2018 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

CCR LANDFILL
IATAN GENERATING STATION
IATAN, MISSOURI

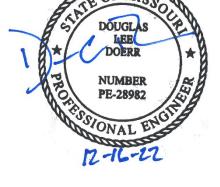
Presented To: Kansas City Power & Light Company

SCS ENGINEERS

27213167.18 | January 2019, Revised December 16, 2022

8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

2018 Groundwater Monitoring and Corrective Action Report

Revision	Revision	Revision	Summary of Revisions
Number	Date	Section	
0	January 2019	NA	Original Report.
1	December 16, 2022	Addendum 1	Added Addendum 1

Table of Contents

Sec	ion		P ¹	age
CERT	IFICA	TIONS		i
1			ON	
2	§ 25	7.90(e)	ANNUAL REPORT REQUIREMENTS	1
	2.1	§ 257.	.90(e)(1) Site Map	1
	2.2		.90(e)(2) Monitoring System Changes	
	2.3	§ 257.	.90(e)(3) Summary of Sampling Events	1
	2.4	§ 257.	.90(e)(4) Monitoring Transition Narrative	2
	2.5		.90(e)(5) Other Requirements	
		2.5.1	§ 257.90(e) Program Status	2
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequence	суЗ
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	3
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Freque	•
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	4
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	4
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	
3	GENI	FRAL CO	DMMENTS	5

Appendices

Appendix A Figures Figure 1: Site Map

Appendix B Tables

Table 1: Appendix III Detection Monitoring Results
Table 2: Detection Monitoring Field Measurements

Appendix C Alternative Source Demonstration

- C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (April 2018).
- C.2. Supplemental Data for Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (April 2018).

Addendum 1 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

1 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015). Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the latan Generating Station.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2018.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and

downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was conducted during the reporting period (2018). Samples collected in 2018 were collected and analyzed for Appendix III detection monitoring constituents as indicated in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results, and **Table 2** (Detection Monitoring Field Measurements). The dates of sample collection, the monitoring program requiring the sample, and the results of the analyses are also provided in these tables. These tables include both the Spring 2018 semiannual detection monitoring data and the Fall 2018 semiannual detection monitoring data.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2018. Only detection monitoring was conducted in 2018.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the statistical evaluation of the initial Fall 2017 semiannual detection monitoring event per the certified statistical method,
- b. completion of the 2017 Annual Groundwater Monitoring and Corrective Action Report,
- c. completion of a successful alternative source demonstration for the Fall 2017 semiannual detection monitoring event,
- d. completion of the Spring 2018 semiannual detection monitoring sampling and analysis event, and subsequent verification sampling per the certified statistical method,
- e. completion of the statistical evaluation of the Spring 2018 semiannual detection monitoring event per the certified statistical method, and
- f. initiation of the Fall 2018 semiannual detection monitoring sampling and analysis event.

2018 Groundwater Monitoring and Corrective Action Report

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2019).

Semiannual Spring and Fall 2019 groundwater sampling and analysis. Completion of verification sampling and analyses and statistical evaluation of Fall 2018 and Spring 2019 detection monitoring data and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following report is included as **Appendix C**:

- C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (April 2018).
- C.2. Supplemental Data for Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event, CCR Landfill, latan Generating Station (April 2018).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets

the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

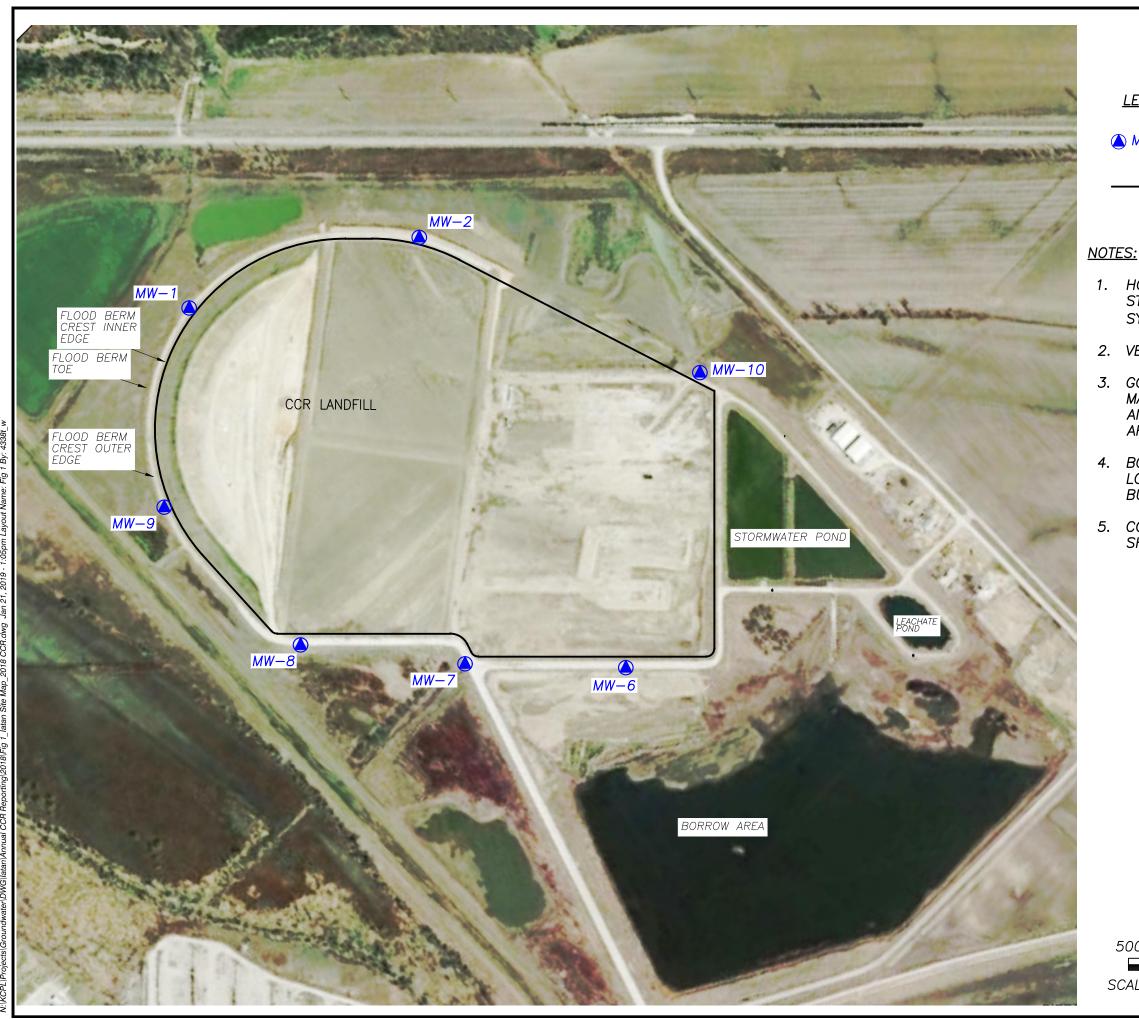
Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

3 GENERAL COMMENTS

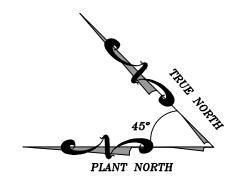

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the latan Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

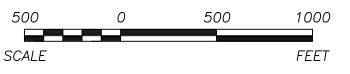
Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Kansas City Power & Light Company for specific application to the latan Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

APPENDIX A

FIGURES

Figure 1: Site Map




LEGEND:

CCR GROUNDWATER MONITORING WELL SYSTEM

CCR LANDFILL UNIT BOUNDARY

- 1. HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM, WEST ZONE (NAD 83)
- 2. VERTICAL DATUM: NAVD 88
- 3. GOOGLE EARTH IMAGE DATED MARCH 27, 2017. BOUNDARY AND MONITOR WELL LOCATIONS ARE APPROXIMATE
- 4. BOUNDARY AND MONITOR WELL LOCATIONS PROVIDED BY BURNS & MCDONNELL
- 5. CCR LANDFILL UNIT BOUNDARY SHOWN IS APPROXIMATE.

KANSAS CITY POWER & LIGHT COMPANY IATAN GENERATING STATION WESTON, MISSOURI

SCS ENGINEERS

CADD FILE: FIG 1_JATAN SITE MAP_2016 CORDING

1/21/19 FIGURE NO.

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results

Table 2: Detection Monitoring Field Measurements

Table 1 CCR Landfill Appendix III Detection Monitoring Results KCP&L latan Generating Station

			Appendix III Constituents							
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	pH (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)		
MW-1	05/21/18	<0.200	131	5.63	0.327	6.93	32.6	496		
MW-1	06/26/18				*0.263	**6.99				
MW-1	11/12/18	<0.200	137	5.04	0.288	6.99	24.6	485		
MW-2	05/21/18	<0.200	164	8.14	0.383	6.90	137	648		
MW-2	06/26/18				*0.320	**6.99				
MW-2	11/12/18	<0.200	166	5.79	0.327	7.15	81.5	590		
MW-6	05/21/18	<0.200	150	1.45	0.354	7.08	30.9	540		
MW-6	11/12/18	<0.200	147	1.31	0.325	7.27	27.3	484		
MW-7	05/21/18	<0.200	123	1.54	0.414	7.04	23.8	439		
MW-7	11/12/18	<0.200	192	26.4	0.369	7.18	149	681		
MW-8	05/21/18	<0.200	130	1.50	0.441	7.17	25.4	437		
MW-8	11/12/18	<0.200	170	12.10	0.396	7.15	85.8	563		
MW-9	05/21/18	<0.200	105	<1.00	0.426	7.05	18.3	412		
MW-9	11/12/18	<0.200	122	1.1	0.390	7.21	25.8	435		
MW-10	05/21/18	<0.200	115	14.1	0.654	7.04	23.6	509		
MW-10	11/12/18	<0.200	138	15.1	0.680	7.19	32.9	554		

^{*} Verification sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

--- Not Sampled

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure mg/L - miligrams per liter

Table 2 CCR Landfill Detection Monitoring Field Measurements KCP&L latan Generating Station

Well Number	Sample Date	pH (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-1	05/21/18	6.93	873	15.78	0.0	208	0.83	23.35	765.34
MW-1	06/26/18	**6.99	802	15.98	0.0	128	0.10	23.74	764.95
MW-1	11/12/18	6.99	875	8.84	2.2	-60	6.90	23.78	764.91
MW-2	05/21/18	6.90	995	15.96	0.0	-111	1.01	24.34	765.27
MW-2	06/26/18	**6.99	871	16.58	0.0	114	0.28	24.59	765.02
MW-2	11/12/18	7.15	876	6	4.2	-2	4.50	24.85	764.76
MW-6	05/21/18	7.08	951	16.18	0.0	211	0.58	25.15	764.50
MW-6	11/12/18	7.27	880	10.81	0.0	-84	3.25	20.28	769.37
MW-7	05/21/18	7.04	783	15.4	0.0	218	0.55	24.85	764.80
MW-7	11/12/18	7.18	1140	12.43	6.5	-84	0.00	19.46	770.19
MW-8	05/21/18	7.17	800	15.53	0.0	216	1.75	24.62	765.09
MW-8	11/12/18	7.15	799	6.92	5.4	-72	4.85	19.84	769.87
MW-9	05/21/18	7.05	710	15.78	0.0	-126	1.11	24.60	765.30
MW-9	11/12/18	7.21	808	9.77	0.0	-94	2.13	18.73	771.17
MW-10	05/21/18	7.04	917	14.83	1.2	236	0.00	24.48	764.98
MW-10	11/12/18	7.19	925	9.91	0.0	-50	0.00	19.67	769.79

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

S.U. - Standard Units

 μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATION

- C.1 Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event
- C.2. Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

C.1	Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT OCTOBER 2017 GROUNDWATER MONITORING EVENT

CCR LANDFILL IATAN GENERATING STATION PLATTE COUNTY, MISSOURI

Presented To:

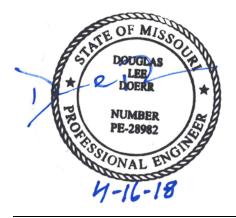
Kansas City Power & Light Company

Presented By:

SCS ENGINEERS

7311 West 130th Street, Suite 100 Overland Park, Kansas 66213 (913) 681-0030

> April 2018 File No. 27213167.17


CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Iatan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G. SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Iatan Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E. SCS Engineers

Table of Contents

Sec	tion	Po	ıge
CER ⁻	TIFICA	TIONS	l
1	REG	ULATORY FRAMEWORK	1
2	STA	TISTICAL RESULTS	1
3	ALTE	ERNATIVE SOURCE DEMONSTRATION	2
		Upgradient Well Location	
	3.2	Box and Whiskers Plots	2
	3.3	Piper Diagram Plots	3
	3.4	Time Series Plots	3
4	CON	NCLUSION	3
5	GEN	IERAL COMMENTS	4

Appendices

Appendix A Figure 1

Appendix B Box and Whiskers Plots

Appendix C Piper Diagram

Appendix D Time Series Plots

1 REGULATORY FRAMEWORK

In accordance with the Coal Combustion Residuals (CCR) Final Rule § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at Kansas City Power & Light Company's (KCP&L) Iatan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by a Qualified Professional Engineer" document dated October 12, 2017. Groundwater samples were collected and analyzed by October 17, 2017. A statistical analysis was conducted to determine whether there is a SSI over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring.

If an SSI is preliminarily identified by the prediction limit analysis, verification retesting will be performed in accordance with the certified statistical method and the resampling plan to verify the result is not due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Up to two rounds of verification sampling and retesting may be conducted. Verification retesting with a "1 of 2" or "1 of 3" resampling plan is performed by collecting a verification sample(s) and comparing it to the calculated prediction limit. If the resulting concentration of any verification sample is not above the prediction limit, then an SSI has not occurred.

Determinations of SSIs for the CCR Landfill at the Iatan Generating Station were completed no later than January 15, 2018 and placed into the CCR Operating Record.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit. The prediction limit for chloride in monitoring well MW-1 is 6.27 mg/L. The detection monitoring sample was reported at 6.75 mg/L. The first verification sample was collected on November 14, 2017 with a result of 6.73 mg/L. The second verification sample was collected on December 29, 2017 with a result of 6.27 mg/L. However the, SanitasTM Output identified the 6.27 mg/L chloride concentration in MW-1 as a confirmed SSI above background, due to numerical rounding. Therefore, in accordance with the Statistical Method Certification, the detection

monitoring sample for chloride from monitoring well MW-1 exceeds its prediction limit and is a confirmed SSI over background.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the Iatan Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 UPGRADIENT WELL LOCATION

Figure 1 in **Appendix A** shows a potentiometric surface contour map indicating the direction of groundwater flow at and near the CCR Landfill at the time of sampling. Monitoring well MW-1 is generally located upgradient from the CCR Landfill depending on river stage. During this detection monitoring sampling event, MW-1 was upgradient to crossgradient from the CCR Landfill indicating the SSI is not likely caused by a release from the CCR Landfill. This demonstrates that a source other than the CCR Landfill likely caused the SSI over background levels for chloride, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.2 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axes to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

Although an SSI was only identified in upgradient well MW-1, box and whiskers plots for chloride in the CCR groundwater monitoring system wells were prepared to allow comparison of chloride concentrations between wells. The comparison between wells indicates the chloride concentrations in upgradient well MW-1 are within the range of concentrations from the other wells. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Box and whisker plots are provided in **Appendix B**.

3.3 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analysis. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-1 and landfill leachate is provided in **Appendix C** and indicates the groundwater from this well does not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in totally different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.4 TIME SERIES PLOTS

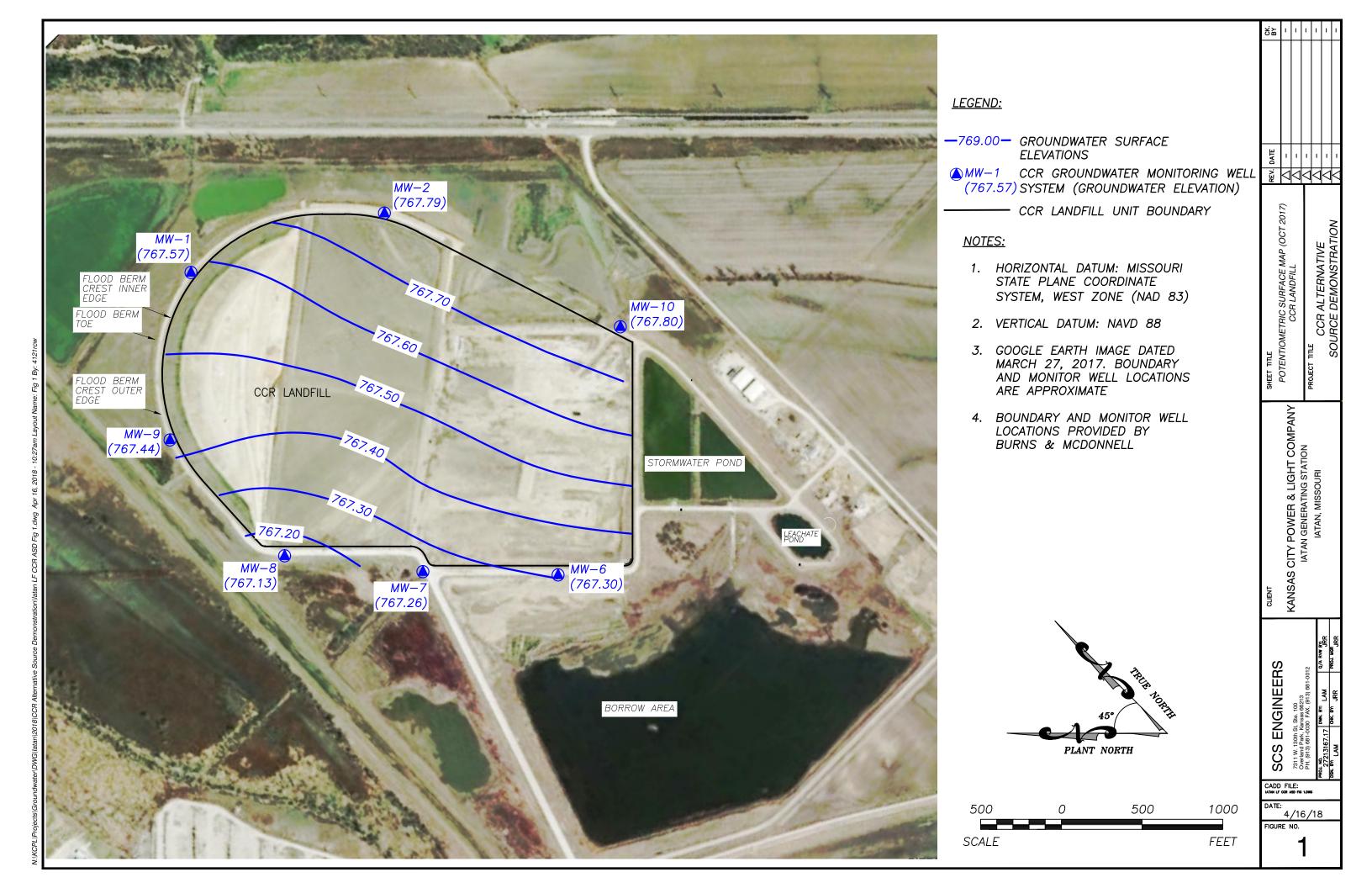
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for the CCR monitoring system wells indicate chloride concentrations in MW-1 are within the range of concentration of chloride from the other wells. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Time series plots are provided in **Appendix D**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater

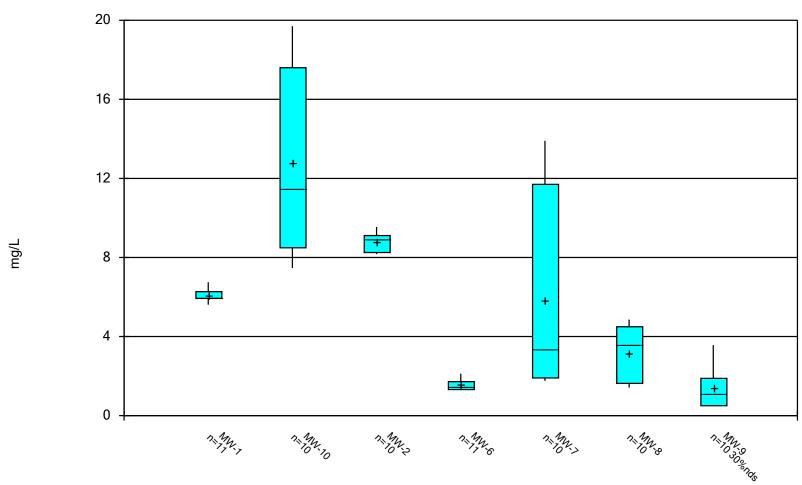
quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.


5 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of KCP&L for specific application to the Iatan Generating Station. No warranties, express or implied, are intended or made.

The signature of the certifying registered geologist and professional engineer on this document represents that to the best of his knowledge, information, and belief in the exercise of his professional judgement in accordance with the standard of practice, it is his professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by him are made on the basis of his experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A


Figure 1

Appendix B

Box and Whiskers Plots

Box & Whiskers Plot

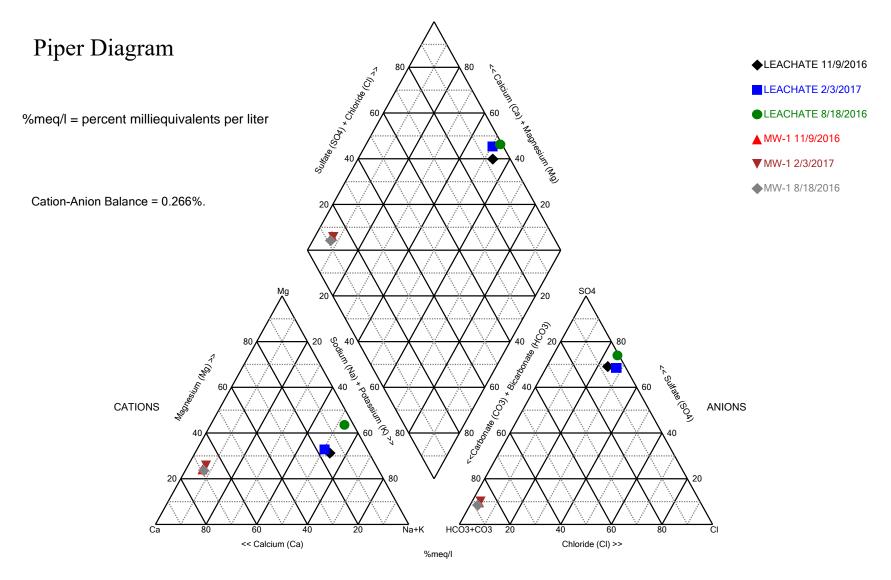
%nds = percent non-detects n = number of samples

Constituent: Chloride Analysis Run 3/6/2018 2:24 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

The basic box plot graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range. The mean is denoted by a "+".

Box & Whiskers Plot

Constituent: Chloride (mg/L) Analysis Run 3/6/2018 2:25 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

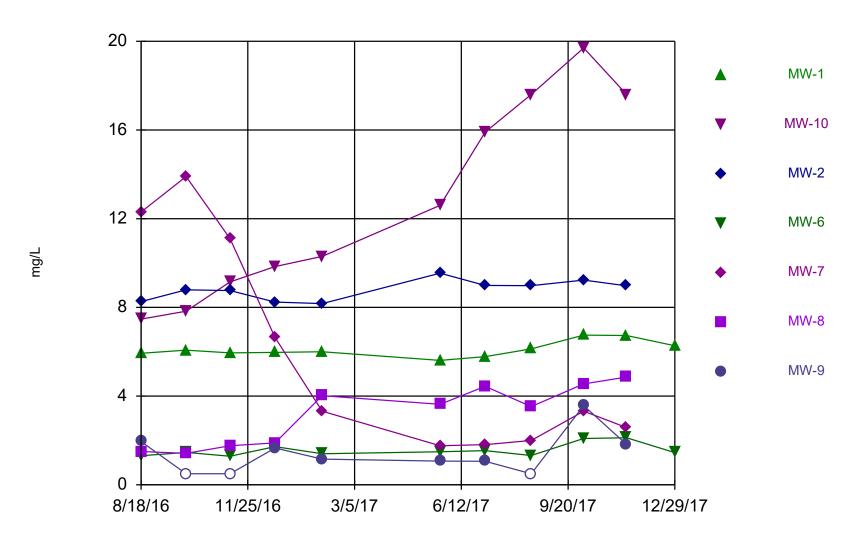

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
8/18/2016	5.93	7.47	8.26	1.31	12.3	1.5	1.95
9/29/2016	6.07	7.83	8.79	1.46	13.9	1.42	<1
11/9/2016	5.95	9.15	8.76	1.29	11.1	1.76	<1
12/21/2016	5.97	9.84	8.24	1.72	6.64	1.89	1.66
2/3/2017	6	10.3	8.17	1.4	3.32	4.02	1.16
5/24/2017	5.61	12.6	9.54	1.49	1.76	3.63	1.07
7/5/2017	5.78	15.9	8.99	1.54	1.81	4.44	1.06
8/17/2017	6.13	17.6	8.98	1.32	2	3.53	<1
10/5/2017	6.75	19.7	9.23	2.09	3.32	4.55	3.57
11/14/2017	6.73	17.6	8.97	2.12	2.58	4.86	1.82
12/29/2017	6.27			1.45			
Median	6	11.5	8.88	1.46	3.32	3.58	1.12
LowerQ.	5.93	8.49	8.25	1.32	1.91	1.63	0.5
UpperQ.	6.27	17.6	9.11	1.72	11.7	4.5	1.89
Min	5.61	7.47	8.17	1.29	1.76	1.42	0.5
Max	6.75	19.7	9.54	2.12	13.9	4.86	3.57
Mean	6.11	12.8	8.79	1.56	5.87	3.16	1.38

Box & Whiskers Plot

%NDs
0
C

Appendix C

Piper Diagram



Analysis Run 4/10/2018 1:39 PM View: CCR III

Appendix D

Time Series Plots

Time Series

Constituent: Chloride Analysis Run 4/11/2018 2:48 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

Time Series

Constituent: Chloride (mg/L) Analysis Run 4/11/2018 2:48 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

	MW-1	MW-10	MW-2	MW-6	MW-7	MW-8	MW-9
8/18/2016	5.93	7.47	8.26	1.31	12.3	1.5	1.95
9/29/2016	6.07	7.83	8.79	1.46	13.9	1.42	<1
11/9/2016	5.95	9.15	8.76	1.29	11.1	1.76	<1
12/21/2016	5.97	9.84	8.24	1.72	6.64	1.89	1.66
2/3/2017	6	10.3	8.17	1.4	3.32	4.02	1.16
5/24/2017	5.61	12.6	9.54	1.49	1.76	3.63	1.07
7/5/2017	5.78	15.9	8.99	1.54	1.81	4.44	1.06
8/17/2017	6.13	17.6	8.98	1.32	2	3.53	<1
10/5/2017	6.75	19.7	9.23	2.09	3.32	4.55	3.57
11/14/2017	6.73	17.6	8.97	2.12	2.58	4.86	1.82
12/29/2017	6.27			1.45			

C.2.	Supplemental Data, Groundwater Monitoring Alternative Source Demonstration Report October 2017 Groundwater Monitoring Event

Piper Diagram

Analysis Run 1/24/2019 1:58 PM View: CCR LF III
Iatan Utility Waste LF Client: SCS Engineers Data: Iatan jrr

Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	HCO3	CO3
MW-1 8/18/2016	11.7	6.56	134	27.4	5.93	32.4	436	10
MW-1 11/9/2016	11.1	6	136	28.4	5.95	33.2	383	10
MW-1 2/3/2017	11	5.93	116	26.8	6	36.9	394	10
LEACHATE 8/18/2016	9250	689	573	4240	6990	28000	644	10
LEACHATE 11/9/2016	1230	90.7	334	398	876	3460	480	10
LEACHATE 2/3/2017	1880	121	560	671	1760	6070	505	10

ADDENDUM 1
2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

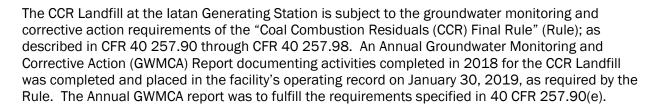
SCS ENGINEERS

December 16, 2022 File No. 27213167.18

To: Evergy Metro, Inc.

Jared Morrison - Director, Water and Waste Programs

From: SCS Engineers


Douglas L. Doerr, P.E. John R. Rockhold, P.G.

Subject: 2018 Annual Groundwater Monitoring and Corrective Action Report Addendum 1

Evergy Metro, Inc.

CCR Landfill

latan Generating Station - Platte County, Missouri

This Addendum has been prepared to supplement the operating record in recognition of comments received by Evergy from the U.S. Environmental Protection Agency (USEPA) on January 11, 2022. In addition to the information listed in 40 CFR 257.90(e), the USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided in the attachments to this addendum.

The attachments to this addendum are as follows:

Attachment 1 – Laboratory Analytical Reports:

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- o May 2018 Spring 2018 semiannual detection monitoring sampling event.
- June 2018 First verification sampling for the Spring 2018 detection monitoring sampling event.
- o November 2018 Fall 2018 semiannual detection monitoring sampling event.

Attachment 2 - Statistical Analyses:

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2018 included the following:

- o Fall 2017 semiannual detection monitoring statistical analyses.
- o Spring 2018 semiannual detection monitoring statistical analyses.
- Attachment 3 Groundwater Potentiometric Surface Maps:

Includes groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- May 2018 Spring 2018 semiannual detection monitoring sampling event.
- November 2018 Fall 2018 semiannual detection monitoring sampling event.

ATTACHMENT 1 Laboratory Analytical Reports

ATTACHMENT 1-1 May 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT May 31, 2018

SCS Engineers - KS

Project Number:

Sample Delivery Group: L996203

Samples Received: 05/23/2018

Description: KCP&L latan Generating Station

27213167.18

Report To: Jason Franks

7311 West 130th Street, Ste. 100

Wubb land

Overland Park, KS 66213

Entire Report Reviewed By:

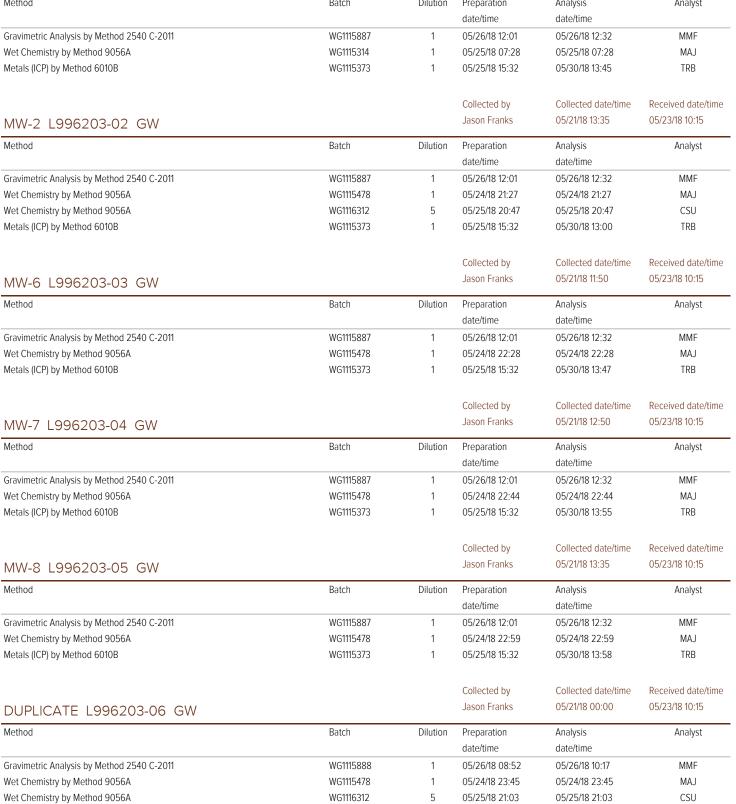
Jeff Carr Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1						
Tc: Table of Contents	2						
Ss: Sample Summary	3						
Cn: Case Narrative	4						
Sr: Sample Results	5						
MW-1 L996203-01	5						
MW-2 L996203-02	6						
MW-6 L996203-03	7						
MW-7 L996203-04	8						
MW-8 L996203-05	9						
DUPLICATE L996203-06	10						
Qc: Quality Control Summary	11						
Gravimetric Analysis by Method 2540 C-2011	11						
Wet Chemistry by Method 9056A	13						
Metals (ICP) by Method 6010B	18						
GI: Glossary of Terms	19						
Al: Accreditations & Locations	20						
Sc: Sample Chain of Custody							

SAMPLE SUMMARY

ONELAR	NATIONWIDI
ONE LAD.	NATIONWIDI

	57 (WIT EL 5)	J 1411417 (1	、 1		
			Collected by	Collected date/time	Received date/time
MW-1 L996203-01 GW			Jason Franks	05/21/18 14:20	05/23/18 10:15
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1115887	1	05/26/18 12:01	05/26/18 12:32	MMF
Wet Chemistry by Method 9056A	WG1115314	1	05/25/18 07:28	05/25/18 07:28	MAJ
Metals (ICP) by Method 6010B	WG1115373	1	05/25/18 15:32	05/30/18 13:45	TRB
			Collected by	Collected date/time	Received date/time
MW-2 L996203-02 GW			Jason Franks	05/21/18 13:35	05/23/18 10:15
Method	Batch	Dilution	Preparation	Analysis	Analyst



Metals (ICP) by Method 6010B

WG1115373

05/25/18 15:32

05/30/18 14:00

TRB

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

3 Ss

⁴Cn

PAGE:

4 of 21

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 14:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	496000		10000	1	05/26/2018 12:32	<u>WG1115887</u>

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5630		1000	1	05/25/2018 07:28	WG1115314
Fluoride	327		100	1	05/25/2018 07:28	WG1115314
Sulfate	32600		5000	1	05/25/2018 07:28	WG1115314

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 13:45	WG1115373
Calcium	131000		1000	1	05/30/2018 13:45	WG1115373

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 13:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	648000		10000	1	05/26/2018 12:32	<u>WG1115887</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8140		1000	1	05/24/2018 21:27	WG1115478
Fluoride	383		100	1	05/24/2018 21:27	WG1115478
Sulfate	137000		25000	5	05/25/2018 20:47	WG1116312

Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 13:00	WG1115373
Calcium	164000		1000	1	05/30/2018 13:00	WG1115373

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 11:50

L996203

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	540000		10000	1	05/26/2018 12:32	<u>WG1115887</u>

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1450	В	1000	1	05/24/2018 22:28	WG1115478
Fluoride	354		100	1	05/24/2018 22:28	WG1115478
Sulfate	30900		5000	1	05/24/2018 22:28	<u>WG1115478</u>

³Ss

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 13:47	WG1115373
Calcium	150000		1000	1	05/30/2018 13:47	WG1115373

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 12:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	439000		10000	1	05/26/2018 12:32	<u>WG1115887</u>

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1540	В	1000	1	05/24/2018 22:44	WG1115478
Fluoride	414		100	1	05/24/2018 22:44	WG1115478
Sulfate	23800		5000	1	05/24/2018 22:44	WG1115478

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 13:55	WG1115373
Calcium	123000		1000	1	05/30/2018 13:55	WG1115373

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 13:35

L996203

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	437000		10000	1	05/26/2018 12:32	<u>WG1115887</u>

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1500	В	1000	1	05/24/2018 22:59	WG1115478
Fluoride	441		100	1	05/24/2018 22:59	WG1115478
Sulfate	25400		5000	1	05/24/2018 22:59	WG1115478

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 13:58	WG1115373
Calcium	130000		1000	1	05/30/2018 13:58	WG1115373

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 00:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	650000		10000	1	05/26/2018 10:17	<u>WG1115888</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	8110		1000	1	05/24/2018 23:45	WG1115478
Fluoride	374		100	1	05/24/2018 23:45	WG1115478
Sulfate	134000		25000	5	05/25/2018 21:03	WG1116312

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	05/30/2018 14:00	WG1115373
Calcium	163000		1000	1	05/30/2018 14:00	WG1115373

10 of 21

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L996203-01,02,03,04,05

Method Blank (MB)

(MB) R3313627-1 05/26/18 12:32									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Dissolved Solids	U		2820	10000					

(OS) L996199-08 05/26/18 12:32 • (DUP) R3313627-4 05/26/18 12:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	743000	729000	1	1.81		5

[†]Cn

(LCS) R3313627-2 05/26/18 12:32 • (LCSD) R3313627-3 05/26/18 12:32

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Dissolved Solids	8800000	8520000	8640000	96.8	98.2	85.0-115			1.40	5

PAGE:

11 of 21

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L996203-06

Method Blank (MB)

(MB) R3313624-1 05/26/	18 10:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

(OS) L996203-06 05/26/18 10:17 • (DUP) R3313624-4 05/26/18 10:17

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	650000	651000	1	0.154		5

[†]Cn

(LCS) R3313624-2 05/26/18 10:17 • (LCSD) R3313624-3 05/26/18 10:17

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Dissolved Solids	8800000	8590000	8580000	97.6	97.5	85.0-115			0.116	5	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L996203-01

Method Blank (MB)

(MB) R3313106-1 05/24	4/18 17:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	16.2	<u>J</u>	9.90	100
Sulfate	U		77.4	5000

L996199-01 Original Sample (OS) • Duplicate (DUP)

(OS) L996199-01 05/25/18 01:27 • (DUP) R3313106-4 05/25/18 01:43

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6520	6520	1	0.0521		15
Fluoride	300	406	1	30.0	<u>P1</u>	15
Sulfate	ND	0.000	1	0.000		15

(OS) L996199-11 05/25/18 05:49 • (DUP) R3313106-7 05/25/18 06:39

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	9920	9940	1	0.180		15
Fluoride	646	643	1	0.372		15
Sulfate	64700	64600	1	0.170		15

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3313106-2 05/24/	/18 18:01 • (LCSD) R3313106-3	05/24/18 18:17							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	39800	39600	99.4	99.1	80.0-120			0.305	15
Fluoride	8000	7870	7880	98.4	98.5	80.0-120			0.117	15
Sulfate	40000	40100	40100	100	100	80.0-120			0.147	15

Sulfate

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L996199-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

46600

49200

93.2

(OS) L996199-01 05/25/18 01:27 • (MS) R3313106-5 05/25/18 01:59 • (MSD) R3313106-6 05/25/18 02:16

(03) 1990199-01 03/23/16	U1.27 • (IVIS) KS	0313100-3 03/2	25/16 01.59 • (1)	(130) K3313100-	-0 03/23/16 02	2.10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6520	59200	57900	105	103	1	80.0-120			2.26	15
Fluoride	5000	300	5330	5540	101	105	1	80.0-120			3.88	15

80.0-120

98.3

(OS) L996199-11 05/25/18 05:49 • (MS) R3313106-8 05/25/18 06:55

50000

(03) 1990199-11 03/23/10	00.43 • (IVIS) K	3313100-0 03/	23/10 00.33				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	9920	67400	115	1	80.0-120	
Fluoride	5000	646	5990	107	1	80.0-120	
Sulfate	50000	64700	113000	95.8	1	80.0-120	Е

5.41

15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L996203-02,03,04,05,06

Method Blank (MB)

(MB) R3313109-1 05/24/18	3 11:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	224	<u>J</u>	51.9	1000
Fluoride	U		9.90	100
Sulfate	314	J	77 4	5000

L996203-02 Original Sample (OS) • Duplicate (DUP)

(OS) L996203-02 05/24/18 21:27 • (DUP) R3313109-4 05/24/18 21:42

(03) 2330203 02 03/24/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	8140	8140	1	0.0823		15
Fluoride	383	373	1	2.86		15

L996207-02 Original Sample (OS) • Duplicate (DUP)

(OS) L996207-02 05/25/18 00:16 • (DUP) R3313109-7 05/25/18 00:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	14100	14100	1	0.412		15
Fluoride	654	652	1	0.383		15
Sulfate	23600	23600	1	0.212		15

9
ے کا
50

[®] Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3313109-2 05/24/18 12:15 • (LCSD) R3313109-3 05/24/18 12:30

(,	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	39400	39400	98.4	98.5	80.0-120			0.0929	15
Fluoride	8000	7880	7890	98.5	98.7	80.0-120			0.103	15
Sulfate	40000	39400	39500	98.4	98.7	80.0-120			0.353	15

L996203-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 1 996203-02 05/24/18 21:27 • (MS) R3313109-5 05/24/18 21:58 • (MSD) R3313109-6 05/24/18 22:13

(03) 1990203-02 03/24/	10 21.27 • (1013) 1	3313109-5 05	1/24/10 21.30 •	טובובבא (טבוייו)	9-0 03/24/10	22.13						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8140	58200	60100	100	104	1	80.0-120			3.23	15
Fluoride	5000	383	5090	5680	94.2	106	1	80.0-120			10.9	15

ACCOUNT: SCS Engineers - KS

PROJECT: 27213167.18

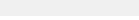
SDG: L996203

DATE/TIME: 05/31/18 11:46

PAGE:

15 of 21

ONE LAB. NATIONWIDE.


Wet Chemistry by Method 9056A

L996203-02,03,04,05,06

L996207-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L996207-02 05/25/18 00:16 • (MS) R3313109-8 05/25/18 00:47

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	14100	65100	102	1	80.0-120	
Fluoride	5000	654	5420	95.4	1	80.0-120	
Sulfate	50000	23600	69000	90.7	1	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L996203-02,06

Method Blank (MB)

(MB) R3313240-1 05/25/	18 12:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Sulfate	89.8	J	77.4	5000

³Ss

L996302-01 Original Sample (OS) • Duplicate (DUP)

(OS) L996302-01 05/25/18 21:33 • (DUP) R3313240-4 05/25/18 21:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Sulfate	U	0.000	1	0.000		15	

(OS) L996674-01 05/26/18 00:23 • (DUP) R3313240-7 05/26/18 00:38

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	28900	28800	1	0.424		15

(LCS) R3313240-2 05/25/18 12:24 • (LCSD) R3313240-3 05/25/18 12:39

, ,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Sulfate	40000	39800	39800	99.6	99.5	80.0-120			0.111	15

L996302-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L996302-01 05/25/18 21:33 • (MS) R3313240-5 05/25/18 22:04 • (MSD) R3313240-6 05/25/18 22:20

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	U	49600	49100	99.2	98.2	1	80.0-120			1.04	15

L996674-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L996674-01 05/26/18 00:23 • (MS) R3313240-8 05/26/18 00:54

(05) 1996674-01 05/26/18	8 UU.23 • (IVIS) F	3313240-8 05	0/26/18 00:54			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Sulfate	50000	28900	78200	98.7	1	80.0-120

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

10000

10000

9860

164000

L996203-01,02,03,04,05,06

Method Blank (MB)

Calcium

Calcium

(MB) R3314062-1 05/30/18 12:52						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Boron	U		12.6	200		
Calcium	U		46.3	1000		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314062-2 05/30	1/18 12:55 • (LCS	D) R3314062-3	3 05/30/18 12:5	o/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Boron	1000	988	971	98.8	97.1	80.0-120			1.68	20	

80.0-120

0.227

20

0.0485

20

98.4

84.3

[†]Cn

7

L996203-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

172000

9840

98.6

172000

(OS) L996203-02 05/30/18	8 13:00 • (MS) F	3314062-5 0	5/30/18 13:05 •	(MSD) R331406	52-6 05/30/18	13:07						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	ND	1140	1150	98.0	99.2	1	75.0-125			0.977	20

75.0-125

85.1

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	2 Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

O 1:6:	D = = = = i = ±i = = =
Qualifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Ss

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

PAGE:

20 of 21

			Billing Info	rmation:		90	Set.	-	An	alysis / C	Containe	er / Preservation	ve		Ch	ain of Custody	Page 1 of 1																					
7311 West 130th Street, Ste. 100 Overland Park, KS 66213			Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213					5					To the second				SC																					
eport to: ason Franks					s		jay.martin@kcpl.com;							jay.martin@kcpl.com;			jay.martin@kcpl.com;			jay.martin@kcpl.com;				jay.martin@kcpl				res								M	2065 Lebanon Rd Jount Juliet, TN 371 Jone: 615-758-585	
roject escription: KCP&L latan Gener	rating Station	Table V	The about the	City/State	WESTON,	J. F. D.	-NoPr						- 1		Pi	hone: 800-767-585 nx: 615-758-5859																						
phone: 913-681-0030 ax: 913-681-0012	Client Project 27213167.	#	3 16	Lab Project #		mi	125mlHDPE-N	250mHDPE-HNO3	15						L	L# L996203 E116																						
JASON R. FRANK	Site/Facility IC	D#		P.O.#			4) 125	HDP	NoPre						A	cctnum: AQU	IAOPKS																					
Collected by (signature): Jacon D. Frank mmediately Packed on Ice N_ Y_	Rush? (Lab MUST Be No Same Day Five Day Next Day 5 Day (R		Rush? (Lab MUST Be Same Day		Rush? (Lab MUST Be Same Day		Day	Quote #	sults Needed	No.	is (Cld, F, SO4)	- 6010	50mlHDPE-NoPres					Template:T136059 Prelogin: P653113 TSR: 206 - Jeff Carr PB:																				
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anions	B, Ca	TDS 2					3	S	hipped Via:	Sample # (lab only																					
MW-1	GRAG	GW	-	5/21/1	8 1420	3	X	X	X						100		-01																					
MW-2	1	GW	-	1	1335	1 200	Х	Х	х							200	02																					
MW-6		GW	-		1150	3	X	X	X	1000			100	244	5	7	03																					
MW-7		GW	-		1250	3	X	X	x			- 84					ot																					
MW-8	-0	GW	-		1335	3	X	X	X								04																					
DUPLICATE		GW	-		-	3	X	X	X								04																					
mio-ZMS		GW	-		1345	3	X	X	X		800						02																					
MW-Z MSD	*	GW	7-	+	1350	3	Х	Х	х		R. S.	Met.			2 [08																					
	-	-			-	-		-		-					-																							
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sampi		Remarks: Samples returned via:						11150		pH Temp Flow Other				Sample Receipt Checklist COC Seal Present/Intact: NP Y COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Sufficient volume sent:																								
Relinquished by : (Signature)	LUPS _FE	Date:			Tracking # Received by: (Sign	ature) .	affe	M	#	Trip Blank Received: Yes / No HCL / MeoH				VOA Zero Headspace: Preservation Correct/Checked:																								
Reynquished by : (Signature)		Date:		Time:	Received by: (Signature)					Temp: "C Bottles Received: ZC(If preservation required by Login: Date/Time																								
Relinquished by : (Signature)		Date:		Time:	Received for lab b	r lab by: (Signature)				Date: Time: 5/23/18 (0:/5			Hold:			Condition: NCF / OK																						

ANALYTICAL REPORT May 31, 2018

SCS Engineers - KS

Project Number:

Sample Delivery Group: L996207

Samples Received: 05/23/2018

Description: KCP&L latan Generating Station

27213167.18

Report To: Jason Franks

7311 West 130th Street, Ste. 100

Wubb land

Overland Park, KS 66213

Entire Report Reviewed By:

Jeff Carr Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-9 L996207-01	5
MW-10 L996207-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

PAGE:

2 of 13

			Collected by	Collected date/time	Received date/time
MW-9 L996207-01 GW			Jason Franks	05/21/18 12:55	05/23/18 10:15
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1115888	1	05/26/18 08:52	05/26/18 10:17	MMF
Wet Chemistry by Method 9056A	WG1115478	1	05/25/18 00:01	05/25/18 00:01	MAJ
Metals (ICP) by Method 6010B	WG1115373	1	05/25/18 15:32	05/30/18 14:03	TRB
			Collected by	Collected date/time	Received date/time
MW-10 L996207-02 GW			Jason Franks	05/21/18 10:30	05/23/18 10:15
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1115888	1	05/26/18 08:52	05/26/18 10:17	MMF
Wet Chemistry by Method 9056A	WG1115478	1	05/25/18 00:16	05/25/18 00:16	MAJ
Metals (ICP) by Method 6010B	WG1115373	1	05/25/18 15:32	05/30/18 14:06	TRB

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 12:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	412000		10000	1	05/26/2018 10:17	WG1115888

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	ND		1000	1	05/25/2018 00:01	WG1115478
Fluoride	426		100	1	05/25/2018 00:01	WG1115478
Sulfate	18300		5000	1	05/25/2018 00:01	WG1115478

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Boron	ND		200	1	05/30/2018 14:03	WG1115373	
Calcium	105000		1000	1	05/30/2018 14:03	WG1115373	

СQс

ONE LAB. NATIONWIDE.

Collected date/time: 05/21/18 10:30

L996207

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	509000		10000	1	05/26/2018 10:17	<u>WG1115888</u>

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	14100		1000	1	05/25/2018 00:16	WG1115478
Fluoride	654		100	1	05/25/2018 00:16	WG1115478
Sulfate	23600		5000	1	05/25/2018 00:16	WG1115478

Cn

Metals (ICP) by Method 6010B

	Result (Qualifier RDL	Dilution	Analysis	Batch
Analyte	ug/l	ug/l		date / time	
Boron	ND	200	1	05/30/2018 14:06	WG1115373
Calcium	115000	1000	1	05/30/2018 14:06	WG1115373

СQс

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L996207-01,02

Method Blank (MB)

(MB) R3313624-1 05/26/	18 10:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

[†]Cn

L996203-06 Original Sample (OS) • Duplicate (DUP)

(OS) L996203-06 05/26/18 10:17 • (DUP) R3313624-4 05/26/18 10:17

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	650000	651000	1	0.154		5

(LCS) R3313624-2 05/26/18 10:17 • (LCSD) R3313624-3 05/26/18 10:17

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Dissolved Solids	8800000	8590000	8580000	97.6	97.5	85.0-115			0.116	5	

PAGE:

7 of 13

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L996207-01,02

Method Blank (MB)

(MB) R3313109-1 05	/24/18 11:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	224	<u>J</u>	51.9	1000
Fluoride	U		9.90	100
Sulfate	314	J	77.4	5000

L996203-02 Original Sample (OS) • Duplicate (DUP)

(OS) L996203-02 05/24/18 21:27 • (DUP) R3313109-4 05/24/18 21:42

(55) 2550265 62 66/2 1/16 21.27 (56/7) 166/165 1 66/2 1/16 21.12						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	8140	8140	1	0.0823		15
Fluoride	383	373	1	2.86		15

L996207-02 Original Sample (OS) • Duplicate (DUP)

(OS) L996207-02 05/25/18 00:16 • (DUP) R3313109-7 05/25/18 00:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	14100	14100	1	0.412		15
Fluoride	654	652	1	0.383		15
Sulfate	23600	23600	1	0.212		15

9_
Sc

	Sc
ļ	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3313109-2 05/24/18 12:15 • (LCSD) R3313109-3 05/24/18 12:30

(,	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Chloride	40000	39400	39400	98.4	98.5	80.0-120			0.0929	15
Fluoride	8000	7880	7890	98.5	98.7	80.0-120			0.103	15
Sulfate	40000	39400	39500	98.4	98.7	80.0-120			0.353	15

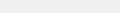
L996203-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSTI 996203 02 05/24/18 21:27 - (MS) P3313109 5 05/24/18 21:58 - (MSD) P3313109 6 05/24/18 22:13

OS) L330203-02 03/24/10 21.27 • (MS) R3313103-3 03/24/10 21.30 • (MSD) R3313103-0 03/24/10 22.13												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8140	58200	60100	100	104	1	80.0-120			3.23	15
Fluoride	5000	383	5090	5680	94.2	106	1	80.0-120			10.9	15

MS Qualifier

ONE LAB. NATIONWIDE.


Wet Chemistry by Method 9056A

L996207-01,02

L996207-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L996207-02 05/25/18 00:16 • (MS) R3313109-8 05/25/18 00:47

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	14100	65100	102	1	80.0-120	
Fluoride	5000	654	5420	95.4	1	80.0-120	
Sulfate	50000	23600	69000	90.7	1	80.0-120	

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

10000

L996207-01,02

Method Blank (MB)

Calcium

(MB) R3314062-1 05/30/1	18 12:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	U		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314062-2 05/30/	/18 12:55 • (LCS)	D) R3314062-3	3 05/30/18 12:5)/						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	988	971	98.8	97.1	80.0-120			1.68	20

80.0-120

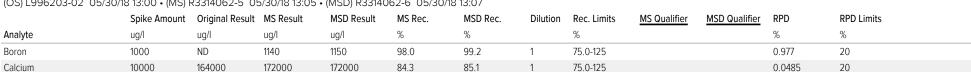
0.227

20

[†]Cn

GI

L996203-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


9840

98.6

98.4

9860

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	a Deminions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

PAGE:

11 of 13

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: SCS Engineers - KS 27213167.18 L996207 05/31/18 11:08 12 of 13

SCS Engineers - KS 7311 West 130th Street, Ste. 100 Overland Park, KS 66213		Billing Info	Billing Information:				SU(8)		Analysis / Container / Preservative						Chain of Custody Page of																
		Accounts Payable 7311 West 130th Street, Ste. 100 Overland Park, KS 66213			7311 West 130th Street, Ste. 100			7311 West 130th Street, Ste. 100			777		777										SC								
					Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;			jay.martin@kcpl.com;																	1					12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-585	
Project Description: KCP&L latan Gener	ating Station			City/State	VESTOW,	CONTRACTOR OF THE PARTY OF THE	E-No	-									Phone: 800-767-585 Fax: 615-758-5859														
Phone: 913-681-0030 Fax: 913-681-0012	27213167.1			Lab Project # AQUAOPKS-IATAN			25mlHDP	-HNO	10			10.0				-	L# L991														
JASON P. FRANK	- BOSES INCVENTS	Site/Facility ID #			P.O. #			HDPE	NoPres			W.					Acctnum: AQI	JAOPKS													
Collected by (signature): Ann R. Hank Immediately Packed on Ice N Y	Rush? (L. Same Da Next Da Two Day	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day		Same Day Five Day S Day (Rad On Two Day 10 Day (Rad O		Rush? (Lab MUST Be Notifie) Same Day Five Day Next Day 5 Day (Rad Or Two Day To Day 10 Day (Rad Or Two Day)		Same Day Five Day S Day (Rad Only) Two Day 10 Day (Rad Only)		Quote # Date Results Needed		No.	Is (Cld, F, SO4)	- 6010 250mlHDPE-HNO3	250mIHDPE-NoPr								Template:T13 Prelogin: P65 TSR: 206 - Jeff PB:	3110							
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anions	8	TDS 2			875					Shipped Via:														
MW-9	GRAB	GW		5/21/19	/255	3	X	x X	X							100	Remarks	Sample # (lab only)													
MW-10	GRAB	GW	-	5/21/1	1030	3	X	X	X			100						07													
	79.0	1			- 626	1	1.8	(F. 1)							Pana Inch		2.576														
		5.00				Tir												H.C.A.													
																	Land														
	-	19.	-		-	13	48																								
	1000				1 5	1			100			100			100 E	10-1															
					1 1 182 3				0.51																						
* Matrix: Remarks: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater									COC Signed/Accurate: Bottles arrive intact:																						
DW - Drinking Water Samples re		ples returned via: PSFedExCourier Tracking #											volume sent: If Applicab	1																	
Relinquistred by: (Signature)	d by: (Signature) Date:		210	Received by: (Signature)			Agund			Trip Blank Received: Yes /Nô HCL / MeoH TBR					VOA Zero Headspace: Y Preservation Correct/Checked: Y																
Religiquished by : (Signature)		Date:		fime:	Received by: (Signa	ature)	0	/		Temp:	7	°C Bot	tles Rec	eived:	If prese	ervation	required by Lo	gin: Date/Time													
Relinquished by : (Signature)		Date:		Time:	Received for lab by	/: (Signa	ture)	GI		Date: 5/23/	18	Tim [0]	15		Hold:			NCF / OK													

ATTACHMENT 1-2 June 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

SCS Engineers - KS

Sample Delivery Group: L1005331

Samples Received: 06/28/2018

Project Number: 27213167.18

Description: KCP&L latan Generating Station

Report To: Jason Franks

7311 West 130th Street, Ste. 100

Overland Park, KS 66213

Entire Report Reviewed By:

Jason Romer

Technical Service Representative

Results relate only to the items tested or calibrated and are reported as sounded values is report shall be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1005331-01	5
MW-2 L1005331-02	6
DUPLICATE L1005331-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 9056A	8
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

PAGE:

2 of 12

			Collected by	Collected date/time	Received date/time
MW-1 L1005331-01 GW			Jason R. Franks	06/26/18 14:25	06/28/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1133124	1	07/04/18 00:16	07/04/18 00:16	MCG
			Collected by	Collected date/time	Received date/time
MW-2 L1005331-02 GW			Jason R. Franks	06/26/18 15:05	06/28/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1133124	1	07/04/18 00:34	07/04/18 00:34	MCG
			Collected by	Collected date/time	Received date/time
DUPLICATE L1005331-03 GW			Jason R. Franks	06/26/18 15:05	06/28/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG1133124	1	07/04/18 02:23	07/04/18 02:23	MCG

DATE/TIME:

07/09/18 17:23

PAGE:

4 of 12

1

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer

Technical Service Representative

MW-1

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

*

Collected date/time: 06/26/18 14:25

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Fluoride	263		100	1	07/04/2018 00:16	WG1133124	

SAMPLE RESULTS - 02 ONE LAB. NATIONWIDE.

Collected date/time: 06/26/18 15:05

L1005331

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Fluoride	320		100	1	07/04/2018 00:34	WG1133124

DUPLICATE

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

果

Wet Chemistry by Method 9056A

Collected date/time: 06/26/18 15:05

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Fluoride	331		100	1	07/04/2018 02:23	WG1133124

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1005331-01,02,03

Method Blank (MB)

(MB) R3323295-1	07/03/18	19:25
		MR Resu

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Fluoride	11.2	J	9.90	100

L1005331-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1005331-02 07/04/18 00:34 • (DUP) R3323295-4 07/04/18 01:28

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	320	363	1	12.5		15

(LCS) R3323295-2 07/03/18 19:43 • (LCSD) R3323295-3 07/03/18 20:01

,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluoride	8000	7860	7850	98.2	98.2	80.0-120			0.0636	15

(OS) L1005331-02 07/04/18 00:34 • (MS) R3323295-5 07/04/18 01:47 • (MSD) R3323295-6 07/04/18 02:05

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Fluoride	5000	320	5400	5580	102	105	1	80.0-120			3.13	15

L1005335-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005335-05 07/04/18 03:54 • (MS) R3323295-7 07/04/18 05:06 • (MSD) R3323295-8 07/04/18 05:25

(03) 21003333 03 07	,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Fluoride	5000	1330	6520	7080	104	115	1	80.0-120			8.29	15

L1005344-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005344-04 07/04/18 07:14 • (MS) R3323295-10 07/04/18 07:50 • (MSD) R3323295-11 07/04/18 08:44

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Fluoride	5000	135	5160	5310	101	104	1	80.0-120			2.83	15	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1005331-01,02,03

L1005344-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1005344-06 07/04/18 09:21 • (MS) R3323295-12 07/04/18 09:39 • (MSD) R3323295-13 07/04/18 09:57

(,	,	Original Result		MSD Result		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Fluoride	5000	318	5210	5510	97.9	104	1	80.0-120			5.50	15	

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	a Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

DATE/TIME:

07/09/18 17:23

PAGE:

11 of 12

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

					100					Analysis	Container	/ Preser	vative		E	n of Custody	IC.		
CS Engineers - KS 311 West 130th Street, Ste. 10 Overland Park, KS 66213	00		Accounts 7311 Wes Overland	Payable at 130th St Park, KS (56213	te. 100	Pres Chk								M	oof5 Lebanon R count Juliet, TN home: 615-758- home: 800-767-	5858		
eport to:			Email To: jfr	@kcpl.com;	ngineers.c										F	ax: 615-758-58	1100	(33)	1
ason Franks roject			Tax at the 1st on	City/State Collected:	11/2	ETON W	no)									1003	121	1
escription: KCP&L latan General	Client Project #	dile.		Lab Projec	t #	AN		res	0							SEL .		189	1
	27213167.18	3		AQUAO	PKS-IAT	MIN	18	NOP	NO.							Acctnum:	AQUAO	KS	1
conserved by the what	Site/Facility ID #	9		P.O.#				DOC	TOPE			10 mg		1	1	Template:	P65951	3	
Completed by (signature)	Rush? (La Same Day Next Day Two Day	Five	e Notified) Day (Rad Only) Day (Rad Only)			s Needed	No.	11	ide 125miHDPE-Norres							TSR: 206 - PB: Shipped \	Jeff Carr	ample # (lab on	thy)
refinediately Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Three Day	Y	1	1	te	Time	Cntr	1	Fluoride					250		Rena		10-	01
Sample ID	Comp/Grab	Matrix*	Depth	1.1	10	1425	1		X						-		-	-	-
MW-1	GRAB	GW	-	10/20	0/18	1505	10000	1	X					200				1000	05
MW-2	GRAB	GW	-	10/2	1/10	1005		1	X					++			1 - 1		50
DUPLICATE	GRAS	GW		1.1	10	1505		1	X					+ +				F :	
MIN MS/MSD	GOAS	GW		6/2	ujio														
														8 4				3	
													Temp_		coc se	Sample R al Preser gned/Acro	rate		44
* Matrix: SS-Soil AIR-Air F-Filter GW - Groundwater B-Bioassay	Remarks:								Ŕ		pH	_	Other_		Correct Suffic	t hottle	s used: ume sent	ble	Y Y
WW - WasteWater DW - Drinking Water OT - Other	Samples retu	FedEx	Courier _	Type		Tracking #	430 (Signat	G/	10	933	867	22 ank Rece			prese	ero Heads			Y
Relinquired by : (Signature)	1.6	Date:	27/18	G2	7.18	//	7~	25	1	enly	Temp:		C Bottle	BR es Received:	If pre	servation re	quired by	Login: Date	27 1 11111
Retinquished by : (Signature)		Date:	10	Time:		Received by:					3.	The	Time	4 ~~~	Hold			Co	nditio
Relinquished by : (Signature)	Not the	Date:		Time:	37	Received for	lab by	: (5)	90	2	61	28/	8	845				A A	198

ATTACHMENT 1-3 November 2018 Sampling Event Laboratory Report

ANALYTICAL REPORT

November 21, 2018

SCS Engineers - KS

Sample Delivery Group:

L1043784

Samples Received:

11/13/2018

Project Number:

27213167.18

Description:

KCP&L latan Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-9 L1043784-01	5
MW-10 L1043784-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

PAGE:

2 of 14

			Collected by	Collected date/time	Received date/time
MW-9 L1043784-01 GW			G. Penaflor	11/12/18 12:50	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 05:33	11/15/18 05:33	ELN
Metals (ICP) by Method 6010B	WG1196990	1	11/15/18 13:36	11/15/18 15:45	ST
			Collected by	Collected date/time	Received date/time
MW-10 L1043784-02 GW			G. Penaflor	11/12/18 12:00	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 05:51	11/15/18 05:51	ELN
Metals (ICP) by Method 6010B	WG1196990	1	11/15/18 13:36	11/15/18 15:48	ST

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Wubb law

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 12:50

L1043784

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	435000		10000	1	11/17/2018 09:50	WG1197219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1100		1000	1	11/15/2018 05:33	WG1196256
Fluoride	390		100	1	11/15/2018 05:33	WG1196256
Sulfate	25800		5000	1	11/15/2018 05:33	WG1196256

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/15/2018 15:45	WG1196990
Calcium	122000		1000	1	11/15/2018 15:45	WG1196990

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 12:00

L1043784

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	554000		10000	1	11/17/2018 09:50	WG1197219

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	15100		1000	1	11/15/2018 05:51	WG1196256
Fluoride	680		100	1	11/15/2018 05:51	WG1196256
Sulfate	32900		5000	1	11/15/2018 05:51	WG1196256

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/15/2018 15:48	WG1196990
Calcium	138000		1000	1	11/15/2018 15:48	WG1196990

СQс

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1043784-01,02

Method Blank (MB)

 (MB) R3361685-1 11/17/18 09:50

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Dissolved Solids
 U
 2820
 10000

²Tc

³Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3361685-2 11/17/1	8 09:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8540000	97.0	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043784-01,02

Method Blank (MB)

Sulfate

(MB) R3360117-1 11/14/18 22:17

MB MDL MB RDL MB Result MB Qualifier Analyte ug/l ug/l ug/l Chloride U 51.9 1000 100 Fluoride 9.90

77.4

5000

L1043249-31 Original Sample (OS) • Duplicate (DUP)

(OS) L1043249-31 11/14/18 23:12 • (DUP) R3360117-3 11/14/18 23:30

U

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	ug/l	ug/l		%		%		
Chloride	67.2	0.000	1	200	<u>P1</u>	15		
Fluoride	U	0.000	1	0.000		15		
Sulfate	U	0.000	1	0.000		15		

L1043793-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1043793-05 11/15/18 07:22 • (DLIP) R3360117-6 11/15/18 07:40

(00) 11040700 00 11/10/10	07.22 - (001)	13300117 0 1	1/15/10 07			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	12100	12100	1	0.239		15
Fluoride	396	444	1	11.5		15
Sulfate	85800	85800	1	0.0572		15

Sc

Laboratory Control Sample (LCS)

(I CS) P3360117-2 11/14/18 22:35

(LCS) R336U117-2 11/14	4/18 22:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39600	98.9	80.0-120	
Fluoride	8000	8000	100	80.0-120	
Sulfate	40000	40200	101	80.0-120	

11/21/18 09:07

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043784-01,02

L1043249-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1043249-31 11/	(OS) L1043249-31 11/14/18 23:12 • (MS) R3360117-4 11/14/18 23:48 • (MSD) R3360117-5 11/15/18 00:06												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	67.2	49100	50400	98.0	101	1	80.0-120			2.58	15	
Fluoride	5000	U	5000	5140	100	103	1	80.0-120			2.64	15	
Sulfate	50000	U	50100	50800	100	102	1	80.0-120			1.31	15	

2_

⁴Cn

L1043793-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1043793-05 11/15/	(OS) L1043793-05 11/15/18 07:22 • (MS) R3360117-7 11/15/18 07:59										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	ug/l	ug/l	ug/l	%		%					
Chloride	50000	12100	62000	99.8	1	80.0-120					
Fluoride	5000	396	5570	103	1	80.0-120					
Sulfate	50000	85800	132000	92.5	1	80.0-120	Е				

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1043784-01,02

Method Blank (MB)

(MB) R3360382-1 11/15/18	3 15:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	U		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3360382-2 11/15/18	3 15:26 • (LCSD)) R336U382-3	11/15/18 15:29							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	1050	1060	105	106	80.0-120			0.908	20
Calcium	10000	10500	10600	105	106	80 0 ₋ 120			0.824	20

L1042969-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1042969-05 11/15/18 15:32 • (MS) R3360382-5 11/15/18 15:37 • (MSD) R3360382-6 11/15/18 15:39												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	59.5	1110	1110	105	105	1	75.0-125			0.610	20
Calcium	10000	35000	45500	45100	105	101	1	75.0-125			0.782	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	2 Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Qualifier	Describtion

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

12 of 14

			Billing Info	ermation:		13		81	1	Analysis / Co	ntainer / Pr	reserval	tive		Chain o	Custody	Page of		
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			Pres Chk		28							P	Z			
Report to: Jason Franks		1	jay.martin	Email To: jfranks@scsengineers.com; jay.martin@kcpl.com;			res	1							Mount Ju	banon Rd liet, TN 37			
Project Description: KCP&L latan General	ating Station			City/State Collected:			E-No								Phone: 8 Fax: 615-	Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859			
Phone: 913-681-0030 Fax: 913-681-0012	27213167.			Lab Project # AQUAOPKS	IATAN		125miHDPE-NoPr IDPE-HNO3								1033		784		
Collected by (print): G. Denaftor	Site/Facility ID	н		P.O.#		1	4) 125	HDPE	NoPres	loPres					Table #		JAOPKS		
Collected by (signature): Immediately Packed on Ice N Y	by (signature): Rush? (Lab MUST Be N Same Day Five Da Next Day 5 Day (i Two Day 10 Day		Toron Days 10 Days (March Oach)		Same Day Five Day Next Day 5 Day (Rad Only)		Quote # Date Results Needed 57D		Anions (Cld, F, SO4)	6010 250mlHDPE-HNO3	250mIHDPE-NoPres						Prelogi	n: P67	8028
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cutrs Anions TDS 25						-		Shippe	d Via:	Sample # (lab only)			
MW-9	Comp	GW		11/12/18	11250	3	X	X	X						ner	sans	-O1		
MW-10	Comp	GW		11/12/18		3	x	x	х								02		
		8				E		3								- Interest			
		68						1 6											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L ANG				2.4	18		100					7 (6						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater DW - Drinking Water	Remarks:		-	10						pH	Ten			COC Sei	Sample Rece al Present/ gned/Accura s arrive in t bottles u	Intact: te: tact:	ecklist NP Y N NP N		
OT - Other	UPS Fe	dExCou	rier	Tracking#			1	2					Sufficient volume sent: ZY N If Applicable VOA Zero Headspace: Y N						
Relinquished by : (Signature)		Date: // -/ 5		8 1631 Received by: (Signature)		1	ul	1/	Trip Blank Received: Yes /(No ²) HCL / MeoH TBR				Preservation Correct/Checked: _Y ZN RAD SCREEN: <0.5 mR/hr						
Relinquished by : (Signature)	基型	Date:	1	ime:	eceived by: (Signa	ture) L	THE T	V	Temp: °C Bottles Received:				If preservation required by Login: Date/Time						
Relinquished by : (Signature)		Date:	1	Time:	eceived for lab by:	(Signat				Date: 11/13/1	Tin	ne: 784	5	Hold:			Condition:		

Ö	Login #: L1043784 Clier	IENT: AQUAUPAS	
1	who do no money	annlicable items]	The Hot Control of the Hot Contr
ž	Security Chain of Custo	Chain of Custody Clarification	
0.0	Parameter(s) past holding	Login Clarification Needed	If Broken Container:
	Improper temperature	Chain of custody is incomplete	Insufficient packing material around container
1	Improper container type	Please specify Metals requested.	cooler
×	_	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
	-	Received additional samples not listed on coc.	Sample was frozen
1	Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
1	Vials received with headspace.		If no Chain of Custody:
1	Broken container	Client did not "X" analysis.	Received by:
1	Broken container:	Chain of Custody is missing	Date/Time:
1	Sufficient sample remains		Temp./Cont. Rec./pH:
1			Саттіет:
1			Tracking#

Login Comments: Metals container for MW-9 and MW-10 received unpreserved.

Date: 11/13/18 Time: 162	\$ 5 C C C C C C C C C C C C C C C C C C
Email X Voice Mail	Franks
Call	Client Contact:
it informed by	Initials: JC

Login Instructions: Preserve and log for total metals.

Notice: This communication and any attached files may contain privileged or other confidential information. If you have received this in error, please contact the sender immediately via reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.

ANALYTICAL REPORT

November 21, 2018

SCS Engineers - KS

Sample Delivery Group:

L1043793

Samples Received:

11/13/2018

Project Number:

27213167.18

Description:

KCP&L latan Generating Station

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Wubb law

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1043793-01	5
MW-2 L1043793-02	6
MW-6 L1043793-03	7
MW-7 L1043793-04	8
MW-8 L1043793-05	9
DUPLICATE L1043793-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	16
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SAMPLE SUMMARY

MW-1 L1043793-01 GW			Collected by G. Penaflor	Collected date/time 11/12/18 14:00	Received date/time 11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 06:10	11/15/18 06:10	ELN
Metals (ICP) by Method 6010B	WG1196321	1	11/14/18 10:10	11/14/18 14:28	ST
			Collected by	Collected date/time	Received date/time
MW-2 L1043793-02 GW			G. Penaflor	11/12/18 12:50	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 06:28	11/15/18 06:28	ELN
Metals (ICP) by Method 6010B	WG1196321	1	11/14/18 10:10	11/14/18 14:31	ST
			Collected by	Collected date/time	Received date/time
MW-6 L1043793-03 GW			G. Penaflor	11/12/18 14:45	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 06:46	11/15/18 06:46	ELN
Metals (ICP) by Method 6010B	WG1196321	1	11/14/18 10:10	11/14/18 15:02	ST
			Collected by	Collected date/time	Received date/time
MW-7 L1043793-04 GW			G. Penaflor	11/12/18 14:10	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1197219	1	11/17/18 09:14	11/17/18 09:50	MMF
Wet Chemistry by Method 9056A	WG1196256	1	11/15/18 07:04	11/15/18 07:04	ELN
Wet Chemistry by Method 9056A	WG1196256	5	11/15/18 10:15	11/15/18 10:15	ELN
Metals (ICP) by Method 6010B	WG1196321	1	11/14/18 10:10	11/14/18 15:04	ST
			Collected by	Collected date/time	Received date/time
MW-8 L1043793-05 GW			G. Penaflor	11/12/18 14:45	11/13/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst

Gravimetric Analysis by Method 2540 C-2011

DUPLICATE L1043793-06 GW

Gravimetric Analysis by Method 2540 C-2011

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Method

WG1197219

WG1196256

WG1196321

Batch

WG1197219

WG1196780

WG1196321

date/time

11/17/18 09:14

11/15/18 07:22

11/14/18 10:10

Collected by

G. Penaflor

Preparation

11/17/18 09:14

11/15/18 17:51

11/14/18 10:10

date/time

1

1

Dilution

1

1

date/time

11/17/18 09:50

11/15/18 07:22

11/14/18 14:14

11/12/18 13:00

Analysis

date/time

11/17/18 09:50

11/15/18 17:51

11/14/18 20:25

Collected date/time

MMF ELN

ST

Received date/time

Analyst

MMF

ELN

ST

11/13/18 08:45

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Tubb lan

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 14:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	485000		10000	1	11/17/2018 09:50	WG1197219

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5040		1000	1	11/15/2018 06:10	WG1196256
Fluoride	288		100	1	11/15/2018 06:10	WG1196256
Sulfate	24600		5000	1	11/15/2018 06:10	WG1196256

³Ss

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/14/2018 14:28	WG1196321
Calcium	137000		1000	1	11/14/2018 14:28	WG1196321

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 12:50

L1043793

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	590000		10000	1	11/17/2018 09:50	WG1197219

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5790		1000	1	11/15/2018 06:28	WG1196256
Fluoride	327		100	1	11/15/2018 06:28	WG1196256
Sulfate	81500		5000	1	11/15/2018 06:28	WG1196256

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/14/2018 14:31	WG1196321
Calcium	166000		1000	1	11/14/2018 14:31	WG1196321

СQс

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 14:45

L1043793

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	484000		10000	1	11/17/2018 09:50	WG1197219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	1310		1000	1	11/15/2018 06:46	WG1196256
Fluoride	325		100	1	11/15/2018 06:46	WG1196256
Sulfate	27300		5000	1	11/15/2018 06:46	WG1196256

Cn

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/14/2018 15:02	WG1196321
Calcium	147000		1000	1	11/14/2018 15:02	WG1196321

MW-7

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 14:10

L1043793

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	681000		13300	1	11/17/2018 09:50	WG1197219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Chloride	26400		1000	1	11/15/2018 07:04	WG1196256
Fluoride	369		100	1	11/15/2018 07:04	WG1196256
Sulfate	149000		25000	5	11/15/2018 10:15	WG1196256

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/14/2018 15:04	WG1196321
Calcium	192000		1000	1	11/14/2018 15:04	WG1196321

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 14:45

L1043793

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	563000		10000	1	11/17/2018 09:50	WG1197219

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	12100		1000	1	11/15/2018 07:22	WG1196256
Fluoride	396		100	1	11/15/2018 07:22	WG1196256
Sulfate	85800		5000	1	11/15/2018 07:22	<u>WG1196256</u>

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	_
Boron	ND		200	1	11/14/2018 14:14	WG1196321
Calcium	170000	V	1000	1	11/14/2018 14:14	WG1196321

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 11/12/18 13:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	585000		10000	1	11/17/2018 09:50	WG1197219

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	5550		1000	1	11/15/2018 17:51	WG1196780
Fluoride	328		100	1	11/15/2018 17:51	WG1196780
Sulfate	81100		5000	1	11/15/2018 17:51	WG1196780

Ss

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Boron	ND		200	1	11/14/2018 20:25	WG1196321
Calcium	164000		1000	1	11/14/2018 20:25	WG1196321

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 C-2011

L1043793-01,02,03,04,05,06

Method Blank (MB)

(MB) R3361685-1 11/17/	18 09:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		2820	10000

(OC) 110 127CF 02	11/17/10 00.50	/DI 1D	N D22C1COF 2	11/17/10 00.50
(OS) L1043765-03	11/1/18 09:50 •	(DUP) K3301085-3	11/1/18 09:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1110000	1010000	1	9.47	J3	5

(LCS)	R3361685-2	11/17/18	09:50

,	Spike Amount	Amount LCS Res	t LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	00 854000	97.0	85.0-115

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043793-01,02,03,04,05

Method Blank (MB)

(MB) R3360117-1 11/14/18 22:17

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1043249-31 Original Sample (OS) • Duplicate (DUP)

(OS) L1043249-31 11/14/18 23:12 • (DUP) R3360117-3 11/14/18 23:30

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	67.2	0.000	1	200	<u>P1</u>	15
Fluoride	U	0.000	1	0.000		15
Sulfate	U	0.000	1	0.000		15

L1043793-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1043793-05 11/15/18 07:22 • (DUP) R3360117-6 11/15/18 07:40

(00) 210 107 00 00 11710	07.007.22 (20.)		.,	. •		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	12100	12100	1	0.239		15
Fluoride	396	444	1	11.5		15
Sulfate	85800	85800	1	0.0572		15

Sc

Laboratory Control Sample (LCS)

(I CS) P3360117-2 11/14/18 22:35

(LCS) R3300117-2 11/14/	10 22.33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39600	98.9	80.0-120	
Fluoride	8000	8000	100	80.0-120	
Sulfate	40000	40200	101	80.0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043793-01,02,03,04,05

L1043249-31 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05) 1 10/132/19 31	11/14/19 22:12 - (MS) D2260117 4	11/1//10 22://0 -	(MSD) R3360117-5 11/15/18 00:06
(03) [1043243-31	11/14/10 23.12 • (IVIS) NSSOUTT/=4	11/14/10 23.40	(IVI3D) K3300117-3 11/13/16 00.00

(03) 110-132-13 31 11/1-/10 2	20.12 - (1415) 115	300117 + 11/14/1	10 25.40 · (IVISE	5) 113300117 3	11/15/10 00.00							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	67.2	49100	50400	98.0	101	1	80.0-120			2.58	15
Fluoride	5000	U	5000	5140	100	103	1	80.0-120			2.64	15
Sulfate	50000	11	50100	50800	100	102	1	80 0 ₋ 120			1 31	15

L1043793-05 Original Sample (OS) • Matrix Spike (MS)

(00) 210 107 00 00 11/10/10	07.22 (1110)11	0000117 7 11710	,, 10 07.00				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	12100	62000	99.8	1	80.0-120	
Fluoride	5000	396	5570	103	1	80.0-120	
Sulfate	50000	85800	132000	92.5	1	80.0-120	<u>E</u>

SDG:

L1043793

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043793-06

Method Blank (MB)

(MB) R3360508-1	11/15/18 15:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		51.9	1000
Fluoride	U		9.90	100
Sulfate	U		77.4	5000

L1043813-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1043813-01 11/15/18 18:07 • (DUP) R3360508-3 11/15/18 18:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	3850	3860	1	0.329		15
Fluoride	190	190	1	0.316		15
Sulfate	46000	45900	1	0.154		15

L1044067-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1044067-01 11/15/18 23:19 • (DUP) R3360508-6 11/15/18 23:35

(03) [1044007 01 11/13/10	25.15 - (501) 1	.55005000	11/15/10 25.	33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	2580	2610	1	1.16		15
Fluoride	193	208	1	7.38		15
Sulfate	24500	24900	1	1.49		15

PAGE:

14 of 20

Laboratory Control Sample (LCS)

(LCS) R3360508-2 11/15/18 15:46

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	38500	96.3	80.0-120	
Fluoride	8000	7890	98.6	80.0-120	
Sulfate	40000	38900	97.2	80 0-120	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L1043813-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1043813-01 11/15/18 18:07 • (MS) R3360508-4 11/15/18 18:40 • (MSD) R3360508-5 11/15/18 18:56

(,	()			_,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3850	53100	54000	98.6	100	1	80.0-120			1.68	15
Fluoride	5000	190	5350	5390	103	104	1	80.0-120			0.797	15
Sulfate	50000	46000	95000	95800	98.1	99.7	1	80.0-120			0.838	15

L1044067-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1044067-01 11/15/18 23:19 • (MS) R3360508-7 11/15/18 23:51

(03) 11044007-01 11/13/10	23.13 • (IVIS) KS	300300-7 11/1	3/10 23.31				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	2580	52200	99.3	1	80.0-120	
Fluoride	5000	193	5260	101	1	80.0-120	
Sulfate	50000	24500	74900	101	1	80.0-120	

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L1043793-01,02,03,04,05,06

Method Blank (MB)

(MB) R3359940-1 11/14/18	, 14:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		12.6	200
Calcium	U		46.3	1000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3359940-2 11/14/18	3 14:09 • (LCSD)) R3359940-3	11/14/18 14:12							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Boron	1000	1080	1070	108	107	80.0-120			0.854	20
Calcium	10000	10400	10400	104	104	80 0-120			0.00547	20

L1043793-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1043793-05 11/14/18 14:14 • (MS) R3359940-5 11/14/18 14:20 • (MSD) R3359940-6 11/14/18 14:2	(OS) L1043793-05	11/14/18 14:14 • (N	MS) R3359940-5	11/14/18 14:20 • (MSE	D) R3359940-6 11/14/18 14:22
---	------------------	---------------------	----------------	-----------------------	------------------------------

(O3) L1043733-03	11/14/10 14.14 • (IVIS) KS	333340-3 11/1-	+/10 14.20 • (1)	13D) K333334C)-O 11/14/16 14.	.22							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Boron	1000	ND	1200	1220	107	109	1	75.0-125			1.61	20	
Calcium	10000	170000	174000	178000	48 1	82.0	1	75 0-125	V		192	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbic viations and	2 Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries

[°]Qc

ACCREDITATIONS & LOCATIONS

State Accreditations

40660
17-026
AZ0612
88-0469
2932
TN00003
PH-0197
E87487
NELAP
923
TN00003
200008
C-TN-01
364
E-10277
90010
16
Al30792
LA180010
TN0002
324
M-TN003
9958
047-999-395
TN00003
340
CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

		4 5 4		Billing Inf	ormation			Fa	Jan 1	Design.		Analysis / Conta	ainer / Preservative	ive too-	Chain of Custon	fy Pageof
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210				Accoun 8575 W Overlar	. 110th	Street	10	Pres Chk		22					- PB	
Report to: lason Franks				Email To: jay.marti	n@kcpl.c	om;	eers.com;		res						12065 Lebunon R Mount Juliet, TN	77122 773
roject Description: KCP&L latan Genera	iting S	tation			City/S Collec	tate			E-NoF						Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-585	859 10.00
hone: 913-681-0030 ax: 913-681-0012	18020000	Project 13167.1			100000000000000000000000000000000000000	oject # AOPKS-	IATAN		SmIHDPE-Nopres	E-HNO3					L# 10 c	13783
collected by (print): S. Penaflor	Site/F	acility IC	"		P.O. #				12	HDPE	lopres				Table # Acctnum: AC	QUAOPKS
collected by (signature):	R		ab MUST Be	1000 March 2000 March	Quot		ults Needed		d, F, SO4)	0.250mlHDP	250mlHDPE-NoPres				Template:T1 Prelogin: P6	80726
mmediately NY		Two Day Three D	10 D	ay (Rad Only)	1	STI		No. of	ins (Cld,	a - 6010					TSR: 206 - Jef	t Carr
Sample ID	Com	p/Grab	Matrix *	Depth		Date	Time	Cntrs	Anions	B, Ca	TDS				Shipped Via:	Sample # (lab only)
MW-1	Cox	np	GW		11/1	2/18	1400	3	X	X	X					-01
MW-2		Sen I	GW			1	1250	3	x	х	X	T.			100	02
MW-6			GW	17.33		1	1445	3	X	X	X					03
MW-7		1	GW			1	1410	3	X	X	X	100	Gert Ball		· 15 -	04
MW-8			GW		4		1445	3	X	X	X	123			130	05
DUPLICATE			GW				1300	3	X	X	X					OG.
MS	170		GW	1-3		100	1305	3	X	X	X		Manual Inc.		11/41	
MSD)	1	GW	1	,	-	1310	3	X	X	X				- 75.55	1 3 9 10
			ing.	1.5		-									The state of	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Rema	rks:										pH	Temp	COC Sea COC Sig Bottles	Sample Receipt (1 Present/Intac med/Accurate: arrive intact;	Checklist t: AD _ Y _ N
DW - Drinking Water OT - Other	Samp UP	les retur S _ Fe	ned via: dExCou	rier Sv	M	Tr	racking#			1		In .	Other	Suffici	bottles used: ent volume sent If Applica to Headspace:	
Relinquished by : (Signature)			Date: //-/	2-18	Time:		eceived by: (Signat	urel	Ty	elle		Trip Blank Rec	eived: Yes/No HCL/MeoH TBR	Preserv	vation Correct/C	hecked: Zi _N 0.5 mR/hr
Rélinquished by : (Signature)			Date:		Time:	Re	eceived by: (Signat	ture)		-		Temp:	°C Bottles Received:	If preserv	vation required by L	ogin: Date/Time
Relinquished by : (Signature)		100	Date:		Time:	Re	eceived for lab by:	1	ture)			Date: 11/13/18	Time:	Hold:		Condition:

	gin #:L1043793 Clie	nt: AQUAOPKS	Date: 11/13	Evaluated by: Kelsey S.
--	-----------------------	--------------	-------------	-------------------------

Non-Conformance (check applicable items)

Non-comormance (check applicable rema)	Lucen a		cante terms	
Sample Integrity			Chain of Custody Clarification	
Parameter(s) past holding time	lding	*/ ×	x Login Clarification Needed	If Broken Container:
Improper	55		Chain of custody is incomplete	Insufficient packing material around container
Improper container type		73	Please specify Metals requested.	Insufficient packing material inside cooler
Improper			Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.	olume.		Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.			Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.	eadsbace.		Trip Blank not received.	If no Chain of Custody:
Broken container			Client did not "X" analysis.	Received by:
Broken container:		10	Chain of Custody is missing	Date/Time:
Sufficient sample remains	ains			Temp./Cont. Rec./pH:
	S Share	1		Carrier
				Tracking#

Login Comments: Client does not specify which samples are MS/MSD.

Client informed by:	Call	Email	×	Voice Mail	Date: 11/13/18	Time: 1639	
TSR Initials: JC	Client Cont	act: J. Franks					

Login Instructions: MW-2

Notice: This communication and any attached files may contain privileged or other confidential information. If you have received this in error, please contact the sender immediately via reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.

ATTACHMENT 2 Statistical Analyses

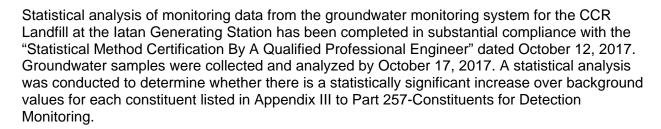
ATTACHMENT 2-1

Fall 2017 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

January 22, 2018

To: latan Generating Station


20250 State Route 45 N Platte County, Missouri

Kansas City Power & Light Company

From: SCS Engineers

RE: Revision to January 15, 2018 Memorandum

Determination of Statistically Significant Increases - CCR Landfill

The completed statistical evaluation did identify one Appendix III constituent above its prediction limit. The prediction limit for chloride in monitoring well MW-1 is 6.27 mg/L and the chloride result for the second verification re-sample is 6.27 mg/L. However the, Sanitas[™] Output identified the 6.27 mg/L chloride concentration in MW-1 as a confirmed statistically significant increase (SSI) above background, due to numerical rounding.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample result, 1st verification re-sample result (when applicable), 2nd verification re-sample result (when applicable), extra sample result for quality control (if applicable), and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

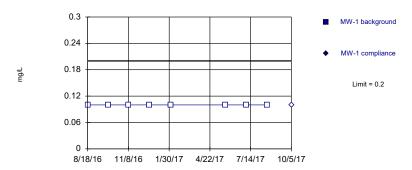
Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable Sanitas[™] configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

latan Generating Station
Determination of Statistically Significant Increases
CCR Landfill
January 22, 2018
Page 2 of 2

Revision Number	Revision Date	Attachment Revised	Summary of Revisions
1	1/22/2018	Cover letter	Revision table added. No changes to text regarding statistical analyses. Attachment 1 description was revised to match the revisions made in the attachment.
1	1/22/2018	1	Sanitas [™] Output was revised to report boron in mg/L instead of ug/L. Some samples previously identified as verification re-samples are now more appropriately identified as "extra samples". These samples were taken as part of the quality control process, and were not required as part of verification re-sampling.

latan Generating Station Determination of Statistically Significant Increases CCR Landfill January 22, 2018

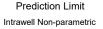

ATTACHMENT 1

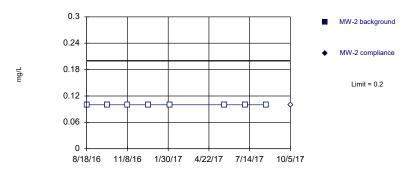
Sanitas™ Output

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

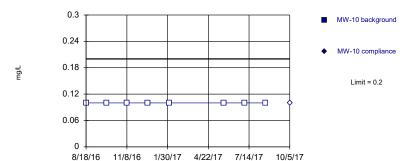

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.


Constituent: Boron Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

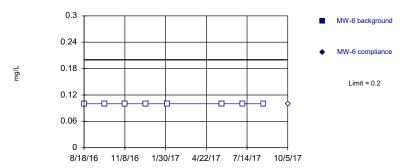
Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored, limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.

Constituent: Boron Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

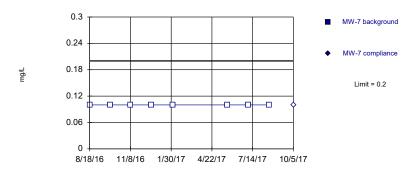
Sanitas $^{\text{\tiny{IM}}}$ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

	MW-1	MW-1
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2

	MW-10	MW-10
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2


	MW-2	MW-2
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2

	MW-6	MW-6
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

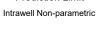
Within Limit Prediction Limit
Intrawell Non-parametric

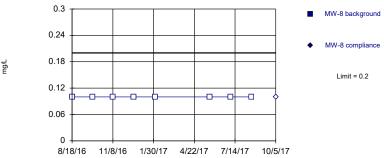
0.3

0.24

MW-9 background

MW-9 compliance


Limit = 0.2


8/18/16 11/8/16 1/30/17 4/22/17 7/14/17 10/5/17

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas w v.9.5.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values

Within Limit Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.

Constituent: Boron Analysis Run 1/18/2018 12:17 PM View: CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit

Intrawell Parametric

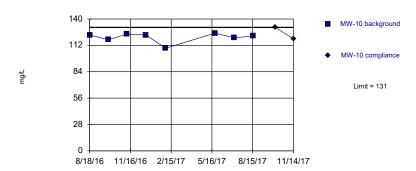
MW-1 background

MW-1 compliance

Limit = 143

8/18/16 11/16/16 2/15/17 5/16/17 8/15/17 11/14/17

Background Data Summary (based on square transformation): Mean=17100, Std. Dev.=1642, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapirio Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


		MW-7	MW-7
8/18	/2016	<0.2	
9/29	/2016	<0.2	
11/9	/2016	<0.2	
12/2	1/2016	<0.2	
2/3/2	2017	<0.2	
5/24	/2017	<0.2	
7/5/2	2017	<0.2	
8/17	/2017	<0.2	
10/5	/2017		<0.2

	MW-8	MW-8
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2

	MW-9	MW-9
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
10/5/2017		<0.2
	9/29/2016 11/9/2016 12/21/2016 2/3/2017 5/24/2017 7/5/2017 8/17/2017	8/18/2016 <0.2 9/29/2016 <0.2 11/9/2016 <0.2 12/21/2016 <0.2 2/3/2017 <0.2 5/24/2017 <0.2 7/5/2017 <0.2 8/17/2017 <0.2

	MW-1	MW-1	
8/18/2016	134		
9/29/2016	134		
11/9/2016	136		
12/21/2016	134		
2/3/2017	116		
5/24/2017	128		
7/5/2017	129		
8/17/2017	134		
10/5/2017		141	
11/14/2017		130	1st verification re-sample

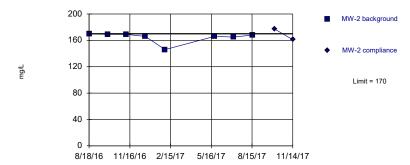
Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=121, Std. Dev.=5.15, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.795, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Calcium Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

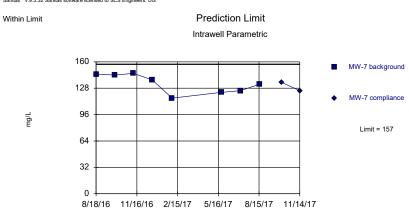

Within Limit Prediction Limit Intrawell Parametric

200
160
120
80
8/18/16 11/16/16 2/15/17 5/16/17 8/15/17 11/14/17

Background Data Summary: Mean=144, Std. Dev.=5.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapirio Wilk @alpha = 0.01, calculated = 0.936, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric



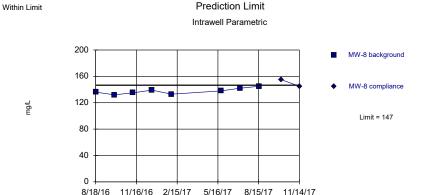
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Calcium Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=134, Std. Dev.=11.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.908, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

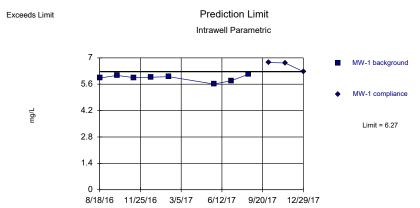

	MW-10	MW-10			
8/18/2016	123				
9/29/2016	118				
11/9/2016	124				
12/21/2016	123				
2/3/2017	109				
5/24/2017	125				
7/5/2017	120				
8/17/2017	122				
10/5/2017		131			
11/14/2017		119	1st verification re-sample		

	MW-2	MW-2	
8/18/2016	170		
9/29/2016	169		
11/9/2016	169		
12/21/2016	166		
2/3/2017	146		
5/24/2017	166		
7/5/2017	165		
8/17/2017	168		
10/5/2017		177	
11/14/2017		161	1st verification re-sample

	MW-6	MW-6		
8/18/2016	142			
9/29/2016	139			
11/9/2016	142			
12/21/2016	146			
2/3/2017	136			
5/24/2017	150			
7/5/2017	147			
8/17/2017	150			
10/5/2017		157		
11/14/2017		151	1st verification re-sample	

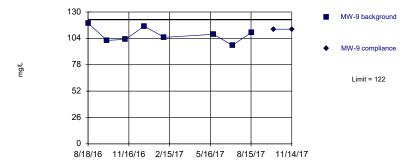
	MW-7	MW-7	
8/18/2016	145		
9/29/2016	144		
11/9/2016	146		
12/21/2016	138		
2/3/2017	116		
5/24/2017	123		
7/5/2017	125		
8/17/2017	133		
10/5/2017		135	
11/14/2017		125	extra sample

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=138, Std. Dev =4.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.962, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

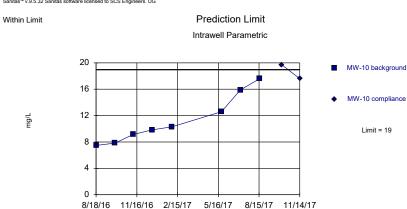
Constituent: Calcium Analysis Run 1/18/2018 12:17 PM View: CCR III


latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=5.93, Std. Dev.=0.165, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.921, critical = 0.749. Kappa = 0.951 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=108, Std. Dev.=7.31, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.967, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

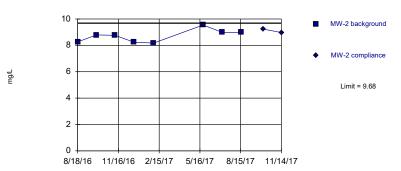
Constituent: Calcium Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=11.3, Std. Dev.=3,72, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-8	MW-8	
8/18/2016	136		
9/29/2016	132		
11/9/2016	135		
12/21/2016	139		
2/3/2017	133		
5/24/2017	138		
7/5/2017	142		
8/17/2017	145		
10/5/2017		155	
11/14/2017		145	1st verification re-sample

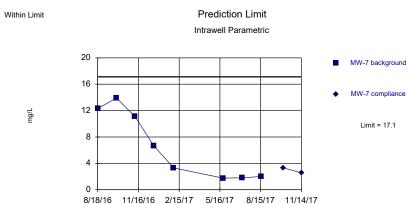

	MW-9	MW-9	
8/18/2016	119		
9/29/2016	102		
11/9/2016	103		
12/21/2016	116		
2/3/2017	105		
5/24/2017	108		
7/5/2017	97.2		
8/17/2017	110		
10/5/2017		113	
11/14/2017		113	extra sample

	MVV-1	MW-1	
8/18/2016	5.93		
9/29/2016	6.07		
11/9/2016	5.95		
12/21/2016	5.97		
2/3/2017	6		
5/24/2017	5.61		
7/5/2017	5.78		
8/17/2017	6.13		
10/5/2017		6.75	
11/14/2017		6.73	1st verification re-sample
12/29/2017		6.27	2nd verification re-sample

	MW-10	MW-10		
8/18/2016	7.47			
9/29/2016	7.83			
11/9/2016	9.15			
12/21/2016	9.84			
2/3/2017	10.3			
5/24/2017	12.6			
7/5/2017	15.9			
8/17/2017	17.6			
10/5/2017		19.7		
11/14/2017		17.6	1st verification re-sample	

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=8.72, Std. Dev.=0.473, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Chloride Analysis Run 1/18/2018 12:17 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=6.6, Std. Dev.=5.13, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.839, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.44, Std. Dev.=0.145, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Chloride Analysis Run 1/18/2018 12:17 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

MW-8 background

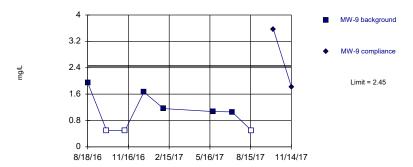
MW-8 compliance

Limit = 5.33

Background Data Summary: Mean=2.77, Std. Dev.=1.25, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.85, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-2	MW-2	
8/18/2016	8.26		
9/29/2016	8.79		
11/9/2016	8.76		
12/21/2016	8.24		
2/3/2017	8.17		
5/24/2017	9.54		
7/5/2017	8.99		
8/17/2017	8.98		
10/5/2017		9.23	
11/14/2017		8.97	extra sample

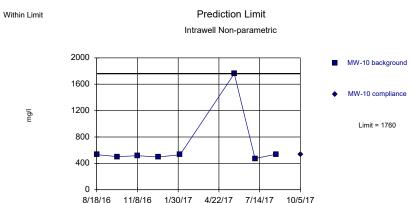
	MW-6	MW-6			
8/18/2016	1.31				
9/29/2016	1.46				
11/9/2016	1.29				
12/21/2016	1.72				
2/3/2017	1.4				
5/24/2017	1.49				
7/5/2017	1.54				
8/17/2017	1.32				
10/5/2017		2.09			
11/14/2017		2.12	1st verification re-sample		
12/29/2017		1.45	2nd verification re-sample		


	MW-7	MW-7	
8/18/2016	12.3		
9/29/2016	13.9		
11/9/2016	11.1		
12/21/2016	6.64		
2/3/2017	3.32		
5/24/2017	1.76		
7/5/2017	1.81		
8/17/2017	2		
10/5/2017		3.32	
11/14/2017		2.58	extra sample

	MW-8	MW-8	
8/18/2016	1.5		
9/29/2016	1.42		
11/9/2016	1.76		
12/21/2016	1.89		
2/3/2017	4.02		
5/24/2017	3.63		
7/5/2017	4.44		
8/17/2017	3.53		
10/5/2017		4.55	
11/14/2017		4.86	extra sample

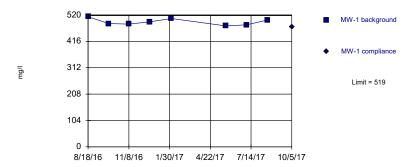
Hollow symbols indicate censored values.

Within Limit


Prediction Limit Intrawell Parametric

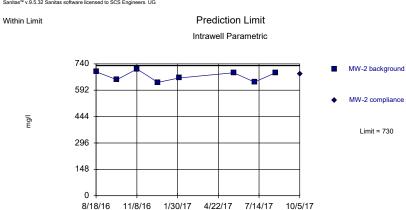
Background Data Summary (after Aitchison's Adjustment): Mean=0.863, Std. Dev.=0.777, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.88, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Chloride Analysis Run 1/18/2018 12:17 PM View: CCR III


Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=493, Std. Dev.=12.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.943, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Dissolved Solids Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=672, Std. Dev.=28.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.904, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-9	MW-9	
8/18/2016	1.95		
9/29/2016	<1		
11/9/2016	<1		
12/21/2016	1.66		
2/3/2017	1.16		
5/24/2017	1.07		
7/5/2017	1.06		
8/17/2017	<1		
10/5/2017		3.57	
11/14/2017		1.82	1st verification re-sample

	MW-1	MW-1
8/18/2016	513	
9/29/2016	486	
11/9/2016	484	
12/21/2016	493	
2/3/2017	506	
5/24/2017	477	
7/5/2017	481	
8/17/2017	500	
10/5/2017		472

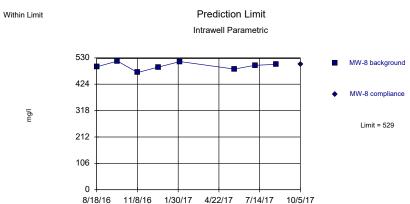

		MW-10	MW-10
8	3/18/2016	532	
9	9/29/2016	502	
	11/9/2016	516	
	12/21/2016	497	
2	2/3/2017	531	
į	5/24/2017	1760	
	7/5/2017	474	
8	3/17/2017	539	
	10/5/2017		539

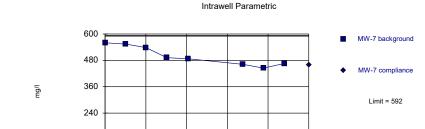
	MW-2	MW-2
8/18/2016	696	
9/29/2016	651	
11/9/2016	711	
12/21/2016	636	
2/3/2017	661	
5/24/2017	690	
7/5/2017	638	
8/17/2017	690	
10/5/2017		683

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

120

Within Limit

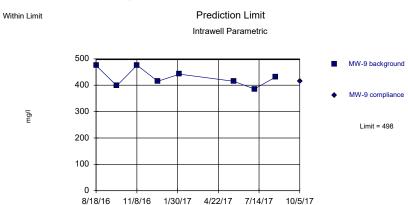



Background Data Summary: Mean=521, Std. Dev =16.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.943, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Dissolved Solids Analysis Run 1/18/2018 12:17 PM View: CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=497, Std. Dev.=15.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.964, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


8/18/16 11/8/16 1/30/17 4/22/17 7/14/17 10/5/17

Prediction Limit

Background Data Summary: Mean=501, Std. Dev.=44.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Dissolved Solids Analysis Run 1/18/2018 12:17 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=430, Std. Dev.=33.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.926, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-6	MW-6
8/18/2016	522	
9/29/2016	498	
11/9/2016	506	
12/21/2016	519	
2/3/2017	527	
5/24/2017	544	
7/5/2017	508	
8/17/2017	542	
10/5/2017		528

	MW-7	MW-7
8/18/2016	560	
9/29/2016	554	
11/9/2016	538	
12/21/2016	492	
2/3/2017	487	
5/24/2017	462	
7/5/2017	445	
8/17/2017	466	
10/5/2017		459

	MW-8	MW-8
8/18/2016	494	
9/29/2016	517	
11/9/2016	471	
12/21/2016	493	
2/3/2017	515	
5/24/2017	485	
7/5/2017	500	
8/17/2017	504	
10/5/2017		505

	MW-9	MW-9
8/18/2016	475	
9/29/2016	398	
11/9/2016	476	
12/21/2016	415	
2/3/2017	442	
5/24/2017	415	
7/5/2017	386	
8/17/2017	431	
10/5/2017		414

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

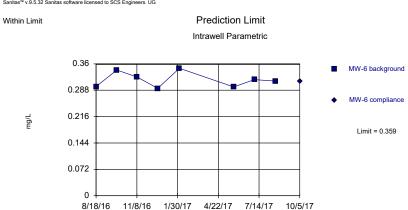
Background Data Summary: Mean=0.269, Std. Dev.=0.0208, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.853, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Fluoride Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 0.37 MW-2 background 0.296 MW-2 compliance 0.222 Limit = 0.369 0.148 0.074 8/18/16 11/8/16 1/30/17 4/22/17 7/14/17 10/5/17

Background Data Summary: Mean=0.327, Std. Dev.=0.0206, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.927, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.



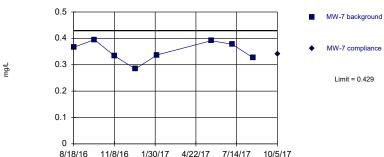
Background Data Summary: Mean=0.595, Std. Dev.=0.0528, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.971, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Fluoride Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.317, Std. Dev.=0.0208, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

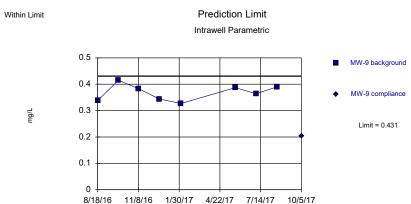
	MW-1	MW-1
8/18/2016	0.234	
9/29/2016	0.292	
11/9/2016	0.274	
12/21/2016	0.241	
2/3/2017	0.288	
5/24/2017	0.272	
7/5/2017	0.275	
8/17/2017	0.276	
10/5/2017		0.273


	MW-10	MW-10
8/18/2016	0.584	
9/29/2016	0.622	
11/9/2016	0.642	
12/21/2016	0.538	
2/3/2017	0.521	
5/24/2017	0.591	
7/5/2017	0.582	
8/17/2017	0.682	
10/5/2017		0.312

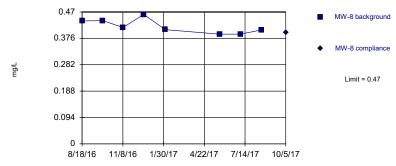
	MW-2	MW-2
8/18/2016	0.303	
9/29/2016	0.356	
11/9/2016	0.331	
12/21/2016	0.292	
2/3/2017	0.342	
5/24/2017	0.327	
7/5/2017	0.334	
8/17/2017	0.332	
10/5/2017		0.326

	MW-6	MW-6
8/18/2016	0.298	
9/29/2016	0.343	
11/9/2016	0.324	
12/21/2016	0.293	
2/3/2017	0.348	
5/24/2017	0.297	
7/5/2017	0.317	
8/17/2017	0.313	
10/5/2017		0.312

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

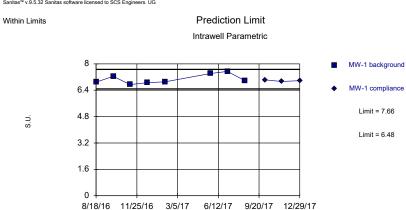


Background Data Summary: Mean=0.351, Std. Dev.=0.038, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.934, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


> Constituent: Fluoride Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.369, Std. Dev.=0.0304, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.



Background Data Summary: Mean=0.419, Std. Dev.=0.0251, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.915, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

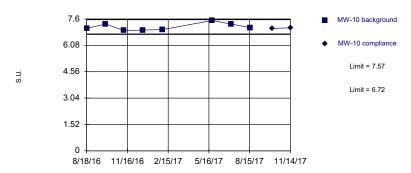
> Constituent: Fluoride Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=7.07, Std. Dev.=0.289, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-7	MW-7
8/18/2016	0.366	
9/29/2016	0.395	
11/9/2016	0.333	
12/21/2016	0.284	
2/3/2017	0.337	
5/24/2017	0.391	
7/5/2017	0.378	
8/17/2017	0.326	
10/5/2017		0.341

	MW-8	MW-8
8/18/2016	0.438	
9/29/2016	0.439	
11/9/2016	0.415	
12/21/2016	0.461	
2/3/2017	0.407	
5/24/2017	0.391	
7/5/2017	0.391	
8/17/2017	0.406	
10/5/2017		0.396


	MW-9	MW-9
8/18/2016	0.338	
9/29/2016	0.415	
11/9/2016	0.383	
12/21/2016	0.344	
2/3/2017	0.327	
5/24/2017	0.387	
7/5/2017	0.364	
8/17/2017	0.39	
10/5/2017		0.204

	MW-1	MW-1	
8/18/2016	6.89		
9/29/2016	7.24		
11/9/2016	6.74		
12/21/2016	6.86		
2/3/2017	6.91		
5/24/2017	7.41		
7/5/2017	7.54		
8/17/2017	6.98		
10/5/2017		7.03	
11/14/2017		6.93	extra sample
12/29/2017		6.98	extra sample

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.15, Std. Dev.=0.207, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.896, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: pH Analysis Run 1/18/2018 12:17 PM View: CCR III

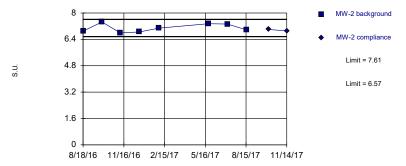
latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-6 background


MW-6 compliance
Limit = 7.86

Limit = 6.74

8/18/16 11/25/16 3/5/17 6/12/17 9/20/17 12/29/17

Background Data Summary: Mean=7.3, Std. Dev.=0.274, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.09, Std. Dev.=0.254, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.901, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: pH Analysis Run 1/18/2018 12:17 PM View: CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-7 background

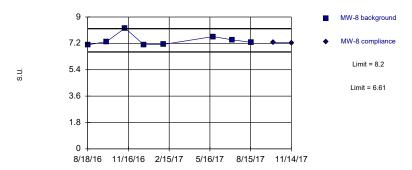
MW-7 compliance
Limit = 7.98

Limit = 6.56

Background Data Summary: Mean=7.27, Std. Dev.=0.349, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.923, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

8/18/16 11/16/16 2/15/17 5/16/17 8/15/17 11/14/17

	MW-10	MW-10	
8/18/2016	7.06		
9/29/2016	7.31		
11/9/2016	6.93		
12/21/2016	6.96		
2/3/2017	6.99		
5/24/2017	7.51		
7/5/2017	7.31		
8/17/2017	7.1		
10/5/2017		7.05	
11/14/2017		7.09	extra sample

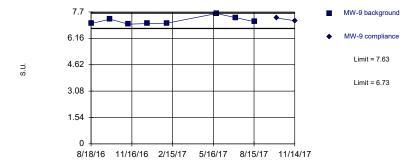

	MW-2	MW-2	
8/18/2016	6.9		
9/29/2016	7.45		
11/9/2016	6.79		
12/21/2016	6.85		
2/3/2017	7.08		
5/24/2017	7.35		
7/5/2017	7.33		
8/17/2017	6.97		
10/5/2017		7	
11/14/2017		6.91	extra sample

	MW-6	MW-6	
8/18/2016	7.18		
9/29/2016	6.97		
11/9/2016	7.72		
12/21/2016	6.99		
2/3/2017	7.1		
5/24/2017	7.49		
7/5/2017	7.46		
8/17/2017	7.47		
10/5/2017		7.2	
11/14/2017		7.14	extra sample
12/29/2017		7.02	extra sample

	MW-7	MW-7	
8/18/2016	6.97		
9/29/2016	7.25		
11/9/2016	7.87		
12/21/2016	6.88		
2/3/2017	7.01		
5/24/2017	7.67		
7/5/2017	7.36		
8/17/2017	7.15		
10/5/2017		7.15	
11/14/2017		7 13	extra sample

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

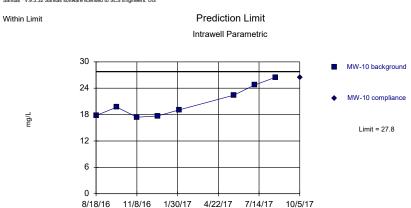
Background Data Summary: Mean=7.41, Std. Dev.=0.387, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.813, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


> Constituent: pH Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 40 MW-1 background MW-1 compliance 24 Limit = 40 16 8 8/18/16 11/8/16 1/30/17 4/22/17 7/14/17 10/5/17

Background Data Summary: Mean=33.9, Std. Dev.=3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.863, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.



Background Data Summary: Mean=7.18, Std. Dev.=0.22, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.85, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

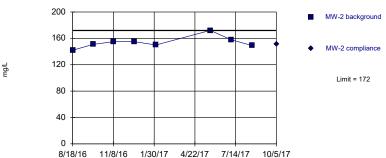
> Constituent: pH Analysis Run 1/18/2018 12:17 PM View: CCR III

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=20.7, Std. Dev.=3.47, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.868, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-8	MW-8	
8/18/2016	7.1		
9/29/2016	7.32		
11/9/2016	8.24		
12/21/2016	7.1		
2/3/2017	7.13		
5/24/2017	7.66		
7/5/2017	7.44		
8/17/2017	7.27		
10/5/2017		7.25	
11/14/2017		7.24	extra sample

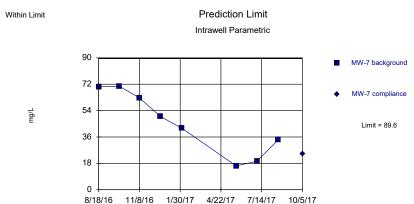
	MW-9	MW-9	
8/18/2016	7.02		
9/29/2016	7.28		
11/9/2016	6.99		
12/21/2016	7.02		
2/3/2017	7.05		
5/24/2017	7.61		
7/5/2017	7.37		
8/17/2017	7.13		
10/5/2017		7.35	
11/14/2017		7.19	extra sample


	MW-1	MW-1
8/18/2016	32.4	
9/29/2016	35.3	
11/9/2016	33.2	
12/21/2016	36.2	
2/3/2017	36.9	
5/24/2017	27.4	
7/5/2017	34.2	
8/17/2017	35.2	
10/5/2017		34.5

	MW-10	MW-10
8/18/2016	17.8	
9/29/2016	19.7	
11/9/2016	17.4	
12/21/2016	17.7	
2/3/2017	19.1	
5/24/2017	22.4	
7/5/2017	24.7	
8/17/2017	26.5	
10/5/2017		26.4

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit



Background Data Summary: Mean=154, Std. Dev.=8.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Sulfate Analysis Run 1/18/2018 12:18 PM View: CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=45.6, Std. Dev.=21.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Intrawell Parametric

MW-6 background

MW-6 compliance

Limit = 39.7

Prediction Limit

Background Data Summary: Mean=32.5, Std. Dev.=3.52, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

8/18/16 11/8/16 1/30/17 4/22/17 7/14/17 10/5/17

Constituent: Sulfate Analysis Run 1/18/2018 12:18 PM View: CCR III latan Utility Waste LF Client: SCS Engineers Data: latan

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

MW-8 background

MW-8 compliance

Limit = 59.2

Background Data Summary: Mean=34.6, Std. Dev.=12, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapirio Wilk @alpha = 0.01, calculated = 0.846, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-2	MW-2
8/18/2016	142	
9/29/2016	151	
11/9/2016	155	
12/21/2016	155	
2/3/2017	150	
5/24/2017	172	
7/5/2017	158	
8/17/2017	149	
10/5/2017		151

	MW-6	MW-6
8/18/2016	30.2	
9/29/2016	33.5	
11/9/2016	31.4	
12/21/2016	28.6	
2/3/2017	28.5	
5/24/2017	32.7	
7/5/2017	37.2	
8/17/2017	37.6	
10/5/2017		34.5


	MW-7	MW-7
8/18/2016	70.2	
9/29/2016	70.6	
11/9/2016	62.6	
12/21/2016	50	
2/3/2017	41.9	
5/24/2017	16.2	
7/5/2017	19.5	
8/17/2017	34.1	
10/5/2017		24.3

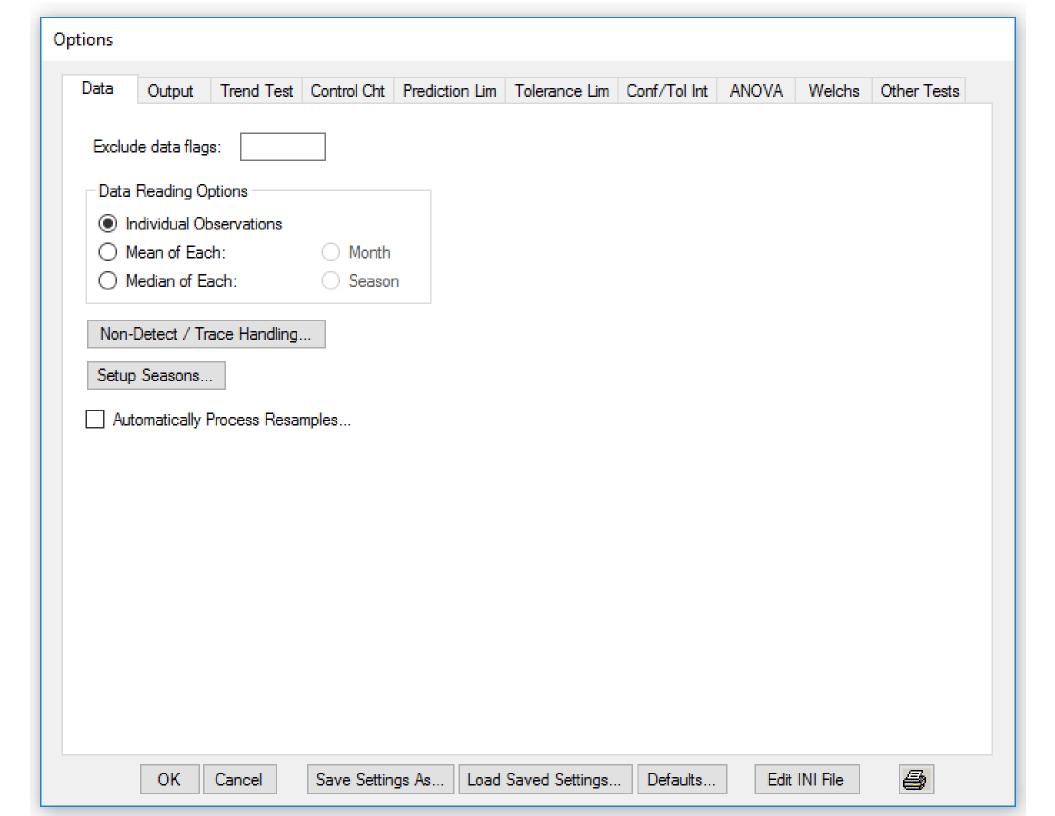
	MW-8	MW-8
8/18/2016	23.3	
9/29/2016	24.2	
11/9/2016	23.8	
12/21/2016	25.5	
2/3/2017	39.6	
5/24/2017	42.8	
7/5/2017	54.8	
8/17/2017	43	
10/5/2017		43.4

Sanitas™ v.9.5.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=21.2, Std. Dev.=3.64, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
10/5/2017		21.5

<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-1	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-10	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	10/5/2017	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	143	n/a	11/14/2017	130	No	8	0	x^2	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-10	131	n/a	11/14/2017	119	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-2	170	n/a	11/14/2017	161	No	8	0	n/a	0.00591	NP Intra (normality)
Calcium (mg/L)	MW-6	154	n/a	11/14/2017	151	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-7	157	n/a	11/14/2017	125	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-8	147	n/a	11/14/2017	145	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122	n/a	11/14/2017	113	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.27	n/a	12/29/2017	6.27	Yes	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-10	19	n/a	11/14/2017	17.6	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-2	9.68	n/a	11/14/2017	8.97	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.74	n/a	12/29/2017	1.45	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-7	17.1	n/a	11/14/2017	2.58	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-8	5.33	n/a	11/14/2017	4.86	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.45	n/a	11/14/2017	1.82	No	8	37.5	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	519	n/a	10/5/2017	472	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	10/5/2017	539	No	8	0	n/a	0.00591	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	730	n/a	10/5/2017	683	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	555	n/a	10/5/2017	528	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	592	n/a	10/5/2017	459	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-8	529	n/a	10/5/2017	505	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	498	n/a	10/5/2017	414	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.312	n/a	10/5/2017	0.273	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.703	n/a	10/5/2017	0.312	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.369	n/a	10/5/2017	0.326	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.359	n/a	10/5/2017	0.312	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.429	n/a	10/5/2017	0.341	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.47	n/a	10/5/2017	0.396	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.431	n/a	10/5/2017	0.204	No	8	0	No	0.00107	Param Intra 1 of 3
pH (S.U.)	MW-1	7.66	6.48	12/29/2017	6.98	No	8	0	No	0.000537	
pH (S.U.)	MW-10	7.57	6.72	11/14/2017	7.09	No	8	0	No	0.000537	
pH (S.U.)	MW-2	7.61	6.57	11/14/2017	6.91	No	8	0	No	0.000537	
pH (S.U.)	MW-6	7.86	6.74	12/29/2017	7.02	No	8	0	No		Param Intra 1 of 3
pH (S.U.)	MW-7	7.98	6.56	11/14/2017	7.13	No	8	0	No		Param Intra 1 of 3
pH (S.U.)	MW-8	8.2	6.61	11/14/2017	7.24	No	8	0	No		Param Intra 1 of 3
pH (S.U.)	MW-9	7.63	6.73	11/14/2017	7.19	No	8	0	No	0.000537	
Sulfate (mg/L)	MW-1	40	n/a	10/5/2017	34.5	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-10	27.8	n/a	10/5/2017	26.4	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-2	172	n/a	10/5/2017	151	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.7	n/a	10/5/2017	34.5	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-7	89.6	n/a	10/5/2017	24.3	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-8	59.2	n/a	10/5/2017	43.4	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-9	28.7	n/a	10/5/2017	21.5	No	8	0	No	0.00107	Param Intra 1 of 3

latan Generating Station Determination of Statistically Significant Increases CCR Landfill January 22, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Options							
Data Output	Trend Test Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int ANO	/A Welchs	Other Tests	
☐ Black and Whi	ite Output		☑ Pror	npt to Overwrite/Appe	nd Summary T	Tables	
Four Plots Per	Page		Rou	nd Limits to 2 Sig. D	igits (when no	t set in data file)	
☐ Always Com	nbine Data Pages		Use	r-Set Scale			
✓ Include Tick	k Marks on Data Page		✓ India	cate Background Data	1		
Use Constit	uent Name for Graph Title		Sho	w Exact Dates			
☐ Draw Border A	round Text Reports and D	ata Pages	☐ Thic	k Plot Lines			
	ce Fonts (Graphs): ce Fonts (Data/Text Repo	100% ts): 100%	Zoo	m Factor: 200% V			
	(on reports without explicit		Output Decimal Precision				
	t Const. Name)	Les	_				
	Names to 20 Characters			mal Precision			
_	ines when found in Databa	ise	O Mor	e Precision			
✓ Show Deselect	ted Data on Time Series	Lighter ∨					
✓ Show Deselect	ted Data on all Data Page	s Lighter V					
Setup Symbols ar	nd Colors						
		☑ S	tore Print Jobs in	Multiple Constituent M	ode Store	All Print Jobs	
Printer: Adobe PDI	Printer: Adobe PDF Printers						
ОК	OK Cancel Save Settings As Load Saved Settings Defaults Edit INI File						

Options Prediction Lim Trend Test | Control Cht Tolerance Lim Conf/Tol Int ANOVA Other Tests Data Output Welchs Transformation Use Ladder of Powers Test for Normality using Shapiro-Wilk/Francia at Alpha = 0.01 Natural Log or No Transformation Never Transform Use Non-Parametric Test when Non-Detects Percent > Use Specific Transformation: Use Aitchison's Adjustment V when Non-Detects Percent > Natural Log Optional Further Refinement: Use when NDs % > 50 Use Best W Statistic. Use Poisson Prediction Limit when Non-Detects Percent > Plot Transformed Values Deseasonalize (Intra- and InterWell) IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 If Seasonality Is Detected ✓ Plot Background Data If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never Override Standard Deviation: Override DF: Override Kappa: Always Use Non-Parametric Facility α Automatically Remove Background Outliers Statistical Evaluations per Year: 2-Tailed Test Mode Constituents Analyzed: Show Deselected Data Lighter Downgradient (Compliance) Wells: Highest Background Value Non-Parametric Limit = Sampling Plan Non-Parametric Limit when 100% Non-Detects: Comparing Individual Observations Highest/Second Highest Background Value 1 of 1 () 1 of 2 (a) 1 of 3 1 of 4 Most Recent PQL if available, or MDL 2 of 4 ("Modified California") Most Recent Background Value (subst. method) OK. Cancel Save Settings As... Load Saved Settings... Defaults... Edit INI File

Options						
Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests						
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney Use Modified Alpha 2-Tailed Test Mode						
Use Modified Alpha 2-Tailed Test Mode						
EPA 1989 Outlier Screening (fixed alpha of 0.05)						
Dixon's at α= 0.05 v or if n > 22 v Rosner's at α= 0.01 v V Use EPA Screening to establish Suspected Outliers						
Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat						
Test For Normality using Shapiro-Wilk/Francia V at Alpha = 0.1 V						
Stop if Non-Normal Continue with Decrease in Test if New Newsel						
Continue with Parametric Test if Non-Normal Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat						
✓ No Outlier If Less Than 3.0 Times Median						
Apply Rules found in Ohio Guidance Document 0715						
Combine Background Wells on the Outlier Report						
Piper, Stiff Diagram						
☐ Combine Wells ✓ Label Constituents						
☐ Combine Dates ✓ Label Axes						
 ● Use Default Constituent Names ✓ Note Cation-Anion Balance (Piper only) Use Constituent Definition File 						
OK Cancel Save Settings As Load Saved Settings Defaults Edit INI File						

ATTACHMENT 2-2

Spring 2018 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

September 11, 2018

To: latan Generating Station 20250 State Route 45 N

Platte County, Missouri

Kansas City Power & Light Company

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2018 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the latan Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Groundwater samples were collected on May 21, 2018. Review and validation of the results from the May 2018 Detection Monitoring Event was completed on June 15, 2018, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. One round of verification sampling was conducted for certain constituents on June 26, 2018.

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation did not identify any SSIs above background.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), extra sample result for pH for wells which were re-sampled for verification, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

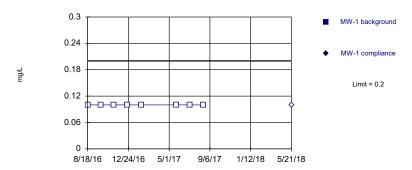
Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

latan Generating Station Determination of Statistically Significant Increases CCR Landfill September 11, 2018 Page 2 of 2

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

latan Generating Station Determination of Statistically Significant Increases CCR Landfill September 11, 2018


ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.

Constituent: Boron Analysis Run 7/19/2018 10:20 AM View: LF CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Prediction Limit

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

0.06

8/18/16 12/24/16 5/1/17

Within Limit

Intrawell Non-parametric

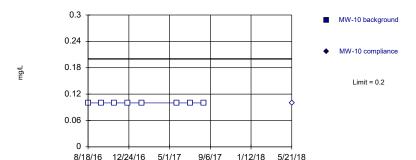
0.3

0.24

MW-2 background

MW-2 compliance

Limit = 0.2

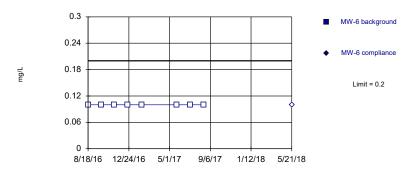

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

1/12/18 5/21/18

9/6/17

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.

Constituent: Boron Analysis Run 7/19/2018 10:20 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas $^{\text{\tiny{IM}}}$ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

	MW-1	MW-1
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-10	MW-10
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-2	MW-2
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-6	MW-6
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Boron Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Iatan Utility Waste LF Client: SCS Engineers Data: Iatan 7-3-2018

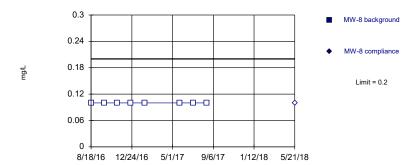
Prediction Limit

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

8/18/16 12/24/16 5/1/17

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


9/6/17

1/12/18 5/21/18

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

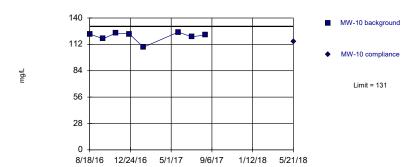
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality; data were not deseasonalized.

Constituent: Boron Analysis Run 7/19/2018 10:20 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary (based on square transformation): Mean=17100, Std. Dev.=1642, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.755, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


	MW-7	MW-7
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-8	MW-8
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-9	MW-9
8/18/2016	<0.2	
9/29/2016	<0.2	
11/9/2016	<0.2	
12/21/2016	<0.2	
2/3/2017	<0.2	
5/24/2017	<0.2	
7/5/2017	<0.2	
8/17/2017	<0.2	
5/21/2018		<0.2

	MW-1	MW-1
8/18/2016	134	
9/29/2016	134	
11/9/2016	136	
12/21/2016	134	
2/3/2017	116	
5/24/2017	128	
7/5/2017	129	
8/17/2017	134	
5/21/2018		131

Within Limit Prediction Limit

Intrawell Parametric

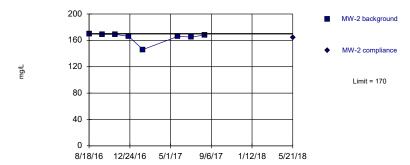
Background Data Summary: Mean=121, Std. Dev.=5.15, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.795, critical = 0.749. Kappa = 2.05 (c=7, v=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Calcium Analysis Run 7/19/2018 10:20 AM View: LF CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

MW-6 background

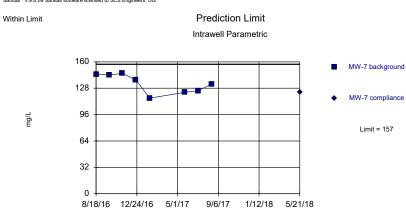

MW-6 compliance

Limit = 154

Background Data Summary: Mean=144, Std. Dev.=5.1, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapirio Wilk @alpha = 0.01, calculated = 0.936, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

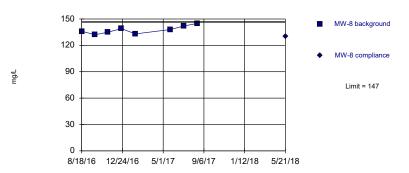
Constituent: Calcium Analysis Run 7/19/2018 10:20 AM View: LF CCR III

latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=134, Std. Dev.=11.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.908, critical = 0.749. Kappa = 2.05 (c=7, v=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-10	MW-10
8/18/2016	123	
9/29/2016	118	
11/9/2016	124	
12/21/2016	123	
2/3/2017	109	
5/24/2017	125	
7/5/2017	120	
8/17/2017	122	
5/21/2018		115


	MW-2	MW-2
8/18/2016	170	
9/29/2016	169	
11/9/2016	169	
12/21/2016	166	
2/3/2017	146	
5/24/2017	166	
7/5/2017	165	
8/17/2017	168	
5/21/2018		164

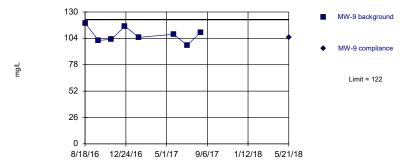
	MW-6	MW-6
8/18/2016	142	
9/29/2016	139	
11/9/2016	142	
12/21/2016	146	
2/3/2017	136	
5/24/2017	150	
7/5/2017	147	
8/17/2017	150	
5/21/2018		150

	MW-7	MW-7
8/18/2016	145	
9/29/2016	144	
11/9/2016	146	
12/21/2016	138	
2/3/2017	116	
5/24/2017	123	
7/5/2017	125	
8/17/2017	133	
5/21/2018		123

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=138, Std. Dev.=4.44, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.962, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


> Constituent: Calcium Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric MW-1 background 5.04 MW-1 compliance 3.78 Limit = 6.27 2.52 1.26 8/18/16 12/24/16 5/1/17 9/6/17 1/12/18 5/21/18

Background Data Summary: Mean=5.93, Std. Dev.=0.165, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.921, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=108, Std. Dev.=7.31, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.967, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Calcium Analysis Run 7/19/2018 10:20 AM View: LF CCR III

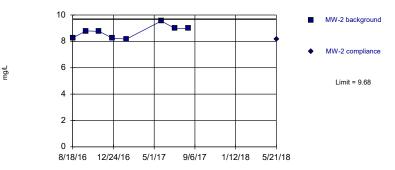
Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 20 ■ MW-10 background 16 MW-10 compliance 12 Limit = 19 8/18/16 12/24/16 5/1/17 9/6/17 1/12/18 5/21/18

Background Data Summary: Mean=11.3, Std. Dev.=3.72, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.894, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-8	MW-8
8/18/2016	136	
9/29/2016	132	
11/9/2016	135	
12/21/2016	139	
2/3/2017	133	
5/24/2017	138	
7/5/2017	142	
8/17/2017	145	
5/21/2018		130

	MW-9	MW-9
8/18/2016	119	
9/29/2016	102	
11/9/2016	103	
12/21/2016	116	
2/3/2017	105	
5/24/2017	108	
7/5/2017	97.2	
8/17/2017	110	
5/21/2018		105


	MW-1	MW-1
8/18/2016	5.93	
9/29/2016	6.07	
11/9/2016	5.95	
12/21/2016	5.97	
2/3/2017	6	
5/24/2017	5.61	
7/5/2017	5.78	
8/17/2017	6.13	
5/21/2018		5.63

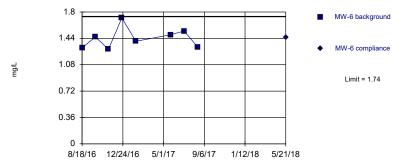
	MW-10	MW-10
8/18/2016	7.47	
9/29/2016	7.83	
11/9/2016	9.15	
12/21/2016	9.84	
2/3/2017	10.3	
5/24/2017	12.6	
7/5/2017	15.9	
8/17/2017	17.6	
5/21/2018		14.1

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit

Intrawell Parametric

Background Data Summary: Mean=8.72, Std. Dev.=0.473, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


> Constituent: Chloride Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 20 MW-7 background 16 MW-7 compliance 12 Limit = 17.1 8 8/18/16 12/24/16 5/1/17 9/6/17 1/12/18 5/21/18

Background Data Summary: Mean=6.6, Std. Dev.=5.13, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.839, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=1.44, Std. Dev.=0.145, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.913, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

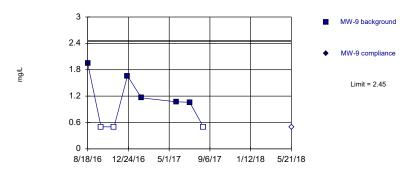
> Constituent: Chloride Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric ■ MW-8 background 48 MW-8 compliance 3.6 Limit = 5.33 2.4 1.2 8/18/16 12/24/16 5/1/17 9/6/17 1/12/18 5/21/18

Background Data Summary: Mean=2.77, Std. Dev.=1.25, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.85, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

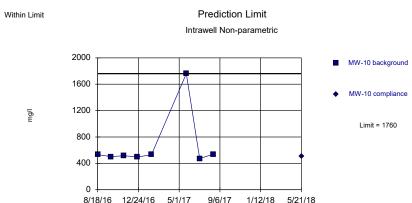
	MW-2	MW-2
8/18/2016	8.26	
9/29/2016	8.79	
11/9/2016	8.76	
12/21/2016	8.24	
2/3/2017	8.17	
5/24/2017	9.54	
7/5/2017	8.99	
8/17/2017	8.98	
5/21/2018		8.14


	MW-6	MW-6
8/18/2016	1.31	
9/29/2016	1.46	
11/9/2016	1.29	
12/21/2016	1.72	
2/3/2017	1.4	
5/24/2017	1.49	
7/5/2017	1.54	
8/17/2017	1.32	
5/21/2018		1.45

	MW-7	MW-7
8/18/2016	12.3	
9/29/2016	13.9	
11/9/2016	11.1	
12/21/2016	6.64	
2/3/2017	3.32	
5/24/2017	1.76	
7/5/2017	1.81	
8/17/2017	2	
5/21/2018		1.54

	MW-8	MW-8
8/18/2016	1.5	
9/29/2016	1.42	
11/9/2016	1.76	
12/21/2016	1.89	
2/3/2017	4.02	
5/24/2017	3.63	
7/5/2017	4.44	
8/17/2017	3.53	
5/21/2018		1.5

Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric

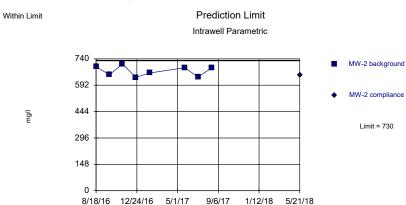
Background Data Summary (after Aitchison's Adjustment): Mean=0.863, Std. Dev.=0.777, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.88, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


> Constituent: Chloride Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.0118. Individual comparison alpha = 0.00591 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

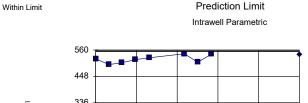


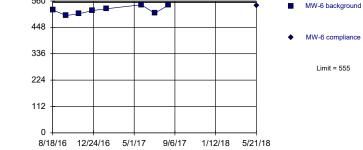
Background Data Summary: Mean=493, Std. Dev.=12.8, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.943, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Dissolved Solids Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=672, Std. Dev.=28.7, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.904, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


	MW-9	MW-9
8/18/2016	1.95	
9/29/2016	<1	
11/9/2016	<1	
12/21/2016	1.66	
2/3/2017	1.16	
5/24/2017	1.07	
7/5/2017	1.06	
8/17/2017	<1	
5/21/2018		<1


	MW-1	MW-1
8/18/2016	513	
9/29/2016	486	
11/9/2016	484	
12/21/2016	493	
2/3/2017	506	
5/24/2017	477	
7/5/2017	481	
8/17/2017	500	
5/21/2018		496

	MW-10	MW-10
8/18/2016	532	
9/29/2016	502	
11/9/2016	516	
12/21/2016	497	
2/3/2017	531	
5/24/2017	1760	
7/5/2017	474	
8/17/2017	539	
5/21/2018		509

	MW-2	MW-2
8/18/2016	696	
9/29/2016	651	
11/9/2016	711	
12/21/2016	636	
2/3/2017	661	
5/24/2017	690	
7/5/2017	638	
8/17/2017	690	
5/21/2018		648

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

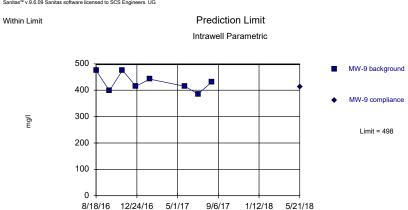
Background Data Summary: Mean=521, Std. Dev.=16.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.943, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Dissolved Solids Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 530 MW-8 background 424 MW-8 compliance 318 Limit = 529 212 106 8/18/16 12/24/16 5/1/17 9/6/17 1/12/18 5/21/18

Background Data Summary: Mean=497, Std. Dev.=15.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.964, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.



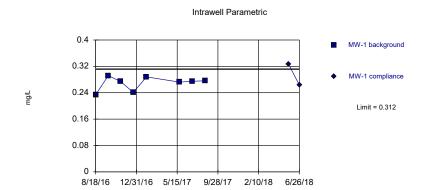
Background Data Summary: Mean=501, Std. Dev.=44.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Dissolved Solids Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=430, Std. Dev.=33.2, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.926, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

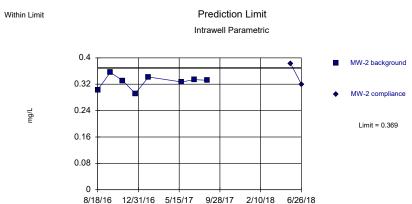
	MW-6	MW-6
8/18/2016	522	
9/29/2016	498	
11/9/2016	506	
12/21/2016	519	
2/3/2017	527	
5/24/2017	544	
7/5/2017	508	
8/17/2017	542	
5/21/2018		540

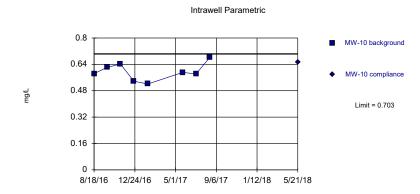

	MW-7	MW-7
8/18/2016	560	
9/29/2016	554	
11/9/2016	538	
12/21/2016	492	
2/3/2017	487	
5/24/2017	462	
7/5/2017	445	
8/17/2017	466	
5/21/2018		439

	MW-8	MW-8
8/18/2016	494	
9/29/2016	517	
11/9/2016	471	
12/21/2016	493	
2/3/2017	515	
5/24/2017	485	
7/5/2017	500	
8/17/2017	504	
5/21/2018		437

	MW-9	MW-9
8/18/2016	475	
9/29/2016	398	
11/9/2016	476	
12/21/2016	415	
2/3/2017	442	
5/24/2017	415	
7/5/2017	386	
8/17/2017	431	
5/21/2018		412

Within Limit

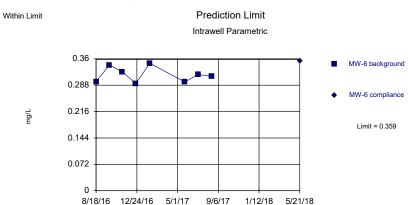

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG **Prediction Limit**


Background Data Summary: Mean=0.269, Std. Dev.=0.0208, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.853, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Fluoride Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.327, Std. Dev.=0.0206, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.927, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


Prediction Limit

Background Data Summary: Mean=0.595, Std. Dev.=0.0528, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.971, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

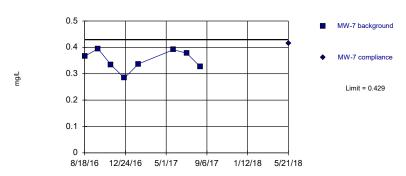
> Constituent: Fluoride Analysis Run 7/19/2018 10:20 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

Background Data Summary: Mean=0.317, Std. Dev.=0.0208, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

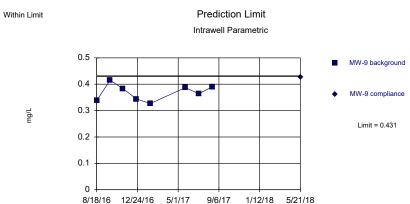
	MW-1	MW-1	
8/18/2016	0.234		
9/29/2016	0.292		
11/9/2016	0.274		
12/21/2016	0.241		
2/3/2017	0.288		
5/24/2017	0.272		
7/5/2017	0.275		
8/17/2017	0.276		
5/21/2018		0.327	
6/26/2018		0.263	1st verification re-sample


	MW-10	MW-10
8/18/2016	0.584	
9/29/2016	0.622	
11/9/2016	0.642	
12/21/2016	0.538	
2/3/2017	0.521	
5/24/2017	0.591	
7/5/2017	0.582	
8/17/2017	0.682	
5/21/2018		0.654

	MW-2	MW-2	
8/18/2016	0.303		
9/29/2016	0.356		
11/9/2016	0.331		
12/21/2016	0.292		
2/3/2017	0.342		
5/24/2017	0.327		
7/5/2017	0.334		
8/17/2017	0.332		
5/21/2018		0.383	
6/26/2018		0.32	1st verification re-sample

	MW-6	MW-6
8/18/2016	0.298	
9/29/2016	0.343	
11/9/2016	0.324	
12/21/2016	0.293	
2/3/2017	0.348	
5/24/2017	0.297	
7/5/2017	0.317	
8/17/2017	0.313	
5/21/2018		0.354

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=0.351, Std. Dev.=0.038, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.934, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Fluoride Analysis Run 7/19/2018 10:21 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=0.369, Std. Dev.=0.0304, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=0.419, Std. Dev.=0.0251, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.915, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

> Constituent: Fluoride Analysis Run 7/19/2018 10:21 AM View: LF CCR III

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Parametric MW-1 background MW-1 compliance Limit = 7.66 4.8 Limit = 6.48 3.2 1.6 8/18/16 12/31/16 5/15/17 9/28/17 2/10/18 6/26/18

Background Data Summary: Mean=7.07, Std. Dev.=0.289, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.895, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-7	MW-7
8/18/2016	0.366	
9/29/2016	0.395	
11/9/2016	0.333	
12/21/2016	0.284	
2/3/2017	0.337	
5/24/2017	0.391	
7/5/2017	0.378	
8/17/2017	0.326	
5/21/2018		0.414

	MW-8	MW-8
8/18/2016	0.438	
9/29/2016	0.439	
11/9/2016	0.415	
12/21/2016	0.461	
2/3/2017	0.407	
5/24/2017	0.391	
7/5/2017	0.391	
8/17/2017	0.406	
5/21/2018		0.441


	MW-9	MW-9
8/18/2016	0.338	
9/29/2016	0.415	
11/9/2016	0.383	
12/21/2016	0.344	
2/3/2017	0.327	
5/24/2017	0.387	
7/5/2017	0.364	
8/17/2017	0.39	
5/21/2018		0.426

	MW-1	MW-1	
8/18/2016	6.89		
9/29/2016	7.24		
11/9/2016	6.74		
12/21/201	6 6.86		
2/3/2017	6.91		
5/24/2017	7.41		
7/5/2017	7.54		
8/17/2017	6.98		
5/21/2018		6.93	
6/26/2018		6.99	extra sample

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.15, Std. Dev.=0.207, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.896, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

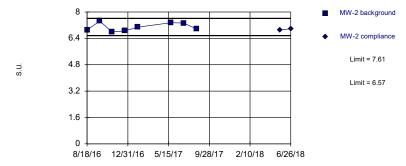
Constituent: pH Analysis Run 7/19/2018 10:21 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-6 background


MW-6 compliance
Limit = 7.86
Limit = 6.74

8/18/16 12/24/16 5/1/17

Background Data Summary: Mean=7.3, Std. Dev.=0.274, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

9/6/17 1/12/18 5/21/18

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.09, Std. Dev.=0.254, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.901, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: pH Analysis Run 7/19/2018 10:21 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

MW-7 background

MW-7 compliance

Limit = 7.98

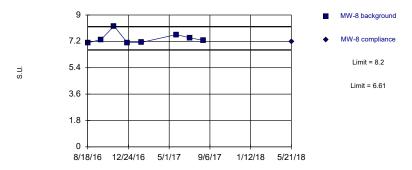
Limit = 6.56

8/18/16 12/24/16 5/1/17

Background Data Summary: Mean=7.27, Std. Dev =0.349, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.923, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

9/6/17 1/12/18 5/21/18

	MW-10	MW-10
8/18/2016	7.06	
9/29/2016	7.31	
11/9/2016	6.93	
12/21/2016	6.96	
2/3/2017	6.99	
5/24/2017	7.51	
7/5/2017	7.31	
8/17/2017	7.1	
5/21/2018		7.04

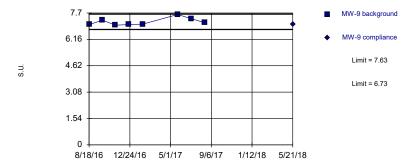

	MW-2	MW-2	
8/18/2016	6.9		
9/29/2016	7.45		
11/9/2016	6.79		
12/21/2016	6.85		
2/3/2017	7.08		
5/24/2017	7.35		
7/5/2017	7.33		
8/17/2017	6.97		
5/21/2018		6.9	
6/26/2018		6.99	extra sample

	MW-6	MW-6
8/18/2016	7.18	
9/29/2016	6.97	
11/9/2016	7.72	
12/21/2016	6.99	
2/3/2017	7.1	
5/24/2017	7.49	
7/5/2017	7.46	
8/17/2017	7.47	
5/21/2018		7.08

	MW-7	MW-7
8/18/2016	6.97	
9/29/2016	7.25	
11/9/2016	7.87	
12/21/2016	6.88	
2/3/2017	7.01	
5/24/2017	7.67	
7/5/2017	7.36	
8/17/2017	7.15	
5/21/2018		7.04

latilitas - v.s.o.os patrillas sottware licensed to SCS Engineers. Od

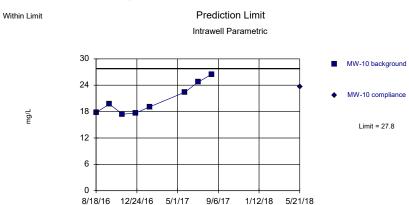
Background Data Summary: Mean=7.41, Std. Dev.=0.387, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.813, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.


Constituent: pH Analysis Run 7/19/2018 10:21 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=33.9, Std. Dev.=3, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.863, critical = 0.749. Kappa = 2.05 (c=7, v=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG


Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.18, Std. Dev.=0.22, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.85, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

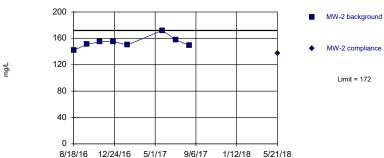
Constituent: pH Analysis Run 7/19/2018 10:21 AM View: LF CCR III latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=20.7, Std. Dev.=3.47, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.868, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-8	MW-8
8/18/2016	7.1	
9/29/2016	7.32	
11/9/2016	8.24	
12/21/2016	7.1	
2/3/2017	7.13	
5/24/2017	7.66	
7/5/2017	7.44	
8/17/2017	7.27	
5/21/2018		7.17

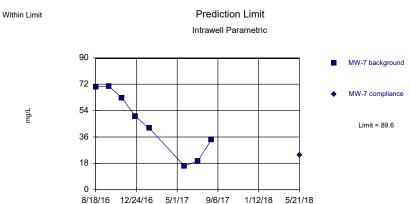
	MW-9	MW-9
8/18/2016	7.02	
9/29/2016	7.28	
11/9/2016	6.99	
12/21/2016	7.02	
2/3/2017	7.05	
5/24/2017	7.61	
7/5/2017	7.37	
8/17/2017	7.13	
5/21/2018		7.05

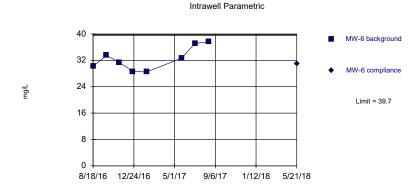

	MW-1	MW-1
8/18/2016	32.4	
9/29/2016	35.3	
11/9/2016	33.2	
12/21/2016	36.2	
2/3/2017	36.9	
5/24/2017	27.4	
7/5/2017	34.2	
8/17/2017	35.2	
5/21/2018		32.6

	MW-10	MW-10
8/18/2016	17.8	
9/29/2016	19.7	
11/9/2016	17.4	
12/21/2016	17.7	
2/3/2017	19.1	
5/24/2017	22.4	
7/5/2017	24.7	
8/17/2017	26.5	
5/21/2018		23.6

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Within Limit

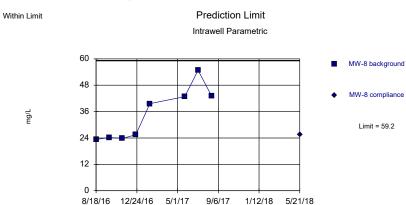



Background Data Summary: Mean=154, Std. Dev.=8.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Sulfate Analysis Run 7/19/2018 10:21 AM View: LF CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=45.6, Std. Dev.=21.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.916, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.



Prediction Limit

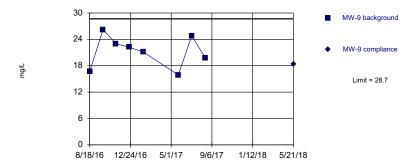
Background Data Summary: Mean=32.5, Std. Dev=3.52, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

Constituent: Sulfate Analysis Run 7/19/2018 10:21 AM View: LF CCR III
latan Utility Waste LF Client: SCS Engineers Data: latan 7-3-2018

Sanitas™ v.9.6.09 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=34.6, Std. Dev.=12, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapirio Wilk @alpha = 0.01, calculated = 0.846, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-2	MW-2
8/18/2016	142	
9/29/2016	151	
11/9/2016	155	
12/21/2016	155	
2/3/2017	150	
5/24/2017	172	
7/5/2017	158	
8/17/2017	149	
5/21/2018		137


	MW-6	MW-6
8/18/2016	30.2	
9/29/2016	33.5	
11/9/2016	31.4	
12/21/2016	28.6	
2/3/2017	28.5	
5/24/2017	32.7	
7/5/2017	37.2	
8/17/2017	37.6	
5/21/2018		30.9

	MW-7	MW-7
8/18/2016	70.2	
9/29/2016	70.6	
11/9/2016	62.6	
12/21/2016	50	
2/3/2017	41.9	
5/24/2017	16.2	
7/5/2017	19.5	
8/17/2017	34.1	
5/21/2018		23.8

	MW-8	MW-8
8/18/2016	23.3	
9/29/2016	24.2	
11/9/2016	23.8	
12/21/2016	25.5	
2/3/2017	39.6	
5/24/2017	42.8	
7/5/2017	54.8	
8/17/2017	43	
5/21/2018		25.4

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=21.2, Std. Dev.=3.64, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.958, critical = 0.749. Kappa = 2.05 (c=7, w=7, 1 of 3, event alpha = 0.0513). Report alpha = 0.00107.

	MW-9	MW-9
8/18/2016	16.7	
9/29/2016	26.2	
11/9/2016	23	
12/21/2016	22.2	
2/3/2017	21.1	
5/24/2017	15.9	
7/5/2017	24.8	
8/17/2017	19.8	
5/21/2018		18.3

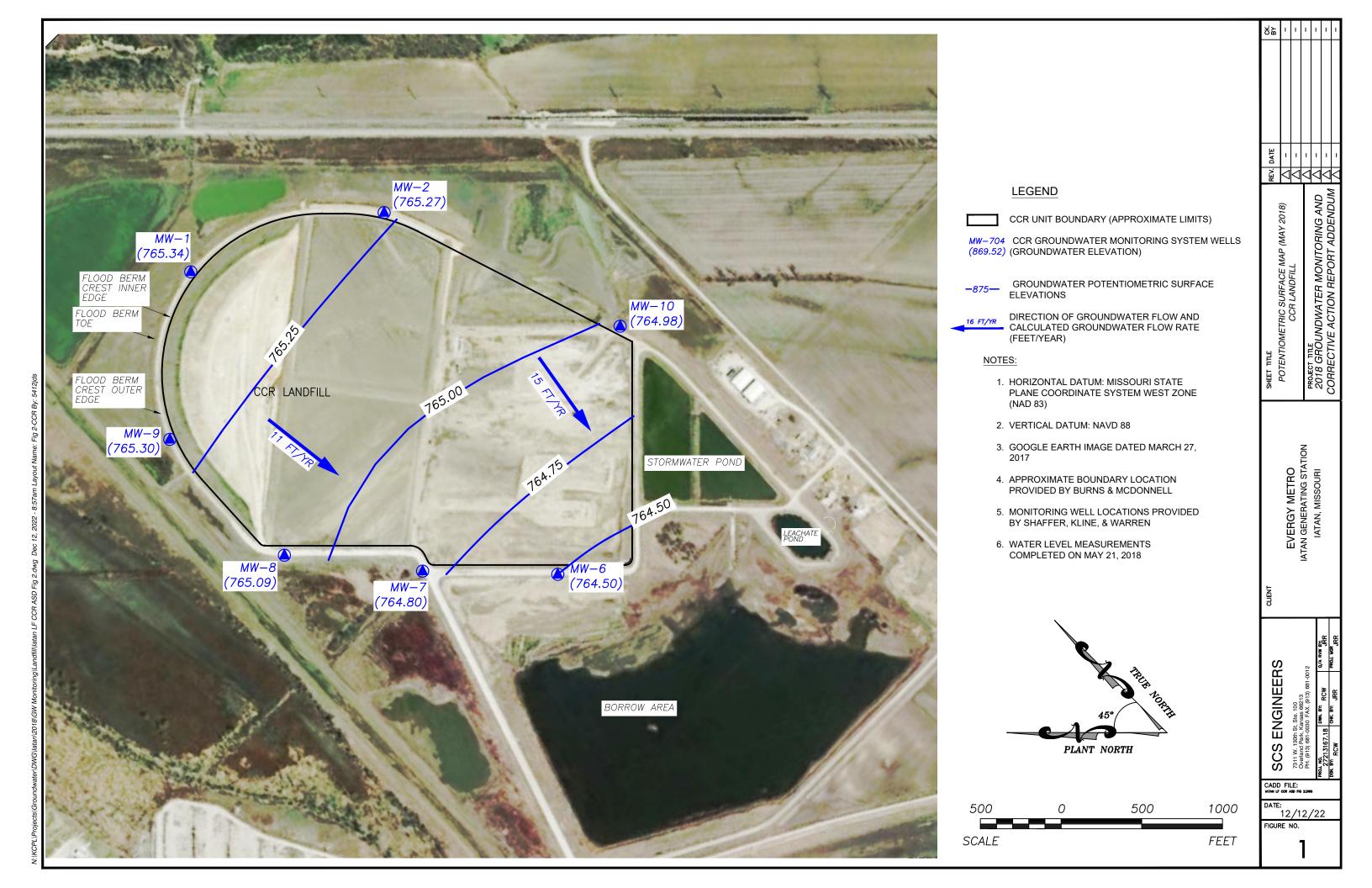
		latan Ut	ility Waste LF	Client: SCS Engineers	Data: latan 7-3	-2018	Printe	d 7/19/2018	3, 10:33 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-1	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-10	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-2	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-6	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-7	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-8	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Boron (mg/L)	MW-9	0.2	n/a	5/21/2018	0.1ND	No	8	100	n/a	0.00591	NP Intra (NDs) 1 of 3
Calcium (mg/L)	MW-1	143	n/a	5/21/2018	131	No	8	0	x^2	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-10	131	n/a	5/21/2018	115	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-2	170	n/a	5/21/2018	164	No	8	0	n/a	0.00591	NP Intra (normality)
Calcium (mg/L)	MW-6	154	n/a	5/21/2018	150	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-7	157	n/a	5/21/2018	123	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-8	147	n/a	5/21/2018	130	No	8	0	No	0.00107	Param Intra 1 of 3
Calcium (mg/L)	MW-9	122	n/a	5/21/2018	105	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-1	6.27	n/a	5/21/2018	5.63	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-10	19	n/a	5/21/2018	14.1	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-2	9.68	n/a	5/21/2018	8.14	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-6	1.74	n/a	5/21/2018	1.45	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-7	17.1	n/a	5/21/2018	1.54	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-8	5.33	n/a	5/21/2018	1.5	No	8	0	No	0.00107	Param Intra 1 of 3
Chloride (mg/L)	MW-9	2.45	n/a	5/21/2018	0.5ND	No	8	37.5	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-1	519	n/a	5/21/2018	496	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-10	1760	n/a	5/21/2018	509	No	8	0	n/a	0.00591	NP Intra (normality)
Dissolved Solids (mg/l)	MW-2	730	n/a	5/21/2018	648	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-6	555	n/a	5/21/2018	540	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-7	592	n/a	5/21/2018	439	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-8	529	n/a	5/21/2018	437	No	8	0	No	0.00107	Param Intra 1 of 3
Dissolved Solids (mg/l)	MW-9	498	n/a	5/21/2018	412	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-1	0.312	n/a	6/26/2018	0.263	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-10	0.703	n/a	5/21/2018	0.654	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-2	0.369	n/a	6/26/2018	0.32	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-6	0.359	n/a	5/21/2018	0.354	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-7	0.429	n/a	5/21/2018	0.414	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-8	0.47	n/a	5/21/2018	0.441	No	8	0	No	0.00107	Param Intra 1 of 3
Fluoride (mg/L)	MW-9	0.431	n/a	5/21/2018	0.426	No	8	0	No	0.00107	Param Intra 1 of 3
pH (S.U.)	MW-1	7.66	6.48	6/26/2018	6.99	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-10	7.57	6.72	5/21/2018	7.04	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-2	7.61	6.57	6/26/2018	6.99	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-6	7.86	6.74	5/21/2018	7.08	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-7	7.98	6.56	5/21/2018	7.04	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-8	8.2	6.61	5/21/2018	7.17	No	8	0	No	0.000537	Param Intra 1 of 3
pH (S.U.)	MW-9	7.63	6.73	5/21/2018	7.05	No	8	0	No	0.000537	Param Intra 1 of 3
Sulfate (mg/L)	MW-1	40	n/a	5/21/2018	32.6	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-10	27.8	n/a	5/21/2018	23.6	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-2	172	n/a	5/21/2018	137	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-6	39.7	n/a	5/21/2018	30.9	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-7	89.6	n/a	5/21/2018	23.8	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-8	59.2	n/a	5/21/2018	25.4	No	8	0	No	0.00107	Param Intra 1 of 3
Sulfate (mg/L)	MW-9	28.7	n/a	5/21/2018	18.3	No	8	0	No	0.00107	Param Intra 1 of 3
\ J /	-	-				-	-				· -· -

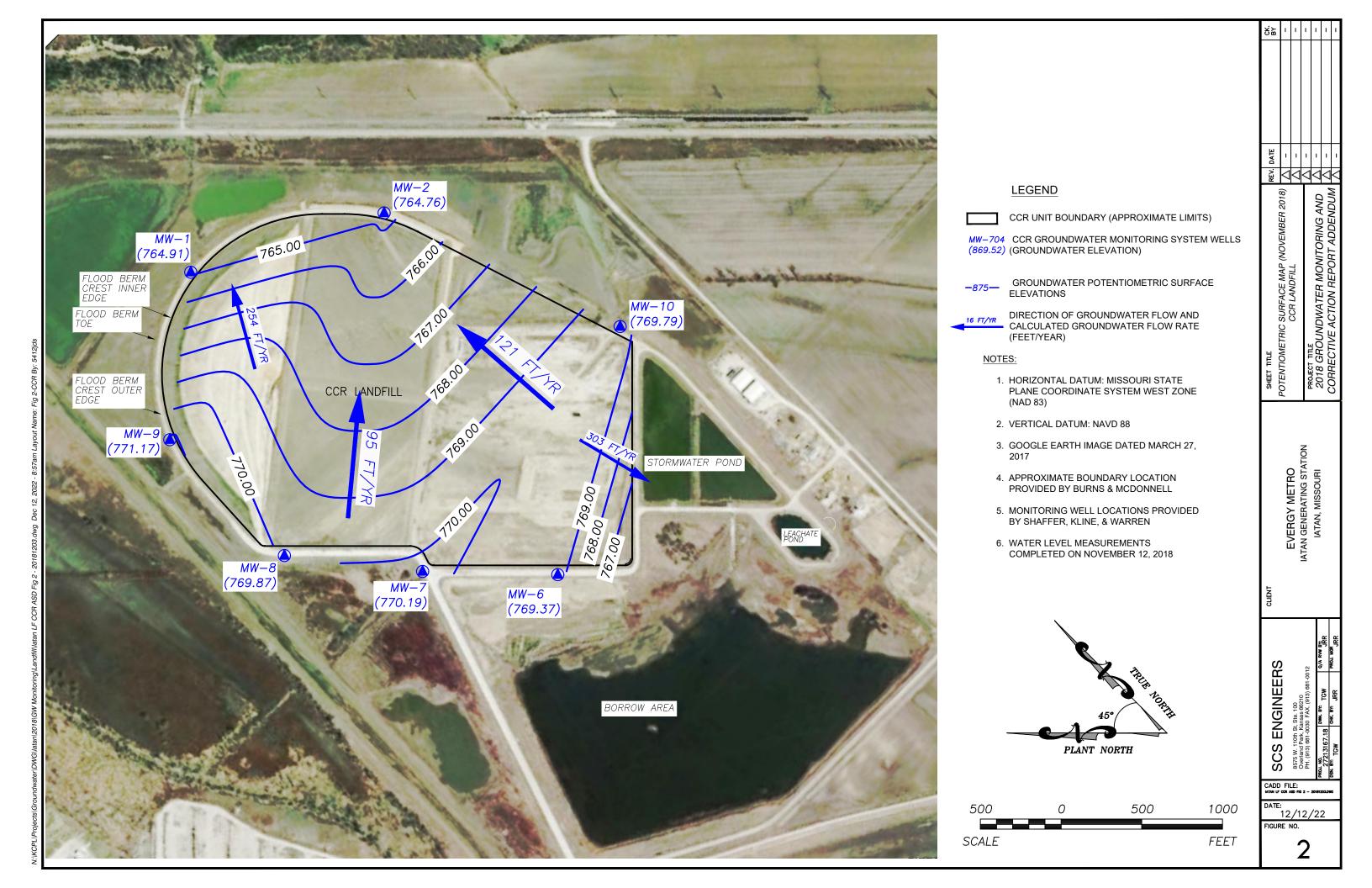
Iatan Generating Station Determination of Statistically Significant Increases CCR Landfill September 11, 2018

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Fuelud	l- d-t- fl								
Exclud	le data flag	S							
Data	Reading O	ptions							
● In	dividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of E	ach:	○ Seasor	n					
Non-l	Detect / Tr	ace Handling.							
		_							
Setup	Seasons								
Aut	omatically l	Process Resa	mples						


_	_
Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
 ✓ Enlarge/Reduce Fonts (Graphs): 100% ✓ Enlarge/Reduce Fonts (Data/Text Reports): 100% 	Zoom Factor: 200% ∨
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	Less Precision
Truncate File Names to 20 Characters	Normal Precision More Precision
☐ Include Limit Lines when found in Database	O man man
✓ Show Deselected Data on Time Series Lighter ∨	
Show Deselected Data on all Data Pages Lighter ∨	
Setup Symbols and Colors	
☑ Sto	ore Print Jobs in Multiple Constituent Mode Store All Print Jobs
Printer: Adobe PDF	∨ Printers


Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data Output Tr	end Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests	
						nsformation Use Ladder	of Powers		
✓ Test for Normality✓ Use Non-Parametr	_	apiro-Wilk/Fra en Non-Dete		at Alpha = 0.01 Natural Log or No Transformation Never Transform					
Use Aitchison's Adjustment when Non-Detects Percent > 15 Optional Further Refinement: Use when NDs % > 50 Use Specific Transformation: Natural Log Use Best W Statistic Plot Transformed Values							l Log V		
Deseasonalize (Intra If Seasonality Is If Seasonality Is Always (When S	Detected Detected	Or Insufficient	to Test Never	Stop if	IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation:				
□ Always Use Non-Parametric Override DF: Override Kappa: Facility □ α □ Automatically Remove Background Outliers Statistical Evaluations per Year: □ 2-Tailed Test Mode Constituents Analyzed: ▼ Show Deselected Data Lighter Lighter α Δ Δ Δ Δ Δ Δ Δ Δ Δ									
Sampling Plan Comparing Individual Observations 1 of 1 1 of 2 1 of 3 1 of 4 2 of 4 ("Modified California") Non-Parametric Limit = Highest Background Value Non-Parametric Limit = Highest Background Value									

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney Use Modified Alpha 2-Tailed Test Mode									
Outlier Tests Outlier Screening (fixed alpha of 0.05) Dixon's at $\alpha = 0.05 \lor \text{or if n} > 22 \lor \text{Rosner's at } \alpha = 0.01 \lor \text{Use EPA Screening to establish Suspected Outliers}$									
Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat ✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1 ✓									
Stop if Non-Normal Continue with Parametric Test if Non-Normal Tukey's if Non-Normal, with IQR Multiplier = 3.0 Use Ladder of Powers to achieve Best W Stat									
 ✓ No Outlier If Less Than 3.0 Times Median ☐ Apply Rules found in Ohio Guidance Document 0715 ☐ Combine Background Wells on the Outlier Report 									
_ c	Stiff Diagra combine We combine Da	ells				Label Constit	uents		
● U	lse Default	Constituent Na Jent Definition			<u>~</u>	Note Cation-	Anion Balan	ce (Piper o	nly)

ATTACHMENT 3 Groundwater Potentiometric Surface Maps

