9

Sanitas™ v.9.6.23 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=21.21, Std. Dev.=3.635, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9584, critical = 0.749. Kappa = 2.049 (c=7, w=7, 1 of 3, event alpha = 0.05132). Report alpha = 0.001075.

	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
5/20/2019		22.8

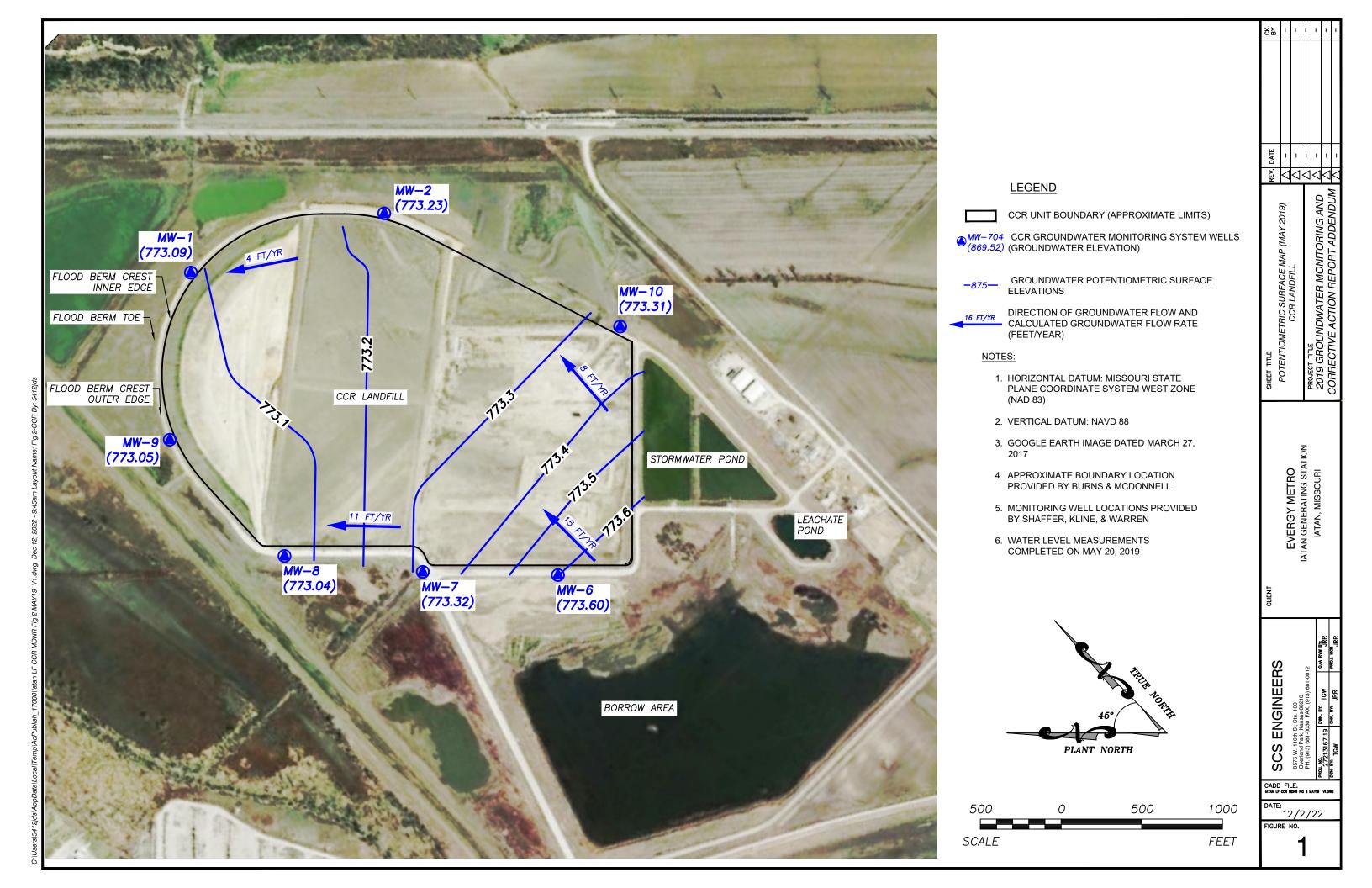
		lata	an Utility Waste	LF Client: SCS Engineers	s Data: latan	jrr F	Printed 9	/17/2019, 9	:09 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Boron (mg/L)	MW-1	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-10	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	5/20/2019	0.1ND	No	8	100	n/a	0.005912	NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	143.1	n/a	5/20/2019	130	No	8	0	x^2	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-10	131.1	n/a	8/20/2019	143	Yes	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-2	170	n/a	5/20/2019	167	No	8	0	n/a	0.005912	NP Intra (normality)
Calcium (mg/L)	MW-6	154.4	n/a	7/11/2019	138	No	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-7	157.1	n/a	8/20/2019	183	Yes	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-8	146.6	n/a	5/20/2019	141	No	8	0	No	0.001075	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122.5	n/a	5/20/2019	115	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.269	n/a	5/20/2019	5.66	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-10	18.96	n/a	8/20/2019	20.3	Yes	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-2	9.685	n/a	7/11/2019	6.5	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.738	n/a	7/11/2019	1.2	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-7	17.12	n/a	8/20/2019	28.7	Yes	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-8	5.33	n/a	5/20/2019	3.98	No	8	0	No	0.001075	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.453	n/a	5/20/2019	1.57	No	8	37.5	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	518.7	n/a	5/20/2019	470	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	5/20/2019	697	No	8	0	n/a	0.005912	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	730.4	n/a	5/20/2019	666	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	554.8	n/a	5/20/2019	468	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	591.5	n/a	8/20/2019	743	Yes	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-8	528.6	n/a	5/20/2019	518	No	8	0	No	0.001075	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	497.7	n/a	5/20/2019	457	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.3115	n/a	5/20/2019	0.311	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.7035	n/a	5/20/2019	0.623	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.3692	n/a	8/20/2019	0.333	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.3593	n/a	8/20/2019	0.328	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.4292	n/a	5/20/2019	0.389	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.47	n/a	5/20/2019	0.446	No	8	0	No	0.001075	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.4307	n/a	5/20/2019	0.415	No	8	0	No	0.001075	Param Intra 1 of 3
pH (S.U.)	MW-1	7.663	6.479	5/20/2019	6.93	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-10	7.571	6.721	8/20/2019	6.99	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-2	7.611	6.569	8/20/2019	6.85	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-6	7.859	6.736	8/20/2019	7.07	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-7	7.985	6.555	8/20/2019	6.99	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-8	8.201	6.614	5/20/2019	7.11	No	8	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	MW-9	7.634	6.734	5/20/2019	7.13	No	8	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/L)	MW-1	40	n/a	5/20/2019	28.9	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-10	27.78	n/a	8/20/2019	34.6	Yes	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-2	171.9	n/a	7/11/2019	112	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.68	n/a	7/11/2019	20.1	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-7	89.64	n/a	8/20/2019	166	Yes	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-8	59.19	n/a	5/20/2019	40.9	No	8	0	No	0.001075	Param Intra 1 of 3
Sulfate (mg/L)	MW-9	28.66	n/a	5/20/2019	22.8	No	8	0	No	0.001075	Param Intra 1 of 3

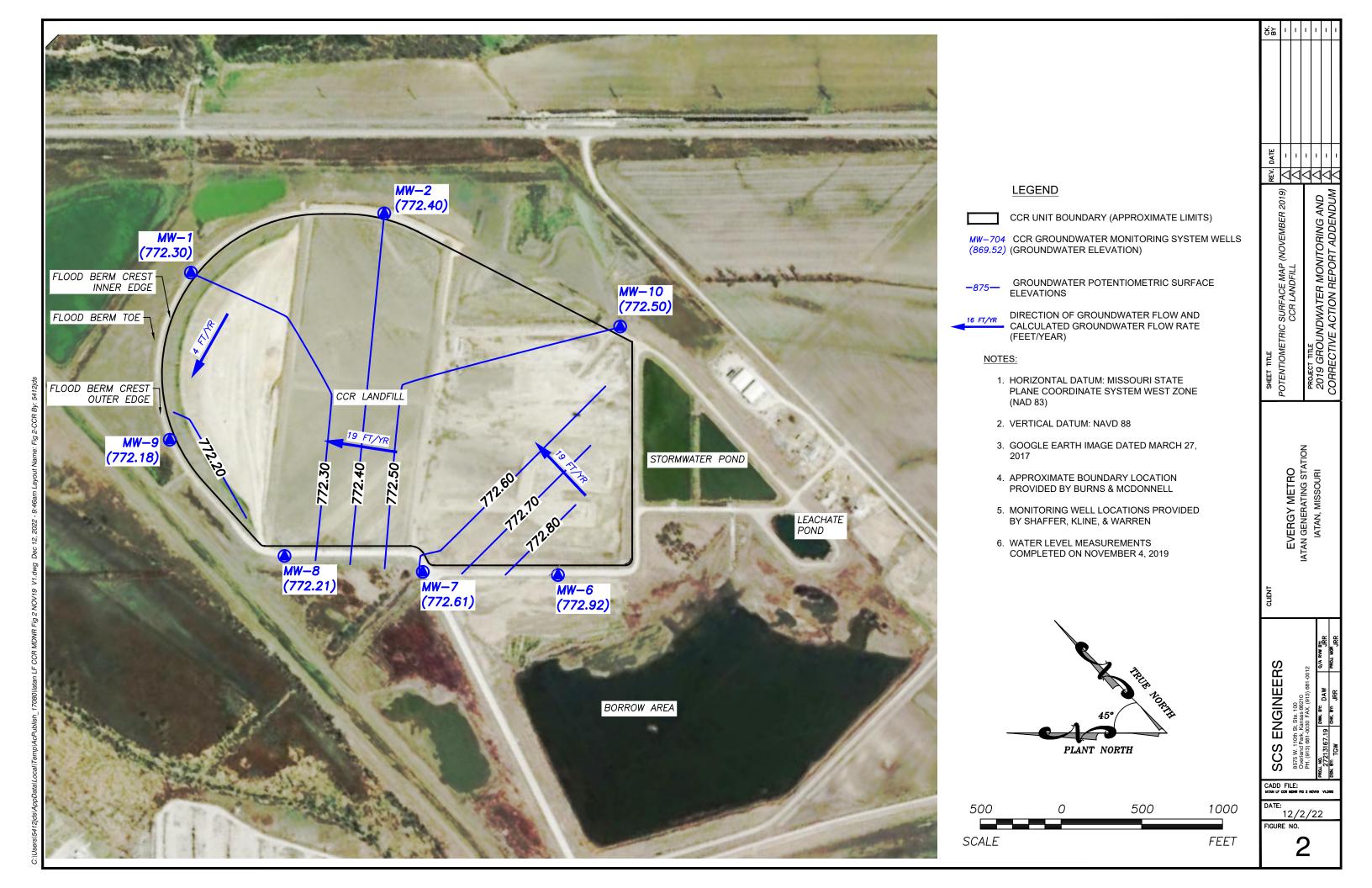
Iatan Generating Station Determination of Statistically Significant Increases CCR Landfill September 19, 2019

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
O M	ledian of Ea	ach:	Seasor	1					
Non	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						


Black and White Output	✓ Prompt to Overwrite/Append Summary Tables						
Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)						
Always Combine Data Pages	User-Set Scale						
✓ Include Tick Marks on Data Page	✓ Indicate Background Data						
Use Constituent Name for Graph Title	Show Exact Dates						
Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines						
✓ Enlarge/Reduce Fonts (Graphs): 100%	Zoom Factor: 200% V						
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	200111 Factor. 200% V						
Wide Margins (on reports without explicit setting)	Output Decimal Precision						
Use CAS# (Not Const. Name)	Cless Precision						
Truncate File Names to 20 Characters	Normal Precision More Precision						
Include Limit Lines when found in Database	O Male Fredakii						
☑ Show Deselected Data on Time Series Lighter ∨							
✓ Show Deselected Data on all Data Pages Lighter ∨							
Setup Symbols and Colors							
Store Print Jobs in Multiple Constituent Mode Store All Print Jobs.							
	Otolo / Il I III t 0000						
Printer: Adobe PDF	∨ Printers						


Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Transformation ■ Use Ladder of Powers Natural Log or No Transformation ■ Use Non-Parametric Test when Non-Detects Percent > 50 Use Aitchison's Adjustment ∨ when Non-Detects Percent > 15 □ Optional Further Refinement: Use	Data Output Trend Test Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests	
Use Non-Parametric Test when Non-Detects Percent > 50 Use Aitchison's Adjustment ∨ when Non-Detects Percent > 15 □ Optional Further Refinement: Use □ when NDs % > 50 □ Use Best W Statistic □ Use Poisson Prediction Limit when Non-Detects Percent > 90 □ Use Best W Statistic □ Plot Transformed Values □ IntraWell Other □ Stop if Background Trend Detected at Alpha = 0.05 ∨ Plot Background Data □ Override Standard Deviation: □ Always (When Sufficient Data) □ Never □ Stop if Background Trend Detected at Alpha = 0.05 ∨ Plot Background Data □ Override Standard Deviation: □ Always Use Non-Parametric □ Stop if Background Trend Detected at Alpha = 0.05 ∨ Plot Background Data □ Override Standard Deviation: □ Automatically Remove Background Outliers □ 2-Tailed Test Mode □ Show Deselected Data Lighter ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit when 100% Non-Detects:						r of Powers		
Optional Further Refinement: Use	✓ Use Non-Parametric Test when Non-Dete	ects Percent >	at Alpha = 0.01 Natural Log or No Transformation Never Transform Use Specific Transformation:					
 If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never Always Use Non-Parametric Facility □ Statistical Evaluations per Year: Constituents Analyzed: Downgradient (Compliance) Wells: Sampling Plan Stop if Background Trend Detected at Alpha = 0.05 ∨ Plot Background Data Override Standard Deviation: Override DF: Override Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode ✓ Show Deselected Data Lighter ∨ Non-Parametric Limit = Highest Background Value 	Optional Further Refinement: Use	v w	hen NDs % >	50		/ Statistic		
Facility \(\alpha \) Statistical Evaluations per Year: 2 Automatically Remove Background Outliers 2-Tailed Test Mode \(\sigma \) Show Deselected Data Lighter \(\sigma \) Non-Parametric Limit = Highest Background Value \(\sigma \) Non-Parametric Limit when 100% Non-Detects:	If Seasonality Is Detected If Seasonality Is Detected Or Insufficient		Stop if	Background To ckground Data	·	ed at Alpha	a = 0.05 V	
Sampling Plan	Facility α Statistical Evaluations per Year: Constituents Analyzed:	7	☐ Automa☐ 2-Tailed	tically Remove d Test Mode Deselected Dat	Backgroun	nd Outliers		
Comparing Individual Observations 1 of 1 1 1 of 2 1 of 3 1 of 4 2 of 4 ("Modified California") Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)								

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests		
_	Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney Use Modified Alpha 2-Tailed Test Mode										
O E	Outlier Tests © EPA 1989 Outlier Screening (fixed alpha of 0.05) © Dixon's at α= 0.05 ∨ or if n > 22 ∨ Rosner's at α= 0.01 ∨ ✓ Use EPA Screening to establish Suspected Outliers										
O T	ukey's Outl	lier Screening,	with IQR Mul	tiplier = 3.0	Use Ladd	ler of Powers to	achieve B	est W Stat			
_ () () () () () ()	 ✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1 ✓ Stop if Non-Normal ✓ Continue with Parametric Test if Non-Normal ✓ Tukey's if Non-Normal, with IQR Multiplier = 3.0 ✓ Use Ladder of Powers to achieve Best W Stat ✓ No Outlier If Less Than 3.0 Times Median ✓ Apply Rules found in Ohio Guidance Document 0715 ✓ Combine Background Wells on the Outlier Report 										
	Stiff Diagra				~	Label Constitu	uents				
	combine Dat				\subseteq						
_		Constituent Nuent Definition			✓	Note Cation-	Anion Balan	ice (Piper o	nly)		

ATTACHMENT 3 Groundwater Potentiometric Surface Maps

